SimplifyCFG.cpp revision 43a8241b65b70ded3a87fb26852719633908a1e4
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Type.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Support/CFG.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Transforms/Utils/BasicBlockUtils.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/Statistic.h"
31#include <algorithm>
32#include <functional>
33#include <set>
34#include <map>
35using namespace llvm;
36
37STATISTIC(NumSpeculations, "Number of speculative executed instructions");
38
39/// SafeToMergeTerminators - Return true if it is safe to merge these two
40/// terminator instructions together.
41///
42static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
43  if (SI1 == SI2) return false;  // Can't merge with self!
44
45  // It is not safe to merge these two switch instructions if they have a common
46  // successor, and if that successor has a PHI node, and if *that* PHI node has
47  // conflicting incoming values from the two switch blocks.
48  BasicBlock *SI1BB = SI1->getParent();
49  BasicBlock *SI2BB = SI2->getParent();
50  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
51
52  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
53    if (SI1Succs.count(*I))
54      for (BasicBlock::iterator BBI = (*I)->begin();
55           isa<PHINode>(BBI); ++BBI) {
56        PHINode *PN = cast<PHINode>(BBI);
57        if (PN->getIncomingValueForBlock(SI1BB) !=
58            PN->getIncomingValueForBlock(SI2BB))
59          return false;
60      }
61
62  return true;
63}
64
65/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
66/// now be entries in it from the 'NewPred' block.  The values that will be
67/// flowing into the PHI nodes will be the same as those coming in from
68/// ExistPred, an existing predecessor of Succ.
69static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
70                                  BasicBlock *ExistPred) {
71  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
72         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
73  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
74
75  PHINode *PN;
76  for (BasicBlock::iterator I = Succ->begin();
77       (PN = dyn_cast<PHINode>(I)); ++I)
78    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
79}
80
81
82/// GetIfCondition - Given a basic block (BB) with two predecessors (and
83/// presumably PHI nodes in it), check to see if the merge at this block is due
84/// to an "if condition".  If so, return the boolean condition that determines
85/// which entry into BB will be taken.  Also, return by references the block
86/// that will be entered from if the condition is true, and the block that will
87/// be entered if the condition is false.
88///
89///
90static Value *GetIfCondition(BasicBlock *BB,
91                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
92  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
93         "Function can only handle blocks with 2 predecessors!");
94  BasicBlock *Pred1 = *pred_begin(BB);
95  BasicBlock *Pred2 = *++pred_begin(BB);
96
97  // We can only handle branches.  Other control flow will be lowered to
98  // branches if possible anyway.
99  if (!isa<BranchInst>(Pred1->getTerminator()) ||
100      !isa<BranchInst>(Pred2->getTerminator()))
101    return 0;
102  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
103  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
104
105  // Eliminate code duplication by ensuring that Pred1Br is conditional if
106  // either are.
107  if (Pred2Br->isConditional()) {
108    // If both branches are conditional, we don't have an "if statement".  In
109    // reality, we could transform this case, but since the condition will be
110    // required anyway, we stand no chance of eliminating it, so the xform is
111    // probably not profitable.
112    if (Pred1Br->isConditional())
113      return 0;
114
115    std::swap(Pred1, Pred2);
116    std::swap(Pred1Br, Pred2Br);
117  }
118
119  if (Pred1Br->isConditional()) {
120    // If we found a conditional branch predecessor, make sure that it branches
121    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
122    if (Pred1Br->getSuccessor(0) == BB &&
123        Pred1Br->getSuccessor(1) == Pred2) {
124      IfTrue = Pred1;
125      IfFalse = Pred2;
126    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
127               Pred1Br->getSuccessor(1) == BB) {
128      IfTrue = Pred2;
129      IfFalse = Pred1;
130    } else {
131      // We know that one arm of the conditional goes to BB, so the other must
132      // go somewhere unrelated, and this must not be an "if statement".
133      return 0;
134    }
135
136    // The only thing we have to watch out for here is to make sure that Pred2
137    // doesn't have incoming edges from other blocks.  If it does, the condition
138    // doesn't dominate BB.
139    if (++pred_begin(Pred2) != pred_end(Pred2))
140      return 0;
141
142    return Pred1Br->getCondition();
143  }
144
145  // Ok, if we got here, both predecessors end with an unconditional branch to
146  // BB.  Don't panic!  If both blocks only have a single (identical)
147  // predecessor, and THAT is a conditional branch, then we're all ok!
148  if (pred_begin(Pred1) == pred_end(Pred1) ||
149      ++pred_begin(Pred1) != pred_end(Pred1) ||
150      pred_begin(Pred2) == pred_end(Pred2) ||
151      ++pred_begin(Pred2) != pred_end(Pred2) ||
152      *pred_begin(Pred1) != *pred_begin(Pred2))
153    return 0;
154
155  // Otherwise, if this is a conditional branch, then we can use it!
156  BasicBlock *CommonPred = *pred_begin(Pred1);
157  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
158    assert(BI->isConditional() && "Two successors but not conditional?");
159    if (BI->getSuccessor(0) == Pred1) {
160      IfTrue = Pred1;
161      IfFalse = Pred2;
162    } else {
163      IfTrue = Pred2;
164      IfFalse = Pred1;
165    }
166    return BI->getCondition();
167  }
168  return 0;
169}
170
171/// DominatesMergePoint - If we have a merge point of an "if condition" as
172/// accepted above, return true if the specified value dominates the block.  We
173/// don't handle the true generality of domination here, just a special case
174/// which works well enough for us.
175///
176/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
177/// see if V (which must be an instruction) is cheap to compute and is
178/// non-trapping.  If both are true, the instruction is inserted into the set
179/// and true is returned.
180static bool DominatesMergePoint(Value *V, BasicBlock *BB,
181                                std::set<Instruction*> *AggressiveInsts) {
182  Instruction *I = dyn_cast<Instruction>(V);
183  if (!I) {
184    // Non-instructions all dominate instructions, but not all constantexprs
185    // can be executed unconditionally.
186    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
187      if (C->canTrap())
188        return false;
189    return true;
190  }
191  BasicBlock *PBB = I->getParent();
192
193  // We don't want to allow weird loops that might have the "if condition" in
194  // the bottom of this block.
195  if (PBB == BB) return false;
196
197  // If this instruction is defined in a block that contains an unconditional
198  // branch to BB, then it must be in the 'conditional' part of the "if
199  // statement".
200  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
201    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
202      if (!AggressiveInsts) return false;
203      // Okay, it looks like the instruction IS in the "condition".  Check to
204      // see if its a cheap instruction to unconditionally compute, and if it
205      // only uses stuff defined outside of the condition.  If so, hoist it out.
206      if (!I->isSafeToSpeculativelyExecute())
207        return false;
208
209      switch (I->getOpcode()) {
210      default: return false;  // Cannot hoist this out safely.
211      case Instruction::Load: {
212        // We have to check to make sure there are no instructions before the
213        // load in its basic block, as we are going to hoist the loop out to
214        // its predecessor.
215        BasicBlock::iterator IP = PBB->begin();
216        while (isa<DbgInfoIntrinsic>(IP))
217          IP++;
218        if (IP != BasicBlock::iterator(I))
219          return false;
220        break;
221      }
222      case Instruction::Add:
223      case Instruction::Sub:
224      case Instruction::And:
225      case Instruction::Or:
226      case Instruction::Xor:
227      case Instruction::Shl:
228      case Instruction::LShr:
229      case Instruction::AShr:
230      case Instruction::ICmp:
231        break;   // These are all cheap and non-trapping instructions.
232      }
233
234      // Okay, we can only really hoist these out if their operands are not
235      // defined in the conditional region.
236      for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
237        if (!DominatesMergePoint(*i, BB, 0))
238          return false;
239      // Okay, it's safe to do this!  Remember this instruction.
240      AggressiveInsts->insert(I);
241    }
242
243  return true;
244}
245
246/// GatherConstantSetEQs - Given a potentially 'or'd together collection of
247/// icmp_eq instructions that compare a value against a constant, return the
248/// value being compared, and stick the constant into the Values vector.
249static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
250  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
251    if (Inst->getOpcode() == Instruction::ICmp &&
252        cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
253      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
254        Values.push_back(C);
255        return Inst->getOperand(0);
256      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
257        Values.push_back(C);
258        return Inst->getOperand(1);
259      }
260    } else if (Inst->getOpcode() == Instruction::Or) {
261      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
262        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
263          if (LHS == RHS)
264            return LHS;
265    }
266  }
267  return 0;
268}
269
270/// GatherConstantSetNEs - Given a potentially 'and'd together collection of
271/// setne instructions that compare a value against a constant, return the value
272/// being compared, and stick the constant into the Values vector.
273static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
274  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
275    if (Inst->getOpcode() == Instruction::ICmp &&
276               cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
277      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
278        Values.push_back(C);
279        return Inst->getOperand(0);
280      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
281        Values.push_back(C);
282        return Inst->getOperand(1);
283      }
284    } else if (Inst->getOpcode() == Instruction::And) {
285      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
286        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
287          if (LHS == RHS)
288            return LHS;
289    }
290  }
291  return 0;
292}
293
294/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
295/// bunch of comparisons of one value against constants, return the value and
296/// the constants being compared.
297static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
298                                   std::vector<ConstantInt*> &Values) {
299  if (Cond->getOpcode() == Instruction::Or) {
300    CompVal = GatherConstantSetEQs(Cond, Values);
301
302    // Return true to indicate that the condition is true if the CompVal is
303    // equal to one of the constants.
304    return true;
305  } else if (Cond->getOpcode() == Instruction::And) {
306    CompVal = GatherConstantSetNEs(Cond, Values);
307
308    // Return false to indicate that the condition is false if the CompVal is
309    // equal to one of the constants.
310    return false;
311  }
312  return false;
313}
314
315static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
316  Instruction* Cond = 0;
317  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
318    Cond = dyn_cast<Instruction>(SI->getCondition());
319  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
320    if (BI->isConditional())
321      Cond = dyn_cast<Instruction>(BI->getCondition());
322  }
323
324  TI->eraseFromParent();
325  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
326}
327
328/// isValueEqualityComparison - Return true if the specified terminator checks
329/// to see if a value is equal to constant integer value.
330static Value *isValueEqualityComparison(TerminatorInst *TI) {
331  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
332    // Do not permit merging of large switch instructions into their
333    // predecessors unless there is only one predecessor.
334    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
335                                               pred_end(SI->getParent())) > 128)
336      return 0;
337
338    return SI->getCondition();
339  }
340  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
341    if (BI->isConditional() && BI->getCondition()->hasOneUse())
342      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
343        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
344             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
345            isa<ConstantInt>(ICI->getOperand(1)))
346          return ICI->getOperand(0);
347  return 0;
348}
349
350/// GetValueEqualityComparisonCases - Given a value comparison instruction,
351/// decode all of the 'cases' that it represents and return the 'default' block.
352static BasicBlock *
353GetValueEqualityComparisonCases(TerminatorInst *TI,
354                                std::vector<std::pair<ConstantInt*,
355                                                      BasicBlock*> > &Cases) {
356  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
357    Cases.reserve(SI->getNumCases());
358    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
359      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
360    return SI->getDefaultDest();
361  }
362
363  BranchInst *BI = cast<BranchInst>(TI);
364  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
365  Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
366                                 BI->getSuccessor(ICI->getPredicate() ==
367                                                  ICmpInst::ICMP_NE)));
368  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
369}
370
371
372/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
373/// in the list that match the specified block.
374static void EliminateBlockCases(BasicBlock *BB,
375               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
376  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
377    if (Cases[i].second == BB) {
378      Cases.erase(Cases.begin()+i);
379      --i; --e;
380    }
381}
382
383/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
384/// well.
385static bool
386ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
387              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
388  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
389
390  // Make V1 be smaller than V2.
391  if (V1->size() > V2->size())
392    std::swap(V1, V2);
393
394  if (V1->size() == 0) return false;
395  if (V1->size() == 1) {
396    // Just scan V2.
397    ConstantInt *TheVal = (*V1)[0].first;
398    for (unsigned i = 0, e = V2->size(); i != e; ++i)
399      if (TheVal == (*V2)[i].first)
400        return true;
401  }
402
403  // Otherwise, just sort both lists and compare element by element.
404  std::sort(V1->begin(), V1->end());
405  std::sort(V2->begin(), V2->end());
406  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
407  while (i1 != e1 && i2 != e2) {
408    if ((*V1)[i1].first == (*V2)[i2].first)
409      return true;
410    if ((*V1)[i1].first < (*V2)[i2].first)
411      ++i1;
412    else
413      ++i2;
414  }
415  return false;
416}
417
418/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
419/// terminator instruction and its block is known to only have a single
420/// predecessor block, check to see if that predecessor is also a value
421/// comparison with the same value, and if that comparison determines the
422/// outcome of this comparison.  If so, simplify TI.  This does a very limited
423/// form of jump threading.
424static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
425                                                          BasicBlock *Pred) {
426  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
427  if (!PredVal) return false;  // Not a value comparison in predecessor.
428
429  Value *ThisVal = isValueEqualityComparison(TI);
430  assert(ThisVal && "This isn't a value comparison!!");
431  if (ThisVal != PredVal) return false;  // Different predicates.
432
433  // Find out information about when control will move from Pred to TI's block.
434  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
435  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
436                                                        PredCases);
437  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
438
439  // Find information about how control leaves this block.
440  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
441  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
442  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
443
444  // If TI's block is the default block from Pred's comparison, potentially
445  // simplify TI based on this knowledge.
446  if (PredDef == TI->getParent()) {
447    // If we are here, we know that the value is none of those cases listed in
448    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
449    // can simplify TI.
450    if (ValuesOverlap(PredCases, ThisCases)) {
451      if (isa<BranchInst>(TI)) {
452        // Okay, one of the successors of this condbr is dead.  Convert it to a
453        // uncond br.
454        assert(ThisCases.size() == 1 && "Branch can only have one case!");
455        // Insert the new branch.
456        Instruction *NI = BranchInst::Create(ThisDef, TI);
457        (void) NI;
458
459        // Remove PHI node entries for the dead edge.
460        ThisCases[0].second->removePredecessor(TI->getParent());
461
462        DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
463             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
464
465        EraseTerminatorInstAndDCECond(TI);
466        return true;
467
468      } else {
469        SwitchInst *SI = cast<SwitchInst>(TI);
470        // Okay, TI has cases that are statically dead, prune them away.
471        SmallPtrSet<Constant*, 16> DeadCases;
472        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
473          DeadCases.insert(PredCases[i].first);
474
475        DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
476                     << "Through successor TI: " << *TI);
477
478        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
479          if (DeadCases.count(SI->getCaseValue(i))) {
480            SI->getSuccessor(i)->removePredecessor(TI->getParent());
481            SI->removeCase(i);
482          }
483
484        DEBUG(errs() << "Leaving: " << *TI << "\n");
485        return true;
486      }
487    }
488
489  } else {
490    // Otherwise, TI's block must correspond to some matched value.  Find out
491    // which value (or set of values) this is.
492    ConstantInt *TIV = 0;
493    BasicBlock *TIBB = TI->getParent();
494    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
495      if (PredCases[i].second == TIBB) {
496        if (TIV == 0)
497          TIV = PredCases[i].first;
498        else
499          return false;  // Cannot handle multiple values coming to this block.
500      }
501    assert(TIV && "No edge from pred to succ?");
502
503    // Okay, we found the one constant that our value can be if we get into TI's
504    // BB.  Find out which successor will unconditionally be branched to.
505    BasicBlock *TheRealDest = 0;
506    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
507      if (ThisCases[i].first == TIV) {
508        TheRealDest = ThisCases[i].second;
509        break;
510      }
511
512    // If not handled by any explicit cases, it is handled by the default case.
513    if (TheRealDest == 0) TheRealDest = ThisDef;
514
515    // Remove PHI node entries for dead edges.
516    BasicBlock *CheckEdge = TheRealDest;
517    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
518      if (*SI != CheckEdge)
519        (*SI)->removePredecessor(TIBB);
520      else
521        CheckEdge = 0;
522
523    // Insert the new branch.
524    Instruction *NI = BranchInst::Create(TheRealDest, TI);
525    (void) NI;
526
527    DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
528              << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
529
530    EraseTerminatorInstAndDCECond(TI);
531    return true;
532  }
533  return false;
534}
535
536namespace {
537  /// ConstantIntOrdering - This class implements a stable ordering of constant
538  /// integers that does not depend on their address.  This is important for
539  /// applications that sort ConstantInt's to ensure uniqueness.
540  struct ConstantIntOrdering {
541    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
542      return LHS->getValue().ult(RHS->getValue());
543    }
544  };
545}
546
547/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
548/// equality comparison instruction (either a switch or a branch on "X == c").
549/// See if any of the predecessors of the terminator block are value comparisons
550/// on the same value.  If so, and if safe to do so, fold them together.
551static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
552  BasicBlock *BB = TI->getParent();
553  Value *CV = isValueEqualityComparison(TI);  // CondVal
554  assert(CV && "Not a comparison?");
555  bool Changed = false;
556
557  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
558  while (!Preds.empty()) {
559    BasicBlock *Pred = Preds.pop_back_val();
560
561    // See if the predecessor is a comparison with the same value.
562    TerminatorInst *PTI = Pred->getTerminator();
563    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
564
565    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
566      // Figure out which 'cases' to copy from SI to PSI.
567      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
568      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
569
570      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
571      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
572
573      // Based on whether the default edge from PTI goes to BB or not, fill in
574      // PredCases and PredDefault with the new switch cases we would like to
575      // build.
576      SmallVector<BasicBlock*, 8> NewSuccessors;
577
578      if (PredDefault == BB) {
579        // If this is the default destination from PTI, only the edges in TI
580        // that don't occur in PTI, or that branch to BB will be activated.
581        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
582        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
583          if (PredCases[i].second != BB)
584            PTIHandled.insert(PredCases[i].first);
585          else {
586            // The default destination is BB, we don't need explicit targets.
587            std::swap(PredCases[i], PredCases.back());
588            PredCases.pop_back();
589            --i; --e;
590          }
591
592        // Reconstruct the new switch statement we will be building.
593        if (PredDefault != BBDefault) {
594          PredDefault->removePredecessor(Pred);
595          PredDefault = BBDefault;
596          NewSuccessors.push_back(BBDefault);
597        }
598        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
599          if (!PTIHandled.count(BBCases[i].first) &&
600              BBCases[i].second != BBDefault) {
601            PredCases.push_back(BBCases[i]);
602            NewSuccessors.push_back(BBCases[i].second);
603          }
604
605      } else {
606        // If this is not the default destination from PSI, only the edges
607        // in SI that occur in PSI with a destination of BB will be
608        // activated.
609        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
610        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
611          if (PredCases[i].second == BB) {
612            PTIHandled.insert(PredCases[i].first);
613            std::swap(PredCases[i], PredCases.back());
614            PredCases.pop_back();
615            --i; --e;
616          }
617
618        // Okay, now we know which constants were sent to BB from the
619        // predecessor.  Figure out where they will all go now.
620        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
621          if (PTIHandled.count(BBCases[i].first)) {
622            // If this is one we are capable of getting...
623            PredCases.push_back(BBCases[i]);
624            NewSuccessors.push_back(BBCases[i].second);
625            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
626          }
627
628        // If there are any constants vectored to BB that TI doesn't handle,
629        // they must go to the default destination of TI.
630        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
631                                    PTIHandled.begin(),
632               E = PTIHandled.end(); I != E; ++I) {
633          PredCases.push_back(std::make_pair(*I, BBDefault));
634          NewSuccessors.push_back(BBDefault);
635        }
636      }
637
638      // Okay, at this point, we know which new successor Pred will get.  Make
639      // sure we update the number of entries in the PHI nodes for these
640      // successors.
641      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
642        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
643
644      // Now that the successors are updated, create the new Switch instruction.
645      SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
646                                             PredCases.size(), PTI);
647      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
648        NewSI->addCase(PredCases[i].first, PredCases[i].second);
649
650      EraseTerminatorInstAndDCECond(PTI);
651
652      // Okay, last check.  If BB is still a successor of PSI, then we must
653      // have an infinite loop case.  If so, add an infinitely looping block
654      // to handle the case to preserve the behavior of the code.
655      BasicBlock *InfLoopBlock = 0;
656      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
657        if (NewSI->getSuccessor(i) == BB) {
658          if (InfLoopBlock == 0) {
659            // Insert it at the end of the function, because it's either code,
660            // or it won't matter if it's hot. :)
661            InfLoopBlock = BasicBlock::Create(BB->getContext(),
662                                              "infloop", BB->getParent());
663            BranchInst::Create(InfLoopBlock, InfLoopBlock);
664          }
665          NewSI->setSuccessor(i, InfLoopBlock);
666        }
667
668      Changed = true;
669    }
670  }
671  return Changed;
672}
673
674// isSafeToHoistInvoke - If we would need to insert a select that uses the
675// value of this invoke (comments in HoistThenElseCodeToIf explain why we
676// would need to do this), we can't hoist the invoke, as there is nowhere
677// to put the select in this case.
678static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
679                                Instruction *I1, Instruction *I2) {
680  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
681    PHINode *PN;
682    for (BasicBlock::iterator BBI = SI->begin();
683         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
684      Value *BB1V = PN->getIncomingValueForBlock(BB1);
685      Value *BB2V = PN->getIncomingValueForBlock(BB2);
686      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
687        return false;
688      }
689    }
690  }
691  return true;
692}
693
694/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
695/// BB2, hoist any common code in the two blocks up into the branch block.  The
696/// caller of this function guarantees that BI's block dominates BB1 and BB2.
697static bool HoistThenElseCodeToIf(BranchInst *BI) {
698  // This does very trivial matching, with limited scanning, to find identical
699  // instructions in the two blocks.  In particular, we don't want to get into
700  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
701  // such, we currently just scan for obviously identical instructions in an
702  // identical order.
703  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
704  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
705
706  BasicBlock::iterator BB1_Itr = BB1->begin();
707  BasicBlock::iterator BB2_Itr = BB2->begin();
708
709  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
710  while (isa<DbgInfoIntrinsic>(I1))
711    I1 = BB1_Itr++;
712  while (isa<DbgInfoIntrinsic>(I2))
713    I2 = BB2_Itr++;
714  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
715      !I1->isIdenticalToWhenDefined(I2) ||
716      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
717    return false;
718
719  // If we get here, we can hoist at least one instruction.
720  BasicBlock *BIParent = BI->getParent();
721
722  do {
723    // If we are hoisting the terminator instruction, don't move one (making a
724    // broken BB), instead clone it, and remove BI.
725    if (isa<TerminatorInst>(I1))
726      goto HoistTerminator;
727
728    // For a normal instruction, we just move one to right before the branch,
729    // then replace all uses of the other with the first.  Finally, we remove
730    // the now redundant second instruction.
731    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
732    if (!I2->use_empty())
733      I2->replaceAllUsesWith(I1);
734    I1->intersectOptionalDataWith(I2);
735    BB2->getInstList().erase(I2);
736
737    I1 = BB1_Itr++;
738    while (isa<DbgInfoIntrinsic>(I1))
739      I1 = BB1_Itr++;
740    I2 = BB2_Itr++;
741    while (isa<DbgInfoIntrinsic>(I2))
742      I2 = BB2_Itr++;
743  } while (I1->getOpcode() == I2->getOpcode() &&
744           I1->isIdenticalToWhenDefined(I2));
745
746  return true;
747
748HoistTerminator:
749  // It may not be possible to hoist an invoke.
750  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
751    return true;
752
753  // Okay, it is safe to hoist the terminator.
754  Instruction *NT = I1->clone();
755  BIParent->getInstList().insert(BI, NT);
756  if (NT->getType() != Type::getVoidTy(BB1->getContext())) {
757    I1->replaceAllUsesWith(NT);
758    I2->replaceAllUsesWith(NT);
759    NT->takeName(I1);
760  }
761
762  // Hoisting one of the terminators from our successor is a great thing.
763  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
764  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
765  // nodes, so we insert select instruction to compute the final result.
766  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
767  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
768    PHINode *PN;
769    for (BasicBlock::iterator BBI = SI->begin();
770         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
771      Value *BB1V = PN->getIncomingValueForBlock(BB1);
772      Value *BB2V = PN->getIncomingValueForBlock(BB2);
773      if (BB1V != BB2V) {
774        // These values do not agree.  Insert a select instruction before NT
775        // that determines the right value.
776        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
777        if (SI == 0)
778          SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
779                                  BB1V->getName()+"."+BB2V->getName(), NT);
780        // Make the PHI node use the select for all incoming values for BB1/BB2
781        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
782          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
783            PN->setIncomingValue(i, SI);
784      }
785    }
786  }
787
788  // Update any PHI nodes in our new successors.
789  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
790    AddPredecessorToBlock(*SI, BIParent, BB1);
791
792  EraseTerminatorInstAndDCECond(BI);
793  return true;
794}
795
796/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
797/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
798/// (for now, restricted to a single instruction that's side effect free) from
799/// the BB1 into the branch block to speculatively execute it.
800static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
801  // Only speculatively execution a single instruction (not counting the
802  // terminator) for now.
803  Instruction *HInst = NULL;
804  Instruction *Term = BB1->getTerminator();
805  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
806       BBI != BBE; ++BBI) {
807    Instruction *I = BBI;
808    // Skip debug info.
809    if (isa<DbgInfoIntrinsic>(I))   continue;
810    if (I == Term)  break;
811
812    if (!HInst)
813      HInst = I;
814    else
815      return false;
816  }
817  if (!HInst)
818    return false;
819
820  // Be conservative for now. FP select instruction can often be expensive.
821  Value *BrCond = BI->getCondition();
822  if (isa<Instruction>(BrCond) &&
823      cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
824    return false;
825
826  // If BB1 is actually on the false edge of the conditional branch, remember
827  // to swap the select operands later.
828  bool Invert = false;
829  if (BB1 != BI->getSuccessor(0)) {
830    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
831    Invert = true;
832  }
833
834  // Turn
835  // BB:
836  //     %t1 = icmp
837  //     br i1 %t1, label %BB1, label %BB2
838  // BB1:
839  //     %t3 = add %t2, c
840  //     br label BB2
841  // BB2:
842  // =>
843  // BB:
844  //     %t1 = icmp
845  //     %t4 = add %t2, c
846  //     %t3 = select i1 %t1, %t2, %t3
847  switch (HInst->getOpcode()) {
848  default: return false;  // Not safe / profitable to hoist.
849  case Instruction::Add:
850  case Instruction::Sub:
851    // Not worth doing for vector ops.
852    if (isa<VectorType>(HInst->getType()))
853      return false;
854    break;
855  case Instruction::And:
856  case Instruction::Or:
857  case Instruction::Xor:
858  case Instruction::Shl:
859  case Instruction::LShr:
860  case Instruction::AShr:
861    // Don't mess with vector operations.
862    if (isa<VectorType>(HInst->getType()))
863      return false;
864    break;   // These are all cheap and non-trapping instructions.
865  }
866
867  // If the instruction is obviously dead, don't try to predicate it.
868  if (HInst->use_empty()) {
869    HInst->eraseFromParent();
870    return true;
871  }
872
873  // Can we speculatively execute the instruction? And what is the value
874  // if the condition is false? Consider the phi uses, if the incoming value
875  // from the "if" block are all the same V, then V is the value of the
876  // select if the condition is false.
877  BasicBlock *BIParent = BI->getParent();
878  SmallVector<PHINode*, 4> PHIUses;
879  Value *FalseV = NULL;
880
881  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
882  for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
883       UI != E; ++UI) {
884    // Ignore any user that is not a PHI node in BB2.  These can only occur in
885    // unreachable blocks, because they would not be dominated by the instr.
886    PHINode *PN = dyn_cast<PHINode>(UI);
887    if (!PN || PN->getParent() != BB2)
888      return false;
889    PHIUses.push_back(PN);
890
891    Value *PHIV = PN->getIncomingValueForBlock(BIParent);
892    if (!FalseV)
893      FalseV = PHIV;
894    else if (FalseV != PHIV)
895      return false;  // Inconsistent value when condition is false.
896  }
897
898  assert(FalseV && "Must have at least one user, and it must be a PHI");
899
900  // Do not hoist the instruction if any of its operands are defined but not
901  // used in this BB. The transformation will prevent the operand from
902  // being sunk into the use block.
903  for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
904       i != e; ++i) {
905    Instruction *OpI = dyn_cast<Instruction>(*i);
906    if (OpI && OpI->getParent() == BIParent &&
907        !OpI->isUsedInBasicBlock(BIParent))
908      return false;
909  }
910
911  // If we get here, we can hoist the instruction. Try to place it
912  // before the icmp instruction preceding the conditional branch.
913  BasicBlock::iterator InsertPos = BI;
914  if (InsertPos != BIParent->begin())
915    --InsertPos;
916  // Skip debug info between condition and branch.
917  while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
918    --InsertPos;
919  if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
920    SmallPtrSet<Instruction *, 4> BB1Insns;
921    for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
922        BB1I != BB1E; ++BB1I)
923      BB1Insns.insert(BB1I);
924    for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
925        UI != UE; ++UI) {
926      Instruction *Use = cast<Instruction>(*UI);
927      if (BB1Insns.count(Use)) {
928        // If BrCond uses the instruction that place it just before
929        // branch instruction.
930        InsertPos = BI;
931        break;
932      }
933    }
934  } else
935    InsertPos = BI;
936  BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
937
938  // Create a select whose true value is the speculatively executed value and
939  // false value is the previously determined FalseV.
940  SelectInst *SI;
941  if (Invert)
942    SI = SelectInst::Create(BrCond, FalseV, HInst,
943                            FalseV->getName() + "." + HInst->getName(), BI);
944  else
945    SI = SelectInst::Create(BrCond, HInst, FalseV,
946                            HInst->getName() + "." + FalseV->getName(), BI);
947
948  // Make the PHI node use the select for all incoming values for "then" and
949  // "if" blocks.
950  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
951    PHINode *PN = PHIUses[i];
952    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
953      if (PN->getIncomingBlock(j) == BB1 ||
954          PN->getIncomingBlock(j) == BIParent)
955        PN->setIncomingValue(j, SI);
956  }
957
958  ++NumSpeculations;
959  return true;
960}
961
962/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
963/// across this block.
964static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
965  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
966  unsigned Size = 0;
967
968  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
969    if (isa<DbgInfoIntrinsic>(BBI))
970      continue;
971    if (Size > 10) return false;  // Don't clone large BB's.
972    ++Size;
973
974    // We can only support instructions that do not define values that are
975    // live outside of the current basic block.
976    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
977         UI != E; ++UI) {
978      Instruction *U = cast<Instruction>(*UI);
979      if (U->getParent() != BB || isa<PHINode>(U)) return false;
980    }
981
982    // Looks ok, continue checking.
983  }
984
985  return true;
986}
987
988/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
989/// that is defined in the same block as the branch and if any PHI entries are
990/// constants, thread edges corresponding to that entry to be branches to their
991/// ultimate destination.
992static bool FoldCondBranchOnPHI(BranchInst *BI) {
993  BasicBlock *BB = BI->getParent();
994  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
995  // NOTE: we currently cannot transform this case if the PHI node is used
996  // outside of the block.
997  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
998    return false;
999
1000  // Degenerate case of a single entry PHI.
1001  if (PN->getNumIncomingValues() == 1) {
1002    FoldSingleEntryPHINodes(PN->getParent());
1003    return true;
1004  }
1005
1006  // Now we know that this block has multiple preds and two succs.
1007  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1008
1009  // Okay, this is a simple enough basic block.  See if any phi values are
1010  // constants.
1011  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1012    ConstantInt *CB;
1013    if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
1014        CB->getType() == Type::getInt1Ty(BB->getContext())) {
1015      // Okay, we now know that all edges from PredBB should be revectored to
1016      // branch to RealDest.
1017      BasicBlock *PredBB = PN->getIncomingBlock(i);
1018      BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1019
1020      if (RealDest == BB) continue;  // Skip self loops.
1021
1022      // The dest block might have PHI nodes, other predecessors and other
1023      // difficult cases.  Instead of being smart about this, just insert a new
1024      // block that jumps to the destination block, effectively splitting
1025      // the edge we are about to create.
1026      BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1027                                              RealDest->getName()+".critedge",
1028                                              RealDest->getParent(), RealDest);
1029      BranchInst::Create(RealDest, EdgeBB);
1030      PHINode *PN;
1031      for (BasicBlock::iterator BBI = RealDest->begin();
1032           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1033        Value *V = PN->getIncomingValueForBlock(BB);
1034        PN->addIncoming(V, EdgeBB);
1035      }
1036
1037      // BB may have instructions that are being threaded over.  Clone these
1038      // instructions into EdgeBB.  We know that there will be no uses of the
1039      // cloned instructions outside of EdgeBB.
1040      BasicBlock::iterator InsertPt = EdgeBB->begin();
1041      std::map<Value*, Value*> TranslateMap;  // Track translated values.
1042      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1043        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1044          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1045        } else {
1046          // Clone the instruction.
1047          Instruction *N = BBI->clone();
1048          if (BBI->hasName()) N->setName(BBI->getName()+".c");
1049
1050          // Update operands due to translation.
1051          for (User::op_iterator i = N->op_begin(), e = N->op_end();
1052               i != e; ++i) {
1053            std::map<Value*, Value*>::iterator PI =
1054              TranslateMap.find(*i);
1055            if (PI != TranslateMap.end())
1056              *i = PI->second;
1057          }
1058
1059          // Check for trivial simplification.
1060          if (Constant *C = ConstantFoldInstruction(N)) {
1061            TranslateMap[BBI] = C;
1062            delete N;   // Constant folded away, don't need actual inst
1063          } else {
1064            // Insert the new instruction into its new home.
1065            EdgeBB->getInstList().insert(InsertPt, N);
1066            if (!BBI->use_empty())
1067              TranslateMap[BBI] = N;
1068          }
1069        }
1070      }
1071
1072      // Loop over all of the edges from PredBB to BB, changing them to branch
1073      // to EdgeBB instead.
1074      TerminatorInst *PredBBTI = PredBB->getTerminator();
1075      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1076        if (PredBBTI->getSuccessor(i) == BB) {
1077          BB->removePredecessor(PredBB);
1078          PredBBTI->setSuccessor(i, EdgeBB);
1079        }
1080
1081      // Recurse, simplifying any other constants.
1082      return FoldCondBranchOnPHI(BI) | true;
1083    }
1084  }
1085
1086  return false;
1087}
1088
1089/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1090/// PHI node, see if we can eliminate it.
1091static bool FoldTwoEntryPHINode(PHINode *PN) {
1092  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1093  // statement", which has a very simple dominance structure.  Basically, we
1094  // are trying to find the condition that is being branched on, which
1095  // subsequently causes this merge to happen.  We really want control
1096  // dependence information for this check, but simplifycfg can't keep it up
1097  // to date, and this catches most of the cases we care about anyway.
1098  //
1099  BasicBlock *BB = PN->getParent();
1100  BasicBlock *IfTrue, *IfFalse;
1101  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1102  if (!IfCond) return false;
1103
1104  // Okay, we found that we can merge this two-entry phi node into a select.
1105  // Doing so would require us to fold *all* two entry phi nodes in this block.
1106  // At some point this becomes non-profitable (particularly if the target
1107  // doesn't support cmov's).  Only do this transformation if there are two or
1108  // fewer PHI nodes in this block.
1109  unsigned NumPhis = 0;
1110  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1111    if (NumPhis > 2)
1112      return false;
1113
1114  DEBUG(errs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1115        << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1116
1117  // Loop over the PHI's seeing if we can promote them all to select
1118  // instructions.  While we are at it, keep track of the instructions
1119  // that need to be moved to the dominating block.
1120  std::set<Instruction*> AggressiveInsts;
1121
1122  BasicBlock::iterator AfterPHIIt = BB->begin();
1123  while (isa<PHINode>(AfterPHIIt)) {
1124    PHINode *PN = cast<PHINode>(AfterPHIIt++);
1125    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1126      if (PN->getIncomingValue(0) != PN)
1127        PN->replaceAllUsesWith(PN->getIncomingValue(0));
1128      else
1129        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1130    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1131                                    &AggressiveInsts) ||
1132               !DominatesMergePoint(PN->getIncomingValue(1), BB,
1133                                    &AggressiveInsts)) {
1134      return false;
1135    }
1136  }
1137
1138  // If we all PHI nodes are promotable, check to make sure that all
1139  // instructions in the predecessor blocks can be promoted as well.  If
1140  // not, we won't be able to get rid of the control flow, so it's not
1141  // worth promoting to select instructions.
1142  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1143  PN = cast<PHINode>(BB->begin());
1144  BasicBlock *Pred = PN->getIncomingBlock(0);
1145  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1146    IfBlock1 = Pred;
1147    DomBlock = *pred_begin(Pred);
1148    for (BasicBlock::iterator I = Pred->begin();
1149         !isa<TerminatorInst>(I); ++I)
1150      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1151        // This is not an aggressive instruction that we can promote.
1152        // Because of this, we won't be able to get rid of the control
1153        // flow, so the xform is not worth it.
1154        return false;
1155      }
1156  }
1157
1158  Pred = PN->getIncomingBlock(1);
1159  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1160    IfBlock2 = Pred;
1161    DomBlock = *pred_begin(Pred);
1162    for (BasicBlock::iterator I = Pred->begin();
1163         !isa<TerminatorInst>(I); ++I)
1164      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1165        // This is not an aggressive instruction that we can promote.
1166        // Because of this, we won't be able to get rid of the control
1167        // flow, so the xform is not worth it.
1168        return false;
1169      }
1170  }
1171
1172  // If we can still promote the PHI nodes after this gauntlet of tests,
1173  // do all of the PHI's now.
1174
1175  // Move all 'aggressive' instructions, which are defined in the
1176  // conditional parts of the if's up to the dominating block.
1177  if (IfBlock1) {
1178    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1179                                   IfBlock1->getInstList(),
1180                                   IfBlock1->begin(),
1181                                   IfBlock1->getTerminator());
1182  }
1183  if (IfBlock2) {
1184    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1185                                   IfBlock2->getInstList(),
1186                                   IfBlock2->begin(),
1187                                   IfBlock2->getTerminator());
1188  }
1189
1190  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1191    // Change the PHI node into a select instruction.
1192    Value *TrueVal =
1193      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1194    Value *FalseVal =
1195      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1196
1197    Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1198    PN->replaceAllUsesWith(NV);
1199    NV->takeName(PN);
1200
1201    BB->getInstList().erase(PN);
1202  }
1203  return true;
1204}
1205
1206/// isTerminatorFirstRelevantInsn - Return true if Term is very first
1207/// instruction ignoring Phi nodes and dbg intrinsics.
1208static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) {
1209  BasicBlock::iterator BBI = Term;
1210  while (BBI != BB->begin()) {
1211    --BBI;
1212    if (!isa<DbgInfoIntrinsic>(BBI))
1213      break;
1214  }
1215
1216  if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI))
1217    return true;
1218  return false;
1219}
1220
1221/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1222/// to two returning blocks, try to merge them together into one return,
1223/// introducing a select if the return values disagree.
1224static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1225  assert(BI->isConditional() && "Must be a conditional branch");
1226  BasicBlock *TrueSucc = BI->getSuccessor(0);
1227  BasicBlock *FalseSucc = BI->getSuccessor(1);
1228  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1229  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1230
1231  // Check to ensure both blocks are empty (just a return) or optionally empty
1232  // with PHI nodes.  If there are other instructions, merging would cause extra
1233  // computation on one path or the other.
1234  if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet))
1235    return false;
1236  if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet))
1237    return false;
1238
1239  // Okay, we found a branch that is going to two return nodes.  If
1240  // there is no return value for this function, just change the
1241  // branch into a return.
1242  if (FalseRet->getNumOperands() == 0) {
1243    TrueSucc->removePredecessor(BI->getParent());
1244    FalseSucc->removePredecessor(BI->getParent());
1245    ReturnInst::Create(BI->getContext(), 0, BI);
1246    EraseTerminatorInstAndDCECond(BI);
1247    return true;
1248  }
1249
1250  // Otherwise, figure out what the true and false return values are
1251  // so we can insert a new select instruction.
1252  Value *TrueValue = TrueRet->getReturnValue();
1253  Value *FalseValue = FalseRet->getReturnValue();
1254
1255  // Unwrap any PHI nodes in the return blocks.
1256  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1257    if (TVPN->getParent() == TrueSucc)
1258      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1259  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1260    if (FVPN->getParent() == FalseSucc)
1261      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1262
1263  // In order for this transformation to be safe, we must be able to
1264  // unconditionally execute both operands to the return.  This is
1265  // normally the case, but we could have a potentially-trapping
1266  // constant expression that prevents this transformation from being
1267  // safe.
1268  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1269    if (TCV->canTrap())
1270      return false;
1271  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1272    if (FCV->canTrap())
1273      return false;
1274
1275  // Okay, we collected all the mapped values and checked them for sanity, and
1276  // defined to really do this transformation.  First, update the CFG.
1277  TrueSucc->removePredecessor(BI->getParent());
1278  FalseSucc->removePredecessor(BI->getParent());
1279
1280  // Insert select instructions where needed.
1281  Value *BrCond = BI->getCondition();
1282  if (TrueValue) {
1283    // Insert a select if the results differ.
1284    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1285    } else if (isa<UndefValue>(TrueValue)) {
1286      TrueValue = FalseValue;
1287    } else {
1288      TrueValue = SelectInst::Create(BrCond, TrueValue,
1289                                     FalseValue, "retval", BI);
1290    }
1291  }
1292
1293  Value *RI = !TrueValue ?
1294              ReturnInst::Create(BI->getContext(), BI) :
1295              ReturnInst::Create(BI->getContext(), TrueValue, BI);
1296  (void) RI;
1297
1298  DEBUG(errs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1299               << "\n  " << *BI << "NewRet = " << *RI
1300               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1301
1302  EraseTerminatorInstAndDCECond(BI);
1303
1304  return true;
1305}
1306
1307/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1308/// and if a predecessor branches to us and one of our successors, fold the
1309/// setcc into the predecessor and use logical operations to pick the right
1310/// destination.
1311bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1312  BasicBlock *BB = BI->getParent();
1313  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1314  if (Cond == 0) return false;
1315
1316
1317  // Only allow this if the condition is a simple instruction that can be
1318  // executed unconditionally.  It must be in the same block as the branch, and
1319  // must be at the front of the block.
1320  BasicBlock::iterator FrontIt = BB->front();
1321  // Ignore dbg intrinsics.
1322  while(isa<DbgInfoIntrinsic>(FrontIt))
1323    ++FrontIt;
1324  if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1325      Cond->getParent() != BB || &*FrontIt != Cond || !Cond->hasOneUse()) {
1326    return false;
1327  }
1328
1329  // Make sure the instruction after the condition is the cond branch.
1330  BasicBlock::iterator CondIt = Cond; ++CondIt;
1331  // Ingore dbg intrinsics.
1332  while(isa<DbgInfoIntrinsic>(CondIt))
1333    ++CondIt;
1334  if (&*CondIt != BI) {
1335    assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
1336    return false;
1337  }
1338
1339  // Cond is known to be a compare or binary operator.  Check to make sure that
1340  // neither operand is a potentially-trapping constant expression.
1341  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1342    if (CE->canTrap())
1343      return false;
1344  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1345    if (CE->canTrap())
1346      return false;
1347
1348
1349  // Finally, don't infinitely unroll conditional loops.
1350  BasicBlock *TrueDest  = BI->getSuccessor(0);
1351  BasicBlock *FalseDest = BI->getSuccessor(1);
1352  if (TrueDest == BB || FalseDest == BB)
1353    return false;
1354
1355  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1356    BasicBlock *PredBlock = *PI;
1357    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1358
1359    // Check that we have two conditional branches.  If there is a PHI node in
1360    // the common successor, verify that the same value flows in from both
1361    // blocks.
1362    if (PBI == 0 || PBI->isUnconditional() ||
1363        !SafeToMergeTerminators(BI, PBI))
1364      continue;
1365
1366    Instruction::BinaryOps Opc;
1367    bool InvertPredCond = false;
1368
1369    if (PBI->getSuccessor(0) == TrueDest)
1370      Opc = Instruction::Or;
1371    else if (PBI->getSuccessor(1) == FalseDest)
1372      Opc = Instruction::And;
1373    else if (PBI->getSuccessor(0) == FalseDest)
1374      Opc = Instruction::And, InvertPredCond = true;
1375    else if (PBI->getSuccessor(1) == TrueDest)
1376      Opc = Instruction::Or, InvertPredCond = true;
1377    else
1378      continue;
1379
1380    DEBUG(errs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1381
1382    // If we need to invert the condition in the pred block to match, do so now.
1383    if (InvertPredCond) {
1384      Value *NewCond =
1385        BinaryOperator::CreateNot(PBI->getCondition(),
1386                                  PBI->getCondition()->getName()+".not", PBI);
1387      PBI->setCondition(NewCond);
1388      BasicBlock *OldTrue = PBI->getSuccessor(0);
1389      BasicBlock *OldFalse = PBI->getSuccessor(1);
1390      PBI->setSuccessor(0, OldFalse);
1391      PBI->setSuccessor(1, OldTrue);
1392    }
1393
1394    // Clone Cond into the predecessor basic block, and or/and the
1395    // two conditions together.
1396    Instruction *New = Cond->clone();
1397    PredBlock->getInstList().insert(PBI, New);
1398    New->takeName(Cond);
1399    Cond->setName(New->getName()+".old");
1400
1401    Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1402                                            New, "or.cond", PBI);
1403    PBI->setCondition(NewCond);
1404    if (PBI->getSuccessor(0) == BB) {
1405      AddPredecessorToBlock(TrueDest, PredBlock, BB);
1406      PBI->setSuccessor(0, TrueDest);
1407    }
1408    if (PBI->getSuccessor(1) == BB) {
1409      AddPredecessorToBlock(FalseDest, PredBlock, BB);
1410      PBI->setSuccessor(1, FalseDest);
1411    }
1412    return true;
1413  }
1414  return false;
1415}
1416
1417/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1418/// predecessor of another block, this function tries to simplify it.  We know
1419/// that PBI and BI are both conditional branches, and BI is in one of the
1420/// successor blocks of PBI - PBI branches to BI.
1421static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1422  assert(PBI->isConditional() && BI->isConditional());
1423  BasicBlock *BB = BI->getParent();
1424
1425  // If this block ends with a branch instruction, and if there is a
1426  // predecessor that ends on a branch of the same condition, make
1427  // this conditional branch redundant.
1428  if (PBI->getCondition() == BI->getCondition() &&
1429      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1430    // Okay, the outcome of this conditional branch is statically
1431    // knowable.  If this block had a single pred, handle specially.
1432    if (BB->getSinglePredecessor()) {
1433      // Turn this into a branch on constant.
1434      bool CondIsTrue = PBI->getSuccessor(0) == BB;
1435      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1436                                        CondIsTrue));
1437      return true;  // Nuke the branch on constant.
1438    }
1439
1440    // Otherwise, if there are multiple predecessors, insert a PHI that merges
1441    // in the constant and simplify the block result.  Subsequent passes of
1442    // simplifycfg will thread the block.
1443    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1444      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1445                                       BI->getCondition()->getName() + ".pr",
1446                                       BB->begin());
1447      // Okay, we're going to insert the PHI node.  Since PBI is not the only
1448      // predecessor, compute the PHI'd conditional value for all of the preds.
1449      // Any predecessor where the condition is not computable we keep symbolic.
1450      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1451        if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1452            PBI != BI && PBI->isConditional() &&
1453            PBI->getCondition() == BI->getCondition() &&
1454            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1455          bool CondIsTrue = PBI->getSuccessor(0) == BB;
1456          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1457                                              CondIsTrue), *PI);
1458        } else {
1459          NewPN->addIncoming(BI->getCondition(), *PI);
1460        }
1461
1462      BI->setCondition(NewPN);
1463      return true;
1464    }
1465  }
1466
1467  // If this is a conditional branch in an empty block, and if any
1468  // predecessors is a conditional branch to one of our destinations,
1469  // fold the conditions into logical ops and one cond br.
1470  BasicBlock::iterator BBI = BB->begin();
1471  // Ignore dbg intrinsics.
1472  while (isa<DbgInfoIntrinsic>(BBI))
1473    ++BBI;
1474  if (&*BBI != BI)
1475    return false;
1476
1477
1478  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1479    if (CE->canTrap())
1480      return false;
1481
1482  int PBIOp, BIOp;
1483  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1484    PBIOp = BIOp = 0;
1485  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1486    PBIOp = 0, BIOp = 1;
1487  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1488    PBIOp = 1, BIOp = 0;
1489  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1490    PBIOp = BIOp = 1;
1491  else
1492    return false;
1493
1494  // Check to make sure that the other destination of this branch
1495  // isn't BB itself.  If so, this is an infinite loop that will
1496  // keep getting unwound.
1497  if (PBI->getSuccessor(PBIOp) == BB)
1498    return false;
1499
1500  // Do not perform this transformation if it would require
1501  // insertion of a large number of select instructions. For targets
1502  // without predication/cmovs, this is a big pessimization.
1503  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1504
1505  unsigned NumPhis = 0;
1506  for (BasicBlock::iterator II = CommonDest->begin();
1507       isa<PHINode>(II); ++II, ++NumPhis)
1508    if (NumPhis > 2) // Disable this xform.
1509      return false;
1510
1511  // Finally, if everything is ok, fold the branches to logical ops.
1512  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1513
1514  DEBUG(errs() << "FOLDING BRs:" << *PBI->getParent()
1515               << "AND: " << *BI->getParent());
1516
1517
1518  // If OtherDest *is* BB, then BB is a basic block with a single conditional
1519  // branch in it, where one edge (OtherDest) goes back to itself but the other
1520  // exits.  We don't *know* that the program avoids the infinite loop
1521  // (even though that seems likely).  If we do this xform naively, we'll end up
1522  // recursively unpeeling the loop.  Since we know that (after the xform is
1523  // done) that the block *is* infinite if reached, we just make it an obviously
1524  // infinite loop with no cond branch.
1525  if (OtherDest == BB) {
1526    // Insert it at the end of the function, because it's either code,
1527    // or it won't matter if it's hot. :)
1528    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1529                                                  "infloop", BB->getParent());
1530    BranchInst::Create(InfLoopBlock, InfLoopBlock);
1531    OtherDest = InfLoopBlock;
1532  }
1533
1534  DEBUG(errs() << *PBI->getParent()->getParent());
1535
1536  // BI may have other predecessors.  Because of this, we leave
1537  // it alone, but modify PBI.
1538
1539  // Make sure we get to CommonDest on True&True directions.
1540  Value *PBICond = PBI->getCondition();
1541  if (PBIOp)
1542    PBICond = BinaryOperator::CreateNot(PBICond,
1543                                        PBICond->getName()+".not",
1544                                        PBI);
1545  Value *BICond = BI->getCondition();
1546  if (BIOp)
1547    BICond = BinaryOperator::CreateNot(BICond,
1548                                       BICond->getName()+".not",
1549                                       PBI);
1550  // Merge the conditions.
1551  Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1552
1553  // Modify PBI to branch on the new condition to the new dests.
1554  PBI->setCondition(Cond);
1555  PBI->setSuccessor(0, CommonDest);
1556  PBI->setSuccessor(1, OtherDest);
1557
1558  // OtherDest may have phi nodes.  If so, add an entry from PBI's
1559  // block that are identical to the entries for BI's block.
1560  PHINode *PN;
1561  for (BasicBlock::iterator II = OtherDest->begin();
1562       (PN = dyn_cast<PHINode>(II)); ++II) {
1563    Value *V = PN->getIncomingValueForBlock(BB);
1564    PN->addIncoming(V, PBI->getParent());
1565  }
1566
1567  // We know that the CommonDest already had an edge from PBI to
1568  // it.  If it has PHIs though, the PHIs may have different
1569  // entries for BB and PBI's BB.  If so, insert a select to make
1570  // them agree.
1571  for (BasicBlock::iterator II = CommonDest->begin();
1572       (PN = dyn_cast<PHINode>(II)); ++II) {
1573    Value *BIV = PN->getIncomingValueForBlock(BB);
1574    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1575    Value *PBIV = PN->getIncomingValue(PBBIdx);
1576    if (BIV != PBIV) {
1577      // Insert a select in PBI to pick the right value.
1578      Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1579                                     PBIV->getName()+".mux", PBI);
1580      PN->setIncomingValue(PBBIdx, NV);
1581    }
1582  }
1583
1584  DEBUG(errs() << "INTO: " << *PBI->getParent());
1585  DEBUG(errs() << *PBI->getParent()->getParent());
1586
1587  // This basic block is probably dead.  We know it has at least
1588  // one fewer predecessor.
1589  return true;
1590}
1591
1592/// SimplifyCFG - This function is used to do simplification of a CFG.  For
1593/// example, it adjusts branches to branches to eliminate the extra hop, it
1594/// eliminates unreachable basic blocks, and does other "peephole" optimization
1595/// of the CFG.  It returns true if a modification was made.
1596///
1597/// WARNING:  The entry node of a function may not be simplified.
1598///
1599bool llvm::SimplifyCFG(BasicBlock *BB) {
1600  bool Changed = false;
1601  Function *M = BB->getParent();
1602
1603  assert(BB && BB->getParent() && "Block not embedded in function!");
1604  assert(BB->getTerminator() && "Degenerate basic block encountered!");
1605  assert(&BB->getParent()->getEntryBlock() != BB &&
1606         "Can't Simplify entry block!");
1607
1608  // Remove basic blocks that have no predecessors... or that just have themself
1609  // as a predecessor.  These are unreachable.
1610  if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) {
1611    DEBUG(errs() << "Removing BB: \n" << *BB);
1612    DeleteDeadBlock(BB);
1613    return true;
1614  }
1615
1616  // Check to see if we can constant propagate this terminator instruction
1617  // away...
1618  Changed |= ConstantFoldTerminator(BB);
1619
1620  // Check for and eliminate duplicate PHI nodes in this block.
1621  Changed |= EliminateDuplicatePHINodes(BB);
1622
1623  // If there is a trivial two-entry PHI node in this basic block, and we can
1624  // eliminate it, do so now.
1625  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1626    if (PN->getNumIncomingValues() == 2)
1627      Changed |= FoldTwoEntryPHINode(PN);
1628
1629  // If this is a returning block with only PHI nodes in it, fold the return
1630  // instruction into any unconditional branch predecessors.
1631  //
1632  // If any predecessor is a conditional branch that just selects among
1633  // different return values, fold the replace the branch/return with a select
1634  // and return.
1635  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1636    if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) {
1637      // Find predecessors that end with branches.
1638      SmallVector<BasicBlock*, 8> UncondBranchPreds;
1639      SmallVector<BranchInst*, 8> CondBranchPreds;
1640      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1641        TerminatorInst *PTI = (*PI)->getTerminator();
1642        if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
1643          if (BI->isUnconditional())
1644            UncondBranchPreds.push_back(*PI);
1645          else
1646            CondBranchPreds.push_back(BI);
1647        }
1648      }
1649
1650      // If we found some, do the transformation!
1651      if (!UncondBranchPreds.empty()) {
1652        while (!UncondBranchPreds.empty()) {
1653          BasicBlock *Pred = UncondBranchPreds.pop_back_val();
1654          DEBUG(errs() << "FOLDING: " << *BB
1655                       << "INTO UNCOND BRANCH PRED: " << *Pred);
1656          Instruction *UncondBranch = Pred->getTerminator();
1657          // Clone the return and add it to the end of the predecessor.
1658          Instruction *NewRet = RI->clone();
1659          Pred->getInstList().push_back(NewRet);
1660
1661          BasicBlock::iterator BBI = RI;
1662          if (BBI != BB->begin()) {
1663            // Move region end info into the predecessor.
1664            if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(--BBI))
1665              DREI->moveBefore(NewRet);
1666          }
1667
1668          // If the return instruction returns a value, and if the value was a
1669          // PHI node in "BB", propagate the right value into the return.
1670          for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1671               i != e; ++i)
1672            if (PHINode *PN = dyn_cast<PHINode>(*i))
1673              if (PN->getParent() == BB)
1674                *i = PN->getIncomingValueForBlock(Pred);
1675
1676          // Update any PHI nodes in the returning block to realize that we no
1677          // longer branch to them.
1678          BB->removePredecessor(Pred);
1679          Pred->getInstList().erase(UncondBranch);
1680        }
1681
1682        // If we eliminated all predecessors of the block, delete the block now.
1683        if (pred_begin(BB) == pred_end(BB))
1684          // We know there are no successors, so just nuke the block.
1685          M->getBasicBlockList().erase(BB);
1686
1687        return true;
1688      }
1689
1690      // Check out all of the conditional branches going to this return
1691      // instruction.  If any of them just select between returns, change the
1692      // branch itself into a select/return pair.
1693      while (!CondBranchPreds.empty()) {
1694        BranchInst *BI = CondBranchPreds.pop_back_val();
1695
1696        // Check to see if the non-BB successor is also a return block.
1697        if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
1698            isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
1699            SimplifyCondBranchToTwoReturns(BI))
1700          return true;
1701      }
1702    }
1703  } else if (isa<UnwindInst>(BB->begin())) {
1704    // Check to see if the first instruction in this block is just an unwind.
1705    // If so, replace any invoke instructions which use this as an exception
1706    // destination with call instructions.
1707    //
1708    SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1709    while (!Preds.empty()) {
1710      BasicBlock *Pred = Preds.back();
1711      if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1712        if (II->getUnwindDest() == BB) {
1713          // Insert a new branch instruction before the invoke, because this
1714          // is now a fall through.
1715          BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
1716          Pred->getInstList().remove(II);   // Take out of symbol table
1717
1718          // Insert the call now.
1719          SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
1720          CallInst *CI = CallInst::Create(II->getCalledValue(),
1721                                          Args.begin(), Args.end(),
1722                                          II->getName(), BI);
1723          CI->setCallingConv(II->getCallingConv());
1724          CI->setAttributes(II->getAttributes());
1725          // If the invoke produced a value, the Call now does instead.
1726          II->replaceAllUsesWith(CI);
1727          delete II;
1728          Changed = true;
1729        }
1730
1731      Preds.pop_back();
1732    }
1733
1734    // If this block is now dead, remove it.
1735    if (pred_begin(BB) == pred_end(BB)) {
1736      // We know there are no successors, so just nuke the block.
1737      M->getBasicBlockList().erase(BB);
1738      return true;
1739    }
1740
1741  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1742    if (isValueEqualityComparison(SI)) {
1743      // If we only have one predecessor, and if it is a branch on this value,
1744      // see if that predecessor totally determines the outcome of this switch.
1745      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1746        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1747          return SimplifyCFG(BB) || 1;
1748
1749      // If the block only contains the switch, see if we can fold the block
1750      // away into any preds.
1751      BasicBlock::iterator BBI = BB->begin();
1752      // Ignore dbg intrinsics.
1753      while (isa<DbgInfoIntrinsic>(BBI))
1754        ++BBI;
1755      if (SI == &*BBI)
1756        if (FoldValueComparisonIntoPredecessors(SI))
1757          return SimplifyCFG(BB) || 1;
1758    }
1759  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1760    if (BI->isUnconditional()) {
1761      BasicBlock::iterator BBI = BB->getFirstNonPHI();
1762
1763      // Ignore dbg intrinsics.
1764      while (isa<DbgInfoIntrinsic>(BBI))
1765        ++BBI;
1766      if (BBI->isTerminator()) // Terminator is the only non-phi instruction!
1767        if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
1768          return true;
1769
1770    } else {  // Conditional branch
1771      if (isValueEqualityComparison(BI)) {
1772        // If we only have one predecessor, and if it is a branch on this value,
1773        // see if that predecessor totally determines the outcome of this
1774        // switch.
1775        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1776          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1777            return SimplifyCFG(BB) || 1;
1778
1779        // This block must be empty, except for the setcond inst, if it exists.
1780        // Ignore dbg intrinsics.
1781        BasicBlock::iterator I = BB->begin();
1782        // Ignore dbg intrinsics.
1783        while (isa<DbgInfoIntrinsic>(I))
1784          ++I;
1785        if (&*I == BI) {
1786          if (FoldValueComparisonIntoPredecessors(BI))
1787            return SimplifyCFG(BB) | true;
1788        } else if (&*I == cast<Instruction>(BI->getCondition())){
1789          ++I;
1790          // Ignore dbg intrinsics.
1791          while (isa<DbgInfoIntrinsic>(I))
1792            ++I;
1793          if(&*I == BI) {
1794            if (FoldValueComparisonIntoPredecessors(BI))
1795              return SimplifyCFG(BB) | true;
1796          }
1797        }
1798      }
1799
1800      // If this is a branch on a phi node in the current block, thread control
1801      // through this block if any PHI node entries are constants.
1802      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1803        if (PN->getParent() == BI->getParent())
1804          if (FoldCondBranchOnPHI(BI))
1805            return SimplifyCFG(BB) | true;
1806
1807      // If this basic block is ONLY a setcc and a branch, and if a predecessor
1808      // branches to us and one of our successors, fold the setcc into the
1809      // predecessor and use logical operations to pick the right destination.
1810      if (FoldBranchToCommonDest(BI))
1811        return SimplifyCFG(BB) | 1;
1812
1813
1814      // Scan predecessor blocks for conditional branches.
1815      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1816        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1817          if (PBI != BI && PBI->isConditional())
1818            if (SimplifyCondBranchToCondBranch(PBI, BI))
1819              return SimplifyCFG(BB) | true;
1820    }
1821  } else if (isa<UnreachableInst>(BB->getTerminator())) {
1822    // If there are any instructions immediately before the unreachable that can
1823    // be removed, do so.
1824    Instruction *Unreachable = BB->getTerminator();
1825    while (Unreachable != BB->begin()) {
1826      BasicBlock::iterator BBI = Unreachable;
1827      --BBI;
1828      // Do not delete instructions that can have side effects, like calls
1829      // (which may never return) and volatile loads and stores.
1830      if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
1831
1832      if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
1833        if (SI->isVolatile())
1834          break;
1835
1836      if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
1837        if (LI->isVolatile())
1838          break;
1839
1840      // Delete this instruction
1841      BB->getInstList().erase(BBI);
1842      Changed = true;
1843    }
1844
1845    // If the unreachable instruction is the first in the block, take a gander
1846    // at all of the predecessors of this instruction, and simplify them.
1847    if (&BB->front() == Unreachable) {
1848      SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1849      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1850        TerminatorInst *TI = Preds[i]->getTerminator();
1851
1852        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1853          if (BI->isUnconditional()) {
1854            if (BI->getSuccessor(0) == BB) {
1855              new UnreachableInst(TI->getContext(), TI);
1856              TI->eraseFromParent();
1857              Changed = true;
1858            }
1859          } else {
1860            if (BI->getSuccessor(0) == BB) {
1861              BranchInst::Create(BI->getSuccessor(1), BI);
1862              EraseTerminatorInstAndDCECond(BI);
1863            } else if (BI->getSuccessor(1) == BB) {
1864              BranchInst::Create(BI->getSuccessor(0), BI);
1865              EraseTerminatorInstAndDCECond(BI);
1866              Changed = true;
1867            }
1868          }
1869        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1870          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1871            if (SI->getSuccessor(i) == BB) {
1872              BB->removePredecessor(SI->getParent());
1873              SI->removeCase(i);
1874              --i; --e;
1875              Changed = true;
1876            }
1877          // If the default value is unreachable, figure out the most popular
1878          // destination and make it the default.
1879          if (SI->getSuccessor(0) == BB) {
1880            std::map<BasicBlock*, unsigned> Popularity;
1881            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1882              Popularity[SI->getSuccessor(i)]++;
1883
1884            // Find the most popular block.
1885            unsigned MaxPop = 0;
1886            BasicBlock *MaxBlock = 0;
1887            for (std::map<BasicBlock*, unsigned>::iterator
1888                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1889              if (I->second > MaxPop) {
1890                MaxPop = I->second;
1891                MaxBlock = I->first;
1892              }
1893            }
1894            if (MaxBlock) {
1895              // Make this the new default, allowing us to delete any explicit
1896              // edges to it.
1897              SI->setSuccessor(0, MaxBlock);
1898              Changed = true;
1899
1900              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1901              // it.
1902              if (isa<PHINode>(MaxBlock->begin()))
1903                for (unsigned i = 0; i != MaxPop-1; ++i)
1904                  MaxBlock->removePredecessor(SI->getParent());
1905
1906              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1907                if (SI->getSuccessor(i) == MaxBlock) {
1908                  SI->removeCase(i);
1909                  --i; --e;
1910                }
1911            }
1912          }
1913        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1914          if (II->getUnwindDest() == BB) {
1915            // Convert the invoke to a call instruction.  This would be a good
1916            // place to note that the call does not throw though.
1917            BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
1918            II->removeFromParent();   // Take out of symbol table
1919
1920            // Insert the call now...
1921            SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
1922            CallInst *CI = CallInst::Create(II->getCalledValue(),
1923                                            Args.begin(), Args.end(),
1924                                            II->getName(), BI);
1925            CI->setCallingConv(II->getCallingConv());
1926            CI->setAttributes(II->getAttributes());
1927            // If the invoke produced a value, the Call does now instead.
1928            II->replaceAllUsesWith(CI);
1929            delete II;
1930            Changed = true;
1931          }
1932        }
1933      }
1934
1935      // If this block is now dead, remove it.
1936      if (pred_begin(BB) == pred_end(BB)) {
1937        // We know there are no successors, so just nuke the block.
1938        M->getBasicBlockList().erase(BB);
1939        return true;
1940      }
1941    }
1942  }
1943
1944  // Merge basic blocks into their predecessor if there is only one distinct
1945  // pred, and if there is only one distinct successor of the predecessor, and
1946  // if there are no PHI nodes.
1947  //
1948  if (MergeBlockIntoPredecessor(BB))
1949    return true;
1950
1951  // Otherwise, if this block only has a single predecessor, and if that block
1952  // is a conditional branch, see if we can hoist any code from this block up
1953  // into our predecessor.
1954  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1955  BasicBlock *OnlyPred = *PI++;
1956  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
1957    if (*PI != OnlyPred) {
1958      OnlyPred = 0;       // There are multiple different predecessors...
1959      break;
1960    }
1961
1962  if (OnlyPred)
1963    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1964      if (BI->isConditional()) {
1965        // Get the other block.
1966        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
1967        PI = pred_begin(OtherBB);
1968        ++PI;
1969
1970        if (PI == pred_end(OtherBB)) {
1971          // We have a conditional branch to two blocks that are only reachable
1972          // from the condbr.  We know that the condbr dominates the two blocks,
1973          // so see if there is any identical code in the "then" and "else"
1974          // blocks.  If so, we can hoist it up to the branching block.
1975          Changed |= HoistThenElseCodeToIf(BI);
1976        } else {
1977          BasicBlock* OnlySucc = NULL;
1978          for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
1979               SI != SE; ++SI) {
1980            if (!OnlySucc)
1981              OnlySucc = *SI;
1982            else if (*SI != OnlySucc) {
1983              OnlySucc = 0;     // There are multiple distinct successors!
1984              break;
1985            }
1986          }
1987
1988          if (OnlySucc == OtherBB) {
1989            // If BB's only successor is the other successor of the predecessor,
1990            // i.e. a triangle, see if we can hoist any code from this block up
1991            // to the "if" block.
1992            Changed |= SpeculativelyExecuteBB(BI, BB);
1993          }
1994        }
1995      }
1996
1997  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1998    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1999      // Change br (X == 0 | X == 1), T, F into a switch instruction.
2000      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
2001        Instruction *Cond = cast<Instruction>(BI->getCondition());
2002        // If this is a bunch of seteq's or'd together, or if it's a bunch of
2003        // 'setne's and'ed together, collect them.
2004        Value *CompVal = 0;
2005        std::vector<ConstantInt*> Values;
2006        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
2007        if (CompVal && CompVal->getType()->isInteger()) {
2008          // There might be duplicate constants in the list, which the switch
2009          // instruction can't handle, remove them now.
2010          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
2011          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2012
2013          // Figure out which block is which destination.
2014          BasicBlock *DefaultBB = BI->getSuccessor(1);
2015          BasicBlock *EdgeBB    = BI->getSuccessor(0);
2016          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2017
2018          // Create the new switch instruction now.
2019          SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
2020                                               Values.size(), BI);
2021
2022          // Add all of the 'cases' to the switch instruction.
2023          for (unsigned i = 0, e = Values.size(); i != e; ++i)
2024            New->addCase(Values[i], EdgeBB);
2025
2026          // We added edges from PI to the EdgeBB.  As such, if there were any
2027          // PHI nodes in EdgeBB, they need entries to be added corresponding to
2028          // the number of edges added.
2029          for (BasicBlock::iterator BBI = EdgeBB->begin();
2030               isa<PHINode>(BBI); ++BBI) {
2031            PHINode *PN = cast<PHINode>(BBI);
2032            Value *InVal = PN->getIncomingValueForBlock(*PI);
2033            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2034              PN->addIncoming(InVal, *PI);
2035          }
2036
2037          // Erase the old branch instruction.
2038          EraseTerminatorInstAndDCECond(BI);
2039          return true;
2040        }
2041      }
2042
2043  return Changed;
2044}
2045