SimplifyCFG.cpp revision b11cbe6b2360cd46e12d676064e8f58a0586c9ba
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/IRBuilder.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/MDBuilder.h"
24#include "llvm/Metadata.h"
25#include "llvm/Module.h"
26#include "llvm/Operator.h"
27#include "llvm/Type.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SetVector.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/InstructionSimplify.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Support/CFG.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/ConstantRange.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/NoFolder.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include <algorithm>
45#include <set>
46#include <map>
47using namespace llvm;
48
49static cl::opt<unsigned>
50PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
51   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
52
53static cl::opt<bool>
54DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
55       cl::desc("Duplicate return instructions into unconditional branches"));
56
57STATISTIC(NumSpeculations, "Number of speculative executed instructions");
58STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
59
60namespace {
61  /// ValueEqualityComparisonCase - Represents a case of a switch.
62  struct ValueEqualityComparisonCase {
63    ConstantInt *Value;
64    BasicBlock *Dest;
65
66    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
67      : Value(Value), Dest(Dest) {}
68
69    bool operator<(ValueEqualityComparisonCase RHS) const {
70      // Comparing pointers is ok as we only rely on the order for uniquing.
71      return Value < RHS.Value;
72    }
73  };
74
75class SimplifyCFGOpt {
76  const TargetData *const TD;
77
78  Value *isValueEqualityComparison(TerminatorInst *TI);
79  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
80                               std::vector<ValueEqualityComparisonCase> &Cases);
81  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
82                                                     BasicBlock *Pred,
83                                                     IRBuilder<> &Builder);
84  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
85                                           IRBuilder<> &Builder);
86
87  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
88  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
89  bool SimplifyUnreachable(UnreachableInst *UI);
90  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
91  bool SimplifyIndirectBr(IndirectBrInst *IBI);
92  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
93  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
94
95public:
96  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
97  bool run(BasicBlock *BB);
98};
99}
100
101/// SafeToMergeTerminators - Return true if it is safe to merge these two
102/// terminator instructions together.
103///
104static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
105  if (SI1 == SI2) return false;  // Can't merge with self!
106
107  // It is not safe to merge these two switch instructions if they have a common
108  // successor, and if that successor has a PHI node, and if *that* PHI node has
109  // conflicting incoming values from the two switch blocks.
110  BasicBlock *SI1BB = SI1->getParent();
111  BasicBlock *SI2BB = SI2->getParent();
112  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
113
114  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
115    if (SI1Succs.count(*I))
116      for (BasicBlock::iterator BBI = (*I)->begin();
117           isa<PHINode>(BBI); ++BBI) {
118        PHINode *PN = cast<PHINode>(BBI);
119        if (PN->getIncomingValueForBlock(SI1BB) !=
120            PN->getIncomingValueForBlock(SI2BB))
121          return false;
122      }
123
124  return true;
125}
126
127/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
128/// to merge these two terminator instructions together, where SI1 is an
129/// unconditional branch. PhiNodes will store all PHI nodes in common
130/// successors.
131///
132static bool isProfitableToFoldUnconditional(BranchInst *SI1,
133                                          BranchInst *SI2,
134                                          Instruction *Cond,
135                                          SmallVectorImpl<PHINode*> &PhiNodes) {
136  if (SI1 == SI2) return false;  // Can't merge with self!
137  assert(SI1->isUnconditional() && SI2->isConditional());
138
139  // We fold the unconditional branch if we can easily update all PHI nodes in
140  // common successors:
141  // 1> We have a constant incoming value for the conditional branch;
142  // 2> We have "Cond" as the incoming value for the unconditional branch;
143  // 3> SI2->getCondition() and Cond have same operands.
144  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
145  if (!Ci2) return false;
146  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
147        Cond->getOperand(1) == Ci2->getOperand(1)) &&
148      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
149        Cond->getOperand(1) == Ci2->getOperand(0)))
150    return false;
151
152  BasicBlock *SI1BB = SI1->getParent();
153  BasicBlock *SI2BB = SI2->getParent();
154  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
155  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
156    if (SI1Succs.count(*I))
157      for (BasicBlock::iterator BBI = (*I)->begin();
158           isa<PHINode>(BBI); ++BBI) {
159        PHINode *PN = cast<PHINode>(BBI);
160        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
161            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
162          return false;
163        PhiNodes.push_back(PN);
164      }
165  return true;
166}
167
168/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
169/// now be entries in it from the 'NewPred' block.  The values that will be
170/// flowing into the PHI nodes will be the same as those coming in from
171/// ExistPred, an existing predecessor of Succ.
172static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
173                                  BasicBlock *ExistPred) {
174  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
175
176  PHINode *PN;
177  for (BasicBlock::iterator I = Succ->begin();
178       (PN = dyn_cast<PHINode>(I)); ++I)
179    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
180}
181
182
183/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
184/// least one PHI node in it), check to see if the merge at this block is due
185/// to an "if condition".  If so, return the boolean condition that determines
186/// which entry into BB will be taken.  Also, return by references the block
187/// that will be entered from if the condition is true, and the block that will
188/// be entered if the condition is false.
189///
190/// This does no checking to see if the true/false blocks have large or unsavory
191/// instructions in them.
192static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
193                             BasicBlock *&IfFalse) {
194  PHINode *SomePHI = cast<PHINode>(BB->begin());
195  assert(SomePHI->getNumIncomingValues() == 2 &&
196         "Function can only handle blocks with 2 predecessors!");
197  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
198  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
199
200  // We can only handle branches.  Other control flow will be lowered to
201  // branches if possible anyway.
202  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
203  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
204  if (Pred1Br == 0 || Pred2Br == 0)
205    return 0;
206
207  // Eliminate code duplication by ensuring that Pred1Br is conditional if
208  // either are.
209  if (Pred2Br->isConditional()) {
210    // If both branches are conditional, we don't have an "if statement".  In
211    // reality, we could transform this case, but since the condition will be
212    // required anyway, we stand no chance of eliminating it, so the xform is
213    // probably not profitable.
214    if (Pred1Br->isConditional())
215      return 0;
216
217    std::swap(Pred1, Pred2);
218    std::swap(Pred1Br, Pred2Br);
219  }
220
221  if (Pred1Br->isConditional()) {
222    // The only thing we have to watch out for here is to make sure that Pred2
223    // doesn't have incoming edges from other blocks.  If it does, the condition
224    // doesn't dominate BB.
225    if (Pred2->getSinglePredecessor() == 0)
226      return 0;
227
228    // If we found a conditional branch predecessor, make sure that it branches
229    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
230    if (Pred1Br->getSuccessor(0) == BB &&
231        Pred1Br->getSuccessor(1) == Pred2) {
232      IfTrue = Pred1;
233      IfFalse = Pred2;
234    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
235               Pred1Br->getSuccessor(1) == BB) {
236      IfTrue = Pred2;
237      IfFalse = Pred1;
238    } else {
239      // We know that one arm of the conditional goes to BB, so the other must
240      // go somewhere unrelated, and this must not be an "if statement".
241      return 0;
242    }
243
244    return Pred1Br->getCondition();
245  }
246
247  // Ok, if we got here, both predecessors end with an unconditional branch to
248  // BB.  Don't panic!  If both blocks only have a single (identical)
249  // predecessor, and THAT is a conditional branch, then we're all ok!
250  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
251  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
252    return 0;
253
254  // Otherwise, if this is a conditional branch, then we can use it!
255  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
256  if (BI == 0) return 0;
257
258  assert(BI->isConditional() && "Two successors but not conditional?");
259  if (BI->getSuccessor(0) == Pred1) {
260    IfTrue = Pred1;
261    IfFalse = Pred2;
262  } else {
263    IfTrue = Pred2;
264    IfFalse = Pred1;
265  }
266  return BI->getCondition();
267}
268
269/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
270/// given instruction, which is assumed to be safe to speculate. 1 means
271/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
272static unsigned ComputeSpeculationCost(const User *I) {
273  assert(isSafeToSpeculativelyExecute(I) &&
274         "Instruction is not safe to speculatively execute!");
275  switch (Operator::getOpcode(I)) {
276  default:
277    // In doubt, be conservative.
278    return UINT_MAX;
279  case Instruction::GetElementPtr:
280    // GEPs are cheap if all indices are constant.
281    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
282      return UINT_MAX;
283    return 1;
284  case Instruction::Load:
285  case Instruction::Add:
286  case Instruction::Sub:
287  case Instruction::And:
288  case Instruction::Or:
289  case Instruction::Xor:
290  case Instruction::Shl:
291  case Instruction::LShr:
292  case Instruction::AShr:
293  case Instruction::ICmp:
294  case Instruction::Trunc:
295  case Instruction::ZExt:
296  case Instruction::SExt:
297    return 1; // These are all cheap.
298
299  case Instruction::Call:
300  case Instruction::Select:
301    return 2;
302  }
303}
304
305/// DominatesMergePoint - If we have a merge point of an "if condition" as
306/// accepted above, return true if the specified value dominates the block.  We
307/// don't handle the true generality of domination here, just a special case
308/// which works well enough for us.
309///
310/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
311/// see if V (which must be an instruction) and its recursive operands
312/// that do not dominate BB have a combined cost lower than CostRemaining and
313/// are non-trapping.  If both are true, the instruction is inserted into the
314/// set and true is returned.
315///
316/// The cost for most non-trapping instructions is defined as 1 except for
317/// Select whose cost is 2.
318///
319/// After this function returns, CostRemaining is decreased by the cost of
320/// V plus its non-dominating operands.  If that cost is greater than
321/// CostRemaining, false is returned and CostRemaining is undefined.
322static bool DominatesMergePoint(Value *V, BasicBlock *BB,
323                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
324                                unsigned &CostRemaining) {
325  Instruction *I = dyn_cast<Instruction>(V);
326  if (!I) {
327    // Non-instructions all dominate instructions, but not all constantexprs
328    // can be executed unconditionally.
329    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
330      if (C->canTrap())
331        return false;
332    return true;
333  }
334  BasicBlock *PBB = I->getParent();
335
336  // We don't want to allow weird loops that might have the "if condition" in
337  // the bottom of this block.
338  if (PBB == BB) return false;
339
340  // If this instruction is defined in a block that contains an unconditional
341  // branch to BB, then it must be in the 'conditional' part of the "if
342  // statement".  If not, it definitely dominates the region.
343  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
344  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
345    return true;
346
347  // If we aren't allowing aggressive promotion anymore, then don't consider
348  // instructions in the 'if region'.
349  if (AggressiveInsts == 0) return false;
350
351  // If we have seen this instruction before, don't count it again.
352  if (AggressiveInsts->count(I)) return true;
353
354  // Okay, it looks like the instruction IS in the "condition".  Check to
355  // see if it's a cheap instruction to unconditionally compute, and if it
356  // only uses stuff defined outside of the condition.  If so, hoist it out.
357  if (!isSafeToSpeculativelyExecute(I))
358    return false;
359
360  unsigned Cost = ComputeSpeculationCost(I);
361
362  if (Cost > CostRemaining)
363    return false;
364
365  CostRemaining -= Cost;
366
367  // Okay, we can only really hoist these out if their operands do
368  // not take us over the cost threshold.
369  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
370    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
371      return false;
372  // Okay, it's safe to do this!  Remember this instruction.
373  AggressiveInsts->insert(I);
374  return true;
375}
376
377/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
378/// and PointerNullValue. Return NULL if value is not a constant int.
379static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
380  // Normal constant int.
381  ConstantInt *CI = dyn_cast<ConstantInt>(V);
382  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
383    return CI;
384
385  // This is some kind of pointer constant. Turn it into a pointer-sized
386  // ConstantInt if possible.
387  IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
388
389  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
390  if (isa<ConstantPointerNull>(V))
391    return ConstantInt::get(PtrTy, 0);
392
393  // IntToPtr const int.
394  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
395    if (CE->getOpcode() == Instruction::IntToPtr)
396      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
397        // The constant is very likely to have the right type already.
398        if (CI->getType() == PtrTy)
399          return CI;
400        else
401          return cast<ConstantInt>
402            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
403      }
404  return 0;
405}
406
407/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
408/// collection of icmp eq/ne instructions that compare a value against a
409/// constant, return the value being compared, and stick the constant into the
410/// Values vector.
411static Value *
412GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
413                       const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
414  Instruction *I = dyn_cast<Instruction>(V);
415  if (I == 0) return 0;
416
417  // If this is an icmp against a constant, handle this as one of the cases.
418  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
419    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
420      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
421        UsedICmps++;
422        Vals.push_back(C);
423        return I->getOperand(0);
424      }
425
426      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
427      // the set.
428      ConstantRange Span =
429        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
430
431      // If this is an and/!= check then we want to optimize "x ugt 2" into
432      // x != 0 && x != 1.
433      if (!isEQ)
434        Span = Span.inverse();
435
436      // If there are a ton of values, we don't want to make a ginormous switch.
437      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
438        return 0;
439
440      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
441        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
442      UsedICmps++;
443      return I->getOperand(0);
444    }
445    return 0;
446  }
447
448  // Otherwise, we can only handle an | or &, depending on isEQ.
449  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
450    return 0;
451
452  unsigned NumValsBeforeLHS = Vals.size();
453  unsigned UsedICmpsBeforeLHS = UsedICmps;
454  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
455                                          isEQ, UsedICmps)) {
456    unsigned NumVals = Vals.size();
457    unsigned UsedICmpsBeforeRHS = UsedICmps;
458    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
459                                            isEQ, UsedICmps)) {
460      if (LHS == RHS)
461        return LHS;
462      Vals.resize(NumVals);
463      UsedICmps = UsedICmpsBeforeRHS;
464    }
465
466    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
467    // set it and return success.
468    if (Extra == 0 || Extra == I->getOperand(1)) {
469      Extra = I->getOperand(1);
470      return LHS;
471    }
472
473    Vals.resize(NumValsBeforeLHS);
474    UsedICmps = UsedICmpsBeforeLHS;
475    return 0;
476  }
477
478  // If the LHS can't be folded in, but Extra is available and RHS can, try to
479  // use LHS as Extra.
480  if (Extra == 0 || Extra == I->getOperand(0)) {
481    Value *OldExtra = Extra;
482    Extra = I->getOperand(0);
483    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
484                                            isEQ, UsedICmps))
485      return RHS;
486    assert(Vals.size() == NumValsBeforeLHS);
487    Extra = OldExtra;
488  }
489
490  return 0;
491}
492
493static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
494  Instruction *Cond = 0;
495  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
496    Cond = dyn_cast<Instruction>(SI->getCondition());
497  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
498    if (BI->isConditional())
499      Cond = dyn_cast<Instruction>(BI->getCondition());
500  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
501    Cond = dyn_cast<Instruction>(IBI->getAddress());
502  }
503
504  TI->eraseFromParent();
505  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
506}
507
508/// isValueEqualityComparison - Return true if the specified terminator checks
509/// to see if a value is equal to constant integer value.
510Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
511  Value *CV = 0;
512  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
513    // Do not permit merging of large switch instructions into their
514    // predecessors unless there is only one predecessor.
515    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
516                                             pred_end(SI->getParent())) <= 128)
517      CV = SI->getCondition();
518  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
519    if (BI->isConditional() && BI->getCondition()->hasOneUse())
520      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
521        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
522             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
523            GetConstantInt(ICI->getOperand(1), TD))
524          CV = ICI->getOperand(0);
525
526  // Unwrap any lossless ptrtoint cast.
527  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
528    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
529      CV = PTII->getOperand(0);
530  return CV;
531}
532
533/// GetValueEqualityComparisonCases - Given a value comparison instruction,
534/// decode all of the 'cases' that it represents and return the 'default' block.
535BasicBlock *SimplifyCFGOpt::
536GetValueEqualityComparisonCases(TerminatorInst *TI,
537                                std::vector<ValueEqualityComparisonCase>
538                                                                       &Cases) {
539  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
540    Cases.reserve(SI->getNumCases());
541    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
542      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
543                                                  i.getCaseSuccessor()));
544    return SI->getDefaultDest();
545  }
546
547  BranchInst *BI = cast<BranchInst>(TI);
548  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
549  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
550  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
551                                                             TD),
552                                              Succ));
553  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
554}
555
556
557/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
558/// in the list that match the specified block.
559static void EliminateBlockCases(BasicBlock *BB,
560                              std::vector<ValueEqualityComparisonCase> &Cases) {
561  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
562    if (Cases[i].Dest == BB) {
563      Cases.erase(Cases.begin()+i);
564      --i; --e;
565    }
566}
567
568/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
569/// well.
570static bool
571ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
572              std::vector<ValueEqualityComparisonCase > &C2) {
573  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
574
575  // Make V1 be smaller than V2.
576  if (V1->size() > V2->size())
577    std::swap(V1, V2);
578
579  if (V1->size() == 0) return false;
580  if (V1->size() == 1) {
581    // Just scan V2.
582    ConstantInt *TheVal = (*V1)[0].Value;
583    for (unsigned i = 0, e = V2->size(); i != e; ++i)
584      if (TheVal == (*V2)[i].Value)
585        return true;
586  }
587
588  // Otherwise, just sort both lists and compare element by element.
589  array_pod_sort(V1->begin(), V1->end());
590  array_pod_sort(V2->begin(), V2->end());
591  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
592  while (i1 != e1 && i2 != e2) {
593    if ((*V1)[i1].Value == (*V2)[i2].Value)
594      return true;
595    if ((*V1)[i1].Value < (*V2)[i2].Value)
596      ++i1;
597    else
598      ++i2;
599  }
600  return false;
601}
602
603/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
604/// terminator instruction and its block is known to only have a single
605/// predecessor block, check to see if that predecessor is also a value
606/// comparison with the same value, and if that comparison determines the
607/// outcome of this comparison.  If so, simplify TI.  This does a very limited
608/// form of jump threading.
609bool SimplifyCFGOpt::
610SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
611                                              BasicBlock *Pred,
612                                              IRBuilder<> &Builder) {
613  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
614  if (!PredVal) return false;  // Not a value comparison in predecessor.
615
616  Value *ThisVal = isValueEqualityComparison(TI);
617  assert(ThisVal && "This isn't a value comparison!!");
618  if (ThisVal != PredVal) return false;  // Different predicates.
619
620  // TODO: Preserve branch weight metadata, similarly to how
621  // FoldValueComparisonIntoPredecessors preserves it.
622
623  // Find out information about when control will move from Pred to TI's block.
624  std::vector<ValueEqualityComparisonCase> PredCases;
625  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
626                                                        PredCases);
627  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
628
629  // Find information about how control leaves this block.
630  std::vector<ValueEqualityComparisonCase> ThisCases;
631  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
632  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
633
634  // If TI's block is the default block from Pred's comparison, potentially
635  // simplify TI based on this knowledge.
636  if (PredDef == TI->getParent()) {
637    // If we are here, we know that the value is none of those cases listed in
638    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
639    // can simplify TI.
640    if (!ValuesOverlap(PredCases, ThisCases))
641      return false;
642
643    if (isa<BranchInst>(TI)) {
644      // Okay, one of the successors of this condbr is dead.  Convert it to a
645      // uncond br.
646      assert(ThisCases.size() == 1 && "Branch can only have one case!");
647      // Insert the new branch.
648      Instruction *NI = Builder.CreateBr(ThisDef);
649      (void) NI;
650
651      // Remove PHI node entries for the dead edge.
652      ThisCases[0].Dest->removePredecessor(TI->getParent());
653
654      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
655           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
656
657      EraseTerminatorInstAndDCECond(TI);
658      return true;
659    }
660
661    SwitchInst *SI = cast<SwitchInst>(TI);
662    // Okay, TI has cases that are statically dead, prune them away.
663    SmallPtrSet<Constant*, 16> DeadCases;
664    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
665      DeadCases.insert(PredCases[i].Value);
666
667    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
668                 << "Through successor TI: " << *TI);
669
670    // Collect branch weights into a vector.
671    SmallVector<uint32_t, 8> Weights;
672    MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
673    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
674    if (HasWeight)
675      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
676           ++MD_i) {
677        ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
678        assert(CI);
679        Weights.push_back(CI->getValue().getZExtValue());
680      }
681    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
682      --i;
683      if (DeadCases.count(i.getCaseValue())) {
684        if (HasWeight) {
685          std::swap(Weights[i.getCaseIndex()+1], Weights.back());
686          Weights.pop_back();
687        }
688        i.getCaseSuccessor()->removePredecessor(TI->getParent());
689        SI->removeCase(i);
690      }
691    }
692    if (HasWeight)
693      SI->setMetadata(LLVMContext::MD_prof,
694                      MDBuilder(SI->getParent()->getContext()).
695                      createBranchWeights(Weights));
696
697    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
698    return true;
699  }
700
701  // Otherwise, TI's block must correspond to some matched value.  Find out
702  // which value (or set of values) this is.
703  ConstantInt *TIV = 0;
704  BasicBlock *TIBB = TI->getParent();
705  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
706    if (PredCases[i].Dest == TIBB) {
707      if (TIV != 0)
708        return false;  // Cannot handle multiple values coming to this block.
709      TIV = PredCases[i].Value;
710    }
711  assert(TIV && "No edge from pred to succ?");
712
713  // Okay, we found the one constant that our value can be if we get into TI's
714  // BB.  Find out which successor will unconditionally be branched to.
715  BasicBlock *TheRealDest = 0;
716  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
717    if (ThisCases[i].Value == TIV) {
718      TheRealDest = ThisCases[i].Dest;
719      break;
720    }
721
722  // If not handled by any explicit cases, it is handled by the default case.
723  if (TheRealDest == 0) TheRealDest = ThisDef;
724
725  // Remove PHI node entries for dead edges.
726  BasicBlock *CheckEdge = TheRealDest;
727  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
728    if (*SI != CheckEdge)
729      (*SI)->removePredecessor(TIBB);
730    else
731      CheckEdge = 0;
732
733  // Insert the new branch.
734  Instruction *NI = Builder.CreateBr(TheRealDest);
735  (void) NI;
736
737  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
738            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
739
740  EraseTerminatorInstAndDCECond(TI);
741  return true;
742}
743
744namespace {
745  /// ConstantIntOrdering - This class implements a stable ordering of constant
746  /// integers that does not depend on their address.  This is important for
747  /// applications that sort ConstantInt's to ensure uniqueness.
748  struct ConstantIntOrdering {
749    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
750      return LHS->getValue().ult(RHS->getValue());
751    }
752  };
753}
754
755static int ConstantIntSortPredicate(const void *P1, const void *P2) {
756  const ConstantInt *LHS = *(const ConstantInt*const*)P1;
757  const ConstantInt *RHS = *(const ConstantInt*const*)P2;
758  if (LHS->getValue().ult(RHS->getValue()))
759    return 1;
760  if (LHS->getValue() == RHS->getValue())
761    return 0;
762  return -1;
763}
764
765static inline bool HasBranchWeights(const Instruction* I) {
766  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
767  if (ProfMD && ProfMD->getOperand(0))
768    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
769      return MDS->getString().equals("branch_weights");
770
771  return false;
772}
773
774/// Get Weights of a given TerminatorInst, the default weight is at the front
775/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
776/// metadata.
777static void GetBranchWeights(TerminatorInst *TI,
778                             SmallVectorImpl<uint64_t> &Weights) {
779  MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
780  assert(MD);
781  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
782    ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
783    assert(CI);
784    Weights.push_back(CI->getValue().getZExtValue());
785  }
786
787  // If TI is a conditional eq, the default case is the false case,
788  // and the corresponding branch-weight data is at index 2. We swap the
789  // default weight to be the first entry.
790  if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
791    assert(Weights.size() == 2);
792    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
793    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
794      std::swap(Weights.front(), Weights.back());
795  }
796}
797
798/// Sees if any of the weights are too big for a uint32_t, and halves all the
799/// weights if any are.
800static void FitWeights(MutableArrayRef<uint64_t> Weights) {
801  bool Halve = false;
802  for (unsigned i = 0; i < Weights.size(); ++i)
803    if (Weights[i] > UINT_MAX) {
804      Halve = true;
805      break;
806    }
807
808  if (! Halve)
809    return;
810
811  for (unsigned i = 0; i < Weights.size(); ++i)
812    Weights[i] /= 2;
813}
814
815/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
816/// equality comparison instruction (either a switch or a branch on "X == c").
817/// See if any of the predecessors of the terminator block are value comparisons
818/// on the same value.  If so, and if safe to do so, fold them together.
819bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
820                                                         IRBuilder<> &Builder) {
821  BasicBlock *BB = TI->getParent();
822  Value *CV = isValueEqualityComparison(TI);  // CondVal
823  assert(CV && "Not a comparison?");
824  bool Changed = false;
825
826  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
827  while (!Preds.empty()) {
828    BasicBlock *Pred = Preds.pop_back_val();
829
830    // See if the predecessor is a comparison with the same value.
831    TerminatorInst *PTI = Pred->getTerminator();
832    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
833
834    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
835      // Figure out which 'cases' to copy from SI to PSI.
836      std::vector<ValueEqualityComparisonCase> BBCases;
837      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
838
839      std::vector<ValueEqualityComparisonCase> PredCases;
840      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
841
842      // Based on whether the default edge from PTI goes to BB or not, fill in
843      // PredCases and PredDefault with the new switch cases we would like to
844      // build.
845      SmallVector<BasicBlock*, 8> NewSuccessors;
846
847      // Update the branch weight metadata along the way
848      SmallVector<uint64_t, 8> Weights;
849      bool PredHasWeights = HasBranchWeights(PTI);
850      bool SuccHasWeights = HasBranchWeights(TI);
851
852      if (PredHasWeights) {
853        GetBranchWeights(PTI, Weights);
854        // branch-weight metadata is inconsistant here.
855        if (Weights.size() != 1 + PredCases.size())
856          PredHasWeights = SuccHasWeights = false;
857      } else if (SuccHasWeights)
858        // If there are no predecessor weights but there are successor weights,
859        // populate Weights with 1, which will later be scaled to the sum of
860        // successor's weights
861        Weights.assign(1 + PredCases.size(), 1);
862
863      SmallVector<uint64_t, 8> SuccWeights;
864      if (SuccHasWeights) {
865        GetBranchWeights(TI, SuccWeights);
866        // branch-weight metadata is inconsistant here.
867        if (SuccWeights.size() != 1 + BBCases.size())
868          PredHasWeights = SuccHasWeights = false;
869      } else if (PredHasWeights)
870        SuccWeights.assign(1 + BBCases.size(), 1);
871
872      if (PredDefault == BB) {
873        // If this is the default destination from PTI, only the edges in TI
874        // that don't occur in PTI, or that branch to BB will be activated.
875        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
876        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
877          if (PredCases[i].Dest != BB)
878            PTIHandled.insert(PredCases[i].Value);
879          else {
880            // The default destination is BB, we don't need explicit targets.
881            std::swap(PredCases[i], PredCases.back());
882
883            if (PredHasWeights || SuccHasWeights) {
884              // Increase weight for the default case.
885              Weights[0] += Weights[i+1];
886              std::swap(Weights[i+1], Weights.back());
887              Weights.pop_back();
888            }
889
890            PredCases.pop_back();
891            --i; --e;
892          }
893
894        // Reconstruct the new switch statement we will be building.
895        if (PredDefault != BBDefault) {
896          PredDefault->removePredecessor(Pred);
897          PredDefault = BBDefault;
898          NewSuccessors.push_back(BBDefault);
899        }
900
901        unsigned CasesFromPred = Weights.size();
902        uint64_t ValidTotalSuccWeight = 0;
903        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
904          if (!PTIHandled.count(BBCases[i].Value) &&
905              BBCases[i].Dest != BBDefault) {
906            PredCases.push_back(BBCases[i]);
907            NewSuccessors.push_back(BBCases[i].Dest);
908            if (SuccHasWeights || PredHasWeights) {
909              // The default weight is at index 0, so weight for the ith case
910              // should be at index i+1. Scale the cases from successor by
911              // PredDefaultWeight (Weights[0]).
912              Weights.push_back(Weights[0] * SuccWeights[i+1]);
913              ValidTotalSuccWeight += SuccWeights[i+1];
914            }
915          }
916
917        if (SuccHasWeights || PredHasWeights) {
918          ValidTotalSuccWeight += SuccWeights[0];
919          // Scale the cases from predecessor by ValidTotalSuccWeight.
920          for (unsigned i = 1; i < CasesFromPred; ++i)
921            Weights[i] *= ValidTotalSuccWeight;
922          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
923          Weights[0] *= SuccWeights[0];
924        }
925      } else {
926        // If this is not the default destination from PSI, only the edges
927        // in SI that occur in PSI with a destination of BB will be
928        // activated.
929        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
930        std::map<ConstantInt*, uint64_t> WeightsForHandled;
931        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
932          if (PredCases[i].Dest == BB) {
933            PTIHandled.insert(PredCases[i].Value);
934
935            if (PredHasWeights || SuccHasWeights) {
936              WeightsForHandled[PredCases[i].Value] = Weights[i+1];
937              std::swap(Weights[i+1], Weights.back());
938              Weights.pop_back();
939            }
940
941            std::swap(PredCases[i], PredCases.back());
942            PredCases.pop_back();
943            --i; --e;
944          }
945
946        // Okay, now we know which constants were sent to BB from the
947        // predecessor.  Figure out where they will all go now.
948        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
949          if (PTIHandled.count(BBCases[i].Value)) {
950            // If this is one we are capable of getting...
951            if (PredHasWeights || SuccHasWeights)
952              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
953            PredCases.push_back(BBCases[i]);
954            NewSuccessors.push_back(BBCases[i].Dest);
955            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
956          }
957
958        // If there are any constants vectored to BB that TI doesn't handle,
959        // they must go to the default destination of TI.
960        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
961                                    PTIHandled.begin(),
962               E = PTIHandled.end(); I != E; ++I) {
963          if (PredHasWeights || SuccHasWeights)
964            Weights.push_back(WeightsForHandled[*I]);
965          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
966          NewSuccessors.push_back(BBDefault);
967        }
968      }
969
970      // Okay, at this point, we know which new successor Pred will get.  Make
971      // sure we update the number of entries in the PHI nodes for these
972      // successors.
973      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
974        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
975
976      Builder.SetInsertPoint(PTI);
977      // Convert pointer to int before we switch.
978      if (CV->getType()->isPointerTy()) {
979        assert(TD && "Cannot switch on pointer without TargetData");
980        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
981                                    "magicptr");
982      }
983
984      // Now that the successors are updated, create the new Switch instruction.
985      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
986                                               PredCases.size());
987      NewSI->setDebugLoc(PTI->getDebugLoc());
988      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
989        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
990
991      if (PredHasWeights || SuccHasWeights) {
992        // Halve the weights if any of them cannot fit in an uint32_t
993        FitWeights(Weights);
994
995        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
996
997        NewSI->setMetadata(LLVMContext::MD_prof,
998                           MDBuilder(BB->getContext()).
999                           createBranchWeights(MDWeights));
1000      }
1001
1002      EraseTerminatorInstAndDCECond(PTI);
1003
1004      // Okay, last check.  If BB is still a successor of PSI, then we must
1005      // have an infinite loop case.  If so, add an infinitely looping block
1006      // to handle the case to preserve the behavior of the code.
1007      BasicBlock *InfLoopBlock = 0;
1008      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1009        if (NewSI->getSuccessor(i) == BB) {
1010          if (InfLoopBlock == 0) {
1011            // Insert it at the end of the function, because it's either code,
1012            // or it won't matter if it's hot. :)
1013            InfLoopBlock = BasicBlock::Create(BB->getContext(),
1014                                              "infloop", BB->getParent());
1015            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1016          }
1017          NewSI->setSuccessor(i, InfLoopBlock);
1018        }
1019
1020      Changed = true;
1021    }
1022  }
1023  return Changed;
1024}
1025
1026// isSafeToHoistInvoke - If we would need to insert a select that uses the
1027// value of this invoke (comments in HoistThenElseCodeToIf explain why we
1028// would need to do this), we can't hoist the invoke, as there is nowhere
1029// to put the select in this case.
1030static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1031                                Instruction *I1, Instruction *I2) {
1032  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1033    PHINode *PN;
1034    for (BasicBlock::iterator BBI = SI->begin();
1035         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1036      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1037      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1038      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1039        return false;
1040      }
1041    }
1042  }
1043  return true;
1044}
1045
1046/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1047/// BB2, hoist any common code in the two blocks up into the branch block.  The
1048/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1049static bool HoistThenElseCodeToIf(BranchInst *BI) {
1050  // This does very trivial matching, with limited scanning, to find identical
1051  // instructions in the two blocks.  In particular, we don't want to get into
1052  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1053  // such, we currently just scan for obviously identical instructions in an
1054  // identical order.
1055  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1056  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1057
1058  BasicBlock::iterator BB1_Itr = BB1->begin();
1059  BasicBlock::iterator BB2_Itr = BB2->begin();
1060
1061  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1062  // Skip debug info if it is not identical.
1063  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1064  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1065  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1066    while (isa<DbgInfoIntrinsic>(I1))
1067      I1 = BB1_Itr++;
1068    while (isa<DbgInfoIntrinsic>(I2))
1069      I2 = BB2_Itr++;
1070  }
1071  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1072      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1073    return false;
1074
1075  // If we get here, we can hoist at least one instruction.
1076  BasicBlock *BIParent = BI->getParent();
1077
1078  do {
1079    // If we are hoisting the terminator instruction, don't move one (making a
1080    // broken BB), instead clone it, and remove BI.
1081    if (isa<TerminatorInst>(I1))
1082      goto HoistTerminator;
1083
1084    // For a normal instruction, we just move one to right before the branch,
1085    // then replace all uses of the other with the first.  Finally, we remove
1086    // the now redundant second instruction.
1087    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1088    if (!I2->use_empty())
1089      I2->replaceAllUsesWith(I1);
1090    I1->intersectOptionalDataWith(I2);
1091    I2->eraseFromParent();
1092
1093    I1 = BB1_Itr++;
1094    I2 = BB2_Itr++;
1095    // Skip debug info if it is not identical.
1096    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1097    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1098    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1099      while (isa<DbgInfoIntrinsic>(I1))
1100        I1 = BB1_Itr++;
1101      while (isa<DbgInfoIntrinsic>(I2))
1102        I2 = BB2_Itr++;
1103    }
1104  } while (I1->isIdenticalToWhenDefined(I2));
1105
1106  return true;
1107
1108HoistTerminator:
1109  // It may not be possible to hoist an invoke.
1110  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1111    return true;
1112
1113  // Okay, it is safe to hoist the terminator.
1114  Instruction *NT = I1->clone();
1115  BIParent->getInstList().insert(BI, NT);
1116  if (!NT->getType()->isVoidTy()) {
1117    I1->replaceAllUsesWith(NT);
1118    I2->replaceAllUsesWith(NT);
1119    NT->takeName(I1);
1120  }
1121
1122  IRBuilder<true, NoFolder> Builder(NT);
1123  // Hoisting one of the terminators from our successor is a great thing.
1124  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1125  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1126  // nodes, so we insert select instruction to compute the final result.
1127  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1128  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1129    PHINode *PN;
1130    for (BasicBlock::iterator BBI = SI->begin();
1131         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1132      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1133      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1134      if (BB1V == BB2V) continue;
1135
1136      // These values do not agree.  Insert a select instruction before NT
1137      // that determines the right value.
1138      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1139      if (SI == 0)
1140        SI = cast<SelectInst>
1141          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1142                                BB1V->getName()+"."+BB2V->getName()));
1143
1144      // Make the PHI node use the select for all incoming values for BB1/BB2
1145      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1146        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1147          PN->setIncomingValue(i, SI);
1148    }
1149  }
1150
1151  // Update any PHI nodes in our new successors.
1152  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1153    AddPredecessorToBlock(*SI, BIParent, BB1);
1154
1155  EraseTerminatorInstAndDCECond(BI);
1156  return true;
1157}
1158
1159/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
1160/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
1161/// (for now, restricted to a single instruction that's side effect free) from
1162/// the BB1 into the branch block to speculatively execute it.
1163///
1164/// Turn
1165/// BB:
1166///     %t1 = icmp
1167///     br i1 %t1, label %BB1, label %BB2
1168/// BB1:
1169///     %t3 = add %t2, c
1170///     br label BB2
1171/// BB2:
1172/// =>
1173/// BB:
1174///     %t1 = icmp
1175///     %t4 = add %t2, c
1176///     %t3 = select i1 %t1, %t2, %t3
1177static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
1178  // Only speculatively execution a single instruction (not counting the
1179  // terminator) for now.
1180  Instruction *HInst = NULL;
1181  Instruction *Term = BB1->getTerminator();
1182  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
1183       BBI != BBE; ++BBI) {
1184    Instruction *I = BBI;
1185    // Skip debug info.
1186    if (isa<DbgInfoIntrinsic>(I)) continue;
1187    if (I == Term) break;
1188
1189    if (HInst)
1190      return false;
1191    HInst = I;
1192  }
1193
1194  BasicBlock *BIParent = BI->getParent();
1195
1196  // Check the instruction to be hoisted, if there is one.
1197  if (HInst) {
1198    // Don't hoist the instruction if it's unsafe or expensive.
1199    if (!isSafeToSpeculativelyExecute(HInst))
1200      return false;
1201    if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
1202      return false;
1203
1204    // Do not hoist the instruction if any of its operands are defined but not
1205    // used in this BB. The transformation will prevent the operand from
1206    // being sunk into the use block.
1207    for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1208         i != e; ++i) {
1209      Instruction *OpI = dyn_cast<Instruction>(*i);
1210      if (OpI && OpI->getParent() == BIParent &&
1211          !OpI->mayHaveSideEffects() &&
1212          !OpI->isUsedInBasicBlock(BIParent))
1213        return false;
1214    }
1215  }
1216
1217  // Be conservative for now. FP select instruction can often be expensive.
1218  Value *BrCond = BI->getCondition();
1219  if (isa<FCmpInst>(BrCond))
1220    return false;
1221
1222  // If BB1 is actually on the false edge of the conditional branch, remember
1223  // to swap the select operands later.
1224  bool Invert = false;
1225  if (BB1 != BI->getSuccessor(0)) {
1226    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
1227    Invert = true;
1228  }
1229
1230  // Collect interesting PHIs, and scan for hazards.
1231  SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
1232  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1233  for (BasicBlock::iterator I = BB2->begin();
1234       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1235    Value *BB1V = PN->getIncomingValueForBlock(BB1);
1236    Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
1237
1238    // Skip PHIs which are trivial.
1239    if (BB1V == BIParentV)
1240      continue;
1241
1242    // Check for saftey.
1243    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
1244      // An unfolded ConstantExpr could end up getting expanded into
1245      // Instructions. Don't speculate this and another instruction at
1246      // the same time.
1247      if (HInst)
1248        return false;
1249      if (!isSafeToSpeculativelyExecute(CE))
1250        return false;
1251      if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1252        return false;
1253    }
1254
1255    // Ok, we may insert a select for this PHI.
1256    PHIs.insert(std::make_pair(BB1V, BIParentV));
1257  }
1258
1259  // If there are no PHIs to process, bail early. This helps ensure idempotence
1260  // as well.
1261  if (PHIs.empty())
1262    return false;
1263
1264  // If we get here, we can hoist the instruction and if-convert.
1265  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
1266
1267  // Hoist the instruction.
1268  if (HInst)
1269    BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
1270
1271  // Insert selects and rewrite the PHI operands.
1272  IRBuilder<true, NoFolder> Builder(BI);
1273  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1274    Value *TrueV = PHIs[i].first;
1275    Value *FalseV = PHIs[i].second;
1276
1277    // Create a select whose true value is the speculatively executed value and
1278    // false value is the previously determined FalseV.
1279    SelectInst *SI;
1280    if (Invert)
1281      SI = cast<SelectInst>
1282        (Builder.CreateSelect(BrCond, FalseV, TrueV,
1283                              FalseV->getName() + "." + TrueV->getName()));
1284    else
1285      SI = cast<SelectInst>
1286        (Builder.CreateSelect(BrCond, TrueV, FalseV,
1287                              TrueV->getName() + "." + FalseV->getName()));
1288
1289    // Make the PHI node use the select for all incoming values for "then" and
1290    // "if" blocks.
1291    for (BasicBlock::iterator I = BB2->begin();
1292         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1293      unsigned BB1I = PN->getBasicBlockIndex(BB1);
1294      unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
1295      Value *BB1V = PN->getIncomingValue(BB1I);
1296      Value *BIParentV = PN->getIncomingValue(BIParentI);
1297      if (TrueV == BB1V && FalseV == BIParentV) {
1298        PN->setIncomingValue(BB1I, SI);
1299        PN->setIncomingValue(BIParentI, SI);
1300      }
1301    }
1302  }
1303
1304  ++NumSpeculations;
1305  return true;
1306}
1307
1308/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1309/// across this block.
1310static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1311  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1312  unsigned Size = 0;
1313
1314  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1315    if (isa<DbgInfoIntrinsic>(BBI))
1316      continue;
1317    if (Size > 10) return false;  // Don't clone large BB's.
1318    ++Size;
1319
1320    // We can only support instructions that do not define values that are
1321    // live outside of the current basic block.
1322    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1323         UI != E; ++UI) {
1324      Instruction *U = cast<Instruction>(*UI);
1325      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1326    }
1327
1328    // Looks ok, continue checking.
1329  }
1330
1331  return true;
1332}
1333
1334/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1335/// that is defined in the same block as the branch and if any PHI entries are
1336/// constants, thread edges corresponding to that entry to be branches to their
1337/// ultimate destination.
1338static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1339  BasicBlock *BB = BI->getParent();
1340  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1341  // NOTE: we currently cannot transform this case if the PHI node is used
1342  // outside of the block.
1343  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1344    return false;
1345
1346  // Degenerate case of a single entry PHI.
1347  if (PN->getNumIncomingValues() == 1) {
1348    FoldSingleEntryPHINodes(PN->getParent());
1349    return true;
1350  }
1351
1352  // Now we know that this block has multiple preds and two succs.
1353  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1354
1355  // Okay, this is a simple enough basic block.  See if any phi values are
1356  // constants.
1357  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1358    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1359    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1360
1361    // Okay, we now know that all edges from PredBB should be revectored to
1362    // branch to RealDest.
1363    BasicBlock *PredBB = PN->getIncomingBlock(i);
1364    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1365
1366    if (RealDest == BB) continue;  // Skip self loops.
1367    // Skip if the predecessor's terminator is an indirect branch.
1368    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1369
1370    // The dest block might have PHI nodes, other predecessors and other
1371    // difficult cases.  Instead of being smart about this, just insert a new
1372    // block that jumps to the destination block, effectively splitting
1373    // the edge we are about to create.
1374    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1375                                            RealDest->getName()+".critedge",
1376                                            RealDest->getParent(), RealDest);
1377    BranchInst::Create(RealDest, EdgeBB);
1378
1379    // Update PHI nodes.
1380    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1381
1382    // BB may have instructions that are being threaded over.  Clone these
1383    // instructions into EdgeBB.  We know that there will be no uses of the
1384    // cloned instructions outside of EdgeBB.
1385    BasicBlock::iterator InsertPt = EdgeBB->begin();
1386    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1387    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1388      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1389        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1390        continue;
1391      }
1392      // Clone the instruction.
1393      Instruction *N = BBI->clone();
1394      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1395
1396      // Update operands due to translation.
1397      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1398           i != e; ++i) {
1399        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1400        if (PI != TranslateMap.end())
1401          *i = PI->second;
1402      }
1403
1404      // Check for trivial simplification.
1405      if (Value *V = SimplifyInstruction(N, TD)) {
1406        TranslateMap[BBI] = V;
1407        delete N;   // Instruction folded away, don't need actual inst
1408      } else {
1409        // Insert the new instruction into its new home.
1410        EdgeBB->getInstList().insert(InsertPt, N);
1411        if (!BBI->use_empty())
1412          TranslateMap[BBI] = N;
1413      }
1414    }
1415
1416    // Loop over all of the edges from PredBB to BB, changing them to branch
1417    // to EdgeBB instead.
1418    TerminatorInst *PredBBTI = PredBB->getTerminator();
1419    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1420      if (PredBBTI->getSuccessor(i) == BB) {
1421        BB->removePredecessor(PredBB);
1422        PredBBTI->setSuccessor(i, EdgeBB);
1423      }
1424
1425    // Recurse, simplifying any other constants.
1426    return FoldCondBranchOnPHI(BI, TD) | true;
1427  }
1428
1429  return false;
1430}
1431
1432/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1433/// PHI node, see if we can eliminate it.
1434static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1435  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1436  // statement", which has a very simple dominance structure.  Basically, we
1437  // are trying to find the condition that is being branched on, which
1438  // subsequently causes this merge to happen.  We really want control
1439  // dependence information for this check, but simplifycfg can't keep it up
1440  // to date, and this catches most of the cases we care about anyway.
1441  BasicBlock *BB = PN->getParent();
1442  BasicBlock *IfTrue, *IfFalse;
1443  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1444  if (!IfCond ||
1445      // Don't bother if the branch will be constant folded trivially.
1446      isa<ConstantInt>(IfCond))
1447    return false;
1448
1449  // Okay, we found that we can merge this two-entry phi node into a select.
1450  // Doing so would require us to fold *all* two entry phi nodes in this block.
1451  // At some point this becomes non-profitable (particularly if the target
1452  // doesn't support cmov's).  Only do this transformation if there are two or
1453  // fewer PHI nodes in this block.
1454  unsigned NumPhis = 0;
1455  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1456    if (NumPhis > 2)
1457      return false;
1458
1459  // Loop over the PHI's seeing if we can promote them all to select
1460  // instructions.  While we are at it, keep track of the instructions
1461  // that need to be moved to the dominating block.
1462  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1463  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1464           MaxCostVal1 = PHINodeFoldingThreshold;
1465
1466  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1467    PHINode *PN = cast<PHINode>(II++);
1468    if (Value *V = SimplifyInstruction(PN, TD)) {
1469      PN->replaceAllUsesWith(V);
1470      PN->eraseFromParent();
1471      continue;
1472    }
1473
1474    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1475                             MaxCostVal0) ||
1476        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1477                             MaxCostVal1))
1478      return false;
1479  }
1480
1481  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1482  // we ran out of PHIs then we simplified them all.
1483  PN = dyn_cast<PHINode>(BB->begin());
1484  if (PN == 0) return true;
1485
1486  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1487  // often be turned into switches and other things.
1488  if (PN->getType()->isIntegerTy(1) &&
1489      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1490       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1491       isa<BinaryOperator>(IfCond)))
1492    return false;
1493
1494  // If we all PHI nodes are promotable, check to make sure that all
1495  // instructions in the predecessor blocks can be promoted as well.  If
1496  // not, we won't be able to get rid of the control flow, so it's not
1497  // worth promoting to select instructions.
1498  BasicBlock *DomBlock = 0;
1499  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1500  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1501  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1502    IfBlock1 = 0;
1503  } else {
1504    DomBlock = *pred_begin(IfBlock1);
1505    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1506      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1507        // This is not an aggressive instruction that we can promote.
1508        // Because of this, we won't be able to get rid of the control
1509        // flow, so the xform is not worth it.
1510        return false;
1511      }
1512  }
1513
1514  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1515    IfBlock2 = 0;
1516  } else {
1517    DomBlock = *pred_begin(IfBlock2);
1518    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1519      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1520        // This is not an aggressive instruction that we can promote.
1521        // Because of this, we won't be able to get rid of the control
1522        // flow, so the xform is not worth it.
1523        return false;
1524      }
1525  }
1526
1527  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1528               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1529
1530  // If we can still promote the PHI nodes after this gauntlet of tests,
1531  // do all of the PHI's now.
1532  Instruction *InsertPt = DomBlock->getTerminator();
1533  IRBuilder<true, NoFolder> Builder(InsertPt);
1534
1535  // Move all 'aggressive' instructions, which are defined in the
1536  // conditional parts of the if's up to the dominating block.
1537  if (IfBlock1)
1538    DomBlock->getInstList().splice(InsertPt,
1539                                   IfBlock1->getInstList(), IfBlock1->begin(),
1540                                   IfBlock1->getTerminator());
1541  if (IfBlock2)
1542    DomBlock->getInstList().splice(InsertPt,
1543                                   IfBlock2->getInstList(), IfBlock2->begin(),
1544                                   IfBlock2->getTerminator());
1545
1546  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1547    // Change the PHI node into a select instruction.
1548    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1549    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1550
1551    SelectInst *NV =
1552      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1553    PN->replaceAllUsesWith(NV);
1554    NV->takeName(PN);
1555    PN->eraseFromParent();
1556  }
1557
1558  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1559  // has been flattened.  Change DomBlock to jump directly to our new block to
1560  // avoid other simplifycfg's kicking in on the diamond.
1561  TerminatorInst *OldTI = DomBlock->getTerminator();
1562  Builder.SetInsertPoint(OldTI);
1563  Builder.CreateBr(BB);
1564  OldTI->eraseFromParent();
1565  return true;
1566}
1567
1568/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1569/// to two returning blocks, try to merge them together into one return,
1570/// introducing a select if the return values disagree.
1571static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1572                                           IRBuilder<> &Builder) {
1573  assert(BI->isConditional() && "Must be a conditional branch");
1574  BasicBlock *TrueSucc = BI->getSuccessor(0);
1575  BasicBlock *FalseSucc = BI->getSuccessor(1);
1576  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1577  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1578
1579  // Check to ensure both blocks are empty (just a return) or optionally empty
1580  // with PHI nodes.  If there are other instructions, merging would cause extra
1581  // computation on one path or the other.
1582  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1583    return false;
1584  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1585    return false;
1586
1587  Builder.SetInsertPoint(BI);
1588  // Okay, we found a branch that is going to two return nodes.  If
1589  // there is no return value for this function, just change the
1590  // branch into a return.
1591  if (FalseRet->getNumOperands() == 0) {
1592    TrueSucc->removePredecessor(BI->getParent());
1593    FalseSucc->removePredecessor(BI->getParent());
1594    Builder.CreateRetVoid();
1595    EraseTerminatorInstAndDCECond(BI);
1596    return true;
1597  }
1598
1599  // Otherwise, figure out what the true and false return values are
1600  // so we can insert a new select instruction.
1601  Value *TrueValue = TrueRet->getReturnValue();
1602  Value *FalseValue = FalseRet->getReturnValue();
1603
1604  // Unwrap any PHI nodes in the return blocks.
1605  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1606    if (TVPN->getParent() == TrueSucc)
1607      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1608  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1609    if (FVPN->getParent() == FalseSucc)
1610      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1611
1612  // In order for this transformation to be safe, we must be able to
1613  // unconditionally execute both operands to the return.  This is
1614  // normally the case, but we could have a potentially-trapping
1615  // constant expression that prevents this transformation from being
1616  // safe.
1617  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1618    if (TCV->canTrap())
1619      return false;
1620  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1621    if (FCV->canTrap())
1622      return false;
1623
1624  // Okay, we collected all the mapped values and checked them for sanity, and
1625  // defined to really do this transformation.  First, update the CFG.
1626  TrueSucc->removePredecessor(BI->getParent());
1627  FalseSucc->removePredecessor(BI->getParent());
1628
1629  // Insert select instructions where needed.
1630  Value *BrCond = BI->getCondition();
1631  if (TrueValue) {
1632    // Insert a select if the results differ.
1633    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1634    } else if (isa<UndefValue>(TrueValue)) {
1635      TrueValue = FalseValue;
1636    } else {
1637      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1638                                       FalseValue, "retval");
1639    }
1640  }
1641
1642  Value *RI = !TrueValue ?
1643    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1644
1645  (void) RI;
1646
1647  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1648               << "\n  " << *BI << "NewRet = " << *RI
1649               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1650
1651  EraseTerminatorInstAndDCECond(BI);
1652
1653  return true;
1654}
1655
1656/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1657/// probabilities of the branch taking each edge. Fills in the two APInt
1658/// parameters and return true, or returns false if no or invalid metadata was
1659/// found.
1660static bool ExtractBranchMetadata(BranchInst *BI,
1661                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
1662  assert(BI->isConditional() &&
1663         "Looking for probabilities on unconditional branch?");
1664  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1665  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1666  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1667  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1668  if (!CITrue || !CIFalse) return false;
1669  ProbTrue = CITrue->getValue().getZExtValue();
1670  ProbFalse = CIFalse->getValue().getZExtValue();
1671  return true;
1672}
1673
1674/// checkCSEInPredecessor - Return true if the given instruction is available
1675/// in its predecessor block. If yes, the instruction will be removed.
1676///
1677static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1678  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1679    return false;
1680  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1681    Instruction *PBI = &*I;
1682    // Check whether Inst and PBI generate the same value.
1683    if (Inst->isIdenticalTo(PBI)) {
1684      Inst->replaceAllUsesWith(PBI);
1685      Inst->eraseFromParent();
1686      return true;
1687    }
1688  }
1689  return false;
1690}
1691
1692/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1693/// predecessor branches to us and one of our successors, fold the block into
1694/// the predecessor and use logical operations to pick the right destination.
1695bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1696  BasicBlock *BB = BI->getParent();
1697
1698  Instruction *Cond = 0;
1699  if (BI->isConditional())
1700    Cond = dyn_cast<Instruction>(BI->getCondition());
1701  else {
1702    // For unconditional branch, check for a simple CFG pattern, where
1703    // BB has a single predecessor and BB's successor is also its predecessor's
1704    // successor. If such pattern exisits, check for CSE between BB and its
1705    // predecessor.
1706    if (BasicBlock *PB = BB->getSinglePredecessor())
1707      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1708        if (PBI->isConditional() &&
1709            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1710             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1711          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1712               I != E; ) {
1713            Instruction *Curr = I++;
1714            if (isa<CmpInst>(Curr)) {
1715              Cond = Curr;
1716              break;
1717            }
1718            // Quit if we can't remove this instruction.
1719            if (!checkCSEInPredecessor(Curr, PB))
1720              return false;
1721          }
1722        }
1723
1724    if (Cond == 0)
1725      return false;
1726  }
1727
1728  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1729    Cond->getParent() != BB || !Cond->hasOneUse())
1730  return false;
1731
1732  // Only allow this if the condition is a simple instruction that can be
1733  // executed unconditionally.  It must be in the same block as the branch, and
1734  // must be at the front of the block.
1735  BasicBlock::iterator FrontIt = BB->front();
1736
1737  // Ignore dbg intrinsics.
1738  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1739
1740  // Allow a single instruction to be hoisted in addition to the compare
1741  // that feeds the branch.  We later ensure that any values that _it_ uses
1742  // were also live in the predecessor, so that we don't unnecessarily create
1743  // register pressure or inhibit out-of-order execution.
1744  Instruction *BonusInst = 0;
1745  if (&*FrontIt != Cond &&
1746      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1747      isSafeToSpeculativelyExecute(FrontIt)) {
1748    BonusInst = &*FrontIt;
1749    ++FrontIt;
1750
1751    // Ignore dbg intrinsics.
1752    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1753  }
1754
1755  // Only a single bonus inst is allowed.
1756  if (&*FrontIt != Cond)
1757    return false;
1758
1759  // Make sure the instruction after the condition is the cond branch.
1760  BasicBlock::iterator CondIt = Cond; ++CondIt;
1761
1762  // Ingore dbg intrinsics.
1763  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1764
1765  if (&*CondIt != BI)
1766    return false;
1767
1768  // Cond is known to be a compare or binary operator.  Check to make sure that
1769  // neither operand is a potentially-trapping constant expression.
1770  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1771    if (CE->canTrap())
1772      return false;
1773  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1774    if (CE->canTrap())
1775      return false;
1776
1777  // Finally, don't infinitely unroll conditional loops.
1778  BasicBlock *TrueDest  = BI->getSuccessor(0);
1779  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
1780  if (TrueDest == BB || FalseDest == BB)
1781    return false;
1782
1783  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1784    BasicBlock *PredBlock = *PI;
1785    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1786
1787    // Check that we have two conditional branches.  If there is a PHI node in
1788    // the common successor, verify that the same value flows in from both
1789    // blocks.
1790    SmallVector<PHINode*, 4> PHIs;
1791    if (PBI == 0 || PBI->isUnconditional() ||
1792        (BI->isConditional() &&
1793         !SafeToMergeTerminators(BI, PBI)) ||
1794        (!BI->isConditional() &&
1795         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
1796      continue;
1797
1798    // Determine if the two branches share a common destination.
1799    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
1800    bool InvertPredCond = false;
1801
1802    if (BI->isConditional()) {
1803      if (PBI->getSuccessor(0) == TrueDest)
1804        Opc = Instruction::Or;
1805      else if (PBI->getSuccessor(1) == FalseDest)
1806        Opc = Instruction::And;
1807      else if (PBI->getSuccessor(0) == FalseDest)
1808        Opc = Instruction::And, InvertPredCond = true;
1809      else if (PBI->getSuccessor(1) == TrueDest)
1810        Opc = Instruction::Or, InvertPredCond = true;
1811      else
1812        continue;
1813    } else {
1814      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
1815        continue;
1816    }
1817
1818    // Ensure that any values used in the bonus instruction are also used
1819    // by the terminator of the predecessor.  This means that those values
1820    // must already have been resolved, so we won't be inhibiting the
1821    // out-of-order core by speculating them earlier.
1822    if (BonusInst) {
1823      // Collect the values used by the bonus inst
1824      SmallPtrSet<Value*, 4> UsedValues;
1825      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1826           OE = BonusInst->op_end(); OI != OE; ++OI) {
1827        Value *V = *OI;
1828        if (!isa<Constant>(V))
1829          UsedValues.insert(V);
1830      }
1831
1832      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1833      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1834
1835      // Walk up to four levels back up the use-def chain of the predecessor's
1836      // terminator to see if all those values were used.  The choice of four
1837      // levels is arbitrary, to provide a compile-time-cost bound.
1838      while (!Worklist.empty()) {
1839        std::pair<Value*, unsigned> Pair = Worklist.back();
1840        Worklist.pop_back();
1841
1842        if (Pair.second >= 4) continue;
1843        UsedValues.erase(Pair.first);
1844        if (UsedValues.empty()) break;
1845
1846        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1847          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1848               OI != OE; ++OI)
1849            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1850        }
1851      }
1852
1853      if (!UsedValues.empty()) return false;
1854    }
1855
1856    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1857    IRBuilder<> Builder(PBI);
1858
1859    // If we need to invert the condition in the pred block to match, do so now.
1860    if (InvertPredCond) {
1861      Value *NewCond = PBI->getCondition();
1862
1863      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1864        CmpInst *CI = cast<CmpInst>(NewCond);
1865        CI->setPredicate(CI->getInversePredicate());
1866      } else {
1867        NewCond = Builder.CreateNot(NewCond,
1868                                    PBI->getCondition()->getName()+".not");
1869      }
1870
1871      PBI->setCondition(NewCond);
1872      PBI->swapSuccessors();
1873    }
1874
1875    // If we have a bonus inst, clone it into the predecessor block.
1876    Instruction *NewBonus = 0;
1877    if (BonusInst) {
1878      NewBonus = BonusInst->clone();
1879      PredBlock->getInstList().insert(PBI, NewBonus);
1880      NewBonus->takeName(BonusInst);
1881      BonusInst->setName(BonusInst->getName()+".old");
1882    }
1883
1884    // Clone Cond into the predecessor basic block, and or/and the
1885    // two conditions together.
1886    Instruction *New = Cond->clone();
1887    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1888    PredBlock->getInstList().insert(PBI, New);
1889    New->takeName(Cond);
1890    Cond->setName(New->getName()+".old");
1891
1892    if (BI->isConditional()) {
1893      Instruction *NewCond =
1894        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1895                                            New, "or.cond"));
1896      PBI->setCondition(NewCond);
1897
1898      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
1899      bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
1900                                                  PredFalseWeight);
1901      bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
1902                                                  SuccFalseWeight);
1903      SmallVector<uint64_t, 8> NewWeights;
1904
1905      if (PBI->getSuccessor(0) == BB) {
1906        if (PredHasWeights && SuccHasWeights) {
1907          // PBI: br i1 %x, BB, FalseDest
1908          // BI:  br i1 %y, TrueDest, FalseDest
1909          //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
1910          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
1911          //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
1912          //               TrueWeight for PBI * FalseWeight for BI.
1913          // We assume that total weights of a BranchInst can fit into 32 bits.
1914          // Therefore, we will not have overflow using 64-bit arithmetic.
1915          NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
1916               SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
1917        }
1918        AddPredecessorToBlock(TrueDest, PredBlock, BB);
1919        PBI->setSuccessor(0, TrueDest);
1920      }
1921      if (PBI->getSuccessor(1) == BB) {
1922        if (PredHasWeights && SuccHasWeights) {
1923          // PBI: br i1 %x, TrueDest, BB
1924          // BI:  br i1 %y, TrueDest, FalseDest
1925          //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
1926          //              FalseWeight for PBI * TrueWeight for BI.
1927          NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
1928              SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
1929          //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
1930          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
1931        }
1932        AddPredecessorToBlock(FalseDest, PredBlock, BB);
1933        PBI->setSuccessor(1, FalseDest);
1934      }
1935      if (NewWeights.size() == 2) {
1936        // Halve the weights if any of them cannot fit in an uint32_t
1937        FitWeights(NewWeights);
1938
1939        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
1940        PBI->setMetadata(LLVMContext::MD_prof,
1941                         MDBuilder(BI->getContext()).
1942                         createBranchWeights(MDWeights));
1943      } else
1944        PBI->setMetadata(LLVMContext::MD_prof, NULL);
1945    } else {
1946      // Update PHI nodes in the common successors.
1947      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1948        ConstantInt *PBI_C = cast<ConstantInt>(
1949          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
1950        assert(PBI_C->getType()->isIntegerTy(1));
1951        Instruction *MergedCond = 0;
1952        if (PBI->getSuccessor(0) == TrueDest) {
1953          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
1954          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
1955          //       is false: !PBI_Cond and BI_Value
1956          Instruction *NotCond =
1957            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1958                                "not.cond"));
1959          MergedCond =
1960            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1961                                NotCond, New,
1962                                "and.cond"));
1963          if (PBI_C->isOne())
1964            MergedCond =
1965              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1966                                  PBI->getCondition(), MergedCond,
1967                                  "or.cond"));
1968        } else {
1969          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
1970          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
1971          //       is false: PBI_Cond and BI_Value
1972          MergedCond =
1973            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1974                                PBI->getCondition(), New,
1975                                "and.cond"));
1976          if (PBI_C->isOne()) {
1977            Instruction *NotCond =
1978              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1979                                  "not.cond"));
1980            MergedCond =
1981              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1982                                  NotCond, MergedCond,
1983                                  "or.cond"));
1984          }
1985        }
1986        // Update PHI Node.
1987        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
1988                                  MergedCond);
1989      }
1990      // Change PBI from Conditional to Unconditional.
1991      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
1992      EraseTerminatorInstAndDCECond(PBI);
1993      PBI = New_PBI;
1994    }
1995
1996    // TODO: If BB is reachable from all paths through PredBlock, then we
1997    // could replace PBI's branch probabilities with BI's.
1998
1999    // Copy any debug value intrinsics into the end of PredBlock.
2000    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2001      if (isa<DbgInfoIntrinsic>(*I))
2002        I->clone()->insertBefore(PBI);
2003
2004    return true;
2005  }
2006  return false;
2007}
2008
2009/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2010/// predecessor of another block, this function tries to simplify it.  We know
2011/// that PBI and BI are both conditional branches, and BI is in one of the
2012/// successor blocks of PBI - PBI branches to BI.
2013static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2014  assert(PBI->isConditional() && BI->isConditional());
2015  BasicBlock *BB = BI->getParent();
2016
2017  // If this block ends with a branch instruction, and if there is a
2018  // predecessor that ends on a branch of the same condition, make
2019  // this conditional branch redundant.
2020  if (PBI->getCondition() == BI->getCondition() &&
2021      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2022    // Okay, the outcome of this conditional branch is statically
2023    // knowable.  If this block had a single pred, handle specially.
2024    if (BB->getSinglePredecessor()) {
2025      // Turn this into a branch on constant.
2026      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2027      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2028                                        CondIsTrue));
2029      return true;  // Nuke the branch on constant.
2030    }
2031
2032    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2033    // in the constant and simplify the block result.  Subsequent passes of
2034    // simplifycfg will thread the block.
2035    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2036      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2037      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2038                                       std::distance(PB, PE),
2039                                       BI->getCondition()->getName() + ".pr",
2040                                       BB->begin());
2041      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2042      // predecessor, compute the PHI'd conditional value for all of the preds.
2043      // Any predecessor where the condition is not computable we keep symbolic.
2044      for (pred_iterator PI = PB; PI != PE; ++PI) {
2045        BasicBlock *P = *PI;
2046        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2047            PBI != BI && PBI->isConditional() &&
2048            PBI->getCondition() == BI->getCondition() &&
2049            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2050          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2051          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2052                                              CondIsTrue), P);
2053        } else {
2054          NewPN->addIncoming(BI->getCondition(), P);
2055        }
2056      }
2057
2058      BI->setCondition(NewPN);
2059      return true;
2060    }
2061  }
2062
2063  // If this is a conditional branch in an empty block, and if any
2064  // predecessors is a conditional branch to one of our destinations,
2065  // fold the conditions into logical ops and one cond br.
2066  BasicBlock::iterator BBI = BB->begin();
2067  // Ignore dbg intrinsics.
2068  while (isa<DbgInfoIntrinsic>(BBI))
2069    ++BBI;
2070  if (&*BBI != BI)
2071    return false;
2072
2073
2074  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2075    if (CE->canTrap())
2076      return false;
2077
2078  int PBIOp, BIOp;
2079  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2080    PBIOp = BIOp = 0;
2081  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2082    PBIOp = 0, BIOp = 1;
2083  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2084    PBIOp = 1, BIOp = 0;
2085  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2086    PBIOp = BIOp = 1;
2087  else
2088    return false;
2089
2090  // Check to make sure that the other destination of this branch
2091  // isn't BB itself.  If so, this is an infinite loop that will
2092  // keep getting unwound.
2093  if (PBI->getSuccessor(PBIOp) == BB)
2094    return false;
2095
2096  // Do not perform this transformation if it would require
2097  // insertion of a large number of select instructions. For targets
2098  // without predication/cmovs, this is a big pessimization.
2099  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2100
2101  unsigned NumPhis = 0;
2102  for (BasicBlock::iterator II = CommonDest->begin();
2103       isa<PHINode>(II); ++II, ++NumPhis)
2104    if (NumPhis > 2) // Disable this xform.
2105      return false;
2106
2107  // Finally, if everything is ok, fold the branches to logical ops.
2108  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2109
2110  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2111               << "AND: " << *BI->getParent());
2112
2113
2114  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2115  // branch in it, where one edge (OtherDest) goes back to itself but the other
2116  // exits.  We don't *know* that the program avoids the infinite loop
2117  // (even though that seems likely).  If we do this xform naively, we'll end up
2118  // recursively unpeeling the loop.  Since we know that (after the xform is
2119  // done) that the block *is* infinite if reached, we just make it an obviously
2120  // infinite loop with no cond branch.
2121  if (OtherDest == BB) {
2122    // Insert it at the end of the function, because it's either code,
2123    // or it won't matter if it's hot. :)
2124    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2125                                                  "infloop", BB->getParent());
2126    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2127    OtherDest = InfLoopBlock;
2128  }
2129
2130  DEBUG(dbgs() << *PBI->getParent()->getParent());
2131
2132  // BI may have other predecessors.  Because of this, we leave
2133  // it alone, but modify PBI.
2134
2135  // Make sure we get to CommonDest on True&True directions.
2136  Value *PBICond = PBI->getCondition();
2137  IRBuilder<true, NoFolder> Builder(PBI);
2138  if (PBIOp)
2139    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2140
2141  Value *BICond = BI->getCondition();
2142  if (BIOp)
2143    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2144
2145  // Merge the conditions.
2146  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2147
2148  // Modify PBI to branch on the new condition to the new dests.
2149  PBI->setCondition(Cond);
2150  PBI->setSuccessor(0, CommonDest);
2151  PBI->setSuccessor(1, OtherDest);
2152
2153  // Update branch weight for PBI.
2154  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2155  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2156                                              PredFalseWeight);
2157  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2158                                              SuccFalseWeight);
2159  if (PredHasWeights && SuccHasWeights) {
2160    uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2161    uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2162    uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2163    uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2164    // The weight to CommonDest should be PredCommon * SuccTotal +
2165    //                                    PredOther * SuccCommon.
2166    // The weight to OtherDest should be PredOther * SuccOther.
2167    SmallVector<uint64_t, 2> NewWeights;
2168    NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2169                         PredOther * SuccCommon);
2170    NewWeights.push_back(PredOther * SuccOther);
2171    // Halve the weights if any of them cannot fit in an uint32_t
2172    FitWeights(NewWeights);
2173
2174    SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2175    PBI->setMetadata(LLVMContext::MD_prof,
2176                     MDBuilder(BI->getContext()).
2177                     createBranchWeights(MDWeights));
2178  }
2179
2180  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2181  // block that are identical to the entries for BI's block.
2182  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2183
2184  // We know that the CommonDest already had an edge from PBI to
2185  // it.  If it has PHIs though, the PHIs may have different
2186  // entries for BB and PBI's BB.  If so, insert a select to make
2187  // them agree.
2188  PHINode *PN;
2189  for (BasicBlock::iterator II = CommonDest->begin();
2190       (PN = dyn_cast<PHINode>(II)); ++II) {
2191    Value *BIV = PN->getIncomingValueForBlock(BB);
2192    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2193    Value *PBIV = PN->getIncomingValue(PBBIdx);
2194    if (BIV != PBIV) {
2195      // Insert a select in PBI to pick the right value.
2196      Value *NV = cast<SelectInst>
2197        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2198      PN->setIncomingValue(PBBIdx, NV);
2199    }
2200  }
2201
2202  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2203  DEBUG(dbgs() << *PBI->getParent()->getParent());
2204
2205  // This basic block is probably dead.  We know it has at least
2206  // one fewer predecessor.
2207  return true;
2208}
2209
2210// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2211// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2212// Takes care of updating the successors and removing the old terminator.
2213// Also makes sure not to introduce new successors by assuming that edges to
2214// non-successor TrueBBs and FalseBBs aren't reachable.
2215static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2216                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
2217                                       uint32_t TrueWeight,
2218                                       uint32_t FalseWeight){
2219  // Remove any superfluous successor edges from the CFG.
2220  // First, figure out which successors to preserve.
2221  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2222  // successor.
2223  BasicBlock *KeepEdge1 = TrueBB;
2224  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2225
2226  // Then remove the rest.
2227  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2228    BasicBlock *Succ = OldTerm->getSuccessor(I);
2229    // Make sure only to keep exactly one copy of each edge.
2230    if (Succ == KeepEdge1)
2231      KeepEdge1 = 0;
2232    else if (Succ == KeepEdge2)
2233      KeepEdge2 = 0;
2234    else
2235      Succ->removePredecessor(OldTerm->getParent());
2236  }
2237
2238  IRBuilder<> Builder(OldTerm);
2239  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2240
2241  // Insert an appropriate new terminator.
2242  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2243    if (TrueBB == FalseBB)
2244      // We were only looking for one successor, and it was present.
2245      // Create an unconditional branch to it.
2246      Builder.CreateBr(TrueBB);
2247    else {
2248      // We found both of the successors we were looking for.
2249      // Create a conditional branch sharing the condition of the select.
2250      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2251      if (TrueWeight != FalseWeight)
2252        NewBI->setMetadata(LLVMContext::MD_prof,
2253                           MDBuilder(OldTerm->getContext()).
2254                           createBranchWeights(TrueWeight, FalseWeight));
2255    }
2256  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2257    // Neither of the selected blocks were successors, so this
2258    // terminator must be unreachable.
2259    new UnreachableInst(OldTerm->getContext(), OldTerm);
2260  } else {
2261    // One of the selected values was a successor, but the other wasn't.
2262    // Insert an unconditional branch to the one that was found;
2263    // the edge to the one that wasn't must be unreachable.
2264    if (KeepEdge1 == 0)
2265      // Only TrueBB was found.
2266      Builder.CreateBr(TrueBB);
2267    else
2268      // Only FalseBB was found.
2269      Builder.CreateBr(FalseBB);
2270  }
2271
2272  EraseTerminatorInstAndDCECond(OldTerm);
2273  return true;
2274}
2275
2276// SimplifySwitchOnSelect - Replaces
2277//   (switch (select cond, X, Y)) on constant X, Y
2278// with a branch - conditional if X and Y lead to distinct BBs,
2279// unconditional otherwise.
2280static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2281  // Check for constant integer values in the select.
2282  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2283  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2284  if (!TrueVal || !FalseVal)
2285    return false;
2286
2287  // Find the relevant condition and destinations.
2288  Value *Condition = Select->getCondition();
2289  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2290  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2291
2292  // Get weight for TrueBB and FalseBB.
2293  uint32_t TrueWeight = 0, FalseWeight = 0;
2294  SmallVector<uint64_t, 8> Weights;
2295  bool HasWeights = HasBranchWeights(SI);
2296  if (HasWeights) {
2297    GetBranchWeights(SI, Weights);
2298    if (Weights.size() == 1 + SI->getNumCases()) {
2299      TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2300                                     getSuccessorIndex()];
2301      FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2302                                      getSuccessorIndex()];
2303    }
2304  }
2305
2306  // Perform the actual simplification.
2307  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2308                                    TrueWeight, FalseWeight);
2309}
2310
2311// SimplifyIndirectBrOnSelect - Replaces
2312//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2313//                             blockaddress(@fn, BlockB)))
2314// with
2315//   (br cond, BlockA, BlockB).
2316static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2317  // Check that both operands of the select are block addresses.
2318  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2319  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2320  if (!TBA || !FBA)
2321    return false;
2322
2323  // Extract the actual blocks.
2324  BasicBlock *TrueBB = TBA->getBasicBlock();
2325  BasicBlock *FalseBB = FBA->getBasicBlock();
2326
2327  // Perform the actual simplification.
2328  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2329                                    0, 0);
2330}
2331
2332/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2333/// instruction (a seteq/setne with a constant) as the only instruction in a
2334/// block that ends with an uncond branch.  We are looking for a very specific
2335/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2336/// this case, we merge the first two "or's of icmp" into a switch, but then the
2337/// default value goes to an uncond block with a seteq in it, we get something
2338/// like:
2339///
2340///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2341/// DEFAULT:
2342///   %tmp = icmp eq i8 %A, 92
2343///   br label %end
2344/// end:
2345///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2346///
2347/// We prefer to split the edge to 'end' so that there is a true/false entry to
2348/// the PHI, merging the third icmp into the switch.
2349static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
2350                                                  const TargetData *TD,
2351                                                  IRBuilder<> &Builder) {
2352  BasicBlock *BB = ICI->getParent();
2353
2354  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2355  // complex.
2356  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2357
2358  Value *V = ICI->getOperand(0);
2359  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2360
2361  // The pattern we're looking for is where our only predecessor is a switch on
2362  // 'V' and this block is the default case for the switch.  In this case we can
2363  // fold the compared value into the switch to simplify things.
2364  BasicBlock *Pred = BB->getSinglePredecessor();
2365  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2366
2367  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2368  if (SI->getCondition() != V)
2369    return false;
2370
2371  // If BB is reachable on a non-default case, then we simply know the value of
2372  // V in this block.  Substitute it and constant fold the icmp instruction
2373  // away.
2374  if (SI->getDefaultDest() != BB) {
2375    ConstantInt *VVal = SI->findCaseDest(BB);
2376    assert(VVal && "Should have a unique destination value");
2377    ICI->setOperand(0, VVal);
2378
2379    if (Value *V = SimplifyInstruction(ICI, TD)) {
2380      ICI->replaceAllUsesWith(V);
2381      ICI->eraseFromParent();
2382    }
2383    // BB is now empty, so it is likely to simplify away.
2384    return SimplifyCFG(BB) | true;
2385  }
2386
2387  // Ok, the block is reachable from the default dest.  If the constant we're
2388  // comparing exists in one of the other edges, then we can constant fold ICI
2389  // and zap it.
2390  if (SI->findCaseValue(Cst) != SI->case_default()) {
2391    Value *V;
2392    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2393      V = ConstantInt::getFalse(BB->getContext());
2394    else
2395      V = ConstantInt::getTrue(BB->getContext());
2396
2397    ICI->replaceAllUsesWith(V);
2398    ICI->eraseFromParent();
2399    // BB is now empty, so it is likely to simplify away.
2400    return SimplifyCFG(BB) | true;
2401  }
2402
2403  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2404  // the block.
2405  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2406  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2407  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2408      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2409    return false;
2410
2411  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2412  // true in the PHI.
2413  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2414  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2415
2416  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2417    std::swap(DefaultCst, NewCst);
2418
2419  // Replace ICI (which is used by the PHI for the default value) with true or
2420  // false depending on if it is EQ or NE.
2421  ICI->replaceAllUsesWith(DefaultCst);
2422  ICI->eraseFromParent();
2423
2424  // Okay, the switch goes to this block on a default value.  Add an edge from
2425  // the switch to the merge point on the compared value.
2426  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2427                                         BB->getParent(), BB);
2428  SI->addCase(Cst, NewBB);
2429
2430  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2431  Builder.SetInsertPoint(NewBB);
2432  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2433  Builder.CreateBr(SuccBlock);
2434  PHIUse->addIncoming(NewCst, NewBB);
2435  return true;
2436}
2437
2438/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2439/// Check to see if it is branching on an or/and chain of icmp instructions, and
2440/// fold it into a switch instruction if so.
2441static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2442                                      IRBuilder<> &Builder) {
2443  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2444  if (Cond == 0) return false;
2445
2446
2447  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2448  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2449  // 'setne's and'ed together, collect them.
2450  Value *CompVal = 0;
2451  std::vector<ConstantInt*> Values;
2452  bool TrueWhenEqual = true;
2453  Value *ExtraCase = 0;
2454  unsigned UsedICmps = 0;
2455
2456  if (Cond->getOpcode() == Instruction::Or) {
2457    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2458                                     UsedICmps);
2459  } else if (Cond->getOpcode() == Instruction::And) {
2460    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2461                                     UsedICmps);
2462    TrueWhenEqual = false;
2463  }
2464
2465  // If we didn't have a multiply compared value, fail.
2466  if (CompVal == 0) return false;
2467
2468  // Avoid turning single icmps into a switch.
2469  if (UsedICmps <= 1)
2470    return false;
2471
2472  // There might be duplicate constants in the list, which the switch
2473  // instruction can't handle, remove them now.
2474  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2475  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2476
2477  // If Extra was used, we require at least two switch values to do the
2478  // transformation.  A switch with one value is just an cond branch.
2479  if (ExtraCase && Values.size() < 2) return false;
2480
2481  // TODO: Preserve branch weight metadata, similarly to how
2482  // FoldValueComparisonIntoPredecessors preserves it.
2483
2484  // Figure out which block is which destination.
2485  BasicBlock *DefaultBB = BI->getSuccessor(1);
2486  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2487  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2488
2489  BasicBlock *BB = BI->getParent();
2490
2491  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2492               << " cases into SWITCH.  BB is:\n" << *BB);
2493
2494  // If there are any extra values that couldn't be folded into the switch
2495  // then we evaluate them with an explicit branch first.  Split the block
2496  // right before the condbr to handle it.
2497  if (ExtraCase) {
2498    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2499    // Remove the uncond branch added to the old block.
2500    TerminatorInst *OldTI = BB->getTerminator();
2501    Builder.SetInsertPoint(OldTI);
2502
2503    if (TrueWhenEqual)
2504      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2505    else
2506      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2507
2508    OldTI->eraseFromParent();
2509
2510    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2511    // for the edge we just added.
2512    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2513
2514    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2515          << "\nEXTRABB = " << *BB);
2516    BB = NewBB;
2517  }
2518
2519  Builder.SetInsertPoint(BI);
2520  // Convert pointer to int before we switch.
2521  if (CompVal->getType()->isPointerTy()) {
2522    assert(TD && "Cannot switch on pointer without TargetData");
2523    CompVal = Builder.CreatePtrToInt(CompVal,
2524                                     TD->getIntPtrType(CompVal->getContext()),
2525                                     "magicptr");
2526  }
2527
2528  // Create the new switch instruction now.
2529  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2530
2531  // Add all of the 'cases' to the switch instruction.
2532  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2533    New->addCase(Values[i], EdgeBB);
2534
2535  // We added edges from PI to the EdgeBB.  As such, if there were any
2536  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2537  // the number of edges added.
2538  for (BasicBlock::iterator BBI = EdgeBB->begin();
2539       isa<PHINode>(BBI); ++BBI) {
2540    PHINode *PN = cast<PHINode>(BBI);
2541    Value *InVal = PN->getIncomingValueForBlock(BB);
2542    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2543      PN->addIncoming(InVal, BB);
2544  }
2545
2546  // Erase the old branch instruction.
2547  EraseTerminatorInstAndDCECond(BI);
2548
2549  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2550  return true;
2551}
2552
2553bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2554  // If this is a trivial landing pad that just continues unwinding the caught
2555  // exception then zap the landing pad, turning its invokes into calls.
2556  BasicBlock *BB = RI->getParent();
2557  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2558  if (RI->getValue() != LPInst)
2559    // Not a landing pad, or the resume is not unwinding the exception that
2560    // caused control to branch here.
2561    return false;
2562
2563  // Check that there are no other instructions except for debug intrinsics.
2564  BasicBlock::iterator I = LPInst, E = RI;
2565  while (++I != E)
2566    if (!isa<DbgInfoIntrinsic>(I))
2567      return false;
2568
2569  // Turn all invokes that unwind here into calls and delete the basic block.
2570  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2571    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2572    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2573    // Insert a call instruction before the invoke.
2574    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2575    Call->takeName(II);
2576    Call->setCallingConv(II->getCallingConv());
2577    Call->setAttributes(II->getAttributes());
2578    Call->setDebugLoc(II->getDebugLoc());
2579
2580    // Anything that used the value produced by the invoke instruction now uses
2581    // the value produced by the call instruction.  Note that we do this even
2582    // for void functions and calls with no uses so that the callgraph edge is
2583    // updated.
2584    II->replaceAllUsesWith(Call);
2585    BB->removePredecessor(II->getParent());
2586
2587    // Insert a branch to the normal destination right before the invoke.
2588    BranchInst::Create(II->getNormalDest(), II);
2589
2590    // Finally, delete the invoke instruction!
2591    II->eraseFromParent();
2592  }
2593
2594  // The landingpad is now unreachable.  Zap it.
2595  BB->eraseFromParent();
2596  return true;
2597}
2598
2599bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2600  BasicBlock *BB = RI->getParent();
2601  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2602
2603  // Find predecessors that end with branches.
2604  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2605  SmallVector<BranchInst*, 8> CondBranchPreds;
2606  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2607    BasicBlock *P = *PI;
2608    TerminatorInst *PTI = P->getTerminator();
2609    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2610      if (BI->isUnconditional())
2611        UncondBranchPreds.push_back(P);
2612      else
2613        CondBranchPreds.push_back(BI);
2614    }
2615  }
2616
2617  // If we found some, do the transformation!
2618  if (!UncondBranchPreds.empty() && DupRet) {
2619    while (!UncondBranchPreds.empty()) {
2620      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2621      DEBUG(dbgs() << "FOLDING: " << *BB
2622            << "INTO UNCOND BRANCH PRED: " << *Pred);
2623      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2624    }
2625
2626    // If we eliminated all predecessors of the block, delete the block now.
2627    if (pred_begin(BB) == pred_end(BB))
2628      // We know there are no successors, so just nuke the block.
2629      BB->eraseFromParent();
2630
2631    return true;
2632  }
2633
2634  // Check out all of the conditional branches going to this return
2635  // instruction.  If any of them just select between returns, change the
2636  // branch itself into a select/return pair.
2637  while (!CondBranchPreds.empty()) {
2638    BranchInst *BI = CondBranchPreds.pop_back_val();
2639
2640    // Check to see if the non-BB successor is also a return block.
2641    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2642        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2643        SimplifyCondBranchToTwoReturns(BI, Builder))
2644      return true;
2645  }
2646  return false;
2647}
2648
2649bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2650  BasicBlock *BB = UI->getParent();
2651
2652  bool Changed = false;
2653
2654  // If there are any instructions immediately before the unreachable that can
2655  // be removed, do so.
2656  while (UI != BB->begin()) {
2657    BasicBlock::iterator BBI = UI;
2658    --BBI;
2659    // Do not delete instructions that can have side effects which might cause
2660    // the unreachable to not be reachable; specifically, calls and volatile
2661    // operations may have this effect.
2662    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2663
2664    if (BBI->mayHaveSideEffects()) {
2665      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2666        if (SI->isVolatile())
2667          break;
2668      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2669        if (LI->isVolatile())
2670          break;
2671      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2672        if (RMWI->isVolatile())
2673          break;
2674      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2675        if (CXI->isVolatile())
2676          break;
2677      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2678                 !isa<LandingPadInst>(BBI)) {
2679        break;
2680      }
2681      // Note that deleting LandingPad's here is in fact okay, although it
2682      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2683      // all the predecessors of this block will be the unwind edges of Invokes,
2684      // and we can therefore guarantee this block will be erased.
2685    }
2686
2687    // Delete this instruction (any uses are guaranteed to be dead)
2688    if (!BBI->use_empty())
2689      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2690    BBI->eraseFromParent();
2691    Changed = true;
2692  }
2693
2694  // If the unreachable instruction is the first in the block, take a gander
2695  // at all of the predecessors of this instruction, and simplify them.
2696  if (&BB->front() != UI) return Changed;
2697
2698  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2699  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2700    TerminatorInst *TI = Preds[i]->getTerminator();
2701    IRBuilder<> Builder(TI);
2702    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2703      if (BI->isUnconditional()) {
2704        if (BI->getSuccessor(0) == BB) {
2705          new UnreachableInst(TI->getContext(), TI);
2706          TI->eraseFromParent();
2707          Changed = true;
2708        }
2709      } else {
2710        if (BI->getSuccessor(0) == BB) {
2711          Builder.CreateBr(BI->getSuccessor(1));
2712          EraseTerminatorInstAndDCECond(BI);
2713        } else if (BI->getSuccessor(1) == BB) {
2714          Builder.CreateBr(BI->getSuccessor(0));
2715          EraseTerminatorInstAndDCECond(BI);
2716          Changed = true;
2717        }
2718      }
2719    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2720      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2721           i != e; ++i)
2722        if (i.getCaseSuccessor() == BB) {
2723          BB->removePredecessor(SI->getParent());
2724          SI->removeCase(i);
2725          --i; --e;
2726          Changed = true;
2727        }
2728      // If the default value is unreachable, figure out the most popular
2729      // destination and make it the default.
2730      if (SI->getDefaultDest() == BB) {
2731        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2732        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2733             i != e; ++i) {
2734          std::pair<unsigned, unsigned> &entry =
2735              Popularity[i.getCaseSuccessor()];
2736          if (entry.first == 0) {
2737            entry.first = 1;
2738            entry.second = i.getCaseIndex();
2739          } else {
2740            entry.first++;
2741          }
2742        }
2743
2744        // Find the most popular block.
2745        unsigned MaxPop = 0;
2746        unsigned MaxIndex = 0;
2747        BasicBlock *MaxBlock = 0;
2748        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2749             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2750          if (I->second.first > MaxPop ||
2751              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2752            MaxPop = I->second.first;
2753            MaxIndex = I->second.second;
2754            MaxBlock = I->first;
2755          }
2756        }
2757        if (MaxBlock) {
2758          // Make this the new default, allowing us to delete any explicit
2759          // edges to it.
2760          SI->setDefaultDest(MaxBlock);
2761          Changed = true;
2762
2763          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2764          // it.
2765          if (isa<PHINode>(MaxBlock->begin()))
2766            for (unsigned i = 0; i != MaxPop-1; ++i)
2767              MaxBlock->removePredecessor(SI->getParent());
2768
2769          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2770               i != e; ++i)
2771            if (i.getCaseSuccessor() == MaxBlock) {
2772              SI->removeCase(i);
2773              --i; --e;
2774            }
2775        }
2776      }
2777    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2778      if (II->getUnwindDest() == BB) {
2779        // Convert the invoke to a call instruction.  This would be a good
2780        // place to note that the call does not throw though.
2781        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2782        II->removeFromParent();   // Take out of symbol table
2783
2784        // Insert the call now...
2785        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2786        Builder.SetInsertPoint(BI);
2787        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2788                                          Args, II->getName());
2789        CI->setCallingConv(II->getCallingConv());
2790        CI->setAttributes(II->getAttributes());
2791        // If the invoke produced a value, the call does now instead.
2792        II->replaceAllUsesWith(CI);
2793        delete II;
2794        Changed = true;
2795      }
2796    }
2797  }
2798
2799  // If this block is now dead, remove it.
2800  if (pred_begin(BB) == pred_end(BB) &&
2801      BB != &BB->getParent()->getEntryBlock()) {
2802    // We know there are no successors, so just nuke the block.
2803    BB->eraseFromParent();
2804    return true;
2805  }
2806
2807  return Changed;
2808}
2809
2810/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2811/// integer range comparison into a sub, an icmp and a branch.
2812static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2813  assert(SI->getNumCases() > 1 && "Degenerate switch?");
2814
2815  // Make sure all cases point to the same destination and gather the values.
2816  SmallVector<ConstantInt *, 16> Cases;
2817  SwitchInst::CaseIt I = SI->case_begin();
2818  Cases.push_back(I.getCaseValue());
2819  SwitchInst::CaseIt PrevI = I++;
2820  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
2821    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
2822      return false;
2823    Cases.push_back(I.getCaseValue());
2824  }
2825  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
2826
2827  // Sort the case values, then check if they form a range we can transform.
2828  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2829  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2830    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2831      return false;
2832  }
2833
2834  Constant *Offset = ConstantExpr::getNeg(Cases.back());
2835  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
2836
2837  Value *Sub = SI->getCondition();
2838  if (!Offset->isNullValue())
2839    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2840  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2841  Builder.CreateCondBr(
2842      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
2843
2844  // Prune obsolete incoming values off the successor's PHI nodes.
2845  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
2846       isa<PHINode>(BBI); ++BBI) {
2847    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
2848      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2849  }
2850  SI->eraseFromParent();
2851
2852  return true;
2853}
2854
2855/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2856/// and use it to remove dead cases.
2857static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2858  Value *Cond = SI->getCondition();
2859  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2860  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2861  ComputeMaskedBits(Cond, KnownZero, KnownOne);
2862
2863  // Gather dead cases.
2864  SmallVector<ConstantInt*, 8> DeadCases;
2865  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2866    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
2867        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
2868      DeadCases.push_back(I.getCaseValue());
2869      DEBUG(dbgs() << "SimplifyCFG: switch case '"
2870                   << I.getCaseValue() << "' is dead.\n");
2871    }
2872  }
2873
2874  // Remove dead cases from the switch.
2875  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2876    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
2877    assert(Case != SI->case_default() &&
2878           "Case was not found. Probably mistake in DeadCases forming.");
2879    // Prune unused values from PHI nodes.
2880    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
2881    SI->removeCase(Case);
2882  }
2883
2884  return !DeadCases.empty();
2885}
2886
2887/// FindPHIForConditionForwarding - If BB would be eligible for simplification
2888/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2889/// by an unconditional branch), look at the phi node for BB in the successor
2890/// block and see if the incoming value is equal to CaseValue. If so, return
2891/// the phi node, and set PhiIndex to BB's index in the phi node.
2892static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2893                                              BasicBlock *BB,
2894                                              int *PhiIndex) {
2895  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2896    return NULL; // BB must be empty to be a candidate for simplification.
2897  if (!BB->getSinglePredecessor())
2898    return NULL; // BB must be dominated by the switch.
2899
2900  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2901  if (!Branch || !Branch->isUnconditional())
2902    return NULL; // Terminator must be unconditional branch.
2903
2904  BasicBlock *Succ = Branch->getSuccessor(0);
2905
2906  BasicBlock::iterator I = Succ->begin();
2907  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2908    int Idx = PHI->getBasicBlockIndex(BB);
2909    assert(Idx >= 0 && "PHI has no entry for predecessor?");
2910
2911    Value *InValue = PHI->getIncomingValue(Idx);
2912    if (InValue != CaseValue) continue;
2913
2914    *PhiIndex = Idx;
2915    return PHI;
2916  }
2917
2918  return NULL;
2919}
2920
2921/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2922/// instruction to a phi node dominated by the switch, if that would mean that
2923/// some of the destination blocks of the switch can be folded away.
2924/// Returns true if a change is made.
2925static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2926  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2927  ForwardingNodesMap ForwardingNodes;
2928
2929  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2930    ConstantInt *CaseValue = I.getCaseValue();
2931    BasicBlock *CaseDest = I.getCaseSuccessor();
2932
2933    int PhiIndex;
2934    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2935                                                 &PhiIndex);
2936    if (!PHI) continue;
2937
2938    ForwardingNodes[PHI].push_back(PhiIndex);
2939  }
2940
2941  bool Changed = false;
2942
2943  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2944       E = ForwardingNodes.end(); I != E; ++I) {
2945    PHINode *Phi = I->first;
2946    SmallVector<int,4> &Indexes = I->second;
2947
2948    if (Indexes.size() < 2) continue;
2949
2950    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2951      Phi->setIncomingValue(Indexes[I], SI->getCondition());
2952    Changed = true;
2953  }
2954
2955  return Changed;
2956}
2957
2958/// ValidLookupTableConstant - Return true if the backend will be able to handle
2959/// initializing an array of constants like C.
2960static bool ValidLookupTableConstant(Constant *C) {
2961  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2962    return CE->isGEPWithNoNotionalOverIndexing();
2963
2964  return isa<ConstantFP>(C) ||
2965      isa<ConstantInt>(C) ||
2966      isa<ConstantPointerNull>(C) ||
2967      isa<GlobalValue>(C) ||
2968      isa<UndefValue>(C);
2969}
2970
2971/// GetCaseResulsts - Try to determine the resulting constant values in phi
2972/// nodes at the common destination basic block for one of the case
2973/// destinations of a switch instruction.
2974static bool GetCaseResults(SwitchInst *SI,
2975                           BasicBlock *CaseDest,
2976                           BasicBlock **CommonDest,
2977                           SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
2978  // The block from which we enter the common destination.
2979  BasicBlock *Pred = SI->getParent();
2980
2981  // If CaseDest is empty, continue to its successor.
2982  if (CaseDest->getFirstNonPHIOrDbg() == CaseDest->getTerminator() &&
2983      !isa<PHINode>(CaseDest->begin())) {
2984
2985    TerminatorInst *Terminator = CaseDest->getTerminator();
2986    if (Terminator->getNumSuccessors() != 1)
2987      return false;
2988
2989    Pred = CaseDest;
2990    CaseDest = Terminator->getSuccessor(0);
2991  }
2992
2993  // If we did not have a CommonDest before, use the current one.
2994  if (!*CommonDest)
2995    *CommonDest = CaseDest;
2996  // If the destination isn't the common one, abort.
2997  if (CaseDest != *CommonDest)
2998    return false;
2999
3000  // Get the values for this case from phi nodes in the destination block.
3001  BasicBlock::iterator I = (*CommonDest)->begin();
3002  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3003    int Idx = PHI->getBasicBlockIndex(Pred);
3004    if (Idx == -1)
3005      continue;
3006
3007    Constant *ConstVal = dyn_cast<Constant>(PHI->getIncomingValue(Idx));
3008    if (!ConstVal)
3009      return false;
3010
3011    // Be conservative about which kinds of constants we support.
3012    if (!ValidLookupTableConstant(ConstVal))
3013      return false;
3014
3015    Res.push_back(std::make_pair(PHI, ConstVal));
3016  }
3017
3018  return true;
3019}
3020
3021/// BuildLookupTable - Build a lookup table with the contents of Results, using
3022/// DefaultResult to fill the holes in the table. If the table ends up
3023/// containing the same result in each element, set *SingleResult to that value
3024/// and return NULL.
3025static GlobalVariable *BuildLookupTable(Module &M,
3026                                        uint64_t TableSize,
3027                                        ConstantInt *Offset,
3028              const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Results,
3029                                        Constant *DefaultResult,
3030                                        Constant **SingleResult) {
3031  assert(Results.size() && "Need values to build lookup table");
3032  assert(TableSize >= Results.size() && "Table needs to hold all values");
3033
3034  // If all values in the table are equal, this is that value.
3035  Constant *SameResult = Results.begin()->second;
3036
3037  // Build up the table contents.
3038  std::vector<Constant*> TableContents(TableSize);
3039  for (size_t I = 0, E = Results.size(); I != E; ++I) {
3040    ConstantInt *CaseVal = Results[I].first;
3041    Constant *CaseRes = Results[I].second;
3042
3043    uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
3044    TableContents[Idx] = CaseRes;
3045
3046    if (CaseRes != SameResult)
3047      SameResult = NULL;
3048  }
3049
3050  // Fill in any holes in the table with the default result.
3051  if (Results.size() < TableSize) {
3052    for (unsigned i = 0; i < TableSize; ++i) {
3053      if (!TableContents[i])
3054        TableContents[i] = DefaultResult;
3055    }
3056
3057    if (DefaultResult != SameResult)
3058      SameResult = NULL;
3059  }
3060
3061  // Same result was used in the entire table; just return that.
3062  if (SameResult) {
3063    *SingleResult = SameResult;
3064    return NULL;
3065  }
3066
3067  ArrayType *ArrayTy = ArrayType::get(DefaultResult->getType(), TableSize);
3068  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3069
3070  GlobalVariable *GV = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3071                                          GlobalVariable::PrivateLinkage,
3072                                          Initializer,
3073                                          "switch.table");
3074  GV->setUnnamedAddr(true);
3075  return GV;
3076}
3077
3078/// SwitchToLookupTable - If the switch is only used to initialize one or more
3079/// phi nodes in a common successor block with different constant values,
3080/// replace the switch with lookup tables.
3081static bool SwitchToLookupTable(SwitchInst *SI,
3082                                IRBuilder<> &Builder) {
3083  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3084  // FIXME: Handle unreachable cases.
3085
3086  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3087  // split off a dense part and build a lookup table for that.
3088
3089  // FIXME: If the results are all integers and the lookup table would fit in a
3090  // target-legal register, we should store them as a bitmap and use shift/mask
3091  // to look up the result.
3092
3093  // FIXME: This creates arrays of GEPs to constant strings, which means each
3094  // GEP needs a runtime relocation in PIC code. We should just build one big
3095  // string and lookup indices into that.
3096
3097  // Ignore the switch if the number of cases are too small.
3098  // This is similar to the check when building jump tables in
3099  // SelectionDAGBuilder::handleJTSwitchCase.
3100  // FIXME: Determine the best cut-off.
3101  if (SI->getNumCases() < 4)
3102    return false;
3103
3104  // Figure out the corresponding result for each case value and phi node in the
3105  // common destination, as well as the the min and max case values.
3106  assert(SI->case_begin() != SI->case_end());
3107  SwitchInst::CaseIt CI = SI->case_begin();
3108  ConstantInt *MinCaseVal = CI.getCaseValue();
3109  ConstantInt *MaxCaseVal = CI.getCaseValue();
3110
3111  BasicBlock *CommonDest = NULL;
3112  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3113  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3114  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3115  SmallDenseMap<PHINode*, Type*> ResultTypes;
3116  SmallVector<PHINode*, 4> PHIs;
3117
3118  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3119    ConstantInt *CaseVal = CI.getCaseValue();
3120    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3121      MinCaseVal = CaseVal;
3122    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3123      MaxCaseVal = CaseVal;
3124
3125    // Resulting value at phi nodes for this case value.
3126    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3127    ResultsTy Results;
3128    if (!GetCaseResults(SI, CI.getCaseSuccessor(), &CommonDest, Results))
3129      return false;
3130
3131    // Append the result from this case to the list for each phi.
3132    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3133      if (!ResultLists.count(I->first))
3134        PHIs.push_back(I->first);
3135      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3136    }
3137  }
3138
3139  // Get the resulting values for the default case.
3140  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3141  if (!GetCaseResults(SI, SI->getDefaultDest(), &CommonDest, DefaultResultsList))
3142    return false;
3143  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3144    PHINode *PHI = DefaultResultsList[I].first;
3145    Constant *Result = DefaultResultsList[I].second;
3146    DefaultResults[PHI] = Result;
3147    ResultTypes[PHI] = Result->getType();
3148  }
3149
3150  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3151  // The table density should be at lest 40%. This is the same criterion as for
3152  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3153  // FIXME: Find the best cut-off.
3154  // Be careful to avoid overlow in the density computation.
3155  if (RangeSpread.zextOrSelf(64).ugt(UINT64_MAX / 4 - 1))
3156    return false;
3157  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3158  if (SI->getNumCases() * 10 < TableSize * 4)
3159    return false;
3160
3161  // Build the lookup tables.
3162  SmallDenseMap<PHINode*, GlobalVariable*> LookupTables;
3163  SmallDenseMap<PHINode*, Constant*> SingleResults;
3164
3165  Module &Mod = *CommonDest->getParent()->getParent();
3166  for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end();
3167       I != E; ++I) {
3168    PHINode *PHI = *I;
3169
3170    Constant *SingleResult = NULL;
3171    LookupTables[PHI] = BuildLookupTable(Mod, TableSize, MinCaseVal,
3172                                         ResultLists[PHI], DefaultResults[PHI],
3173                                         &SingleResult);
3174    SingleResults[PHI] = SingleResult;
3175  }
3176
3177  // Create the BB that does the lookups.
3178  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3179                                            "switch.lookup",
3180                                            CommonDest->getParent(),
3181                                            CommonDest);
3182
3183  // Check whether the condition value is within the case range, and branch to
3184  // the new BB.
3185  Builder.SetInsertPoint(SI);
3186  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3187                                        "switch.tableidx");
3188  Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3189      MinCaseVal->getType(), TableSize));
3190  Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3191
3192  // Populate the BB that does the lookups.
3193  Builder.SetInsertPoint(LookupBB);
3194  bool ReturnedEarly = false;
3195  for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end();
3196       I != E; ++I) {
3197    PHINode *PHI = *I;
3198    // There was a single result for this phi; just use that.
3199    if (Constant *SingleResult = SingleResults[PHI]) {
3200      PHI->addIncoming(SingleResult, LookupBB);
3201      continue;
3202    }
3203
3204    Value *GEPIndices[] = { Builder.getInt32(0), TableIndex };
3205    Value *GEP = Builder.CreateInBoundsGEP(LookupTables[PHI], GEPIndices,
3206                                           "switch.gep");
3207    Value *Result = Builder.CreateLoad(GEP, "switch.load");
3208
3209    // If the result is only going to be used to return from the function,
3210    // we want to do that right here.
3211    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin())) {
3212      if (CommonDest->getFirstNonPHIOrDbg() == CommonDest->getTerminator()) {
3213        Builder.CreateRet(Result);
3214        ReturnedEarly = true;
3215      }
3216    }
3217
3218    if (!ReturnedEarly)
3219      PHI->addIncoming(Result, LookupBB);
3220  }
3221
3222  if (!ReturnedEarly)
3223    Builder.CreateBr(CommonDest);
3224
3225  // Remove the switch.
3226  for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
3227    BasicBlock *Succ = SI->getSuccessor(i);
3228    if (Succ == SI->getDefaultDest()) continue;
3229    Succ->removePredecessor(SI->getParent());
3230  }
3231  SI->eraseFromParent();
3232
3233  ++NumLookupTables;
3234  return true;
3235}
3236
3237bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3238  // If this switch is too complex to want to look at, ignore it.
3239  if (!isValueEqualityComparison(SI))
3240    return false;
3241
3242  BasicBlock *BB = SI->getParent();
3243
3244  // If we only have one predecessor, and if it is a branch on this value,
3245  // see if that predecessor totally determines the outcome of this switch.
3246  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3247    if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3248      return SimplifyCFG(BB) | true;
3249
3250  Value *Cond = SI->getCondition();
3251  if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3252    if (SimplifySwitchOnSelect(SI, Select))
3253      return SimplifyCFG(BB) | true;
3254
3255  // If the block only contains the switch, see if we can fold the block
3256  // away into any preds.
3257  BasicBlock::iterator BBI = BB->begin();
3258  // Ignore dbg intrinsics.
3259  while (isa<DbgInfoIntrinsic>(BBI))
3260    ++BBI;
3261  if (SI == &*BBI)
3262    if (FoldValueComparisonIntoPredecessors(SI, Builder))
3263      return SimplifyCFG(BB) | true;
3264
3265  // Try to transform the switch into an icmp and a branch.
3266  if (TurnSwitchRangeIntoICmp(SI, Builder))
3267    return SimplifyCFG(BB) | true;
3268
3269  // Remove unreachable cases.
3270  if (EliminateDeadSwitchCases(SI))
3271    return SimplifyCFG(BB) | true;
3272
3273  if (ForwardSwitchConditionToPHI(SI))
3274    return SimplifyCFG(BB) | true;
3275
3276  if (SwitchToLookupTable(SI, Builder))
3277    return SimplifyCFG(BB) | true;
3278
3279  return false;
3280}
3281
3282bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3283  BasicBlock *BB = IBI->getParent();
3284  bool Changed = false;
3285
3286  // Eliminate redundant destinations.
3287  SmallPtrSet<Value *, 8> Succs;
3288  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3289    BasicBlock *Dest = IBI->getDestination(i);
3290    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3291      Dest->removePredecessor(BB);
3292      IBI->removeDestination(i);
3293      --i; --e;
3294      Changed = true;
3295    }
3296  }
3297
3298  if (IBI->getNumDestinations() == 0) {
3299    // If the indirectbr has no successors, change it to unreachable.
3300    new UnreachableInst(IBI->getContext(), IBI);
3301    EraseTerminatorInstAndDCECond(IBI);
3302    return true;
3303  }
3304
3305  if (IBI->getNumDestinations() == 1) {
3306    // If the indirectbr has one successor, change it to a direct branch.
3307    BranchInst::Create(IBI->getDestination(0), IBI);
3308    EraseTerminatorInstAndDCECond(IBI);
3309    return true;
3310  }
3311
3312  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3313    if (SimplifyIndirectBrOnSelect(IBI, SI))
3314      return SimplifyCFG(BB) | true;
3315  }
3316  return Changed;
3317}
3318
3319bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3320  BasicBlock *BB = BI->getParent();
3321
3322  // If the Terminator is the only non-phi instruction, simplify the block.
3323  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3324  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3325      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3326    return true;
3327
3328  // If the only instruction in the block is a seteq/setne comparison
3329  // against a constant, try to simplify the block.
3330  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3331    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3332      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3333        ;
3334      if (I->isTerminator() &&
3335          TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
3336        return true;
3337    }
3338
3339  // If this basic block is ONLY a compare and a branch, and if a predecessor
3340  // branches to us and our successor, fold the comparison into the
3341  // predecessor and use logical operations to update the incoming value
3342  // for PHI nodes in common successor.
3343  if (FoldBranchToCommonDest(BI))
3344    return SimplifyCFG(BB) | true;
3345  return false;
3346}
3347
3348
3349bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3350  BasicBlock *BB = BI->getParent();
3351
3352  // Conditional branch
3353  if (isValueEqualityComparison(BI)) {
3354    // If we only have one predecessor, and if it is a branch on this value,
3355    // see if that predecessor totally determines the outcome of this
3356    // switch.
3357    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3358      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3359        return SimplifyCFG(BB) | true;
3360
3361    // This block must be empty, except for the setcond inst, if it exists.
3362    // Ignore dbg intrinsics.
3363    BasicBlock::iterator I = BB->begin();
3364    // Ignore dbg intrinsics.
3365    while (isa<DbgInfoIntrinsic>(I))
3366      ++I;
3367    if (&*I == BI) {
3368      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3369        return SimplifyCFG(BB) | true;
3370    } else if (&*I == cast<Instruction>(BI->getCondition())){
3371      ++I;
3372      // Ignore dbg intrinsics.
3373      while (isa<DbgInfoIntrinsic>(I))
3374        ++I;
3375      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3376        return SimplifyCFG(BB) | true;
3377    }
3378  }
3379
3380  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3381  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3382    return true;
3383
3384  // If this basic block is ONLY a compare and a branch, and if a predecessor
3385  // branches to us and one of our successors, fold the comparison into the
3386  // predecessor and use logical operations to pick the right destination.
3387  if (FoldBranchToCommonDest(BI))
3388    return SimplifyCFG(BB) | true;
3389
3390  // We have a conditional branch to two blocks that are only reachable
3391  // from BI.  We know that the condbr dominates the two blocks, so see if
3392  // there is any identical code in the "then" and "else" blocks.  If so, we
3393  // can hoist it up to the branching block.
3394  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3395    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3396      if (HoistThenElseCodeToIf(BI))
3397        return SimplifyCFG(BB) | true;
3398    } else {
3399      // If Successor #1 has multiple preds, we may be able to conditionally
3400      // execute Successor #0 if it branches to successor #1.
3401      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3402      if (Succ0TI->getNumSuccessors() == 1 &&
3403          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3404        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3405          return SimplifyCFG(BB) | true;
3406    }
3407  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3408    // If Successor #0 has multiple preds, we may be able to conditionally
3409    // execute Successor #1 if it branches to successor #0.
3410    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3411    if (Succ1TI->getNumSuccessors() == 1 &&
3412        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3413      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3414        return SimplifyCFG(BB) | true;
3415  }
3416
3417  // If this is a branch on a phi node in the current block, thread control
3418  // through this block if any PHI node entries are constants.
3419  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
3420    if (PN->getParent() == BI->getParent())
3421      if (FoldCondBranchOnPHI(BI, TD))
3422        return SimplifyCFG(BB) | true;
3423
3424  // Scan predecessor blocks for conditional branches.
3425  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
3426    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
3427      if (PBI != BI && PBI->isConditional())
3428        if (SimplifyCondBranchToCondBranch(PBI, BI))
3429          return SimplifyCFG(BB) | true;
3430
3431  return false;
3432}
3433
3434/// Check if passing a value to an instruction will cause undefined behavior.
3435static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
3436  Constant *C = dyn_cast<Constant>(V);
3437  if (!C)
3438    return false;
3439
3440  if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
3441    return false;
3442
3443  if (C->isNullValue()) {
3444    Instruction *Use = I->use_back();
3445
3446    // Now make sure that there are no instructions in between that can alter
3447    // control flow (eg. calls)
3448    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
3449      if (i == I->getParent()->end() || i->mayHaveSideEffects())
3450        return false;
3451
3452    // Look through GEPs. A load from a GEP derived from NULL is still undefined
3453    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
3454      if (GEP->getPointerOperand() == I)
3455        return passingValueIsAlwaysUndefined(V, GEP);
3456
3457    // Look through bitcasts.
3458    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
3459      return passingValueIsAlwaysUndefined(V, BC);
3460
3461    // Load from null is undefined.
3462    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
3463      return LI->getPointerAddressSpace() == 0;
3464
3465    // Store to null is undefined.
3466    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
3467      return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
3468  }
3469  return false;
3470}
3471
3472/// If BB has an incoming value that will always trigger undefined behavior
3473/// (eg. null pointer dereference), remove the branch leading here.
3474static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
3475  for (BasicBlock::iterator i = BB->begin();
3476       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
3477    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
3478      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
3479        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
3480        IRBuilder<> Builder(T);
3481        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
3482          BB->removePredecessor(PHI->getIncomingBlock(i));
3483          // Turn uncoditional branches into unreachables and remove the dead
3484          // destination from conditional branches.
3485          if (BI->isUnconditional())
3486            Builder.CreateUnreachable();
3487          else
3488            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
3489                                                         BI->getSuccessor(0));
3490          BI->eraseFromParent();
3491          return true;
3492        }
3493        // TODO: SwitchInst.
3494      }
3495
3496  return false;
3497}
3498
3499bool SimplifyCFGOpt::run(BasicBlock *BB) {
3500  bool Changed = false;
3501
3502  assert(BB && BB->getParent() && "Block not embedded in function!");
3503  assert(BB->getTerminator() && "Degenerate basic block encountered!");
3504
3505  // Remove basic blocks that have no predecessors (except the entry block)...
3506  // or that just have themself as a predecessor.  These are unreachable.
3507  if ((pred_begin(BB) == pred_end(BB) &&
3508       BB != &BB->getParent()->getEntryBlock()) ||
3509      BB->getSinglePredecessor() == BB) {
3510    DEBUG(dbgs() << "Removing BB: \n" << *BB);
3511    DeleteDeadBlock(BB);
3512    return true;
3513  }
3514
3515  // Check to see if we can constant propagate this terminator instruction
3516  // away...
3517  Changed |= ConstantFoldTerminator(BB, true);
3518
3519  // Check for and eliminate duplicate PHI nodes in this block.
3520  Changed |= EliminateDuplicatePHINodes(BB);
3521
3522  // Check for and remove branches that will always cause undefined behavior.
3523  Changed |= removeUndefIntroducingPredecessor(BB);
3524
3525  // Merge basic blocks into their predecessor if there is only one distinct
3526  // pred, and if there is only one distinct successor of the predecessor, and
3527  // if there are no PHI nodes.
3528  //
3529  if (MergeBlockIntoPredecessor(BB))
3530    return true;
3531
3532  IRBuilder<> Builder(BB);
3533
3534  // If there is a trivial two-entry PHI node in this basic block, and we can
3535  // eliminate it, do so now.
3536  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
3537    if (PN->getNumIncomingValues() == 2)
3538      Changed |= FoldTwoEntryPHINode(PN, TD);
3539
3540  Builder.SetInsertPoint(BB->getTerminator());
3541  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
3542    if (BI->isUnconditional()) {
3543      if (SimplifyUncondBranch(BI, Builder)) return true;
3544    } else {
3545      if (SimplifyCondBranch(BI, Builder)) return true;
3546    }
3547  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
3548    if (SimplifyReturn(RI, Builder)) return true;
3549  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
3550    if (SimplifyResume(RI, Builder)) return true;
3551  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
3552    if (SimplifySwitch(SI, Builder)) return true;
3553  } else if (UnreachableInst *UI =
3554               dyn_cast<UnreachableInst>(BB->getTerminator())) {
3555    if (SimplifyUnreachable(UI)) return true;
3556  } else if (IndirectBrInst *IBI =
3557               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
3558    if (SimplifyIndirectBr(IBI)) return true;
3559  }
3560
3561  return Changed;
3562}
3563
3564/// SimplifyCFG - This function is used to do simplification of a CFG.  For
3565/// example, it adjusts branches to branches to eliminate the extra hop, it
3566/// eliminates unreachable basic blocks, and does other "peephole" optimization
3567/// of the CFG.  It returns true if a modification was made.
3568///
3569bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
3570  return SimplifyCFGOpt(TD).run(BB);
3571}
3572