SimplifyCFG.cpp revision 2d9220e8f5b45390d64e943fa4eef1562b87f04b
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Type.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Support/CFG.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34#include <set>
35#include <map>
36using namespace llvm;
37
38STATISTIC(NumSpeculations, "Number of speculative executed instructions");
39
40namespace {
41class SimplifyCFGOpt {
42  const TargetData *const TD;
43
44  Value *isValueEqualityComparison(TerminatorInst *TI);
45  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
46    std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
47  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
48                                                     BasicBlock *Pred);
49  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI);
50
51  bool SimplifyReturn(ReturnInst *RI);
52  bool SimplifyUnwind(UnwindInst *UI);
53  bool SimplifyUnreachable(UnreachableInst *UI);
54  bool SimplifySwitch(SwitchInst *SI);
55  bool SimplifyIndirectBr(IndirectBrInst *IBI);
56  bool SimplifyUncondBranch(BranchInst *BI);
57  bool SimplifyCondBranch(BranchInst *BI);
58
59public:
60  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
61  bool run(BasicBlock *BB);
62};
63}
64
65/// SafeToMergeTerminators - Return true if it is safe to merge these two
66/// terminator instructions together.
67///
68static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
69  if (SI1 == SI2) return false;  // Can't merge with self!
70
71  // It is not safe to merge these two switch instructions if they have a common
72  // successor, and if that successor has a PHI node, and if *that* PHI node has
73  // conflicting incoming values from the two switch blocks.
74  BasicBlock *SI1BB = SI1->getParent();
75  BasicBlock *SI2BB = SI2->getParent();
76  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
77
78  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
79    if (SI1Succs.count(*I))
80      for (BasicBlock::iterator BBI = (*I)->begin();
81           isa<PHINode>(BBI); ++BBI) {
82        PHINode *PN = cast<PHINode>(BBI);
83        if (PN->getIncomingValueForBlock(SI1BB) !=
84            PN->getIncomingValueForBlock(SI2BB))
85          return false;
86      }
87
88  return true;
89}
90
91/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
92/// now be entries in it from the 'NewPred' block.  The values that will be
93/// flowing into the PHI nodes will be the same as those coming in from
94/// ExistPred, an existing predecessor of Succ.
95static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
96                                  BasicBlock *ExistPred) {
97  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
98         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
99  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
100
101  PHINode *PN;
102  for (BasicBlock::iterator I = Succ->begin();
103       (PN = dyn_cast<PHINode>(I)); ++I)
104    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
105}
106
107
108/// GetIfCondition - Given a basic block (BB) with two predecessors (and
109/// presumably PHI nodes in it), check to see if the merge at this block is due
110/// to an "if condition".  If so, return the boolean condition that determines
111/// which entry into BB will be taken.  Also, return by references the block
112/// that will be entered from if the condition is true, and the block that will
113/// be entered if the condition is false.
114///
115///
116static Value *GetIfCondition(BasicBlock *BB,
117                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
118  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
119         "Function can only handle blocks with 2 predecessors!");
120  BasicBlock *Pred1 = *pred_begin(BB);
121  BasicBlock *Pred2 = *++pred_begin(BB);
122
123  // We can only handle branches.  Other control flow will be lowered to
124  // branches if possible anyway.
125  if (!isa<BranchInst>(Pred1->getTerminator()) ||
126      !isa<BranchInst>(Pred2->getTerminator()))
127    return 0;
128  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
129  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
130
131  // Eliminate code duplication by ensuring that Pred1Br is conditional if
132  // either are.
133  if (Pred2Br->isConditional()) {
134    // If both branches are conditional, we don't have an "if statement".  In
135    // reality, we could transform this case, but since the condition will be
136    // required anyway, we stand no chance of eliminating it, so the xform is
137    // probably not profitable.
138    if (Pred1Br->isConditional())
139      return 0;
140
141    std::swap(Pred1, Pred2);
142    std::swap(Pred1Br, Pred2Br);
143  }
144
145  if (Pred1Br->isConditional()) {
146    // If we found a conditional branch predecessor, make sure that it branches
147    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
148    if (Pred1Br->getSuccessor(0) == BB &&
149        Pred1Br->getSuccessor(1) == Pred2) {
150      IfTrue = Pred1;
151      IfFalse = Pred2;
152    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
153               Pred1Br->getSuccessor(1) == BB) {
154      IfTrue = Pred2;
155      IfFalse = Pred1;
156    } else {
157      // We know that one arm of the conditional goes to BB, so the other must
158      // go somewhere unrelated, and this must not be an "if statement".
159      return 0;
160    }
161
162    // The only thing we have to watch out for here is to make sure that Pred2
163    // doesn't have incoming edges from other blocks.  If it does, the condition
164    // doesn't dominate BB.
165    if (++pred_begin(Pred2) != pred_end(Pred2))
166      return 0;
167
168    return Pred1Br->getCondition();
169  }
170
171  // Ok, if we got here, both predecessors end with an unconditional branch to
172  // BB.  Don't panic!  If both blocks only have a single (identical)
173  // predecessor, and THAT is a conditional branch, then we're all ok!
174  if (pred_begin(Pred1) == pred_end(Pred1) ||
175      ++pred_begin(Pred1) != pred_end(Pred1) ||
176      pred_begin(Pred2) == pred_end(Pred2) ||
177      ++pred_begin(Pred2) != pred_end(Pred2) ||
178      *pred_begin(Pred1) != *pred_begin(Pred2))
179    return 0;
180
181  // Otherwise, if this is a conditional branch, then we can use it!
182  BasicBlock *CommonPred = *pred_begin(Pred1);
183  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
184    assert(BI->isConditional() && "Two successors but not conditional?");
185    if (BI->getSuccessor(0) == Pred1) {
186      IfTrue = Pred1;
187      IfFalse = Pred2;
188    } else {
189      IfTrue = Pred2;
190      IfFalse = Pred1;
191    }
192    return BI->getCondition();
193  }
194  return 0;
195}
196
197/// DominatesMergePoint - If we have a merge point of an "if condition" as
198/// accepted above, return true if the specified value dominates the block.  We
199/// don't handle the true generality of domination here, just a special case
200/// which works well enough for us.
201///
202/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
203/// see if V (which must be an instruction) is cheap to compute and is
204/// non-trapping.  If both are true, the instruction is inserted into the set
205/// and true is returned.
206static bool DominatesMergePoint(Value *V, BasicBlock *BB,
207                                std::set<Instruction*> *AggressiveInsts) {
208  Instruction *I = dyn_cast<Instruction>(V);
209  if (!I) {
210    // Non-instructions all dominate instructions, but not all constantexprs
211    // can be executed unconditionally.
212    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
213      if (C->canTrap())
214        return false;
215    return true;
216  }
217  BasicBlock *PBB = I->getParent();
218
219  // We don't want to allow weird loops that might have the "if condition" in
220  // the bottom of this block.
221  if (PBB == BB) return false;
222
223  // If this instruction is defined in a block that contains an unconditional
224  // branch to BB, then it must be in the 'conditional' part of the "if
225  // statement".
226  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
227    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
228      if (!AggressiveInsts) return false;
229      // Okay, it looks like the instruction IS in the "condition".  Check to
230      // see if it's a cheap instruction to unconditionally compute, and if it
231      // only uses stuff defined outside of the condition.  If so, hoist it out.
232      if (!I->isSafeToSpeculativelyExecute())
233        return false;
234
235      switch (I->getOpcode()) {
236      default: return false;  // Cannot hoist this out safely.
237      case Instruction::Load: {
238        // We have to check to make sure there are no instructions before the
239        // load in its basic block, as we are going to hoist the loop out to
240        // its predecessor.
241        BasicBlock::iterator IP = PBB->begin();
242        while (isa<DbgInfoIntrinsic>(IP))
243          IP++;
244        if (IP != BasicBlock::iterator(I))
245          return false;
246        break;
247      }
248      case Instruction::Add:
249      case Instruction::Sub:
250      case Instruction::And:
251      case Instruction::Or:
252      case Instruction::Xor:
253      case Instruction::Shl:
254      case Instruction::LShr:
255      case Instruction::AShr:
256      case Instruction::ICmp:
257        break;   // These are all cheap and non-trapping instructions.
258      }
259
260      // Okay, we can only really hoist these out if their operands are not
261      // defined in the conditional region.
262      for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
263        if (!DominatesMergePoint(*i, BB, 0))
264          return false;
265      // Okay, it's safe to do this!  Remember this instruction.
266      AggressiveInsts->insert(I);
267    }
268
269  return true;
270}
271
272/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
273/// and PointerNullValue. Return NULL if value is not a constant int.
274static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
275  // Normal constant int.
276  ConstantInt *CI = dyn_cast<ConstantInt>(V);
277  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
278    return CI;
279
280  // This is some kind of pointer constant. Turn it into a pointer-sized
281  // ConstantInt if possible.
282  const IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
283
284  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
285  if (isa<ConstantPointerNull>(V))
286    return ConstantInt::get(PtrTy, 0);
287
288  // IntToPtr const int.
289  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
290    if (CE->getOpcode() == Instruction::IntToPtr)
291      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
292        // The constant is very likely to have the right type already.
293        if (CI->getType() == PtrTy)
294          return CI;
295        else
296          return cast<ConstantInt>
297            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
298      }
299  return 0;
300}
301
302/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
303/// collection of icmp eq/ne instructions that compare a value against a
304/// constant, return the value being compared, and stick the constant into the
305/// Values vector.
306static Value *
307GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
308                       const TargetData *TD, bool isEQ) {
309  Instruction *I = dyn_cast<Instruction>(V);
310  if (I == 0) return 0;
311
312  // If this is an icmp against a constant, handle this as one of the cases.
313  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
314    if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE))
315      if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
316        Vals.push_back(C);
317        return I->getOperand(0);
318      }
319    return 0;
320  }
321
322  // Otherwise, we can only handle an | or &, depending on isEQ.
323  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
324    return 0;
325
326  unsigned NumValsBeforeLHS = Vals.size();
327  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
328                                          isEQ)) {
329    unsigned NumVals = Vals.size();
330    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
331                                            isEQ)) {
332      if (LHS == RHS)
333        return LHS;
334      Vals.resize(NumVals);
335    }
336
337    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
338    // set it and return success.
339    if (Extra == 0 || Extra == I->getOperand(1)) {
340      Extra = I->getOperand(1);
341      return LHS;
342    }
343
344    Vals.resize(NumValsBeforeLHS);
345    return 0;
346  }
347
348  // If the LHS can't be folded in, but Extra is available and RHS can, try to
349  // use LHS as Extra.
350  if (Extra == 0 || Extra == I->getOperand(0)) {
351    Value *OldExtra = Extra;
352    Extra = I->getOperand(0);
353    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
354                                            isEQ))
355      return RHS;
356    assert(Vals.size() == NumValsBeforeLHS);
357    Extra = OldExtra;
358  }
359
360  return 0;
361}
362
363static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
364  Instruction* Cond = 0;
365  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
366    Cond = dyn_cast<Instruction>(SI->getCondition());
367  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
368    if (BI->isConditional())
369      Cond = dyn_cast<Instruction>(BI->getCondition());
370  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
371    Cond = dyn_cast<Instruction>(IBI->getAddress());
372  }
373
374  TI->eraseFromParent();
375  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
376}
377
378/// isValueEqualityComparison - Return true if the specified terminator checks
379/// to see if a value is equal to constant integer value.
380Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
381  Value *CV = 0;
382  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
383    // Do not permit merging of large switch instructions into their
384    // predecessors unless there is only one predecessor.
385    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
386                                             pred_end(SI->getParent())) <= 128)
387      CV = SI->getCondition();
388  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
389    if (BI->isConditional() && BI->getCondition()->hasOneUse())
390      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
391        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
392             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
393            GetConstantInt(ICI->getOperand(1), TD))
394          CV = ICI->getOperand(0);
395
396  // Unwrap any lossless ptrtoint cast.
397  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
398    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
399      CV = PTII->getOperand(0);
400  return CV;
401}
402
403/// GetValueEqualityComparisonCases - Given a value comparison instruction,
404/// decode all of the 'cases' that it represents and return the 'default' block.
405BasicBlock *SimplifyCFGOpt::
406GetValueEqualityComparisonCases(TerminatorInst *TI,
407                                std::vector<std::pair<ConstantInt*,
408                                                      BasicBlock*> > &Cases) {
409  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
410    Cases.reserve(SI->getNumCases());
411    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
412      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
413    return SI->getDefaultDest();
414  }
415
416  BranchInst *BI = cast<BranchInst>(TI);
417  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
418  Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
419                                 BI->getSuccessor(ICI->getPredicate() ==
420                                                  ICmpInst::ICMP_NE)));
421  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
422}
423
424
425/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
426/// in the list that match the specified block.
427static void EliminateBlockCases(BasicBlock *BB,
428               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
429  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
430    if (Cases[i].second == BB) {
431      Cases.erase(Cases.begin()+i);
432      --i; --e;
433    }
434}
435
436/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
437/// well.
438static bool
439ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
440              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
441  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
442
443  // Make V1 be smaller than V2.
444  if (V1->size() > V2->size())
445    std::swap(V1, V2);
446
447  if (V1->size() == 0) return false;
448  if (V1->size() == 1) {
449    // Just scan V2.
450    ConstantInt *TheVal = (*V1)[0].first;
451    for (unsigned i = 0, e = V2->size(); i != e; ++i)
452      if (TheVal == (*V2)[i].first)
453        return true;
454  }
455
456  // Otherwise, just sort both lists and compare element by element.
457  array_pod_sort(V1->begin(), V1->end());
458  array_pod_sort(V2->begin(), V2->end());
459  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
460  while (i1 != e1 && i2 != e2) {
461    if ((*V1)[i1].first == (*V2)[i2].first)
462      return true;
463    if ((*V1)[i1].first < (*V2)[i2].first)
464      ++i1;
465    else
466      ++i2;
467  }
468  return false;
469}
470
471/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
472/// terminator instruction and its block is known to only have a single
473/// predecessor block, check to see if that predecessor is also a value
474/// comparison with the same value, and if that comparison determines the
475/// outcome of this comparison.  If so, simplify TI.  This does a very limited
476/// form of jump threading.
477bool SimplifyCFGOpt::
478SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
479                                              BasicBlock *Pred) {
480  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
481  if (!PredVal) return false;  // Not a value comparison in predecessor.
482
483  Value *ThisVal = isValueEqualityComparison(TI);
484  assert(ThisVal && "This isn't a value comparison!!");
485  if (ThisVal != PredVal) return false;  // Different predicates.
486
487  // Find out information about when control will move from Pred to TI's block.
488  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
489  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
490                                                        PredCases);
491  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
492
493  // Find information about how control leaves this block.
494  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
495  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
496  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
497
498  // If TI's block is the default block from Pred's comparison, potentially
499  // simplify TI based on this knowledge.
500  if (PredDef == TI->getParent()) {
501    // If we are here, we know that the value is none of those cases listed in
502    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
503    // can simplify TI.
504    if (!ValuesOverlap(PredCases, ThisCases))
505      return false;
506
507    if (isa<BranchInst>(TI)) {
508      // Okay, one of the successors of this condbr is dead.  Convert it to a
509      // uncond br.
510      assert(ThisCases.size() == 1 && "Branch can only have one case!");
511      // Insert the new branch.
512      Instruction *NI = BranchInst::Create(ThisDef, TI);
513      (void) NI;
514
515      // Remove PHI node entries for the dead edge.
516      ThisCases[0].second->removePredecessor(TI->getParent());
517
518      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
519           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
520
521      EraseTerminatorInstAndDCECond(TI);
522      return true;
523    }
524
525    SwitchInst *SI = cast<SwitchInst>(TI);
526    // Okay, TI has cases that are statically dead, prune them away.
527    SmallPtrSet<Constant*, 16> DeadCases;
528    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
529      DeadCases.insert(PredCases[i].first);
530
531    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
532                 << "Through successor TI: " << *TI);
533
534    for (unsigned i = SI->getNumCases()-1; i != 0; --i)
535      if (DeadCases.count(SI->getCaseValue(i))) {
536        SI->getSuccessor(i)->removePredecessor(TI->getParent());
537        SI->removeCase(i);
538      }
539
540    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
541    return true;
542  }
543
544  // Otherwise, TI's block must correspond to some matched value.  Find out
545  // which value (or set of values) this is.
546  ConstantInt *TIV = 0;
547  BasicBlock *TIBB = TI->getParent();
548  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
549    if (PredCases[i].second == TIBB) {
550      if (TIV != 0)
551        return false;  // Cannot handle multiple values coming to this block.
552      TIV = PredCases[i].first;
553    }
554  assert(TIV && "No edge from pred to succ?");
555
556  // Okay, we found the one constant that our value can be if we get into TI's
557  // BB.  Find out which successor will unconditionally be branched to.
558  BasicBlock *TheRealDest = 0;
559  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
560    if (ThisCases[i].first == TIV) {
561      TheRealDest = ThisCases[i].second;
562      break;
563    }
564
565  // If not handled by any explicit cases, it is handled by the default case.
566  if (TheRealDest == 0) TheRealDest = ThisDef;
567
568  // Remove PHI node entries for dead edges.
569  BasicBlock *CheckEdge = TheRealDest;
570  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
571    if (*SI != CheckEdge)
572      (*SI)->removePredecessor(TIBB);
573    else
574      CheckEdge = 0;
575
576  // Insert the new branch.
577  Instruction *NI = BranchInst::Create(TheRealDest, TI);
578  (void) NI;
579
580  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
581            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
582
583  EraseTerminatorInstAndDCECond(TI);
584  return true;
585}
586
587namespace {
588  /// ConstantIntOrdering - This class implements a stable ordering of constant
589  /// integers that does not depend on their address.  This is important for
590  /// applications that sort ConstantInt's to ensure uniqueness.
591  struct ConstantIntOrdering {
592    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
593      return LHS->getValue().ult(RHS->getValue());
594    }
595  };
596}
597
598static int ConstantIntSortPredicate(const void *P1, const void *P2) {
599  const ConstantInt *LHS = *(const ConstantInt**)P1;
600  const ConstantInt *RHS = *(const ConstantInt**)P2;
601  return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
602}
603
604/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
605/// equality comparison instruction (either a switch or a branch on "X == c").
606/// See if any of the predecessors of the terminator block are value comparisons
607/// on the same value.  If so, and if safe to do so, fold them together.
608bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
609  BasicBlock *BB = TI->getParent();
610  Value *CV = isValueEqualityComparison(TI);  // CondVal
611  assert(CV && "Not a comparison?");
612  bool Changed = false;
613
614  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
615  while (!Preds.empty()) {
616    BasicBlock *Pred = Preds.pop_back_val();
617
618    // See if the predecessor is a comparison with the same value.
619    TerminatorInst *PTI = Pred->getTerminator();
620    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
621
622    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
623      // Figure out which 'cases' to copy from SI to PSI.
624      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
625      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
626
627      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
628      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
629
630      // Based on whether the default edge from PTI goes to BB or not, fill in
631      // PredCases and PredDefault with the new switch cases we would like to
632      // build.
633      SmallVector<BasicBlock*, 8> NewSuccessors;
634
635      if (PredDefault == BB) {
636        // If this is the default destination from PTI, only the edges in TI
637        // that don't occur in PTI, or that branch to BB will be activated.
638        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
639        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
640          if (PredCases[i].second != BB)
641            PTIHandled.insert(PredCases[i].first);
642          else {
643            // The default destination is BB, we don't need explicit targets.
644            std::swap(PredCases[i], PredCases.back());
645            PredCases.pop_back();
646            --i; --e;
647          }
648
649        // Reconstruct the new switch statement we will be building.
650        if (PredDefault != BBDefault) {
651          PredDefault->removePredecessor(Pred);
652          PredDefault = BBDefault;
653          NewSuccessors.push_back(BBDefault);
654        }
655        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
656          if (!PTIHandled.count(BBCases[i].first) &&
657              BBCases[i].second != BBDefault) {
658            PredCases.push_back(BBCases[i]);
659            NewSuccessors.push_back(BBCases[i].second);
660          }
661
662      } else {
663        // If this is not the default destination from PSI, only the edges
664        // in SI that occur in PSI with a destination of BB will be
665        // activated.
666        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
667        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
668          if (PredCases[i].second == BB) {
669            PTIHandled.insert(PredCases[i].first);
670            std::swap(PredCases[i], PredCases.back());
671            PredCases.pop_back();
672            --i; --e;
673          }
674
675        // Okay, now we know which constants were sent to BB from the
676        // predecessor.  Figure out where they will all go now.
677        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
678          if (PTIHandled.count(BBCases[i].first)) {
679            // If this is one we are capable of getting...
680            PredCases.push_back(BBCases[i]);
681            NewSuccessors.push_back(BBCases[i].second);
682            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
683          }
684
685        // If there are any constants vectored to BB that TI doesn't handle,
686        // they must go to the default destination of TI.
687        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
688                                    PTIHandled.begin(),
689               E = PTIHandled.end(); I != E; ++I) {
690          PredCases.push_back(std::make_pair(*I, BBDefault));
691          NewSuccessors.push_back(BBDefault);
692        }
693      }
694
695      // Okay, at this point, we know which new successor Pred will get.  Make
696      // sure we update the number of entries in the PHI nodes for these
697      // successors.
698      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
699        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
700
701      // Convert pointer to int before we switch.
702      if (CV->getType()->isPointerTy()) {
703        assert(TD && "Cannot switch on pointer without TargetData");
704        CV = new PtrToIntInst(CV, TD->getIntPtrType(CV->getContext()),
705                              "magicptr", PTI);
706      }
707
708      // Now that the successors are updated, create the new Switch instruction.
709      SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
710                                             PredCases.size(), PTI);
711      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
712        NewSI->addCase(PredCases[i].first, PredCases[i].second);
713
714      EraseTerminatorInstAndDCECond(PTI);
715
716      // Okay, last check.  If BB is still a successor of PSI, then we must
717      // have an infinite loop case.  If so, add an infinitely looping block
718      // to handle the case to preserve the behavior of the code.
719      BasicBlock *InfLoopBlock = 0;
720      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
721        if (NewSI->getSuccessor(i) == BB) {
722          if (InfLoopBlock == 0) {
723            // Insert it at the end of the function, because it's either code,
724            // or it won't matter if it's hot. :)
725            InfLoopBlock = BasicBlock::Create(BB->getContext(),
726                                              "infloop", BB->getParent());
727            BranchInst::Create(InfLoopBlock, InfLoopBlock);
728          }
729          NewSI->setSuccessor(i, InfLoopBlock);
730        }
731
732      Changed = true;
733    }
734  }
735  return Changed;
736}
737
738// isSafeToHoistInvoke - If we would need to insert a select that uses the
739// value of this invoke (comments in HoistThenElseCodeToIf explain why we
740// would need to do this), we can't hoist the invoke, as there is nowhere
741// to put the select in this case.
742static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
743                                Instruction *I1, Instruction *I2) {
744  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
745    PHINode *PN;
746    for (BasicBlock::iterator BBI = SI->begin();
747         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
748      Value *BB1V = PN->getIncomingValueForBlock(BB1);
749      Value *BB2V = PN->getIncomingValueForBlock(BB2);
750      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
751        return false;
752      }
753    }
754  }
755  return true;
756}
757
758/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
759/// BB2, hoist any common code in the two blocks up into the branch block.  The
760/// caller of this function guarantees that BI's block dominates BB1 and BB2.
761static bool HoistThenElseCodeToIf(BranchInst *BI) {
762  // This does very trivial matching, with limited scanning, to find identical
763  // instructions in the two blocks.  In particular, we don't want to get into
764  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
765  // such, we currently just scan for obviously identical instructions in an
766  // identical order.
767  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
768  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
769
770  BasicBlock::iterator BB1_Itr = BB1->begin();
771  BasicBlock::iterator BB2_Itr = BB2->begin();
772
773  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
774  while (isa<DbgInfoIntrinsic>(I1))
775    I1 = BB1_Itr++;
776  while (isa<DbgInfoIntrinsic>(I2))
777    I2 = BB2_Itr++;
778  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
779      !I1->isIdenticalToWhenDefined(I2) ||
780      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
781    return false;
782
783  // If we get here, we can hoist at least one instruction.
784  BasicBlock *BIParent = BI->getParent();
785
786  do {
787    // If we are hoisting the terminator instruction, don't move one (making a
788    // broken BB), instead clone it, and remove BI.
789    if (isa<TerminatorInst>(I1))
790      goto HoistTerminator;
791
792    // For a normal instruction, we just move one to right before the branch,
793    // then replace all uses of the other with the first.  Finally, we remove
794    // the now redundant second instruction.
795    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
796    if (!I2->use_empty())
797      I2->replaceAllUsesWith(I1);
798    I1->intersectOptionalDataWith(I2);
799    BB2->getInstList().erase(I2);
800
801    I1 = BB1_Itr++;
802    while (isa<DbgInfoIntrinsic>(I1))
803      I1 = BB1_Itr++;
804    I2 = BB2_Itr++;
805    while (isa<DbgInfoIntrinsic>(I2))
806      I2 = BB2_Itr++;
807  } while (I1->getOpcode() == I2->getOpcode() &&
808           I1->isIdenticalToWhenDefined(I2));
809
810  return true;
811
812HoistTerminator:
813  // It may not be possible to hoist an invoke.
814  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
815    return true;
816
817  // Okay, it is safe to hoist the terminator.
818  Instruction *NT = I1->clone();
819  BIParent->getInstList().insert(BI, NT);
820  if (!NT->getType()->isVoidTy()) {
821    I1->replaceAllUsesWith(NT);
822    I2->replaceAllUsesWith(NT);
823    NT->takeName(I1);
824  }
825
826  // Hoisting one of the terminators from our successor is a great thing.
827  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
828  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
829  // nodes, so we insert select instruction to compute the final result.
830  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
831  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
832    PHINode *PN;
833    for (BasicBlock::iterator BBI = SI->begin();
834         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
835      Value *BB1V = PN->getIncomingValueForBlock(BB1);
836      Value *BB2V = PN->getIncomingValueForBlock(BB2);
837      if (BB1V == BB2V) continue;
838
839      // These values do not agree.  Insert a select instruction before NT
840      // that determines the right value.
841      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
842      if (SI == 0)
843        SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
844                                BB1V->getName()+"."+BB2V->getName(), NT);
845      // Make the PHI node use the select for all incoming values for BB1/BB2
846      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
847        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
848          PN->setIncomingValue(i, SI);
849    }
850  }
851
852  // Update any PHI nodes in our new successors.
853  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
854    AddPredecessorToBlock(*SI, BIParent, BB1);
855
856  EraseTerminatorInstAndDCECond(BI);
857  return true;
858}
859
860/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
861/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
862/// (for now, restricted to a single instruction that's side effect free) from
863/// the BB1 into the branch block to speculatively execute it.
864static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
865  // Only speculatively execution a single instruction (not counting the
866  // terminator) for now.
867  Instruction *HInst = NULL;
868  Instruction *Term = BB1->getTerminator();
869  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
870       BBI != BBE; ++BBI) {
871    Instruction *I = BBI;
872    // Skip debug info.
873    if (isa<DbgInfoIntrinsic>(I)) continue;
874    if (I == Term) break;
875
876    if (HInst)
877      return false;
878    HInst = I;
879  }
880  if (!HInst)
881    return false;
882
883  // Be conservative for now. FP select instruction can often be expensive.
884  Value *BrCond = BI->getCondition();
885  if (isa<FCmpInst>(BrCond))
886    return false;
887
888  // If BB1 is actually on the false edge of the conditional branch, remember
889  // to swap the select operands later.
890  bool Invert = false;
891  if (BB1 != BI->getSuccessor(0)) {
892    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
893    Invert = true;
894  }
895
896  // Turn
897  // BB:
898  //     %t1 = icmp
899  //     br i1 %t1, label %BB1, label %BB2
900  // BB1:
901  //     %t3 = add %t2, c
902  //     br label BB2
903  // BB2:
904  // =>
905  // BB:
906  //     %t1 = icmp
907  //     %t4 = add %t2, c
908  //     %t3 = select i1 %t1, %t2, %t3
909  switch (HInst->getOpcode()) {
910  default: return false;  // Not safe / profitable to hoist.
911  case Instruction::Add:
912  case Instruction::Sub:
913    // Not worth doing for vector ops.
914    if (HInst->getType()->isVectorTy())
915      return false;
916    break;
917  case Instruction::And:
918  case Instruction::Or:
919  case Instruction::Xor:
920  case Instruction::Shl:
921  case Instruction::LShr:
922  case Instruction::AShr:
923    // Don't mess with vector operations.
924    if (HInst->getType()->isVectorTy())
925      return false;
926    break;   // These are all cheap and non-trapping instructions.
927  }
928
929  // If the instruction is obviously dead, don't try to predicate it.
930  if (HInst->use_empty()) {
931    HInst->eraseFromParent();
932    return true;
933  }
934
935  // Can we speculatively execute the instruction? And what is the value
936  // if the condition is false? Consider the phi uses, if the incoming value
937  // from the "if" block are all the same V, then V is the value of the
938  // select if the condition is false.
939  BasicBlock *BIParent = BI->getParent();
940  SmallVector<PHINode*, 4> PHIUses;
941  Value *FalseV = NULL;
942
943  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
944  for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
945       UI != E; ++UI) {
946    // Ignore any user that is not a PHI node in BB2.  These can only occur in
947    // unreachable blocks, because they would not be dominated by the instr.
948    PHINode *PN = dyn_cast<PHINode>(*UI);
949    if (!PN || PN->getParent() != BB2)
950      return false;
951    PHIUses.push_back(PN);
952
953    Value *PHIV = PN->getIncomingValueForBlock(BIParent);
954    if (!FalseV)
955      FalseV = PHIV;
956    else if (FalseV != PHIV)
957      return false;  // Inconsistent value when condition is false.
958  }
959
960  assert(FalseV && "Must have at least one user, and it must be a PHI");
961
962  // Do not hoist the instruction if any of its operands are defined but not
963  // used in this BB. The transformation will prevent the operand from
964  // being sunk into the use block.
965  for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
966       i != e; ++i) {
967    Instruction *OpI = dyn_cast<Instruction>(*i);
968    if (OpI && OpI->getParent() == BIParent &&
969        !OpI->isUsedInBasicBlock(BIParent))
970      return false;
971  }
972
973  // If we get here, we can hoist the instruction. Try to place it
974  // before the icmp instruction preceding the conditional branch.
975  BasicBlock::iterator InsertPos = BI;
976  if (InsertPos != BIParent->begin())
977    --InsertPos;
978  // Skip debug info between condition and branch.
979  while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
980    --InsertPos;
981  if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
982    SmallPtrSet<Instruction *, 4> BB1Insns;
983    for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
984        BB1I != BB1E; ++BB1I)
985      BB1Insns.insert(BB1I);
986    for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
987        UI != UE; ++UI) {
988      Instruction *Use = cast<Instruction>(*UI);
989      if (!BB1Insns.count(Use)) continue;
990
991      // If BrCond uses the instruction that place it just before
992      // branch instruction.
993      InsertPos = BI;
994      break;
995    }
996  } else
997    InsertPos = BI;
998  BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
999
1000  // Create a select whose true value is the speculatively executed value and
1001  // false value is the previously determined FalseV.
1002  SelectInst *SI;
1003  if (Invert)
1004    SI = SelectInst::Create(BrCond, FalseV, HInst,
1005                            FalseV->getName() + "." + HInst->getName(), BI);
1006  else
1007    SI = SelectInst::Create(BrCond, HInst, FalseV,
1008                            HInst->getName() + "." + FalseV->getName(), BI);
1009
1010  // Make the PHI node use the select for all incoming values for "then" and
1011  // "if" blocks.
1012  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1013    PHINode *PN = PHIUses[i];
1014    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1015      if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1016        PN->setIncomingValue(j, SI);
1017  }
1018
1019  ++NumSpeculations;
1020  return true;
1021}
1022
1023/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1024/// across this block.
1025static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1026  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1027  unsigned Size = 0;
1028
1029  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1030    if (isa<DbgInfoIntrinsic>(BBI))
1031      continue;
1032    if (Size > 10) return false;  // Don't clone large BB's.
1033    ++Size;
1034
1035    // We can only support instructions that do not define values that are
1036    // live outside of the current basic block.
1037    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1038         UI != E; ++UI) {
1039      Instruction *U = cast<Instruction>(*UI);
1040      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1041    }
1042
1043    // Looks ok, continue checking.
1044  }
1045
1046  return true;
1047}
1048
1049/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1050/// that is defined in the same block as the branch and if any PHI entries are
1051/// constants, thread edges corresponding to that entry to be branches to their
1052/// ultimate destination.
1053static bool FoldCondBranchOnPHI(BranchInst *BI) {
1054  BasicBlock *BB = BI->getParent();
1055  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1056  // NOTE: we currently cannot transform this case if the PHI node is used
1057  // outside of the block.
1058  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1059    return false;
1060
1061  // Degenerate case of a single entry PHI.
1062  if (PN->getNumIncomingValues() == 1) {
1063    FoldSingleEntryPHINodes(PN->getParent());
1064    return true;
1065  }
1066
1067  // Now we know that this block has multiple preds and two succs.
1068  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1069
1070  // Okay, this is a simple enough basic block.  See if any phi values are
1071  // constants.
1072  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1073    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1074    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1075
1076    // Okay, we now know that all edges from PredBB should be revectored to
1077    // branch to RealDest.
1078    BasicBlock *PredBB = PN->getIncomingBlock(i);
1079    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1080
1081    if (RealDest == BB) continue;  // Skip self loops.
1082
1083    // The dest block might have PHI nodes, other predecessors and other
1084    // difficult cases.  Instead of being smart about this, just insert a new
1085    // block that jumps to the destination block, effectively splitting
1086    // the edge we are about to create.
1087    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1088                                            RealDest->getName()+".critedge",
1089                                            RealDest->getParent(), RealDest);
1090    BranchInst::Create(RealDest, EdgeBB);
1091    PHINode *PN;
1092    for (BasicBlock::iterator BBI = RealDest->begin();
1093         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1094      Value *V = PN->getIncomingValueForBlock(BB);
1095      PN->addIncoming(V, EdgeBB);
1096    }
1097
1098    // BB may have instructions that are being threaded over.  Clone these
1099    // instructions into EdgeBB.  We know that there will be no uses of the
1100    // cloned instructions outside of EdgeBB.
1101    BasicBlock::iterator InsertPt = EdgeBB->begin();
1102    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1103    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1104      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1105        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1106        continue;
1107      }
1108      // Clone the instruction.
1109      Instruction *N = BBI->clone();
1110      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1111
1112      // Update operands due to translation.
1113      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1114           i != e; ++i) {
1115        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1116        if (PI != TranslateMap.end())
1117          *i = PI->second;
1118      }
1119
1120      // Check for trivial simplification.
1121      if (Constant *C = ConstantFoldInstruction(N)) {
1122        TranslateMap[BBI] = C;
1123        delete N;   // Constant folded away, don't need actual inst
1124      } else {
1125        // Insert the new instruction into its new home.
1126        EdgeBB->getInstList().insert(InsertPt, N);
1127        if (!BBI->use_empty())
1128          TranslateMap[BBI] = N;
1129      }
1130    }
1131
1132    // Loop over all of the edges from PredBB to BB, changing them to branch
1133    // to EdgeBB instead.
1134    TerminatorInst *PredBBTI = PredBB->getTerminator();
1135    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1136      if (PredBBTI->getSuccessor(i) == BB) {
1137        BB->removePredecessor(PredBB);
1138        PredBBTI->setSuccessor(i, EdgeBB);
1139      }
1140
1141    // Recurse, simplifying any other constants.
1142    return FoldCondBranchOnPHI(BI) | true;
1143  }
1144
1145  return false;
1146}
1147
1148/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1149/// PHI node, see if we can eliminate it.
1150static bool FoldTwoEntryPHINode(PHINode *PN) {
1151  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1152  // statement", which has a very simple dominance structure.  Basically, we
1153  // are trying to find the condition that is being branched on, which
1154  // subsequently causes this merge to happen.  We really want control
1155  // dependence information for this check, but simplifycfg can't keep it up
1156  // to date, and this catches most of the cases we care about anyway.
1157  //
1158  BasicBlock *BB = PN->getParent();
1159  BasicBlock *IfTrue, *IfFalse;
1160  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1161  if (!IfCond) return false;
1162
1163  // Okay, we found that we can merge this two-entry phi node into a select.
1164  // Doing so would require us to fold *all* two entry phi nodes in this block.
1165  // At some point this becomes non-profitable (particularly if the target
1166  // doesn't support cmov's).  Only do this transformation if there are two or
1167  // fewer PHI nodes in this block.
1168  unsigned NumPhis = 0;
1169  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1170    if (NumPhis > 2)
1171      return false;
1172
1173  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1174        << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1175
1176  // Loop over the PHI's seeing if we can promote them all to select
1177  // instructions.  While we are at it, keep track of the instructions
1178  // that need to be moved to the dominating block.
1179  std::set<Instruction*> AggressiveInsts;
1180
1181  BasicBlock::iterator AfterPHIIt = BB->begin();
1182  while (isa<PHINode>(AfterPHIIt)) {
1183    PHINode *PN = cast<PHINode>(AfterPHIIt++);
1184    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1185      if (PN->getIncomingValue(0) != PN)
1186        PN->replaceAllUsesWith(PN->getIncomingValue(0));
1187      else
1188        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1189    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1190                                    &AggressiveInsts) ||
1191               !DominatesMergePoint(PN->getIncomingValue(1), BB,
1192                                    &AggressiveInsts)) {
1193      return false;
1194    }
1195  }
1196
1197  // If we all PHI nodes are promotable, check to make sure that all
1198  // instructions in the predecessor blocks can be promoted as well.  If
1199  // not, we won't be able to get rid of the control flow, so it's not
1200  // worth promoting to select instructions.
1201  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1202  PN = cast<PHINode>(BB->begin());
1203  BasicBlock *Pred = PN->getIncomingBlock(0);
1204  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1205    IfBlock1 = Pred;
1206    DomBlock = *pred_begin(Pred);
1207    for (BasicBlock::iterator I = Pred->begin();
1208         !isa<TerminatorInst>(I); ++I)
1209      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1210        // This is not an aggressive instruction that we can promote.
1211        // Because of this, we won't be able to get rid of the control
1212        // flow, so the xform is not worth it.
1213        return false;
1214      }
1215  }
1216
1217  Pred = PN->getIncomingBlock(1);
1218  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1219    IfBlock2 = Pred;
1220    DomBlock = *pred_begin(Pred);
1221    for (BasicBlock::iterator I = Pred->begin();
1222         !isa<TerminatorInst>(I); ++I)
1223      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1224        // This is not an aggressive instruction that we can promote.
1225        // Because of this, we won't be able to get rid of the control
1226        // flow, so the xform is not worth it.
1227        return false;
1228      }
1229  }
1230
1231  // If we can still promote the PHI nodes after this gauntlet of tests,
1232  // do all of the PHI's now.
1233
1234  // Move all 'aggressive' instructions, which are defined in the
1235  // conditional parts of the if's up to the dominating block.
1236  if (IfBlock1)
1237    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1238                                   IfBlock1->getInstList(), IfBlock1->begin(),
1239                                   IfBlock1->getTerminator());
1240  if (IfBlock2)
1241    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1242                                   IfBlock2->getInstList(), IfBlock2->begin(),
1243                                   IfBlock2->getTerminator());
1244
1245  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1246    // Change the PHI node into a select instruction.
1247    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1248    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1249
1250    Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1251    PN->replaceAllUsesWith(NV);
1252    NV->takeName(PN);
1253
1254    BB->getInstList().erase(PN);
1255  }
1256  return true;
1257}
1258
1259/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1260/// to two returning blocks, try to merge them together into one return,
1261/// introducing a select if the return values disagree.
1262static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1263  assert(BI->isConditional() && "Must be a conditional branch");
1264  BasicBlock *TrueSucc = BI->getSuccessor(0);
1265  BasicBlock *FalseSucc = BI->getSuccessor(1);
1266  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1267  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1268
1269  // Check to ensure both blocks are empty (just a return) or optionally empty
1270  // with PHI nodes.  If there are other instructions, merging would cause extra
1271  // computation on one path or the other.
1272  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1273    return false;
1274  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1275    return false;
1276
1277  // Okay, we found a branch that is going to two return nodes.  If
1278  // there is no return value for this function, just change the
1279  // branch into a return.
1280  if (FalseRet->getNumOperands() == 0) {
1281    TrueSucc->removePredecessor(BI->getParent());
1282    FalseSucc->removePredecessor(BI->getParent());
1283    ReturnInst::Create(BI->getContext(), 0, BI);
1284    EraseTerminatorInstAndDCECond(BI);
1285    return true;
1286  }
1287
1288  // Otherwise, figure out what the true and false return values are
1289  // so we can insert a new select instruction.
1290  Value *TrueValue = TrueRet->getReturnValue();
1291  Value *FalseValue = FalseRet->getReturnValue();
1292
1293  // Unwrap any PHI nodes in the return blocks.
1294  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1295    if (TVPN->getParent() == TrueSucc)
1296      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1297  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1298    if (FVPN->getParent() == FalseSucc)
1299      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1300
1301  // In order for this transformation to be safe, we must be able to
1302  // unconditionally execute both operands to the return.  This is
1303  // normally the case, but we could have a potentially-trapping
1304  // constant expression that prevents this transformation from being
1305  // safe.
1306  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1307    if (TCV->canTrap())
1308      return false;
1309  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1310    if (FCV->canTrap())
1311      return false;
1312
1313  // Okay, we collected all the mapped values and checked them for sanity, and
1314  // defined to really do this transformation.  First, update the CFG.
1315  TrueSucc->removePredecessor(BI->getParent());
1316  FalseSucc->removePredecessor(BI->getParent());
1317
1318  // Insert select instructions where needed.
1319  Value *BrCond = BI->getCondition();
1320  if (TrueValue) {
1321    // Insert a select if the results differ.
1322    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1323    } else if (isa<UndefValue>(TrueValue)) {
1324      TrueValue = FalseValue;
1325    } else {
1326      TrueValue = SelectInst::Create(BrCond, TrueValue,
1327                                     FalseValue, "retval", BI);
1328    }
1329  }
1330
1331  Value *RI = !TrueValue ?
1332              ReturnInst::Create(BI->getContext(), BI) :
1333              ReturnInst::Create(BI->getContext(), TrueValue, BI);
1334  (void) RI;
1335
1336  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1337               << "\n  " << *BI << "NewRet = " << *RI
1338               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1339
1340  EraseTerminatorInstAndDCECond(BI);
1341
1342  return true;
1343}
1344
1345/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1346/// and if a predecessor branches to us and one of our successors, fold the
1347/// setcc into the predecessor and use logical operations to pick the right
1348/// destination.
1349bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1350  BasicBlock *BB = BI->getParent();
1351  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1352  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1353    Cond->getParent() != BB || !Cond->hasOneUse())
1354  return false;
1355
1356  // Only allow this if the condition is a simple instruction that can be
1357  // executed unconditionally.  It must be in the same block as the branch, and
1358  // must be at the front of the block.
1359  BasicBlock::iterator FrontIt = BB->front();
1360  // Ignore dbg intrinsics.
1361  while (isa<DbgInfoIntrinsic>(FrontIt))
1362    ++FrontIt;
1363
1364  // Allow a single instruction to be hoisted in addition to the compare
1365  // that feeds the branch.  We later ensure that any values that _it_ uses
1366  // were also live in the predecessor, so that we don't unnecessarily create
1367  // register pressure or inhibit out-of-order execution.
1368  Instruction *BonusInst = 0;
1369  if (&*FrontIt != Cond &&
1370      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1371      FrontIt->isSafeToSpeculativelyExecute()) {
1372    BonusInst = &*FrontIt;
1373    ++FrontIt;
1374  }
1375
1376  // Only a single bonus inst is allowed.
1377  if (&*FrontIt != Cond)
1378    return false;
1379
1380  // Make sure the instruction after the condition is the cond branch.
1381  BasicBlock::iterator CondIt = Cond; ++CondIt;
1382  // Ingore dbg intrinsics.
1383  while(isa<DbgInfoIntrinsic>(CondIt))
1384    ++CondIt;
1385  if (&*CondIt != BI) {
1386    assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
1387    return false;
1388  }
1389
1390  // Cond is known to be a compare or binary operator.  Check to make sure that
1391  // neither operand is a potentially-trapping constant expression.
1392  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1393    if (CE->canTrap())
1394      return false;
1395  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1396    if (CE->canTrap())
1397      return false;
1398
1399
1400  // Finally, don't infinitely unroll conditional loops.
1401  BasicBlock *TrueDest  = BI->getSuccessor(0);
1402  BasicBlock *FalseDest = BI->getSuccessor(1);
1403  if (TrueDest == BB || FalseDest == BB)
1404    return false;
1405
1406  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1407    BasicBlock *PredBlock = *PI;
1408    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1409
1410    // Check that we have two conditional branches.  If there is a PHI node in
1411    // the common successor, verify that the same value flows in from both
1412    // blocks.
1413    if (PBI == 0 || PBI->isUnconditional() ||
1414        !SafeToMergeTerminators(BI, PBI))
1415      continue;
1416
1417    // Ensure that any values used in the bonus instruction are also used
1418    // by the terminator of the predecessor.  This means that those values
1419    // must already have been resolved, so we won't be inhibiting the
1420    // out-of-order core by speculating them earlier.
1421    if (BonusInst) {
1422      // Collect the values used by the bonus inst
1423      SmallPtrSet<Value*, 4> UsedValues;
1424      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1425           OE = BonusInst->op_end(); OI != OE; ++OI) {
1426        Value* V = *OI;
1427        if (!isa<Constant>(V))
1428          UsedValues.insert(V);
1429      }
1430
1431      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1432      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1433
1434      // Walk up to four levels back up the use-def chain of the predecessor's
1435      // terminator to see if all those values were used.  The choice of four
1436      // levels is arbitrary, to provide a compile-time-cost bound.
1437      while (!Worklist.empty()) {
1438        std::pair<Value*, unsigned> Pair = Worklist.back();
1439        Worklist.pop_back();
1440
1441        if (Pair.second >= 4) continue;
1442        UsedValues.erase(Pair.first);
1443        if (UsedValues.empty()) break;
1444
1445        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1446          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1447               OI != OE; ++OI)
1448            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1449        }
1450      }
1451
1452      if (!UsedValues.empty()) return false;
1453    }
1454
1455    Instruction::BinaryOps Opc;
1456    bool InvertPredCond = false;
1457
1458    if (PBI->getSuccessor(0) == TrueDest)
1459      Opc = Instruction::Or;
1460    else if (PBI->getSuccessor(1) == FalseDest)
1461      Opc = Instruction::And;
1462    else if (PBI->getSuccessor(0) == FalseDest)
1463      Opc = Instruction::And, InvertPredCond = true;
1464    else if (PBI->getSuccessor(1) == TrueDest)
1465      Opc = Instruction::Or, InvertPredCond = true;
1466    else
1467      continue;
1468
1469    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1470
1471    // If we need to invert the condition in the pred block to match, do so now.
1472    if (InvertPredCond) {
1473      Value *NewCond = PBI->getCondition();
1474
1475      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1476        CmpInst *CI = cast<CmpInst>(NewCond);
1477        CI->setPredicate(CI->getInversePredicate());
1478      } else {
1479        NewCond = BinaryOperator::CreateNot(NewCond,
1480                                  PBI->getCondition()->getName()+".not", PBI);
1481      }
1482
1483      PBI->setCondition(NewCond);
1484      BasicBlock *OldTrue = PBI->getSuccessor(0);
1485      BasicBlock *OldFalse = PBI->getSuccessor(1);
1486      PBI->setSuccessor(0, OldFalse);
1487      PBI->setSuccessor(1, OldTrue);
1488    }
1489
1490    // If we have a bonus inst, clone it into the predecessor block.
1491    Instruction *NewBonus = 0;
1492    if (BonusInst) {
1493      NewBonus = BonusInst->clone();
1494      PredBlock->getInstList().insert(PBI, NewBonus);
1495      NewBonus->takeName(BonusInst);
1496      BonusInst->setName(BonusInst->getName()+".old");
1497    }
1498
1499    // Clone Cond into the predecessor basic block, and or/and the
1500    // two conditions together.
1501    Instruction *New = Cond->clone();
1502    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1503    PredBlock->getInstList().insert(PBI, New);
1504    New->takeName(Cond);
1505    Cond->setName(New->getName()+".old");
1506
1507    Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1508                                            New, "or.cond", PBI);
1509    PBI->setCondition(NewCond);
1510    if (PBI->getSuccessor(0) == BB) {
1511      AddPredecessorToBlock(TrueDest, PredBlock, BB);
1512      PBI->setSuccessor(0, TrueDest);
1513    }
1514    if (PBI->getSuccessor(1) == BB) {
1515      AddPredecessorToBlock(FalseDest, PredBlock, BB);
1516      PBI->setSuccessor(1, FalseDest);
1517    }
1518    return SimplifyCFG(PBI->getParent()) | true;
1519  }
1520  return false;
1521}
1522
1523/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1524/// predecessor of another block, this function tries to simplify it.  We know
1525/// that PBI and BI are both conditional branches, and BI is in one of the
1526/// successor blocks of PBI - PBI branches to BI.
1527static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1528  assert(PBI->isConditional() && BI->isConditional());
1529  BasicBlock *BB = BI->getParent();
1530
1531  // If this block ends with a branch instruction, and if there is a
1532  // predecessor that ends on a branch of the same condition, make
1533  // this conditional branch redundant.
1534  if (PBI->getCondition() == BI->getCondition() &&
1535      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1536    // Okay, the outcome of this conditional branch is statically
1537    // knowable.  If this block had a single pred, handle specially.
1538    if (BB->getSinglePredecessor()) {
1539      // Turn this into a branch on constant.
1540      bool CondIsTrue = PBI->getSuccessor(0) == BB;
1541      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1542                                        CondIsTrue));
1543      return true;  // Nuke the branch on constant.
1544    }
1545
1546    // Otherwise, if there are multiple predecessors, insert a PHI that merges
1547    // in the constant and simplify the block result.  Subsequent passes of
1548    // simplifycfg will thread the block.
1549    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1550      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1551                                       BI->getCondition()->getName() + ".pr",
1552                                       BB->begin());
1553      // Okay, we're going to insert the PHI node.  Since PBI is not the only
1554      // predecessor, compute the PHI'd conditional value for all of the preds.
1555      // Any predecessor where the condition is not computable we keep symbolic.
1556      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1557        BasicBlock *P = *PI;
1558        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1559            PBI != BI && PBI->isConditional() &&
1560            PBI->getCondition() == BI->getCondition() &&
1561            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1562          bool CondIsTrue = PBI->getSuccessor(0) == BB;
1563          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1564                                              CondIsTrue), P);
1565        } else {
1566          NewPN->addIncoming(BI->getCondition(), P);
1567        }
1568      }
1569
1570      BI->setCondition(NewPN);
1571      return true;
1572    }
1573  }
1574
1575  // If this is a conditional branch in an empty block, and if any
1576  // predecessors is a conditional branch to one of our destinations,
1577  // fold the conditions into logical ops and one cond br.
1578  BasicBlock::iterator BBI = BB->begin();
1579  // Ignore dbg intrinsics.
1580  while (isa<DbgInfoIntrinsic>(BBI))
1581    ++BBI;
1582  if (&*BBI != BI)
1583    return false;
1584
1585
1586  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1587    if (CE->canTrap())
1588      return false;
1589
1590  int PBIOp, BIOp;
1591  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1592    PBIOp = BIOp = 0;
1593  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1594    PBIOp = 0, BIOp = 1;
1595  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1596    PBIOp = 1, BIOp = 0;
1597  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1598    PBIOp = BIOp = 1;
1599  else
1600    return false;
1601
1602  // Check to make sure that the other destination of this branch
1603  // isn't BB itself.  If so, this is an infinite loop that will
1604  // keep getting unwound.
1605  if (PBI->getSuccessor(PBIOp) == BB)
1606    return false;
1607
1608  // Do not perform this transformation if it would require
1609  // insertion of a large number of select instructions. For targets
1610  // without predication/cmovs, this is a big pessimization.
1611  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1612
1613  unsigned NumPhis = 0;
1614  for (BasicBlock::iterator II = CommonDest->begin();
1615       isa<PHINode>(II); ++II, ++NumPhis)
1616    if (NumPhis > 2) // Disable this xform.
1617      return false;
1618
1619  // Finally, if everything is ok, fold the branches to logical ops.
1620  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1621
1622  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1623               << "AND: " << *BI->getParent());
1624
1625
1626  // If OtherDest *is* BB, then BB is a basic block with a single conditional
1627  // branch in it, where one edge (OtherDest) goes back to itself but the other
1628  // exits.  We don't *know* that the program avoids the infinite loop
1629  // (even though that seems likely).  If we do this xform naively, we'll end up
1630  // recursively unpeeling the loop.  Since we know that (after the xform is
1631  // done) that the block *is* infinite if reached, we just make it an obviously
1632  // infinite loop with no cond branch.
1633  if (OtherDest == BB) {
1634    // Insert it at the end of the function, because it's either code,
1635    // or it won't matter if it's hot. :)
1636    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1637                                                  "infloop", BB->getParent());
1638    BranchInst::Create(InfLoopBlock, InfLoopBlock);
1639    OtherDest = InfLoopBlock;
1640  }
1641
1642  DEBUG(dbgs() << *PBI->getParent()->getParent());
1643
1644  // BI may have other predecessors.  Because of this, we leave
1645  // it alone, but modify PBI.
1646
1647  // Make sure we get to CommonDest on True&True directions.
1648  Value *PBICond = PBI->getCondition();
1649  if (PBIOp)
1650    PBICond = BinaryOperator::CreateNot(PBICond,
1651                                        PBICond->getName()+".not",
1652                                        PBI);
1653  Value *BICond = BI->getCondition();
1654  if (BIOp)
1655    BICond = BinaryOperator::CreateNot(BICond,
1656                                       BICond->getName()+".not",
1657                                       PBI);
1658  // Merge the conditions.
1659  Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1660
1661  // Modify PBI to branch on the new condition to the new dests.
1662  PBI->setCondition(Cond);
1663  PBI->setSuccessor(0, CommonDest);
1664  PBI->setSuccessor(1, OtherDest);
1665
1666  // OtherDest may have phi nodes.  If so, add an entry from PBI's
1667  // block that are identical to the entries for BI's block.
1668  PHINode *PN;
1669  for (BasicBlock::iterator II = OtherDest->begin();
1670       (PN = dyn_cast<PHINode>(II)); ++II) {
1671    Value *V = PN->getIncomingValueForBlock(BB);
1672    PN->addIncoming(V, PBI->getParent());
1673  }
1674
1675  // We know that the CommonDest already had an edge from PBI to
1676  // it.  If it has PHIs though, the PHIs may have different
1677  // entries for BB and PBI's BB.  If so, insert a select to make
1678  // them agree.
1679  for (BasicBlock::iterator II = CommonDest->begin();
1680       (PN = dyn_cast<PHINode>(II)); ++II) {
1681    Value *BIV = PN->getIncomingValueForBlock(BB);
1682    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1683    Value *PBIV = PN->getIncomingValue(PBBIdx);
1684    if (BIV != PBIV) {
1685      // Insert a select in PBI to pick the right value.
1686      Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1687                                     PBIV->getName()+".mux", PBI);
1688      PN->setIncomingValue(PBBIdx, NV);
1689    }
1690  }
1691
1692  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1693  DEBUG(dbgs() << *PBI->getParent()->getParent());
1694
1695  // This basic block is probably dead.  We know it has at least
1696  // one fewer predecessor.
1697  return true;
1698}
1699
1700// SimplifyIndirectBrOnSelect - Replaces
1701//   (indirectbr (select cond, blockaddress(@fn, BlockA),
1702//                             blockaddress(@fn, BlockB)))
1703// with
1704//   (br cond, BlockA, BlockB).
1705static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1706  // Check that both operands of the select are block addresses.
1707  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1708  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1709  if (!TBA || !FBA)
1710    return false;
1711
1712  // Extract the actual blocks.
1713  BasicBlock *TrueBB = TBA->getBasicBlock();
1714  BasicBlock *FalseBB = FBA->getBasicBlock();
1715
1716  // Remove any superfluous successor edges from the CFG.
1717  // First, figure out which successors to preserve.
1718  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1719  // successor.
1720  BasicBlock *KeepEdge1 = TrueBB;
1721  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1722
1723  // Then remove the rest.
1724  for (unsigned I = 0, E = IBI->getNumSuccessors(); I != E; ++I) {
1725    BasicBlock *Succ = IBI->getSuccessor(I);
1726    // Make sure only to keep exactly one copy of each edge.
1727    if (Succ == KeepEdge1)
1728      KeepEdge1 = 0;
1729    else if (Succ == KeepEdge2)
1730      KeepEdge2 = 0;
1731    else
1732      Succ->removePredecessor(IBI->getParent());
1733  }
1734
1735  // Insert an appropriate new terminator.
1736  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1737    if (TrueBB == FalseBB)
1738      // We were only looking for one successor, and it was present.
1739      // Create an unconditional branch to it.
1740      BranchInst::Create(TrueBB, IBI);
1741    else
1742      // We found both of the successors we were looking for.
1743      // Create a conditional branch sharing the condition of the select.
1744      BranchInst::Create(TrueBB, FalseBB, SI->getCondition(), IBI);
1745  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1746    // Neither of the selected blocks were successors, so this
1747    // indirectbr must be unreachable.
1748    new UnreachableInst(IBI->getContext(), IBI);
1749  } else {
1750    // One of the selected values was a successor, but the other wasn't.
1751    // Insert an unconditional branch to the one that was found;
1752    // the edge to the one that wasn't must be unreachable.
1753    if (KeepEdge1 == 0)
1754      // Only TrueBB was found.
1755      BranchInst::Create(TrueBB, IBI);
1756    else
1757      // Only FalseBB was found.
1758      BranchInst::Create(FalseBB, IBI);
1759  }
1760
1761  EraseTerminatorInstAndDCECond(IBI);
1762  return true;
1763}
1764
1765/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1766/// instruction (a seteq/setne with a constant) as the only instruction in a
1767/// block that ends with an uncond branch.  We are looking for a very specific
1768/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
1769/// this case, we merge the first two "or's of icmp" into a switch, but then the
1770/// default value goes to an uncond block with a seteq in it, we get something
1771/// like:
1772///
1773///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
1774/// DEFAULT:
1775///   %tmp = icmp eq i8 %A, 92
1776///   br label %end
1777/// end:
1778///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1779///
1780/// We prefer to split the edge to 'end' so that there is a true/false entry to
1781/// the PHI, merging the third icmp into the switch.
1782static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI) {
1783  BasicBlock *BB = ICI->getParent();
1784  // If the block has any PHIs in it or the icmp has multiple uses, it is too
1785  // complex.
1786  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
1787
1788  Value *V = ICI->getOperand(0);
1789  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
1790
1791  // The pattern we're looking for is where our only predecessor is a switch on
1792  // 'V' and this block is the default case for the switch.  In this case we can
1793  // fold the compared value into the switch to simplify things.
1794  BasicBlock *Pred = BB->getSinglePredecessor();
1795  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
1796
1797  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
1798  if (SI->getCondition() != V)
1799    return false;
1800
1801  // If BB is reachable on a non-default case, then we simply know the value of
1802  // V in this block.  Substitute it and constant fold the icmp instruction
1803  // away.
1804  if (SI->getDefaultDest() != BB) {
1805    ConstantInt *VVal = SI->findCaseDest(BB);
1806    assert(VVal && "Should have a unique destination value");
1807    ICI->setOperand(0, VVal);
1808
1809    if (Constant *C = ConstantFoldInstruction(ICI)) {
1810      ICI->replaceAllUsesWith(C);
1811      ICI->eraseFromParent();
1812    }
1813    // BB is now empty, so it is likely to simplify away.
1814    return SimplifyCFG(BB) | true;
1815  }
1816
1817  // Ok, the block is reachable from the default dest.  If the constant we're
1818  // comparing exists in one of the other edges, then we can constant fold ICI
1819  // and zap it.
1820  if (SI->findCaseValue(Cst) != 0) {
1821    Value *V;
1822    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1823      V = ConstantInt::getFalse(BB->getContext());
1824    else
1825      V = ConstantInt::getTrue(BB->getContext());
1826
1827    ICI->replaceAllUsesWith(V);
1828    ICI->eraseFromParent();
1829    // BB is now empty, so it is likely to simplify away.
1830    return SimplifyCFG(BB) | true;
1831  }
1832
1833  // The use of the icmp has to be in the 'end' block, by the only PHI node in
1834  // the block.
1835  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
1836  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
1837  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
1838      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
1839    return false;
1840
1841  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
1842  // true in the PHI.
1843  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
1844  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
1845
1846  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1847    std::swap(DefaultCst, NewCst);
1848
1849  // Replace ICI (which is used by the PHI for the default value) with true or
1850  // false depending on if it is EQ or NE.
1851  ICI->replaceAllUsesWith(DefaultCst);
1852  ICI->eraseFromParent();
1853
1854  // Okay, the switch goes to this block on a default value.  Add an edge from
1855  // the switch to the merge point on the compared value.
1856  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
1857                                         BB->getParent(), BB);
1858  SI->addCase(Cst, NewBB);
1859
1860  // NewBB branches to the phi block, add the uncond branch and the phi entry.
1861  BranchInst::Create(SuccBlock, NewBB);
1862  PHIUse->addIncoming(NewCst, NewBB);
1863  return true;
1864}
1865
1866/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
1867/// Check to see if it is branching on an or/and chain of icmp instructions, and
1868/// fold it into a switch instruction if so.
1869static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD) {
1870  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1871  if (Cond == 0) return false;
1872
1873
1874  // Change br (X == 0 | X == 1), T, F into a switch instruction.
1875  // If this is a bunch of seteq's or'd together, or if it's a bunch of
1876  // 'setne's and'ed together, collect them.
1877  Value *CompVal = 0;
1878  std::vector<ConstantInt*> Values;
1879  bool TrueWhenEqual = true;
1880  Value *ExtraCase = 0;
1881
1882  if (Cond->getOpcode() == Instruction::Or) {
1883    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true);
1884  } else if (Cond->getOpcode() == Instruction::And) {
1885    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false);
1886    TrueWhenEqual = false;
1887  }
1888
1889  // If we didn't have a multiply compared value, fail.
1890  if (CompVal == 0) return false;
1891
1892  // There might be duplicate constants in the list, which the switch
1893  // instruction can't handle, remove them now.
1894  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
1895  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1896
1897  // If Extra was used, we require at least two switch values to do the
1898  // transformation.  A switch with one value is just an cond branch.
1899  if (ExtraCase && Values.size() < 2) return false;
1900
1901  // Figure out which block is which destination.
1902  BasicBlock *DefaultBB = BI->getSuccessor(1);
1903  BasicBlock *EdgeBB    = BI->getSuccessor(0);
1904  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1905
1906  BasicBlock *BB = BI->getParent();
1907
1908  // If there are any extra values that couldn't be folded into the switch
1909  // then we evaluate them with an explicit branch first.  Split the block
1910  // right before the condbr to handle it.
1911  if (ExtraCase) {
1912    return false;
1913
1914    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
1915    // Remove the uncond branch added to the old block.
1916    TerminatorInst *OldTI = BB->getTerminator();
1917
1918    BranchInst::Create(EdgeBB, NewBB, ExtraCase, OldTI);
1919    OldTI->eraseFromParent();
1920
1921    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
1922    // for the edge we just added.
1923    for (BasicBlock::iterator I = EdgeBB->begin(); isa<PHINode>(I); ++I) {
1924      PHINode *PN = cast<PHINode>(I);
1925      PN->addIncoming(PN->getIncomingValueForBlock(NewBB), BB);
1926    }
1927    BB = NewBB;
1928  }
1929
1930  // Convert pointer to int before we switch.
1931  if (CompVal->getType()->isPointerTy()) {
1932    assert(TD && "Cannot switch on pointer without TargetData");
1933    CompVal = new PtrToIntInst(CompVal,
1934                               TD->getIntPtrType(CompVal->getContext()),
1935                               "magicptr", BI);
1936  }
1937
1938  // Create the new switch instruction now.
1939  SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB, Values.size(), BI);
1940
1941  // Add all of the 'cases' to the switch instruction.
1942  for (unsigned i = 0, e = Values.size(); i != e; ++i)
1943    New->addCase(Values[i], EdgeBB);
1944
1945  // We added edges from PI to the EdgeBB.  As such, if there were any
1946  // PHI nodes in EdgeBB, they need entries to be added corresponding to
1947  // the number of edges added.
1948  for (BasicBlock::iterator BBI = EdgeBB->begin();
1949       isa<PHINode>(BBI); ++BBI) {
1950    PHINode *PN = cast<PHINode>(BBI);
1951    Value *InVal = PN->getIncomingValueForBlock(BB);
1952    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1953      PN->addIncoming(InVal, BB);
1954  }
1955
1956  // Erase the old branch instruction.
1957  EraseTerminatorInstAndDCECond(BI);
1958  return true;
1959}
1960
1961bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI) {
1962  BasicBlock *BB = RI->getParent();
1963  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
1964
1965  // Find predecessors that end with branches.
1966  SmallVector<BasicBlock*, 8> UncondBranchPreds;
1967  SmallVector<BranchInst*, 8> CondBranchPreds;
1968  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1969    BasicBlock *P = *PI;
1970    TerminatorInst *PTI = P->getTerminator();
1971    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
1972      if (BI->isUnconditional())
1973        UncondBranchPreds.push_back(P);
1974      else
1975        CondBranchPreds.push_back(BI);
1976    }
1977  }
1978
1979  // If we found some, do the transformation!
1980  if (!UncondBranchPreds.empty()) {
1981    while (!UncondBranchPreds.empty()) {
1982      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
1983      DEBUG(dbgs() << "FOLDING: " << *BB
1984            << "INTO UNCOND BRANCH PRED: " << *Pred);
1985      Instruction *UncondBranch = Pred->getTerminator();
1986      // Clone the return and add it to the end of the predecessor.
1987      Instruction *NewRet = RI->clone();
1988      Pred->getInstList().push_back(NewRet);
1989
1990      // If the return instruction returns a value, and if the value was a
1991      // PHI node in "BB", propagate the right value into the return.
1992      for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1993           i != e; ++i)
1994        if (PHINode *PN = dyn_cast<PHINode>(*i))
1995          if (PN->getParent() == BB)
1996            *i = PN->getIncomingValueForBlock(Pred);
1997
1998      // Update any PHI nodes in the returning block to realize that we no
1999      // longer branch to them.
2000      BB->removePredecessor(Pred);
2001      Pred->getInstList().erase(UncondBranch);
2002    }
2003
2004    // If we eliminated all predecessors of the block, delete the block now.
2005    if (pred_begin(BB) == pred_end(BB))
2006      // We know there are no successors, so just nuke the block.
2007      BB->eraseFromParent();
2008
2009    return true;
2010  }
2011
2012  // Check out all of the conditional branches going to this return
2013  // instruction.  If any of them just select between returns, change the
2014  // branch itself into a select/return pair.
2015  while (!CondBranchPreds.empty()) {
2016    BranchInst *BI = CondBranchPreds.pop_back_val();
2017
2018    // Check to see if the non-BB successor is also a return block.
2019    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2020        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2021        SimplifyCondBranchToTwoReturns(BI))
2022      return true;
2023  }
2024  return false;
2025}
2026
2027bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI) {
2028  // Check to see if the first instruction in this block is just an unwind.
2029  // If so, replace any invoke instructions which use this as an exception
2030  // destination with call instructions.
2031  BasicBlock *BB = UI->getParent();
2032  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2033
2034  bool Changed = false;
2035  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2036  while (!Preds.empty()) {
2037    BasicBlock *Pred = Preds.back();
2038    InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2039    if (II && II->getUnwindDest() == BB) {
2040      // Insert a new branch instruction before the invoke, because this
2041      // is now a fall through.
2042      BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2043      Pred->getInstList().remove(II);   // Take out of symbol table
2044
2045      // Insert the call now.
2046      SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2047      CallInst *CI = CallInst::Create(II->getCalledValue(),
2048                                      Args.begin(), Args.end(),
2049                                      II->getName(), BI);
2050      CI->setCallingConv(II->getCallingConv());
2051      CI->setAttributes(II->getAttributes());
2052      // If the invoke produced a value, the Call now does instead.
2053      II->replaceAllUsesWith(CI);
2054      delete II;
2055      Changed = true;
2056    }
2057
2058    Preds.pop_back();
2059  }
2060
2061  // If this block is now dead (and isn't the entry block), remove it.
2062  if (pred_begin(BB) == pred_end(BB) &&
2063      BB != &BB->getParent()->getEntryBlock()) {
2064    // We know there are no successors, so just nuke the block.
2065    BB->eraseFromParent();
2066    return true;
2067  }
2068
2069  return Changed;
2070}
2071
2072bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2073  BasicBlock *BB = UI->getParent();
2074
2075  bool Changed = false;
2076
2077  // If there are any instructions immediately before the unreachable that can
2078  // be removed, do so.
2079  while (UI != BB->begin()) {
2080    BasicBlock::iterator BBI = UI;
2081    --BBI;
2082    // Do not delete instructions that can have side effects, like calls
2083    // (which may never return) and volatile loads and stores.
2084    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2085
2086    if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
2087      if (SI->isVolatile())
2088        break;
2089
2090    if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
2091      if (LI->isVolatile())
2092        break;
2093
2094    // Delete this instruction
2095    BB->getInstList().erase(BBI);
2096    Changed = true;
2097  }
2098
2099  // If the unreachable instruction is the first in the block, take a gander
2100  // at all of the predecessors of this instruction, and simplify them.
2101  if (&BB->front() != UI) return Changed;
2102
2103  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2104  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2105    TerminatorInst *TI = Preds[i]->getTerminator();
2106
2107    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2108      if (BI->isUnconditional()) {
2109        if (BI->getSuccessor(0) == BB) {
2110          new UnreachableInst(TI->getContext(), TI);
2111          TI->eraseFromParent();
2112          Changed = true;
2113        }
2114      } else {
2115        if (BI->getSuccessor(0) == BB) {
2116          BranchInst::Create(BI->getSuccessor(1), BI);
2117          EraseTerminatorInstAndDCECond(BI);
2118        } else if (BI->getSuccessor(1) == BB) {
2119          BranchInst::Create(BI->getSuccessor(0), BI);
2120          EraseTerminatorInstAndDCECond(BI);
2121          Changed = true;
2122        }
2123      }
2124    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2125      for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2126        if (SI->getSuccessor(i) == BB) {
2127          BB->removePredecessor(SI->getParent());
2128          SI->removeCase(i);
2129          --i; --e;
2130          Changed = true;
2131        }
2132      // If the default value is unreachable, figure out the most popular
2133      // destination and make it the default.
2134      if (SI->getSuccessor(0) == BB) {
2135        std::map<BasicBlock*, unsigned> Popularity;
2136        for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2137          Popularity[SI->getSuccessor(i)]++;
2138
2139        // Find the most popular block.
2140        unsigned MaxPop = 0;
2141        BasicBlock *MaxBlock = 0;
2142        for (std::map<BasicBlock*, unsigned>::iterator
2143             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2144          if (I->second > MaxPop) {
2145            MaxPop = I->second;
2146            MaxBlock = I->first;
2147          }
2148        }
2149        if (MaxBlock) {
2150          // Make this the new default, allowing us to delete any explicit
2151          // edges to it.
2152          SI->setSuccessor(0, MaxBlock);
2153          Changed = true;
2154
2155          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2156          // it.
2157          if (isa<PHINode>(MaxBlock->begin()))
2158            for (unsigned i = 0; i != MaxPop-1; ++i)
2159              MaxBlock->removePredecessor(SI->getParent());
2160
2161          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2162            if (SI->getSuccessor(i) == MaxBlock) {
2163              SI->removeCase(i);
2164              --i; --e;
2165            }
2166        }
2167      }
2168    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2169      if (II->getUnwindDest() == BB) {
2170        // Convert the invoke to a call instruction.  This would be a good
2171        // place to note that the call does not throw though.
2172        BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2173        II->removeFromParent();   // Take out of symbol table
2174
2175        // Insert the call now...
2176        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2177        CallInst *CI = CallInst::Create(II->getCalledValue(),
2178                                        Args.begin(), Args.end(),
2179                                        II->getName(), BI);
2180        CI->setCallingConv(II->getCallingConv());
2181        CI->setAttributes(II->getAttributes());
2182        // If the invoke produced a value, the call does now instead.
2183        II->replaceAllUsesWith(CI);
2184        delete II;
2185        Changed = true;
2186      }
2187    }
2188  }
2189
2190  // If this block is now dead, remove it.
2191  if (pred_begin(BB) == pred_end(BB) &&
2192      BB != &BB->getParent()->getEntryBlock()) {
2193    // We know there are no successors, so just nuke the block.
2194    BB->eraseFromParent();
2195    return true;
2196  }
2197
2198  return Changed;
2199}
2200
2201
2202bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI) {
2203  // If this switch is too complex to want to look at, ignore it.
2204  if (!isValueEqualityComparison(SI))
2205    return false;
2206
2207  BasicBlock *BB = SI->getParent();
2208
2209  // If we only have one predecessor, and if it is a branch on this value,
2210  // see if that predecessor totally determines the outcome of this switch.
2211  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2212    if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
2213      return SimplifyCFG(BB) | true;
2214
2215  // If the block only contains the switch, see if we can fold the block
2216  // away into any preds.
2217  BasicBlock::iterator BBI = BB->begin();
2218  // Ignore dbg intrinsics.
2219  while (isa<DbgInfoIntrinsic>(BBI))
2220    ++BBI;
2221  if (SI == &*BBI)
2222    if (FoldValueComparisonIntoPredecessors(SI))
2223      return SimplifyCFG(BB) | true;
2224
2225  return false;
2226}
2227
2228bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2229  BasicBlock *BB = IBI->getParent();
2230  bool Changed = false;
2231
2232  // Eliminate redundant destinations.
2233  SmallPtrSet<Value *, 8> Succs;
2234  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2235    BasicBlock *Dest = IBI->getDestination(i);
2236    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2237      Dest->removePredecessor(BB);
2238      IBI->removeDestination(i);
2239      --i; --e;
2240      Changed = true;
2241    }
2242  }
2243
2244  if (IBI->getNumDestinations() == 0) {
2245    // If the indirectbr has no successors, change it to unreachable.
2246    new UnreachableInst(IBI->getContext(), IBI);
2247    EraseTerminatorInstAndDCECond(IBI);
2248    return true;
2249  }
2250
2251  if (IBI->getNumDestinations() == 1) {
2252    // If the indirectbr has one successor, change it to a direct branch.
2253    BranchInst::Create(IBI->getDestination(0), IBI);
2254    EraseTerminatorInstAndDCECond(IBI);
2255    return true;
2256  }
2257
2258  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2259    if (SimplifyIndirectBrOnSelect(IBI, SI))
2260      return SimplifyCFG(BB) | true;
2261  }
2262  return Changed;
2263}
2264
2265bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI) {
2266  BasicBlock *BB = BI->getParent();
2267
2268  // If the Terminator is the only non-phi instruction, simplify the block.
2269  BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
2270  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2271      TryToSimplifyUncondBranchFromEmptyBlock(BB))
2272    return true;
2273
2274  // If the only instruction in the block is a seteq/setne comparison
2275  // against a constant, try to simplify the block.
2276  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2277    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2278      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2279        ;
2280      if (I->isTerminator() && TryToSimplifyUncondBranchWithICmpInIt(ICI))
2281        return true;
2282    }
2283
2284  return false;
2285}
2286
2287
2288bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI) {
2289  BasicBlock *BB = BI->getParent();
2290
2291  // Conditional branch
2292  if (isValueEqualityComparison(BI)) {
2293    // If we only have one predecessor, and if it is a branch on this value,
2294    // see if that predecessor totally determines the outcome of this
2295    // switch.
2296    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2297      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
2298        return SimplifyCFG(BB) | true;
2299
2300    // This block must be empty, except for the setcond inst, if it exists.
2301    // Ignore dbg intrinsics.
2302    BasicBlock::iterator I = BB->begin();
2303    // Ignore dbg intrinsics.
2304    while (isa<DbgInfoIntrinsic>(I))
2305      ++I;
2306    if (&*I == BI) {
2307      if (FoldValueComparisonIntoPredecessors(BI))
2308        return SimplifyCFG(BB) | true;
2309    } else if (&*I == cast<Instruction>(BI->getCondition())){
2310      ++I;
2311      // Ignore dbg intrinsics.
2312      while (isa<DbgInfoIntrinsic>(I))
2313        ++I;
2314      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI))
2315        return SimplifyCFG(BB) | true;
2316    }
2317  }
2318
2319  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2320  if (SimplifyBranchOnICmpChain(BI, TD))
2321    return true;
2322
2323  // We have a conditional branch to two blocks that are only reachable
2324  // from BI.  We know that the condbr dominates the two blocks, so see if
2325  // there is any identical code in the "then" and "else" blocks.  If so, we
2326  // can hoist it up to the branching block.
2327  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2328    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2329      if (HoistThenElseCodeToIf(BI))
2330        return SimplifyCFG(BB) | true;
2331    } else {
2332      // If Successor #1 has multiple preds, we may be able to conditionally
2333      // execute Successor #0 if it branches to successor #1.
2334      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2335      if (Succ0TI->getNumSuccessors() == 1 &&
2336          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2337        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2338          return SimplifyCFG(BB) | true;
2339    }
2340  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2341    // If Successor #0 has multiple preds, we may be able to conditionally
2342    // execute Successor #1 if it branches to successor #0.
2343    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2344    if (Succ1TI->getNumSuccessors() == 1 &&
2345        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2346      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2347        return SimplifyCFG(BB) | true;
2348  }
2349
2350  // If this is a branch on a phi node in the current block, thread control
2351  // through this block if any PHI node entries are constants.
2352  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2353    if (PN->getParent() == BI->getParent())
2354      if (FoldCondBranchOnPHI(BI))
2355        return SimplifyCFG(BB) | true;
2356
2357  // If this basic block is ONLY a setcc and a branch, and if a predecessor
2358  // branches to us and one of our successors, fold the setcc into the
2359  // predecessor and use logical operations to pick the right destination.
2360  if (FoldBranchToCommonDest(BI))
2361    return SimplifyCFG(BB) | true;
2362
2363  // Scan predecessor blocks for conditional branches.
2364  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2365    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2366      if (PBI != BI && PBI->isConditional())
2367        if (SimplifyCondBranchToCondBranch(PBI, BI))
2368          return SimplifyCFG(BB) | true;
2369
2370  return false;
2371}
2372
2373bool SimplifyCFGOpt::run(BasicBlock *BB) {
2374  bool Changed = false;
2375  Function *Fn = BB->getParent();
2376
2377  assert(BB && Fn && "Block not embedded in function!");
2378  assert(BB->getTerminator() && "Degenerate basic block encountered!");
2379
2380  // Remove basic blocks that have no predecessors (except the entry block)...
2381  // or that just have themself as a predecessor.  These are unreachable.
2382  if ((pred_begin(BB) == pred_end(BB) && BB != &Fn->getEntryBlock()) ||
2383      BB->getSinglePredecessor() == BB) {
2384    DEBUG(dbgs() << "Removing BB: \n" << *BB);
2385    DeleteDeadBlock(BB);
2386    return true;
2387  }
2388
2389  // Check to see if we can constant propagate this terminator instruction
2390  // away...
2391  Changed |= ConstantFoldTerminator(BB);
2392
2393  // Check for and eliminate duplicate PHI nodes in this block.
2394  Changed |= EliminateDuplicatePHINodes(BB);
2395
2396  // Merge basic blocks into their predecessor if there is only one distinct
2397  // pred, and if there is only one distinct successor of the predecessor, and
2398  // if there are no PHI nodes.
2399  //
2400  if (MergeBlockIntoPredecessor(BB))
2401    return true;
2402
2403  // If there is a trivial two-entry PHI node in this basic block, and we can
2404  // eliminate it, do so now.
2405  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2406    if (PN->getNumIncomingValues() == 2)
2407      Changed |= FoldTwoEntryPHINode(PN);
2408
2409  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2410    if (BI->isUnconditional()) {
2411      if (SimplifyUncondBranch(BI)) return true;
2412    } else {
2413      if (SimplifyCondBranch(BI))
2414        return true;
2415    }
2416  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
2417    if (SimplifyReturn(RI)) return true;
2418  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2419    if (SimplifySwitch(SI)) return true;
2420  } else if (UnreachableInst *UI =
2421               dyn_cast<UnreachableInst>(BB->getTerminator())) {
2422    if (SimplifyUnreachable(UI)) return true;
2423  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
2424    if (SimplifyUnwind(UI)) return true;
2425  } else if (IndirectBrInst *IBI =
2426               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2427    if (SimplifyIndirectBr(IBI)) return true;
2428  }
2429
2430  return Changed;
2431}
2432
2433/// SimplifyCFG - This function is used to do simplification of a CFG.  For
2434/// example, it adjusts branches to branches to eliminate the extra hop, it
2435/// eliminates unreachable basic blocks, and does other "peephole" optimization
2436/// of the CFG.  It returns true if a modification was made.
2437///
2438bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2439  return SimplifyCFGOpt(TD).run(BB);
2440}
2441