SimplifyCFG.cpp revision 9e620952617b90992e50dcf9bca8078c535cbaef
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/MDBuilder.h"
34#include "llvm/IR/Metadata.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/IR/Type.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/ConstantRange.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/NoFolder.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include <algorithm>
46#include <map>
47#include <set>
48using namespace llvm;
49
50static cl::opt<unsigned>
51PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
52   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
53
54static cl::opt<bool>
55DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
56       cl::desc("Duplicate return instructions into unconditional branches"));
57
58static cl::opt<bool>
59SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
60       cl::desc("Sink common instructions down to the end block"));
61
62STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
63STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
64STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
65STATISTIC(NumSpeculations, "Number of speculative executed instructions");
66
67namespace {
68  /// ValueEqualityComparisonCase - Represents a case of a switch.
69  struct ValueEqualityComparisonCase {
70    ConstantInt *Value;
71    BasicBlock *Dest;
72
73    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
74      : Value(Value), Dest(Dest) {}
75
76    bool operator<(ValueEqualityComparisonCase RHS) const {
77      // Comparing pointers is ok as we only rely on the order for uniquing.
78      return Value < RHS.Value;
79    }
80
81    bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
82  };
83
84class SimplifyCFGOpt {
85  const TargetTransformInfo &TTI;
86  const DataLayout *const TD;
87
88  Value *isValueEqualityComparison(TerminatorInst *TI);
89  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
90                               std::vector<ValueEqualityComparisonCase> &Cases);
91  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
92                                                     BasicBlock *Pred,
93                                                     IRBuilder<> &Builder);
94  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
95                                           IRBuilder<> &Builder);
96
97  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
98  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
99  bool SimplifyUnreachable(UnreachableInst *UI);
100  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
101  bool SimplifyIndirectBr(IndirectBrInst *IBI);
102  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
103  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
104
105public:
106  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
107      : TTI(TTI), TD(TD) {}
108  bool run(BasicBlock *BB);
109};
110}
111
112/// SafeToMergeTerminators - Return true if it is safe to merge these two
113/// terminator instructions together.
114///
115static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
116  if (SI1 == SI2) return false;  // Can't merge with self!
117
118  // It is not safe to merge these two switch instructions if they have a common
119  // successor, and if that successor has a PHI node, and if *that* PHI node has
120  // conflicting incoming values from the two switch blocks.
121  BasicBlock *SI1BB = SI1->getParent();
122  BasicBlock *SI2BB = SI2->getParent();
123  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
124
125  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
126    if (SI1Succs.count(*I))
127      for (BasicBlock::iterator BBI = (*I)->begin();
128           isa<PHINode>(BBI); ++BBI) {
129        PHINode *PN = cast<PHINode>(BBI);
130        if (PN->getIncomingValueForBlock(SI1BB) !=
131            PN->getIncomingValueForBlock(SI2BB))
132          return false;
133      }
134
135  return true;
136}
137
138/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
139/// to merge these two terminator instructions together, where SI1 is an
140/// unconditional branch. PhiNodes will store all PHI nodes in common
141/// successors.
142///
143static bool isProfitableToFoldUnconditional(BranchInst *SI1,
144                                          BranchInst *SI2,
145                                          Instruction *Cond,
146                                          SmallVectorImpl<PHINode*> &PhiNodes) {
147  if (SI1 == SI2) return false;  // Can't merge with self!
148  assert(SI1->isUnconditional() && SI2->isConditional());
149
150  // We fold the unconditional branch if we can easily update all PHI nodes in
151  // common successors:
152  // 1> We have a constant incoming value for the conditional branch;
153  // 2> We have "Cond" as the incoming value for the unconditional branch;
154  // 3> SI2->getCondition() and Cond have same operands.
155  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
156  if (!Ci2) return false;
157  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
158        Cond->getOperand(1) == Ci2->getOperand(1)) &&
159      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
160        Cond->getOperand(1) == Ci2->getOperand(0)))
161    return false;
162
163  BasicBlock *SI1BB = SI1->getParent();
164  BasicBlock *SI2BB = SI2->getParent();
165  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
166  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
167    if (SI1Succs.count(*I))
168      for (BasicBlock::iterator BBI = (*I)->begin();
169           isa<PHINode>(BBI); ++BBI) {
170        PHINode *PN = cast<PHINode>(BBI);
171        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
172            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
173          return false;
174        PhiNodes.push_back(PN);
175      }
176  return true;
177}
178
179/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
180/// now be entries in it from the 'NewPred' block.  The values that will be
181/// flowing into the PHI nodes will be the same as those coming in from
182/// ExistPred, an existing predecessor of Succ.
183static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
184                                  BasicBlock *ExistPred) {
185  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
186
187  PHINode *PN;
188  for (BasicBlock::iterator I = Succ->begin();
189       (PN = dyn_cast<PHINode>(I)); ++I)
190    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
191}
192
193
194/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
195/// least one PHI node in it), check to see if the merge at this block is due
196/// to an "if condition".  If so, return the boolean condition that determines
197/// which entry into BB will be taken.  Also, return by references the block
198/// that will be entered from if the condition is true, and the block that will
199/// be entered if the condition is false.
200///
201/// This does no checking to see if the true/false blocks have large or unsavory
202/// instructions in them.
203static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
204                             BasicBlock *&IfFalse) {
205  PHINode *SomePHI = cast<PHINode>(BB->begin());
206  assert(SomePHI->getNumIncomingValues() == 2 &&
207         "Function can only handle blocks with 2 predecessors!");
208  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
209  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
210
211  // We can only handle branches.  Other control flow will be lowered to
212  // branches if possible anyway.
213  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
214  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
215  if (Pred1Br == 0 || Pred2Br == 0)
216    return 0;
217
218  // Eliminate code duplication by ensuring that Pred1Br is conditional if
219  // either are.
220  if (Pred2Br->isConditional()) {
221    // If both branches are conditional, we don't have an "if statement".  In
222    // reality, we could transform this case, but since the condition will be
223    // required anyway, we stand no chance of eliminating it, so the xform is
224    // probably not profitable.
225    if (Pred1Br->isConditional())
226      return 0;
227
228    std::swap(Pred1, Pred2);
229    std::swap(Pred1Br, Pred2Br);
230  }
231
232  if (Pred1Br->isConditional()) {
233    // The only thing we have to watch out for here is to make sure that Pred2
234    // doesn't have incoming edges from other blocks.  If it does, the condition
235    // doesn't dominate BB.
236    if (Pred2->getSinglePredecessor() == 0)
237      return 0;
238
239    // If we found a conditional branch predecessor, make sure that it branches
240    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
241    if (Pred1Br->getSuccessor(0) == BB &&
242        Pred1Br->getSuccessor(1) == Pred2) {
243      IfTrue = Pred1;
244      IfFalse = Pred2;
245    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
246               Pred1Br->getSuccessor(1) == BB) {
247      IfTrue = Pred2;
248      IfFalse = Pred1;
249    } else {
250      // We know that one arm of the conditional goes to BB, so the other must
251      // go somewhere unrelated, and this must not be an "if statement".
252      return 0;
253    }
254
255    return Pred1Br->getCondition();
256  }
257
258  // Ok, if we got here, both predecessors end with an unconditional branch to
259  // BB.  Don't panic!  If both blocks only have a single (identical)
260  // predecessor, and THAT is a conditional branch, then we're all ok!
261  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
262  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
263    return 0;
264
265  // Otherwise, if this is a conditional branch, then we can use it!
266  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
267  if (BI == 0) return 0;
268
269  assert(BI->isConditional() && "Two successors but not conditional?");
270  if (BI->getSuccessor(0) == Pred1) {
271    IfTrue = Pred1;
272    IfFalse = Pred2;
273  } else {
274    IfTrue = Pred2;
275    IfFalse = Pred1;
276  }
277  return BI->getCondition();
278}
279
280/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
281/// given instruction, which is assumed to be safe to speculate. 1 means
282/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
283static unsigned ComputeSpeculationCost(const User *I) {
284  assert(isSafeToSpeculativelyExecute(I) &&
285         "Instruction is not safe to speculatively execute!");
286  switch (Operator::getOpcode(I)) {
287  default:
288    // In doubt, be conservative.
289    return UINT_MAX;
290  case Instruction::GetElementPtr:
291    // GEPs are cheap if all indices are constant.
292    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
293      return UINT_MAX;
294    return 1;
295  case Instruction::Load:
296  case Instruction::Add:
297  case Instruction::Sub:
298  case Instruction::And:
299  case Instruction::Or:
300  case Instruction::Xor:
301  case Instruction::Shl:
302  case Instruction::LShr:
303  case Instruction::AShr:
304  case Instruction::ICmp:
305  case Instruction::Trunc:
306  case Instruction::ZExt:
307  case Instruction::SExt:
308    return 1; // These are all cheap.
309
310  case Instruction::Call:
311  case Instruction::Select:
312    return 2;
313  }
314}
315
316/// DominatesMergePoint - If we have a merge point of an "if condition" as
317/// accepted above, return true if the specified value dominates the block.  We
318/// don't handle the true generality of domination here, just a special case
319/// which works well enough for us.
320///
321/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
322/// see if V (which must be an instruction) and its recursive operands
323/// that do not dominate BB have a combined cost lower than CostRemaining and
324/// are non-trapping.  If both are true, the instruction is inserted into the
325/// set and true is returned.
326///
327/// The cost for most non-trapping instructions is defined as 1 except for
328/// Select whose cost is 2.
329///
330/// After this function returns, CostRemaining is decreased by the cost of
331/// V plus its non-dominating operands.  If that cost is greater than
332/// CostRemaining, false is returned and CostRemaining is undefined.
333static bool DominatesMergePoint(Value *V, BasicBlock *BB,
334                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
335                                unsigned &CostRemaining) {
336  Instruction *I = dyn_cast<Instruction>(V);
337  if (!I) {
338    // Non-instructions all dominate instructions, but not all constantexprs
339    // can be executed unconditionally.
340    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
341      if (C->canTrap())
342        return false;
343    return true;
344  }
345  BasicBlock *PBB = I->getParent();
346
347  // We don't want to allow weird loops that might have the "if condition" in
348  // the bottom of this block.
349  if (PBB == BB) return false;
350
351  // If this instruction is defined in a block that contains an unconditional
352  // branch to BB, then it must be in the 'conditional' part of the "if
353  // statement".  If not, it definitely dominates the region.
354  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
355  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
356    return true;
357
358  // If we aren't allowing aggressive promotion anymore, then don't consider
359  // instructions in the 'if region'.
360  if (AggressiveInsts == 0) return false;
361
362  // If we have seen this instruction before, don't count it again.
363  if (AggressiveInsts->count(I)) return true;
364
365  // Okay, it looks like the instruction IS in the "condition".  Check to
366  // see if it's a cheap instruction to unconditionally compute, and if it
367  // only uses stuff defined outside of the condition.  If so, hoist it out.
368  if (!isSafeToSpeculativelyExecute(I))
369    return false;
370
371  unsigned Cost = ComputeSpeculationCost(I);
372
373  if (Cost > CostRemaining)
374    return false;
375
376  CostRemaining -= Cost;
377
378  // Okay, we can only really hoist these out if their operands do
379  // not take us over the cost threshold.
380  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
381    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
382      return false;
383  // Okay, it's safe to do this!  Remember this instruction.
384  AggressiveInsts->insert(I);
385  return true;
386}
387
388/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
389/// and PointerNullValue. Return NULL if value is not a constant int.
390static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
391  // Normal constant int.
392  ConstantInt *CI = dyn_cast<ConstantInt>(V);
393  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
394    return CI;
395
396  // This is some kind of pointer constant. Turn it into a pointer-sized
397  // ConstantInt if possible.
398  IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
399
400  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
401  if (isa<ConstantPointerNull>(V))
402    return ConstantInt::get(PtrTy, 0);
403
404  // IntToPtr const int.
405  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
406    if (CE->getOpcode() == Instruction::IntToPtr)
407      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
408        // The constant is very likely to have the right type already.
409        if (CI->getType() == PtrTy)
410          return CI;
411        else
412          return cast<ConstantInt>
413            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
414      }
415  return 0;
416}
417
418/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
419/// collection of icmp eq/ne instructions that compare a value against a
420/// constant, return the value being compared, and stick the constant into the
421/// Values vector.
422static Value *
423GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
424                       const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
425  Instruction *I = dyn_cast<Instruction>(V);
426  if (I == 0) return 0;
427
428  // If this is an icmp against a constant, handle this as one of the cases.
429  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
430    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
431      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
432        UsedICmps++;
433        Vals.push_back(C);
434        return I->getOperand(0);
435      }
436
437      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
438      // the set.
439      ConstantRange Span =
440        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
441
442      // If this is an and/!= check then we want to optimize "x ugt 2" into
443      // x != 0 && x != 1.
444      if (!isEQ)
445        Span = Span.inverse();
446
447      // If there are a ton of values, we don't want to make a ginormous switch.
448      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
449        return 0;
450
451      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
452        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
453      UsedICmps++;
454      return I->getOperand(0);
455    }
456    return 0;
457  }
458
459  // Otherwise, we can only handle an | or &, depending on isEQ.
460  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
461    return 0;
462
463  unsigned NumValsBeforeLHS = Vals.size();
464  unsigned UsedICmpsBeforeLHS = UsedICmps;
465  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
466                                          isEQ, UsedICmps)) {
467    unsigned NumVals = Vals.size();
468    unsigned UsedICmpsBeforeRHS = UsedICmps;
469    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
470                                            isEQ, UsedICmps)) {
471      if (LHS == RHS)
472        return LHS;
473      Vals.resize(NumVals);
474      UsedICmps = UsedICmpsBeforeRHS;
475    }
476
477    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
478    // set it and return success.
479    if (Extra == 0 || Extra == I->getOperand(1)) {
480      Extra = I->getOperand(1);
481      return LHS;
482    }
483
484    Vals.resize(NumValsBeforeLHS);
485    UsedICmps = UsedICmpsBeforeLHS;
486    return 0;
487  }
488
489  // If the LHS can't be folded in, but Extra is available and RHS can, try to
490  // use LHS as Extra.
491  if (Extra == 0 || Extra == I->getOperand(0)) {
492    Value *OldExtra = Extra;
493    Extra = I->getOperand(0);
494    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
495                                            isEQ, UsedICmps))
496      return RHS;
497    assert(Vals.size() == NumValsBeforeLHS);
498    Extra = OldExtra;
499  }
500
501  return 0;
502}
503
504static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
505  Instruction *Cond = 0;
506  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
507    Cond = dyn_cast<Instruction>(SI->getCondition());
508  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
509    if (BI->isConditional())
510      Cond = dyn_cast<Instruction>(BI->getCondition());
511  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
512    Cond = dyn_cast<Instruction>(IBI->getAddress());
513  }
514
515  TI->eraseFromParent();
516  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
517}
518
519/// isValueEqualityComparison - Return true if the specified terminator checks
520/// to see if a value is equal to constant integer value.
521Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
522  Value *CV = 0;
523  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
524    // Do not permit merging of large switch instructions into their
525    // predecessors unless there is only one predecessor.
526    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
527                                             pred_end(SI->getParent())) <= 128)
528      CV = SI->getCondition();
529  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
530    if (BI->isConditional() && BI->getCondition()->hasOneUse())
531      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
532        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
533             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
534            GetConstantInt(ICI->getOperand(1), TD))
535          CV = ICI->getOperand(0);
536
537  // Unwrap any lossless ptrtoint cast.
538  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
539    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
540      CV = PTII->getOperand(0);
541  return CV;
542}
543
544/// GetValueEqualityComparisonCases - Given a value comparison instruction,
545/// decode all of the 'cases' that it represents and return the 'default' block.
546BasicBlock *SimplifyCFGOpt::
547GetValueEqualityComparisonCases(TerminatorInst *TI,
548                                std::vector<ValueEqualityComparisonCase>
549                                                                       &Cases) {
550  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
551    Cases.reserve(SI->getNumCases());
552    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
553      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
554                                                  i.getCaseSuccessor()));
555    return SI->getDefaultDest();
556  }
557
558  BranchInst *BI = cast<BranchInst>(TI);
559  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
560  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
561  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
562                                                             TD),
563                                              Succ));
564  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
565}
566
567
568/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
569/// in the list that match the specified block.
570static void EliminateBlockCases(BasicBlock *BB,
571                              std::vector<ValueEqualityComparisonCase> &Cases) {
572  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
573}
574
575/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
576/// well.
577static bool
578ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
579              std::vector<ValueEqualityComparisonCase > &C2) {
580  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
581
582  // Make V1 be smaller than V2.
583  if (V1->size() > V2->size())
584    std::swap(V1, V2);
585
586  if (V1->size() == 0) return false;
587  if (V1->size() == 1) {
588    // Just scan V2.
589    ConstantInt *TheVal = (*V1)[0].Value;
590    for (unsigned i = 0, e = V2->size(); i != e; ++i)
591      if (TheVal == (*V2)[i].Value)
592        return true;
593  }
594
595  // Otherwise, just sort both lists and compare element by element.
596  array_pod_sort(V1->begin(), V1->end());
597  array_pod_sort(V2->begin(), V2->end());
598  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
599  while (i1 != e1 && i2 != e2) {
600    if ((*V1)[i1].Value == (*V2)[i2].Value)
601      return true;
602    if ((*V1)[i1].Value < (*V2)[i2].Value)
603      ++i1;
604    else
605      ++i2;
606  }
607  return false;
608}
609
610/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
611/// terminator instruction and its block is known to only have a single
612/// predecessor block, check to see if that predecessor is also a value
613/// comparison with the same value, and if that comparison determines the
614/// outcome of this comparison.  If so, simplify TI.  This does a very limited
615/// form of jump threading.
616bool SimplifyCFGOpt::
617SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
618                                              BasicBlock *Pred,
619                                              IRBuilder<> &Builder) {
620  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
621  if (!PredVal) return false;  // Not a value comparison in predecessor.
622
623  Value *ThisVal = isValueEqualityComparison(TI);
624  assert(ThisVal && "This isn't a value comparison!!");
625  if (ThisVal != PredVal) return false;  // Different predicates.
626
627  // TODO: Preserve branch weight metadata, similarly to how
628  // FoldValueComparisonIntoPredecessors preserves it.
629
630  // Find out information about when control will move from Pred to TI's block.
631  std::vector<ValueEqualityComparisonCase> PredCases;
632  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
633                                                        PredCases);
634  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
635
636  // Find information about how control leaves this block.
637  std::vector<ValueEqualityComparisonCase> ThisCases;
638  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
639  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
640
641  // If TI's block is the default block from Pred's comparison, potentially
642  // simplify TI based on this knowledge.
643  if (PredDef == TI->getParent()) {
644    // If we are here, we know that the value is none of those cases listed in
645    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
646    // can simplify TI.
647    if (!ValuesOverlap(PredCases, ThisCases))
648      return false;
649
650    if (isa<BranchInst>(TI)) {
651      // Okay, one of the successors of this condbr is dead.  Convert it to a
652      // uncond br.
653      assert(ThisCases.size() == 1 && "Branch can only have one case!");
654      // Insert the new branch.
655      Instruction *NI = Builder.CreateBr(ThisDef);
656      (void) NI;
657
658      // Remove PHI node entries for the dead edge.
659      ThisCases[0].Dest->removePredecessor(TI->getParent());
660
661      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
662           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
663
664      EraseTerminatorInstAndDCECond(TI);
665      return true;
666    }
667
668    SwitchInst *SI = cast<SwitchInst>(TI);
669    // Okay, TI has cases that are statically dead, prune them away.
670    SmallPtrSet<Constant*, 16> DeadCases;
671    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
672      DeadCases.insert(PredCases[i].Value);
673
674    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
675                 << "Through successor TI: " << *TI);
676
677    // Collect branch weights into a vector.
678    SmallVector<uint32_t, 8> Weights;
679    MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
680    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
681    if (HasWeight)
682      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
683           ++MD_i) {
684        ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
685        assert(CI);
686        Weights.push_back(CI->getValue().getZExtValue());
687      }
688    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
689      --i;
690      if (DeadCases.count(i.getCaseValue())) {
691        if (HasWeight) {
692          std::swap(Weights[i.getCaseIndex()+1], Weights.back());
693          Weights.pop_back();
694        }
695        i.getCaseSuccessor()->removePredecessor(TI->getParent());
696        SI->removeCase(i);
697      }
698    }
699    if (HasWeight && Weights.size() >= 2)
700      SI->setMetadata(LLVMContext::MD_prof,
701                      MDBuilder(SI->getParent()->getContext()).
702                      createBranchWeights(Weights));
703
704    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
705    return true;
706  }
707
708  // Otherwise, TI's block must correspond to some matched value.  Find out
709  // which value (or set of values) this is.
710  ConstantInt *TIV = 0;
711  BasicBlock *TIBB = TI->getParent();
712  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
713    if (PredCases[i].Dest == TIBB) {
714      if (TIV != 0)
715        return false;  // Cannot handle multiple values coming to this block.
716      TIV = PredCases[i].Value;
717    }
718  assert(TIV && "No edge from pred to succ?");
719
720  // Okay, we found the one constant that our value can be if we get into TI's
721  // BB.  Find out which successor will unconditionally be branched to.
722  BasicBlock *TheRealDest = 0;
723  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
724    if (ThisCases[i].Value == TIV) {
725      TheRealDest = ThisCases[i].Dest;
726      break;
727    }
728
729  // If not handled by any explicit cases, it is handled by the default case.
730  if (TheRealDest == 0) TheRealDest = ThisDef;
731
732  // Remove PHI node entries for dead edges.
733  BasicBlock *CheckEdge = TheRealDest;
734  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
735    if (*SI != CheckEdge)
736      (*SI)->removePredecessor(TIBB);
737    else
738      CheckEdge = 0;
739
740  // Insert the new branch.
741  Instruction *NI = Builder.CreateBr(TheRealDest);
742  (void) NI;
743
744  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
745            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
746
747  EraseTerminatorInstAndDCECond(TI);
748  return true;
749}
750
751namespace {
752  /// ConstantIntOrdering - This class implements a stable ordering of constant
753  /// integers that does not depend on their address.  This is important for
754  /// applications that sort ConstantInt's to ensure uniqueness.
755  struct ConstantIntOrdering {
756    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
757      return LHS->getValue().ult(RHS->getValue());
758    }
759  };
760}
761
762static int ConstantIntSortPredicate(const void *P1, const void *P2) {
763  const ConstantInt *LHS = *(const ConstantInt*const*)P1;
764  const ConstantInt *RHS = *(const ConstantInt*const*)P2;
765  if (LHS->getValue().ult(RHS->getValue()))
766    return 1;
767  if (LHS->getValue() == RHS->getValue())
768    return 0;
769  return -1;
770}
771
772static inline bool HasBranchWeights(const Instruction* I) {
773  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
774  if (ProfMD && ProfMD->getOperand(0))
775    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
776      return MDS->getString().equals("branch_weights");
777
778  return false;
779}
780
781/// Get Weights of a given TerminatorInst, the default weight is at the front
782/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
783/// metadata.
784static void GetBranchWeights(TerminatorInst *TI,
785                             SmallVectorImpl<uint64_t> &Weights) {
786  MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
787  assert(MD);
788  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
789    ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
790    assert(CI);
791    Weights.push_back(CI->getValue().getZExtValue());
792  }
793
794  // If TI is a conditional eq, the default case is the false case,
795  // and the corresponding branch-weight data is at index 2. We swap the
796  // default weight to be the first entry.
797  if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
798    assert(Weights.size() == 2);
799    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
800    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
801      std::swap(Weights.front(), Weights.back());
802  }
803}
804
805/// Sees if any of the weights are too big for a uint32_t, and halves all the
806/// weights if any are.
807static void FitWeights(MutableArrayRef<uint64_t> Weights) {
808  bool Halve = false;
809  for (unsigned i = 0; i < Weights.size(); ++i)
810    if (Weights[i] > UINT_MAX) {
811      Halve = true;
812      break;
813    }
814
815  if (! Halve)
816    return;
817
818  for (unsigned i = 0; i < Weights.size(); ++i)
819    Weights[i] /= 2;
820}
821
822/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
823/// equality comparison instruction (either a switch or a branch on "X == c").
824/// See if any of the predecessors of the terminator block are value comparisons
825/// on the same value.  If so, and if safe to do so, fold them together.
826bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
827                                                         IRBuilder<> &Builder) {
828  BasicBlock *BB = TI->getParent();
829  Value *CV = isValueEqualityComparison(TI);  // CondVal
830  assert(CV && "Not a comparison?");
831  bool Changed = false;
832
833  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
834  while (!Preds.empty()) {
835    BasicBlock *Pred = Preds.pop_back_val();
836
837    // See if the predecessor is a comparison with the same value.
838    TerminatorInst *PTI = Pred->getTerminator();
839    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
840
841    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
842      // Figure out which 'cases' to copy from SI to PSI.
843      std::vector<ValueEqualityComparisonCase> BBCases;
844      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
845
846      std::vector<ValueEqualityComparisonCase> PredCases;
847      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
848
849      // Based on whether the default edge from PTI goes to BB or not, fill in
850      // PredCases and PredDefault with the new switch cases we would like to
851      // build.
852      SmallVector<BasicBlock*, 8> NewSuccessors;
853
854      // Update the branch weight metadata along the way
855      SmallVector<uint64_t, 8> Weights;
856      bool PredHasWeights = HasBranchWeights(PTI);
857      bool SuccHasWeights = HasBranchWeights(TI);
858
859      if (PredHasWeights) {
860        GetBranchWeights(PTI, Weights);
861        // branch-weight metadata is inconsistent here.
862        if (Weights.size() != 1 + PredCases.size())
863          PredHasWeights = SuccHasWeights = false;
864      } else if (SuccHasWeights)
865        // If there are no predecessor weights but there are successor weights,
866        // populate Weights with 1, which will later be scaled to the sum of
867        // successor's weights
868        Weights.assign(1 + PredCases.size(), 1);
869
870      SmallVector<uint64_t, 8> SuccWeights;
871      if (SuccHasWeights) {
872        GetBranchWeights(TI, SuccWeights);
873        // branch-weight metadata is inconsistent here.
874        if (SuccWeights.size() != 1 + BBCases.size())
875          PredHasWeights = SuccHasWeights = false;
876      } else if (PredHasWeights)
877        SuccWeights.assign(1 + BBCases.size(), 1);
878
879      if (PredDefault == BB) {
880        // If this is the default destination from PTI, only the edges in TI
881        // that don't occur in PTI, or that branch to BB will be activated.
882        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
883        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
884          if (PredCases[i].Dest != BB)
885            PTIHandled.insert(PredCases[i].Value);
886          else {
887            // The default destination is BB, we don't need explicit targets.
888            std::swap(PredCases[i], PredCases.back());
889
890            if (PredHasWeights || SuccHasWeights) {
891              // Increase weight for the default case.
892              Weights[0] += Weights[i+1];
893              std::swap(Weights[i+1], Weights.back());
894              Weights.pop_back();
895            }
896
897            PredCases.pop_back();
898            --i; --e;
899          }
900
901        // Reconstruct the new switch statement we will be building.
902        if (PredDefault != BBDefault) {
903          PredDefault->removePredecessor(Pred);
904          PredDefault = BBDefault;
905          NewSuccessors.push_back(BBDefault);
906        }
907
908        unsigned CasesFromPred = Weights.size();
909        uint64_t ValidTotalSuccWeight = 0;
910        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
911          if (!PTIHandled.count(BBCases[i].Value) &&
912              BBCases[i].Dest != BBDefault) {
913            PredCases.push_back(BBCases[i]);
914            NewSuccessors.push_back(BBCases[i].Dest);
915            if (SuccHasWeights || PredHasWeights) {
916              // The default weight is at index 0, so weight for the ith case
917              // should be at index i+1. Scale the cases from successor by
918              // PredDefaultWeight (Weights[0]).
919              Weights.push_back(Weights[0] * SuccWeights[i+1]);
920              ValidTotalSuccWeight += SuccWeights[i+1];
921            }
922          }
923
924        if (SuccHasWeights || PredHasWeights) {
925          ValidTotalSuccWeight += SuccWeights[0];
926          // Scale the cases from predecessor by ValidTotalSuccWeight.
927          for (unsigned i = 1; i < CasesFromPred; ++i)
928            Weights[i] *= ValidTotalSuccWeight;
929          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
930          Weights[0] *= SuccWeights[0];
931        }
932      } else {
933        // If this is not the default destination from PSI, only the edges
934        // in SI that occur in PSI with a destination of BB will be
935        // activated.
936        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
937        std::map<ConstantInt*, uint64_t> WeightsForHandled;
938        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
939          if (PredCases[i].Dest == BB) {
940            PTIHandled.insert(PredCases[i].Value);
941
942            if (PredHasWeights || SuccHasWeights) {
943              WeightsForHandled[PredCases[i].Value] = Weights[i+1];
944              std::swap(Weights[i+1], Weights.back());
945              Weights.pop_back();
946            }
947
948            std::swap(PredCases[i], PredCases.back());
949            PredCases.pop_back();
950            --i; --e;
951          }
952
953        // Okay, now we know which constants were sent to BB from the
954        // predecessor.  Figure out where they will all go now.
955        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
956          if (PTIHandled.count(BBCases[i].Value)) {
957            // If this is one we are capable of getting...
958            if (PredHasWeights || SuccHasWeights)
959              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
960            PredCases.push_back(BBCases[i]);
961            NewSuccessors.push_back(BBCases[i].Dest);
962            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
963          }
964
965        // If there are any constants vectored to BB that TI doesn't handle,
966        // they must go to the default destination of TI.
967        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
968                                    PTIHandled.begin(),
969               E = PTIHandled.end(); I != E; ++I) {
970          if (PredHasWeights || SuccHasWeights)
971            Weights.push_back(WeightsForHandled[*I]);
972          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
973          NewSuccessors.push_back(BBDefault);
974        }
975      }
976
977      // Okay, at this point, we know which new successor Pred will get.  Make
978      // sure we update the number of entries in the PHI nodes for these
979      // successors.
980      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
981        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
982
983      Builder.SetInsertPoint(PTI);
984      // Convert pointer to int before we switch.
985      if (CV->getType()->isPointerTy()) {
986        assert(TD && "Cannot switch on pointer without DataLayout");
987        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
988                                    "magicptr");
989      }
990
991      // Now that the successors are updated, create the new Switch instruction.
992      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
993                                               PredCases.size());
994      NewSI->setDebugLoc(PTI->getDebugLoc());
995      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
996        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
997
998      if (PredHasWeights || SuccHasWeights) {
999        // Halve the weights if any of them cannot fit in an uint32_t
1000        FitWeights(Weights);
1001
1002        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1003
1004        NewSI->setMetadata(LLVMContext::MD_prof,
1005                           MDBuilder(BB->getContext()).
1006                           createBranchWeights(MDWeights));
1007      }
1008
1009      EraseTerminatorInstAndDCECond(PTI);
1010
1011      // Okay, last check.  If BB is still a successor of PSI, then we must
1012      // have an infinite loop case.  If so, add an infinitely looping block
1013      // to handle the case to preserve the behavior of the code.
1014      BasicBlock *InfLoopBlock = 0;
1015      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1016        if (NewSI->getSuccessor(i) == BB) {
1017          if (InfLoopBlock == 0) {
1018            // Insert it at the end of the function, because it's either code,
1019            // or it won't matter if it's hot. :)
1020            InfLoopBlock = BasicBlock::Create(BB->getContext(),
1021                                              "infloop", BB->getParent());
1022            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1023          }
1024          NewSI->setSuccessor(i, InfLoopBlock);
1025        }
1026
1027      Changed = true;
1028    }
1029  }
1030  return Changed;
1031}
1032
1033// isSafeToHoistInvoke - If we would need to insert a select that uses the
1034// value of this invoke (comments in HoistThenElseCodeToIf explain why we
1035// would need to do this), we can't hoist the invoke, as there is nowhere
1036// to put the select in this case.
1037static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1038                                Instruction *I1, Instruction *I2) {
1039  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1040    PHINode *PN;
1041    for (BasicBlock::iterator BBI = SI->begin();
1042         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1043      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1044      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1045      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1046        return false;
1047      }
1048    }
1049  }
1050  return true;
1051}
1052
1053/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1054/// BB2, hoist any common code in the two blocks up into the branch block.  The
1055/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1056static bool HoistThenElseCodeToIf(BranchInst *BI) {
1057  // This does very trivial matching, with limited scanning, to find identical
1058  // instructions in the two blocks.  In particular, we don't want to get into
1059  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1060  // such, we currently just scan for obviously identical instructions in an
1061  // identical order.
1062  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1063  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1064
1065  BasicBlock::iterator BB1_Itr = BB1->begin();
1066  BasicBlock::iterator BB2_Itr = BB2->begin();
1067
1068  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1069  // Skip debug info if it is not identical.
1070  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1071  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1072  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1073    while (isa<DbgInfoIntrinsic>(I1))
1074      I1 = BB1_Itr++;
1075    while (isa<DbgInfoIntrinsic>(I2))
1076      I2 = BB2_Itr++;
1077  }
1078  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1079      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1080    return false;
1081
1082  // If we get here, we can hoist at least one instruction.
1083  BasicBlock *BIParent = BI->getParent();
1084
1085  do {
1086    // If we are hoisting the terminator instruction, don't move one (making a
1087    // broken BB), instead clone it, and remove BI.
1088    if (isa<TerminatorInst>(I1))
1089      goto HoistTerminator;
1090
1091    // For a normal instruction, we just move one to right before the branch,
1092    // then replace all uses of the other with the first.  Finally, we remove
1093    // the now redundant second instruction.
1094    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1095    if (!I2->use_empty())
1096      I2->replaceAllUsesWith(I1);
1097    I1->intersectOptionalDataWith(I2);
1098    I2->eraseFromParent();
1099
1100    I1 = BB1_Itr++;
1101    I2 = BB2_Itr++;
1102    // Skip debug info if it is not identical.
1103    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1104    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1105    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1106      while (isa<DbgInfoIntrinsic>(I1))
1107        I1 = BB1_Itr++;
1108      while (isa<DbgInfoIntrinsic>(I2))
1109        I2 = BB2_Itr++;
1110    }
1111  } while (I1->isIdenticalToWhenDefined(I2));
1112
1113  return true;
1114
1115HoistTerminator:
1116  // It may not be possible to hoist an invoke.
1117  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1118    return true;
1119
1120  // Okay, it is safe to hoist the terminator.
1121  Instruction *NT = I1->clone();
1122  BIParent->getInstList().insert(BI, NT);
1123  if (!NT->getType()->isVoidTy()) {
1124    I1->replaceAllUsesWith(NT);
1125    I2->replaceAllUsesWith(NT);
1126    NT->takeName(I1);
1127  }
1128
1129  IRBuilder<true, NoFolder> Builder(NT);
1130  // Hoisting one of the terminators from our successor is a great thing.
1131  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1132  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1133  // nodes, so we insert select instruction to compute the final result.
1134  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1135  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1136    PHINode *PN;
1137    for (BasicBlock::iterator BBI = SI->begin();
1138         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1139      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1140      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1141      if (BB1V == BB2V) continue;
1142
1143      // These values do not agree.  Insert a select instruction before NT
1144      // that determines the right value.
1145      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1146      if (SI == 0)
1147        SI = cast<SelectInst>
1148          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1149                                BB1V->getName()+"."+BB2V->getName()));
1150
1151      // Make the PHI node use the select for all incoming values for BB1/BB2
1152      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1153        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1154          PN->setIncomingValue(i, SI);
1155    }
1156  }
1157
1158  // Update any PHI nodes in our new successors.
1159  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1160    AddPredecessorToBlock(*SI, BIParent, BB1);
1161
1162  EraseTerminatorInstAndDCECond(BI);
1163  return true;
1164}
1165
1166/// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1167/// check whether BBEnd has only two predecessors and the other predecessor
1168/// ends with an unconditional branch. If it is true, sink any common code
1169/// in the two predecessors to BBEnd.
1170static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1171  assert(BI1->isUnconditional());
1172  BasicBlock *BB1 = BI1->getParent();
1173  BasicBlock *BBEnd = BI1->getSuccessor(0);
1174
1175  // Check that BBEnd has two predecessors and the other predecessor ends with
1176  // an unconditional branch.
1177  pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1178  BasicBlock *Pred0 = *PI++;
1179  if (PI == PE) // Only one predecessor.
1180    return false;
1181  BasicBlock *Pred1 = *PI++;
1182  if (PI != PE) // More than two predecessors.
1183    return false;
1184  BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1185  BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1186  if (!BI2 || !BI2->isUnconditional())
1187    return false;
1188
1189  // Gather the PHI nodes in BBEnd.
1190  std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1191  Instruction *FirstNonPhiInBBEnd = 0;
1192  for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1193       I != E; ++I) {
1194    if (PHINode *PN = dyn_cast<PHINode>(I)) {
1195      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1196      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1197      MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1198    } else {
1199      FirstNonPhiInBBEnd = &*I;
1200      break;
1201    }
1202  }
1203  if (!FirstNonPhiInBBEnd)
1204    return false;
1205
1206
1207  // This does very trivial matching, with limited scanning, to find identical
1208  // instructions in the two blocks.  We scan backward for obviously identical
1209  // instructions in an identical order.
1210  BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1211      RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1212      RE2 = BB2->getInstList().rend();
1213  // Skip debug info.
1214  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1215  if (RI1 == RE1)
1216    return false;
1217  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1218  if (RI2 == RE2)
1219    return false;
1220  // Skip the unconditional branches.
1221  ++RI1;
1222  ++RI2;
1223
1224  bool Changed = false;
1225  while (RI1 != RE1 && RI2 != RE2) {
1226    // Skip debug info.
1227    while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1228    if (RI1 == RE1)
1229      return Changed;
1230    while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1231    if (RI2 == RE2)
1232      return Changed;
1233
1234    Instruction *I1 = &*RI1, *I2 = &*RI2;
1235    // I1 and I2 should have a single use in the same PHI node, and they
1236    // perform the same operation.
1237    // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1238    if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1239        isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1240        isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1241        isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1242        I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1243        I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1244        !I1->hasOneUse() || !I2->hasOneUse() ||
1245        MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1246        MapValueFromBB1ToBB2[I1].first != I2)
1247      return Changed;
1248
1249    // Check whether we should swap the operands of ICmpInst.
1250    ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1251    bool SwapOpnds = false;
1252    if (ICmp1 && ICmp2 &&
1253        ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1254        ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1255        (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1256         ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1257      ICmp2->swapOperands();
1258      SwapOpnds = true;
1259    }
1260    if (!I1->isSameOperationAs(I2)) {
1261      if (SwapOpnds)
1262        ICmp2->swapOperands();
1263      return Changed;
1264    }
1265
1266    // The operands should be either the same or they need to be generated
1267    // with a PHI node after sinking. We only handle the case where there is
1268    // a single pair of different operands.
1269    Value *DifferentOp1 = 0, *DifferentOp2 = 0;
1270    unsigned Op1Idx = 0;
1271    for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1272      if (I1->getOperand(I) == I2->getOperand(I))
1273        continue;
1274      // Early exit if we have more-than one pair of different operands or
1275      // the different operand is already in MapValueFromBB1ToBB2.
1276      // Early exit if we need a PHI node to replace a constant.
1277      if (DifferentOp1 ||
1278          MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1279          MapValueFromBB1ToBB2.end() ||
1280          isa<Constant>(I1->getOperand(I)) ||
1281          isa<Constant>(I2->getOperand(I))) {
1282        // If we can't sink the instructions, undo the swapping.
1283        if (SwapOpnds)
1284          ICmp2->swapOperands();
1285        return Changed;
1286      }
1287      DifferentOp1 = I1->getOperand(I);
1288      Op1Idx = I;
1289      DifferentOp2 = I2->getOperand(I);
1290    }
1291
1292    // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1293    // remove (I1, I2) from MapValueFromBB1ToBB2.
1294    if (DifferentOp1) {
1295      PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1296                                       DifferentOp1->getName() + ".sink",
1297                                       BBEnd->begin());
1298      MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1299      // I1 should use NewPN instead of DifferentOp1.
1300      I1->setOperand(Op1Idx, NewPN);
1301      NewPN->addIncoming(DifferentOp1, BB1);
1302      NewPN->addIncoming(DifferentOp2, BB2);
1303      DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1304    }
1305    PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1306    MapValueFromBB1ToBB2.erase(I1);
1307
1308    DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1309    DEBUG(dbgs() << "                         " << *I2 << "\n";);
1310    // We need to update RE1 and RE2 if we are going to sink the first
1311    // instruction in the basic block down.
1312    bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1313    // Sink the instruction.
1314    BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1315    if (!OldPN->use_empty())
1316      OldPN->replaceAllUsesWith(I1);
1317    OldPN->eraseFromParent();
1318
1319    if (!I2->use_empty())
1320      I2->replaceAllUsesWith(I1);
1321    I1->intersectOptionalDataWith(I2);
1322    I2->eraseFromParent();
1323
1324    if (UpdateRE1)
1325      RE1 = BB1->getInstList().rend();
1326    if (UpdateRE2)
1327      RE2 = BB2->getInstList().rend();
1328    FirstNonPhiInBBEnd = I1;
1329    NumSinkCommons++;
1330    Changed = true;
1331  }
1332  return Changed;
1333}
1334
1335/// \brief Speculate a conditional basic block flattening the CFG.
1336///
1337/// Note that this is a very risky transform currently. Speculating
1338/// instructions like this is most often not desirable. Instead, there is an MI
1339/// pass which can do it with full awareness of the resource constraints.
1340/// However, some cases are "obvious" and we should do directly. An example of
1341/// this is speculating a single, reasonably cheap instruction.
1342///
1343/// There is only one distinct advantage to flattening the CFG at the IR level:
1344/// it makes very common but simplistic optimizations such as are common in
1345/// instcombine and the DAG combiner more powerful by removing CFG edges and
1346/// modeling their effects with easier to reason about SSA value graphs.
1347///
1348///
1349/// An illustration of this transform is turning this IR:
1350/// \code
1351///   BB:
1352///     %cmp = icmp ult %x, %y
1353///     br i1 %cmp, label %EndBB, label %ThenBB
1354///   ThenBB:
1355///     %sub = sub %x, %y
1356///     br label BB2
1357///   EndBB:
1358///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1359///     ...
1360/// \endcode
1361///
1362/// Into this IR:
1363/// \code
1364///   BB:
1365///     %cmp = icmp ult %x, %y
1366///     %sub = sub %x, %y
1367///     %cond = select i1 %cmp, 0, %sub
1368///     ...
1369/// \endcode
1370///
1371/// \returns true if the conditional block is removed.
1372static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
1373  // Be conservative for now. FP select instruction can often be expensive.
1374  Value *BrCond = BI->getCondition();
1375  if (isa<FCmpInst>(BrCond))
1376    return false;
1377
1378  // Only speculatively execution a single instruction (not counting the
1379  // terminator) for now.
1380  Instruction *HInst = NULL;
1381  Instruction *Term = BB1->getTerminator();
1382  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
1383       BBI != BBE; ++BBI) {
1384    Instruction *I = BBI;
1385    // Skip debug info.
1386    if (isa<DbgInfoIntrinsic>(I)) continue;
1387    if (I == Term) break;
1388
1389    if (HInst)
1390      return false;
1391    HInst = I;
1392  }
1393
1394  BasicBlock *BIParent = BI->getParent();
1395
1396  // Check the instruction to be hoisted, if there is one.
1397  if (HInst) {
1398    // Don't hoist the instruction if it's unsafe or expensive.
1399    if (!isSafeToSpeculativelyExecute(HInst))
1400      return false;
1401    if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
1402      return false;
1403
1404    // Do not hoist the instruction if any of its operands are defined but not
1405    // used in this BB. The transformation will prevent the operand from
1406    // being sunk into the use block.
1407    for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1408         i != e; ++i) {
1409      Instruction *OpI = dyn_cast<Instruction>(*i);
1410      if (OpI && OpI->getParent() == BIParent &&
1411          !OpI->mayHaveSideEffects() &&
1412          !OpI->isUsedInBasicBlock(BIParent))
1413        return false;
1414    }
1415  }
1416
1417  // If BB1 is actually on the false edge of the conditional branch, remember
1418  // to swap the select operands later.
1419  bool Invert = false;
1420  if (BB1 != BI->getSuccessor(0)) {
1421    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
1422    Invert = true;
1423  }
1424
1425  // Collect interesting PHIs, and scan for hazards.
1426  SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
1427  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1428  for (BasicBlock::iterator I = BB2->begin();
1429       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1430    Value *BB1V = PN->getIncomingValueForBlock(BB1);
1431    Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
1432
1433    // Skip PHIs which are trivial.
1434    if (BB1V == BIParentV)
1435      continue;
1436
1437    // Check for safety.
1438    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
1439      // An unfolded ConstantExpr could end up getting expanded into
1440      // Instructions. Don't speculate this and another instruction at
1441      // the same time.
1442      if (HInst)
1443        return false;
1444      if (!isSafeToSpeculativelyExecute(CE))
1445        return false;
1446      if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1447        return false;
1448    }
1449
1450    // Ok, we may insert a select for this PHI.
1451    PHIs.insert(std::make_pair(BB1V, BIParentV));
1452  }
1453
1454  // If there are no PHIs to process, bail early. This helps ensure idempotence
1455  // as well.
1456  if (PHIs.empty())
1457    return false;
1458
1459  // If we get here, we can hoist the instruction and if-convert.
1460  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
1461
1462  // Hoist the instruction.
1463  if (HInst)
1464    BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
1465
1466  // Insert selects and rewrite the PHI operands.
1467  IRBuilder<true, NoFolder> Builder(BI);
1468  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1469    Value *TrueV = PHIs[i].first;
1470    Value *FalseV = PHIs[i].second;
1471
1472    // Create a select whose true value is the speculatively executed value and
1473    // false value is the previously determined FalseV.
1474    SelectInst *SI;
1475    if (Invert)
1476      SI = cast<SelectInst>
1477        (Builder.CreateSelect(BrCond, FalseV, TrueV,
1478                              FalseV->getName() + "." + TrueV->getName()));
1479    else
1480      SI = cast<SelectInst>
1481        (Builder.CreateSelect(BrCond, TrueV, FalseV,
1482                              TrueV->getName() + "." + FalseV->getName()));
1483
1484    // Make the PHI node use the select for all incoming values for "then" and
1485    // "if" blocks.
1486    for (BasicBlock::iterator I = BB2->begin();
1487         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1488      unsigned BB1I = PN->getBasicBlockIndex(BB1);
1489      unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
1490      Value *BB1V = PN->getIncomingValue(BB1I);
1491      Value *BIParentV = PN->getIncomingValue(BIParentI);
1492      if (TrueV == BB1V && FalseV == BIParentV) {
1493        PN->setIncomingValue(BB1I, SI);
1494        PN->setIncomingValue(BIParentI, SI);
1495      }
1496    }
1497  }
1498
1499  ++NumSpeculations;
1500  return true;
1501}
1502
1503/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1504/// across this block.
1505static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1506  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1507  unsigned Size = 0;
1508
1509  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1510    if (isa<DbgInfoIntrinsic>(BBI))
1511      continue;
1512    if (Size > 10) return false;  // Don't clone large BB's.
1513    ++Size;
1514
1515    // We can only support instructions that do not define values that are
1516    // live outside of the current basic block.
1517    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1518         UI != E; ++UI) {
1519      Instruction *U = cast<Instruction>(*UI);
1520      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1521    }
1522
1523    // Looks ok, continue checking.
1524  }
1525
1526  return true;
1527}
1528
1529/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1530/// that is defined in the same block as the branch and if any PHI entries are
1531/// constants, thread edges corresponding to that entry to be branches to their
1532/// ultimate destination.
1533static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
1534  BasicBlock *BB = BI->getParent();
1535  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1536  // NOTE: we currently cannot transform this case if the PHI node is used
1537  // outside of the block.
1538  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1539    return false;
1540
1541  // Degenerate case of a single entry PHI.
1542  if (PN->getNumIncomingValues() == 1) {
1543    FoldSingleEntryPHINodes(PN->getParent());
1544    return true;
1545  }
1546
1547  // Now we know that this block has multiple preds and two succs.
1548  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1549
1550  // Okay, this is a simple enough basic block.  See if any phi values are
1551  // constants.
1552  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1553    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1554    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1555
1556    // Okay, we now know that all edges from PredBB should be revectored to
1557    // branch to RealDest.
1558    BasicBlock *PredBB = PN->getIncomingBlock(i);
1559    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1560
1561    if (RealDest == BB) continue;  // Skip self loops.
1562    // Skip if the predecessor's terminator is an indirect branch.
1563    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1564
1565    // The dest block might have PHI nodes, other predecessors and other
1566    // difficult cases.  Instead of being smart about this, just insert a new
1567    // block that jumps to the destination block, effectively splitting
1568    // the edge we are about to create.
1569    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1570                                            RealDest->getName()+".critedge",
1571                                            RealDest->getParent(), RealDest);
1572    BranchInst::Create(RealDest, EdgeBB);
1573
1574    // Update PHI nodes.
1575    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1576
1577    // BB may have instructions that are being threaded over.  Clone these
1578    // instructions into EdgeBB.  We know that there will be no uses of the
1579    // cloned instructions outside of EdgeBB.
1580    BasicBlock::iterator InsertPt = EdgeBB->begin();
1581    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1582    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1583      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1584        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1585        continue;
1586      }
1587      // Clone the instruction.
1588      Instruction *N = BBI->clone();
1589      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1590
1591      // Update operands due to translation.
1592      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1593           i != e; ++i) {
1594        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1595        if (PI != TranslateMap.end())
1596          *i = PI->second;
1597      }
1598
1599      // Check for trivial simplification.
1600      if (Value *V = SimplifyInstruction(N, TD)) {
1601        TranslateMap[BBI] = V;
1602        delete N;   // Instruction folded away, don't need actual inst
1603      } else {
1604        // Insert the new instruction into its new home.
1605        EdgeBB->getInstList().insert(InsertPt, N);
1606        if (!BBI->use_empty())
1607          TranslateMap[BBI] = N;
1608      }
1609    }
1610
1611    // Loop over all of the edges from PredBB to BB, changing them to branch
1612    // to EdgeBB instead.
1613    TerminatorInst *PredBBTI = PredBB->getTerminator();
1614    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1615      if (PredBBTI->getSuccessor(i) == BB) {
1616        BB->removePredecessor(PredBB);
1617        PredBBTI->setSuccessor(i, EdgeBB);
1618      }
1619
1620    // Recurse, simplifying any other constants.
1621    return FoldCondBranchOnPHI(BI, TD) | true;
1622  }
1623
1624  return false;
1625}
1626
1627/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1628/// PHI node, see if we can eliminate it.
1629static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
1630  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1631  // statement", which has a very simple dominance structure.  Basically, we
1632  // are trying to find the condition that is being branched on, which
1633  // subsequently causes this merge to happen.  We really want control
1634  // dependence information for this check, but simplifycfg can't keep it up
1635  // to date, and this catches most of the cases we care about anyway.
1636  BasicBlock *BB = PN->getParent();
1637  BasicBlock *IfTrue, *IfFalse;
1638  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1639  if (!IfCond ||
1640      // Don't bother if the branch will be constant folded trivially.
1641      isa<ConstantInt>(IfCond))
1642    return false;
1643
1644  // Okay, we found that we can merge this two-entry phi node into a select.
1645  // Doing so would require us to fold *all* two entry phi nodes in this block.
1646  // At some point this becomes non-profitable (particularly if the target
1647  // doesn't support cmov's).  Only do this transformation if there are two or
1648  // fewer PHI nodes in this block.
1649  unsigned NumPhis = 0;
1650  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1651    if (NumPhis > 2)
1652      return false;
1653
1654  // Loop over the PHI's seeing if we can promote them all to select
1655  // instructions.  While we are at it, keep track of the instructions
1656  // that need to be moved to the dominating block.
1657  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1658  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1659           MaxCostVal1 = PHINodeFoldingThreshold;
1660
1661  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1662    PHINode *PN = cast<PHINode>(II++);
1663    if (Value *V = SimplifyInstruction(PN, TD)) {
1664      PN->replaceAllUsesWith(V);
1665      PN->eraseFromParent();
1666      continue;
1667    }
1668
1669    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1670                             MaxCostVal0) ||
1671        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1672                             MaxCostVal1))
1673      return false;
1674  }
1675
1676  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1677  // we ran out of PHIs then we simplified them all.
1678  PN = dyn_cast<PHINode>(BB->begin());
1679  if (PN == 0) return true;
1680
1681  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1682  // often be turned into switches and other things.
1683  if (PN->getType()->isIntegerTy(1) &&
1684      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1685       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1686       isa<BinaryOperator>(IfCond)))
1687    return false;
1688
1689  // If we all PHI nodes are promotable, check to make sure that all
1690  // instructions in the predecessor blocks can be promoted as well.  If
1691  // not, we won't be able to get rid of the control flow, so it's not
1692  // worth promoting to select instructions.
1693  BasicBlock *DomBlock = 0;
1694  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1695  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1696  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1697    IfBlock1 = 0;
1698  } else {
1699    DomBlock = *pred_begin(IfBlock1);
1700    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1701      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1702        // This is not an aggressive instruction that we can promote.
1703        // Because of this, we won't be able to get rid of the control
1704        // flow, so the xform is not worth it.
1705        return false;
1706      }
1707  }
1708
1709  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1710    IfBlock2 = 0;
1711  } else {
1712    DomBlock = *pred_begin(IfBlock2);
1713    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1714      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1715        // This is not an aggressive instruction that we can promote.
1716        // Because of this, we won't be able to get rid of the control
1717        // flow, so the xform is not worth it.
1718        return false;
1719      }
1720  }
1721
1722  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1723               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1724
1725  // If we can still promote the PHI nodes after this gauntlet of tests,
1726  // do all of the PHI's now.
1727  Instruction *InsertPt = DomBlock->getTerminator();
1728  IRBuilder<true, NoFolder> Builder(InsertPt);
1729
1730  // Move all 'aggressive' instructions, which are defined in the
1731  // conditional parts of the if's up to the dominating block.
1732  if (IfBlock1)
1733    DomBlock->getInstList().splice(InsertPt,
1734                                   IfBlock1->getInstList(), IfBlock1->begin(),
1735                                   IfBlock1->getTerminator());
1736  if (IfBlock2)
1737    DomBlock->getInstList().splice(InsertPt,
1738                                   IfBlock2->getInstList(), IfBlock2->begin(),
1739                                   IfBlock2->getTerminator());
1740
1741  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1742    // Change the PHI node into a select instruction.
1743    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1744    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1745
1746    SelectInst *NV =
1747      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1748    PN->replaceAllUsesWith(NV);
1749    NV->takeName(PN);
1750    PN->eraseFromParent();
1751  }
1752
1753  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1754  // has been flattened.  Change DomBlock to jump directly to our new block to
1755  // avoid other simplifycfg's kicking in on the diamond.
1756  TerminatorInst *OldTI = DomBlock->getTerminator();
1757  Builder.SetInsertPoint(OldTI);
1758  Builder.CreateBr(BB);
1759  OldTI->eraseFromParent();
1760  return true;
1761}
1762
1763/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1764/// to two returning blocks, try to merge them together into one return,
1765/// introducing a select if the return values disagree.
1766static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1767                                           IRBuilder<> &Builder) {
1768  assert(BI->isConditional() && "Must be a conditional branch");
1769  BasicBlock *TrueSucc = BI->getSuccessor(0);
1770  BasicBlock *FalseSucc = BI->getSuccessor(1);
1771  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1772  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1773
1774  // Check to ensure both blocks are empty (just a return) or optionally empty
1775  // with PHI nodes.  If there are other instructions, merging would cause extra
1776  // computation on one path or the other.
1777  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1778    return false;
1779  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1780    return false;
1781
1782  Builder.SetInsertPoint(BI);
1783  // Okay, we found a branch that is going to two return nodes.  If
1784  // there is no return value for this function, just change the
1785  // branch into a return.
1786  if (FalseRet->getNumOperands() == 0) {
1787    TrueSucc->removePredecessor(BI->getParent());
1788    FalseSucc->removePredecessor(BI->getParent());
1789    Builder.CreateRetVoid();
1790    EraseTerminatorInstAndDCECond(BI);
1791    return true;
1792  }
1793
1794  // Otherwise, figure out what the true and false return values are
1795  // so we can insert a new select instruction.
1796  Value *TrueValue = TrueRet->getReturnValue();
1797  Value *FalseValue = FalseRet->getReturnValue();
1798
1799  // Unwrap any PHI nodes in the return blocks.
1800  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1801    if (TVPN->getParent() == TrueSucc)
1802      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1803  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1804    if (FVPN->getParent() == FalseSucc)
1805      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1806
1807  // In order for this transformation to be safe, we must be able to
1808  // unconditionally execute both operands to the return.  This is
1809  // normally the case, but we could have a potentially-trapping
1810  // constant expression that prevents this transformation from being
1811  // safe.
1812  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1813    if (TCV->canTrap())
1814      return false;
1815  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1816    if (FCV->canTrap())
1817      return false;
1818
1819  // Okay, we collected all the mapped values and checked them for sanity, and
1820  // defined to really do this transformation.  First, update the CFG.
1821  TrueSucc->removePredecessor(BI->getParent());
1822  FalseSucc->removePredecessor(BI->getParent());
1823
1824  // Insert select instructions where needed.
1825  Value *BrCond = BI->getCondition();
1826  if (TrueValue) {
1827    // Insert a select if the results differ.
1828    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1829    } else if (isa<UndefValue>(TrueValue)) {
1830      TrueValue = FalseValue;
1831    } else {
1832      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1833                                       FalseValue, "retval");
1834    }
1835  }
1836
1837  Value *RI = !TrueValue ?
1838    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1839
1840  (void) RI;
1841
1842  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1843               << "\n  " << *BI << "NewRet = " << *RI
1844               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1845
1846  EraseTerminatorInstAndDCECond(BI);
1847
1848  return true;
1849}
1850
1851/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1852/// probabilities of the branch taking each edge. Fills in the two APInt
1853/// parameters and return true, or returns false if no or invalid metadata was
1854/// found.
1855static bool ExtractBranchMetadata(BranchInst *BI,
1856                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
1857  assert(BI->isConditional() &&
1858         "Looking for probabilities on unconditional branch?");
1859  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1860  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1861  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1862  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1863  if (!CITrue || !CIFalse) return false;
1864  ProbTrue = CITrue->getValue().getZExtValue();
1865  ProbFalse = CIFalse->getValue().getZExtValue();
1866  return true;
1867}
1868
1869/// checkCSEInPredecessor - Return true if the given instruction is available
1870/// in its predecessor block. If yes, the instruction will be removed.
1871///
1872static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1873  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1874    return false;
1875  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1876    Instruction *PBI = &*I;
1877    // Check whether Inst and PBI generate the same value.
1878    if (Inst->isIdenticalTo(PBI)) {
1879      Inst->replaceAllUsesWith(PBI);
1880      Inst->eraseFromParent();
1881      return true;
1882    }
1883  }
1884  return false;
1885}
1886
1887/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1888/// predecessor branches to us and one of our successors, fold the block into
1889/// the predecessor and use logical operations to pick the right destination.
1890bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1891  BasicBlock *BB = BI->getParent();
1892
1893  Instruction *Cond = 0;
1894  if (BI->isConditional())
1895    Cond = dyn_cast<Instruction>(BI->getCondition());
1896  else {
1897    // For unconditional branch, check for a simple CFG pattern, where
1898    // BB has a single predecessor and BB's successor is also its predecessor's
1899    // successor. If such pattern exisits, check for CSE between BB and its
1900    // predecessor.
1901    if (BasicBlock *PB = BB->getSinglePredecessor())
1902      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1903        if (PBI->isConditional() &&
1904            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1905             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1906          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1907               I != E; ) {
1908            Instruction *Curr = I++;
1909            if (isa<CmpInst>(Curr)) {
1910              Cond = Curr;
1911              break;
1912            }
1913            // Quit if we can't remove this instruction.
1914            if (!checkCSEInPredecessor(Curr, PB))
1915              return false;
1916          }
1917        }
1918
1919    if (Cond == 0)
1920      return false;
1921  }
1922
1923  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1924    Cond->getParent() != BB || !Cond->hasOneUse())
1925  return false;
1926
1927  // Only allow this if the condition is a simple instruction that can be
1928  // executed unconditionally.  It must be in the same block as the branch, and
1929  // must be at the front of the block.
1930  BasicBlock::iterator FrontIt = BB->front();
1931
1932  // Ignore dbg intrinsics.
1933  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1934
1935  // Allow a single instruction to be hoisted in addition to the compare
1936  // that feeds the branch.  We later ensure that any values that _it_ uses
1937  // were also live in the predecessor, so that we don't unnecessarily create
1938  // register pressure or inhibit out-of-order execution.
1939  Instruction *BonusInst = 0;
1940  if (&*FrontIt != Cond &&
1941      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1942      isSafeToSpeculativelyExecute(FrontIt)) {
1943    BonusInst = &*FrontIt;
1944    ++FrontIt;
1945
1946    // Ignore dbg intrinsics.
1947    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1948  }
1949
1950  // Only a single bonus inst is allowed.
1951  if (&*FrontIt != Cond)
1952    return false;
1953
1954  // Make sure the instruction after the condition is the cond branch.
1955  BasicBlock::iterator CondIt = Cond; ++CondIt;
1956
1957  // Ingore dbg intrinsics.
1958  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1959
1960  if (&*CondIt != BI)
1961    return false;
1962
1963  // Cond is known to be a compare or binary operator.  Check to make sure that
1964  // neither operand is a potentially-trapping constant expression.
1965  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1966    if (CE->canTrap())
1967      return false;
1968  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1969    if (CE->canTrap())
1970      return false;
1971
1972  // Finally, don't infinitely unroll conditional loops.
1973  BasicBlock *TrueDest  = BI->getSuccessor(0);
1974  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
1975  if (TrueDest == BB || FalseDest == BB)
1976    return false;
1977
1978  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1979    BasicBlock *PredBlock = *PI;
1980    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1981
1982    // Check that we have two conditional branches.  If there is a PHI node in
1983    // the common successor, verify that the same value flows in from both
1984    // blocks.
1985    SmallVector<PHINode*, 4> PHIs;
1986    if (PBI == 0 || PBI->isUnconditional() ||
1987        (BI->isConditional() &&
1988         !SafeToMergeTerminators(BI, PBI)) ||
1989        (!BI->isConditional() &&
1990         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
1991      continue;
1992
1993    // Determine if the two branches share a common destination.
1994    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
1995    bool InvertPredCond = false;
1996
1997    if (BI->isConditional()) {
1998      if (PBI->getSuccessor(0) == TrueDest)
1999        Opc = Instruction::Or;
2000      else if (PBI->getSuccessor(1) == FalseDest)
2001        Opc = Instruction::And;
2002      else if (PBI->getSuccessor(0) == FalseDest)
2003        Opc = Instruction::And, InvertPredCond = true;
2004      else if (PBI->getSuccessor(1) == TrueDest)
2005        Opc = Instruction::Or, InvertPredCond = true;
2006      else
2007        continue;
2008    } else {
2009      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2010        continue;
2011    }
2012
2013    // Ensure that any values used in the bonus instruction are also used
2014    // by the terminator of the predecessor.  This means that those values
2015    // must already have been resolved, so we won't be inhibiting the
2016    // out-of-order core by speculating them earlier.
2017    if (BonusInst) {
2018      // Collect the values used by the bonus inst
2019      SmallPtrSet<Value*, 4> UsedValues;
2020      for (Instruction::op_iterator OI = BonusInst->op_begin(),
2021           OE = BonusInst->op_end(); OI != OE; ++OI) {
2022        Value *V = *OI;
2023        if (!isa<Constant>(V))
2024          UsedValues.insert(V);
2025      }
2026
2027      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
2028      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
2029
2030      // Walk up to four levels back up the use-def chain of the predecessor's
2031      // terminator to see if all those values were used.  The choice of four
2032      // levels is arbitrary, to provide a compile-time-cost bound.
2033      while (!Worklist.empty()) {
2034        std::pair<Value*, unsigned> Pair = Worklist.back();
2035        Worklist.pop_back();
2036
2037        if (Pair.second >= 4) continue;
2038        UsedValues.erase(Pair.first);
2039        if (UsedValues.empty()) break;
2040
2041        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
2042          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
2043               OI != OE; ++OI)
2044            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
2045        }
2046      }
2047
2048      if (!UsedValues.empty()) return false;
2049    }
2050
2051    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2052    IRBuilder<> Builder(PBI);
2053
2054    // If we need to invert the condition in the pred block to match, do so now.
2055    if (InvertPredCond) {
2056      Value *NewCond = PBI->getCondition();
2057
2058      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2059        CmpInst *CI = cast<CmpInst>(NewCond);
2060        CI->setPredicate(CI->getInversePredicate());
2061      } else {
2062        NewCond = Builder.CreateNot(NewCond,
2063                                    PBI->getCondition()->getName()+".not");
2064      }
2065
2066      PBI->setCondition(NewCond);
2067      PBI->swapSuccessors();
2068    }
2069
2070    // If we have a bonus inst, clone it into the predecessor block.
2071    Instruction *NewBonus = 0;
2072    if (BonusInst) {
2073      NewBonus = BonusInst->clone();
2074      PredBlock->getInstList().insert(PBI, NewBonus);
2075      NewBonus->takeName(BonusInst);
2076      BonusInst->setName(BonusInst->getName()+".old");
2077    }
2078
2079    // Clone Cond into the predecessor basic block, and or/and the
2080    // two conditions together.
2081    Instruction *New = Cond->clone();
2082    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
2083    PredBlock->getInstList().insert(PBI, New);
2084    New->takeName(Cond);
2085    Cond->setName(New->getName()+".old");
2086
2087    if (BI->isConditional()) {
2088      Instruction *NewCond =
2089        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2090                                            New, "or.cond"));
2091      PBI->setCondition(NewCond);
2092
2093      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2094      bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2095                                                  PredFalseWeight);
2096      bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2097                                                  SuccFalseWeight);
2098      SmallVector<uint64_t, 8> NewWeights;
2099
2100      if (PBI->getSuccessor(0) == BB) {
2101        if (PredHasWeights && SuccHasWeights) {
2102          // PBI: br i1 %x, BB, FalseDest
2103          // BI:  br i1 %y, TrueDest, FalseDest
2104          //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2105          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2106          //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2107          //               TrueWeight for PBI * FalseWeight for BI.
2108          // We assume that total weights of a BranchInst can fit into 32 bits.
2109          // Therefore, we will not have overflow using 64-bit arithmetic.
2110          NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2111               SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2112        }
2113        AddPredecessorToBlock(TrueDest, PredBlock, BB);
2114        PBI->setSuccessor(0, TrueDest);
2115      }
2116      if (PBI->getSuccessor(1) == BB) {
2117        if (PredHasWeights && SuccHasWeights) {
2118          // PBI: br i1 %x, TrueDest, BB
2119          // BI:  br i1 %y, TrueDest, FalseDest
2120          //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2121          //              FalseWeight for PBI * TrueWeight for BI.
2122          NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2123              SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2124          //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2125          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2126        }
2127        AddPredecessorToBlock(FalseDest, PredBlock, BB);
2128        PBI->setSuccessor(1, FalseDest);
2129      }
2130      if (NewWeights.size() == 2) {
2131        // Halve the weights if any of them cannot fit in an uint32_t
2132        FitWeights(NewWeights);
2133
2134        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2135        PBI->setMetadata(LLVMContext::MD_prof,
2136                         MDBuilder(BI->getContext()).
2137                         createBranchWeights(MDWeights));
2138      } else
2139        PBI->setMetadata(LLVMContext::MD_prof, NULL);
2140    } else {
2141      // Update PHI nodes in the common successors.
2142      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2143        ConstantInt *PBI_C = cast<ConstantInt>(
2144          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2145        assert(PBI_C->getType()->isIntegerTy(1));
2146        Instruction *MergedCond = 0;
2147        if (PBI->getSuccessor(0) == TrueDest) {
2148          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2149          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2150          //       is false: !PBI_Cond and BI_Value
2151          Instruction *NotCond =
2152            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2153                                "not.cond"));
2154          MergedCond =
2155            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2156                                NotCond, New,
2157                                "and.cond"));
2158          if (PBI_C->isOne())
2159            MergedCond =
2160              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2161                                  PBI->getCondition(), MergedCond,
2162                                  "or.cond"));
2163        } else {
2164          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2165          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2166          //       is false: PBI_Cond and BI_Value
2167          MergedCond =
2168            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2169                                PBI->getCondition(), New,
2170                                "and.cond"));
2171          if (PBI_C->isOne()) {
2172            Instruction *NotCond =
2173              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2174                                  "not.cond"));
2175            MergedCond =
2176              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2177                                  NotCond, MergedCond,
2178                                  "or.cond"));
2179          }
2180        }
2181        // Update PHI Node.
2182        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2183                                  MergedCond);
2184      }
2185      // Change PBI from Conditional to Unconditional.
2186      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2187      EraseTerminatorInstAndDCECond(PBI);
2188      PBI = New_PBI;
2189    }
2190
2191    // TODO: If BB is reachable from all paths through PredBlock, then we
2192    // could replace PBI's branch probabilities with BI's.
2193
2194    // Copy any debug value intrinsics into the end of PredBlock.
2195    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2196      if (isa<DbgInfoIntrinsic>(*I))
2197        I->clone()->insertBefore(PBI);
2198
2199    return true;
2200  }
2201  return false;
2202}
2203
2204/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2205/// predecessor of another block, this function tries to simplify it.  We know
2206/// that PBI and BI are both conditional branches, and BI is in one of the
2207/// successor blocks of PBI - PBI branches to BI.
2208static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2209  assert(PBI->isConditional() && BI->isConditional());
2210  BasicBlock *BB = BI->getParent();
2211
2212  // If this block ends with a branch instruction, and if there is a
2213  // predecessor that ends on a branch of the same condition, make
2214  // this conditional branch redundant.
2215  if (PBI->getCondition() == BI->getCondition() &&
2216      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2217    // Okay, the outcome of this conditional branch is statically
2218    // knowable.  If this block had a single pred, handle specially.
2219    if (BB->getSinglePredecessor()) {
2220      // Turn this into a branch on constant.
2221      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2222      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2223                                        CondIsTrue));
2224      return true;  // Nuke the branch on constant.
2225    }
2226
2227    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2228    // in the constant and simplify the block result.  Subsequent passes of
2229    // simplifycfg will thread the block.
2230    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2231      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2232      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2233                                       std::distance(PB, PE),
2234                                       BI->getCondition()->getName() + ".pr",
2235                                       BB->begin());
2236      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2237      // predecessor, compute the PHI'd conditional value for all of the preds.
2238      // Any predecessor where the condition is not computable we keep symbolic.
2239      for (pred_iterator PI = PB; PI != PE; ++PI) {
2240        BasicBlock *P = *PI;
2241        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2242            PBI != BI && PBI->isConditional() &&
2243            PBI->getCondition() == BI->getCondition() &&
2244            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2245          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2246          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2247                                              CondIsTrue), P);
2248        } else {
2249          NewPN->addIncoming(BI->getCondition(), P);
2250        }
2251      }
2252
2253      BI->setCondition(NewPN);
2254      return true;
2255    }
2256  }
2257
2258  // If this is a conditional branch in an empty block, and if any
2259  // predecessors is a conditional branch to one of our destinations,
2260  // fold the conditions into logical ops and one cond br.
2261  BasicBlock::iterator BBI = BB->begin();
2262  // Ignore dbg intrinsics.
2263  while (isa<DbgInfoIntrinsic>(BBI))
2264    ++BBI;
2265  if (&*BBI != BI)
2266    return false;
2267
2268
2269  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2270    if (CE->canTrap())
2271      return false;
2272
2273  int PBIOp, BIOp;
2274  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2275    PBIOp = BIOp = 0;
2276  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2277    PBIOp = 0, BIOp = 1;
2278  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2279    PBIOp = 1, BIOp = 0;
2280  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2281    PBIOp = BIOp = 1;
2282  else
2283    return false;
2284
2285  // Check to make sure that the other destination of this branch
2286  // isn't BB itself.  If so, this is an infinite loop that will
2287  // keep getting unwound.
2288  if (PBI->getSuccessor(PBIOp) == BB)
2289    return false;
2290
2291  // Do not perform this transformation if it would require
2292  // insertion of a large number of select instructions. For targets
2293  // without predication/cmovs, this is a big pessimization.
2294  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2295
2296  unsigned NumPhis = 0;
2297  for (BasicBlock::iterator II = CommonDest->begin();
2298       isa<PHINode>(II); ++II, ++NumPhis)
2299    if (NumPhis > 2) // Disable this xform.
2300      return false;
2301
2302  // Finally, if everything is ok, fold the branches to logical ops.
2303  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2304
2305  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2306               << "AND: " << *BI->getParent());
2307
2308
2309  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2310  // branch in it, where one edge (OtherDest) goes back to itself but the other
2311  // exits.  We don't *know* that the program avoids the infinite loop
2312  // (even though that seems likely).  If we do this xform naively, we'll end up
2313  // recursively unpeeling the loop.  Since we know that (after the xform is
2314  // done) that the block *is* infinite if reached, we just make it an obviously
2315  // infinite loop with no cond branch.
2316  if (OtherDest == BB) {
2317    // Insert it at the end of the function, because it's either code,
2318    // or it won't matter if it's hot. :)
2319    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2320                                                  "infloop", BB->getParent());
2321    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2322    OtherDest = InfLoopBlock;
2323  }
2324
2325  DEBUG(dbgs() << *PBI->getParent()->getParent());
2326
2327  // BI may have other predecessors.  Because of this, we leave
2328  // it alone, but modify PBI.
2329
2330  // Make sure we get to CommonDest on True&True directions.
2331  Value *PBICond = PBI->getCondition();
2332  IRBuilder<true, NoFolder> Builder(PBI);
2333  if (PBIOp)
2334    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2335
2336  Value *BICond = BI->getCondition();
2337  if (BIOp)
2338    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2339
2340  // Merge the conditions.
2341  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2342
2343  // Modify PBI to branch on the new condition to the new dests.
2344  PBI->setCondition(Cond);
2345  PBI->setSuccessor(0, CommonDest);
2346  PBI->setSuccessor(1, OtherDest);
2347
2348  // Update branch weight for PBI.
2349  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2350  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2351                                              PredFalseWeight);
2352  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2353                                              SuccFalseWeight);
2354  if (PredHasWeights && SuccHasWeights) {
2355    uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2356    uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2357    uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2358    uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2359    // The weight to CommonDest should be PredCommon * SuccTotal +
2360    //                                    PredOther * SuccCommon.
2361    // The weight to OtherDest should be PredOther * SuccOther.
2362    SmallVector<uint64_t, 2> NewWeights;
2363    NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2364                         PredOther * SuccCommon);
2365    NewWeights.push_back(PredOther * SuccOther);
2366    // Halve the weights if any of them cannot fit in an uint32_t
2367    FitWeights(NewWeights);
2368
2369    SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2370    PBI->setMetadata(LLVMContext::MD_prof,
2371                     MDBuilder(BI->getContext()).
2372                     createBranchWeights(MDWeights));
2373  }
2374
2375  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2376  // block that are identical to the entries for BI's block.
2377  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2378
2379  // We know that the CommonDest already had an edge from PBI to
2380  // it.  If it has PHIs though, the PHIs may have different
2381  // entries for BB and PBI's BB.  If so, insert a select to make
2382  // them agree.
2383  PHINode *PN;
2384  for (BasicBlock::iterator II = CommonDest->begin();
2385       (PN = dyn_cast<PHINode>(II)); ++II) {
2386    Value *BIV = PN->getIncomingValueForBlock(BB);
2387    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2388    Value *PBIV = PN->getIncomingValue(PBBIdx);
2389    if (BIV != PBIV) {
2390      // Insert a select in PBI to pick the right value.
2391      Value *NV = cast<SelectInst>
2392        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2393      PN->setIncomingValue(PBBIdx, NV);
2394    }
2395  }
2396
2397  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2398  DEBUG(dbgs() << *PBI->getParent()->getParent());
2399
2400  // This basic block is probably dead.  We know it has at least
2401  // one fewer predecessor.
2402  return true;
2403}
2404
2405// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2406// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2407// Takes care of updating the successors and removing the old terminator.
2408// Also makes sure not to introduce new successors by assuming that edges to
2409// non-successor TrueBBs and FalseBBs aren't reachable.
2410static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2411                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
2412                                       uint32_t TrueWeight,
2413                                       uint32_t FalseWeight){
2414  // Remove any superfluous successor edges from the CFG.
2415  // First, figure out which successors to preserve.
2416  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2417  // successor.
2418  BasicBlock *KeepEdge1 = TrueBB;
2419  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2420
2421  // Then remove the rest.
2422  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2423    BasicBlock *Succ = OldTerm->getSuccessor(I);
2424    // Make sure only to keep exactly one copy of each edge.
2425    if (Succ == KeepEdge1)
2426      KeepEdge1 = 0;
2427    else if (Succ == KeepEdge2)
2428      KeepEdge2 = 0;
2429    else
2430      Succ->removePredecessor(OldTerm->getParent());
2431  }
2432
2433  IRBuilder<> Builder(OldTerm);
2434  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2435
2436  // Insert an appropriate new terminator.
2437  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2438    if (TrueBB == FalseBB)
2439      // We were only looking for one successor, and it was present.
2440      // Create an unconditional branch to it.
2441      Builder.CreateBr(TrueBB);
2442    else {
2443      // We found both of the successors we were looking for.
2444      // Create a conditional branch sharing the condition of the select.
2445      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2446      if (TrueWeight != FalseWeight)
2447        NewBI->setMetadata(LLVMContext::MD_prof,
2448                           MDBuilder(OldTerm->getContext()).
2449                           createBranchWeights(TrueWeight, FalseWeight));
2450    }
2451  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2452    // Neither of the selected blocks were successors, so this
2453    // terminator must be unreachable.
2454    new UnreachableInst(OldTerm->getContext(), OldTerm);
2455  } else {
2456    // One of the selected values was a successor, but the other wasn't.
2457    // Insert an unconditional branch to the one that was found;
2458    // the edge to the one that wasn't must be unreachable.
2459    if (KeepEdge1 == 0)
2460      // Only TrueBB was found.
2461      Builder.CreateBr(TrueBB);
2462    else
2463      // Only FalseBB was found.
2464      Builder.CreateBr(FalseBB);
2465  }
2466
2467  EraseTerminatorInstAndDCECond(OldTerm);
2468  return true;
2469}
2470
2471// SimplifySwitchOnSelect - Replaces
2472//   (switch (select cond, X, Y)) on constant X, Y
2473// with a branch - conditional if X and Y lead to distinct BBs,
2474// unconditional otherwise.
2475static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2476  // Check for constant integer values in the select.
2477  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2478  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2479  if (!TrueVal || !FalseVal)
2480    return false;
2481
2482  // Find the relevant condition and destinations.
2483  Value *Condition = Select->getCondition();
2484  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2485  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2486
2487  // Get weight for TrueBB and FalseBB.
2488  uint32_t TrueWeight = 0, FalseWeight = 0;
2489  SmallVector<uint64_t, 8> Weights;
2490  bool HasWeights = HasBranchWeights(SI);
2491  if (HasWeights) {
2492    GetBranchWeights(SI, Weights);
2493    if (Weights.size() == 1 + SI->getNumCases()) {
2494      TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2495                                     getSuccessorIndex()];
2496      FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2497                                      getSuccessorIndex()];
2498    }
2499  }
2500
2501  // Perform the actual simplification.
2502  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2503                                    TrueWeight, FalseWeight);
2504}
2505
2506// SimplifyIndirectBrOnSelect - Replaces
2507//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2508//                             blockaddress(@fn, BlockB)))
2509// with
2510//   (br cond, BlockA, BlockB).
2511static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2512  // Check that both operands of the select are block addresses.
2513  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2514  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2515  if (!TBA || !FBA)
2516    return false;
2517
2518  // Extract the actual blocks.
2519  BasicBlock *TrueBB = TBA->getBasicBlock();
2520  BasicBlock *FalseBB = FBA->getBasicBlock();
2521
2522  // Perform the actual simplification.
2523  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2524                                    0, 0);
2525}
2526
2527/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2528/// instruction (a seteq/setne with a constant) as the only instruction in a
2529/// block that ends with an uncond branch.  We are looking for a very specific
2530/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2531/// this case, we merge the first two "or's of icmp" into a switch, but then the
2532/// default value goes to an uncond block with a seteq in it, we get something
2533/// like:
2534///
2535///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2536/// DEFAULT:
2537///   %tmp = icmp eq i8 %A, 92
2538///   br label %end
2539/// end:
2540///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2541///
2542/// We prefer to split the edge to 'end' so that there is a true/false entry to
2543/// the PHI, merging the third icmp into the switch.
2544static bool TryToSimplifyUncondBranchWithICmpInIt(
2545    ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
2546    const DataLayout *TD) {
2547  BasicBlock *BB = ICI->getParent();
2548
2549  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2550  // complex.
2551  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2552
2553  Value *V = ICI->getOperand(0);
2554  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2555
2556  // The pattern we're looking for is where our only predecessor is a switch on
2557  // 'V' and this block is the default case for the switch.  In this case we can
2558  // fold the compared value into the switch to simplify things.
2559  BasicBlock *Pred = BB->getSinglePredecessor();
2560  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2561
2562  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2563  if (SI->getCondition() != V)
2564    return false;
2565
2566  // If BB is reachable on a non-default case, then we simply know the value of
2567  // V in this block.  Substitute it and constant fold the icmp instruction
2568  // away.
2569  if (SI->getDefaultDest() != BB) {
2570    ConstantInt *VVal = SI->findCaseDest(BB);
2571    assert(VVal && "Should have a unique destination value");
2572    ICI->setOperand(0, VVal);
2573
2574    if (Value *V = SimplifyInstruction(ICI, TD)) {
2575      ICI->replaceAllUsesWith(V);
2576      ICI->eraseFromParent();
2577    }
2578    // BB is now empty, so it is likely to simplify away.
2579    return SimplifyCFG(BB, TTI, TD) | true;
2580  }
2581
2582  // Ok, the block is reachable from the default dest.  If the constant we're
2583  // comparing exists in one of the other edges, then we can constant fold ICI
2584  // and zap it.
2585  if (SI->findCaseValue(Cst) != SI->case_default()) {
2586    Value *V;
2587    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2588      V = ConstantInt::getFalse(BB->getContext());
2589    else
2590      V = ConstantInt::getTrue(BB->getContext());
2591
2592    ICI->replaceAllUsesWith(V);
2593    ICI->eraseFromParent();
2594    // BB is now empty, so it is likely to simplify away.
2595    return SimplifyCFG(BB, TTI, TD) | true;
2596  }
2597
2598  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2599  // the block.
2600  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2601  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2602  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2603      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2604    return false;
2605
2606  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2607  // true in the PHI.
2608  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2609  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2610
2611  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2612    std::swap(DefaultCst, NewCst);
2613
2614  // Replace ICI (which is used by the PHI for the default value) with true or
2615  // false depending on if it is EQ or NE.
2616  ICI->replaceAllUsesWith(DefaultCst);
2617  ICI->eraseFromParent();
2618
2619  // Okay, the switch goes to this block on a default value.  Add an edge from
2620  // the switch to the merge point on the compared value.
2621  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2622                                         BB->getParent(), BB);
2623  SmallVector<uint64_t, 8> Weights;
2624  bool HasWeights = HasBranchWeights(SI);
2625  if (HasWeights) {
2626    GetBranchWeights(SI, Weights);
2627    if (Weights.size() == 1 + SI->getNumCases()) {
2628      // Split weight for default case to case for "Cst".
2629      Weights[0] = (Weights[0]+1) >> 1;
2630      Weights.push_back(Weights[0]);
2631
2632      SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2633      SI->setMetadata(LLVMContext::MD_prof,
2634                      MDBuilder(SI->getContext()).
2635                      createBranchWeights(MDWeights));
2636    }
2637  }
2638  SI->addCase(Cst, NewBB);
2639
2640  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2641  Builder.SetInsertPoint(NewBB);
2642  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2643  Builder.CreateBr(SuccBlock);
2644  PHIUse->addIncoming(NewCst, NewBB);
2645  return true;
2646}
2647
2648/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2649/// Check to see if it is branching on an or/and chain of icmp instructions, and
2650/// fold it into a switch instruction if so.
2651static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
2652                                      IRBuilder<> &Builder) {
2653  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2654  if (Cond == 0) return false;
2655
2656
2657  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2658  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2659  // 'setne's and'ed together, collect them.
2660  Value *CompVal = 0;
2661  std::vector<ConstantInt*> Values;
2662  bool TrueWhenEqual = true;
2663  Value *ExtraCase = 0;
2664  unsigned UsedICmps = 0;
2665
2666  if (Cond->getOpcode() == Instruction::Or) {
2667    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2668                                     UsedICmps);
2669  } else if (Cond->getOpcode() == Instruction::And) {
2670    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2671                                     UsedICmps);
2672    TrueWhenEqual = false;
2673  }
2674
2675  // If we didn't have a multiply compared value, fail.
2676  if (CompVal == 0) return false;
2677
2678  // Avoid turning single icmps into a switch.
2679  if (UsedICmps <= 1)
2680    return false;
2681
2682  // There might be duplicate constants in the list, which the switch
2683  // instruction can't handle, remove them now.
2684  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2685  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2686
2687  // If Extra was used, we require at least two switch values to do the
2688  // transformation.  A switch with one value is just an cond branch.
2689  if (ExtraCase && Values.size() < 2) return false;
2690
2691  // TODO: Preserve branch weight metadata, similarly to how
2692  // FoldValueComparisonIntoPredecessors preserves it.
2693
2694  // Figure out which block is which destination.
2695  BasicBlock *DefaultBB = BI->getSuccessor(1);
2696  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2697  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2698
2699  BasicBlock *BB = BI->getParent();
2700
2701  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2702               << " cases into SWITCH.  BB is:\n" << *BB);
2703
2704  // If there are any extra values that couldn't be folded into the switch
2705  // then we evaluate them with an explicit branch first.  Split the block
2706  // right before the condbr to handle it.
2707  if (ExtraCase) {
2708    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2709    // Remove the uncond branch added to the old block.
2710    TerminatorInst *OldTI = BB->getTerminator();
2711    Builder.SetInsertPoint(OldTI);
2712
2713    if (TrueWhenEqual)
2714      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2715    else
2716      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2717
2718    OldTI->eraseFromParent();
2719
2720    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2721    // for the edge we just added.
2722    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2723
2724    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2725          << "\nEXTRABB = " << *BB);
2726    BB = NewBB;
2727  }
2728
2729  Builder.SetInsertPoint(BI);
2730  // Convert pointer to int before we switch.
2731  if (CompVal->getType()->isPointerTy()) {
2732    assert(TD && "Cannot switch on pointer without DataLayout");
2733    CompVal = Builder.CreatePtrToInt(CompVal,
2734                                     TD->getIntPtrType(CompVal->getContext()),
2735                                     "magicptr");
2736  }
2737
2738  // Create the new switch instruction now.
2739  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2740
2741  // Add all of the 'cases' to the switch instruction.
2742  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2743    New->addCase(Values[i], EdgeBB);
2744
2745  // We added edges from PI to the EdgeBB.  As such, if there were any
2746  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2747  // the number of edges added.
2748  for (BasicBlock::iterator BBI = EdgeBB->begin();
2749       isa<PHINode>(BBI); ++BBI) {
2750    PHINode *PN = cast<PHINode>(BBI);
2751    Value *InVal = PN->getIncomingValueForBlock(BB);
2752    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2753      PN->addIncoming(InVal, BB);
2754  }
2755
2756  // Erase the old branch instruction.
2757  EraseTerminatorInstAndDCECond(BI);
2758
2759  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2760  return true;
2761}
2762
2763bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2764  // If this is a trivial landing pad that just continues unwinding the caught
2765  // exception then zap the landing pad, turning its invokes into calls.
2766  BasicBlock *BB = RI->getParent();
2767  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2768  if (RI->getValue() != LPInst)
2769    // Not a landing pad, or the resume is not unwinding the exception that
2770    // caused control to branch here.
2771    return false;
2772
2773  // Check that there are no other instructions except for debug intrinsics.
2774  BasicBlock::iterator I = LPInst, E = RI;
2775  while (++I != E)
2776    if (!isa<DbgInfoIntrinsic>(I))
2777      return false;
2778
2779  // Turn all invokes that unwind here into calls and delete the basic block.
2780  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2781    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2782    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2783    // Insert a call instruction before the invoke.
2784    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2785    Call->takeName(II);
2786    Call->setCallingConv(II->getCallingConv());
2787    Call->setAttributes(II->getAttributes());
2788    Call->setDebugLoc(II->getDebugLoc());
2789
2790    // Anything that used the value produced by the invoke instruction now uses
2791    // the value produced by the call instruction.  Note that we do this even
2792    // for void functions and calls with no uses so that the callgraph edge is
2793    // updated.
2794    II->replaceAllUsesWith(Call);
2795    BB->removePredecessor(II->getParent());
2796
2797    // Insert a branch to the normal destination right before the invoke.
2798    BranchInst::Create(II->getNormalDest(), II);
2799
2800    // Finally, delete the invoke instruction!
2801    II->eraseFromParent();
2802  }
2803
2804  // The landingpad is now unreachable.  Zap it.
2805  BB->eraseFromParent();
2806  return true;
2807}
2808
2809bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2810  BasicBlock *BB = RI->getParent();
2811  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2812
2813  // Find predecessors that end with branches.
2814  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2815  SmallVector<BranchInst*, 8> CondBranchPreds;
2816  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2817    BasicBlock *P = *PI;
2818    TerminatorInst *PTI = P->getTerminator();
2819    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2820      if (BI->isUnconditional())
2821        UncondBranchPreds.push_back(P);
2822      else
2823        CondBranchPreds.push_back(BI);
2824    }
2825  }
2826
2827  // If we found some, do the transformation!
2828  if (!UncondBranchPreds.empty() && DupRet) {
2829    while (!UncondBranchPreds.empty()) {
2830      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2831      DEBUG(dbgs() << "FOLDING: " << *BB
2832            << "INTO UNCOND BRANCH PRED: " << *Pred);
2833      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2834    }
2835
2836    // If we eliminated all predecessors of the block, delete the block now.
2837    if (pred_begin(BB) == pred_end(BB))
2838      // We know there are no successors, so just nuke the block.
2839      BB->eraseFromParent();
2840
2841    return true;
2842  }
2843
2844  // Check out all of the conditional branches going to this return
2845  // instruction.  If any of them just select between returns, change the
2846  // branch itself into a select/return pair.
2847  while (!CondBranchPreds.empty()) {
2848    BranchInst *BI = CondBranchPreds.pop_back_val();
2849
2850    // Check to see if the non-BB successor is also a return block.
2851    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2852        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2853        SimplifyCondBranchToTwoReturns(BI, Builder))
2854      return true;
2855  }
2856  return false;
2857}
2858
2859bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2860  BasicBlock *BB = UI->getParent();
2861
2862  bool Changed = false;
2863
2864  // If there are any instructions immediately before the unreachable that can
2865  // be removed, do so.
2866  while (UI != BB->begin()) {
2867    BasicBlock::iterator BBI = UI;
2868    --BBI;
2869    // Do not delete instructions that can have side effects which might cause
2870    // the unreachable to not be reachable; specifically, calls and volatile
2871    // operations may have this effect.
2872    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2873
2874    if (BBI->mayHaveSideEffects()) {
2875      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2876        if (SI->isVolatile())
2877          break;
2878      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2879        if (LI->isVolatile())
2880          break;
2881      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2882        if (RMWI->isVolatile())
2883          break;
2884      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2885        if (CXI->isVolatile())
2886          break;
2887      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2888                 !isa<LandingPadInst>(BBI)) {
2889        break;
2890      }
2891      // Note that deleting LandingPad's here is in fact okay, although it
2892      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2893      // all the predecessors of this block will be the unwind edges of Invokes,
2894      // and we can therefore guarantee this block will be erased.
2895    }
2896
2897    // Delete this instruction (any uses are guaranteed to be dead)
2898    if (!BBI->use_empty())
2899      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2900    BBI->eraseFromParent();
2901    Changed = true;
2902  }
2903
2904  // If the unreachable instruction is the first in the block, take a gander
2905  // at all of the predecessors of this instruction, and simplify them.
2906  if (&BB->front() != UI) return Changed;
2907
2908  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2909  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2910    TerminatorInst *TI = Preds[i]->getTerminator();
2911    IRBuilder<> Builder(TI);
2912    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2913      if (BI->isUnconditional()) {
2914        if (BI->getSuccessor(0) == BB) {
2915          new UnreachableInst(TI->getContext(), TI);
2916          TI->eraseFromParent();
2917          Changed = true;
2918        }
2919      } else {
2920        if (BI->getSuccessor(0) == BB) {
2921          Builder.CreateBr(BI->getSuccessor(1));
2922          EraseTerminatorInstAndDCECond(BI);
2923        } else if (BI->getSuccessor(1) == BB) {
2924          Builder.CreateBr(BI->getSuccessor(0));
2925          EraseTerminatorInstAndDCECond(BI);
2926          Changed = true;
2927        }
2928      }
2929    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2930      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2931           i != e; ++i)
2932        if (i.getCaseSuccessor() == BB) {
2933          BB->removePredecessor(SI->getParent());
2934          SI->removeCase(i);
2935          --i; --e;
2936          Changed = true;
2937        }
2938      // If the default value is unreachable, figure out the most popular
2939      // destination and make it the default.
2940      if (SI->getDefaultDest() == BB) {
2941        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2942        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2943             i != e; ++i) {
2944          std::pair<unsigned, unsigned> &entry =
2945              Popularity[i.getCaseSuccessor()];
2946          if (entry.first == 0) {
2947            entry.first = 1;
2948            entry.second = i.getCaseIndex();
2949          } else {
2950            entry.first++;
2951          }
2952        }
2953
2954        // Find the most popular block.
2955        unsigned MaxPop = 0;
2956        unsigned MaxIndex = 0;
2957        BasicBlock *MaxBlock = 0;
2958        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2959             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2960          if (I->second.first > MaxPop ||
2961              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2962            MaxPop = I->second.first;
2963            MaxIndex = I->second.second;
2964            MaxBlock = I->first;
2965          }
2966        }
2967        if (MaxBlock) {
2968          // Make this the new default, allowing us to delete any explicit
2969          // edges to it.
2970          SI->setDefaultDest(MaxBlock);
2971          Changed = true;
2972
2973          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2974          // it.
2975          if (isa<PHINode>(MaxBlock->begin()))
2976            for (unsigned i = 0; i != MaxPop-1; ++i)
2977              MaxBlock->removePredecessor(SI->getParent());
2978
2979          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2980               i != e; ++i)
2981            if (i.getCaseSuccessor() == MaxBlock) {
2982              SI->removeCase(i);
2983              --i; --e;
2984            }
2985        }
2986      }
2987    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2988      if (II->getUnwindDest() == BB) {
2989        // Convert the invoke to a call instruction.  This would be a good
2990        // place to note that the call does not throw though.
2991        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2992        II->removeFromParent();   // Take out of symbol table
2993
2994        // Insert the call now...
2995        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2996        Builder.SetInsertPoint(BI);
2997        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2998                                          Args, II->getName());
2999        CI->setCallingConv(II->getCallingConv());
3000        CI->setAttributes(II->getAttributes());
3001        // If the invoke produced a value, the call does now instead.
3002        II->replaceAllUsesWith(CI);
3003        delete II;
3004        Changed = true;
3005      }
3006    }
3007  }
3008
3009  // If this block is now dead, remove it.
3010  if (pred_begin(BB) == pred_end(BB) &&
3011      BB != &BB->getParent()->getEntryBlock()) {
3012    // We know there are no successors, so just nuke the block.
3013    BB->eraseFromParent();
3014    return true;
3015  }
3016
3017  return Changed;
3018}
3019
3020/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3021/// integer range comparison into a sub, an icmp and a branch.
3022static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3023  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3024
3025  // Make sure all cases point to the same destination and gather the values.
3026  SmallVector<ConstantInt *, 16> Cases;
3027  SwitchInst::CaseIt I = SI->case_begin();
3028  Cases.push_back(I.getCaseValue());
3029  SwitchInst::CaseIt PrevI = I++;
3030  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3031    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3032      return false;
3033    Cases.push_back(I.getCaseValue());
3034  }
3035  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3036
3037  // Sort the case values, then check if they form a range we can transform.
3038  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3039  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3040    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3041      return false;
3042  }
3043
3044  Constant *Offset = ConstantExpr::getNeg(Cases.back());
3045  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3046
3047  Value *Sub = SI->getCondition();
3048  if (!Offset->isNullValue())
3049    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3050  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3051  BranchInst *NewBI = Builder.CreateCondBr(
3052      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3053
3054  // Update weight for the newly-created conditional branch.
3055  SmallVector<uint64_t, 8> Weights;
3056  bool HasWeights = HasBranchWeights(SI);
3057  if (HasWeights) {
3058    GetBranchWeights(SI, Weights);
3059    if (Weights.size() == 1 + SI->getNumCases()) {
3060      // Combine all weights for the cases to be the true weight of NewBI.
3061      // We assume that the sum of all weights for a Terminator can fit into 32
3062      // bits.
3063      uint32_t NewTrueWeight = 0;
3064      for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3065        NewTrueWeight += (uint32_t)Weights[I];
3066      NewBI->setMetadata(LLVMContext::MD_prof,
3067                         MDBuilder(SI->getContext()).
3068                         createBranchWeights(NewTrueWeight,
3069                                             (uint32_t)Weights[0]));
3070    }
3071  }
3072
3073  // Prune obsolete incoming values off the successor's PHI nodes.
3074  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3075       isa<PHINode>(BBI); ++BBI) {
3076    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3077      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3078  }
3079  SI->eraseFromParent();
3080
3081  return true;
3082}
3083
3084/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3085/// and use it to remove dead cases.
3086static bool EliminateDeadSwitchCases(SwitchInst *SI) {
3087  Value *Cond = SI->getCondition();
3088  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
3089  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3090  ComputeMaskedBits(Cond, KnownZero, KnownOne);
3091
3092  // Gather dead cases.
3093  SmallVector<ConstantInt*, 8> DeadCases;
3094  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3095    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3096        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3097      DeadCases.push_back(I.getCaseValue());
3098      DEBUG(dbgs() << "SimplifyCFG: switch case '"
3099                   << I.getCaseValue() << "' is dead.\n");
3100    }
3101  }
3102
3103  SmallVector<uint64_t, 8> Weights;
3104  bool HasWeight = HasBranchWeights(SI);
3105  if (HasWeight) {
3106    GetBranchWeights(SI, Weights);
3107    HasWeight = (Weights.size() == 1 + SI->getNumCases());
3108  }
3109
3110  // Remove dead cases from the switch.
3111  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3112    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3113    assert(Case != SI->case_default() &&
3114           "Case was not found. Probably mistake in DeadCases forming.");
3115    if (HasWeight) {
3116      std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3117      Weights.pop_back();
3118    }
3119
3120    // Prune unused values from PHI nodes.
3121    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3122    SI->removeCase(Case);
3123  }
3124  if (HasWeight) {
3125    SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3126    SI->setMetadata(LLVMContext::MD_prof,
3127                    MDBuilder(SI->getParent()->getContext()).
3128                    createBranchWeights(MDWeights));
3129  }
3130
3131  return !DeadCases.empty();
3132}
3133
3134/// FindPHIForConditionForwarding - If BB would be eligible for simplification
3135/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3136/// by an unconditional branch), look at the phi node for BB in the successor
3137/// block and see if the incoming value is equal to CaseValue. If so, return
3138/// the phi node, and set PhiIndex to BB's index in the phi node.
3139static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3140                                              BasicBlock *BB,
3141                                              int *PhiIndex) {
3142  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3143    return NULL; // BB must be empty to be a candidate for simplification.
3144  if (!BB->getSinglePredecessor())
3145    return NULL; // BB must be dominated by the switch.
3146
3147  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3148  if (!Branch || !Branch->isUnconditional())
3149    return NULL; // Terminator must be unconditional branch.
3150
3151  BasicBlock *Succ = Branch->getSuccessor(0);
3152
3153  BasicBlock::iterator I = Succ->begin();
3154  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3155    int Idx = PHI->getBasicBlockIndex(BB);
3156    assert(Idx >= 0 && "PHI has no entry for predecessor?");
3157
3158    Value *InValue = PHI->getIncomingValue(Idx);
3159    if (InValue != CaseValue) continue;
3160
3161    *PhiIndex = Idx;
3162    return PHI;
3163  }
3164
3165  return NULL;
3166}
3167
3168/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3169/// instruction to a phi node dominated by the switch, if that would mean that
3170/// some of the destination blocks of the switch can be folded away.
3171/// Returns true if a change is made.
3172static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3173  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3174  ForwardingNodesMap ForwardingNodes;
3175
3176  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3177    ConstantInt *CaseValue = I.getCaseValue();
3178    BasicBlock *CaseDest = I.getCaseSuccessor();
3179
3180    int PhiIndex;
3181    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3182                                                 &PhiIndex);
3183    if (!PHI) continue;
3184
3185    ForwardingNodes[PHI].push_back(PhiIndex);
3186  }
3187
3188  bool Changed = false;
3189
3190  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3191       E = ForwardingNodes.end(); I != E; ++I) {
3192    PHINode *Phi = I->first;
3193    SmallVector<int,4> &Indexes = I->second;
3194
3195    if (Indexes.size() < 2) continue;
3196
3197    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3198      Phi->setIncomingValue(Indexes[I], SI->getCondition());
3199    Changed = true;
3200  }
3201
3202  return Changed;
3203}
3204
3205/// ValidLookupTableConstant - Return true if the backend will be able to handle
3206/// initializing an array of constants like C.
3207static bool ValidLookupTableConstant(Constant *C) {
3208  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3209    return CE->isGEPWithNoNotionalOverIndexing();
3210
3211  return isa<ConstantFP>(C) ||
3212      isa<ConstantInt>(C) ||
3213      isa<ConstantPointerNull>(C) ||
3214      isa<GlobalValue>(C) ||
3215      isa<UndefValue>(C);
3216}
3217
3218/// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3219/// its constant value in ConstantPool, returning 0 if it's not there.
3220static Constant *LookupConstant(Value *V,
3221                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3222  if (Constant *C = dyn_cast<Constant>(V))
3223    return C;
3224  return ConstantPool.lookup(V);
3225}
3226
3227/// ConstantFold - Try to fold instruction I into a constant. This works for
3228/// simple instructions such as binary operations where both operands are
3229/// constant or can be replaced by constants from the ConstantPool. Returns the
3230/// resulting constant on success, 0 otherwise.
3231static Constant *ConstantFold(Instruction *I,
3232                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3233  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
3234    Constant *A = LookupConstant(BO->getOperand(0), ConstantPool);
3235    if (!A)
3236      return 0;
3237    Constant *B = LookupConstant(BO->getOperand(1), ConstantPool);
3238    if (!B)
3239      return 0;
3240    return ConstantExpr::get(BO->getOpcode(), A, B);
3241  }
3242
3243  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
3244    Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
3245    if (!A)
3246      return 0;
3247    Constant *B = LookupConstant(I->getOperand(1), ConstantPool);
3248    if (!B)
3249      return 0;
3250    return ConstantExpr::getCompare(Cmp->getPredicate(), A, B);
3251  }
3252
3253  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3254    Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3255    if (!A)
3256      return 0;
3257    if (A->isAllOnesValue())
3258      return LookupConstant(Select->getTrueValue(), ConstantPool);
3259    if (A->isNullValue())
3260      return LookupConstant(Select->getFalseValue(), ConstantPool);
3261    return 0;
3262  }
3263
3264  if (CastInst *Cast = dyn_cast<CastInst>(I)) {
3265    Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
3266    if (!A)
3267      return 0;
3268    return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy());
3269  }
3270
3271  return 0;
3272}
3273
3274/// GetCaseResults - Try to determine the resulting constant values in phi nodes
3275/// at the common destination basic block, *CommonDest, for one of the case
3276/// destionations CaseDest corresponding to value CaseVal (0 for the default
3277/// case), of a switch instruction SI.
3278static bool GetCaseResults(SwitchInst *SI,
3279                           ConstantInt *CaseVal,
3280                           BasicBlock *CaseDest,
3281                           BasicBlock **CommonDest,
3282                           SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
3283  // The block from which we enter the common destination.
3284  BasicBlock *Pred = SI->getParent();
3285
3286  // If CaseDest is empty except for some side-effect free instructions through
3287  // which we can constant-propagate the CaseVal, continue to its successor.
3288  SmallDenseMap<Value*, Constant*> ConstantPool;
3289  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3290  for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3291       ++I) {
3292    if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3293      // If the terminator is a simple branch, continue to the next block.
3294      if (T->getNumSuccessors() != 1)
3295        return false;
3296      Pred = CaseDest;
3297      CaseDest = T->getSuccessor(0);
3298    } else if (isa<DbgInfoIntrinsic>(I)) {
3299      // Skip debug intrinsic.
3300      continue;
3301    } else if (Constant *C = ConstantFold(I, ConstantPool)) {
3302      // Instruction is side-effect free and constant.
3303      ConstantPool.insert(std::make_pair(I, C));
3304    } else {
3305      break;
3306    }
3307  }
3308
3309  // If we did not have a CommonDest before, use the current one.
3310  if (!*CommonDest)
3311    *CommonDest = CaseDest;
3312  // If the destination isn't the common one, abort.
3313  if (CaseDest != *CommonDest)
3314    return false;
3315
3316  // Get the values for this case from phi nodes in the destination block.
3317  BasicBlock::iterator I = (*CommonDest)->begin();
3318  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3319    int Idx = PHI->getBasicBlockIndex(Pred);
3320    if (Idx == -1)
3321      continue;
3322
3323    Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3324                                        ConstantPool);
3325    if (!ConstVal)
3326      return false;
3327
3328    // Note: If the constant comes from constant-propagating the case value
3329    // through the CaseDest basic block, it will be safe to remove the
3330    // instructions in that block. They cannot be used (except in the phi nodes
3331    // we visit) outside CaseDest, because that block does not dominate its
3332    // successor. If it did, we would not be in this phi node.
3333
3334    // Be conservative about which kinds of constants we support.
3335    if (!ValidLookupTableConstant(ConstVal))
3336      return false;
3337
3338    Res.push_back(std::make_pair(PHI, ConstVal));
3339  }
3340
3341  return true;
3342}
3343
3344namespace {
3345  /// SwitchLookupTable - This class represents a lookup table that can be used
3346  /// to replace a switch.
3347  class SwitchLookupTable {
3348  public:
3349    /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3350    /// with the contents of Values, using DefaultValue to fill any holes in the
3351    /// table.
3352    SwitchLookupTable(Module &M,
3353                      uint64_t TableSize,
3354                      ConstantInt *Offset,
3355               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3356                      Constant *DefaultValue,
3357                      const DataLayout *TD);
3358
3359    /// BuildLookup - Build instructions with Builder to retrieve the value at
3360    /// the position given by Index in the lookup table.
3361    Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3362
3363    /// WouldFitInRegister - Return true if a table with TableSize elements of
3364    /// type ElementType would fit in a target-legal register.
3365    static bool WouldFitInRegister(const DataLayout *TD,
3366                                   uint64_t TableSize,
3367                                   const Type *ElementType);
3368
3369  private:
3370    // Depending on the contents of the table, it can be represented in
3371    // different ways.
3372    enum {
3373      // For tables where each element contains the same value, we just have to
3374      // store that single value and return it for each lookup.
3375      SingleValueKind,
3376
3377      // For small tables with integer elements, we can pack them into a bitmap
3378      // that fits into a target-legal register. Values are retrieved by
3379      // shift and mask operations.
3380      BitMapKind,
3381
3382      // The table is stored as an array of values. Values are retrieved by load
3383      // instructions from the table.
3384      ArrayKind
3385    } Kind;
3386
3387    // For SingleValueKind, this is the single value.
3388    Constant *SingleValue;
3389
3390    // For BitMapKind, this is the bitmap.
3391    ConstantInt *BitMap;
3392    IntegerType *BitMapElementTy;
3393
3394    // For ArrayKind, this is the array.
3395    GlobalVariable *Array;
3396  };
3397}
3398
3399SwitchLookupTable::SwitchLookupTable(Module &M,
3400                                     uint64_t TableSize,
3401                                     ConstantInt *Offset,
3402               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3403                                     Constant *DefaultValue,
3404                                     const DataLayout *TD)
3405    : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) {
3406  assert(Values.size() && "Can't build lookup table without values!");
3407  assert(TableSize >= Values.size() && "Can't fit values in table!");
3408
3409  // If all values in the table are equal, this is that value.
3410  SingleValue = Values.begin()->second;
3411
3412  // Build up the table contents.
3413  SmallVector<Constant*, 64> TableContents(TableSize);
3414  for (size_t I = 0, E = Values.size(); I != E; ++I) {
3415    ConstantInt *CaseVal = Values[I].first;
3416    Constant *CaseRes = Values[I].second;
3417    assert(CaseRes->getType() == DefaultValue->getType());
3418
3419    uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3420                   .getLimitedValue();
3421    TableContents[Idx] = CaseRes;
3422
3423    if (CaseRes != SingleValue)
3424      SingleValue = 0;
3425  }
3426
3427  // Fill in any holes in the table with the default result.
3428  if (Values.size() < TableSize) {
3429    for (uint64_t I = 0; I < TableSize; ++I) {
3430      if (!TableContents[I])
3431        TableContents[I] = DefaultValue;
3432    }
3433
3434    if (DefaultValue != SingleValue)
3435      SingleValue = 0;
3436  }
3437
3438  // If each element in the table contains the same value, we only need to store
3439  // that single value.
3440  if (SingleValue) {
3441    Kind = SingleValueKind;
3442    return;
3443  }
3444
3445  // If the type is integer and the table fits in a register, build a bitmap.
3446  if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
3447    IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
3448    APInt TableInt(TableSize * IT->getBitWidth(), 0);
3449    for (uint64_t I = TableSize; I > 0; --I) {
3450      TableInt <<= IT->getBitWidth();
3451      // Insert values into the bitmap. Undef values are set to zero.
3452      if (!isa<UndefValue>(TableContents[I - 1])) {
3453        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3454        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3455      }
3456    }
3457    BitMap = ConstantInt::get(M.getContext(), TableInt);
3458    BitMapElementTy = IT;
3459    Kind = BitMapKind;
3460    ++NumBitMaps;
3461    return;
3462  }
3463
3464  // Store the table in an array.
3465  ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
3466  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3467
3468  Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3469                             GlobalVariable::PrivateLinkage,
3470                             Initializer,
3471                             "switch.table");
3472  Array->setUnnamedAddr(true);
3473  Kind = ArrayKind;
3474}
3475
3476Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3477  switch (Kind) {
3478    case SingleValueKind:
3479      return SingleValue;
3480    case BitMapKind: {
3481      // Type of the bitmap (e.g. i59).
3482      IntegerType *MapTy = BitMap->getType();
3483
3484      // Cast Index to the same type as the bitmap.
3485      // Note: The Index is <= the number of elements in the table, so
3486      // truncating it to the width of the bitmask is safe.
3487      Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3488
3489      // Multiply the shift amount by the element width.
3490      ShiftAmt = Builder.CreateMul(ShiftAmt,
3491                      ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3492                                   "switch.shiftamt");
3493
3494      // Shift down.
3495      Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3496                                              "switch.downshift");
3497      // Mask off.
3498      return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3499                                 "switch.masked");
3500    }
3501    case ArrayKind: {
3502      Value *GEPIndices[] = { Builder.getInt32(0), Index };
3503      Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3504                                             "switch.gep");
3505      return Builder.CreateLoad(GEP, "switch.load");
3506    }
3507  }
3508  llvm_unreachable("Unknown lookup table kind!");
3509}
3510
3511bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
3512                                           uint64_t TableSize,
3513                                           const Type *ElementType) {
3514  if (!TD)
3515    return false;
3516  const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3517  if (!IT)
3518    return false;
3519  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3520  // are <= 15, we could try to narrow the type.
3521
3522  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3523  if (TableSize >= UINT_MAX/IT->getBitWidth())
3524    return false;
3525  return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
3526}
3527
3528/// ShouldBuildLookupTable - Determine whether a lookup table should be built
3529/// for this switch, based on the number of caes, size of the table and the
3530/// types of the results.
3531static bool ShouldBuildLookupTable(SwitchInst *SI,
3532                                   uint64_t TableSize,
3533                                   const TargetTransformInfo &TTI,
3534                                   const DataLayout *TD,
3535                            const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3536  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3537    return false; // TableSize overflowed, or mul below might overflow.
3538
3539  bool AllTablesFitInRegister = true;
3540  bool HasIllegalType = false;
3541  for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
3542       E = ResultTypes.end(); I != E; ++I) {
3543    Type *Ty = I->second;
3544
3545    // Saturate this flag to true.
3546    HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3547
3548    // Saturate this flag to false.
3549    AllTablesFitInRegister = AllTablesFitInRegister &&
3550      SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
3551
3552    // If both flags saturate, we're done. NOTE: This *only* works with
3553    // saturating flags, and all flags have to saturate first due to the
3554    // non-deterministic behavior of iterating over a dense map.
3555    if (HasIllegalType && !AllTablesFitInRegister)
3556      break;
3557  }
3558
3559  // If each table would fit in a register, we should build it anyway.
3560  if (AllTablesFitInRegister)
3561    return true;
3562
3563  // Don't build a table that doesn't fit in-register if it has illegal types.
3564  if (HasIllegalType)
3565    return false;
3566
3567  // The table density should be at least 40%. This is the same criterion as for
3568  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3569  // FIXME: Find the best cut-off.
3570  return SI->getNumCases() * 10 >= TableSize * 4;
3571}
3572
3573/// SwitchToLookupTable - If the switch is only used to initialize one or more
3574/// phi nodes in a common successor block with different constant values,
3575/// replace the switch with lookup tables.
3576static bool SwitchToLookupTable(SwitchInst *SI,
3577                                IRBuilder<> &Builder,
3578                                const TargetTransformInfo &TTI,
3579                                const DataLayout* TD) {
3580  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3581
3582  // Only build lookup table when we have a target that supports it.
3583  if (!TTI.shouldBuildLookupTables())
3584    return false;
3585
3586  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3587  // split off a dense part and build a lookup table for that.
3588
3589  // FIXME: This creates arrays of GEPs to constant strings, which means each
3590  // GEP needs a runtime relocation in PIC code. We should just build one big
3591  // string and lookup indices into that.
3592
3593  // Ignore the switch if the number of cases is too small.
3594  // This is similar to the check when building jump tables in
3595  // SelectionDAGBuilder::handleJTSwitchCase.
3596  // FIXME: Determine the best cut-off.
3597  if (SI->getNumCases() < 4)
3598    return false;
3599
3600  // Figure out the corresponding result for each case value and phi node in the
3601  // common destination, as well as the the min and max case values.
3602  assert(SI->case_begin() != SI->case_end());
3603  SwitchInst::CaseIt CI = SI->case_begin();
3604  ConstantInt *MinCaseVal = CI.getCaseValue();
3605  ConstantInt *MaxCaseVal = CI.getCaseValue();
3606
3607  BasicBlock *CommonDest = 0;
3608  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3609  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3610  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3611  SmallDenseMap<PHINode*, Type*> ResultTypes;
3612  SmallVector<PHINode*, 4> PHIs;
3613
3614  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3615    ConstantInt *CaseVal = CI.getCaseValue();
3616    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3617      MinCaseVal = CaseVal;
3618    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3619      MaxCaseVal = CaseVal;
3620
3621    // Resulting value at phi nodes for this case value.
3622    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3623    ResultsTy Results;
3624    if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
3625                        Results))
3626      return false;
3627
3628    // Append the result from this case to the list for each phi.
3629    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3630      if (!ResultLists.count(I->first))
3631        PHIs.push_back(I->first);
3632      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3633    }
3634  }
3635
3636  // Get the resulting values for the default case.
3637  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3638  if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
3639                      DefaultResultsList))
3640    return false;
3641  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3642    PHINode *PHI = DefaultResultsList[I].first;
3643    Constant *Result = DefaultResultsList[I].second;
3644    DefaultResults[PHI] = Result;
3645    ResultTypes[PHI] = Result->getType();
3646  }
3647
3648  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3649  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3650  if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
3651    return false;
3652
3653  // Create the BB that does the lookups.
3654  Module &Mod = *CommonDest->getParent()->getParent();
3655  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3656                                            "switch.lookup",
3657                                            CommonDest->getParent(),
3658                                            CommonDest);
3659
3660  // Check whether the condition value is within the case range, and branch to
3661  // the new BB.
3662  Builder.SetInsertPoint(SI);
3663  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3664                                        "switch.tableidx");
3665  Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3666      MinCaseVal->getType(), TableSize));
3667  Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3668
3669  // Populate the BB that does the lookups.
3670  Builder.SetInsertPoint(LookupBB);
3671  bool ReturnedEarly = false;
3672  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3673    PHINode *PHI = PHIs[I];
3674
3675    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
3676                            DefaultResults[PHI], TD);
3677
3678    Value *Result = Table.BuildLookup(TableIndex, Builder);
3679
3680    // If the result is used to return immediately from the function, we want to
3681    // do that right here.
3682    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
3683        *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
3684      Builder.CreateRet(Result);
3685      ReturnedEarly = true;
3686      break;
3687    }
3688
3689    PHI->addIncoming(Result, LookupBB);
3690  }
3691
3692  if (!ReturnedEarly)
3693    Builder.CreateBr(CommonDest);
3694
3695  // Remove the switch.
3696  for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
3697    BasicBlock *Succ = SI->getSuccessor(i);
3698    if (Succ == SI->getDefaultDest()) continue;
3699    Succ->removePredecessor(SI->getParent());
3700  }
3701  SI->eraseFromParent();
3702
3703  ++NumLookupTables;
3704  return true;
3705}
3706
3707bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3708  BasicBlock *BB = SI->getParent();
3709
3710  if (isValueEqualityComparison(SI)) {
3711    // If we only have one predecessor, and if it is a branch on this value,
3712    // see if that predecessor totally determines the outcome of this switch.
3713    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3714      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3715        return SimplifyCFG(BB, TTI, TD) | true;
3716
3717    Value *Cond = SI->getCondition();
3718    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3719      if (SimplifySwitchOnSelect(SI, Select))
3720        return SimplifyCFG(BB, TTI, TD) | true;
3721
3722    // If the block only contains the switch, see if we can fold the block
3723    // away into any preds.
3724    BasicBlock::iterator BBI = BB->begin();
3725    // Ignore dbg intrinsics.
3726    while (isa<DbgInfoIntrinsic>(BBI))
3727      ++BBI;
3728    if (SI == &*BBI)
3729      if (FoldValueComparisonIntoPredecessors(SI, Builder))
3730        return SimplifyCFG(BB, TTI, TD) | true;
3731  }
3732
3733  // Try to transform the switch into an icmp and a branch.
3734  if (TurnSwitchRangeIntoICmp(SI, Builder))
3735    return SimplifyCFG(BB, TTI, TD) | true;
3736
3737  // Remove unreachable cases.
3738  if (EliminateDeadSwitchCases(SI))
3739    return SimplifyCFG(BB, TTI, TD) | true;
3740
3741  if (ForwardSwitchConditionToPHI(SI))
3742    return SimplifyCFG(BB, TTI, TD) | true;
3743
3744  if (SwitchToLookupTable(SI, Builder, TTI, TD))
3745    return SimplifyCFG(BB, TTI, TD) | true;
3746
3747  return false;
3748}
3749
3750bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3751  BasicBlock *BB = IBI->getParent();
3752  bool Changed = false;
3753
3754  // Eliminate redundant destinations.
3755  SmallPtrSet<Value *, 8> Succs;
3756  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3757    BasicBlock *Dest = IBI->getDestination(i);
3758    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3759      Dest->removePredecessor(BB);
3760      IBI->removeDestination(i);
3761      --i; --e;
3762      Changed = true;
3763    }
3764  }
3765
3766  if (IBI->getNumDestinations() == 0) {
3767    // If the indirectbr has no successors, change it to unreachable.
3768    new UnreachableInst(IBI->getContext(), IBI);
3769    EraseTerminatorInstAndDCECond(IBI);
3770    return true;
3771  }
3772
3773  if (IBI->getNumDestinations() == 1) {
3774    // If the indirectbr has one successor, change it to a direct branch.
3775    BranchInst::Create(IBI->getDestination(0), IBI);
3776    EraseTerminatorInstAndDCECond(IBI);
3777    return true;
3778  }
3779
3780  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3781    if (SimplifyIndirectBrOnSelect(IBI, SI))
3782      return SimplifyCFG(BB, TTI, TD) | true;
3783  }
3784  return Changed;
3785}
3786
3787bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3788  BasicBlock *BB = BI->getParent();
3789
3790  if (SinkCommon && SinkThenElseCodeToEnd(BI))
3791    return true;
3792
3793  // If the Terminator is the only non-phi instruction, simplify the block.
3794  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3795  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3796      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3797    return true;
3798
3799  // If the only instruction in the block is a seteq/setne comparison
3800  // against a constant, try to simplify the block.
3801  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3802    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3803      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3804        ;
3805      if (I->isTerminator() &&
3806          TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
3807        return true;
3808    }
3809
3810  // If this basic block is ONLY a compare and a branch, and if a predecessor
3811  // branches to us and our successor, fold the comparison into the
3812  // predecessor and use logical operations to update the incoming value
3813  // for PHI nodes in common successor.
3814  if (FoldBranchToCommonDest(BI))
3815    return SimplifyCFG(BB, TTI, TD) | true;
3816  return false;
3817}
3818
3819
3820bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3821  BasicBlock *BB = BI->getParent();
3822
3823  // Conditional branch
3824  if (isValueEqualityComparison(BI)) {
3825    // If we only have one predecessor, and if it is a branch on this value,
3826    // see if that predecessor totally determines the outcome of this
3827    // switch.
3828    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3829      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3830        return SimplifyCFG(BB, TTI, TD) | true;
3831
3832    // This block must be empty, except for the setcond inst, if it exists.
3833    // Ignore dbg intrinsics.
3834    BasicBlock::iterator I = BB->begin();
3835    // Ignore dbg intrinsics.
3836    while (isa<DbgInfoIntrinsic>(I))
3837      ++I;
3838    if (&*I == BI) {
3839      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3840        return SimplifyCFG(BB, TTI, TD) | true;
3841    } else if (&*I == cast<Instruction>(BI->getCondition())){
3842      ++I;
3843      // Ignore dbg intrinsics.
3844      while (isa<DbgInfoIntrinsic>(I))
3845        ++I;
3846      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3847        return SimplifyCFG(BB, TTI, TD) | true;
3848    }
3849  }
3850
3851  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3852  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3853    return true;
3854
3855  // If this basic block is ONLY a compare and a branch, and if a predecessor
3856  // branches to us and one of our successors, fold the comparison into the
3857  // predecessor and use logical operations to pick the right destination.
3858  if (FoldBranchToCommonDest(BI))
3859    return SimplifyCFG(BB, TTI, TD) | true;
3860
3861  // We have a conditional branch to two blocks that are only reachable
3862  // from BI.  We know that the condbr dominates the two blocks, so see if
3863  // there is any identical code in the "then" and "else" blocks.  If so, we
3864  // can hoist it up to the branching block.
3865  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3866    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3867      if (HoistThenElseCodeToIf(BI))
3868        return SimplifyCFG(BB, TTI, TD) | true;
3869    } else {
3870      // If Successor #1 has multiple preds, we may be able to conditionally
3871      // execute Successor #0 if it branches to successor #1.
3872      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3873      if (Succ0TI->getNumSuccessors() == 1 &&
3874          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3875        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3876          return SimplifyCFG(BB, TTI, TD) | true;
3877    }
3878  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3879    // If Successor #0 has multiple preds, we may be able to conditionally
3880    // execute Successor #1 if it branches to successor #0.
3881    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3882    if (Succ1TI->getNumSuccessors() == 1 &&
3883        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3884      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3885        return SimplifyCFG(BB, TTI, TD) | true;
3886  }
3887
3888  // If this is a branch on a phi node in the current block, thread control
3889  // through this block if any PHI node entries are constants.
3890  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
3891    if (PN->getParent() == BI->getParent())
3892      if (FoldCondBranchOnPHI(BI, TD))
3893        return SimplifyCFG(BB, TTI, TD) | true;
3894
3895  // Scan predecessor blocks for conditional branches.
3896  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
3897    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
3898      if (PBI != BI && PBI->isConditional())
3899        if (SimplifyCondBranchToCondBranch(PBI, BI))
3900          return SimplifyCFG(BB, TTI, TD) | true;
3901
3902  return false;
3903}
3904
3905/// Check if passing a value to an instruction will cause undefined behavior.
3906static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
3907  Constant *C = dyn_cast<Constant>(V);
3908  if (!C)
3909    return false;
3910
3911  if (I->use_empty())
3912    return false;
3913
3914  if (C->isNullValue()) {
3915    // Only look at the first use, avoid hurting compile time with long uselists
3916    User *Use = *I->use_begin();
3917
3918    // Now make sure that there are no instructions in between that can alter
3919    // control flow (eg. calls)
3920    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
3921      if (i == I->getParent()->end() || i->mayHaveSideEffects())
3922        return false;
3923
3924    // Look through GEPs. A load from a GEP derived from NULL is still undefined
3925    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
3926      if (GEP->getPointerOperand() == I)
3927        return passingValueIsAlwaysUndefined(V, GEP);
3928
3929    // Look through bitcasts.
3930    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
3931      return passingValueIsAlwaysUndefined(V, BC);
3932
3933    // Load from null is undefined.
3934    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
3935      return LI->getPointerAddressSpace() == 0;
3936
3937    // Store to null is undefined.
3938    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
3939      return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
3940  }
3941  return false;
3942}
3943
3944/// If BB has an incoming value that will always trigger undefined behavior
3945/// (eg. null pointer dereference), remove the branch leading here.
3946static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
3947  for (BasicBlock::iterator i = BB->begin();
3948       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
3949    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
3950      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
3951        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
3952        IRBuilder<> Builder(T);
3953        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
3954          BB->removePredecessor(PHI->getIncomingBlock(i));
3955          // Turn uncoditional branches into unreachables and remove the dead
3956          // destination from conditional branches.
3957          if (BI->isUnconditional())
3958            Builder.CreateUnreachable();
3959          else
3960            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
3961                                                         BI->getSuccessor(0));
3962          BI->eraseFromParent();
3963          return true;
3964        }
3965        // TODO: SwitchInst.
3966      }
3967
3968  return false;
3969}
3970
3971bool SimplifyCFGOpt::run(BasicBlock *BB) {
3972  bool Changed = false;
3973
3974  assert(BB && BB->getParent() && "Block not embedded in function!");
3975  assert(BB->getTerminator() && "Degenerate basic block encountered!");
3976
3977  // Remove basic blocks that have no predecessors (except the entry block)...
3978  // or that just have themself as a predecessor.  These are unreachable.
3979  if ((pred_begin(BB) == pred_end(BB) &&
3980       BB != &BB->getParent()->getEntryBlock()) ||
3981      BB->getSinglePredecessor() == BB) {
3982    DEBUG(dbgs() << "Removing BB: \n" << *BB);
3983    DeleteDeadBlock(BB);
3984    return true;
3985  }
3986
3987  // Check to see if we can constant propagate this terminator instruction
3988  // away...
3989  Changed |= ConstantFoldTerminator(BB, true);
3990
3991  // Check for and eliminate duplicate PHI nodes in this block.
3992  Changed |= EliminateDuplicatePHINodes(BB);
3993
3994  // Check for and remove branches that will always cause undefined behavior.
3995  Changed |= removeUndefIntroducingPredecessor(BB);
3996
3997  // Merge basic blocks into their predecessor if there is only one distinct
3998  // pred, and if there is only one distinct successor of the predecessor, and
3999  // if there are no PHI nodes.
4000  //
4001  if (MergeBlockIntoPredecessor(BB))
4002    return true;
4003
4004  IRBuilder<> Builder(BB);
4005
4006  // If there is a trivial two-entry PHI node in this basic block, and we can
4007  // eliminate it, do so now.
4008  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4009    if (PN->getNumIncomingValues() == 2)
4010      Changed |= FoldTwoEntryPHINode(PN, TD);
4011
4012  Builder.SetInsertPoint(BB->getTerminator());
4013  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4014    if (BI->isUnconditional()) {
4015      if (SimplifyUncondBranch(BI, Builder)) return true;
4016    } else {
4017      if (SimplifyCondBranch(BI, Builder)) return true;
4018    }
4019  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4020    if (SimplifyReturn(RI, Builder)) return true;
4021  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4022    if (SimplifyResume(RI, Builder)) return true;
4023  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4024    if (SimplifySwitch(SI, Builder)) return true;
4025  } else if (UnreachableInst *UI =
4026               dyn_cast<UnreachableInst>(BB->getTerminator())) {
4027    if (SimplifyUnreachable(UI)) return true;
4028  } else if (IndirectBrInst *IBI =
4029               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4030    if (SimplifyIndirectBr(IBI)) return true;
4031  }
4032
4033  return Changed;
4034}
4035
4036/// SimplifyCFG - This function is used to do simplification of a CFG.  For
4037/// example, it adjusts branches to branches to eliminate the extra hop, it
4038/// eliminates unreachable basic blocks, and does other "peephole" optimization
4039/// of the CFG.  It returns true if a modification was made.
4040///
4041bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4042                       const DataLayout *TD) {
4043  return SimplifyCFGOpt(TTI, TD).run(BB);
4044}
4045