SimplifyCFG.cpp revision 3931bdb788774e33dd623d6b9142ae69542c33aa
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/MDBuilder.h"
34#include "llvm/IR/Metadata.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/IR/Type.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/ConstantRange.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/NoFolder.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include <algorithm>
46#include <map>
47#include <set>
48using namespace llvm;
49
50static cl::opt<unsigned>
51PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
52   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
53
54static cl::opt<bool>
55DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
56       cl::desc("Duplicate return instructions into unconditional branches"));
57
58static cl::opt<bool>
59SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
60       cl::desc("Sink common instructions down to the end block"));
61
62static cl::opt<bool>
63HoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
64       cl::desc("Hoist conditional stores if an unconditional store preceeds"));
65
66STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
67STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
68STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
69STATISTIC(NumSpeculations, "Number of speculative executed instructions");
70
71namespace {
72  /// ValueEqualityComparisonCase - Represents a case of a switch.
73  struct ValueEqualityComparisonCase {
74    ConstantInt *Value;
75    BasicBlock *Dest;
76
77    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
78      : Value(Value), Dest(Dest) {}
79
80    bool operator<(ValueEqualityComparisonCase RHS) const {
81      // Comparing pointers is ok as we only rely on the order for uniquing.
82      return Value < RHS.Value;
83    }
84
85    bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
86  };
87
88class SimplifyCFGOpt {
89  const TargetTransformInfo &TTI;
90  const DataLayout *const TD;
91
92  Value *isValueEqualityComparison(TerminatorInst *TI);
93  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
94                               std::vector<ValueEqualityComparisonCase> &Cases);
95  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
96                                                     BasicBlock *Pred,
97                                                     IRBuilder<> &Builder);
98  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
99                                           IRBuilder<> &Builder);
100
101  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
102  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
103  bool SimplifyUnreachable(UnreachableInst *UI);
104  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
105  bool SimplifyIndirectBr(IndirectBrInst *IBI);
106  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
107  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
108
109public:
110  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
111      : TTI(TTI), TD(TD) {}
112  bool run(BasicBlock *BB);
113};
114}
115
116/// SafeToMergeTerminators - Return true if it is safe to merge these two
117/// terminator instructions together.
118///
119static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
120  if (SI1 == SI2) return false;  // Can't merge with self!
121
122  // It is not safe to merge these two switch instructions if they have a common
123  // successor, and if that successor has a PHI node, and if *that* PHI node has
124  // conflicting incoming values from the two switch blocks.
125  BasicBlock *SI1BB = SI1->getParent();
126  BasicBlock *SI2BB = SI2->getParent();
127  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
128
129  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
130    if (SI1Succs.count(*I))
131      for (BasicBlock::iterator BBI = (*I)->begin();
132           isa<PHINode>(BBI); ++BBI) {
133        PHINode *PN = cast<PHINode>(BBI);
134        if (PN->getIncomingValueForBlock(SI1BB) !=
135            PN->getIncomingValueForBlock(SI2BB))
136          return false;
137      }
138
139  return true;
140}
141
142/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
143/// to merge these two terminator instructions together, where SI1 is an
144/// unconditional branch. PhiNodes will store all PHI nodes in common
145/// successors.
146///
147static bool isProfitableToFoldUnconditional(BranchInst *SI1,
148                                          BranchInst *SI2,
149                                          Instruction *Cond,
150                                          SmallVectorImpl<PHINode*> &PhiNodes) {
151  if (SI1 == SI2) return false;  // Can't merge with self!
152  assert(SI1->isUnconditional() && SI2->isConditional());
153
154  // We fold the unconditional branch if we can easily update all PHI nodes in
155  // common successors:
156  // 1> We have a constant incoming value for the conditional branch;
157  // 2> We have "Cond" as the incoming value for the unconditional branch;
158  // 3> SI2->getCondition() and Cond have same operands.
159  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
160  if (!Ci2) return false;
161  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
162        Cond->getOperand(1) == Ci2->getOperand(1)) &&
163      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
164        Cond->getOperand(1) == Ci2->getOperand(0)))
165    return false;
166
167  BasicBlock *SI1BB = SI1->getParent();
168  BasicBlock *SI2BB = SI2->getParent();
169  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
170  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
171    if (SI1Succs.count(*I))
172      for (BasicBlock::iterator BBI = (*I)->begin();
173           isa<PHINode>(BBI); ++BBI) {
174        PHINode *PN = cast<PHINode>(BBI);
175        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
176            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
177          return false;
178        PhiNodes.push_back(PN);
179      }
180  return true;
181}
182
183/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
184/// now be entries in it from the 'NewPred' block.  The values that will be
185/// flowing into the PHI nodes will be the same as those coming in from
186/// ExistPred, an existing predecessor of Succ.
187static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
188                                  BasicBlock *ExistPred) {
189  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
190
191  PHINode *PN;
192  for (BasicBlock::iterator I = Succ->begin();
193       (PN = dyn_cast<PHINode>(I)); ++I)
194    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
195}
196
197
198/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
199/// least one PHI node in it), check to see if the merge at this block is due
200/// to an "if condition".  If so, return the boolean condition that determines
201/// which entry into BB will be taken.  Also, return by references the block
202/// that will be entered from if the condition is true, and the block that will
203/// be entered if the condition is false.
204///
205/// This does no checking to see if the true/false blocks have large or unsavory
206/// instructions in them.
207static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
208                             BasicBlock *&IfFalse) {
209  PHINode *SomePHI = cast<PHINode>(BB->begin());
210  assert(SomePHI->getNumIncomingValues() == 2 &&
211         "Function can only handle blocks with 2 predecessors!");
212  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
213  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
214
215  // We can only handle branches.  Other control flow will be lowered to
216  // branches if possible anyway.
217  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
218  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
219  if (Pred1Br == 0 || Pred2Br == 0)
220    return 0;
221
222  // Eliminate code duplication by ensuring that Pred1Br is conditional if
223  // either are.
224  if (Pred2Br->isConditional()) {
225    // If both branches are conditional, we don't have an "if statement".  In
226    // reality, we could transform this case, but since the condition will be
227    // required anyway, we stand no chance of eliminating it, so the xform is
228    // probably not profitable.
229    if (Pred1Br->isConditional())
230      return 0;
231
232    std::swap(Pred1, Pred2);
233    std::swap(Pred1Br, Pred2Br);
234  }
235
236  if (Pred1Br->isConditional()) {
237    // The only thing we have to watch out for here is to make sure that Pred2
238    // doesn't have incoming edges from other blocks.  If it does, the condition
239    // doesn't dominate BB.
240    if (Pred2->getSinglePredecessor() == 0)
241      return 0;
242
243    // If we found a conditional branch predecessor, make sure that it branches
244    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
245    if (Pred1Br->getSuccessor(0) == BB &&
246        Pred1Br->getSuccessor(1) == Pred2) {
247      IfTrue = Pred1;
248      IfFalse = Pred2;
249    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
250               Pred1Br->getSuccessor(1) == BB) {
251      IfTrue = Pred2;
252      IfFalse = Pred1;
253    } else {
254      // We know that one arm of the conditional goes to BB, so the other must
255      // go somewhere unrelated, and this must not be an "if statement".
256      return 0;
257    }
258
259    return Pred1Br->getCondition();
260  }
261
262  // Ok, if we got here, both predecessors end with an unconditional branch to
263  // BB.  Don't panic!  If both blocks only have a single (identical)
264  // predecessor, and THAT is a conditional branch, then we're all ok!
265  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
266  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
267    return 0;
268
269  // Otherwise, if this is a conditional branch, then we can use it!
270  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
271  if (BI == 0) return 0;
272
273  assert(BI->isConditional() && "Two successors but not conditional?");
274  if (BI->getSuccessor(0) == Pred1) {
275    IfTrue = Pred1;
276    IfFalse = Pred2;
277  } else {
278    IfTrue = Pred2;
279    IfFalse = Pred1;
280  }
281  return BI->getCondition();
282}
283
284/// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
285/// given instruction, which is assumed to be safe to speculate. 1 means
286/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
287static unsigned ComputeSpeculationCost(const User *I) {
288  assert(isSafeToSpeculativelyExecute(I) &&
289         "Instruction is not safe to speculatively execute!");
290  switch (Operator::getOpcode(I)) {
291  default:
292    // In doubt, be conservative.
293    return UINT_MAX;
294  case Instruction::GetElementPtr:
295    // GEPs are cheap if all indices are constant.
296    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
297      return UINT_MAX;
298    return 1;
299  case Instruction::Load:
300  case Instruction::Add:
301  case Instruction::Sub:
302  case Instruction::And:
303  case Instruction::Or:
304  case Instruction::Xor:
305  case Instruction::Shl:
306  case Instruction::LShr:
307  case Instruction::AShr:
308  case Instruction::ICmp:
309  case Instruction::Trunc:
310  case Instruction::ZExt:
311  case Instruction::SExt:
312    return 1; // These are all cheap.
313
314  case Instruction::Call:
315  case Instruction::Select:
316    return 2;
317  }
318}
319
320/// DominatesMergePoint - If we have a merge point of an "if condition" as
321/// accepted above, return true if the specified value dominates the block.  We
322/// don't handle the true generality of domination here, just a special case
323/// which works well enough for us.
324///
325/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
326/// see if V (which must be an instruction) and its recursive operands
327/// that do not dominate BB have a combined cost lower than CostRemaining and
328/// are non-trapping.  If both are true, the instruction is inserted into the
329/// set and true is returned.
330///
331/// The cost for most non-trapping instructions is defined as 1 except for
332/// Select whose cost is 2.
333///
334/// After this function returns, CostRemaining is decreased by the cost of
335/// V plus its non-dominating operands.  If that cost is greater than
336/// CostRemaining, false is returned and CostRemaining is undefined.
337static bool DominatesMergePoint(Value *V, BasicBlock *BB,
338                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
339                                unsigned &CostRemaining) {
340  Instruction *I = dyn_cast<Instruction>(V);
341  if (!I) {
342    // Non-instructions all dominate instructions, but not all constantexprs
343    // can be executed unconditionally.
344    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
345      if (C->canTrap())
346        return false;
347    return true;
348  }
349  BasicBlock *PBB = I->getParent();
350
351  // We don't want to allow weird loops that might have the "if condition" in
352  // the bottom of this block.
353  if (PBB == BB) return false;
354
355  // If this instruction is defined in a block that contains an unconditional
356  // branch to BB, then it must be in the 'conditional' part of the "if
357  // statement".  If not, it definitely dominates the region.
358  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
359  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
360    return true;
361
362  // If we aren't allowing aggressive promotion anymore, then don't consider
363  // instructions in the 'if region'.
364  if (AggressiveInsts == 0) return false;
365
366  // If we have seen this instruction before, don't count it again.
367  if (AggressiveInsts->count(I)) return true;
368
369  // Okay, it looks like the instruction IS in the "condition".  Check to
370  // see if it's a cheap instruction to unconditionally compute, and if it
371  // only uses stuff defined outside of the condition.  If so, hoist it out.
372  if (!isSafeToSpeculativelyExecute(I))
373    return false;
374
375  unsigned Cost = ComputeSpeculationCost(I);
376
377  if (Cost > CostRemaining)
378    return false;
379
380  CostRemaining -= Cost;
381
382  // Okay, we can only really hoist these out if their operands do
383  // not take us over the cost threshold.
384  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
385    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
386      return false;
387  // Okay, it's safe to do this!  Remember this instruction.
388  AggressiveInsts->insert(I);
389  return true;
390}
391
392/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
393/// and PointerNullValue. Return NULL if value is not a constant int.
394static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
395  // Normal constant int.
396  ConstantInt *CI = dyn_cast<ConstantInt>(V);
397  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
398    return CI;
399
400  // This is some kind of pointer constant. Turn it into a pointer-sized
401  // ConstantInt if possible.
402  IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
403
404  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
405  if (isa<ConstantPointerNull>(V))
406    return ConstantInt::get(PtrTy, 0);
407
408  // IntToPtr const int.
409  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
410    if (CE->getOpcode() == Instruction::IntToPtr)
411      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
412        // The constant is very likely to have the right type already.
413        if (CI->getType() == PtrTy)
414          return CI;
415        else
416          return cast<ConstantInt>
417            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
418      }
419  return 0;
420}
421
422/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
423/// collection of icmp eq/ne instructions that compare a value against a
424/// constant, return the value being compared, and stick the constant into the
425/// Values vector.
426static Value *
427GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
428                       const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
429  Instruction *I = dyn_cast<Instruction>(V);
430  if (I == 0) return 0;
431
432  // If this is an icmp against a constant, handle this as one of the cases.
433  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
434    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
435      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
436        UsedICmps++;
437        Vals.push_back(C);
438        return I->getOperand(0);
439      }
440
441      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
442      // the set.
443      ConstantRange Span =
444        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
445
446      // If this is an and/!= check then we want to optimize "x ugt 2" into
447      // x != 0 && x != 1.
448      if (!isEQ)
449        Span = Span.inverse();
450
451      // If there are a ton of values, we don't want to make a ginormous switch.
452      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
453        return 0;
454
455      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
456        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
457      UsedICmps++;
458      return I->getOperand(0);
459    }
460    return 0;
461  }
462
463  // Otherwise, we can only handle an | or &, depending on isEQ.
464  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
465    return 0;
466
467  unsigned NumValsBeforeLHS = Vals.size();
468  unsigned UsedICmpsBeforeLHS = UsedICmps;
469  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
470                                          isEQ, UsedICmps)) {
471    unsigned NumVals = Vals.size();
472    unsigned UsedICmpsBeforeRHS = UsedICmps;
473    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
474                                            isEQ, UsedICmps)) {
475      if (LHS == RHS)
476        return LHS;
477      Vals.resize(NumVals);
478      UsedICmps = UsedICmpsBeforeRHS;
479    }
480
481    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
482    // set it and return success.
483    if (Extra == 0 || Extra == I->getOperand(1)) {
484      Extra = I->getOperand(1);
485      return LHS;
486    }
487
488    Vals.resize(NumValsBeforeLHS);
489    UsedICmps = UsedICmpsBeforeLHS;
490    return 0;
491  }
492
493  // If the LHS can't be folded in, but Extra is available and RHS can, try to
494  // use LHS as Extra.
495  if (Extra == 0 || Extra == I->getOperand(0)) {
496    Value *OldExtra = Extra;
497    Extra = I->getOperand(0);
498    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
499                                            isEQ, UsedICmps))
500      return RHS;
501    assert(Vals.size() == NumValsBeforeLHS);
502    Extra = OldExtra;
503  }
504
505  return 0;
506}
507
508static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
509  Instruction *Cond = 0;
510  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
511    Cond = dyn_cast<Instruction>(SI->getCondition());
512  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
513    if (BI->isConditional())
514      Cond = dyn_cast<Instruction>(BI->getCondition());
515  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
516    Cond = dyn_cast<Instruction>(IBI->getAddress());
517  }
518
519  TI->eraseFromParent();
520  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
521}
522
523/// isValueEqualityComparison - Return true if the specified terminator checks
524/// to see if a value is equal to constant integer value.
525Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
526  Value *CV = 0;
527  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
528    // Do not permit merging of large switch instructions into their
529    // predecessors unless there is only one predecessor.
530    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
531                                             pred_end(SI->getParent())) <= 128)
532      CV = SI->getCondition();
533  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
534    if (BI->isConditional() && BI->getCondition()->hasOneUse())
535      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
536        if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), TD))
537          CV = ICI->getOperand(0);
538
539  // Unwrap any lossless ptrtoint cast.
540  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
541    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
542      CV = PTII->getOperand(0);
543  return CV;
544}
545
546/// GetValueEqualityComparisonCases - Given a value comparison instruction,
547/// decode all of the 'cases' that it represents and return the 'default' block.
548BasicBlock *SimplifyCFGOpt::
549GetValueEqualityComparisonCases(TerminatorInst *TI,
550                                std::vector<ValueEqualityComparisonCase>
551                                                                       &Cases) {
552  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
553    Cases.reserve(SI->getNumCases());
554    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
555      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
556                                                  i.getCaseSuccessor()));
557    return SI->getDefaultDest();
558  }
559
560  BranchInst *BI = cast<BranchInst>(TI);
561  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
562  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
563  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
564                                                             TD),
565                                              Succ));
566  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
567}
568
569
570/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
571/// in the list that match the specified block.
572static void EliminateBlockCases(BasicBlock *BB,
573                              std::vector<ValueEqualityComparisonCase> &Cases) {
574  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
575}
576
577/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
578/// well.
579static bool
580ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
581              std::vector<ValueEqualityComparisonCase > &C2) {
582  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
583
584  // Make V1 be smaller than V2.
585  if (V1->size() > V2->size())
586    std::swap(V1, V2);
587
588  if (V1->size() == 0) return false;
589  if (V1->size() == 1) {
590    // Just scan V2.
591    ConstantInt *TheVal = (*V1)[0].Value;
592    for (unsigned i = 0, e = V2->size(); i != e; ++i)
593      if (TheVal == (*V2)[i].Value)
594        return true;
595  }
596
597  // Otherwise, just sort both lists and compare element by element.
598  array_pod_sort(V1->begin(), V1->end());
599  array_pod_sort(V2->begin(), V2->end());
600  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
601  while (i1 != e1 && i2 != e2) {
602    if ((*V1)[i1].Value == (*V2)[i2].Value)
603      return true;
604    if ((*V1)[i1].Value < (*V2)[i2].Value)
605      ++i1;
606    else
607      ++i2;
608  }
609  return false;
610}
611
612/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
613/// terminator instruction and its block is known to only have a single
614/// predecessor block, check to see if that predecessor is also a value
615/// comparison with the same value, and if that comparison determines the
616/// outcome of this comparison.  If so, simplify TI.  This does a very limited
617/// form of jump threading.
618bool SimplifyCFGOpt::
619SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
620                                              BasicBlock *Pred,
621                                              IRBuilder<> &Builder) {
622  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
623  if (!PredVal) return false;  // Not a value comparison in predecessor.
624
625  Value *ThisVal = isValueEqualityComparison(TI);
626  assert(ThisVal && "This isn't a value comparison!!");
627  if (ThisVal != PredVal) return false;  // Different predicates.
628
629  // TODO: Preserve branch weight metadata, similarly to how
630  // FoldValueComparisonIntoPredecessors preserves it.
631
632  // Find out information about when control will move from Pred to TI's block.
633  std::vector<ValueEqualityComparisonCase> PredCases;
634  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
635                                                        PredCases);
636  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
637
638  // Find information about how control leaves this block.
639  std::vector<ValueEqualityComparisonCase> ThisCases;
640  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
641  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
642
643  // If TI's block is the default block from Pred's comparison, potentially
644  // simplify TI based on this knowledge.
645  if (PredDef == TI->getParent()) {
646    // If we are here, we know that the value is none of those cases listed in
647    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
648    // can simplify TI.
649    if (!ValuesOverlap(PredCases, ThisCases))
650      return false;
651
652    if (isa<BranchInst>(TI)) {
653      // Okay, one of the successors of this condbr is dead.  Convert it to a
654      // uncond br.
655      assert(ThisCases.size() == 1 && "Branch can only have one case!");
656      // Insert the new branch.
657      Instruction *NI = Builder.CreateBr(ThisDef);
658      (void) NI;
659
660      // Remove PHI node entries for the dead edge.
661      ThisCases[0].Dest->removePredecessor(TI->getParent());
662
663      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
664           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
665
666      EraseTerminatorInstAndDCECond(TI);
667      return true;
668    }
669
670    SwitchInst *SI = cast<SwitchInst>(TI);
671    // Okay, TI has cases that are statically dead, prune them away.
672    SmallPtrSet<Constant*, 16> DeadCases;
673    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
674      DeadCases.insert(PredCases[i].Value);
675
676    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
677                 << "Through successor TI: " << *TI);
678
679    // Collect branch weights into a vector.
680    SmallVector<uint32_t, 8> Weights;
681    MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
682    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
683    if (HasWeight)
684      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
685           ++MD_i) {
686        ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
687        assert(CI);
688        Weights.push_back(CI->getValue().getZExtValue());
689      }
690    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
691      --i;
692      if (DeadCases.count(i.getCaseValue())) {
693        if (HasWeight) {
694          std::swap(Weights[i.getCaseIndex()+1], Weights.back());
695          Weights.pop_back();
696        }
697        i.getCaseSuccessor()->removePredecessor(TI->getParent());
698        SI->removeCase(i);
699      }
700    }
701    if (HasWeight && Weights.size() >= 2)
702      SI->setMetadata(LLVMContext::MD_prof,
703                      MDBuilder(SI->getParent()->getContext()).
704                      createBranchWeights(Weights));
705
706    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
707    return true;
708  }
709
710  // Otherwise, TI's block must correspond to some matched value.  Find out
711  // which value (or set of values) this is.
712  ConstantInt *TIV = 0;
713  BasicBlock *TIBB = TI->getParent();
714  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
715    if (PredCases[i].Dest == TIBB) {
716      if (TIV != 0)
717        return false;  // Cannot handle multiple values coming to this block.
718      TIV = PredCases[i].Value;
719    }
720  assert(TIV && "No edge from pred to succ?");
721
722  // Okay, we found the one constant that our value can be if we get into TI's
723  // BB.  Find out which successor will unconditionally be branched to.
724  BasicBlock *TheRealDest = 0;
725  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
726    if (ThisCases[i].Value == TIV) {
727      TheRealDest = ThisCases[i].Dest;
728      break;
729    }
730
731  // If not handled by any explicit cases, it is handled by the default case.
732  if (TheRealDest == 0) TheRealDest = ThisDef;
733
734  // Remove PHI node entries for dead edges.
735  BasicBlock *CheckEdge = TheRealDest;
736  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
737    if (*SI != CheckEdge)
738      (*SI)->removePredecessor(TIBB);
739    else
740      CheckEdge = 0;
741
742  // Insert the new branch.
743  Instruction *NI = Builder.CreateBr(TheRealDest);
744  (void) NI;
745
746  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
747            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
748
749  EraseTerminatorInstAndDCECond(TI);
750  return true;
751}
752
753namespace {
754  /// ConstantIntOrdering - This class implements a stable ordering of constant
755  /// integers that does not depend on their address.  This is important for
756  /// applications that sort ConstantInt's to ensure uniqueness.
757  struct ConstantIntOrdering {
758    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
759      return LHS->getValue().ult(RHS->getValue());
760    }
761  };
762}
763
764static int ConstantIntSortPredicate(const void *P1, const void *P2) {
765  const ConstantInt *LHS = *(const ConstantInt*const*)P1;
766  const ConstantInt *RHS = *(const ConstantInt*const*)P2;
767  if (LHS->getValue().ult(RHS->getValue()))
768    return 1;
769  if (LHS->getValue() == RHS->getValue())
770    return 0;
771  return -1;
772}
773
774static inline bool HasBranchWeights(const Instruction* I) {
775  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
776  if (ProfMD && ProfMD->getOperand(0))
777    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
778      return MDS->getString().equals("branch_weights");
779
780  return false;
781}
782
783/// Get Weights of a given TerminatorInst, the default weight is at the front
784/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
785/// metadata.
786static void GetBranchWeights(TerminatorInst *TI,
787                             SmallVectorImpl<uint64_t> &Weights) {
788  MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
789  assert(MD);
790  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
791    ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
792    assert(CI);
793    Weights.push_back(CI->getValue().getZExtValue());
794  }
795
796  // If TI is a conditional eq, the default case is the false case,
797  // and the corresponding branch-weight data is at index 2. We swap the
798  // default weight to be the first entry.
799  if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
800    assert(Weights.size() == 2);
801    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
802    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
803      std::swap(Weights.front(), Weights.back());
804  }
805}
806
807/// Sees if any of the weights are too big for a uint32_t, and halves all the
808/// weights if any are.
809static void FitWeights(MutableArrayRef<uint64_t> Weights) {
810  bool Halve = false;
811  for (unsigned i = 0; i < Weights.size(); ++i)
812    if (Weights[i] > UINT_MAX) {
813      Halve = true;
814      break;
815    }
816
817  if (! Halve)
818    return;
819
820  for (unsigned i = 0; i < Weights.size(); ++i)
821    Weights[i] /= 2;
822}
823
824/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
825/// equality comparison instruction (either a switch or a branch on "X == c").
826/// See if any of the predecessors of the terminator block are value comparisons
827/// on the same value.  If so, and if safe to do so, fold them together.
828bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
829                                                         IRBuilder<> &Builder) {
830  BasicBlock *BB = TI->getParent();
831  Value *CV = isValueEqualityComparison(TI);  // CondVal
832  assert(CV && "Not a comparison?");
833  bool Changed = false;
834
835  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
836  while (!Preds.empty()) {
837    BasicBlock *Pred = Preds.pop_back_val();
838
839    // See if the predecessor is a comparison with the same value.
840    TerminatorInst *PTI = Pred->getTerminator();
841    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
842
843    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
844      // Figure out which 'cases' to copy from SI to PSI.
845      std::vector<ValueEqualityComparisonCase> BBCases;
846      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
847
848      std::vector<ValueEqualityComparisonCase> PredCases;
849      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
850
851      // Based on whether the default edge from PTI goes to BB or not, fill in
852      // PredCases and PredDefault with the new switch cases we would like to
853      // build.
854      SmallVector<BasicBlock*, 8> NewSuccessors;
855
856      // Update the branch weight metadata along the way
857      SmallVector<uint64_t, 8> Weights;
858      bool PredHasWeights = HasBranchWeights(PTI);
859      bool SuccHasWeights = HasBranchWeights(TI);
860
861      if (PredHasWeights) {
862        GetBranchWeights(PTI, Weights);
863        // branch-weight metadata is inconsistent here.
864        if (Weights.size() != 1 + PredCases.size())
865          PredHasWeights = SuccHasWeights = false;
866      } else if (SuccHasWeights)
867        // If there are no predecessor weights but there are successor weights,
868        // populate Weights with 1, which will later be scaled to the sum of
869        // successor's weights
870        Weights.assign(1 + PredCases.size(), 1);
871
872      SmallVector<uint64_t, 8> SuccWeights;
873      if (SuccHasWeights) {
874        GetBranchWeights(TI, SuccWeights);
875        // branch-weight metadata is inconsistent here.
876        if (SuccWeights.size() != 1 + BBCases.size())
877          PredHasWeights = SuccHasWeights = false;
878      } else if (PredHasWeights)
879        SuccWeights.assign(1 + BBCases.size(), 1);
880
881      if (PredDefault == BB) {
882        // If this is the default destination from PTI, only the edges in TI
883        // that don't occur in PTI, or that branch to BB will be activated.
884        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
885        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
886          if (PredCases[i].Dest != BB)
887            PTIHandled.insert(PredCases[i].Value);
888          else {
889            // The default destination is BB, we don't need explicit targets.
890            std::swap(PredCases[i], PredCases.back());
891
892            if (PredHasWeights || SuccHasWeights) {
893              // Increase weight for the default case.
894              Weights[0] += Weights[i+1];
895              std::swap(Weights[i+1], Weights.back());
896              Weights.pop_back();
897            }
898
899            PredCases.pop_back();
900            --i; --e;
901          }
902
903        // Reconstruct the new switch statement we will be building.
904        if (PredDefault != BBDefault) {
905          PredDefault->removePredecessor(Pred);
906          PredDefault = BBDefault;
907          NewSuccessors.push_back(BBDefault);
908        }
909
910        unsigned CasesFromPred = Weights.size();
911        uint64_t ValidTotalSuccWeight = 0;
912        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
913          if (!PTIHandled.count(BBCases[i].Value) &&
914              BBCases[i].Dest != BBDefault) {
915            PredCases.push_back(BBCases[i]);
916            NewSuccessors.push_back(BBCases[i].Dest);
917            if (SuccHasWeights || PredHasWeights) {
918              // The default weight is at index 0, so weight for the ith case
919              // should be at index i+1. Scale the cases from successor by
920              // PredDefaultWeight (Weights[0]).
921              Weights.push_back(Weights[0] * SuccWeights[i+1]);
922              ValidTotalSuccWeight += SuccWeights[i+1];
923            }
924          }
925
926        if (SuccHasWeights || PredHasWeights) {
927          ValidTotalSuccWeight += SuccWeights[0];
928          // Scale the cases from predecessor by ValidTotalSuccWeight.
929          for (unsigned i = 1; i < CasesFromPred; ++i)
930            Weights[i] *= ValidTotalSuccWeight;
931          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
932          Weights[0] *= SuccWeights[0];
933        }
934      } else {
935        // If this is not the default destination from PSI, only the edges
936        // in SI that occur in PSI with a destination of BB will be
937        // activated.
938        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
939        std::map<ConstantInt*, uint64_t> WeightsForHandled;
940        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
941          if (PredCases[i].Dest == BB) {
942            PTIHandled.insert(PredCases[i].Value);
943
944            if (PredHasWeights || SuccHasWeights) {
945              WeightsForHandled[PredCases[i].Value] = Weights[i+1];
946              std::swap(Weights[i+1], Weights.back());
947              Weights.pop_back();
948            }
949
950            std::swap(PredCases[i], PredCases.back());
951            PredCases.pop_back();
952            --i; --e;
953          }
954
955        // Okay, now we know which constants were sent to BB from the
956        // predecessor.  Figure out where they will all go now.
957        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
958          if (PTIHandled.count(BBCases[i].Value)) {
959            // If this is one we are capable of getting...
960            if (PredHasWeights || SuccHasWeights)
961              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
962            PredCases.push_back(BBCases[i]);
963            NewSuccessors.push_back(BBCases[i].Dest);
964            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
965          }
966
967        // If there are any constants vectored to BB that TI doesn't handle,
968        // they must go to the default destination of TI.
969        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
970                                    PTIHandled.begin(),
971               E = PTIHandled.end(); I != E; ++I) {
972          if (PredHasWeights || SuccHasWeights)
973            Weights.push_back(WeightsForHandled[*I]);
974          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
975          NewSuccessors.push_back(BBDefault);
976        }
977      }
978
979      // Okay, at this point, we know which new successor Pred will get.  Make
980      // sure we update the number of entries in the PHI nodes for these
981      // successors.
982      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
983        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
984
985      Builder.SetInsertPoint(PTI);
986      // Convert pointer to int before we switch.
987      if (CV->getType()->isPointerTy()) {
988        assert(TD && "Cannot switch on pointer without DataLayout");
989        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
990                                    "magicptr");
991      }
992
993      // Now that the successors are updated, create the new Switch instruction.
994      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
995                                               PredCases.size());
996      NewSI->setDebugLoc(PTI->getDebugLoc());
997      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
998        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
999
1000      if (PredHasWeights || SuccHasWeights) {
1001        // Halve the weights if any of them cannot fit in an uint32_t
1002        FitWeights(Weights);
1003
1004        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1005
1006        NewSI->setMetadata(LLVMContext::MD_prof,
1007                           MDBuilder(BB->getContext()).
1008                           createBranchWeights(MDWeights));
1009      }
1010
1011      EraseTerminatorInstAndDCECond(PTI);
1012
1013      // Okay, last check.  If BB is still a successor of PSI, then we must
1014      // have an infinite loop case.  If so, add an infinitely looping block
1015      // to handle the case to preserve the behavior of the code.
1016      BasicBlock *InfLoopBlock = 0;
1017      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1018        if (NewSI->getSuccessor(i) == BB) {
1019          if (InfLoopBlock == 0) {
1020            // Insert it at the end of the function, because it's either code,
1021            // or it won't matter if it's hot. :)
1022            InfLoopBlock = BasicBlock::Create(BB->getContext(),
1023                                              "infloop", BB->getParent());
1024            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1025          }
1026          NewSI->setSuccessor(i, InfLoopBlock);
1027        }
1028
1029      Changed = true;
1030    }
1031  }
1032  return Changed;
1033}
1034
1035// isSafeToHoistInvoke - If we would need to insert a select that uses the
1036// value of this invoke (comments in HoistThenElseCodeToIf explain why we
1037// would need to do this), we can't hoist the invoke, as there is nowhere
1038// to put the select in this case.
1039static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1040                                Instruction *I1, Instruction *I2) {
1041  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1042    PHINode *PN;
1043    for (BasicBlock::iterator BBI = SI->begin();
1044         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1045      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1046      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1047      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1048        return false;
1049      }
1050    }
1051  }
1052  return true;
1053}
1054
1055/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1056/// BB2, hoist any common code in the two blocks up into the branch block.  The
1057/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1058static bool HoistThenElseCodeToIf(BranchInst *BI) {
1059  // This does very trivial matching, with limited scanning, to find identical
1060  // instructions in the two blocks.  In particular, we don't want to get into
1061  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1062  // such, we currently just scan for obviously identical instructions in an
1063  // identical order.
1064  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1065  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1066
1067  BasicBlock::iterator BB1_Itr = BB1->begin();
1068  BasicBlock::iterator BB2_Itr = BB2->begin();
1069
1070  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1071  // Skip debug info if it is not identical.
1072  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1073  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1074  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1075    while (isa<DbgInfoIntrinsic>(I1))
1076      I1 = BB1_Itr++;
1077    while (isa<DbgInfoIntrinsic>(I2))
1078      I2 = BB2_Itr++;
1079  }
1080  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1081      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1082    return false;
1083
1084  BasicBlock *BIParent = BI->getParent();
1085
1086  bool Changed = false;
1087  do {
1088    // If we are hoisting the terminator instruction, don't move one (making a
1089    // broken BB), instead clone it, and remove BI.
1090    if (isa<TerminatorInst>(I1))
1091      goto HoistTerminator;
1092
1093    // For a normal instruction, we just move one to right before the branch,
1094    // then replace all uses of the other with the first.  Finally, we remove
1095    // the now redundant second instruction.
1096    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1097    if (!I2->use_empty())
1098      I2->replaceAllUsesWith(I1);
1099    I1->intersectOptionalDataWith(I2);
1100    I2->eraseFromParent();
1101    Changed = true;
1102
1103    I1 = BB1_Itr++;
1104    I2 = BB2_Itr++;
1105    // Skip debug info if it is not identical.
1106    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1107    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1108    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1109      while (isa<DbgInfoIntrinsic>(I1))
1110        I1 = BB1_Itr++;
1111      while (isa<DbgInfoIntrinsic>(I2))
1112        I2 = BB2_Itr++;
1113    }
1114  } while (I1->isIdenticalToWhenDefined(I2));
1115
1116  return true;
1117
1118HoistTerminator:
1119  // It may not be possible to hoist an invoke.
1120  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1121    return Changed;
1122
1123  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1124    PHINode *PN;
1125    for (BasicBlock::iterator BBI = SI->begin();
1126         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1127      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1128      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1129      if (BB1V == BB2V)
1130        continue;
1131
1132      if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1133        return Changed;
1134      if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1135        return Changed;
1136    }
1137  }
1138
1139  // Okay, it is safe to hoist the terminator.
1140  Instruction *NT = I1->clone();
1141  BIParent->getInstList().insert(BI, NT);
1142  if (!NT->getType()->isVoidTy()) {
1143    I1->replaceAllUsesWith(NT);
1144    I2->replaceAllUsesWith(NT);
1145    NT->takeName(I1);
1146  }
1147
1148  IRBuilder<true, NoFolder> Builder(NT);
1149  // Hoisting one of the terminators from our successor is a great thing.
1150  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1151  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1152  // nodes, so we insert select instruction to compute the final result.
1153  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1154  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1155    PHINode *PN;
1156    for (BasicBlock::iterator BBI = SI->begin();
1157         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1158      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1159      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1160      if (BB1V == BB2V) continue;
1161
1162      // These values do not agree.  Insert a select instruction before NT
1163      // that determines the right value.
1164      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1165      if (SI == 0)
1166        SI = cast<SelectInst>
1167          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1168                                BB1V->getName()+"."+BB2V->getName()));
1169
1170      // Make the PHI node use the select for all incoming values for BB1/BB2
1171      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1172        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1173          PN->setIncomingValue(i, SI);
1174    }
1175  }
1176
1177  // Update any PHI nodes in our new successors.
1178  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1179    AddPredecessorToBlock(*SI, BIParent, BB1);
1180
1181  EraseTerminatorInstAndDCECond(BI);
1182  return true;
1183}
1184
1185/// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1186/// check whether BBEnd has only two predecessors and the other predecessor
1187/// ends with an unconditional branch. If it is true, sink any common code
1188/// in the two predecessors to BBEnd.
1189static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1190  assert(BI1->isUnconditional());
1191  BasicBlock *BB1 = BI1->getParent();
1192  BasicBlock *BBEnd = BI1->getSuccessor(0);
1193
1194  // Check that BBEnd has two predecessors and the other predecessor ends with
1195  // an unconditional branch.
1196  pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1197  BasicBlock *Pred0 = *PI++;
1198  if (PI == PE) // Only one predecessor.
1199    return false;
1200  BasicBlock *Pred1 = *PI++;
1201  if (PI != PE) // More than two predecessors.
1202    return false;
1203  BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1204  BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1205  if (!BI2 || !BI2->isUnconditional())
1206    return false;
1207
1208  // Gather the PHI nodes in BBEnd.
1209  std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1210  Instruction *FirstNonPhiInBBEnd = 0;
1211  for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1212       I != E; ++I) {
1213    if (PHINode *PN = dyn_cast<PHINode>(I)) {
1214      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1215      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1216      MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1217    } else {
1218      FirstNonPhiInBBEnd = &*I;
1219      break;
1220    }
1221  }
1222  if (!FirstNonPhiInBBEnd)
1223    return false;
1224
1225
1226  // This does very trivial matching, with limited scanning, to find identical
1227  // instructions in the two blocks.  We scan backward for obviously identical
1228  // instructions in an identical order.
1229  BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1230      RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1231      RE2 = BB2->getInstList().rend();
1232  // Skip debug info.
1233  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1234  if (RI1 == RE1)
1235    return false;
1236  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1237  if (RI2 == RE2)
1238    return false;
1239  // Skip the unconditional branches.
1240  ++RI1;
1241  ++RI2;
1242
1243  bool Changed = false;
1244  while (RI1 != RE1 && RI2 != RE2) {
1245    // Skip debug info.
1246    while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1247    if (RI1 == RE1)
1248      return Changed;
1249    while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1250    if (RI2 == RE2)
1251      return Changed;
1252
1253    Instruction *I1 = &*RI1, *I2 = &*RI2;
1254    // I1 and I2 should have a single use in the same PHI node, and they
1255    // perform the same operation.
1256    // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1257    if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1258        isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1259        isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1260        isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1261        I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1262        I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1263        !I1->hasOneUse() || !I2->hasOneUse() ||
1264        MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1265        MapValueFromBB1ToBB2[I1].first != I2)
1266      return Changed;
1267
1268    // Check whether we should swap the operands of ICmpInst.
1269    ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1270    bool SwapOpnds = false;
1271    if (ICmp1 && ICmp2 &&
1272        ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1273        ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1274        (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1275         ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1276      ICmp2->swapOperands();
1277      SwapOpnds = true;
1278    }
1279    if (!I1->isSameOperationAs(I2)) {
1280      if (SwapOpnds)
1281        ICmp2->swapOperands();
1282      return Changed;
1283    }
1284
1285    // The operands should be either the same or they need to be generated
1286    // with a PHI node after sinking. We only handle the case where there is
1287    // a single pair of different operands.
1288    Value *DifferentOp1 = 0, *DifferentOp2 = 0;
1289    unsigned Op1Idx = 0;
1290    for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1291      if (I1->getOperand(I) == I2->getOperand(I))
1292        continue;
1293      // Early exit if we have more-than one pair of different operands or
1294      // the different operand is already in MapValueFromBB1ToBB2.
1295      // Early exit if we need a PHI node to replace a constant.
1296      if (DifferentOp1 ||
1297          MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1298          MapValueFromBB1ToBB2.end() ||
1299          isa<Constant>(I1->getOperand(I)) ||
1300          isa<Constant>(I2->getOperand(I))) {
1301        // If we can't sink the instructions, undo the swapping.
1302        if (SwapOpnds)
1303          ICmp2->swapOperands();
1304        return Changed;
1305      }
1306      DifferentOp1 = I1->getOperand(I);
1307      Op1Idx = I;
1308      DifferentOp2 = I2->getOperand(I);
1309    }
1310
1311    // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1312    // remove (I1, I2) from MapValueFromBB1ToBB2.
1313    if (DifferentOp1) {
1314      PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1315                                       DifferentOp1->getName() + ".sink",
1316                                       BBEnd->begin());
1317      MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1318      // I1 should use NewPN instead of DifferentOp1.
1319      I1->setOperand(Op1Idx, NewPN);
1320      NewPN->addIncoming(DifferentOp1, BB1);
1321      NewPN->addIncoming(DifferentOp2, BB2);
1322      DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1323    }
1324    PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1325    MapValueFromBB1ToBB2.erase(I1);
1326
1327    DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1328    DEBUG(dbgs() << "                         " << *I2 << "\n";);
1329    // We need to update RE1 and RE2 if we are going to sink the first
1330    // instruction in the basic block down.
1331    bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1332    // Sink the instruction.
1333    BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1334    if (!OldPN->use_empty())
1335      OldPN->replaceAllUsesWith(I1);
1336    OldPN->eraseFromParent();
1337
1338    if (!I2->use_empty())
1339      I2->replaceAllUsesWith(I1);
1340    I1->intersectOptionalDataWith(I2);
1341    I2->eraseFromParent();
1342
1343    if (UpdateRE1)
1344      RE1 = BB1->getInstList().rend();
1345    if (UpdateRE2)
1346      RE2 = BB2->getInstList().rend();
1347    FirstNonPhiInBBEnd = I1;
1348    NumSinkCommons++;
1349    Changed = true;
1350  }
1351  return Changed;
1352}
1353
1354/// \brief Determine if we can hoist sink a sole store instruction out of a
1355/// conditional block.
1356///
1357/// We are looking for code like the following:
1358///   BrBB:
1359///     store i32 %add, i32* %arrayidx2
1360///     ... // No other stores or function calls (we could be calling a memory
1361///     ... // function).
1362///     %cmp = icmp ult %x, %y
1363///     br i1 %cmp, label %EndBB, label %ThenBB
1364///   ThenBB:
1365///     store i32 %add5, i32* %arrayidx2
1366///     br label EndBB
1367///   EndBB:
1368///     ...
1369///   We are going to transform this into:
1370///   BrBB:
1371///     store i32 %add, i32* %arrayidx2
1372///     ... //
1373///     %cmp = icmp ult %x, %y
1374///     %add.add5 = select i1 %cmp, i32 %add, %add5
1375///     store i32 %add.add5, i32* %arrayidx2
1376///     ...
1377///
1378/// \return The pointer to the value of the previous store if the store can be
1379///         hoisted into the predecessor block. 0 otherwise.
1380static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1381                                     BasicBlock *StoreBB, BasicBlock *EndBB) {
1382  StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1383  if (!StoreToHoist)
1384    return 0;
1385
1386  // Volatile or atomic.
1387  if (!StoreToHoist->isSimple())
1388    return 0;
1389
1390  Value *StorePtr = StoreToHoist->getPointerOperand();
1391
1392  // Look for a store to the same pointer in BrBB.
1393  unsigned MaxNumInstToLookAt = 10;
1394  for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1395       RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1396    Instruction *CurI = &*RI;
1397
1398    // Could be calling an instruction that effects memory like free().
1399    if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1400      return 0;
1401
1402    StoreInst *SI = dyn_cast<StoreInst>(CurI);
1403    // Found the previous store make sure it stores to the same location.
1404    if (SI && SI->getPointerOperand() == StorePtr)
1405      // Found the previous store, return its value operand.
1406      return SI->getValueOperand();
1407    else if (SI)
1408      return 0; // Unknown store.
1409  }
1410
1411  return 0;
1412}
1413
1414/// \brief Speculate a conditional basic block flattening the CFG.
1415///
1416/// Note that this is a very risky transform currently. Speculating
1417/// instructions like this is most often not desirable. Instead, there is an MI
1418/// pass which can do it with full awareness of the resource constraints.
1419/// However, some cases are "obvious" and we should do directly. An example of
1420/// this is speculating a single, reasonably cheap instruction.
1421///
1422/// There is only one distinct advantage to flattening the CFG at the IR level:
1423/// it makes very common but simplistic optimizations such as are common in
1424/// instcombine and the DAG combiner more powerful by removing CFG edges and
1425/// modeling their effects with easier to reason about SSA value graphs.
1426///
1427///
1428/// An illustration of this transform is turning this IR:
1429/// \code
1430///   BB:
1431///     %cmp = icmp ult %x, %y
1432///     br i1 %cmp, label %EndBB, label %ThenBB
1433///   ThenBB:
1434///     %sub = sub %x, %y
1435///     br label BB2
1436///   EndBB:
1437///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1438///     ...
1439/// \endcode
1440///
1441/// Into this IR:
1442/// \code
1443///   BB:
1444///     %cmp = icmp ult %x, %y
1445///     %sub = sub %x, %y
1446///     %cond = select i1 %cmp, 0, %sub
1447///     ...
1448/// \endcode
1449///
1450/// \returns true if the conditional block is removed.
1451static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) {
1452  // Be conservative for now. FP select instruction can often be expensive.
1453  Value *BrCond = BI->getCondition();
1454  if (isa<FCmpInst>(BrCond))
1455    return false;
1456
1457  BasicBlock *BB = BI->getParent();
1458  BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1459
1460  // If ThenBB is actually on the false edge of the conditional branch, remember
1461  // to swap the select operands later.
1462  bool Invert = false;
1463  if (ThenBB != BI->getSuccessor(0)) {
1464    assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1465    Invert = true;
1466  }
1467  assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1468
1469  // Keep a count of how many times instructions are used within CondBB when
1470  // they are candidates for sinking into CondBB. Specifically:
1471  // - They are defined in BB, and
1472  // - They have no side effects, and
1473  // - All of their uses are in CondBB.
1474  SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1475
1476  unsigned SpeculationCost = 0;
1477  Value *SpeculatedStoreValue = 0;
1478  StoreInst *SpeculatedStore = 0;
1479  for (BasicBlock::iterator BBI = ThenBB->begin(),
1480                            BBE = llvm::prior(ThenBB->end());
1481       BBI != BBE; ++BBI) {
1482    Instruction *I = BBI;
1483    // Skip debug info.
1484    if (isa<DbgInfoIntrinsic>(I))
1485      continue;
1486
1487    // Only speculatively execution a single instruction (not counting the
1488    // terminator) for now.
1489    ++SpeculationCost;
1490    if (SpeculationCost > 1)
1491      return false;
1492
1493    // Don't hoist the instruction if it's unsafe or expensive.
1494    if (!isSafeToSpeculativelyExecute(I) &&
1495        !(HoistCondStores &&
1496          (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
1497                                                         EndBB))))
1498      return false;
1499    if (!SpeculatedStoreValue &&
1500        ComputeSpeculationCost(I) > PHINodeFoldingThreshold)
1501      return false;
1502
1503    // Store the store speculation candidate.
1504    if (SpeculatedStoreValue)
1505      SpeculatedStore = cast<StoreInst>(I);
1506
1507    // Do not hoist the instruction if any of its operands are defined but not
1508    // used in BB. The transformation will prevent the operand from
1509    // being sunk into the use block.
1510    for (User::op_iterator i = I->op_begin(), e = I->op_end();
1511         i != e; ++i) {
1512      Instruction *OpI = dyn_cast<Instruction>(*i);
1513      if (!OpI || OpI->getParent() != BB ||
1514          OpI->mayHaveSideEffects())
1515        continue; // Not a candidate for sinking.
1516
1517      ++SinkCandidateUseCounts[OpI];
1518    }
1519  }
1520
1521  // Consider any sink candidates which are only used in CondBB as costs for
1522  // speculation. Note, while we iterate over a DenseMap here, we are summing
1523  // and so iteration order isn't significant.
1524  for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1525           SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1526       I != E; ++I)
1527    if (I->first->getNumUses() == I->second) {
1528      ++SpeculationCost;
1529      if (SpeculationCost > 1)
1530        return false;
1531    }
1532
1533  // Check that the PHI nodes can be converted to selects.
1534  bool HaveRewritablePHIs = false;
1535  for (BasicBlock::iterator I = EndBB->begin();
1536       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1537    Value *OrigV = PN->getIncomingValueForBlock(BB);
1538    Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1539
1540    // Skip PHIs which are trivial.
1541    if (ThenV == OrigV)
1542      continue;
1543
1544    HaveRewritablePHIs = true;
1545    ConstantExpr *CE = dyn_cast<ConstantExpr>(ThenV);
1546    if (!CE)
1547      continue; // Known safe and cheap.
1548
1549    if (!isSafeToSpeculativelyExecute(CE))
1550      return false;
1551    if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1552      return false;
1553
1554    // Account for the cost of an unfolded ConstantExpr which could end up
1555    // getting expanded into Instructions.
1556    // FIXME: This doesn't account for how many operations are combined in the
1557    // constant expression.
1558    ++SpeculationCost;
1559    if (SpeculationCost > 1)
1560      return false;
1561  }
1562
1563  // If there are no PHIs to process, bail early. This helps ensure idempotence
1564  // as well.
1565  if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1566    return false;
1567
1568  // If we get here, we can hoist the instruction and if-convert.
1569  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1570
1571  // Insert a select of the value of the speculated store.
1572  if (SpeculatedStoreValue) {
1573    IRBuilder<true, NoFolder> Builder(BI);
1574    Value *TrueV = SpeculatedStore->getValueOperand();
1575    Value *FalseV = SpeculatedStoreValue;
1576    if (Invert)
1577      std::swap(TrueV, FalseV);
1578    Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1579                                    "." + FalseV->getName());
1580    SpeculatedStore->setOperand(0, S);
1581  }
1582
1583  // Hoist the instructions.
1584  BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1585                           llvm::prior(ThenBB->end()));
1586
1587  // Insert selects and rewrite the PHI operands.
1588  IRBuilder<true, NoFolder> Builder(BI);
1589  for (BasicBlock::iterator I = EndBB->begin();
1590       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1591    unsigned OrigI = PN->getBasicBlockIndex(BB);
1592    unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1593    Value *OrigV = PN->getIncomingValue(OrigI);
1594    Value *ThenV = PN->getIncomingValue(ThenI);
1595
1596    // Skip PHIs which are trivial.
1597    if (OrigV == ThenV)
1598      continue;
1599
1600    // Create a select whose true value is the speculatively executed value and
1601    // false value is the preexisting value. Swap them if the branch
1602    // destinations were inverted.
1603    Value *TrueV = ThenV, *FalseV = OrigV;
1604    if (Invert)
1605      std::swap(TrueV, FalseV);
1606    Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1607                                    TrueV->getName() + "." + FalseV->getName());
1608    PN->setIncomingValue(OrigI, V);
1609    PN->setIncomingValue(ThenI, V);
1610  }
1611
1612  ++NumSpeculations;
1613  return true;
1614}
1615
1616/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1617/// across this block.
1618static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1619  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1620  unsigned Size = 0;
1621
1622  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1623    if (isa<DbgInfoIntrinsic>(BBI))
1624      continue;
1625    if (Size > 10) return false;  // Don't clone large BB's.
1626    ++Size;
1627
1628    // We can only support instructions that do not define values that are
1629    // live outside of the current basic block.
1630    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1631         UI != E; ++UI) {
1632      Instruction *U = cast<Instruction>(*UI);
1633      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1634    }
1635
1636    // Looks ok, continue checking.
1637  }
1638
1639  return true;
1640}
1641
1642/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1643/// that is defined in the same block as the branch and if any PHI entries are
1644/// constants, thread edges corresponding to that entry to be branches to their
1645/// ultimate destination.
1646static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
1647  BasicBlock *BB = BI->getParent();
1648  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1649  // NOTE: we currently cannot transform this case if the PHI node is used
1650  // outside of the block.
1651  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1652    return false;
1653
1654  // Degenerate case of a single entry PHI.
1655  if (PN->getNumIncomingValues() == 1) {
1656    FoldSingleEntryPHINodes(PN->getParent());
1657    return true;
1658  }
1659
1660  // Now we know that this block has multiple preds and two succs.
1661  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1662
1663  // Okay, this is a simple enough basic block.  See if any phi values are
1664  // constants.
1665  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1666    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1667    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1668
1669    // Okay, we now know that all edges from PredBB should be revectored to
1670    // branch to RealDest.
1671    BasicBlock *PredBB = PN->getIncomingBlock(i);
1672    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1673
1674    if (RealDest == BB) continue;  // Skip self loops.
1675    // Skip if the predecessor's terminator is an indirect branch.
1676    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1677
1678    // The dest block might have PHI nodes, other predecessors and other
1679    // difficult cases.  Instead of being smart about this, just insert a new
1680    // block that jumps to the destination block, effectively splitting
1681    // the edge we are about to create.
1682    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1683                                            RealDest->getName()+".critedge",
1684                                            RealDest->getParent(), RealDest);
1685    BranchInst::Create(RealDest, EdgeBB);
1686
1687    // Update PHI nodes.
1688    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1689
1690    // BB may have instructions that are being threaded over.  Clone these
1691    // instructions into EdgeBB.  We know that there will be no uses of the
1692    // cloned instructions outside of EdgeBB.
1693    BasicBlock::iterator InsertPt = EdgeBB->begin();
1694    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1695    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1696      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1697        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1698        continue;
1699      }
1700      // Clone the instruction.
1701      Instruction *N = BBI->clone();
1702      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1703
1704      // Update operands due to translation.
1705      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1706           i != e; ++i) {
1707        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1708        if (PI != TranslateMap.end())
1709          *i = PI->second;
1710      }
1711
1712      // Check for trivial simplification.
1713      if (Value *V = SimplifyInstruction(N, TD)) {
1714        TranslateMap[BBI] = V;
1715        delete N;   // Instruction folded away, don't need actual inst
1716      } else {
1717        // Insert the new instruction into its new home.
1718        EdgeBB->getInstList().insert(InsertPt, N);
1719        if (!BBI->use_empty())
1720          TranslateMap[BBI] = N;
1721      }
1722    }
1723
1724    // Loop over all of the edges from PredBB to BB, changing them to branch
1725    // to EdgeBB instead.
1726    TerminatorInst *PredBBTI = PredBB->getTerminator();
1727    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1728      if (PredBBTI->getSuccessor(i) == BB) {
1729        BB->removePredecessor(PredBB);
1730        PredBBTI->setSuccessor(i, EdgeBB);
1731      }
1732
1733    // Recurse, simplifying any other constants.
1734    return FoldCondBranchOnPHI(BI, TD) | true;
1735  }
1736
1737  return false;
1738}
1739
1740/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1741/// PHI node, see if we can eliminate it.
1742static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
1743  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1744  // statement", which has a very simple dominance structure.  Basically, we
1745  // are trying to find the condition that is being branched on, which
1746  // subsequently causes this merge to happen.  We really want control
1747  // dependence information for this check, but simplifycfg can't keep it up
1748  // to date, and this catches most of the cases we care about anyway.
1749  BasicBlock *BB = PN->getParent();
1750  BasicBlock *IfTrue, *IfFalse;
1751  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1752  if (!IfCond ||
1753      // Don't bother if the branch will be constant folded trivially.
1754      isa<ConstantInt>(IfCond))
1755    return false;
1756
1757  // Okay, we found that we can merge this two-entry phi node into a select.
1758  // Doing so would require us to fold *all* two entry phi nodes in this block.
1759  // At some point this becomes non-profitable (particularly if the target
1760  // doesn't support cmov's).  Only do this transformation if there are two or
1761  // fewer PHI nodes in this block.
1762  unsigned NumPhis = 0;
1763  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1764    if (NumPhis > 2)
1765      return false;
1766
1767  // Loop over the PHI's seeing if we can promote them all to select
1768  // instructions.  While we are at it, keep track of the instructions
1769  // that need to be moved to the dominating block.
1770  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1771  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1772           MaxCostVal1 = PHINodeFoldingThreshold;
1773
1774  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1775    PHINode *PN = cast<PHINode>(II++);
1776    if (Value *V = SimplifyInstruction(PN, TD)) {
1777      PN->replaceAllUsesWith(V);
1778      PN->eraseFromParent();
1779      continue;
1780    }
1781
1782    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1783                             MaxCostVal0) ||
1784        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1785                             MaxCostVal1))
1786      return false;
1787  }
1788
1789  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1790  // we ran out of PHIs then we simplified them all.
1791  PN = dyn_cast<PHINode>(BB->begin());
1792  if (PN == 0) return true;
1793
1794  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1795  // often be turned into switches and other things.
1796  if (PN->getType()->isIntegerTy(1) &&
1797      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1798       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1799       isa<BinaryOperator>(IfCond)))
1800    return false;
1801
1802  // If we all PHI nodes are promotable, check to make sure that all
1803  // instructions in the predecessor blocks can be promoted as well.  If
1804  // not, we won't be able to get rid of the control flow, so it's not
1805  // worth promoting to select instructions.
1806  BasicBlock *DomBlock = 0;
1807  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1808  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1809  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1810    IfBlock1 = 0;
1811  } else {
1812    DomBlock = *pred_begin(IfBlock1);
1813    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1814      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1815        // This is not an aggressive instruction that we can promote.
1816        // Because of this, we won't be able to get rid of the control
1817        // flow, so the xform is not worth it.
1818        return false;
1819      }
1820  }
1821
1822  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1823    IfBlock2 = 0;
1824  } else {
1825    DomBlock = *pred_begin(IfBlock2);
1826    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1827      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1828        // This is not an aggressive instruction that we can promote.
1829        // Because of this, we won't be able to get rid of the control
1830        // flow, so the xform is not worth it.
1831        return false;
1832      }
1833  }
1834
1835  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1836               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1837
1838  // If we can still promote the PHI nodes after this gauntlet of tests,
1839  // do all of the PHI's now.
1840  Instruction *InsertPt = DomBlock->getTerminator();
1841  IRBuilder<true, NoFolder> Builder(InsertPt);
1842
1843  // Move all 'aggressive' instructions, which are defined in the
1844  // conditional parts of the if's up to the dominating block.
1845  if (IfBlock1)
1846    DomBlock->getInstList().splice(InsertPt,
1847                                   IfBlock1->getInstList(), IfBlock1->begin(),
1848                                   IfBlock1->getTerminator());
1849  if (IfBlock2)
1850    DomBlock->getInstList().splice(InsertPt,
1851                                   IfBlock2->getInstList(), IfBlock2->begin(),
1852                                   IfBlock2->getTerminator());
1853
1854  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1855    // Change the PHI node into a select instruction.
1856    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1857    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1858
1859    SelectInst *NV =
1860      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1861    PN->replaceAllUsesWith(NV);
1862    NV->takeName(PN);
1863    PN->eraseFromParent();
1864  }
1865
1866  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1867  // has been flattened.  Change DomBlock to jump directly to our new block to
1868  // avoid other simplifycfg's kicking in on the diamond.
1869  TerminatorInst *OldTI = DomBlock->getTerminator();
1870  Builder.SetInsertPoint(OldTI);
1871  Builder.CreateBr(BB);
1872  OldTI->eraseFromParent();
1873  return true;
1874}
1875
1876/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1877/// to two returning blocks, try to merge them together into one return,
1878/// introducing a select if the return values disagree.
1879static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1880                                           IRBuilder<> &Builder) {
1881  assert(BI->isConditional() && "Must be a conditional branch");
1882  BasicBlock *TrueSucc = BI->getSuccessor(0);
1883  BasicBlock *FalseSucc = BI->getSuccessor(1);
1884  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1885  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1886
1887  // Check to ensure both blocks are empty (just a return) or optionally empty
1888  // with PHI nodes.  If there are other instructions, merging would cause extra
1889  // computation on one path or the other.
1890  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1891    return false;
1892  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1893    return false;
1894
1895  Builder.SetInsertPoint(BI);
1896  // Okay, we found a branch that is going to two return nodes.  If
1897  // there is no return value for this function, just change the
1898  // branch into a return.
1899  if (FalseRet->getNumOperands() == 0) {
1900    TrueSucc->removePredecessor(BI->getParent());
1901    FalseSucc->removePredecessor(BI->getParent());
1902    Builder.CreateRetVoid();
1903    EraseTerminatorInstAndDCECond(BI);
1904    return true;
1905  }
1906
1907  // Otherwise, figure out what the true and false return values are
1908  // so we can insert a new select instruction.
1909  Value *TrueValue = TrueRet->getReturnValue();
1910  Value *FalseValue = FalseRet->getReturnValue();
1911
1912  // Unwrap any PHI nodes in the return blocks.
1913  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1914    if (TVPN->getParent() == TrueSucc)
1915      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1916  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1917    if (FVPN->getParent() == FalseSucc)
1918      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1919
1920  // In order for this transformation to be safe, we must be able to
1921  // unconditionally execute both operands to the return.  This is
1922  // normally the case, but we could have a potentially-trapping
1923  // constant expression that prevents this transformation from being
1924  // safe.
1925  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1926    if (TCV->canTrap())
1927      return false;
1928  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1929    if (FCV->canTrap())
1930      return false;
1931
1932  // Okay, we collected all the mapped values and checked them for sanity, and
1933  // defined to really do this transformation.  First, update the CFG.
1934  TrueSucc->removePredecessor(BI->getParent());
1935  FalseSucc->removePredecessor(BI->getParent());
1936
1937  // Insert select instructions where needed.
1938  Value *BrCond = BI->getCondition();
1939  if (TrueValue) {
1940    // Insert a select if the results differ.
1941    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1942    } else if (isa<UndefValue>(TrueValue)) {
1943      TrueValue = FalseValue;
1944    } else {
1945      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1946                                       FalseValue, "retval");
1947    }
1948  }
1949
1950  Value *RI = !TrueValue ?
1951    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1952
1953  (void) RI;
1954
1955  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1956               << "\n  " << *BI << "NewRet = " << *RI
1957               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1958
1959  EraseTerminatorInstAndDCECond(BI);
1960
1961  return true;
1962}
1963
1964/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1965/// probabilities of the branch taking each edge. Fills in the two APInt
1966/// parameters and return true, or returns false if no or invalid metadata was
1967/// found.
1968static bool ExtractBranchMetadata(BranchInst *BI,
1969                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
1970  assert(BI->isConditional() &&
1971         "Looking for probabilities on unconditional branch?");
1972  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1973  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1974  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1975  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1976  if (!CITrue || !CIFalse) return false;
1977  ProbTrue = CITrue->getValue().getZExtValue();
1978  ProbFalse = CIFalse->getValue().getZExtValue();
1979  return true;
1980}
1981
1982/// checkCSEInPredecessor - Return true if the given instruction is available
1983/// in its predecessor block. If yes, the instruction will be removed.
1984///
1985static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1986  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1987    return false;
1988  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1989    Instruction *PBI = &*I;
1990    // Check whether Inst and PBI generate the same value.
1991    if (Inst->isIdenticalTo(PBI)) {
1992      Inst->replaceAllUsesWith(PBI);
1993      Inst->eraseFromParent();
1994      return true;
1995    }
1996  }
1997  return false;
1998}
1999
2000/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
2001/// predecessor branches to us and one of our successors, fold the block into
2002/// the predecessor and use logical operations to pick the right destination.
2003bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
2004  BasicBlock *BB = BI->getParent();
2005
2006  Instruction *Cond = 0;
2007  if (BI->isConditional())
2008    Cond = dyn_cast<Instruction>(BI->getCondition());
2009  else {
2010    // For unconditional branch, check for a simple CFG pattern, where
2011    // BB has a single predecessor and BB's successor is also its predecessor's
2012    // successor. If such pattern exisits, check for CSE between BB and its
2013    // predecessor.
2014    if (BasicBlock *PB = BB->getSinglePredecessor())
2015      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2016        if (PBI->isConditional() &&
2017            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2018             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2019          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2020               I != E; ) {
2021            Instruction *Curr = I++;
2022            if (isa<CmpInst>(Curr)) {
2023              Cond = Curr;
2024              break;
2025            }
2026            // Quit if we can't remove this instruction.
2027            if (!checkCSEInPredecessor(Curr, PB))
2028              return false;
2029          }
2030        }
2031
2032    if (Cond == 0)
2033      return false;
2034  }
2035
2036  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2037    Cond->getParent() != BB || !Cond->hasOneUse())
2038  return false;
2039
2040  // Only allow this if the condition is a simple instruction that can be
2041  // executed unconditionally.  It must be in the same block as the branch, and
2042  // must be at the front of the block.
2043  BasicBlock::iterator FrontIt = BB->front();
2044
2045  // Ignore dbg intrinsics.
2046  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2047
2048  // Allow a single instruction to be hoisted in addition to the compare
2049  // that feeds the branch.  We later ensure that any values that _it_ uses
2050  // were also live in the predecessor, so that we don't unnecessarily create
2051  // register pressure or inhibit out-of-order execution.
2052  Instruction *BonusInst = 0;
2053  if (&*FrontIt != Cond &&
2054      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
2055      isSafeToSpeculativelyExecute(FrontIt)) {
2056    BonusInst = &*FrontIt;
2057    ++FrontIt;
2058
2059    // Ignore dbg intrinsics.
2060    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2061  }
2062
2063  // Only a single bonus inst is allowed.
2064  if (&*FrontIt != Cond)
2065    return false;
2066
2067  // Make sure the instruction after the condition is the cond branch.
2068  BasicBlock::iterator CondIt = Cond; ++CondIt;
2069
2070  // Ingore dbg intrinsics.
2071  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2072
2073  if (&*CondIt != BI)
2074    return false;
2075
2076  // Cond is known to be a compare or binary operator.  Check to make sure that
2077  // neither operand is a potentially-trapping constant expression.
2078  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2079    if (CE->canTrap())
2080      return false;
2081  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2082    if (CE->canTrap())
2083      return false;
2084
2085  // Finally, don't infinitely unroll conditional loops.
2086  BasicBlock *TrueDest  = BI->getSuccessor(0);
2087  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
2088  if (TrueDest == BB || FalseDest == BB)
2089    return false;
2090
2091  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2092    BasicBlock *PredBlock = *PI;
2093    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2094
2095    // Check that we have two conditional branches.  If there is a PHI node in
2096    // the common successor, verify that the same value flows in from both
2097    // blocks.
2098    SmallVector<PHINode*, 4> PHIs;
2099    if (PBI == 0 || PBI->isUnconditional() ||
2100        (BI->isConditional() &&
2101         !SafeToMergeTerminators(BI, PBI)) ||
2102        (!BI->isConditional() &&
2103         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2104      continue;
2105
2106    // Determine if the two branches share a common destination.
2107    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2108    bool InvertPredCond = false;
2109
2110    if (BI->isConditional()) {
2111      if (PBI->getSuccessor(0) == TrueDest)
2112        Opc = Instruction::Or;
2113      else if (PBI->getSuccessor(1) == FalseDest)
2114        Opc = Instruction::And;
2115      else if (PBI->getSuccessor(0) == FalseDest)
2116        Opc = Instruction::And, InvertPredCond = true;
2117      else if (PBI->getSuccessor(1) == TrueDest)
2118        Opc = Instruction::Or, InvertPredCond = true;
2119      else
2120        continue;
2121    } else {
2122      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2123        continue;
2124    }
2125
2126    // Ensure that any values used in the bonus instruction are also used
2127    // by the terminator of the predecessor.  This means that those values
2128    // must already have been resolved, so we won't be inhibiting the
2129    // out-of-order core by speculating them earlier.
2130    if (BonusInst) {
2131      // Collect the values used by the bonus inst
2132      SmallPtrSet<Value*, 4> UsedValues;
2133      for (Instruction::op_iterator OI = BonusInst->op_begin(),
2134           OE = BonusInst->op_end(); OI != OE; ++OI) {
2135        Value *V = *OI;
2136        if (!isa<Constant>(V))
2137          UsedValues.insert(V);
2138      }
2139
2140      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
2141      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
2142
2143      // Walk up to four levels back up the use-def chain of the predecessor's
2144      // terminator to see if all those values were used.  The choice of four
2145      // levels is arbitrary, to provide a compile-time-cost bound.
2146      while (!Worklist.empty()) {
2147        std::pair<Value*, unsigned> Pair = Worklist.back();
2148        Worklist.pop_back();
2149
2150        if (Pair.second >= 4) continue;
2151        UsedValues.erase(Pair.first);
2152        if (UsedValues.empty()) break;
2153
2154        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
2155          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
2156               OI != OE; ++OI)
2157            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
2158        }
2159      }
2160
2161      if (!UsedValues.empty()) return false;
2162    }
2163
2164    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2165    IRBuilder<> Builder(PBI);
2166
2167    // If we need to invert the condition in the pred block to match, do so now.
2168    if (InvertPredCond) {
2169      Value *NewCond = PBI->getCondition();
2170
2171      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2172        CmpInst *CI = cast<CmpInst>(NewCond);
2173        CI->setPredicate(CI->getInversePredicate());
2174      } else {
2175        NewCond = Builder.CreateNot(NewCond,
2176                                    PBI->getCondition()->getName()+".not");
2177      }
2178
2179      PBI->setCondition(NewCond);
2180      PBI->swapSuccessors();
2181    }
2182
2183    // If we have a bonus inst, clone it into the predecessor block.
2184    Instruction *NewBonus = 0;
2185    if (BonusInst) {
2186      NewBonus = BonusInst->clone();
2187      PredBlock->getInstList().insert(PBI, NewBonus);
2188      NewBonus->takeName(BonusInst);
2189      BonusInst->setName(BonusInst->getName()+".old");
2190    }
2191
2192    // Clone Cond into the predecessor basic block, and or/and the
2193    // two conditions together.
2194    Instruction *New = Cond->clone();
2195    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
2196    PredBlock->getInstList().insert(PBI, New);
2197    New->takeName(Cond);
2198    Cond->setName(New->getName()+".old");
2199
2200    if (BI->isConditional()) {
2201      Instruction *NewCond =
2202        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2203                                            New, "or.cond"));
2204      PBI->setCondition(NewCond);
2205
2206      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2207      bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2208                                                  PredFalseWeight);
2209      bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2210                                                  SuccFalseWeight);
2211      SmallVector<uint64_t, 8> NewWeights;
2212
2213      if (PBI->getSuccessor(0) == BB) {
2214        if (PredHasWeights && SuccHasWeights) {
2215          // PBI: br i1 %x, BB, FalseDest
2216          // BI:  br i1 %y, TrueDest, FalseDest
2217          //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2218          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2219          //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2220          //               TrueWeight for PBI * FalseWeight for BI.
2221          // We assume that total weights of a BranchInst can fit into 32 bits.
2222          // Therefore, we will not have overflow using 64-bit arithmetic.
2223          NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2224               SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2225        }
2226        AddPredecessorToBlock(TrueDest, PredBlock, BB);
2227        PBI->setSuccessor(0, TrueDest);
2228      }
2229      if (PBI->getSuccessor(1) == BB) {
2230        if (PredHasWeights && SuccHasWeights) {
2231          // PBI: br i1 %x, TrueDest, BB
2232          // BI:  br i1 %y, TrueDest, FalseDest
2233          //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2234          //              FalseWeight for PBI * TrueWeight for BI.
2235          NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2236              SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2237          //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2238          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2239        }
2240        AddPredecessorToBlock(FalseDest, PredBlock, BB);
2241        PBI->setSuccessor(1, FalseDest);
2242      }
2243      if (NewWeights.size() == 2) {
2244        // Halve the weights if any of them cannot fit in an uint32_t
2245        FitWeights(NewWeights);
2246
2247        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2248        PBI->setMetadata(LLVMContext::MD_prof,
2249                         MDBuilder(BI->getContext()).
2250                         createBranchWeights(MDWeights));
2251      } else
2252        PBI->setMetadata(LLVMContext::MD_prof, NULL);
2253    } else {
2254      // Update PHI nodes in the common successors.
2255      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2256        ConstantInt *PBI_C = cast<ConstantInt>(
2257          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2258        assert(PBI_C->getType()->isIntegerTy(1));
2259        Instruction *MergedCond = 0;
2260        if (PBI->getSuccessor(0) == TrueDest) {
2261          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2262          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2263          //       is false: !PBI_Cond and BI_Value
2264          Instruction *NotCond =
2265            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2266                                "not.cond"));
2267          MergedCond =
2268            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2269                                NotCond, New,
2270                                "and.cond"));
2271          if (PBI_C->isOne())
2272            MergedCond =
2273              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2274                                  PBI->getCondition(), MergedCond,
2275                                  "or.cond"));
2276        } else {
2277          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2278          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2279          //       is false: PBI_Cond and BI_Value
2280          MergedCond =
2281            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2282                                PBI->getCondition(), New,
2283                                "and.cond"));
2284          if (PBI_C->isOne()) {
2285            Instruction *NotCond =
2286              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2287                                  "not.cond"));
2288            MergedCond =
2289              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2290                                  NotCond, MergedCond,
2291                                  "or.cond"));
2292          }
2293        }
2294        // Update PHI Node.
2295        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2296                                  MergedCond);
2297      }
2298      // Change PBI from Conditional to Unconditional.
2299      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2300      EraseTerminatorInstAndDCECond(PBI);
2301      PBI = New_PBI;
2302    }
2303
2304    // TODO: If BB is reachable from all paths through PredBlock, then we
2305    // could replace PBI's branch probabilities with BI's.
2306
2307    // Copy any debug value intrinsics into the end of PredBlock.
2308    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2309      if (isa<DbgInfoIntrinsic>(*I))
2310        I->clone()->insertBefore(PBI);
2311
2312    return true;
2313  }
2314  return false;
2315}
2316
2317/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2318/// predecessor of another block, this function tries to simplify it.  We know
2319/// that PBI and BI are both conditional branches, and BI is in one of the
2320/// successor blocks of PBI - PBI branches to BI.
2321static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2322  assert(PBI->isConditional() && BI->isConditional());
2323  BasicBlock *BB = BI->getParent();
2324
2325  // If this block ends with a branch instruction, and if there is a
2326  // predecessor that ends on a branch of the same condition, make
2327  // this conditional branch redundant.
2328  if (PBI->getCondition() == BI->getCondition() &&
2329      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2330    // Okay, the outcome of this conditional branch is statically
2331    // knowable.  If this block had a single pred, handle specially.
2332    if (BB->getSinglePredecessor()) {
2333      // Turn this into a branch on constant.
2334      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2335      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2336                                        CondIsTrue));
2337      return true;  // Nuke the branch on constant.
2338    }
2339
2340    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2341    // in the constant and simplify the block result.  Subsequent passes of
2342    // simplifycfg will thread the block.
2343    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2344      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2345      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2346                                       std::distance(PB, PE),
2347                                       BI->getCondition()->getName() + ".pr",
2348                                       BB->begin());
2349      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2350      // predecessor, compute the PHI'd conditional value for all of the preds.
2351      // Any predecessor where the condition is not computable we keep symbolic.
2352      for (pred_iterator PI = PB; PI != PE; ++PI) {
2353        BasicBlock *P = *PI;
2354        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2355            PBI != BI && PBI->isConditional() &&
2356            PBI->getCondition() == BI->getCondition() &&
2357            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2358          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2359          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2360                                              CondIsTrue), P);
2361        } else {
2362          NewPN->addIncoming(BI->getCondition(), P);
2363        }
2364      }
2365
2366      BI->setCondition(NewPN);
2367      return true;
2368    }
2369  }
2370
2371  // If this is a conditional branch in an empty block, and if any
2372  // predecessors is a conditional branch to one of our destinations,
2373  // fold the conditions into logical ops and one cond br.
2374  BasicBlock::iterator BBI = BB->begin();
2375  // Ignore dbg intrinsics.
2376  while (isa<DbgInfoIntrinsic>(BBI))
2377    ++BBI;
2378  if (&*BBI != BI)
2379    return false;
2380
2381
2382  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2383    if (CE->canTrap())
2384      return false;
2385
2386  int PBIOp, BIOp;
2387  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2388    PBIOp = BIOp = 0;
2389  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2390    PBIOp = 0, BIOp = 1;
2391  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2392    PBIOp = 1, BIOp = 0;
2393  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2394    PBIOp = BIOp = 1;
2395  else
2396    return false;
2397
2398  // Check to make sure that the other destination of this branch
2399  // isn't BB itself.  If so, this is an infinite loop that will
2400  // keep getting unwound.
2401  if (PBI->getSuccessor(PBIOp) == BB)
2402    return false;
2403
2404  // Do not perform this transformation if it would require
2405  // insertion of a large number of select instructions. For targets
2406  // without predication/cmovs, this is a big pessimization.
2407  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2408
2409  unsigned NumPhis = 0;
2410  for (BasicBlock::iterator II = CommonDest->begin();
2411       isa<PHINode>(II); ++II, ++NumPhis)
2412    if (NumPhis > 2) // Disable this xform.
2413      return false;
2414
2415  // Finally, if everything is ok, fold the branches to logical ops.
2416  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2417
2418  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2419               << "AND: " << *BI->getParent());
2420
2421
2422  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2423  // branch in it, where one edge (OtherDest) goes back to itself but the other
2424  // exits.  We don't *know* that the program avoids the infinite loop
2425  // (even though that seems likely).  If we do this xform naively, we'll end up
2426  // recursively unpeeling the loop.  Since we know that (after the xform is
2427  // done) that the block *is* infinite if reached, we just make it an obviously
2428  // infinite loop with no cond branch.
2429  if (OtherDest == BB) {
2430    // Insert it at the end of the function, because it's either code,
2431    // or it won't matter if it's hot. :)
2432    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2433                                                  "infloop", BB->getParent());
2434    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2435    OtherDest = InfLoopBlock;
2436  }
2437
2438  DEBUG(dbgs() << *PBI->getParent()->getParent());
2439
2440  // BI may have other predecessors.  Because of this, we leave
2441  // it alone, but modify PBI.
2442
2443  // Make sure we get to CommonDest on True&True directions.
2444  Value *PBICond = PBI->getCondition();
2445  IRBuilder<true, NoFolder> Builder(PBI);
2446  if (PBIOp)
2447    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2448
2449  Value *BICond = BI->getCondition();
2450  if (BIOp)
2451    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2452
2453  // Merge the conditions.
2454  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2455
2456  // Modify PBI to branch on the new condition to the new dests.
2457  PBI->setCondition(Cond);
2458  PBI->setSuccessor(0, CommonDest);
2459  PBI->setSuccessor(1, OtherDest);
2460
2461  // Update branch weight for PBI.
2462  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2463  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2464                                              PredFalseWeight);
2465  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2466                                              SuccFalseWeight);
2467  if (PredHasWeights && SuccHasWeights) {
2468    uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2469    uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2470    uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2471    uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2472    // The weight to CommonDest should be PredCommon * SuccTotal +
2473    //                                    PredOther * SuccCommon.
2474    // The weight to OtherDest should be PredOther * SuccOther.
2475    SmallVector<uint64_t, 2> NewWeights;
2476    NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2477                         PredOther * SuccCommon);
2478    NewWeights.push_back(PredOther * SuccOther);
2479    // Halve the weights if any of them cannot fit in an uint32_t
2480    FitWeights(NewWeights);
2481
2482    SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2483    PBI->setMetadata(LLVMContext::MD_prof,
2484                     MDBuilder(BI->getContext()).
2485                     createBranchWeights(MDWeights));
2486  }
2487
2488  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2489  // block that are identical to the entries for BI's block.
2490  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2491
2492  // We know that the CommonDest already had an edge from PBI to
2493  // it.  If it has PHIs though, the PHIs may have different
2494  // entries for BB and PBI's BB.  If so, insert a select to make
2495  // them agree.
2496  PHINode *PN;
2497  for (BasicBlock::iterator II = CommonDest->begin();
2498       (PN = dyn_cast<PHINode>(II)); ++II) {
2499    Value *BIV = PN->getIncomingValueForBlock(BB);
2500    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2501    Value *PBIV = PN->getIncomingValue(PBBIdx);
2502    if (BIV != PBIV) {
2503      // Insert a select in PBI to pick the right value.
2504      Value *NV = cast<SelectInst>
2505        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2506      PN->setIncomingValue(PBBIdx, NV);
2507    }
2508  }
2509
2510  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2511  DEBUG(dbgs() << *PBI->getParent()->getParent());
2512
2513  // This basic block is probably dead.  We know it has at least
2514  // one fewer predecessor.
2515  return true;
2516}
2517
2518// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2519// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2520// Takes care of updating the successors and removing the old terminator.
2521// Also makes sure not to introduce new successors by assuming that edges to
2522// non-successor TrueBBs and FalseBBs aren't reachable.
2523static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2524                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
2525                                       uint32_t TrueWeight,
2526                                       uint32_t FalseWeight){
2527  // Remove any superfluous successor edges from the CFG.
2528  // First, figure out which successors to preserve.
2529  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2530  // successor.
2531  BasicBlock *KeepEdge1 = TrueBB;
2532  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2533
2534  // Then remove the rest.
2535  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2536    BasicBlock *Succ = OldTerm->getSuccessor(I);
2537    // Make sure only to keep exactly one copy of each edge.
2538    if (Succ == KeepEdge1)
2539      KeepEdge1 = 0;
2540    else if (Succ == KeepEdge2)
2541      KeepEdge2 = 0;
2542    else
2543      Succ->removePredecessor(OldTerm->getParent());
2544  }
2545
2546  IRBuilder<> Builder(OldTerm);
2547  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2548
2549  // Insert an appropriate new terminator.
2550  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2551    if (TrueBB == FalseBB)
2552      // We were only looking for one successor, and it was present.
2553      // Create an unconditional branch to it.
2554      Builder.CreateBr(TrueBB);
2555    else {
2556      // We found both of the successors we were looking for.
2557      // Create a conditional branch sharing the condition of the select.
2558      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2559      if (TrueWeight != FalseWeight)
2560        NewBI->setMetadata(LLVMContext::MD_prof,
2561                           MDBuilder(OldTerm->getContext()).
2562                           createBranchWeights(TrueWeight, FalseWeight));
2563    }
2564  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2565    // Neither of the selected blocks were successors, so this
2566    // terminator must be unreachable.
2567    new UnreachableInst(OldTerm->getContext(), OldTerm);
2568  } else {
2569    // One of the selected values was a successor, but the other wasn't.
2570    // Insert an unconditional branch to the one that was found;
2571    // the edge to the one that wasn't must be unreachable.
2572    if (KeepEdge1 == 0)
2573      // Only TrueBB was found.
2574      Builder.CreateBr(TrueBB);
2575    else
2576      // Only FalseBB was found.
2577      Builder.CreateBr(FalseBB);
2578  }
2579
2580  EraseTerminatorInstAndDCECond(OldTerm);
2581  return true;
2582}
2583
2584// SimplifySwitchOnSelect - Replaces
2585//   (switch (select cond, X, Y)) on constant X, Y
2586// with a branch - conditional if X and Y lead to distinct BBs,
2587// unconditional otherwise.
2588static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2589  // Check for constant integer values in the select.
2590  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2591  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2592  if (!TrueVal || !FalseVal)
2593    return false;
2594
2595  // Find the relevant condition and destinations.
2596  Value *Condition = Select->getCondition();
2597  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2598  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2599
2600  // Get weight for TrueBB and FalseBB.
2601  uint32_t TrueWeight = 0, FalseWeight = 0;
2602  SmallVector<uint64_t, 8> Weights;
2603  bool HasWeights = HasBranchWeights(SI);
2604  if (HasWeights) {
2605    GetBranchWeights(SI, Weights);
2606    if (Weights.size() == 1 + SI->getNumCases()) {
2607      TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2608                                     getSuccessorIndex()];
2609      FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2610                                      getSuccessorIndex()];
2611    }
2612  }
2613
2614  // Perform the actual simplification.
2615  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2616                                    TrueWeight, FalseWeight);
2617}
2618
2619// SimplifyIndirectBrOnSelect - Replaces
2620//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2621//                             blockaddress(@fn, BlockB)))
2622// with
2623//   (br cond, BlockA, BlockB).
2624static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2625  // Check that both operands of the select are block addresses.
2626  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2627  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2628  if (!TBA || !FBA)
2629    return false;
2630
2631  // Extract the actual blocks.
2632  BasicBlock *TrueBB = TBA->getBasicBlock();
2633  BasicBlock *FalseBB = FBA->getBasicBlock();
2634
2635  // Perform the actual simplification.
2636  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2637                                    0, 0);
2638}
2639
2640/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2641/// instruction (a seteq/setne with a constant) as the only instruction in a
2642/// block that ends with an uncond branch.  We are looking for a very specific
2643/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2644/// this case, we merge the first two "or's of icmp" into a switch, but then the
2645/// default value goes to an uncond block with a seteq in it, we get something
2646/// like:
2647///
2648///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2649/// DEFAULT:
2650///   %tmp = icmp eq i8 %A, 92
2651///   br label %end
2652/// end:
2653///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2654///
2655/// We prefer to split the edge to 'end' so that there is a true/false entry to
2656/// the PHI, merging the third icmp into the switch.
2657static bool TryToSimplifyUncondBranchWithICmpInIt(
2658    ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
2659    const DataLayout *TD) {
2660  BasicBlock *BB = ICI->getParent();
2661
2662  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2663  // complex.
2664  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2665
2666  Value *V = ICI->getOperand(0);
2667  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2668
2669  // The pattern we're looking for is where our only predecessor is a switch on
2670  // 'V' and this block is the default case for the switch.  In this case we can
2671  // fold the compared value into the switch to simplify things.
2672  BasicBlock *Pred = BB->getSinglePredecessor();
2673  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2674
2675  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2676  if (SI->getCondition() != V)
2677    return false;
2678
2679  // If BB is reachable on a non-default case, then we simply know the value of
2680  // V in this block.  Substitute it and constant fold the icmp instruction
2681  // away.
2682  if (SI->getDefaultDest() != BB) {
2683    ConstantInt *VVal = SI->findCaseDest(BB);
2684    assert(VVal && "Should have a unique destination value");
2685    ICI->setOperand(0, VVal);
2686
2687    if (Value *V = SimplifyInstruction(ICI, TD)) {
2688      ICI->replaceAllUsesWith(V);
2689      ICI->eraseFromParent();
2690    }
2691    // BB is now empty, so it is likely to simplify away.
2692    return SimplifyCFG(BB, TTI, TD) | true;
2693  }
2694
2695  // Ok, the block is reachable from the default dest.  If the constant we're
2696  // comparing exists in one of the other edges, then we can constant fold ICI
2697  // and zap it.
2698  if (SI->findCaseValue(Cst) != SI->case_default()) {
2699    Value *V;
2700    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2701      V = ConstantInt::getFalse(BB->getContext());
2702    else
2703      V = ConstantInt::getTrue(BB->getContext());
2704
2705    ICI->replaceAllUsesWith(V);
2706    ICI->eraseFromParent();
2707    // BB is now empty, so it is likely to simplify away.
2708    return SimplifyCFG(BB, TTI, TD) | true;
2709  }
2710
2711  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2712  // the block.
2713  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2714  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2715  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2716      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2717    return false;
2718
2719  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2720  // true in the PHI.
2721  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2722  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2723
2724  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2725    std::swap(DefaultCst, NewCst);
2726
2727  // Replace ICI (which is used by the PHI for the default value) with true or
2728  // false depending on if it is EQ or NE.
2729  ICI->replaceAllUsesWith(DefaultCst);
2730  ICI->eraseFromParent();
2731
2732  // Okay, the switch goes to this block on a default value.  Add an edge from
2733  // the switch to the merge point on the compared value.
2734  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2735                                         BB->getParent(), BB);
2736  SmallVector<uint64_t, 8> Weights;
2737  bool HasWeights = HasBranchWeights(SI);
2738  if (HasWeights) {
2739    GetBranchWeights(SI, Weights);
2740    if (Weights.size() == 1 + SI->getNumCases()) {
2741      // Split weight for default case to case for "Cst".
2742      Weights[0] = (Weights[0]+1) >> 1;
2743      Weights.push_back(Weights[0]);
2744
2745      SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2746      SI->setMetadata(LLVMContext::MD_prof,
2747                      MDBuilder(SI->getContext()).
2748                      createBranchWeights(MDWeights));
2749    }
2750  }
2751  SI->addCase(Cst, NewBB);
2752
2753  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2754  Builder.SetInsertPoint(NewBB);
2755  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2756  Builder.CreateBr(SuccBlock);
2757  PHIUse->addIncoming(NewCst, NewBB);
2758  return true;
2759}
2760
2761/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2762/// Check to see if it is branching on an or/and chain of icmp instructions, and
2763/// fold it into a switch instruction if so.
2764static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
2765                                      IRBuilder<> &Builder) {
2766  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2767  if (Cond == 0) return false;
2768
2769
2770  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2771  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2772  // 'setne's and'ed together, collect them.
2773  Value *CompVal = 0;
2774  std::vector<ConstantInt*> Values;
2775  bool TrueWhenEqual = true;
2776  Value *ExtraCase = 0;
2777  unsigned UsedICmps = 0;
2778
2779  if (Cond->getOpcode() == Instruction::Or) {
2780    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2781                                     UsedICmps);
2782  } else if (Cond->getOpcode() == Instruction::And) {
2783    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2784                                     UsedICmps);
2785    TrueWhenEqual = false;
2786  }
2787
2788  // If we didn't have a multiply compared value, fail.
2789  if (CompVal == 0) return false;
2790
2791  // Avoid turning single icmps into a switch.
2792  if (UsedICmps <= 1)
2793    return false;
2794
2795  // There might be duplicate constants in the list, which the switch
2796  // instruction can't handle, remove them now.
2797  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2798  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2799
2800  // If Extra was used, we require at least two switch values to do the
2801  // transformation.  A switch with one value is just an cond branch.
2802  if (ExtraCase && Values.size() < 2) return false;
2803
2804  // TODO: Preserve branch weight metadata, similarly to how
2805  // FoldValueComparisonIntoPredecessors preserves it.
2806
2807  // Figure out which block is which destination.
2808  BasicBlock *DefaultBB = BI->getSuccessor(1);
2809  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2810  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2811
2812  BasicBlock *BB = BI->getParent();
2813
2814  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2815               << " cases into SWITCH.  BB is:\n" << *BB);
2816
2817  // If there are any extra values that couldn't be folded into the switch
2818  // then we evaluate them with an explicit branch first.  Split the block
2819  // right before the condbr to handle it.
2820  if (ExtraCase) {
2821    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2822    // Remove the uncond branch added to the old block.
2823    TerminatorInst *OldTI = BB->getTerminator();
2824    Builder.SetInsertPoint(OldTI);
2825
2826    if (TrueWhenEqual)
2827      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2828    else
2829      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2830
2831    OldTI->eraseFromParent();
2832
2833    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2834    // for the edge we just added.
2835    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2836
2837    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2838          << "\nEXTRABB = " << *BB);
2839    BB = NewBB;
2840  }
2841
2842  Builder.SetInsertPoint(BI);
2843  // Convert pointer to int before we switch.
2844  if (CompVal->getType()->isPointerTy()) {
2845    assert(TD && "Cannot switch on pointer without DataLayout");
2846    CompVal = Builder.CreatePtrToInt(CompVal,
2847                                     TD->getIntPtrType(CompVal->getContext()),
2848                                     "magicptr");
2849  }
2850
2851  // Create the new switch instruction now.
2852  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2853
2854  // Add all of the 'cases' to the switch instruction.
2855  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2856    New->addCase(Values[i], EdgeBB);
2857
2858  // We added edges from PI to the EdgeBB.  As such, if there were any
2859  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2860  // the number of edges added.
2861  for (BasicBlock::iterator BBI = EdgeBB->begin();
2862       isa<PHINode>(BBI); ++BBI) {
2863    PHINode *PN = cast<PHINode>(BBI);
2864    Value *InVal = PN->getIncomingValueForBlock(BB);
2865    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2866      PN->addIncoming(InVal, BB);
2867  }
2868
2869  // Erase the old branch instruction.
2870  EraseTerminatorInstAndDCECond(BI);
2871
2872  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2873  return true;
2874}
2875
2876bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2877  // If this is a trivial landing pad that just continues unwinding the caught
2878  // exception then zap the landing pad, turning its invokes into calls.
2879  BasicBlock *BB = RI->getParent();
2880  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2881  if (RI->getValue() != LPInst)
2882    // Not a landing pad, or the resume is not unwinding the exception that
2883    // caused control to branch here.
2884    return false;
2885
2886  // Check that there are no other instructions except for debug intrinsics.
2887  BasicBlock::iterator I = LPInst, E = RI;
2888  while (++I != E)
2889    if (!isa<DbgInfoIntrinsic>(I))
2890      return false;
2891
2892  // Turn all invokes that unwind here into calls and delete the basic block.
2893  bool InvokeRequiresTableEntry = false;
2894  bool Changed = false;
2895  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2896    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2897
2898    if (II->hasFnAttr(Attribute::UWTable)) {
2899      // Don't remove an `invoke' instruction if the ABI requires an entry into
2900      // the table.
2901      InvokeRequiresTableEntry = true;
2902      continue;
2903    }
2904
2905    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2906
2907    // Insert a call instruction before the invoke.
2908    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2909    Call->takeName(II);
2910    Call->setCallingConv(II->getCallingConv());
2911    Call->setAttributes(II->getAttributes());
2912    Call->setDebugLoc(II->getDebugLoc());
2913
2914    // Anything that used the value produced by the invoke instruction now uses
2915    // the value produced by the call instruction.  Note that we do this even
2916    // for void functions and calls with no uses so that the callgraph edge is
2917    // updated.
2918    II->replaceAllUsesWith(Call);
2919    BB->removePredecessor(II->getParent());
2920
2921    // Insert a branch to the normal destination right before the invoke.
2922    BranchInst::Create(II->getNormalDest(), II);
2923
2924    // Finally, delete the invoke instruction!
2925    II->eraseFromParent();
2926    Changed = true;
2927  }
2928
2929  if (!InvokeRequiresTableEntry)
2930    // The landingpad is now unreachable.  Zap it.
2931    BB->eraseFromParent();
2932
2933  return Changed;
2934}
2935
2936bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2937  BasicBlock *BB = RI->getParent();
2938  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2939
2940  // Find predecessors that end with branches.
2941  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2942  SmallVector<BranchInst*, 8> CondBranchPreds;
2943  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2944    BasicBlock *P = *PI;
2945    TerminatorInst *PTI = P->getTerminator();
2946    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2947      if (BI->isUnconditional())
2948        UncondBranchPreds.push_back(P);
2949      else
2950        CondBranchPreds.push_back(BI);
2951    }
2952  }
2953
2954  // If we found some, do the transformation!
2955  if (!UncondBranchPreds.empty() && DupRet) {
2956    while (!UncondBranchPreds.empty()) {
2957      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2958      DEBUG(dbgs() << "FOLDING: " << *BB
2959            << "INTO UNCOND BRANCH PRED: " << *Pred);
2960      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2961    }
2962
2963    // If we eliminated all predecessors of the block, delete the block now.
2964    if (pred_begin(BB) == pred_end(BB))
2965      // We know there are no successors, so just nuke the block.
2966      BB->eraseFromParent();
2967
2968    return true;
2969  }
2970
2971  // Check out all of the conditional branches going to this return
2972  // instruction.  If any of them just select between returns, change the
2973  // branch itself into a select/return pair.
2974  while (!CondBranchPreds.empty()) {
2975    BranchInst *BI = CondBranchPreds.pop_back_val();
2976
2977    // Check to see if the non-BB successor is also a return block.
2978    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2979        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2980        SimplifyCondBranchToTwoReturns(BI, Builder))
2981      return true;
2982  }
2983  return false;
2984}
2985
2986bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2987  BasicBlock *BB = UI->getParent();
2988
2989  bool Changed = false;
2990
2991  // If there are any instructions immediately before the unreachable that can
2992  // be removed, do so.
2993  while (UI != BB->begin()) {
2994    BasicBlock::iterator BBI = UI;
2995    --BBI;
2996    // Do not delete instructions that can have side effects which might cause
2997    // the unreachable to not be reachable; specifically, calls and volatile
2998    // operations may have this effect.
2999    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3000
3001    if (BBI->mayHaveSideEffects()) {
3002      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
3003        if (SI->isVolatile())
3004          break;
3005      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
3006        if (LI->isVolatile())
3007          break;
3008      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3009        if (RMWI->isVolatile())
3010          break;
3011      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3012        if (CXI->isVolatile())
3013          break;
3014      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3015                 !isa<LandingPadInst>(BBI)) {
3016        break;
3017      }
3018      // Note that deleting LandingPad's here is in fact okay, although it
3019      // involves a bit of subtle reasoning. If this inst is a LandingPad,
3020      // all the predecessors of this block will be the unwind edges of Invokes,
3021      // and we can therefore guarantee this block will be erased.
3022    }
3023
3024    // Delete this instruction (any uses are guaranteed to be dead)
3025    if (!BBI->use_empty())
3026      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3027    BBI->eraseFromParent();
3028    Changed = true;
3029  }
3030
3031  // If the unreachable instruction is the first in the block, take a gander
3032  // at all of the predecessors of this instruction, and simplify them.
3033  if (&BB->front() != UI) return Changed;
3034
3035  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3036  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3037    TerminatorInst *TI = Preds[i]->getTerminator();
3038    IRBuilder<> Builder(TI);
3039    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3040      if (BI->isUnconditional()) {
3041        if (BI->getSuccessor(0) == BB) {
3042          new UnreachableInst(TI->getContext(), TI);
3043          TI->eraseFromParent();
3044          Changed = true;
3045        }
3046      } else {
3047        if (BI->getSuccessor(0) == BB) {
3048          Builder.CreateBr(BI->getSuccessor(1));
3049          EraseTerminatorInstAndDCECond(BI);
3050        } else if (BI->getSuccessor(1) == BB) {
3051          Builder.CreateBr(BI->getSuccessor(0));
3052          EraseTerminatorInstAndDCECond(BI);
3053          Changed = true;
3054        }
3055      }
3056    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3057      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3058           i != e; ++i)
3059        if (i.getCaseSuccessor() == BB) {
3060          BB->removePredecessor(SI->getParent());
3061          SI->removeCase(i);
3062          --i; --e;
3063          Changed = true;
3064        }
3065      // If the default value is unreachable, figure out the most popular
3066      // destination and make it the default.
3067      if (SI->getDefaultDest() == BB) {
3068        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
3069        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3070             i != e; ++i) {
3071          std::pair<unsigned, unsigned> &entry =
3072              Popularity[i.getCaseSuccessor()];
3073          if (entry.first == 0) {
3074            entry.first = 1;
3075            entry.second = i.getCaseIndex();
3076          } else {
3077            entry.first++;
3078          }
3079        }
3080
3081        // Find the most popular block.
3082        unsigned MaxPop = 0;
3083        unsigned MaxIndex = 0;
3084        BasicBlock *MaxBlock = 0;
3085        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
3086             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
3087          if (I->second.first > MaxPop ||
3088              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
3089            MaxPop = I->second.first;
3090            MaxIndex = I->second.second;
3091            MaxBlock = I->first;
3092          }
3093        }
3094        if (MaxBlock) {
3095          // Make this the new default, allowing us to delete any explicit
3096          // edges to it.
3097          SI->setDefaultDest(MaxBlock);
3098          Changed = true;
3099
3100          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
3101          // it.
3102          if (isa<PHINode>(MaxBlock->begin()))
3103            for (unsigned i = 0; i != MaxPop-1; ++i)
3104              MaxBlock->removePredecessor(SI->getParent());
3105
3106          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3107               i != e; ++i)
3108            if (i.getCaseSuccessor() == MaxBlock) {
3109              SI->removeCase(i);
3110              --i; --e;
3111            }
3112        }
3113      }
3114    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3115      if (II->getUnwindDest() == BB) {
3116        // Convert the invoke to a call instruction.  This would be a good
3117        // place to note that the call does not throw though.
3118        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3119        II->removeFromParent();   // Take out of symbol table
3120
3121        // Insert the call now...
3122        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3123        Builder.SetInsertPoint(BI);
3124        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3125                                          Args, II->getName());
3126        CI->setCallingConv(II->getCallingConv());
3127        CI->setAttributes(II->getAttributes());
3128        // If the invoke produced a value, the call does now instead.
3129        II->replaceAllUsesWith(CI);
3130        delete II;
3131        Changed = true;
3132      }
3133    }
3134  }
3135
3136  // If this block is now dead, remove it.
3137  if (pred_begin(BB) == pred_end(BB) &&
3138      BB != &BB->getParent()->getEntryBlock()) {
3139    // We know there are no successors, so just nuke the block.
3140    BB->eraseFromParent();
3141    return true;
3142  }
3143
3144  return Changed;
3145}
3146
3147/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3148/// integer range comparison into a sub, an icmp and a branch.
3149static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3150  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3151
3152  // Make sure all cases point to the same destination and gather the values.
3153  SmallVector<ConstantInt *, 16> Cases;
3154  SwitchInst::CaseIt I = SI->case_begin();
3155  Cases.push_back(I.getCaseValue());
3156  SwitchInst::CaseIt PrevI = I++;
3157  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3158    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3159      return false;
3160    Cases.push_back(I.getCaseValue());
3161  }
3162  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3163
3164  // Sort the case values, then check if they form a range we can transform.
3165  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3166  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3167    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3168      return false;
3169  }
3170
3171  Constant *Offset = ConstantExpr::getNeg(Cases.back());
3172  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3173
3174  Value *Sub = SI->getCondition();
3175  if (!Offset->isNullValue())
3176    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3177  Value *Cmp;
3178  // If NumCases overflowed, then all possible values jump to the successor.
3179  if (NumCases->isNullValue() && SI->getNumCases() != 0)
3180    Cmp = ConstantInt::getTrue(SI->getContext());
3181  else
3182    Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3183  BranchInst *NewBI = Builder.CreateCondBr(
3184      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3185
3186  // Update weight for the newly-created conditional branch.
3187  SmallVector<uint64_t, 8> Weights;
3188  bool HasWeights = HasBranchWeights(SI);
3189  if (HasWeights) {
3190    GetBranchWeights(SI, Weights);
3191    if (Weights.size() == 1 + SI->getNumCases()) {
3192      // Combine all weights for the cases to be the true weight of NewBI.
3193      // We assume that the sum of all weights for a Terminator can fit into 32
3194      // bits.
3195      uint32_t NewTrueWeight = 0;
3196      for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3197        NewTrueWeight += (uint32_t)Weights[I];
3198      NewBI->setMetadata(LLVMContext::MD_prof,
3199                         MDBuilder(SI->getContext()).
3200                         createBranchWeights(NewTrueWeight,
3201                                             (uint32_t)Weights[0]));
3202    }
3203  }
3204
3205  // Prune obsolete incoming values off the successor's PHI nodes.
3206  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3207       isa<PHINode>(BBI); ++BBI) {
3208    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3209      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3210  }
3211  SI->eraseFromParent();
3212
3213  return true;
3214}
3215
3216/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3217/// and use it to remove dead cases.
3218static bool EliminateDeadSwitchCases(SwitchInst *SI) {
3219  Value *Cond = SI->getCondition();
3220  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
3221  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3222  ComputeMaskedBits(Cond, KnownZero, KnownOne);
3223
3224  // Gather dead cases.
3225  SmallVector<ConstantInt*, 8> DeadCases;
3226  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3227    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3228        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3229      DeadCases.push_back(I.getCaseValue());
3230      DEBUG(dbgs() << "SimplifyCFG: switch case '"
3231                   << I.getCaseValue() << "' is dead.\n");
3232    }
3233  }
3234
3235  SmallVector<uint64_t, 8> Weights;
3236  bool HasWeight = HasBranchWeights(SI);
3237  if (HasWeight) {
3238    GetBranchWeights(SI, Weights);
3239    HasWeight = (Weights.size() == 1 + SI->getNumCases());
3240  }
3241
3242  // Remove dead cases from the switch.
3243  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3244    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3245    assert(Case != SI->case_default() &&
3246           "Case was not found. Probably mistake in DeadCases forming.");
3247    if (HasWeight) {
3248      std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3249      Weights.pop_back();
3250    }
3251
3252    // Prune unused values from PHI nodes.
3253    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3254    SI->removeCase(Case);
3255  }
3256  if (HasWeight) {
3257    SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3258    SI->setMetadata(LLVMContext::MD_prof,
3259                    MDBuilder(SI->getParent()->getContext()).
3260                    createBranchWeights(MDWeights));
3261  }
3262
3263  return !DeadCases.empty();
3264}
3265
3266/// FindPHIForConditionForwarding - If BB would be eligible for simplification
3267/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3268/// by an unconditional branch), look at the phi node for BB in the successor
3269/// block and see if the incoming value is equal to CaseValue. If so, return
3270/// the phi node, and set PhiIndex to BB's index in the phi node.
3271static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3272                                              BasicBlock *BB,
3273                                              int *PhiIndex) {
3274  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3275    return NULL; // BB must be empty to be a candidate for simplification.
3276  if (!BB->getSinglePredecessor())
3277    return NULL; // BB must be dominated by the switch.
3278
3279  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3280  if (!Branch || !Branch->isUnconditional())
3281    return NULL; // Terminator must be unconditional branch.
3282
3283  BasicBlock *Succ = Branch->getSuccessor(0);
3284
3285  BasicBlock::iterator I = Succ->begin();
3286  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3287    int Idx = PHI->getBasicBlockIndex(BB);
3288    assert(Idx >= 0 && "PHI has no entry for predecessor?");
3289
3290    Value *InValue = PHI->getIncomingValue(Idx);
3291    if (InValue != CaseValue) continue;
3292
3293    *PhiIndex = Idx;
3294    return PHI;
3295  }
3296
3297  return NULL;
3298}
3299
3300/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3301/// instruction to a phi node dominated by the switch, if that would mean that
3302/// some of the destination blocks of the switch can be folded away.
3303/// Returns true if a change is made.
3304static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3305  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3306  ForwardingNodesMap ForwardingNodes;
3307
3308  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3309    ConstantInt *CaseValue = I.getCaseValue();
3310    BasicBlock *CaseDest = I.getCaseSuccessor();
3311
3312    int PhiIndex;
3313    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3314                                                 &PhiIndex);
3315    if (!PHI) continue;
3316
3317    ForwardingNodes[PHI].push_back(PhiIndex);
3318  }
3319
3320  bool Changed = false;
3321
3322  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3323       E = ForwardingNodes.end(); I != E; ++I) {
3324    PHINode *Phi = I->first;
3325    SmallVector<int,4> &Indexes = I->second;
3326
3327    if (Indexes.size() < 2) continue;
3328
3329    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3330      Phi->setIncomingValue(Indexes[I], SI->getCondition());
3331    Changed = true;
3332  }
3333
3334  return Changed;
3335}
3336
3337/// ValidLookupTableConstant - Return true if the backend will be able to handle
3338/// initializing an array of constants like C.
3339static bool ValidLookupTableConstant(Constant *C) {
3340  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3341    return CE->isGEPWithNoNotionalOverIndexing();
3342
3343  return isa<ConstantFP>(C) ||
3344      isa<ConstantInt>(C) ||
3345      isa<ConstantPointerNull>(C) ||
3346      isa<GlobalValue>(C) ||
3347      isa<UndefValue>(C);
3348}
3349
3350/// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3351/// its constant value in ConstantPool, returning 0 if it's not there.
3352static Constant *LookupConstant(Value *V,
3353                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3354  if (Constant *C = dyn_cast<Constant>(V))
3355    return C;
3356  return ConstantPool.lookup(V);
3357}
3358
3359/// ConstantFold - Try to fold instruction I into a constant. This works for
3360/// simple instructions such as binary operations where both operands are
3361/// constant or can be replaced by constants from the ConstantPool. Returns the
3362/// resulting constant on success, 0 otherwise.
3363static Constant *ConstantFold(Instruction *I,
3364                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3365  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
3366    Constant *A = LookupConstant(BO->getOperand(0), ConstantPool);
3367    if (!A)
3368      return 0;
3369    Constant *B = LookupConstant(BO->getOperand(1), ConstantPool);
3370    if (!B)
3371      return 0;
3372    return ConstantExpr::get(BO->getOpcode(), A, B);
3373  }
3374
3375  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
3376    Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
3377    if (!A)
3378      return 0;
3379    Constant *B = LookupConstant(I->getOperand(1), ConstantPool);
3380    if (!B)
3381      return 0;
3382    return ConstantExpr::getCompare(Cmp->getPredicate(), A, B);
3383  }
3384
3385  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3386    Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3387    if (!A)
3388      return 0;
3389    if (A->isAllOnesValue())
3390      return LookupConstant(Select->getTrueValue(), ConstantPool);
3391    if (A->isNullValue())
3392      return LookupConstant(Select->getFalseValue(), ConstantPool);
3393    return 0;
3394  }
3395
3396  if (CastInst *Cast = dyn_cast<CastInst>(I)) {
3397    Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
3398    if (!A)
3399      return 0;
3400    return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy());
3401  }
3402
3403  return 0;
3404}
3405
3406/// GetCaseResults - Try to determine the resulting constant values in phi nodes
3407/// at the common destination basic block, *CommonDest, for one of the case
3408/// destionations CaseDest corresponding to value CaseVal (0 for the default
3409/// case), of a switch instruction SI.
3410static bool GetCaseResults(SwitchInst *SI,
3411                           ConstantInt *CaseVal,
3412                           BasicBlock *CaseDest,
3413                           BasicBlock **CommonDest,
3414                           SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
3415  // The block from which we enter the common destination.
3416  BasicBlock *Pred = SI->getParent();
3417
3418  // If CaseDest is empty except for some side-effect free instructions through
3419  // which we can constant-propagate the CaseVal, continue to its successor.
3420  SmallDenseMap<Value*, Constant*> ConstantPool;
3421  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3422  for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3423       ++I) {
3424    if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3425      // If the terminator is a simple branch, continue to the next block.
3426      if (T->getNumSuccessors() != 1)
3427        return false;
3428      Pred = CaseDest;
3429      CaseDest = T->getSuccessor(0);
3430    } else if (isa<DbgInfoIntrinsic>(I)) {
3431      // Skip debug intrinsic.
3432      continue;
3433    } else if (Constant *C = ConstantFold(I, ConstantPool)) {
3434      // Instruction is side-effect free and constant.
3435      ConstantPool.insert(std::make_pair(I, C));
3436    } else {
3437      break;
3438    }
3439  }
3440
3441  // If we did not have a CommonDest before, use the current one.
3442  if (!*CommonDest)
3443    *CommonDest = CaseDest;
3444  // If the destination isn't the common one, abort.
3445  if (CaseDest != *CommonDest)
3446    return false;
3447
3448  // Get the values for this case from phi nodes in the destination block.
3449  BasicBlock::iterator I = (*CommonDest)->begin();
3450  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3451    int Idx = PHI->getBasicBlockIndex(Pred);
3452    if (Idx == -1)
3453      continue;
3454
3455    Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3456                                        ConstantPool);
3457    if (!ConstVal)
3458      return false;
3459
3460    // Note: If the constant comes from constant-propagating the case value
3461    // through the CaseDest basic block, it will be safe to remove the
3462    // instructions in that block. They cannot be used (except in the phi nodes
3463    // we visit) outside CaseDest, because that block does not dominate its
3464    // successor. If it did, we would not be in this phi node.
3465
3466    // Be conservative about which kinds of constants we support.
3467    if (!ValidLookupTableConstant(ConstVal))
3468      return false;
3469
3470    Res.push_back(std::make_pair(PHI, ConstVal));
3471  }
3472
3473  return true;
3474}
3475
3476namespace {
3477  /// SwitchLookupTable - This class represents a lookup table that can be used
3478  /// to replace a switch.
3479  class SwitchLookupTable {
3480  public:
3481    /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3482    /// with the contents of Values, using DefaultValue to fill any holes in the
3483    /// table.
3484    SwitchLookupTable(Module &M,
3485                      uint64_t TableSize,
3486                      ConstantInt *Offset,
3487               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3488                      Constant *DefaultValue,
3489                      const DataLayout *TD);
3490
3491    /// BuildLookup - Build instructions with Builder to retrieve the value at
3492    /// the position given by Index in the lookup table.
3493    Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3494
3495    /// WouldFitInRegister - Return true if a table with TableSize elements of
3496    /// type ElementType would fit in a target-legal register.
3497    static bool WouldFitInRegister(const DataLayout *TD,
3498                                   uint64_t TableSize,
3499                                   const Type *ElementType);
3500
3501  private:
3502    // Depending on the contents of the table, it can be represented in
3503    // different ways.
3504    enum {
3505      // For tables where each element contains the same value, we just have to
3506      // store that single value and return it for each lookup.
3507      SingleValueKind,
3508
3509      // For small tables with integer elements, we can pack them into a bitmap
3510      // that fits into a target-legal register. Values are retrieved by
3511      // shift and mask operations.
3512      BitMapKind,
3513
3514      // The table is stored as an array of values. Values are retrieved by load
3515      // instructions from the table.
3516      ArrayKind
3517    } Kind;
3518
3519    // For SingleValueKind, this is the single value.
3520    Constant *SingleValue;
3521
3522    // For BitMapKind, this is the bitmap.
3523    ConstantInt *BitMap;
3524    IntegerType *BitMapElementTy;
3525
3526    // For ArrayKind, this is the array.
3527    GlobalVariable *Array;
3528  };
3529}
3530
3531SwitchLookupTable::SwitchLookupTable(Module &M,
3532                                     uint64_t TableSize,
3533                                     ConstantInt *Offset,
3534               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3535                                     Constant *DefaultValue,
3536                                     const DataLayout *TD)
3537    : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) {
3538  assert(Values.size() && "Can't build lookup table without values!");
3539  assert(TableSize >= Values.size() && "Can't fit values in table!");
3540
3541  // If all values in the table are equal, this is that value.
3542  SingleValue = Values.begin()->second;
3543
3544  // Build up the table contents.
3545  SmallVector<Constant*, 64> TableContents(TableSize);
3546  for (size_t I = 0, E = Values.size(); I != E; ++I) {
3547    ConstantInt *CaseVal = Values[I].first;
3548    Constant *CaseRes = Values[I].second;
3549    assert(CaseRes->getType() == DefaultValue->getType());
3550
3551    uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3552                   .getLimitedValue();
3553    TableContents[Idx] = CaseRes;
3554
3555    if (CaseRes != SingleValue)
3556      SingleValue = 0;
3557  }
3558
3559  // Fill in any holes in the table with the default result.
3560  if (Values.size() < TableSize) {
3561    for (uint64_t I = 0; I < TableSize; ++I) {
3562      if (!TableContents[I])
3563        TableContents[I] = DefaultValue;
3564    }
3565
3566    if (DefaultValue != SingleValue)
3567      SingleValue = 0;
3568  }
3569
3570  // If each element in the table contains the same value, we only need to store
3571  // that single value.
3572  if (SingleValue) {
3573    Kind = SingleValueKind;
3574    return;
3575  }
3576
3577  // If the type is integer and the table fits in a register, build a bitmap.
3578  if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
3579    IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
3580    APInt TableInt(TableSize * IT->getBitWidth(), 0);
3581    for (uint64_t I = TableSize; I > 0; --I) {
3582      TableInt <<= IT->getBitWidth();
3583      // Insert values into the bitmap. Undef values are set to zero.
3584      if (!isa<UndefValue>(TableContents[I - 1])) {
3585        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3586        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3587      }
3588    }
3589    BitMap = ConstantInt::get(M.getContext(), TableInt);
3590    BitMapElementTy = IT;
3591    Kind = BitMapKind;
3592    ++NumBitMaps;
3593    return;
3594  }
3595
3596  // Store the table in an array.
3597  ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
3598  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3599
3600  Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3601                             GlobalVariable::PrivateLinkage,
3602                             Initializer,
3603                             "switch.table");
3604  Array->setUnnamedAddr(true);
3605  Kind = ArrayKind;
3606}
3607
3608Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3609  switch (Kind) {
3610    case SingleValueKind:
3611      return SingleValue;
3612    case BitMapKind: {
3613      // Type of the bitmap (e.g. i59).
3614      IntegerType *MapTy = BitMap->getType();
3615
3616      // Cast Index to the same type as the bitmap.
3617      // Note: The Index is <= the number of elements in the table, so
3618      // truncating it to the width of the bitmask is safe.
3619      Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3620
3621      // Multiply the shift amount by the element width.
3622      ShiftAmt = Builder.CreateMul(ShiftAmt,
3623                      ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3624                                   "switch.shiftamt");
3625
3626      // Shift down.
3627      Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3628                                              "switch.downshift");
3629      // Mask off.
3630      return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3631                                 "switch.masked");
3632    }
3633    case ArrayKind: {
3634      Value *GEPIndices[] = { Builder.getInt32(0), Index };
3635      Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3636                                             "switch.gep");
3637      return Builder.CreateLoad(GEP, "switch.load");
3638    }
3639  }
3640  llvm_unreachable("Unknown lookup table kind!");
3641}
3642
3643bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
3644                                           uint64_t TableSize,
3645                                           const Type *ElementType) {
3646  if (!TD)
3647    return false;
3648  const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3649  if (!IT)
3650    return false;
3651  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3652  // are <= 15, we could try to narrow the type.
3653
3654  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3655  if (TableSize >= UINT_MAX/IT->getBitWidth())
3656    return false;
3657  return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
3658}
3659
3660/// ShouldBuildLookupTable - Determine whether a lookup table should be built
3661/// for this switch, based on the number of caes, size of the table and the
3662/// types of the results.
3663static bool ShouldBuildLookupTable(SwitchInst *SI,
3664                                   uint64_t TableSize,
3665                                   const TargetTransformInfo &TTI,
3666                                   const DataLayout *TD,
3667                            const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3668  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3669    return false; // TableSize overflowed, or mul below might overflow.
3670
3671  bool AllTablesFitInRegister = true;
3672  bool HasIllegalType = false;
3673  for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
3674       E = ResultTypes.end(); I != E; ++I) {
3675    Type *Ty = I->second;
3676
3677    // Saturate this flag to true.
3678    HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3679
3680    // Saturate this flag to false.
3681    AllTablesFitInRegister = AllTablesFitInRegister &&
3682      SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
3683
3684    // If both flags saturate, we're done. NOTE: This *only* works with
3685    // saturating flags, and all flags have to saturate first due to the
3686    // non-deterministic behavior of iterating over a dense map.
3687    if (HasIllegalType && !AllTablesFitInRegister)
3688      break;
3689  }
3690
3691  // If each table would fit in a register, we should build it anyway.
3692  if (AllTablesFitInRegister)
3693    return true;
3694
3695  // Don't build a table that doesn't fit in-register if it has illegal types.
3696  if (HasIllegalType)
3697    return false;
3698
3699  // The table density should be at least 40%. This is the same criterion as for
3700  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3701  // FIXME: Find the best cut-off.
3702  return SI->getNumCases() * 10 >= TableSize * 4;
3703}
3704
3705/// SwitchToLookupTable - If the switch is only used to initialize one or more
3706/// phi nodes in a common successor block with different constant values,
3707/// replace the switch with lookup tables.
3708static bool SwitchToLookupTable(SwitchInst *SI,
3709                                IRBuilder<> &Builder,
3710                                const TargetTransformInfo &TTI,
3711                                const DataLayout* TD) {
3712  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3713
3714  // Only build lookup table when we have a target that supports it.
3715  if (!TTI.shouldBuildLookupTables())
3716    return false;
3717
3718  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3719  // split off a dense part and build a lookup table for that.
3720
3721  // FIXME: This creates arrays of GEPs to constant strings, which means each
3722  // GEP needs a runtime relocation in PIC code. We should just build one big
3723  // string and lookup indices into that.
3724
3725  // Ignore the switch if the number of cases is too small.
3726  // This is similar to the check when building jump tables in
3727  // SelectionDAGBuilder::handleJTSwitchCase.
3728  // FIXME: Determine the best cut-off.
3729  if (SI->getNumCases() < 4)
3730    return false;
3731
3732  // Figure out the corresponding result for each case value and phi node in the
3733  // common destination, as well as the the min and max case values.
3734  assert(SI->case_begin() != SI->case_end());
3735  SwitchInst::CaseIt CI = SI->case_begin();
3736  ConstantInt *MinCaseVal = CI.getCaseValue();
3737  ConstantInt *MaxCaseVal = CI.getCaseValue();
3738
3739  BasicBlock *CommonDest = 0;
3740  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3741  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3742  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3743  SmallDenseMap<PHINode*, Type*> ResultTypes;
3744  SmallVector<PHINode*, 4> PHIs;
3745
3746  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3747    ConstantInt *CaseVal = CI.getCaseValue();
3748    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3749      MinCaseVal = CaseVal;
3750    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3751      MaxCaseVal = CaseVal;
3752
3753    // Resulting value at phi nodes for this case value.
3754    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3755    ResultsTy Results;
3756    if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
3757                        Results))
3758      return false;
3759
3760    // Append the result from this case to the list for each phi.
3761    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3762      if (!ResultLists.count(I->first))
3763        PHIs.push_back(I->first);
3764      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3765    }
3766  }
3767
3768  // Get the resulting values for the default case.
3769  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3770  if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
3771                      DefaultResultsList))
3772    return false;
3773  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3774    PHINode *PHI = DefaultResultsList[I].first;
3775    Constant *Result = DefaultResultsList[I].second;
3776    DefaultResults[PHI] = Result;
3777    ResultTypes[PHI] = Result->getType();
3778  }
3779
3780  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3781  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3782  if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
3783    return false;
3784
3785  // Create the BB that does the lookups.
3786  Module &Mod = *CommonDest->getParent()->getParent();
3787  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3788                                            "switch.lookup",
3789                                            CommonDest->getParent(),
3790                                            CommonDest);
3791
3792  // Check whether the condition value is within the case range, and branch to
3793  // the new BB.
3794  Builder.SetInsertPoint(SI);
3795  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3796                                        "switch.tableidx");
3797  Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3798      MinCaseVal->getType(), TableSize));
3799  Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3800
3801  // Populate the BB that does the lookups.
3802  Builder.SetInsertPoint(LookupBB);
3803  bool ReturnedEarly = false;
3804  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3805    PHINode *PHI = PHIs[I];
3806
3807    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
3808                            DefaultResults[PHI], TD);
3809
3810    Value *Result = Table.BuildLookup(TableIndex, Builder);
3811
3812    // If the result is used to return immediately from the function, we want to
3813    // do that right here.
3814    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
3815        *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
3816      Builder.CreateRet(Result);
3817      ReturnedEarly = true;
3818      break;
3819    }
3820
3821    PHI->addIncoming(Result, LookupBB);
3822  }
3823
3824  if (!ReturnedEarly)
3825    Builder.CreateBr(CommonDest);
3826
3827  // Remove the switch.
3828  for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
3829    BasicBlock *Succ = SI->getSuccessor(i);
3830    if (Succ == SI->getDefaultDest()) continue;
3831    Succ->removePredecessor(SI->getParent());
3832  }
3833  SI->eraseFromParent();
3834
3835  ++NumLookupTables;
3836  return true;
3837}
3838
3839bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3840  BasicBlock *BB = SI->getParent();
3841
3842  if (isValueEqualityComparison(SI)) {
3843    // If we only have one predecessor, and if it is a branch on this value,
3844    // see if that predecessor totally determines the outcome of this switch.
3845    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3846      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3847        return SimplifyCFG(BB, TTI, TD) | true;
3848
3849    Value *Cond = SI->getCondition();
3850    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3851      if (SimplifySwitchOnSelect(SI, Select))
3852        return SimplifyCFG(BB, TTI, TD) | true;
3853
3854    // If the block only contains the switch, see if we can fold the block
3855    // away into any preds.
3856    BasicBlock::iterator BBI = BB->begin();
3857    // Ignore dbg intrinsics.
3858    while (isa<DbgInfoIntrinsic>(BBI))
3859      ++BBI;
3860    if (SI == &*BBI)
3861      if (FoldValueComparisonIntoPredecessors(SI, Builder))
3862        return SimplifyCFG(BB, TTI, TD) | true;
3863  }
3864
3865  // Try to transform the switch into an icmp and a branch.
3866  if (TurnSwitchRangeIntoICmp(SI, Builder))
3867    return SimplifyCFG(BB, TTI, TD) | true;
3868
3869  // Remove unreachable cases.
3870  if (EliminateDeadSwitchCases(SI))
3871    return SimplifyCFG(BB, TTI, TD) | true;
3872
3873  if (ForwardSwitchConditionToPHI(SI))
3874    return SimplifyCFG(BB, TTI, TD) | true;
3875
3876  if (SwitchToLookupTable(SI, Builder, TTI, TD))
3877    return SimplifyCFG(BB, TTI, TD) | true;
3878
3879  return false;
3880}
3881
3882bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3883  BasicBlock *BB = IBI->getParent();
3884  bool Changed = false;
3885
3886  // Eliminate redundant destinations.
3887  SmallPtrSet<Value *, 8> Succs;
3888  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3889    BasicBlock *Dest = IBI->getDestination(i);
3890    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3891      Dest->removePredecessor(BB);
3892      IBI->removeDestination(i);
3893      --i; --e;
3894      Changed = true;
3895    }
3896  }
3897
3898  if (IBI->getNumDestinations() == 0) {
3899    // If the indirectbr has no successors, change it to unreachable.
3900    new UnreachableInst(IBI->getContext(), IBI);
3901    EraseTerminatorInstAndDCECond(IBI);
3902    return true;
3903  }
3904
3905  if (IBI->getNumDestinations() == 1) {
3906    // If the indirectbr has one successor, change it to a direct branch.
3907    BranchInst::Create(IBI->getDestination(0), IBI);
3908    EraseTerminatorInstAndDCECond(IBI);
3909    return true;
3910  }
3911
3912  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3913    if (SimplifyIndirectBrOnSelect(IBI, SI))
3914      return SimplifyCFG(BB, TTI, TD) | true;
3915  }
3916  return Changed;
3917}
3918
3919bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3920  BasicBlock *BB = BI->getParent();
3921
3922  if (SinkCommon && SinkThenElseCodeToEnd(BI))
3923    return true;
3924
3925  // If the Terminator is the only non-phi instruction, simplify the block.
3926  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3927  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3928      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3929    return true;
3930
3931  // If the only instruction in the block is a seteq/setne comparison
3932  // against a constant, try to simplify the block.
3933  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3934    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3935      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3936        ;
3937      if (I->isTerminator() &&
3938          TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
3939        return true;
3940    }
3941
3942  // If this basic block is ONLY a compare and a branch, and if a predecessor
3943  // branches to us and our successor, fold the comparison into the
3944  // predecessor and use logical operations to update the incoming value
3945  // for PHI nodes in common successor.
3946  if (FoldBranchToCommonDest(BI))
3947    return SimplifyCFG(BB, TTI, TD) | true;
3948  return false;
3949}
3950
3951
3952bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3953  BasicBlock *BB = BI->getParent();
3954
3955  // Conditional branch
3956  if (isValueEqualityComparison(BI)) {
3957    // If we only have one predecessor, and if it is a branch on this value,
3958    // see if that predecessor totally determines the outcome of this
3959    // switch.
3960    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3961      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3962        return SimplifyCFG(BB, TTI, TD) | true;
3963
3964    // This block must be empty, except for the setcond inst, if it exists.
3965    // Ignore dbg intrinsics.
3966    BasicBlock::iterator I = BB->begin();
3967    // Ignore dbg intrinsics.
3968    while (isa<DbgInfoIntrinsic>(I))
3969      ++I;
3970    if (&*I == BI) {
3971      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3972        return SimplifyCFG(BB, TTI, TD) | true;
3973    } else if (&*I == cast<Instruction>(BI->getCondition())){
3974      ++I;
3975      // Ignore dbg intrinsics.
3976      while (isa<DbgInfoIntrinsic>(I))
3977        ++I;
3978      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3979        return SimplifyCFG(BB, TTI, TD) | true;
3980    }
3981  }
3982
3983  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3984  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3985    return true;
3986
3987  // If this basic block is ONLY a compare and a branch, and if a predecessor
3988  // branches to us and one of our successors, fold the comparison into the
3989  // predecessor and use logical operations to pick the right destination.
3990  if (FoldBranchToCommonDest(BI))
3991    return SimplifyCFG(BB, TTI, TD) | true;
3992
3993  // We have a conditional branch to two blocks that are only reachable
3994  // from BI.  We know that the condbr dominates the two blocks, so see if
3995  // there is any identical code in the "then" and "else" blocks.  If so, we
3996  // can hoist it up to the branching block.
3997  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3998    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3999      if (HoistThenElseCodeToIf(BI))
4000        return SimplifyCFG(BB, TTI, TD) | true;
4001    } else {
4002      // If Successor #1 has multiple preds, we may be able to conditionally
4003      // execute Successor #0 if it branches to successor #1.
4004      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
4005      if (Succ0TI->getNumSuccessors() == 1 &&
4006          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
4007        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
4008          return SimplifyCFG(BB, TTI, TD) | true;
4009    }
4010  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
4011    // If Successor #0 has multiple preds, we may be able to conditionally
4012    // execute Successor #1 if it branches to successor #0.
4013    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
4014    if (Succ1TI->getNumSuccessors() == 1 &&
4015        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
4016      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
4017        return SimplifyCFG(BB, TTI, TD) | true;
4018  }
4019
4020  // If this is a branch on a phi node in the current block, thread control
4021  // through this block if any PHI node entries are constants.
4022  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4023    if (PN->getParent() == BI->getParent())
4024      if (FoldCondBranchOnPHI(BI, TD))
4025        return SimplifyCFG(BB, TTI, TD) | true;
4026
4027  // Scan predecessor blocks for conditional branches.
4028  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4029    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4030      if (PBI != BI && PBI->isConditional())
4031        if (SimplifyCondBranchToCondBranch(PBI, BI))
4032          return SimplifyCFG(BB, TTI, TD) | true;
4033
4034  return false;
4035}
4036
4037/// Check if passing a value to an instruction will cause undefined behavior.
4038static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4039  Constant *C = dyn_cast<Constant>(V);
4040  if (!C)
4041    return false;
4042
4043  if (I->use_empty())
4044    return false;
4045
4046  if (C->isNullValue()) {
4047    // Only look at the first use, avoid hurting compile time with long uselists
4048    User *Use = *I->use_begin();
4049
4050    // Now make sure that there are no instructions in between that can alter
4051    // control flow (eg. calls)
4052    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4053      if (i == I->getParent()->end() || i->mayHaveSideEffects())
4054        return false;
4055
4056    // Look through GEPs. A load from a GEP derived from NULL is still undefined
4057    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4058      if (GEP->getPointerOperand() == I)
4059        return passingValueIsAlwaysUndefined(V, GEP);
4060
4061    // Look through bitcasts.
4062    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4063      return passingValueIsAlwaysUndefined(V, BC);
4064
4065    // Load from null is undefined.
4066    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4067      if (!LI->isVolatile())
4068        return LI->getPointerAddressSpace() == 0;
4069
4070    // Store to null is undefined.
4071    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4072      if (!SI->isVolatile())
4073        return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4074  }
4075  return false;
4076}
4077
4078/// If BB has an incoming value that will always trigger undefined behavior
4079/// (eg. null pointer dereference), remove the branch leading here.
4080static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
4081  for (BasicBlock::iterator i = BB->begin();
4082       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4083    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4084      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
4085        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
4086        IRBuilder<> Builder(T);
4087        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4088          BB->removePredecessor(PHI->getIncomingBlock(i));
4089          // Turn uncoditional branches into unreachables and remove the dead
4090          // destination from conditional branches.
4091          if (BI->isUnconditional())
4092            Builder.CreateUnreachable();
4093          else
4094            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4095                                                         BI->getSuccessor(0));
4096          BI->eraseFromParent();
4097          return true;
4098        }
4099        // TODO: SwitchInst.
4100      }
4101
4102  return false;
4103}
4104
4105bool SimplifyCFGOpt::run(BasicBlock *BB) {
4106  bool Changed = false;
4107
4108  assert(BB && BB->getParent() && "Block not embedded in function!");
4109  assert(BB->getTerminator() && "Degenerate basic block encountered!");
4110
4111  // Remove basic blocks that have no predecessors (except the entry block)...
4112  // or that just have themself as a predecessor.  These are unreachable.
4113  if ((pred_begin(BB) == pred_end(BB) &&
4114       BB != &BB->getParent()->getEntryBlock()) ||
4115      BB->getSinglePredecessor() == BB) {
4116    DEBUG(dbgs() << "Removing BB: \n" << *BB);
4117    DeleteDeadBlock(BB);
4118    return true;
4119  }
4120
4121  // Check to see if we can constant propagate this terminator instruction
4122  // away...
4123  Changed |= ConstantFoldTerminator(BB, true);
4124
4125  // Check for and eliminate duplicate PHI nodes in this block.
4126  Changed |= EliminateDuplicatePHINodes(BB);
4127
4128  // Check for and remove branches that will always cause undefined behavior.
4129  Changed |= removeUndefIntroducingPredecessor(BB);
4130
4131  // Merge basic blocks into their predecessor if there is only one distinct
4132  // pred, and if there is only one distinct successor of the predecessor, and
4133  // if there are no PHI nodes.
4134  //
4135  if (MergeBlockIntoPredecessor(BB))
4136    return true;
4137
4138  IRBuilder<> Builder(BB);
4139
4140  // If there is a trivial two-entry PHI node in this basic block, and we can
4141  // eliminate it, do so now.
4142  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4143    if (PN->getNumIncomingValues() == 2)
4144      Changed |= FoldTwoEntryPHINode(PN, TD);
4145
4146  Builder.SetInsertPoint(BB->getTerminator());
4147  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4148    if (BI->isUnconditional()) {
4149      if (SimplifyUncondBranch(BI, Builder)) return true;
4150    } else {
4151      if (SimplifyCondBranch(BI, Builder)) return true;
4152    }
4153  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4154    if (SimplifyReturn(RI, Builder)) return true;
4155  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4156    if (SimplifyResume(RI, Builder)) return true;
4157  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4158    if (SimplifySwitch(SI, Builder)) return true;
4159  } else if (UnreachableInst *UI =
4160               dyn_cast<UnreachableInst>(BB->getTerminator())) {
4161    if (SimplifyUnreachable(UI)) return true;
4162  } else if (IndirectBrInst *IBI =
4163               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4164    if (SimplifyIndirectBr(IBI)) return true;
4165  }
4166
4167  return Changed;
4168}
4169
4170/// SimplifyCFG - This function is used to do simplification of a CFG.  For
4171/// example, it adjusts branches to branches to eliminate the extra hop, it
4172/// eliminates unreachable basic blocks, and does other "peephole" optimization
4173/// of the CFG.  It returns true if a modification was made.
4174///
4175bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4176                       const DataLayout *TD) {
4177  return SimplifyCFGOpt(TTI, TD).run(BB);
4178}
4179