SimplifyCFG.cpp revision 5622f07a21b799964dc172925b9ebc38191859f6
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Type.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Support/CFG.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Transforms/Utils/BasicBlockUtils.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/Statistic.h"
28#include <algorithm>
29#include <functional>
30#include <set>
31#include <map>
32using namespace llvm;
33
34STATISTIC(NumSpeculations, "Number of speculative executed instructions");
35
36/// SafeToMergeTerminators - Return true if it is safe to merge these two
37/// terminator instructions together.
38///
39static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
40  if (SI1 == SI2) return false;  // Can't merge with self!
41
42  // It is not safe to merge these two switch instructions if they have a common
43  // successor, and if that successor has a PHI node, and if *that* PHI node has
44  // conflicting incoming values from the two switch blocks.
45  BasicBlock *SI1BB = SI1->getParent();
46  BasicBlock *SI2BB = SI2->getParent();
47  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
48
49  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
50    if (SI1Succs.count(*I))
51      for (BasicBlock::iterator BBI = (*I)->begin();
52           isa<PHINode>(BBI); ++BBI) {
53        PHINode *PN = cast<PHINode>(BBI);
54        if (PN->getIncomingValueForBlock(SI1BB) !=
55            PN->getIncomingValueForBlock(SI2BB))
56          return false;
57      }
58
59  return true;
60}
61
62/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
63/// now be entries in it from the 'NewPred' block.  The values that will be
64/// flowing into the PHI nodes will be the same as those coming in from
65/// ExistPred, an existing predecessor of Succ.
66static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
67                                  BasicBlock *ExistPred) {
68  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
69         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
70  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
71
72  PHINode *PN;
73  for (BasicBlock::iterator I = Succ->begin();
74       (PN = dyn_cast<PHINode>(I)); ++I)
75    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
76}
77
78/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
79/// almost-empty BB ending in an unconditional branch to Succ, into succ.
80///
81/// Assumption: Succ is the single successor for BB.
82///
83static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
84  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
85
86  DOUT << "Looking to fold " << BB->getNameStart() << " into "
87       << Succ->getNameStart() << "\n";
88  // Shortcut, if there is only a single predecessor is must be BB and merging
89  // is always safe
90  if (Succ->getSinglePredecessor()) return true;
91
92  typedef SmallPtrSet<Instruction*, 16> InstrSet;
93  InstrSet BBPHIs;
94
95  // Make a list of all phi nodes in BB
96  BasicBlock::iterator BBI = BB->begin();
97  while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++);
98
99  // Make a list of the predecessors of BB
100  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
101  BlockSet BBPreds(pred_begin(BB), pred_end(BB));
102
103  // Use that list to make another list of common predecessors of BB and Succ
104  BlockSet CommonPreds;
105  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
106        PI != PE; ++PI)
107    if (BBPreds.count(*PI))
108      CommonPreds.insert(*PI);
109
110  // Shortcut, if there are no common predecessors, merging is always safe
111  if (CommonPreds.empty())
112    return true;
113
114  // Look at all the phi nodes in Succ, to see if they present a conflict when
115  // merging these blocks
116  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
117    PHINode *PN = cast<PHINode>(I);
118
119    // If the incoming value from BB is again a PHINode in
120    // BB which has the same incoming value for *PI as PN does, we can
121    // merge the phi nodes and then the blocks can still be merged
122    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
123    if (BBPN && BBPN->getParent() == BB) {
124      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
125            PI != PE; PI++) {
126        if (BBPN->getIncomingValueForBlock(*PI)
127              != PN->getIncomingValueForBlock(*PI)) {
128          DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
129               << Succ->getNameStart() << " is conflicting with "
130               << BBPN->getNameStart() << " with regard to common predecessor "
131               << (*PI)->getNameStart() << "\n";
132          return false;
133        }
134      }
135      // Remove this phinode from the list of phis in BB, since it has been
136      // handled.
137      BBPHIs.erase(BBPN);
138    } else {
139      Value* Val = PN->getIncomingValueForBlock(BB);
140      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
141            PI != PE; PI++) {
142        // See if the incoming value for the common predecessor is equal to the
143        // one for BB, in which case this phi node will not prevent the merging
144        // of the block.
145        if (Val != PN->getIncomingValueForBlock(*PI)) {
146          DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
147          << Succ->getNameStart() << " is conflicting with regard to common "
148          << "predecessor " << (*PI)->getNameStart() << "\n";
149          return false;
150        }
151      }
152    }
153  }
154
155  // If there are any other phi nodes in BB that don't have a phi node in Succ
156  // to merge with, they must be moved to Succ completely. However, for any
157  // predecessors of Succ, branches will be added to the phi node that just
158  // point to itself. So, for any common predecessors, this must not cause
159  // conflicts.
160  for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end();
161        I != E; I++) {
162    PHINode *PN = cast<PHINode>(*I);
163    for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
164          PI != PE; PI++)
165      if (PN->getIncomingValueForBlock(*PI) != PN) {
166        DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
167             << BB->getNameStart() << " is conflicting with regard to common "
168             << "predecessor " << (*PI)->getNameStart() << "\n";
169        return false;
170      }
171  }
172
173  return true;
174}
175
176/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
177/// branch to Succ, and contains no instructions other than PHI nodes and the
178/// branch.  If possible, eliminate BB.
179static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
180                                                    BasicBlock *Succ) {
181  // Check to see if merging these blocks would cause conflicts for any of the
182  // phi nodes in BB or Succ. If not, we can safely merge.
183  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
184
185  DOUT << "Killing Trivial BB: \n" << *BB;
186
187  if (isa<PHINode>(Succ->begin())) {
188    // If there is more than one pred of succ, and there are PHI nodes in
189    // the successor, then we need to add incoming edges for the PHI nodes
190    //
191    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
192
193    // Loop over all of the PHI nodes in the successor of BB.
194    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
195      PHINode *PN = cast<PHINode>(I);
196      Value *OldVal = PN->removeIncomingValue(BB, false);
197      assert(OldVal && "No entry in PHI for Pred BB!");
198
199      // If this incoming value is one of the PHI nodes in BB, the new entries
200      // in the PHI node are the entries from the old PHI.
201      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
202        PHINode *OldValPN = cast<PHINode>(OldVal);
203        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
204          // Note that, since we are merging phi nodes and BB and Succ might
205          // have common predecessors, we could end up with a phi node with
206          // identical incoming branches. This will be cleaned up later (and
207          // will trigger asserts if we try to clean it up now, without also
208          // simplifying the corresponding conditional branch).
209          PN->addIncoming(OldValPN->getIncomingValue(i),
210                          OldValPN->getIncomingBlock(i));
211      } else {
212        // Add an incoming value for each of the new incoming values.
213        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
214          PN->addIncoming(OldVal, BBPreds[i]);
215      }
216    }
217  }
218
219  if (isa<PHINode>(&BB->front())) {
220    SmallVector<BasicBlock*, 16>
221    OldSuccPreds(pred_begin(Succ), pred_end(Succ));
222
223    // Move all PHI nodes in BB to Succ if they are alive, otherwise
224    // delete them.
225    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
226      if (PN->use_empty()) {
227        // Just remove the dead phi.  This happens if Succ's PHIs were the only
228        // users of the PHI nodes.
229        PN->eraseFromParent();
230        continue;
231      }
232
233      // The instruction is alive, so this means that BB must dominate all
234      // predecessors of Succ (Since all uses of the PN are after its
235      // definition, so in Succ or a block dominated by Succ. If a predecessor
236      // of Succ would not be dominated by BB, PN would violate the def before
237      // use SSA demand). Therefore, we can simply move the phi node to the
238      // next block.
239      Succ->getInstList().splice(Succ->begin(),
240                                 BB->getInstList(), BB->begin());
241
242      // We need to add new entries for the PHI node to account for
243      // predecessors of Succ that the PHI node does not take into
244      // account.  At this point, since we know that BB dominated succ and all
245      // of its predecessors, this means that we should any newly added
246      // incoming edges should use the PHI node itself as the value for these
247      // edges, because they are loop back edges.
248      for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
249        if (OldSuccPreds[i] != BB)
250          PN->addIncoming(PN, OldSuccPreds[i]);
251    }
252  }
253
254  // Everything that jumped to BB now goes to Succ.
255  BB->replaceAllUsesWith(Succ);
256  if (!Succ->hasName()) Succ->takeName(BB);
257  BB->eraseFromParent();              // Delete the old basic block.
258  return true;
259}
260
261/// GetIfCondition - Given a basic block (BB) with two predecessors (and
262/// presumably PHI nodes in it), check to see if the merge at this block is due
263/// to an "if condition".  If so, return the boolean condition that determines
264/// which entry into BB will be taken.  Also, return by references the block
265/// that will be entered from if the condition is true, and the block that will
266/// be entered if the condition is false.
267///
268///
269static Value *GetIfCondition(BasicBlock *BB,
270                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
271  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
272         "Function can only handle blocks with 2 predecessors!");
273  BasicBlock *Pred1 = *pred_begin(BB);
274  BasicBlock *Pred2 = *++pred_begin(BB);
275
276  // We can only handle branches.  Other control flow will be lowered to
277  // branches if possible anyway.
278  if (!isa<BranchInst>(Pred1->getTerminator()) ||
279      !isa<BranchInst>(Pred2->getTerminator()))
280    return 0;
281  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
282  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
283
284  // Eliminate code duplication by ensuring that Pred1Br is conditional if
285  // either are.
286  if (Pred2Br->isConditional()) {
287    // If both branches are conditional, we don't have an "if statement".  In
288    // reality, we could transform this case, but since the condition will be
289    // required anyway, we stand no chance of eliminating it, so the xform is
290    // probably not profitable.
291    if (Pred1Br->isConditional())
292      return 0;
293
294    std::swap(Pred1, Pred2);
295    std::swap(Pred1Br, Pred2Br);
296  }
297
298  if (Pred1Br->isConditional()) {
299    // If we found a conditional branch predecessor, make sure that it branches
300    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
301    if (Pred1Br->getSuccessor(0) == BB &&
302        Pred1Br->getSuccessor(1) == Pred2) {
303      IfTrue = Pred1;
304      IfFalse = Pred2;
305    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
306               Pred1Br->getSuccessor(1) == BB) {
307      IfTrue = Pred2;
308      IfFalse = Pred1;
309    } else {
310      // We know that one arm of the conditional goes to BB, so the other must
311      // go somewhere unrelated, and this must not be an "if statement".
312      return 0;
313    }
314
315    // The only thing we have to watch out for here is to make sure that Pred2
316    // doesn't have incoming edges from other blocks.  If it does, the condition
317    // doesn't dominate BB.
318    if (++pred_begin(Pred2) != pred_end(Pred2))
319      return 0;
320
321    return Pred1Br->getCondition();
322  }
323
324  // Ok, if we got here, both predecessors end with an unconditional branch to
325  // BB.  Don't panic!  If both blocks only have a single (identical)
326  // predecessor, and THAT is a conditional branch, then we're all ok!
327  if (pred_begin(Pred1) == pred_end(Pred1) ||
328      ++pred_begin(Pred1) != pred_end(Pred1) ||
329      pred_begin(Pred2) == pred_end(Pred2) ||
330      ++pred_begin(Pred2) != pred_end(Pred2) ||
331      *pred_begin(Pred1) != *pred_begin(Pred2))
332    return 0;
333
334  // Otherwise, if this is a conditional branch, then we can use it!
335  BasicBlock *CommonPred = *pred_begin(Pred1);
336  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
337    assert(BI->isConditional() && "Two successors but not conditional?");
338    if (BI->getSuccessor(0) == Pred1) {
339      IfTrue = Pred1;
340      IfFalse = Pred2;
341    } else {
342      IfTrue = Pred2;
343      IfFalse = Pred1;
344    }
345    return BI->getCondition();
346  }
347  return 0;
348}
349
350
351/// DominatesMergePoint - If we have a merge point of an "if condition" as
352/// accepted above, return true if the specified value dominates the block.  We
353/// don't handle the true generality of domination here, just a special case
354/// which works well enough for us.
355///
356/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
357/// see if V (which must be an instruction) is cheap to compute and is
358/// non-trapping.  If both are true, the instruction is inserted into the set
359/// and true is returned.
360static bool DominatesMergePoint(Value *V, BasicBlock *BB,
361                                std::set<Instruction*> *AggressiveInsts) {
362  Instruction *I = dyn_cast<Instruction>(V);
363  if (!I) {
364    // Non-instructions all dominate instructions, but not all constantexprs
365    // can be executed unconditionally.
366    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
367      if (C->canTrap())
368        return false;
369    return true;
370  }
371  BasicBlock *PBB = I->getParent();
372
373  // We don't want to allow weird loops that might have the "if condition" in
374  // the bottom of this block.
375  if (PBB == BB) return false;
376
377  // If this instruction is defined in a block that contains an unconditional
378  // branch to BB, then it must be in the 'conditional' part of the "if
379  // statement".
380  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
381    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
382      if (!AggressiveInsts) return false;
383      // Okay, it looks like the instruction IS in the "condition".  Check to
384      // see if its a cheap instruction to unconditionally compute, and if it
385      // only uses stuff defined outside of the condition.  If so, hoist it out.
386      switch (I->getOpcode()) {
387      default: return false;  // Cannot hoist this out safely.
388      case Instruction::Load:
389        // We can hoist loads that are non-volatile and obviously cannot trap.
390        if (cast<LoadInst>(I)->isVolatile())
391          return false;
392        // FIXME: A computation of a constant can trap!
393        if (!isa<AllocaInst>(I->getOperand(0)) &&
394            !isa<Constant>(I->getOperand(0)))
395          return false;
396
397        // Finally, we have to check to make sure there are no instructions
398        // before the load in its basic block, as we are going to hoist the loop
399        // out to its predecessor.
400        if (PBB->begin() != BasicBlock::iterator(I))
401          return false;
402        break;
403      case Instruction::Add:
404      case Instruction::Sub:
405      case Instruction::And:
406      case Instruction::Or:
407      case Instruction::Xor:
408      case Instruction::Shl:
409      case Instruction::LShr:
410      case Instruction::AShr:
411      case Instruction::ICmp:
412      case Instruction::FCmp:
413        if (I->getOperand(0)->getType()->isFPOrFPVector())
414          return false;  // FP arithmetic might trap.
415        break;   // These are all cheap and non-trapping instructions.
416      }
417
418      // Okay, we can only really hoist these out if their operands are not
419      // defined in the conditional region.
420      for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
421        if (!DominatesMergePoint(*i, BB, 0))
422          return false;
423      // Okay, it's safe to do this!  Remember this instruction.
424      AggressiveInsts->insert(I);
425    }
426
427  return true;
428}
429
430/// GatherConstantSetEQs - Given a potentially 'or'd together collection of
431/// icmp_eq instructions that compare a value against a constant, return the
432/// value being compared, and stick the constant into the Values vector.
433static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
434  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
435    if (Inst->getOpcode() == Instruction::ICmp &&
436        cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
437      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
438        Values.push_back(C);
439        return Inst->getOperand(0);
440      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
441        Values.push_back(C);
442        return Inst->getOperand(1);
443      }
444    } else if (Inst->getOpcode() == Instruction::Or) {
445      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
446        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
447          if (LHS == RHS)
448            return LHS;
449    }
450  }
451  return 0;
452}
453
454/// GatherConstantSetNEs - Given a potentially 'and'd together collection of
455/// setne instructions that compare a value against a constant, return the value
456/// being compared, and stick the constant into the Values vector.
457static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
458  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
459    if (Inst->getOpcode() == Instruction::ICmp &&
460               cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
461      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
462        Values.push_back(C);
463        return Inst->getOperand(0);
464      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
465        Values.push_back(C);
466        return Inst->getOperand(1);
467      }
468    } else if (Inst->getOpcode() == Instruction::And) {
469      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
470        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
471          if (LHS == RHS)
472            return LHS;
473    }
474  }
475  return 0;
476}
477
478/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
479/// bunch of comparisons of one value against constants, return the value and
480/// the constants being compared.
481static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
482                                   std::vector<ConstantInt*> &Values) {
483  if (Cond->getOpcode() == Instruction::Or) {
484    CompVal = GatherConstantSetEQs(Cond, Values);
485
486    // Return true to indicate that the condition is true if the CompVal is
487    // equal to one of the constants.
488    return true;
489  } else if (Cond->getOpcode() == Instruction::And) {
490    CompVal = GatherConstantSetNEs(Cond, Values);
491
492    // Return false to indicate that the condition is false if the CompVal is
493    // equal to one of the constants.
494    return false;
495  }
496  return false;
497}
498
499static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
500  Instruction* Cond = 0;
501  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
502    Cond = dyn_cast<Instruction>(SI->getCondition());
503  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
504    if (BI->isConditional())
505      Cond = dyn_cast<Instruction>(BI->getCondition());
506  }
507
508  TI->eraseFromParent();
509  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
510}
511
512/// isValueEqualityComparison - Return true if the specified terminator checks
513/// to see if a value is equal to constant integer value.
514static Value *isValueEqualityComparison(TerminatorInst *TI) {
515  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
516    // Do not permit merging of large switch instructions into their
517    // predecessors unless there is only one predecessor.
518    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
519                                               pred_end(SI->getParent())) > 128)
520      return 0;
521
522    return SI->getCondition();
523  }
524  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
525    if (BI->isConditional() && BI->getCondition()->hasOneUse())
526      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
527        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
528             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
529            isa<ConstantInt>(ICI->getOperand(1)))
530          return ICI->getOperand(0);
531  return 0;
532}
533
534/// GetValueEqualityComparisonCases - Given a value comparison instruction,
535/// decode all of the 'cases' that it represents and return the 'default' block.
536static BasicBlock *
537GetValueEqualityComparisonCases(TerminatorInst *TI,
538                                std::vector<std::pair<ConstantInt*,
539                                                      BasicBlock*> > &Cases) {
540  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
541    Cases.reserve(SI->getNumCases());
542    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
543      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
544    return SI->getDefaultDest();
545  }
546
547  BranchInst *BI = cast<BranchInst>(TI);
548  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
549  Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
550                                 BI->getSuccessor(ICI->getPredicate() ==
551                                                  ICmpInst::ICMP_NE)));
552  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
553}
554
555
556/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
557/// in the list that match the specified block.
558static void EliminateBlockCases(BasicBlock *BB,
559               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
560  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
561    if (Cases[i].second == BB) {
562      Cases.erase(Cases.begin()+i);
563      --i; --e;
564    }
565}
566
567/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
568/// well.
569static bool
570ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
571              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
572  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
573
574  // Make V1 be smaller than V2.
575  if (V1->size() > V2->size())
576    std::swap(V1, V2);
577
578  if (V1->size() == 0) return false;
579  if (V1->size() == 1) {
580    // Just scan V2.
581    ConstantInt *TheVal = (*V1)[0].first;
582    for (unsigned i = 0, e = V2->size(); i != e; ++i)
583      if (TheVal == (*V2)[i].first)
584        return true;
585  }
586
587  // Otherwise, just sort both lists and compare element by element.
588  std::sort(V1->begin(), V1->end());
589  std::sort(V2->begin(), V2->end());
590  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
591  while (i1 != e1 && i2 != e2) {
592    if ((*V1)[i1].first == (*V2)[i2].first)
593      return true;
594    if ((*V1)[i1].first < (*V2)[i2].first)
595      ++i1;
596    else
597      ++i2;
598  }
599  return false;
600}
601
602/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
603/// terminator instruction and its block is known to only have a single
604/// predecessor block, check to see if that predecessor is also a value
605/// comparison with the same value, and if that comparison determines the
606/// outcome of this comparison.  If so, simplify TI.  This does a very limited
607/// form of jump threading.
608static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
609                                                          BasicBlock *Pred) {
610  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
611  if (!PredVal) return false;  // Not a value comparison in predecessor.
612
613  Value *ThisVal = isValueEqualityComparison(TI);
614  assert(ThisVal && "This isn't a value comparison!!");
615  if (ThisVal != PredVal) return false;  // Different predicates.
616
617  // Find out information about when control will move from Pred to TI's block.
618  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
619  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
620                                                        PredCases);
621  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
622
623  // Find information about how control leaves this block.
624  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
625  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
626  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
627
628  // If TI's block is the default block from Pred's comparison, potentially
629  // simplify TI based on this knowledge.
630  if (PredDef == TI->getParent()) {
631    // If we are here, we know that the value is none of those cases listed in
632    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
633    // can simplify TI.
634    if (ValuesOverlap(PredCases, ThisCases)) {
635      if (isa<BranchInst>(TI)) {
636        // Okay, one of the successors of this condbr is dead.  Convert it to a
637        // uncond br.
638        assert(ThisCases.size() == 1 && "Branch can only have one case!");
639        // Insert the new branch.
640        Instruction *NI = BranchInst::Create(ThisDef, TI);
641
642        // Remove PHI node entries for the dead edge.
643        ThisCases[0].second->removePredecessor(TI->getParent());
644
645        DOUT << "Threading pred instr: " << *Pred->getTerminator()
646             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
647
648        EraseTerminatorInstAndDCECond(TI);
649        return true;
650
651      } else {
652        SwitchInst *SI = cast<SwitchInst>(TI);
653        // Okay, TI has cases that are statically dead, prune them away.
654        SmallPtrSet<Constant*, 16> DeadCases;
655        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
656          DeadCases.insert(PredCases[i].first);
657
658        DOUT << "Threading pred instr: " << *Pred->getTerminator()
659             << "Through successor TI: " << *TI;
660
661        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
662          if (DeadCases.count(SI->getCaseValue(i))) {
663            SI->getSuccessor(i)->removePredecessor(TI->getParent());
664            SI->removeCase(i);
665          }
666
667        DOUT << "Leaving: " << *TI << "\n";
668        return true;
669      }
670    }
671
672  } else {
673    // Otherwise, TI's block must correspond to some matched value.  Find out
674    // which value (or set of values) this is.
675    ConstantInt *TIV = 0;
676    BasicBlock *TIBB = TI->getParent();
677    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
678      if (PredCases[i].second == TIBB) {
679        if (TIV == 0)
680          TIV = PredCases[i].first;
681        else
682          return false;  // Cannot handle multiple values coming to this block.
683      }
684    assert(TIV && "No edge from pred to succ?");
685
686    // Okay, we found the one constant that our value can be if we get into TI's
687    // BB.  Find out which successor will unconditionally be branched to.
688    BasicBlock *TheRealDest = 0;
689    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
690      if (ThisCases[i].first == TIV) {
691        TheRealDest = ThisCases[i].second;
692        break;
693      }
694
695    // If not handled by any explicit cases, it is handled by the default case.
696    if (TheRealDest == 0) TheRealDest = ThisDef;
697
698    // Remove PHI node entries for dead edges.
699    BasicBlock *CheckEdge = TheRealDest;
700    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
701      if (*SI != CheckEdge)
702        (*SI)->removePredecessor(TIBB);
703      else
704        CheckEdge = 0;
705
706    // Insert the new branch.
707    Instruction *NI = BranchInst::Create(TheRealDest, TI);
708
709    DOUT << "Threading pred instr: " << *Pred->getTerminator()
710         << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
711
712    EraseTerminatorInstAndDCECond(TI);
713    return true;
714  }
715  return false;
716}
717
718/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
719/// equality comparison instruction (either a switch or a branch on "X == c").
720/// See if any of the predecessors of the terminator block are value comparisons
721/// on the same value.  If so, and if safe to do so, fold them together.
722static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
723  BasicBlock *BB = TI->getParent();
724  Value *CV = isValueEqualityComparison(TI);  // CondVal
725  assert(CV && "Not a comparison?");
726  bool Changed = false;
727
728  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
729  while (!Preds.empty()) {
730    BasicBlock *Pred = Preds.back();
731    Preds.pop_back();
732
733    // See if the predecessor is a comparison with the same value.
734    TerminatorInst *PTI = Pred->getTerminator();
735    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
736
737    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
738      // Figure out which 'cases' to copy from SI to PSI.
739      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
740      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
741
742      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
743      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
744
745      // Based on whether the default edge from PTI goes to BB or not, fill in
746      // PredCases and PredDefault with the new switch cases we would like to
747      // build.
748      SmallVector<BasicBlock*, 8> NewSuccessors;
749
750      if (PredDefault == BB) {
751        // If this is the default destination from PTI, only the edges in TI
752        // that don't occur in PTI, or that branch to BB will be activated.
753        std::set<ConstantInt*> PTIHandled;
754        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
755          if (PredCases[i].second != BB)
756            PTIHandled.insert(PredCases[i].first);
757          else {
758            // The default destination is BB, we don't need explicit targets.
759            std::swap(PredCases[i], PredCases.back());
760            PredCases.pop_back();
761            --i; --e;
762          }
763
764        // Reconstruct the new switch statement we will be building.
765        if (PredDefault != BBDefault) {
766          PredDefault->removePredecessor(Pred);
767          PredDefault = BBDefault;
768          NewSuccessors.push_back(BBDefault);
769        }
770        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
771          if (!PTIHandled.count(BBCases[i].first) &&
772              BBCases[i].second != BBDefault) {
773            PredCases.push_back(BBCases[i]);
774            NewSuccessors.push_back(BBCases[i].second);
775          }
776
777      } else {
778        // If this is not the default destination from PSI, only the edges
779        // in SI that occur in PSI with a destination of BB will be
780        // activated.
781        std::set<ConstantInt*> PTIHandled;
782        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
783          if (PredCases[i].second == BB) {
784            PTIHandled.insert(PredCases[i].first);
785            std::swap(PredCases[i], PredCases.back());
786            PredCases.pop_back();
787            --i; --e;
788          }
789
790        // Okay, now we know which constants were sent to BB from the
791        // predecessor.  Figure out where they will all go now.
792        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
793          if (PTIHandled.count(BBCases[i].first)) {
794            // If this is one we are capable of getting...
795            PredCases.push_back(BBCases[i]);
796            NewSuccessors.push_back(BBCases[i].second);
797            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
798          }
799
800        // If there are any constants vectored to BB that TI doesn't handle,
801        // they must go to the default destination of TI.
802        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
803               E = PTIHandled.end(); I != E; ++I) {
804          PredCases.push_back(std::make_pair(*I, BBDefault));
805          NewSuccessors.push_back(BBDefault);
806        }
807      }
808
809      // Okay, at this point, we know which new successor Pred will get.  Make
810      // sure we update the number of entries in the PHI nodes for these
811      // successors.
812      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
813        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
814
815      // Now that the successors are updated, create the new Switch instruction.
816      SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
817                                             PredCases.size(), PTI);
818      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
819        NewSI->addCase(PredCases[i].first, PredCases[i].second);
820
821      EraseTerminatorInstAndDCECond(PTI);
822
823      // Okay, last check.  If BB is still a successor of PSI, then we must
824      // have an infinite loop case.  If so, add an infinitely looping block
825      // to handle the case to preserve the behavior of the code.
826      BasicBlock *InfLoopBlock = 0;
827      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
828        if (NewSI->getSuccessor(i) == BB) {
829          if (InfLoopBlock == 0) {
830            // Insert it at the end of the function, because it's either code,
831            // or it won't matter if it's hot. :)
832            InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
833            BranchInst::Create(InfLoopBlock, InfLoopBlock);
834          }
835          NewSI->setSuccessor(i, InfLoopBlock);
836        }
837
838      Changed = true;
839    }
840  }
841  return Changed;
842}
843
844/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
845/// BB2, hoist any common code in the two blocks up into the branch block.  The
846/// caller of this function guarantees that BI's block dominates BB1 and BB2.
847static bool HoistThenElseCodeToIf(BranchInst *BI) {
848  // This does very trivial matching, with limited scanning, to find identical
849  // instructions in the two blocks.  In particular, we don't want to get into
850  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
851  // such, we currently just scan for obviously identical instructions in an
852  // identical order.
853  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
854  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
855
856  BasicBlock::iterator BB1_Itr = BB1->begin();
857  BasicBlock::iterator BB2_Itr = BB2->begin();
858
859  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
860  while (isa<DbgInfoIntrinsic>(I1))
861    I1 = BB1_Itr++;
862  while (isa<DbgInfoIntrinsic>(I2))
863    I2 = BB2_Itr++;
864  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
865      isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
866    return false;
867
868  // If we get here, we can hoist at least one instruction.
869  BasicBlock *BIParent = BI->getParent();
870
871  do {
872    // If we are hoisting the terminator instruction, don't move one (making a
873    // broken BB), instead clone it, and remove BI.
874    if (isa<TerminatorInst>(I1))
875      goto HoistTerminator;
876
877    // For a normal instruction, we just move one to right before the branch,
878    // then replace all uses of the other with the first.  Finally, we remove
879    // the now redundant second instruction.
880    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
881    if (!I2->use_empty())
882      I2->replaceAllUsesWith(I1);
883    BB2->getInstList().erase(I2);
884
885    I1 = BB1_Itr++;
886    while (isa<DbgInfoIntrinsic>(I1))
887      I1 = BB1_Itr++;
888    I2 = BB2_Itr++;
889    while (isa<DbgInfoIntrinsic>(I2))
890      I2 = BB2_Itr++;
891  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
892
893  return true;
894
895HoistTerminator:
896  // Okay, it is safe to hoist the terminator.
897  Instruction *NT = I1->clone();
898  BIParent->getInstList().insert(BI, NT);
899  if (NT->getType() != Type::VoidTy) {
900    I1->replaceAllUsesWith(NT);
901    I2->replaceAllUsesWith(NT);
902    NT->takeName(I1);
903  }
904
905  // Hoisting one of the terminators from our successor is a great thing.
906  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
907  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
908  // nodes, so we insert select instruction to compute the final result.
909  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
910  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
911    PHINode *PN;
912    for (BasicBlock::iterator BBI = SI->begin();
913         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
914      Value *BB1V = PN->getIncomingValueForBlock(BB1);
915      Value *BB2V = PN->getIncomingValueForBlock(BB2);
916      if (BB1V != BB2V) {
917        // These values do not agree.  Insert a select instruction before NT
918        // that determines the right value.
919        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
920        if (SI == 0)
921          SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
922                                  BB1V->getName()+"."+BB2V->getName(), NT);
923        // Make the PHI node use the select for all incoming values for BB1/BB2
924        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
925          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
926            PN->setIncomingValue(i, SI);
927      }
928    }
929  }
930
931  // Update any PHI nodes in our new successors.
932  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
933    AddPredecessorToBlock(*SI, BIParent, BB1);
934
935  EraseTerminatorInstAndDCECond(BI);
936  return true;
937}
938
939/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
940/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
941/// (for now, restricted to a single instruction that's side effect free) from
942/// the BB1 into the branch block to speculatively execute it.
943static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
944  // Only speculatively execution a single instruction (not counting the
945  // terminator) for now.
946  BasicBlock::iterator BBI = BB1->begin();
947  ++BBI; // must have at least a terminator
948  if (BBI == BB1->end()) return false; // only one inst
949  ++BBI;
950  if (BBI != BB1->end()) return false; // more than 2 insts.
951
952  // Be conservative for now. FP select instruction can often be expensive.
953  Value *BrCond = BI->getCondition();
954  if (isa<Instruction>(BrCond) &&
955      cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
956    return false;
957
958  // If BB1 is actually on the false edge of the conditional branch, remember
959  // to swap the select operands later.
960  bool Invert = false;
961  if (BB1 != BI->getSuccessor(0)) {
962    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
963    Invert = true;
964  }
965
966  // Turn
967  // BB:
968  //     %t1 = icmp
969  //     br i1 %t1, label %BB1, label %BB2
970  // BB1:
971  //     %t3 = add %t2, c
972  //     br label BB2
973  // BB2:
974  // =>
975  // BB:
976  //     %t1 = icmp
977  //     %t4 = add %t2, c
978  //     %t3 = select i1 %t1, %t2, %t3
979  Instruction *I = BB1->begin();
980  switch (I->getOpcode()) {
981  default: return false;  // Not safe / profitable to hoist.
982  case Instruction::Add:
983  case Instruction::Sub:
984    // FP arithmetic might trap. Not worth doing for vector ops.
985    if (I->getType()->isFloatingPoint() || isa<VectorType>(I->getType()))
986      return false;
987    break;
988  case Instruction::And:
989  case Instruction::Or:
990  case Instruction::Xor:
991  case Instruction::Shl:
992  case Instruction::LShr:
993  case Instruction::AShr:
994    // Don't mess with vector operations.
995    if (isa<VectorType>(I->getType()))
996      return false;
997    break;   // These are all cheap and non-trapping instructions.
998  }
999
1000  // If the instruction is obviously dead, don't try to predicate it.
1001  if (I->use_empty()) {
1002    I->eraseFromParent();
1003    return true;
1004  }
1005
1006  // Can we speculatively execute the instruction? And what is the value
1007  // if the condition is false? Consider the phi uses, if the incoming value
1008  // from the "if" block are all the same V, then V is the value of the
1009  // select if the condition is false.
1010  BasicBlock *BIParent = BI->getParent();
1011  SmallVector<PHINode*, 4> PHIUses;
1012  Value *FalseV = NULL;
1013
1014  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1015  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1016       UI != E; ++UI) {
1017    // Ignore any user that is not a PHI node in BB2.  These can only occur in
1018    // unreachable blocks, because they would not be dominated by the instr.
1019    PHINode *PN = dyn_cast<PHINode>(UI);
1020    if (!PN || PN->getParent() != BB2)
1021      return false;
1022    PHIUses.push_back(PN);
1023
1024    Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1025    if (!FalseV)
1026      FalseV = PHIV;
1027    else if (FalseV != PHIV)
1028      return false;  // Inconsistent value when condition is false.
1029  }
1030
1031  assert(FalseV && "Must have at least one user, and it must be a PHI");
1032
1033  // Do not hoist the instruction if any of its operands are defined but not
1034  // used in this BB. The transformation will prevent the operand from
1035  // being sunk into the use block.
1036  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1037    Instruction *OpI = dyn_cast<Instruction>(*i);
1038    if (OpI && OpI->getParent() == BIParent &&
1039        !OpI->isUsedInBasicBlock(BIParent))
1040      return false;
1041  }
1042
1043  // If we get here, we can hoist the instruction. Try to place it
1044  // before the icmp instruction preceeding the conditional branch.
1045  BasicBlock::iterator InsertPos = BI;
1046  if (InsertPos != BIParent->begin())
1047    --InsertPos;
1048  if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1049    SmallPtrSet<Instruction *, 4> BB1Insns;
1050    for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1051        BB1I != BB1E; ++BB1I)
1052      BB1Insns.insert(BB1I);
1053    for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1054        UI != UE; ++UI) {
1055      Instruction *Use = cast<Instruction>(*UI);
1056      if (BB1Insns.count(Use)) {
1057        // If BrCond uses the instruction that place it just before
1058        // branch instruction.
1059        InsertPos = BI;
1060        break;
1061      }
1062    }
1063  } else
1064    InsertPos = BI;
1065  BIParent->getInstList().splice(InsertPos, BB1->getInstList(), I);
1066
1067  // Create a select whose true value is the speculatively executed value and
1068  // false value is the previously determined FalseV.
1069  SelectInst *SI;
1070  if (Invert)
1071    SI = SelectInst::Create(BrCond, FalseV, I,
1072                            FalseV->getName() + "." + I->getName(), BI);
1073  else
1074    SI = SelectInst::Create(BrCond, I, FalseV,
1075                            I->getName() + "." + FalseV->getName(), BI);
1076
1077  // Make the PHI node use the select for all incoming values for "then" and
1078  // "if" blocks.
1079  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1080    PHINode *PN = PHIUses[i];
1081    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1082      if (PN->getIncomingBlock(j) == BB1 ||
1083          PN->getIncomingBlock(j) == BIParent)
1084        PN->setIncomingValue(j, SI);
1085  }
1086
1087  ++NumSpeculations;
1088  return true;
1089}
1090
1091/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1092/// across this block.
1093static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1094  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1095  unsigned Size = 0;
1096
1097  // If this basic block contains anything other than a PHI (which controls the
1098  // branch) and branch itself, bail out.  FIXME: improve this in the future.
1099  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
1100    if (Size > 10) return false;  // Don't clone large BB's.
1101
1102    // We can only support instructions that are do not define values that are
1103    // live outside of the current basic block.
1104    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1105         UI != E; ++UI) {
1106      Instruction *U = cast<Instruction>(*UI);
1107      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1108    }
1109
1110    // Looks ok, continue checking.
1111  }
1112
1113  return true;
1114}
1115
1116/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1117/// that is defined in the same block as the branch and if any PHI entries are
1118/// constants, thread edges corresponding to that entry to be branches to their
1119/// ultimate destination.
1120static bool FoldCondBranchOnPHI(BranchInst *BI) {
1121  BasicBlock *BB = BI->getParent();
1122  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1123  // NOTE: we currently cannot transform this case if the PHI node is used
1124  // outside of the block.
1125  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1126    return false;
1127
1128  // Degenerate case of a single entry PHI.
1129  if (PN->getNumIncomingValues() == 1) {
1130    FoldSingleEntryPHINodes(PN->getParent());
1131    return true;
1132  }
1133
1134  // Now we know that this block has multiple preds and two succs.
1135  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1136
1137  // Okay, this is a simple enough basic block.  See if any phi values are
1138  // constants.
1139  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1140    ConstantInt *CB;
1141    if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
1142        CB->getType() == Type::Int1Ty) {
1143      // Okay, we now know that all edges from PredBB should be revectored to
1144      // branch to RealDest.
1145      BasicBlock *PredBB = PN->getIncomingBlock(i);
1146      BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1147
1148      if (RealDest == BB) continue;  // Skip self loops.
1149
1150      // The dest block might have PHI nodes, other predecessors and other
1151      // difficult cases.  Instead of being smart about this, just insert a new
1152      // block that jumps to the destination block, effectively splitting
1153      // the edge we are about to create.
1154      BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
1155                                              RealDest->getParent(), RealDest);
1156      BranchInst::Create(RealDest, EdgeBB);
1157      PHINode *PN;
1158      for (BasicBlock::iterator BBI = RealDest->begin();
1159           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1160        Value *V = PN->getIncomingValueForBlock(BB);
1161        PN->addIncoming(V, EdgeBB);
1162      }
1163
1164      // BB may have instructions that are being threaded over.  Clone these
1165      // instructions into EdgeBB.  We know that there will be no uses of the
1166      // cloned instructions outside of EdgeBB.
1167      BasicBlock::iterator InsertPt = EdgeBB->begin();
1168      std::map<Value*, Value*> TranslateMap;  // Track translated values.
1169      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1170        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1171          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1172        } else {
1173          // Clone the instruction.
1174          Instruction *N = BBI->clone();
1175          if (BBI->hasName()) N->setName(BBI->getName()+".c");
1176
1177          // Update operands due to translation.
1178          for (User::op_iterator i = N->op_begin(), e = N->op_end();
1179               i != e; ++i) {
1180            std::map<Value*, Value*>::iterator PI =
1181              TranslateMap.find(*i);
1182            if (PI != TranslateMap.end())
1183              *i = PI->second;
1184          }
1185
1186          // Check for trivial simplification.
1187          if (Constant *C = ConstantFoldInstruction(N)) {
1188            TranslateMap[BBI] = C;
1189            delete N;   // Constant folded away, don't need actual inst
1190          } else {
1191            // Insert the new instruction into its new home.
1192            EdgeBB->getInstList().insert(InsertPt, N);
1193            if (!BBI->use_empty())
1194              TranslateMap[BBI] = N;
1195          }
1196        }
1197      }
1198
1199      // Loop over all of the edges from PredBB to BB, changing them to branch
1200      // to EdgeBB instead.
1201      TerminatorInst *PredBBTI = PredBB->getTerminator();
1202      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1203        if (PredBBTI->getSuccessor(i) == BB) {
1204          BB->removePredecessor(PredBB);
1205          PredBBTI->setSuccessor(i, EdgeBB);
1206        }
1207
1208      // Recurse, simplifying any other constants.
1209      return FoldCondBranchOnPHI(BI) | true;
1210    }
1211  }
1212
1213  return false;
1214}
1215
1216/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1217/// PHI node, see if we can eliminate it.
1218static bool FoldTwoEntryPHINode(PHINode *PN) {
1219  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1220  // statement", which has a very simple dominance structure.  Basically, we
1221  // are trying to find the condition that is being branched on, which
1222  // subsequently causes this merge to happen.  We really want control
1223  // dependence information for this check, but simplifycfg can't keep it up
1224  // to date, and this catches most of the cases we care about anyway.
1225  //
1226  BasicBlock *BB = PN->getParent();
1227  BasicBlock *IfTrue, *IfFalse;
1228  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1229  if (!IfCond) return false;
1230
1231  // Okay, we found that we can merge this two-entry phi node into a select.
1232  // Doing so would require us to fold *all* two entry phi nodes in this block.
1233  // At some point this becomes non-profitable (particularly if the target
1234  // doesn't support cmov's).  Only do this transformation if there are two or
1235  // fewer PHI nodes in this block.
1236  unsigned NumPhis = 0;
1237  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1238    if (NumPhis > 2)
1239      return false;
1240
1241  DOUT << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1242       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
1243
1244  // Loop over the PHI's seeing if we can promote them all to select
1245  // instructions.  While we are at it, keep track of the instructions
1246  // that need to be moved to the dominating block.
1247  std::set<Instruction*> AggressiveInsts;
1248
1249  BasicBlock::iterator AfterPHIIt = BB->begin();
1250  while (isa<PHINode>(AfterPHIIt)) {
1251    PHINode *PN = cast<PHINode>(AfterPHIIt++);
1252    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1253      if (PN->getIncomingValue(0) != PN)
1254        PN->replaceAllUsesWith(PN->getIncomingValue(0));
1255      else
1256        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1257    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1258                                    &AggressiveInsts) ||
1259               !DominatesMergePoint(PN->getIncomingValue(1), BB,
1260                                    &AggressiveInsts)) {
1261      return false;
1262    }
1263  }
1264
1265  // If we all PHI nodes are promotable, check to make sure that all
1266  // instructions in the predecessor blocks can be promoted as well.  If
1267  // not, we won't be able to get rid of the control flow, so it's not
1268  // worth promoting to select instructions.
1269  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1270  PN = cast<PHINode>(BB->begin());
1271  BasicBlock *Pred = PN->getIncomingBlock(0);
1272  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1273    IfBlock1 = Pred;
1274    DomBlock = *pred_begin(Pred);
1275    for (BasicBlock::iterator I = Pred->begin();
1276         !isa<TerminatorInst>(I); ++I)
1277      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1278        // This is not an aggressive instruction that we can promote.
1279        // Because of this, we won't be able to get rid of the control
1280        // flow, so the xform is not worth it.
1281        return false;
1282      }
1283  }
1284
1285  Pred = PN->getIncomingBlock(1);
1286  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1287    IfBlock2 = Pred;
1288    DomBlock = *pred_begin(Pred);
1289    for (BasicBlock::iterator I = Pred->begin();
1290         !isa<TerminatorInst>(I); ++I)
1291      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1292        // This is not an aggressive instruction that we can promote.
1293        // Because of this, we won't be able to get rid of the control
1294        // flow, so the xform is not worth it.
1295        return false;
1296      }
1297  }
1298
1299  // If we can still promote the PHI nodes after this gauntlet of tests,
1300  // do all of the PHI's now.
1301
1302  // Move all 'aggressive' instructions, which are defined in the
1303  // conditional parts of the if's up to the dominating block.
1304  if (IfBlock1) {
1305    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1306                                   IfBlock1->getInstList(),
1307                                   IfBlock1->begin(),
1308                                   IfBlock1->getTerminator());
1309  }
1310  if (IfBlock2) {
1311    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1312                                   IfBlock2->getInstList(),
1313                                   IfBlock2->begin(),
1314                                   IfBlock2->getTerminator());
1315  }
1316
1317  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1318    // Change the PHI node into a select instruction.
1319    Value *TrueVal =
1320      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1321    Value *FalseVal =
1322      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1323
1324    Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1325    PN->replaceAllUsesWith(NV);
1326    NV->takeName(PN);
1327
1328    BB->getInstList().erase(PN);
1329  }
1330  return true;
1331}
1332
1333/// isTerminatorFirstRelevantInsn - Return true if Term is very first
1334/// instruction ignoring Phi nodes and dbg intrinsics.
1335static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) {
1336  BasicBlock::iterator BBI = Term;
1337  while (BBI != BB->begin()) {
1338    --BBI;
1339    if (!isa<DbgInfoIntrinsic>(BBI))
1340      break;
1341  }
1342
1343  if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI))
1344    return true;
1345  return false;
1346}
1347
1348/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1349/// to two returning blocks, try to merge them together into one return,
1350/// introducing a select if the return values disagree.
1351static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1352  assert(BI->isConditional() && "Must be a conditional branch");
1353  BasicBlock *TrueSucc = BI->getSuccessor(0);
1354  BasicBlock *FalseSucc = BI->getSuccessor(1);
1355  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1356  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1357
1358  // Check to ensure both blocks are empty (just a return) or optionally empty
1359  // with PHI nodes.  If there are other instructions, merging would cause extra
1360  // computation on one path or the other.
1361  if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet))
1362    return false;
1363  if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet))
1364    return false;
1365
1366  // Okay, we found a branch that is going to two return nodes.  If
1367  // there is no return value for this function, just change the
1368  // branch into a return.
1369  if (FalseRet->getNumOperands() == 0) {
1370    TrueSucc->removePredecessor(BI->getParent());
1371    FalseSucc->removePredecessor(BI->getParent());
1372    ReturnInst::Create(0, BI);
1373    EraseTerminatorInstAndDCECond(BI);
1374    return true;
1375  }
1376
1377  // Otherwise, figure out what the true and false return values are
1378  // so we can insert a new select instruction.
1379  Value *TrueValue = TrueRet->getReturnValue();
1380  Value *FalseValue = FalseRet->getReturnValue();
1381
1382  // Unwrap any PHI nodes in the return blocks.
1383  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1384    if (TVPN->getParent() == TrueSucc)
1385      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1386  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1387    if (FVPN->getParent() == FalseSucc)
1388      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1389
1390  // In order for this transformation to be safe, we must be able to
1391  // unconditionally execute both operands to the return.  This is
1392  // normally the case, but we could have a potentially-trapping
1393  // constant expression that prevents this transformation from being
1394  // safe.
1395  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1396    if (TCV->canTrap())
1397      return false;
1398  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1399    if (FCV->canTrap())
1400      return false;
1401
1402  // Okay, we collected all the mapped values and checked them for sanity, and
1403  // defined to really do this transformation.  First, update the CFG.
1404  TrueSucc->removePredecessor(BI->getParent());
1405  FalseSucc->removePredecessor(BI->getParent());
1406
1407  // Insert select instructions where needed.
1408  Value *BrCond = BI->getCondition();
1409  if (TrueValue) {
1410    // Insert a select if the results differ.
1411    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1412    } else if (isa<UndefValue>(TrueValue)) {
1413      TrueValue = FalseValue;
1414    } else {
1415      TrueValue = SelectInst::Create(BrCond, TrueValue,
1416                                     FalseValue, "retval", BI);
1417    }
1418  }
1419
1420  Value *RI = !TrueValue ?
1421              ReturnInst::Create(BI) :
1422              ReturnInst::Create(TrueValue, BI);
1423
1424  DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1425       << "\n  " << *BI << "NewRet = " << *RI
1426       << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
1427
1428  EraseTerminatorInstAndDCECond(BI);
1429
1430  return true;
1431}
1432
1433/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1434/// and if a predecessor branches to us and one of our successors, fold the
1435/// setcc into the predecessor and use logical operations to pick the right
1436/// destination.
1437static bool FoldBranchToCommonDest(BranchInst *BI) {
1438  BasicBlock *BB = BI->getParent();
1439  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1440  if (Cond == 0) return false;
1441
1442
1443  // Only allow this if the condition is a simple instruction that can be
1444  // executed unconditionally.  It must be in the same block as the branch, and
1445  // must be at the front of the block.
1446  BasicBlock::iterator FrontIt = BB->front();
1447  // Ignore dbg intrinsics.
1448  while(isa<DbgInfoIntrinsic>(FrontIt))
1449    ++FrontIt;
1450  if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1451      Cond->getParent() != BB || &*FrontIt != Cond || !Cond->hasOneUse()) {
1452    return false;
1453  }
1454
1455  // Make sure the instruction after the condition is the cond branch.
1456  BasicBlock::iterator CondIt = Cond; ++CondIt;
1457  // Ingore dbg intrinsics.
1458  while(isa<DbgInfoIntrinsic>(CondIt))
1459    ++CondIt;
1460  if (&*CondIt != BI) {
1461    assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
1462    return false;
1463  }
1464
1465  // Cond is known to be a compare or binary operator.  Check to make sure that
1466  // neither operand is a potentially-trapping constant expression.
1467  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1468    if (CE->canTrap())
1469      return false;
1470  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1471    if (CE->canTrap())
1472      return false;
1473
1474
1475  // Finally, don't infinitely unroll conditional loops.
1476  BasicBlock *TrueDest  = BI->getSuccessor(0);
1477  BasicBlock *FalseDest = BI->getSuccessor(1);
1478  if (TrueDest == BB || FalseDest == BB)
1479    return false;
1480
1481  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1482    BasicBlock *PredBlock = *PI;
1483    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1484
1485    // Check that we have two conditional branches.  If there is a PHI node in
1486    // the common successor, verify that the same value flows in from both
1487    // blocks.
1488    if (PBI == 0 || PBI->isUnconditional() ||
1489        !SafeToMergeTerminators(BI, PBI))
1490      continue;
1491
1492    Instruction::BinaryOps Opc;
1493    bool InvertPredCond = false;
1494
1495    if (PBI->getSuccessor(0) == TrueDest)
1496      Opc = Instruction::Or;
1497    else if (PBI->getSuccessor(1) == FalseDest)
1498      Opc = Instruction::And;
1499    else if (PBI->getSuccessor(0) == FalseDest)
1500      Opc = Instruction::And, InvertPredCond = true;
1501    else if (PBI->getSuccessor(1) == TrueDest)
1502      Opc = Instruction::Or, InvertPredCond = true;
1503    else
1504      continue;
1505
1506    DOUT << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB;
1507
1508    // If we need to invert the condition in the pred block to match, do so now.
1509    if (InvertPredCond) {
1510      Value *NewCond =
1511        BinaryOperator::CreateNot(PBI->getCondition(),
1512                                  PBI->getCondition()->getName()+".not", PBI);
1513      PBI->setCondition(NewCond);
1514      BasicBlock *OldTrue = PBI->getSuccessor(0);
1515      BasicBlock *OldFalse = PBI->getSuccessor(1);
1516      PBI->setSuccessor(0, OldFalse);
1517      PBI->setSuccessor(1, OldTrue);
1518    }
1519
1520    // Clone Cond into the predecessor basic block, and or/and the
1521    // two conditions together.
1522    Instruction *New = Cond->clone();
1523    PredBlock->getInstList().insert(PBI, New);
1524    New->takeName(Cond);
1525    Cond->setName(New->getName()+".old");
1526
1527    Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1528                                            New, "or.cond", PBI);
1529    PBI->setCondition(NewCond);
1530    if (PBI->getSuccessor(0) == BB) {
1531      AddPredecessorToBlock(TrueDest, PredBlock, BB);
1532      PBI->setSuccessor(0, TrueDest);
1533    }
1534    if (PBI->getSuccessor(1) == BB) {
1535      AddPredecessorToBlock(FalseDest, PredBlock, BB);
1536      PBI->setSuccessor(1, FalseDest);
1537    }
1538    return true;
1539  }
1540  return false;
1541}
1542
1543/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1544/// predecessor of another block, this function tries to simplify it.  We know
1545/// that PBI and BI are both conditional branches, and BI is in one of the
1546/// successor blocks of PBI - PBI branches to BI.
1547static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1548  assert(PBI->isConditional() && BI->isConditional());
1549  BasicBlock *BB = BI->getParent();
1550
1551  // If this block ends with a branch instruction, and if there is a
1552  // predecessor that ends on a branch of the same condition, make
1553  // this conditional branch redundant.
1554  if (PBI->getCondition() == BI->getCondition() &&
1555      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1556    // Okay, the outcome of this conditional branch is statically
1557    // knowable.  If this block had a single pred, handle specially.
1558    if (BB->getSinglePredecessor()) {
1559      // Turn this into a branch on constant.
1560      bool CondIsTrue = PBI->getSuccessor(0) == BB;
1561      BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
1562      return true;  // Nuke the branch on constant.
1563    }
1564
1565    // Otherwise, if there are multiple predecessors, insert a PHI that merges
1566    // in the constant and simplify the block result.  Subsequent passes of
1567    // simplifycfg will thread the block.
1568    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1569      PHINode *NewPN = PHINode::Create(Type::Int1Ty,
1570                                       BI->getCondition()->getName() + ".pr",
1571                                       BB->begin());
1572      // Okay, we're going to insert the PHI node.  Since PBI is not the only
1573      // predecessor, compute the PHI'd conditional value for all of the preds.
1574      // Any predecessor where the condition is not computable we keep symbolic.
1575      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1576        if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1577            PBI != BI && PBI->isConditional() &&
1578            PBI->getCondition() == BI->getCondition() &&
1579            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1580          bool CondIsTrue = PBI->getSuccessor(0) == BB;
1581          NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
1582                                              CondIsTrue), *PI);
1583        } else {
1584          NewPN->addIncoming(BI->getCondition(), *PI);
1585        }
1586
1587      BI->setCondition(NewPN);
1588      return true;
1589    }
1590  }
1591
1592  // If this is a conditional branch in an empty block, and if any
1593  // predecessors is a conditional branch to one of our destinations,
1594  // fold the conditions into logical ops and one cond br.
1595  if (&BB->front() != BI)
1596    return false;
1597
1598
1599  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1600    if (CE->canTrap())
1601      return false;
1602
1603  int PBIOp, BIOp;
1604  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1605    PBIOp = BIOp = 0;
1606  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1607    PBIOp = 0, BIOp = 1;
1608  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1609    PBIOp = 1, BIOp = 0;
1610  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1611    PBIOp = BIOp = 1;
1612  else
1613    return false;
1614
1615  // Check to make sure that the other destination of this branch
1616  // isn't BB itself.  If so, this is an infinite loop that will
1617  // keep getting unwound.
1618  if (PBI->getSuccessor(PBIOp) == BB)
1619    return false;
1620
1621  // Do not perform this transformation if it would require
1622  // insertion of a large number of select instructions. For targets
1623  // without predication/cmovs, this is a big pessimization.
1624  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1625
1626  unsigned NumPhis = 0;
1627  for (BasicBlock::iterator II = CommonDest->begin();
1628       isa<PHINode>(II); ++II, ++NumPhis)
1629    if (NumPhis > 2) // Disable this xform.
1630      return false;
1631
1632  // Finally, if everything is ok, fold the branches to logical ops.
1633  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1634
1635  DOUT << "FOLDING BRs:" << *PBI->getParent()
1636       << "AND: " << *BI->getParent();
1637
1638
1639  // If OtherDest *is* BB, then BB is a basic block with a single conditional
1640  // branch in it, where one edge (OtherDest) goes back to itself but the other
1641  // exits.  We don't *know* that the program avoids the infinite loop
1642  // (even though that seems likely).  If we do this xform naively, we'll end up
1643  // recursively unpeeling the loop.  Since we know that (after the xform is
1644  // done) that the block *is* infinite if reached, we just make it an obviously
1645  // infinite loop with no cond branch.
1646  if (OtherDest == BB) {
1647    // Insert it at the end of the function, because it's either code,
1648    // or it won't matter if it's hot. :)
1649    BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
1650    BranchInst::Create(InfLoopBlock, InfLoopBlock);
1651    OtherDest = InfLoopBlock;
1652  }
1653
1654  DOUT << *PBI->getParent()->getParent();
1655
1656  // BI may have other predecessors.  Because of this, we leave
1657  // it alone, but modify PBI.
1658
1659  // Make sure we get to CommonDest on True&True directions.
1660  Value *PBICond = PBI->getCondition();
1661  if (PBIOp)
1662    PBICond = BinaryOperator::CreateNot(PBICond,
1663                                        PBICond->getName()+".not",
1664                                        PBI);
1665  Value *BICond = BI->getCondition();
1666  if (BIOp)
1667    BICond = BinaryOperator::CreateNot(BICond,
1668                                       BICond->getName()+".not",
1669                                       PBI);
1670  // Merge the conditions.
1671  Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1672
1673  // Modify PBI to branch on the new condition to the new dests.
1674  PBI->setCondition(Cond);
1675  PBI->setSuccessor(0, CommonDest);
1676  PBI->setSuccessor(1, OtherDest);
1677
1678  // OtherDest may have phi nodes.  If so, add an entry from PBI's
1679  // block that are identical to the entries for BI's block.
1680  PHINode *PN;
1681  for (BasicBlock::iterator II = OtherDest->begin();
1682       (PN = dyn_cast<PHINode>(II)); ++II) {
1683    Value *V = PN->getIncomingValueForBlock(BB);
1684    PN->addIncoming(V, PBI->getParent());
1685  }
1686
1687  // We know that the CommonDest already had an edge from PBI to
1688  // it.  If it has PHIs though, the PHIs may have different
1689  // entries for BB and PBI's BB.  If so, insert a select to make
1690  // them agree.
1691  for (BasicBlock::iterator II = CommonDest->begin();
1692       (PN = dyn_cast<PHINode>(II)); ++II) {
1693    Value *BIV = PN->getIncomingValueForBlock(BB);
1694    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1695    Value *PBIV = PN->getIncomingValue(PBBIdx);
1696    if (BIV != PBIV) {
1697      // Insert a select in PBI to pick the right value.
1698      Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1699                                     PBIV->getName()+".mux", PBI);
1700      PN->setIncomingValue(PBBIdx, NV);
1701    }
1702  }
1703
1704  DOUT << "INTO: " << *PBI->getParent();
1705
1706  DOUT << *PBI->getParent()->getParent();
1707
1708  // This basic block is probably dead.  We know it has at least
1709  // one fewer predecessor.
1710  return true;
1711}
1712
1713
1714namespace {
1715  /// ConstantIntOrdering - This class implements a stable ordering of constant
1716  /// integers that does not depend on their address.  This is important for
1717  /// applications that sort ConstantInt's to ensure uniqueness.
1718  struct ConstantIntOrdering {
1719    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1720      return LHS->getValue().ult(RHS->getValue());
1721    }
1722  };
1723}
1724
1725/// SimplifyCFG - This function is used to do simplification of a CFG.  For
1726/// example, it adjusts branches to branches to eliminate the extra hop, it
1727/// eliminates unreachable basic blocks, and does other "peephole" optimization
1728/// of the CFG.  It returns true if a modification was made.
1729///
1730/// WARNING:  The entry node of a function may not be simplified.
1731///
1732bool llvm::SimplifyCFG(BasicBlock *BB) {
1733  bool Changed = false;
1734  Function *M = BB->getParent();
1735
1736  assert(BB && BB->getParent() && "Block not embedded in function!");
1737  assert(BB->getTerminator() && "Degenerate basic block encountered!");
1738  assert(&BB->getParent()->getEntryBlock() != BB &&
1739         "Can't Simplify entry block!");
1740
1741  // Remove basic blocks that have no predecessors... or that just have themself
1742  // as a predecessor.  These are unreachable.
1743  if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) {
1744    DOUT << "Removing BB: \n" << *BB;
1745    DeleteDeadBlock(BB);
1746    return true;
1747  }
1748
1749  // Check to see if we can constant propagate this terminator instruction
1750  // away...
1751  Changed |= ConstantFoldTerminator(BB);
1752
1753  // If there is a trivial two-entry PHI node in this basic block, and we can
1754  // eliminate it, do so now.
1755  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1756    if (PN->getNumIncomingValues() == 2)
1757      Changed |= FoldTwoEntryPHINode(PN);
1758
1759  // If this is a returning block with only PHI nodes in it, fold the return
1760  // instruction into any unconditional branch predecessors.
1761  //
1762  // If any predecessor is a conditional branch that just selects among
1763  // different return values, fold the replace the branch/return with a select
1764  // and return.
1765  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1766    if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) {
1767      // Find predecessors that end with branches.
1768      SmallVector<BasicBlock*, 8> UncondBranchPreds;
1769      SmallVector<BranchInst*, 8> CondBranchPreds;
1770      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1771        TerminatorInst *PTI = (*PI)->getTerminator();
1772        if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
1773          if (BI->isUnconditional())
1774            UncondBranchPreds.push_back(*PI);
1775          else
1776            CondBranchPreds.push_back(BI);
1777        }
1778      }
1779
1780      // If we found some, do the transformation!
1781      if (!UncondBranchPreds.empty()) {
1782        while (!UncondBranchPreds.empty()) {
1783          BasicBlock *Pred = UncondBranchPreds.back();
1784          DOUT << "FOLDING: " << *BB
1785               << "INTO UNCOND BRANCH PRED: " << *Pred;
1786          UncondBranchPreds.pop_back();
1787          Instruction *UncondBranch = Pred->getTerminator();
1788          // Clone the return and add it to the end of the predecessor.
1789          Instruction *NewRet = RI->clone();
1790          Pred->getInstList().push_back(NewRet);
1791
1792          BasicBlock::iterator BBI = RI;
1793          if (BBI != BB->begin()) {
1794            // Move region end info into the predecessor.
1795            if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(--BBI))
1796              DREI->moveBefore(NewRet);
1797          }
1798
1799          // If the return instruction returns a value, and if the value was a
1800          // PHI node in "BB", propagate the right value into the return.
1801          for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1802               i != e; ++i)
1803            if (PHINode *PN = dyn_cast<PHINode>(*i))
1804              if (PN->getParent() == BB)
1805                *i = PN->getIncomingValueForBlock(Pred);
1806
1807          // Update any PHI nodes in the returning block to realize that we no
1808          // longer branch to them.
1809          BB->removePredecessor(Pred);
1810          Pred->getInstList().erase(UncondBranch);
1811        }
1812
1813        // If we eliminated all predecessors of the block, delete the block now.
1814        if (pred_begin(BB) == pred_end(BB))
1815          // We know there are no successors, so just nuke the block.
1816          M->getBasicBlockList().erase(BB);
1817
1818        return true;
1819      }
1820
1821      // Check out all of the conditional branches going to this return
1822      // instruction.  If any of them just select between returns, change the
1823      // branch itself into a select/return pair.
1824      while (!CondBranchPreds.empty()) {
1825        BranchInst *BI = CondBranchPreds.back();
1826        CondBranchPreds.pop_back();
1827
1828        // Check to see if the non-BB successor is also a return block.
1829        if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
1830            isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
1831            SimplifyCondBranchToTwoReturns(BI))
1832          return true;
1833      }
1834    }
1835  } else if (isa<UnwindInst>(BB->begin())) {
1836    // Check to see if the first instruction in this block is just an unwind.
1837    // If so, replace any invoke instructions which use this as an exception
1838    // destination with call instructions, and any unconditional branch
1839    // predecessor with an unwind.
1840    //
1841    SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1842    while (!Preds.empty()) {
1843      BasicBlock *Pred = Preds.back();
1844      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1845        if (BI->isUnconditional()) {
1846          Pred->getInstList().pop_back();  // nuke uncond branch
1847          new UnwindInst(Pred);            // Use unwind.
1848          Changed = true;
1849        }
1850      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1851        if (II->getUnwindDest() == BB) {
1852          // Insert a new branch instruction before the invoke, because this
1853          // is now a fall through...
1854          BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
1855          Pred->getInstList().remove(II);   // Take out of symbol table
1856
1857          // Insert the call now...
1858          SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
1859          CallInst *CI = CallInst::Create(II->getCalledValue(),
1860                                          Args.begin(), Args.end(),
1861                                          II->getName(), BI);
1862          CI->setCallingConv(II->getCallingConv());
1863          CI->setAttributes(II->getAttributes());
1864          // If the invoke produced a value, the Call now does instead
1865          II->replaceAllUsesWith(CI);
1866          delete II;
1867          Changed = true;
1868        }
1869
1870      Preds.pop_back();
1871    }
1872
1873    // If this block is now dead, remove it.
1874    if (pred_begin(BB) == pred_end(BB)) {
1875      // We know there are no successors, so just nuke the block.
1876      M->getBasicBlockList().erase(BB);
1877      return true;
1878    }
1879
1880  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1881    if (isValueEqualityComparison(SI)) {
1882      // If we only have one predecessor, and if it is a branch on this value,
1883      // see if that predecessor totally determines the outcome of this switch.
1884      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1885        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1886          return SimplifyCFG(BB) || 1;
1887
1888      // If the block only contains the switch, see if we can fold the block
1889      // away into any preds.
1890      if (SI == &BB->front())
1891        if (FoldValueComparisonIntoPredecessors(SI))
1892          return SimplifyCFG(BB) || 1;
1893    }
1894  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1895    if (BI->isUnconditional()) {
1896      BasicBlock::iterator BBI = BB->getFirstNonPHI();
1897
1898      BasicBlock *Succ = BI->getSuccessor(0);
1899      // Ignore dbg intrinsics.
1900      while (isa<DbgInfoIntrinsic>(BBI))
1901        ++BBI;
1902      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
1903          Succ != BB)             // Don't hurt infinite loops!
1904        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1905          return true;
1906
1907    } else {  // Conditional branch
1908      if (isValueEqualityComparison(BI)) {
1909        // If we only have one predecessor, and if it is a branch on this value,
1910        // see if that predecessor totally determines the outcome of this
1911        // switch.
1912        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1913          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1914            return SimplifyCFG(BB) || 1;
1915
1916        // This block must be empty, except for the setcond inst, if it exists.
1917        // Ignore dbg intrinsics.
1918        BasicBlock::iterator I = BB->begin();
1919        // Ignore dbg intrinsics.
1920        while (isa<DbgInfoIntrinsic>(I))
1921          ++I;
1922        if (&*I == BI) {
1923          if (FoldValueComparisonIntoPredecessors(BI))
1924            return SimplifyCFG(BB) | true;
1925        } else if (&*I == cast<Instruction>(BI->getCondition())){
1926          ++I;
1927          // Ignore dbg intrinsics.
1928          while (isa<DbgInfoIntrinsic>(I))
1929            ++I;
1930          if(&*I == BI) {
1931            if (FoldValueComparisonIntoPredecessors(BI))
1932              return SimplifyCFG(BB) | true;
1933          }
1934        }
1935      }
1936
1937      // If this is a branch on a phi node in the current block, thread control
1938      // through this block if any PHI node entries are constants.
1939      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1940        if (PN->getParent() == BI->getParent())
1941          if (FoldCondBranchOnPHI(BI))
1942            return SimplifyCFG(BB) | true;
1943
1944      // If this basic block is ONLY a setcc and a branch, and if a predecessor
1945      // branches to us and one of our successors, fold the setcc into the
1946      // predecessor and use logical operations to pick the right destination.
1947      if (FoldBranchToCommonDest(BI))
1948        return SimplifyCFG(BB) | 1;
1949
1950
1951      // Scan predecessor blocks for conditional branches.
1952      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1953        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1954          if (PBI != BI && PBI->isConditional())
1955            if (SimplifyCondBranchToCondBranch(PBI, BI))
1956              return SimplifyCFG(BB) | true;
1957    }
1958  } else if (isa<UnreachableInst>(BB->getTerminator())) {
1959    // If there are any instructions immediately before the unreachable that can
1960    // be removed, do so.
1961    Instruction *Unreachable = BB->getTerminator();
1962    while (Unreachable != BB->begin()) {
1963      BasicBlock::iterator BBI = Unreachable;
1964      --BBI;
1965      // Do not delete instructions that can have side effects, like calls
1966      // (which may never return) and volatile loads and stores.
1967      if (isa<CallInst>(BBI)) break;
1968
1969      if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
1970        if (SI->isVolatile())
1971          break;
1972
1973      if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
1974        if (LI->isVolatile())
1975          break;
1976
1977      // Delete this instruction
1978      BB->getInstList().erase(BBI);
1979      Changed = true;
1980    }
1981
1982    // If the unreachable instruction is the first in the block, take a gander
1983    // at all of the predecessors of this instruction, and simplify them.
1984    if (&BB->front() == Unreachable) {
1985      SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1986      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1987        TerminatorInst *TI = Preds[i]->getTerminator();
1988
1989        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1990          if (BI->isUnconditional()) {
1991            if (BI->getSuccessor(0) == BB) {
1992              new UnreachableInst(TI);
1993              TI->eraseFromParent();
1994              Changed = true;
1995            }
1996          } else {
1997            if (BI->getSuccessor(0) == BB) {
1998              BranchInst::Create(BI->getSuccessor(1), BI);
1999              EraseTerminatorInstAndDCECond(BI);
2000            } else if (BI->getSuccessor(1) == BB) {
2001              BranchInst::Create(BI->getSuccessor(0), BI);
2002              EraseTerminatorInstAndDCECond(BI);
2003              Changed = true;
2004            }
2005          }
2006        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2007          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2008            if (SI->getSuccessor(i) == BB) {
2009              BB->removePredecessor(SI->getParent());
2010              SI->removeCase(i);
2011              --i; --e;
2012              Changed = true;
2013            }
2014          // If the default value is unreachable, figure out the most popular
2015          // destination and make it the default.
2016          if (SI->getSuccessor(0) == BB) {
2017            std::map<BasicBlock*, unsigned> Popularity;
2018            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2019              Popularity[SI->getSuccessor(i)]++;
2020
2021            // Find the most popular block.
2022            unsigned MaxPop = 0;
2023            BasicBlock *MaxBlock = 0;
2024            for (std::map<BasicBlock*, unsigned>::iterator
2025                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2026              if (I->second > MaxPop) {
2027                MaxPop = I->second;
2028                MaxBlock = I->first;
2029              }
2030            }
2031            if (MaxBlock) {
2032              // Make this the new default, allowing us to delete any explicit
2033              // edges to it.
2034              SI->setSuccessor(0, MaxBlock);
2035              Changed = true;
2036
2037              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2038              // it.
2039              if (isa<PHINode>(MaxBlock->begin()))
2040                for (unsigned i = 0; i != MaxPop-1; ++i)
2041                  MaxBlock->removePredecessor(SI->getParent());
2042
2043              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2044                if (SI->getSuccessor(i) == MaxBlock) {
2045                  SI->removeCase(i);
2046                  --i; --e;
2047                }
2048            }
2049          }
2050        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2051          if (II->getUnwindDest() == BB) {
2052            // Convert the invoke to a call instruction.  This would be a good
2053            // place to note that the call does not throw though.
2054            BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2055            II->removeFromParent();   // Take out of symbol table
2056
2057            // Insert the call now...
2058            SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
2059            CallInst *CI = CallInst::Create(II->getCalledValue(),
2060                                            Args.begin(), Args.end(),
2061                                            II->getName(), BI);
2062            CI->setCallingConv(II->getCallingConv());
2063            CI->setAttributes(II->getAttributes());
2064            // If the invoke produced a value, the Call does now instead.
2065            II->replaceAllUsesWith(CI);
2066            delete II;
2067            Changed = true;
2068          }
2069        }
2070      }
2071
2072      // If this block is now dead, remove it.
2073      if (pred_begin(BB) == pred_end(BB)) {
2074        // We know there are no successors, so just nuke the block.
2075        M->getBasicBlockList().erase(BB);
2076        return true;
2077      }
2078    }
2079  }
2080
2081  // Merge basic blocks into their predecessor if there is only one distinct
2082  // pred, and if there is only one distinct successor of the predecessor, and
2083  // if there are no PHI nodes.
2084  //
2085  if (MergeBlockIntoPredecessor(BB))
2086    return true;
2087
2088  // Otherwise, if this block only has a single predecessor, and if that block
2089  // is a conditional branch, see if we can hoist any code from this block up
2090  // into our predecessor.
2091  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
2092  BasicBlock *OnlyPred = *PI++;
2093  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
2094    if (*PI != OnlyPred) {
2095      OnlyPred = 0;       // There are multiple different predecessors...
2096      break;
2097    }
2098
2099  if (OnlyPred)
2100    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
2101      if (BI->isConditional()) {
2102        // Get the other block.
2103        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
2104        PI = pred_begin(OtherBB);
2105        ++PI;
2106
2107        if (PI == pred_end(OtherBB)) {
2108          // We have a conditional branch to two blocks that are only reachable
2109          // from the condbr.  We know that the condbr dominates the two blocks,
2110          // so see if there is any identical code in the "then" and "else"
2111          // blocks.  If so, we can hoist it up to the branching block.
2112          Changed |= HoistThenElseCodeToIf(BI);
2113        } else {
2114          BasicBlock* OnlySucc = NULL;
2115          for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
2116               SI != SE; ++SI) {
2117            if (!OnlySucc)
2118              OnlySucc = *SI;
2119            else if (*SI != OnlySucc) {
2120              OnlySucc = 0;     // There are multiple distinct successors!
2121              break;
2122            }
2123          }
2124
2125          if (OnlySucc == OtherBB) {
2126            // If BB's only successor is the other successor of the predecessor,
2127            // i.e. a triangle, see if we can hoist any code from this block up
2128            // to the "if" block.
2129            Changed |= SpeculativelyExecuteBB(BI, BB);
2130          }
2131        }
2132      }
2133
2134  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2135    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2136      // Change br (X == 0 | X == 1), T, F into a switch instruction.
2137      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
2138        Instruction *Cond = cast<Instruction>(BI->getCondition());
2139        // If this is a bunch of seteq's or'd together, or if it's a bunch of
2140        // 'setne's and'ed together, collect them.
2141        Value *CompVal = 0;
2142        std::vector<ConstantInt*> Values;
2143        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
2144        if (CompVal && CompVal->getType()->isInteger()) {
2145          // There might be duplicate constants in the list, which the switch
2146          // instruction can't handle, remove them now.
2147          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
2148          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2149
2150          // Figure out which block is which destination.
2151          BasicBlock *DefaultBB = BI->getSuccessor(1);
2152          BasicBlock *EdgeBB    = BI->getSuccessor(0);
2153          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2154
2155          // Create the new switch instruction now.
2156          SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
2157                                               Values.size(), BI);
2158
2159          // Add all of the 'cases' to the switch instruction.
2160          for (unsigned i = 0, e = Values.size(); i != e; ++i)
2161            New->addCase(Values[i], EdgeBB);
2162
2163          // We added edges from PI to the EdgeBB.  As such, if there were any
2164          // PHI nodes in EdgeBB, they need entries to be added corresponding to
2165          // the number of edges added.
2166          for (BasicBlock::iterator BBI = EdgeBB->begin();
2167               isa<PHINode>(BBI); ++BBI) {
2168            PHINode *PN = cast<PHINode>(BBI);
2169            Value *InVal = PN->getIncomingValueForBlock(*PI);
2170            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2171              PN->addIncoming(InVal, *PI);
2172          }
2173
2174          // Erase the old branch instruction.
2175          EraseTerminatorInstAndDCECond(BI);
2176          return true;
2177        }
2178      }
2179
2180  return Changed;
2181}
2182