SimplifyCFG.cpp revision 299520de7c5358a30dd7786cf9fe9f9a6ce37d94
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/Support/CFG.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include <algorithm>
23#include <functional>
24#include <set>
25#include <map>
26#include <iostream>
27using namespace llvm;
28
29/// SafeToMergeTerminators - Return true if it is safe to merge these two
30/// terminator instructions together.
31///
32static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
33  if (SI1 == SI2) return false;  // Can't merge with self!
34
35  // It is not safe to merge these two switch instructions if they have a common
36  // successor, and if that successor has a PHI node, and if *that* PHI node has
37  // conflicting incoming values from the two switch blocks.
38  BasicBlock *SI1BB = SI1->getParent();
39  BasicBlock *SI2BB = SI2->getParent();
40  std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
41
42  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
43    if (SI1Succs.count(*I))
44      for (BasicBlock::iterator BBI = (*I)->begin();
45           isa<PHINode>(BBI); ++BBI) {
46        PHINode *PN = cast<PHINode>(BBI);
47        if (PN->getIncomingValueForBlock(SI1BB) !=
48            PN->getIncomingValueForBlock(SI2BB))
49          return false;
50      }
51
52  return true;
53}
54
55/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
56/// now be entries in it from the 'NewPred' block.  The values that will be
57/// flowing into the PHI nodes will be the same as those coming in from
58/// ExistPred, an existing predecessor of Succ.
59static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
60                                  BasicBlock *ExistPred) {
61  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
62         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
63  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
64
65  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
66    PHINode *PN = cast<PHINode>(I);
67    Value *V = PN->getIncomingValueForBlock(ExistPred);
68    PN->addIncoming(V, NewPred);
69  }
70}
71
72// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
73// almost-empty BB ending in an unconditional branch to Succ, into succ.
74//
75// Assumption: Succ is the single successor for BB.
76//
77static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
78  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
79
80  // Check to see if one of the predecessors of BB is already a predecessor of
81  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
82  // with incompatible values coming in from the two edges!
83  //
84  if (isa<PHINode>(Succ->front())) {
85    std::set<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
86    for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
87         PI != PE; ++PI)
88      if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
89        // Loop over all of the PHI nodes checking to see if there are
90        // incompatible values coming in.
91        for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
92          PHINode *PN = cast<PHINode>(I);
93          // Loop up the entries in the PHI node for BB and for *PI if the
94          // values coming in are non-equal, we cannot merge these two blocks
95          // (instead we should insert a conditional move or something, then
96          // merge the blocks).
97          if (PN->getIncomingValueForBlock(BB) !=
98              PN->getIncomingValueForBlock(*PI))
99            return false;  // Values are not equal...
100        }
101      }
102  }
103
104  // Finally, if BB has PHI nodes that are used by things other than the PHIs in
105  // Succ and Succ has predecessors that are not Succ and not Pred, we cannot
106  // fold these blocks, as we don't know whether BB dominates Succ or not to
107  // update the PHI nodes correctly.
108  if (!isa<PHINode>(BB->begin()) || Succ->getSinglePredecessor()) return true;
109
110  // If the predecessors of Succ are only BB and Succ itself, we can handle this.
111  bool IsSafe = true;
112  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
113    if (*PI != Succ && *PI != BB) {
114      IsSafe = false;
115      break;
116    }
117  if (IsSafe) return true;
118
119  // If the PHI nodes in BB are only used by instructions in Succ, we are ok if
120  // BB and Succ have no common predecessors.
121  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I) && IsSafe; ++I) {
122    PHINode *PN = cast<PHINode>(I);
123    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E;
124         ++UI)
125      if (cast<Instruction>(*UI)->getParent() != Succ)
126        return false;
127  }
128
129  // Scan the predecessor sets of BB and Succ, making sure there are no common
130  // predecessors.  Common predecessors would cause us to build a phi node with
131  // differing incoming values, which is not legal.
132  std::set<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
133  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
134    if (BBPreds.count(*PI))
135      return false;
136
137  return true;
138}
139
140/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
141/// branch to Succ, and contains no instructions other than PHI nodes and the
142/// branch.  If possible, eliminate BB.
143static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
144                                                    BasicBlock *Succ) {
145  // If our successor has PHI nodes, then we need to update them to include
146  // entries for BB's predecessors, not for BB itself.  Be careful though,
147  // if this transformation fails (returns true) then we cannot do this
148  // transformation!
149  //
150  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
151
152  DEBUG(std::cerr << "Killing Trivial BB: \n" << *BB);
153
154  if (isa<PHINode>(Succ->begin())) {
155    // If there is more than one pred of succ, and there are PHI nodes in
156    // the successor, then we need to add incoming edges for the PHI nodes
157    //
158    const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
159
160    // Loop over all of the PHI nodes in the successor of BB.
161    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
162      PHINode *PN = cast<PHINode>(I);
163      Value *OldVal = PN->removeIncomingValue(BB, false);
164      assert(OldVal && "No entry in PHI for Pred BB!");
165
166      // If this incoming value is one of the PHI nodes in BB, the new entries
167      // in the PHI node are the entries from the old PHI.
168      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
169        PHINode *OldValPN = cast<PHINode>(OldVal);
170        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
171          PN->addIncoming(OldValPN->getIncomingValue(i),
172                          OldValPN->getIncomingBlock(i));
173      } else {
174        for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
175             End = BBPreds.end(); PredI != End; ++PredI) {
176          // Add an incoming value for each of the new incoming values...
177          PN->addIncoming(OldVal, *PredI);
178        }
179      }
180    }
181  }
182
183  if (isa<PHINode>(&BB->front())) {
184    std::vector<BasicBlock*>
185    OldSuccPreds(pred_begin(Succ), pred_end(Succ));
186
187    // Move all PHI nodes in BB to Succ if they are alive, otherwise
188    // delete them.
189    while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
190      if (PN->use_empty()) {
191        // Just remove the dead phi.  This happens if Succ's PHIs were the only
192        // users of the PHI nodes.
193        PN->eraseFromParent();
194      } else {
195        // The instruction is alive, so this means that Succ must have
196        // *ONLY* had BB as a predecessor, and the PHI node is still valid
197        // now.  Simply move it into Succ, because we know that BB
198        // strictly dominated Succ.
199        Succ->getInstList().splice(Succ->begin(),
200                                   BB->getInstList(), BB->begin());
201
202        // We need to add new entries for the PHI node to account for
203        // predecessors of Succ that the PHI node does not take into
204        // account.  At this point, since we know that BB dominated succ,
205        // this means that we should any newly added incoming edges should
206        // use the PHI node as the value for these edges, because they are
207        // loop back edges.
208        for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
209          if (OldSuccPreds[i] != BB)
210            PN->addIncoming(PN, OldSuccPreds[i]);
211      }
212  }
213
214  // Everything that jumped to BB now goes to Succ.
215  std::string OldName = BB->getName();
216  BB->replaceAllUsesWith(Succ);
217  BB->eraseFromParent();              // Delete the old basic block.
218
219  if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
220    Succ->setName(OldName);
221  return true;
222}
223
224/// GetIfCondition - Given a basic block (BB) with two predecessors (and
225/// presumably PHI nodes in it), check to see if the merge at this block is due
226/// to an "if condition".  If so, return the boolean condition that determines
227/// which entry into BB will be taken.  Also, return by references the block
228/// that will be entered from if the condition is true, and the block that will
229/// be entered if the condition is false.
230///
231///
232static Value *GetIfCondition(BasicBlock *BB,
233                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
234  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
235         "Function can only handle blocks with 2 predecessors!");
236  BasicBlock *Pred1 = *pred_begin(BB);
237  BasicBlock *Pred2 = *++pred_begin(BB);
238
239  // We can only handle branches.  Other control flow will be lowered to
240  // branches if possible anyway.
241  if (!isa<BranchInst>(Pred1->getTerminator()) ||
242      !isa<BranchInst>(Pred2->getTerminator()))
243    return 0;
244  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
245  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
246
247  // Eliminate code duplication by ensuring that Pred1Br is conditional if
248  // either are.
249  if (Pred2Br->isConditional()) {
250    // If both branches are conditional, we don't have an "if statement".  In
251    // reality, we could transform this case, but since the condition will be
252    // required anyway, we stand no chance of eliminating it, so the xform is
253    // probably not profitable.
254    if (Pred1Br->isConditional())
255      return 0;
256
257    std::swap(Pred1, Pred2);
258    std::swap(Pred1Br, Pred2Br);
259  }
260
261  if (Pred1Br->isConditional()) {
262    // If we found a conditional branch predecessor, make sure that it branches
263    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
264    if (Pred1Br->getSuccessor(0) == BB &&
265        Pred1Br->getSuccessor(1) == Pred2) {
266      IfTrue = Pred1;
267      IfFalse = Pred2;
268    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
269               Pred1Br->getSuccessor(1) == BB) {
270      IfTrue = Pred2;
271      IfFalse = Pred1;
272    } else {
273      // We know that one arm of the conditional goes to BB, so the other must
274      // go somewhere unrelated, and this must not be an "if statement".
275      return 0;
276    }
277
278    // The only thing we have to watch out for here is to make sure that Pred2
279    // doesn't have incoming edges from other blocks.  If it does, the condition
280    // doesn't dominate BB.
281    if (++pred_begin(Pred2) != pred_end(Pred2))
282      return 0;
283
284    return Pred1Br->getCondition();
285  }
286
287  // Ok, if we got here, both predecessors end with an unconditional branch to
288  // BB.  Don't panic!  If both blocks only have a single (identical)
289  // predecessor, and THAT is a conditional branch, then we're all ok!
290  if (pred_begin(Pred1) == pred_end(Pred1) ||
291      ++pred_begin(Pred1) != pred_end(Pred1) ||
292      pred_begin(Pred2) == pred_end(Pred2) ||
293      ++pred_begin(Pred2) != pred_end(Pred2) ||
294      *pred_begin(Pred1) != *pred_begin(Pred2))
295    return 0;
296
297  // Otherwise, if this is a conditional branch, then we can use it!
298  BasicBlock *CommonPred = *pred_begin(Pred1);
299  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
300    assert(BI->isConditional() && "Two successors but not conditional?");
301    if (BI->getSuccessor(0) == Pred1) {
302      IfTrue = Pred1;
303      IfFalse = Pred2;
304    } else {
305      IfTrue = Pred2;
306      IfFalse = Pred1;
307    }
308    return BI->getCondition();
309  }
310  return 0;
311}
312
313
314// If we have a merge point of an "if condition" as accepted above, return true
315// if the specified value dominates the block.  We don't handle the true
316// generality of domination here, just a special case which works well enough
317// for us.
318//
319// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
320// see if V (which must be an instruction) is cheap to compute and is
321// non-trapping.  If both are true, the instruction is inserted into the set and
322// true is returned.
323static bool DominatesMergePoint(Value *V, BasicBlock *BB,
324                                std::set<Instruction*> *AggressiveInsts) {
325  Instruction *I = dyn_cast<Instruction>(V);
326  if (!I) return true;    // Non-instructions all dominate instructions.
327  BasicBlock *PBB = I->getParent();
328
329  // We don't want to allow weird loops that might have the "if condition" in
330  // the bottom of this block.
331  if (PBB == BB) return false;
332
333  // If this instruction is defined in a block that contains an unconditional
334  // branch to BB, then it must be in the 'conditional' part of the "if
335  // statement".
336  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
337    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
338      if (!AggressiveInsts) return false;
339      // Okay, it looks like the instruction IS in the "condition".  Check to
340      // see if its a cheap instruction to unconditionally compute, and if it
341      // only uses stuff defined outside of the condition.  If so, hoist it out.
342      switch (I->getOpcode()) {
343      default: return false;  // Cannot hoist this out safely.
344      case Instruction::Load:
345        // We can hoist loads that are non-volatile and obviously cannot trap.
346        if (cast<LoadInst>(I)->isVolatile())
347          return false;
348        if (!isa<AllocaInst>(I->getOperand(0)) &&
349            !isa<Constant>(I->getOperand(0)))
350          return false;
351
352        // Finally, we have to check to make sure there are no instructions
353        // before the load in its basic block, as we are going to hoist the loop
354        // out to its predecessor.
355        if (PBB->begin() != BasicBlock::iterator(I))
356          return false;
357        break;
358      case Instruction::Add:
359      case Instruction::Sub:
360      case Instruction::And:
361      case Instruction::Or:
362      case Instruction::Xor:
363      case Instruction::Shl:
364      case Instruction::Shr:
365      case Instruction::SetEQ:
366      case Instruction::SetNE:
367      case Instruction::SetLT:
368      case Instruction::SetGT:
369      case Instruction::SetLE:
370      case Instruction::SetGE:
371        break;   // These are all cheap and non-trapping instructions.
372      }
373
374      // Okay, we can only really hoist these out if their operands are not
375      // defined in the conditional region.
376      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
377        if (!DominatesMergePoint(I->getOperand(i), BB, 0))
378          return false;
379      // Okay, it's safe to do this!  Remember this instruction.
380      AggressiveInsts->insert(I);
381    }
382
383  return true;
384}
385
386// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
387// instructions that compare a value against a constant, return the value being
388// compared, and stick the constant into the Values vector.
389static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
390  if (Instruction *Inst = dyn_cast<Instruction>(V))
391    if (Inst->getOpcode() == Instruction::SetEQ) {
392      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
393        Values.push_back(C);
394        return Inst->getOperand(0);
395      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
396        Values.push_back(C);
397        return Inst->getOperand(1);
398      }
399    } else if (Inst->getOpcode() == Instruction::Or) {
400      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
401        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
402          if (LHS == RHS)
403            return LHS;
404    }
405  return 0;
406}
407
408// GatherConstantSetNEs - Given a potentially 'and'd together collection of
409// setne instructions that compare a value against a constant, return the value
410// being compared, and stick the constant into the Values vector.
411static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
412  if (Instruction *Inst = dyn_cast<Instruction>(V))
413    if (Inst->getOpcode() == Instruction::SetNE) {
414      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
415        Values.push_back(C);
416        return Inst->getOperand(0);
417      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
418        Values.push_back(C);
419        return Inst->getOperand(1);
420      }
421    } else if (Inst->getOpcode() == Instruction::Cast) {
422      // Cast of X to bool is really a comparison against zero.
423      assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
424      Values.push_back(ConstantInt::get(Inst->getOperand(0)->getType(), 0));
425      return Inst->getOperand(0);
426    } else if (Inst->getOpcode() == Instruction::And) {
427      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
428        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
429          if (LHS == RHS)
430            return LHS;
431    }
432  return 0;
433}
434
435
436
437/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
438/// bunch of comparisons of one value against constants, return the value and
439/// the constants being compared.
440static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
441                                   std::vector<ConstantInt*> &Values) {
442  if (Cond->getOpcode() == Instruction::Or) {
443    CompVal = GatherConstantSetEQs(Cond, Values);
444
445    // Return true to indicate that the condition is true if the CompVal is
446    // equal to one of the constants.
447    return true;
448  } else if (Cond->getOpcode() == Instruction::And) {
449    CompVal = GatherConstantSetNEs(Cond, Values);
450
451    // Return false to indicate that the condition is false if the CompVal is
452    // equal to one of the constants.
453    return false;
454  }
455  return false;
456}
457
458/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
459/// has no side effects, nuke it.  If it uses any instructions that become dead
460/// because the instruction is now gone, nuke them too.
461static void ErasePossiblyDeadInstructionTree(Instruction *I) {
462  if (isInstructionTriviallyDead(I)) {
463    std::vector<Value*> Operands(I->op_begin(), I->op_end());
464    I->getParent()->getInstList().erase(I);
465    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
466      if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
467        ErasePossiblyDeadInstructionTree(OpI);
468  }
469}
470
471// isValueEqualityComparison - Return true if the specified terminator checks to
472// see if a value is equal to constant integer value.
473static Value *isValueEqualityComparison(TerminatorInst *TI) {
474  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
475    // Do not permit merging of large switch instructions into their
476    // predecessors unless there is only one predecessor.
477    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
478                                               pred_end(SI->getParent())) > 128)
479      return 0;
480
481    return SI->getCondition();
482  }
483  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
484    if (BI->isConditional() && BI->getCondition()->hasOneUse())
485      if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
486        if ((SCI->getOpcode() == Instruction::SetEQ ||
487             SCI->getOpcode() == Instruction::SetNE) &&
488            isa<ConstantInt>(SCI->getOperand(1)))
489          return SCI->getOperand(0);
490  return 0;
491}
492
493// Given a value comparison instruction, decode all of the 'cases' that it
494// represents and return the 'default' block.
495static BasicBlock *
496GetValueEqualityComparisonCases(TerminatorInst *TI,
497                                std::vector<std::pair<ConstantInt*,
498                                                      BasicBlock*> > &Cases) {
499  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
500    Cases.reserve(SI->getNumCases());
501    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
502      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
503    return SI->getDefaultDest();
504  }
505
506  BranchInst *BI = cast<BranchInst>(TI);
507  SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
508  Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
509                                 BI->getSuccessor(SCI->getOpcode() ==
510                                                        Instruction::SetNE)));
511  return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
512}
513
514
515// EliminateBlockCases - Given an vector of bb/value pairs, remove any entries
516// in the list that match the specified block.
517static void EliminateBlockCases(BasicBlock *BB,
518               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
519  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
520    if (Cases[i].second == BB) {
521      Cases.erase(Cases.begin()+i);
522      --i; --e;
523    }
524}
525
526// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
527// well.
528static bool
529ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
530              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
531  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
532
533  // Make V1 be smaller than V2.
534  if (V1->size() > V2->size())
535    std::swap(V1, V2);
536
537  if (V1->size() == 0) return false;
538  if (V1->size() == 1) {
539    // Just scan V2.
540    ConstantInt *TheVal = (*V1)[0].first;
541    for (unsigned i = 0, e = V2->size(); i != e; ++i)
542      if (TheVal == (*V2)[i].first)
543        return true;
544  }
545
546  // Otherwise, just sort both lists and compare element by element.
547  std::sort(V1->begin(), V1->end());
548  std::sort(V2->begin(), V2->end());
549  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
550  while (i1 != e1 && i2 != e2) {
551    if ((*V1)[i1].first == (*V2)[i2].first)
552      return true;
553    if ((*V1)[i1].first < (*V2)[i2].first)
554      ++i1;
555    else
556      ++i2;
557  }
558  return false;
559}
560
561// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
562// terminator instruction and its block is known to only have a single
563// predecessor block, check to see if that predecessor is also a value
564// comparison with the same value, and if that comparison determines the outcome
565// of this comparison.  If so, simplify TI.  This does a very limited form of
566// jump threading.
567static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
568                                                          BasicBlock *Pred) {
569  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
570  if (!PredVal) return false;  // Not a value comparison in predecessor.
571
572  Value *ThisVal = isValueEqualityComparison(TI);
573  assert(ThisVal && "This isn't a value comparison!!");
574  if (ThisVal != PredVal) return false;  // Different predicates.
575
576  // Find out information about when control will move from Pred to TI's block.
577  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
578  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
579                                                        PredCases);
580  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
581
582  // Find information about how control leaves this block.
583  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
584  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
585  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
586
587  // If TI's block is the default block from Pred's comparison, potentially
588  // simplify TI based on this knowledge.
589  if (PredDef == TI->getParent()) {
590    // If we are here, we know that the value is none of those cases listed in
591    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
592    // can simplify TI.
593    if (ValuesOverlap(PredCases, ThisCases)) {
594      if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
595        // Okay, one of the successors of this condbr is dead.  Convert it to a
596        // uncond br.
597        assert(ThisCases.size() == 1 && "Branch can only have one case!");
598        Value *Cond = BTI->getCondition();
599        // Insert the new branch.
600        Instruction *NI = new BranchInst(ThisDef, TI);
601
602        // Remove PHI node entries for the dead edge.
603        ThisCases[0].second->removePredecessor(TI->getParent());
604
605        DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
606              << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
607
608        TI->eraseFromParent();   // Nuke the old one.
609        // If condition is now dead, nuke it.
610        if (Instruction *CondI = dyn_cast<Instruction>(Cond))
611          ErasePossiblyDeadInstructionTree(CondI);
612        return true;
613
614      } else {
615        SwitchInst *SI = cast<SwitchInst>(TI);
616        // Okay, TI has cases that are statically dead, prune them away.
617        std::set<Constant*> DeadCases;
618        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
619          DeadCases.insert(PredCases[i].first);
620
621        DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
622                  << "Through successor TI: " << *TI);
623
624        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
625          if (DeadCases.count(SI->getCaseValue(i))) {
626            SI->getSuccessor(i)->removePredecessor(TI->getParent());
627            SI->removeCase(i);
628          }
629
630        DEBUG(std::cerr << "Leaving: " << *TI << "\n");
631        return true;
632      }
633    }
634
635  } else {
636    // Otherwise, TI's block must correspond to some matched value.  Find out
637    // which value (or set of values) this is.
638    ConstantInt *TIV = 0;
639    BasicBlock *TIBB = TI->getParent();
640    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
641      if (PredCases[i].second == TIBB)
642        if (TIV == 0)
643          TIV = PredCases[i].first;
644        else
645          return false;  // Cannot handle multiple values coming to this block.
646    assert(TIV && "No edge from pred to succ?");
647
648    // Okay, we found the one constant that our value can be if we get into TI's
649    // BB.  Find out which successor will unconditionally be branched to.
650    BasicBlock *TheRealDest = 0;
651    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
652      if (ThisCases[i].first == TIV) {
653        TheRealDest = ThisCases[i].second;
654        break;
655      }
656
657    // If not handled by any explicit cases, it is handled by the default case.
658    if (TheRealDest == 0) TheRealDest = ThisDef;
659
660    // Remove PHI node entries for dead edges.
661    BasicBlock *CheckEdge = TheRealDest;
662    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
663      if (*SI != CheckEdge)
664        (*SI)->removePredecessor(TIBB);
665      else
666        CheckEdge = 0;
667
668    // Insert the new branch.
669    Instruction *NI = new BranchInst(TheRealDest, TI);
670
671    DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
672          << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
673    Instruction *Cond = 0;
674    if (BranchInst *BI = dyn_cast<BranchInst>(TI))
675      Cond = dyn_cast<Instruction>(BI->getCondition());
676    TI->eraseFromParent();   // Nuke the old one.
677
678    if (Cond) ErasePossiblyDeadInstructionTree(Cond);
679    return true;
680  }
681  return false;
682}
683
684// FoldValueComparisonIntoPredecessors - The specified terminator is a value
685// equality comparison instruction (either a switch or a branch on "X == c").
686// See if any of the predecessors of the terminator block are value comparisons
687// on the same value.  If so, and if safe to do so, fold them together.
688static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
689  BasicBlock *BB = TI->getParent();
690  Value *CV = isValueEqualityComparison(TI);  // CondVal
691  assert(CV && "Not a comparison?");
692  bool Changed = false;
693
694  std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
695  while (!Preds.empty()) {
696    BasicBlock *Pred = Preds.back();
697    Preds.pop_back();
698
699    // See if the predecessor is a comparison with the same value.
700    TerminatorInst *PTI = Pred->getTerminator();
701    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
702
703    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
704      // Figure out which 'cases' to copy from SI to PSI.
705      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
706      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
707
708      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
709      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
710
711      // Based on whether the default edge from PTI goes to BB or not, fill in
712      // PredCases and PredDefault with the new switch cases we would like to
713      // build.
714      std::vector<BasicBlock*> NewSuccessors;
715
716      if (PredDefault == BB) {
717        // If this is the default destination from PTI, only the edges in TI
718        // that don't occur in PTI, or that branch to BB will be activated.
719        std::set<ConstantInt*> PTIHandled;
720        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
721          if (PredCases[i].second != BB)
722            PTIHandled.insert(PredCases[i].first);
723          else {
724            // The default destination is BB, we don't need explicit targets.
725            std::swap(PredCases[i], PredCases.back());
726            PredCases.pop_back();
727            --i; --e;
728          }
729
730        // Reconstruct the new switch statement we will be building.
731        if (PredDefault != BBDefault) {
732          PredDefault->removePredecessor(Pred);
733          PredDefault = BBDefault;
734          NewSuccessors.push_back(BBDefault);
735        }
736        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
737          if (!PTIHandled.count(BBCases[i].first) &&
738              BBCases[i].second != BBDefault) {
739            PredCases.push_back(BBCases[i]);
740            NewSuccessors.push_back(BBCases[i].second);
741          }
742
743      } else {
744        // If this is not the default destination from PSI, only the edges
745        // in SI that occur in PSI with a destination of BB will be
746        // activated.
747        std::set<ConstantInt*> PTIHandled;
748        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
749          if (PredCases[i].second == BB) {
750            PTIHandled.insert(PredCases[i].first);
751            std::swap(PredCases[i], PredCases.back());
752            PredCases.pop_back();
753            --i; --e;
754          }
755
756        // Okay, now we know which constants were sent to BB from the
757        // predecessor.  Figure out where they will all go now.
758        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
759          if (PTIHandled.count(BBCases[i].first)) {
760            // If this is one we are capable of getting...
761            PredCases.push_back(BBCases[i]);
762            NewSuccessors.push_back(BBCases[i].second);
763            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
764          }
765
766        // If there are any constants vectored to BB that TI doesn't handle,
767        // they must go to the default destination of TI.
768        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
769               E = PTIHandled.end(); I != E; ++I) {
770          PredCases.push_back(std::make_pair(*I, BBDefault));
771          NewSuccessors.push_back(BBDefault);
772        }
773      }
774
775      // Okay, at this point, we know which new successor Pred will get.  Make
776      // sure we update the number of entries in the PHI nodes for these
777      // successors.
778      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
779        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
780
781      // Now that the successors are updated, create the new Switch instruction.
782      SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
783      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
784        NewSI->addCase(PredCases[i].first, PredCases[i].second);
785
786      Instruction *DeadCond = 0;
787      if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
788        // If PTI is a branch, remember the condition.
789        DeadCond = dyn_cast<Instruction>(BI->getCondition());
790      Pred->getInstList().erase(PTI);
791
792      // If the condition is dead now, remove the instruction tree.
793      if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
794
795      // Okay, last check.  If BB is still a successor of PSI, then we must
796      // have an infinite loop case.  If so, add an infinitely looping block
797      // to handle the case to preserve the behavior of the code.
798      BasicBlock *InfLoopBlock = 0;
799      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
800        if (NewSI->getSuccessor(i) == BB) {
801          if (InfLoopBlock == 0) {
802            // Insert it at the end of the loop, because it's either code,
803            // or it won't matter if it's hot. :)
804            InfLoopBlock = new BasicBlock("infloop", BB->getParent());
805            new BranchInst(InfLoopBlock, InfLoopBlock);
806          }
807          NewSI->setSuccessor(i, InfLoopBlock);
808        }
809
810      Changed = true;
811    }
812  }
813  return Changed;
814}
815
816/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
817/// BB2, hoist any common code in the two blocks up into the branch block.  The
818/// caller of this function guarantees that BI's block dominates BB1 and BB2.
819static bool HoistThenElseCodeToIf(BranchInst *BI) {
820  // This does very trivial matching, with limited scanning, to find identical
821  // instructions in the two blocks.  In particular, we don't want to get into
822  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
823  // such, we currently just scan for obviously identical instructions in an
824  // identical order.
825  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
826  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
827
828  Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
829  if (I1->getOpcode() != I2->getOpcode() || !I1->isIdenticalTo(I2) ||
830      isa<PHINode>(I1))
831    return false;
832
833  // If we get here, we can hoist at least one instruction.
834  BasicBlock *BIParent = BI->getParent();
835
836  do {
837    // If we are hoisting the terminator instruction, don't move one (making a
838    // broken BB), instead clone it, and remove BI.
839    if (isa<TerminatorInst>(I1))
840      goto HoistTerminator;
841
842    // For a normal instruction, we just move one to right before the branch,
843    // then replace all uses of the other with the first.  Finally, we remove
844    // the now redundant second instruction.
845    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
846    if (!I2->use_empty())
847      I2->replaceAllUsesWith(I1);
848    BB2->getInstList().erase(I2);
849
850    I1 = BB1->begin();
851    I2 = BB2->begin();
852  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
853
854  return true;
855
856HoistTerminator:
857  // Okay, it is safe to hoist the terminator.
858  Instruction *NT = I1->clone();
859  BIParent->getInstList().insert(BI, NT);
860  if (NT->getType() != Type::VoidTy) {
861    I1->replaceAllUsesWith(NT);
862    I2->replaceAllUsesWith(NT);
863    NT->setName(I1->getName());
864  }
865
866  // Hoisting one of the terminators from our successor is a great thing.
867  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
868  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
869  // nodes, so we insert select instruction to compute the final result.
870  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
871  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
872    PHINode *PN;
873    for (BasicBlock::iterator BBI = SI->begin();
874         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
875      Value *BB1V = PN->getIncomingValueForBlock(BB1);
876      Value *BB2V = PN->getIncomingValueForBlock(BB2);
877      if (BB1V != BB2V) {
878        // These values do not agree.  Insert a select instruction before NT
879        // that determines the right value.
880        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
881        if (SI == 0)
882          SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
883                              BB1V->getName()+"."+BB2V->getName(), NT);
884        // Make the PHI node use the select for all incoming values for BB1/BB2
885        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
886          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
887            PN->setIncomingValue(i, SI);
888      }
889    }
890  }
891
892  // Update any PHI nodes in our new successors.
893  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
894    AddPredecessorToBlock(*SI, BIParent, BB1);
895
896  BI->eraseFromParent();
897  return true;
898}
899
900/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
901/// across this block.
902static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
903  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
904  Value *Cond = BI->getCondition();
905
906  unsigned Size = 0;
907
908  // If this basic block contains anything other than a PHI (which controls the
909  // branch) and branch itself, bail out.  FIXME: improve this in the future.
910  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
911    if (Size > 10) return false;  // Don't clone large BB's.
912
913    // We can only support instructions that are do not define values that are
914    // live outside of the current basic block.
915    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
916         UI != E; ++UI) {
917      Instruction *U = cast<Instruction>(*UI);
918      if (U->getParent() != BB || isa<PHINode>(U)) return false;
919    }
920
921    // Looks ok, continue checking.
922  }
923
924  return true;
925}
926
927/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
928/// that is defined in the same block as the branch and if any PHI entries are
929/// constants, thread edges corresponding to that entry to be branches to their
930/// ultimate destination.
931static bool FoldCondBranchOnPHI(BranchInst *BI) {
932  BasicBlock *BB = BI->getParent();
933  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
934  // NOTE: we currently cannot transform this case if the PHI node is used
935  // outside of the block.
936  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
937    return false;
938
939  // Degenerate case of a single entry PHI.
940  if (PN->getNumIncomingValues() == 1) {
941    if (PN->getIncomingValue(0) != PN)
942      PN->replaceAllUsesWith(PN->getIncomingValue(0));
943    else
944      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
945    PN->eraseFromParent();
946    return true;
947  }
948
949  // Now we know that this block has multiple preds and two succs.
950  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
951
952  // Okay, this is a simple enough basic block.  See if any phi values are
953  // constants.
954  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
955    if (ConstantBool *CB = dyn_cast<ConstantBool>(PN->getIncomingValue(i))) {
956      // Okay, we now know that all edges from PredBB should be revectored to
957      // branch to RealDest.
958      BasicBlock *PredBB = PN->getIncomingBlock(i);
959      BasicBlock *RealDest = BI->getSuccessor(!CB->getValue());
960
961      if (RealDest == BB) continue;  // Skip self loops.
962
963      // The dest block might have PHI nodes, other predecessors and other
964      // difficult cases.  Instead of being smart about this, just insert a new
965      // block that jumps to the destination block, effectively splitting
966      // the edge we are about to create.
967      BasicBlock *EdgeBB = new BasicBlock(RealDest->getName()+".critedge",
968                                          RealDest->getParent(), RealDest);
969      new BranchInst(RealDest, EdgeBB);
970      PHINode *PN;
971      for (BasicBlock::iterator BBI = RealDest->begin();
972           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
973        Value *V = PN->getIncomingValueForBlock(BB);
974        PN->addIncoming(V, EdgeBB);
975      }
976
977      // BB may have instructions that are being threaded over.  Clone these
978      // instructions into EdgeBB.  We know that there will be no uses of the
979      // cloned instructions outside of EdgeBB.
980      BasicBlock::iterator InsertPt = EdgeBB->begin();
981      std::map<Value*, Value*> TranslateMap;  // Track translated values.
982      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
983        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
984          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
985        } else {
986          // Clone the instruction.
987          Instruction *N = BBI->clone();
988          if (BBI->hasName()) N->setName(BBI->getName()+".c");
989
990          // Update operands due to translation.
991          for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
992            std::map<Value*, Value*>::iterator PI =
993              TranslateMap.find(N->getOperand(i));
994            if (PI != TranslateMap.end())
995              N->setOperand(i, PI->second);
996          }
997
998          // Check for trivial simplification.
999          if (Constant *C = ConstantFoldInstruction(N)) {
1000            TranslateMap[BBI] = C;
1001            delete N;   // Constant folded away, don't need actual inst
1002          } else {
1003            // Insert the new instruction into its new home.
1004            EdgeBB->getInstList().insert(InsertPt, N);
1005            if (!BBI->use_empty())
1006              TranslateMap[BBI] = N;
1007          }
1008        }
1009      }
1010
1011      // Loop over all of the edges from PredBB to BB, changing them to branch
1012      // to EdgeBB instead.
1013      TerminatorInst *PredBBTI = PredBB->getTerminator();
1014      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1015        if (PredBBTI->getSuccessor(i) == BB) {
1016          BB->removePredecessor(PredBB);
1017          PredBBTI->setSuccessor(i, EdgeBB);
1018        }
1019
1020      // Recurse, simplifying any other constants.
1021      return FoldCondBranchOnPHI(BI) | true;
1022    }
1023
1024  return false;
1025}
1026
1027/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1028/// PHI node, see if we can eliminate it.
1029static bool FoldTwoEntryPHINode(PHINode *PN) {
1030  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1031  // statement", which has a very simple dominance structure.  Basically, we
1032  // are trying to find the condition that is being branched on, which
1033  // subsequently causes this merge to happen.  We really want control
1034  // dependence information for this check, but simplifycfg can't keep it up
1035  // to date, and this catches most of the cases we care about anyway.
1036  //
1037  BasicBlock *BB = PN->getParent();
1038  BasicBlock *IfTrue, *IfFalse;
1039  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1040  if (!IfCond) return false;
1041
1042  DEBUG(std::cerr << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1043        << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1044
1045  // Loop over the PHI's seeing if we can promote them all to select
1046  // instructions.  While we are at it, keep track of the instructions
1047  // that need to be moved to the dominating block.
1048  std::set<Instruction*> AggressiveInsts;
1049
1050  BasicBlock::iterator AfterPHIIt = BB->begin();
1051  while (isa<PHINode>(AfterPHIIt)) {
1052    PHINode *PN = cast<PHINode>(AfterPHIIt++);
1053    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1054      if (PN->getIncomingValue(0) != PN)
1055        PN->replaceAllUsesWith(PN->getIncomingValue(0));
1056      else
1057        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1058    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1059                                    &AggressiveInsts) ||
1060               !DominatesMergePoint(PN->getIncomingValue(1), BB,
1061                                    &AggressiveInsts)) {
1062      return false;
1063    }
1064  }
1065
1066  // If we all PHI nodes are promotable, check to make sure that all
1067  // instructions in the predecessor blocks can be promoted as well.  If
1068  // not, we won't be able to get rid of the control flow, so it's not
1069  // worth promoting to select instructions.
1070  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1071  PN = cast<PHINode>(BB->begin());
1072  BasicBlock *Pred = PN->getIncomingBlock(0);
1073  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1074    IfBlock1 = Pred;
1075    DomBlock = *pred_begin(Pred);
1076    for (BasicBlock::iterator I = Pred->begin();
1077         !isa<TerminatorInst>(I); ++I)
1078      if (!AggressiveInsts.count(I)) {
1079        // This is not an aggressive instruction that we can promote.
1080        // Because of this, we won't be able to get rid of the control
1081        // flow, so the xform is not worth it.
1082        return false;
1083      }
1084  }
1085
1086  Pred = PN->getIncomingBlock(1);
1087  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1088    IfBlock2 = Pred;
1089    DomBlock = *pred_begin(Pred);
1090    for (BasicBlock::iterator I = Pred->begin();
1091         !isa<TerminatorInst>(I); ++I)
1092      if (!AggressiveInsts.count(I)) {
1093        // This is not an aggressive instruction that we can promote.
1094        // Because of this, we won't be able to get rid of the control
1095        // flow, so the xform is not worth it.
1096        return false;
1097      }
1098  }
1099
1100  // If we can still promote the PHI nodes after this gauntlet of tests,
1101  // do all of the PHI's now.
1102
1103  // Move all 'aggressive' instructions, which are defined in the
1104  // conditional parts of the if's up to the dominating block.
1105  if (IfBlock1) {
1106    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1107                                   IfBlock1->getInstList(),
1108                                   IfBlock1->begin(),
1109                                   IfBlock1->getTerminator());
1110  }
1111  if (IfBlock2) {
1112    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1113                                   IfBlock2->getInstList(),
1114                                   IfBlock2->begin(),
1115                                   IfBlock2->getTerminator());
1116  }
1117
1118  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1119    // Change the PHI node into a select instruction.
1120    Value *TrueVal =
1121      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1122    Value *FalseVal =
1123      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1124
1125    std::string Name = PN->getName(); PN->setName("");
1126    PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
1127                                          Name, AfterPHIIt));
1128    BB->getInstList().erase(PN);
1129  }
1130  return true;
1131}
1132
1133namespace {
1134  /// ConstantIntOrdering - This class implements a stable ordering of constant
1135  /// integers that does not depend on their address.  This is important for
1136  /// applications that sort ConstantInt's to ensure uniqueness.
1137  struct ConstantIntOrdering {
1138    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1139      return LHS->getRawValue() < RHS->getRawValue();
1140    }
1141  };
1142}
1143
1144// SimplifyCFG - This function is used to do simplification of a CFG.  For
1145// example, it adjusts branches to branches to eliminate the extra hop, it
1146// eliminates unreachable basic blocks, and does other "peephole" optimization
1147// of the CFG.  It returns true if a modification was made.
1148//
1149// WARNING:  The entry node of a function may not be simplified.
1150//
1151bool llvm::SimplifyCFG(BasicBlock *BB) {
1152  bool Changed = false;
1153  Function *M = BB->getParent();
1154
1155  assert(BB && BB->getParent() && "Block not embedded in function!");
1156  assert(BB->getTerminator() && "Degenerate basic block encountered!");
1157  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
1158
1159  // Remove basic blocks that have no predecessors... which are unreachable.
1160  if (pred_begin(BB) == pred_end(BB) ||
1161      *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
1162    DEBUG(std::cerr << "Removing BB: \n" << *BB);
1163
1164    // Loop through all of our successors and make sure they know that one
1165    // of their predecessors is going away.
1166    for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1167      SI->removePredecessor(BB);
1168
1169    while (!BB->empty()) {
1170      Instruction &I = BB->back();
1171      // If this instruction is used, replace uses with an arbitrary
1172      // value.  Because control flow can't get here, we don't care
1173      // what we replace the value with.  Note that since this block is
1174      // unreachable, and all values contained within it must dominate their
1175      // uses, that all uses will eventually be removed.
1176      if (!I.use_empty())
1177        // Make all users of this instruction use undef instead
1178        I.replaceAllUsesWith(UndefValue::get(I.getType()));
1179
1180      // Remove the instruction from the basic block
1181      BB->getInstList().pop_back();
1182    }
1183    M->getBasicBlockList().erase(BB);
1184    return true;
1185  }
1186
1187  // Check to see if we can constant propagate this terminator instruction
1188  // away...
1189  Changed |= ConstantFoldTerminator(BB);
1190
1191  // If this is a returning block with only PHI nodes in it, fold the return
1192  // instruction into any unconditional branch predecessors.
1193  //
1194  // If any predecessor is a conditional branch that just selects among
1195  // different return values, fold the replace the branch/return with a select
1196  // and return.
1197  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1198    BasicBlock::iterator BBI = BB->getTerminator();
1199    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
1200      // Find predecessors that end with branches.
1201      std::vector<BasicBlock*> UncondBranchPreds;
1202      std::vector<BranchInst*> CondBranchPreds;
1203      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1204        TerminatorInst *PTI = (*PI)->getTerminator();
1205        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
1206          if (BI->isUnconditional())
1207            UncondBranchPreds.push_back(*PI);
1208          else
1209            CondBranchPreds.push_back(BI);
1210      }
1211
1212      // If we found some, do the transformation!
1213      if (!UncondBranchPreds.empty()) {
1214        while (!UncondBranchPreds.empty()) {
1215          BasicBlock *Pred = UncondBranchPreds.back();
1216          DEBUG(std::cerr << "FOLDING: " << *BB
1217                          << "INTO UNCOND BRANCH PRED: " << *Pred);
1218          UncondBranchPreds.pop_back();
1219          Instruction *UncondBranch = Pred->getTerminator();
1220          // Clone the return and add it to the end of the predecessor.
1221          Instruction *NewRet = RI->clone();
1222          Pred->getInstList().push_back(NewRet);
1223
1224          // If the return instruction returns a value, and if the value was a
1225          // PHI node in "BB", propagate the right value into the return.
1226          if (NewRet->getNumOperands() == 1)
1227            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
1228              if (PN->getParent() == BB)
1229                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
1230          // Update any PHI nodes in the returning block to realize that we no
1231          // longer branch to them.
1232          BB->removePredecessor(Pred);
1233          Pred->getInstList().erase(UncondBranch);
1234        }
1235
1236        // If we eliminated all predecessors of the block, delete the block now.
1237        if (pred_begin(BB) == pred_end(BB))
1238          // We know there are no successors, so just nuke the block.
1239          M->getBasicBlockList().erase(BB);
1240
1241        return true;
1242      }
1243
1244      // Check out all of the conditional branches going to this return
1245      // instruction.  If any of them just select between returns, change the
1246      // branch itself into a select/return pair.
1247      while (!CondBranchPreds.empty()) {
1248        BranchInst *BI = CondBranchPreds.back();
1249        CondBranchPreds.pop_back();
1250        BasicBlock *TrueSucc = BI->getSuccessor(0);
1251        BasicBlock *FalseSucc = BI->getSuccessor(1);
1252        BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
1253
1254        // Check to see if the non-BB successor is also a return block.
1255        if (isa<ReturnInst>(OtherSucc->getTerminator())) {
1256          // Check to see if there are only PHI instructions in this block.
1257          BasicBlock::iterator OSI = OtherSucc->getTerminator();
1258          if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
1259            // Okay, we found a branch that is going to two return nodes.  If
1260            // there is no return value for this function, just change the
1261            // branch into a return.
1262            if (RI->getNumOperands() == 0) {
1263              TrueSucc->removePredecessor(BI->getParent());
1264              FalseSucc->removePredecessor(BI->getParent());
1265              new ReturnInst(0, BI);
1266              BI->getParent()->getInstList().erase(BI);
1267              return true;
1268            }
1269
1270            // Otherwise, figure out what the true and false return values are
1271            // so we can insert a new select instruction.
1272            Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
1273            Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
1274
1275            // Unwrap any PHI nodes in the return blocks.
1276            if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1277              if (TVPN->getParent() == TrueSucc)
1278                TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1279            if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1280              if (FVPN->getParent() == FalseSucc)
1281                FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1282
1283            TrueSucc->removePredecessor(BI->getParent());
1284            FalseSucc->removePredecessor(BI->getParent());
1285
1286            // Insert a new select instruction.
1287            Value *NewRetVal;
1288            Value *BrCond = BI->getCondition();
1289            if (TrueValue != FalseValue)
1290              NewRetVal = new SelectInst(BrCond, TrueValue,
1291                                         FalseValue, "retval", BI);
1292            else
1293              NewRetVal = TrueValue;
1294
1295            DEBUG(std::cerr << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1296                  << "\n  " << *BI << "Select = " << *NewRetVal
1297                  << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1298
1299            new ReturnInst(NewRetVal, BI);
1300            BI->eraseFromParent();
1301            if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1302              if (isInstructionTriviallyDead(BrCondI))
1303                BrCondI->eraseFromParent();
1304            return true;
1305          }
1306        }
1307      }
1308    }
1309  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
1310    // Check to see if the first instruction in this block is just an unwind.
1311    // If so, replace any invoke instructions which use this as an exception
1312    // destination with call instructions, and any unconditional branch
1313    // predecessor with an unwind.
1314    //
1315    std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1316    while (!Preds.empty()) {
1317      BasicBlock *Pred = Preds.back();
1318      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1319        if (BI->isUnconditional()) {
1320          Pred->getInstList().pop_back();  // nuke uncond branch
1321          new UnwindInst(Pred);            // Use unwind.
1322          Changed = true;
1323        }
1324      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1325        if (II->getUnwindDest() == BB) {
1326          // Insert a new branch instruction before the invoke, because this
1327          // is now a fall through...
1328          BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1329          Pred->getInstList().remove(II);   // Take out of symbol table
1330
1331          // Insert the call now...
1332          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1333          CallInst *CI = new CallInst(II->getCalledValue(), Args,
1334                                      II->getName(), BI);
1335          CI->setCallingConv(II->getCallingConv());
1336          // If the invoke produced a value, the Call now does instead
1337          II->replaceAllUsesWith(CI);
1338          delete II;
1339          Changed = true;
1340        }
1341
1342      Preds.pop_back();
1343    }
1344
1345    // If this block is now dead, remove it.
1346    if (pred_begin(BB) == pred_end(BB)) {
1347      // We know there are no successors, so just nuke the block.
1348      M->getBasicBlockList().erase(BB);
1349      return true;
1350    }
1351
1352  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1353    if (isValueEqualityComparison(SI)) {
1354      // If we only have one predecessor, and if it is a branch on this value,
1355      // see if that predecessor totally determines the outcome of this switch.
1356      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1357        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1358          return SimplifyCFG(BB) || 1;
1359
1360      // If the block only contains the switch, see if we can fold the block
1361      // away into any preds.
1362      if (SI == &BB->front())
1363        if (FoldValueComparisonIntoPredecessors(SI))
1364          return SimplifyCFG(BB) || 1;
1365    }
1366  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1367    if (BI->isUnconditional()) {
1368      BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
1369      while (isa<PHINode>(*BBI)) ++BBI;
1370
1371      BasicBlock *Succ = BI->getSuccessor(0);
1372      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
1373          Succ != BB)             // Don't hurt infinite loops!
1374        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1375          return 1;
1376
1377    } else {  // Conditional branch
1378      if (Value *CompVal = isValueEqualityComparison(BI)) {
1379        // If we only have one predecessor, and if it is a branch on this value,
1380        // see if that predecessor totally determines the outcome of this
1381        // switch.
1382        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1383          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1384            return SimplifyCFG(BB) || 1;
1385
1386        // This block must be empty, except for the setcond inst, if it exists.
1387        BasicBlock::iterator I = BB->begin();
1388        if (&*I == BI ||
1389            (&*I == cast<Instruction>(BI->getCondition()) &&
1390             &*++I == BI))
1391          if (FoldValueComparisonIntoPredecessors(BI))
1392            return SimplifyCFG(BB) | true;
1393      }
1394
1395      // If this is a branch on a phi node in the current block, thread control
1396      // through this block if any PHI node entries are constants.
1397      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1398        if (PN->getParent() == BI->getParent())
1399          if (FoldCondBranchOnPHI(BI))
1400            return SimplifyCFG(BB) | true;
1401
1402      // If this basic block is ONLY a setcc and a branch, and if a predecessor
1403      // branches to us and one of our successors, fold the setcc into the
1404      // predecessor and use logical operations to pick the right destination.
1405      BasicBlock *TrueDest  = BI->getSuccessor(0);
1406      BasicBlock *FalseDest = BI->getSuccessor(1);
1407      if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(BI->getCondition()))
1408        if (Cond->getParent() == BB && &BB->front() == Cond &&
1409            Cond->getNext() == BI && Cond->hasOneUse() &&
1410            TrueDest != BB && FalseDest != BB)
1411          for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
1412            if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1413              if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
1414                BasicBlock *PredBlock = *PI;
1415                if (PBI->getSuccessor(0) == FalseDest ||
1416                    PBI->getSuccessor(1) == TrueDest) {
1417                  // Invert the predecessors condition test (xor it with true),
1418                  // which allows us to write this code once.
1419                  Value *NewCond =
1420                    BinaryOperator::createNot(PBI->getCondition(),
1421                                    PBI->getCondition()->getName()+".not", PBI);
1422                  PBI->setCondition(NewCond);
1423                  BasicBlock *OldTrue = PBI->getSuccessor(0);
1424                  BasicBlock *OldFalse = PBI->getSuccessor(1);
1425                  PBI->setSuccessor(0, OldFalse);
1426                  PBI->setSuccessor(1, OldTrue);
1427                }
1428
1429                if ((PBI->getSuccessor(0) == TrueDest && FalseDest != BB) ||
1430                    (PBI->getSuccessor(1) == FalseDest && TrueDest != BB)) {
1431                  // Clone Cond into the predecessor basic block, and or/and the
1432                  // two conditions together.
1433                  Instruction *New = Cond->clone();
1434                  New->setName(Cond->getName());
1435                  Cond->setName(Cond->getName()+".old");
1436                  PredBlock->getInstList().insert(PBI, New);
1437                  Instruction::BinaryOps Opcode =
1438                    PBI->getSuccessor(0) == TrueDest ?
1439                    Instruction::Or : Instruction::And;
1440                  Value *NewCond =
1441                    BinaryOperator::create(Opcode, PBI->getCondition(),
1442                                           New, "bothcond", PBI);
1443                  PBI->setCondition(NewCond);
1444                  if (PBI->getSuccessor(0) == BB) {
1445                    AddPredecessorToBlock(TrueDest, PredBlock, BB);
1446                    PBI->setSuccessor(0, TrueDest);
1447                  }
1448                  if (PBI->getSuccessor(1) == BB) {
1449                    AddPredecessorToBlock(FalseDest, PredBlock, BB);
1450                    PBI->setSuccessor(1, FalseDest);
1451                  }
1452                  return SimplifyCFG(BB) | 1;
1453                }
1454              }
1455
1456      // Scan predessor blocks for conditional branchs.
1457      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1458        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1459          if (PBI != BI && PBI->isConditional()) {
1460
1461            // If this block ends with a branch instruction, and if there is a
1462            // predecessor that ends on a branch of the same condition, make this
1463            // conditional branch redundant.
1464            if (PBI->getCondition() == BI->getCondition() &&
1465                PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1466              // Okay, the outcome of this conditional branch is statically
1467              // knowable.  If this block had a single pred, handle specially.
1468              if (BB->getSinglePredecessor()) {
1469                // Turn this into a branch on constant.
1470                bool CondIsTrue = PBI->getSuccessor(0) == BB;
1471                BI->setCondition(ConstantBool::get(CondIsTrue));
1472                return SimplifyCFG(BB);  // Nuke the branch on constant.
1473              }
1474
1475              // Otherwise, if there are multiple predecessors, insert a PHI that
1476              // merges in the constant and simplify the block result.
1477              if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1478                PHINode *NewPN = new PHINode(Type::BoolTy,
1479                                             BI->getCondition()->getName()+".pr",
1480                                             BB->begin());
1481                for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1482                  if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1483                      PBI != BI && PBI->isConditional() &&
1484                      PBI->getCondition() == BI->getCondition() &&
1485                      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1486                    bool CondIsTrue = PBI->getSuccessor(0) == BB;
1487                    NewPN->addIncoming(ConstantBool::get(CondIsTrue), *PI);
1488                  } else {
1489                    NewPN->addIncoming(BI->getCondition(), *PI);
1490                  }
1491
1492                BI->setCondition(NewPN);
1493                // This will thread the branch.
1494                return SimplifyCFG(BB) | true;
1495              }
1496            }
1497
1498            // If this is a conditional branch in an empty block, and if any
1499            // predecessors is a conditional branch to one of our destinations,
1500            // fold the conditions into logical ops and one cond br.
1501            if (&BB->front() == BI) {
1502              int PBIOp, BIOp;
1503              if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
1504                PBIOp = BIOp = 0;
1505              } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
1506                PBIOp = 0; BIOp = 1;
1507              } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
1508                PBIOp = 1; BIOp = 0;
1509              } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
1510                PBIOp = BIOp = 1;
1511              } else {
1512                PBIOp = BIOp = -1;
1513              }
1514
1515              // Check to make sure that the other destination of this branch
1516              // isn't BB itself.  If so, this is an infinite loop that will
1517              // keep getting unwound.
1518              if (PBIOp != -1 && PBI->getSuccessor(PBIOp) == BB)
1519                PBIOp = BIOp = -1;
1520
1521              // Finally, if everything is ok, fold the branches to logical ops.
1522              if (PBIOp != -1) {
1523                BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1524                BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1525
1526                DEBUG(std::cerr << "FOLDING BRs:" << *PBI->getParent()
1527                                << "AND: " << *BI->getParent());
1528
1529                // BI may have other predecessors.  Because of this, we leave
1530                // it alone, but modify PBI.
1531
1532                // Make sure we get to CommonDest on True&True directions.
1533                Value *PBICond = PBI->getCondition();
1534                if (PBIOp)
1535                  PBICond = BinaryOperator::createNot(PBICond,
1536                                                      PBICond->getName()+".not",
1537                                                      PBI);
1538                Value *BICond = BI->getCondition();
1539                if (BIOp)
1540                  BICond = BinaryOperator::createNot(BICond,
1541                                                     BICond->getName()+".not",
1542                                                     PBI);
1543                // Merge the conditions.
1544                Value *Cond =
1545                  BinaryOperator::createOr(PBICond, BICond, "brmerge", PBI);
1546
1547                // Modify PBI to branch on the new condition to the new dests.
1548                PBI->setCondition(Cond);
1549                PBI->setSuccessor(0, CommonDest);
1550                PBI->setSuccessor(1, OtherDest);
1551
1552                // OtherDest may have phi nodes.  If so, add an entry from PBI's
1553                // block that are identical to the entries for BI's block.
1554                PHINode *PN;
1555                for (BasicBlock::iterator II = OtherDest->begin();
1556                     (PN = dyn_cast<PHINode>(II)); ++II) {
1557                  Value *V = PN->getIncomingValueForBlock(BB);
1558                  PN->addIncoming(V, PBI->getParent());
1559                }
1560
1561                // We know that the CommonDest already had an edge from PBI to
1562                // it.  If it has PHIs though, the PHIs may have different
1563                // entries for BB and PBI's BB.  If so, insert a select to make
1564                // them agree.
1565                for (BasicBlock::iterator II = CommonDest->begin();
1566                     (PN = dyn_cast<PHINode>(II)); ++II) {
1567                  Value * BIV = PN->getIncomingValueForBlock(BB);
1568                  unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1569                  Value *PBIV = PN->getIncomingValue(PBBIdx);
1570                  if (BIV != PBIV) {
1571                    // Insert a select in PBI to pick the right value.
1572                    Value *NV = new SelectInst(PBICond, PBIV, BIV,
1573                                               PBIV->getName()+".mux", PBI);
1574                    PN->setIncomingValue(PBBIdx, NV);
1575                  }
1576                }
1577
1578                DEBUG(std::cerr << "INTO: " << *PBI->getParent());
1579
1580                // This basic block is probably dead.  We know it has at least
1581                // one fewer predecessor.
1582                return SimplifyCFG(BB) | true;
1583              }
1584            }
1585          }
1586    }
1587  } else if (isa<UnreachableInst>(BB->getTerminator())) {
1588    // If there are any instructions immediately before the unreachable that can
1589    // be removed, do so.
1590    Instruction *Unreachable = BB->getTerminator();
1591    while (Unreachable != BB->begin()) {
1592      BasicBlock::iterator BBI = Unreachable;
1593      --BBI;
1594      if (isa<CallInst>(BBI)) break;
1595      // Delete this instruction
1596      BB->getInstList().erase(BBI);
1597      Changed = true;
1598    }
1599
1600    // If the unreachable instruction is the first in the block, take a gander
1601    // at all of the predecessors of this instruction, and simplify them.
1602    if (&BB->front() == Unreachable) {
1603      std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1604      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1605        TerminatorInst *TI = Preds[i]->getTerminator();
1606
1607        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1608          if (BI->isUnconditional()) {
1609            if (BI->getSuccessor(0) == BB) {
1610              new UnreachableInst(TI);
1611              TI->eraseFromParent();
1612              Changed = true;
1613            }
1614          } else {
1615            if (BI->getSuccessor(0) == BB) {
1616              new BranchInst(BI->getSuccessor(1), BI);
1617              BI->eraseFromParent();
1618            } else if (BI->getSuccessor(1) == BB) {
1619              new BranchInst(BI->getSuccessor(0), BI);
1620              BI->eraseFromParent();
1621              Changed = true;
1622            }
1623          }
1624        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1625          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1626            if (SI->getSuccessor(i) == BB) {
1627              BB->removePredecessor(SI->getParent());
1628              SI->removeCase(i);
1629              --i; --e;
1630              Changed = true;
1631            }
1632          // If the default value is unreachable, figure out the most popular
1633          // destination and make it the default.
1634          if (SI->getSuccessor(0) == BB) {
1635            std::map<BasicBlock*, unsigned> Popularity;
1636            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1637              Popularity[SI->getSuccessor(i)]++;
1638
1639            // Find the most popular block.
1640            unsigned MaxPop = 0;
1641            BasicBlock *MaxBlock = 0;
1642            for (std::map<BasicBlock*, unsigned>::iterator
1643                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1644              if (I->second > MaxPop) {
1645                MaxPop = I->second;
1646                MaxBlock = I->first;
1647              }
1648            }
1649            if (MaxBlock) {
1650              // Make this the new default, allowing us to delete any explicit
1651              // edges to it.
1652              SI->setSuccessor(0, MaxBlock);
1653              Changed = true;
1654
1655              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1656              // it.
1657              if (isa<PHINode>(MaxBlock->begin()))
1658                for (unsigned i = 0; i != MaxPop-1; ++i)
1659                  MaxBlock->removePredecessor(SI->getParent());
1660
1661              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1662                if (SI->getSuccessor(i) == MaxBlock) {
1663                  SI->removeCase(i);
1664                  --i; --e;
1665                }
1666            }
1667          }
1668        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1669          if (II->getUnwindDest() == BB) {
1670            // Convert the invoke to a call instruction.  This would be a good
1671            // place to note that the call does not throw though.
1672            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1673            II->removeFromParent();   // Take out of symbol table
1674
1675            // Insert the call now...
1676            std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1677            CallInst *CI = new CallInst(II->getCalledValue(), Args,
1678                                        II->getName(), BI);
1679            CI->setCallingConv(II->getCallingConv());
1680            // If the invoke produced a value, the Call does now instead.
1681            II->replaceAllUsesWith(CI);
1682            delete II;
1683            Changed = true;
1684          }
1685        }
1686      }
1687
1688      // If this block is now dead, remove it.
1689      if (pred_begin(BB) == pred_end(BB)) {
1690        // We know there are no successors, so just nuke the block.
1691        M->getBasicBlockList().erase(BB);
1692        return true;
1693      }
1694    }
1695  }
1696
1697  // Merge basic blocks into their predecessor if there is only one distinct
1698  // pred, and if there is only one distinct successor of the predecessor, and
1699  // if there are no PHI nodes.
1700  //
1701  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1702  BasicBlock *OnlyPred = *PI++;
1703  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
1704    if (*PI != OnlyPred) {
1705      OnlyPred = 0;       // There are multiple different predecessors...
1706      break;
1707    }
1708
1709  BasicBlock *OnlySucc = 0;
1710  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
1711      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
1712    // Check to see if there is only one distinct successor...
1713    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
1714    OnlySucc = BB;
1715    for (; SI != SE; ++SI)
1716      if (*SI != OnlySucc) {
1717        OnlySucc = 0;     // There are multiple distinct successors!
1718        break;
1719      }
1720  }
1721
1722  if (OnlySucc) {
1723    DEBUG(std::cerr << "Merging: " << *BB << "into: " << *OnlyPred);
1724    TerminatorInst *Term = OnlyPred->getTerminator();
1725
1726    // Resolve any PHI nodes at the start of the block.  They are all
1727    // guaranteed to have exactly one entry if they exist, unless there are
1728    // multiple duplicate (but guaranteed to be equal) entries for the
1729    // incoming edges.  This occurs when there are multiple edges from
1730    // OnlyPred to OnlySucc.
1731    //
1732    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1733      PN->replaceAllUsesWith(PN->getIncomingValue(0));
1734      BB->getInstList().pop_front();  // Delete the phi node...
1735    }
1736
1737    // Delete the unconditional branch from the predecessor...
1738    OnlyPred->getInstList().pop_back();
1739
1740    // Move all definitions in the successor to the predecessor...
1741    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
1742
1743    // Make all PHI nodes that referred to BB now refer to Pred as their
1744    // source...
1745    BB->replaceAllUsesWith(OnlyPred);
1746
1747    std::string OldName = BB->getName();
1748
1749    // Erase basic block from the function...
1750    M->getBasicBlockList().erase(BB);
1751
1752    // Inherit predecessors name if it exists...
1753    if (!OldName.empty() && !OnlyPred->hasName())
1754      OnlyPred->setName(OldName);
1755
1756    return true;
1757  }
1758
1759  // Otherwise, if this block only has a single predecessor, and if that block
1760  // is a conditional branch, see if we can hoist any code from this block up
1761  // into our predecessor.
1762  if (OnlyPred)
1763    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1764      if (BI->isConditional()) {
1765        // Get the other block.
1766        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
1767        PI = pred_begin(OtherBB);
1768        ++PI;
1769        if (PI == pred_end(OtherBB)) {
1770          // We have a conditional branch to two blocks that are only reachable
1771          // from the condbr.  We know that the condbr dominates the two blocks,
1772          // so see if there is any identical code in the "then" and "else"
1773          // blocks.  If so, we can hoist it up to the branching block.
1774          Changed |= HoistThenElseCodeToIf(BI);
1775        }
1776      }
1777
1778  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1779    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1780      // Change br (X == 0 | X == 1), T, F into a switch instruction.
1781      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
1782        Instruction *Cond = cast<Instruction>(BI->getCondition());
1783        // If this is a bunch of seteq's or'd together, or if it's a bunch of
1784        // 'setne's and'ed together, collect them.
1785        Value *CompVal = 0;
1786        std::vector<ConstantInt*> Values;
1787        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
1788        if (CompVal && CompVal->getType()->isInteger()) {
1789          // There might be duplicate constants in the list, which the switch
1790          // instruction can't handle, remove them now.
1791          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
1792          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1793
1794          // Figure out which block is which destination.
1795          BasicBlock *DefaultBB = BI->getSuccessor(1);
1796          BasicBlock *EdgeBB    = BI->getSuccessor(0);
1797          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1798
1799          // Create the new switch instruction now.
1800          SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
1801
1802          // Add all of the 'cases' to the switch instruction.
1803          for (unsigned i = 0, e = Values.size(); i != e; ++i)
1804            New->addCase(Values[i], EdgeBB);
1805
1806          // We added edges from PI to the EdgeBB.  As such, if there were any
1807          // PHI nodes in EdgeBB, they need entries to be added corresponding to
1808          // the number of edges added.
1809          for (BasicBlock::iterator BBI = EdgeBB->begin();
1810               isa<PHINode>(BBI); ++BBI) {
1811            PHINode *PN = cast<PHINode>(BBI);
1812            Value *InVal = PN->getIncomingValueForBlock(*PI);
1813            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1814              PN->addIncoming(InVal, *PI);
1815          }
1816
1817          // Erase the old branch instruction.
1818          (*PI)->getInstList().erase(BI);
1819
1820          // Erase the potentially condition tree that was used to computed the
1821          // branch condition.
1822          ErasePossiblyDeadInstructionTree(Cond);
1823          return true;
1824        }
1825      }
1826
1827  // If there is a trivial two-entry PHI node in this basic block, and we can
1828  // eliminate it, do so now.
1829  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1830    if (PN->getNumIncomingValues() == 2)
1831      Changed |= FoldTwoEntryPHINode(PN);
1832
1833  return Changed;
1834}
1835