SimplifyCFG.cpp revision c2aa0035a6c0bd69e4f46620a270451fe585f8cd
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DataLayout.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/IRBuilder.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/MDBuilder.h"
25#include "llvm/Metadata.h"
26#include "llvm/Module.h"
27#include "llvm/Operator.h"
28#include "llvm/Type.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/InstructionSimplify.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/ConstantRange.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/NoFolder.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/TargetTransformInfo.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include <algorithm>
46#include <set>
47#include <map>
48using namespace llvm;
49
50static cl::opt<unsigned>
51PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
52   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
53
54static cl::opt<bool>
55DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
56       cl::desc("Duplicate return instructions into unconditional branches"));
57
58static cl::opt<bool>
59SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
60       cl::desc("Sink common instructions down to the end block"));
61
62STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
63STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
64STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
65STATISTIC(NumSpeculations, "Number of speculative executed instructions");
66
67namespace {
68  /// ValueEqualityComparisonCase - Represents a case of a switch.
69  struct ValueEqualityComparisonCase {
70    ConstantInt *Value;
71    BasicBlock *Dest;
72
73    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
74      : Value(Value), Dest(Dest) {}
75
76    bool operator<(ValueEqualityComparisonCase RHS) const {
77      // Comparing pointers is ok as we only rely on the order for uniquing.
78      return Value < RHS.Value;
79    }
80
81    bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
82  };
83
84class SimplifyCFGOpt {
85  const DataLayout *const TD;
86  const TargetTransformInfo *const TTI;
87
88  Value *isValueEqualityComparison(TerminatorInst *TI);
89  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
90                               std::vector<ValueEqualityComparisonCase> &Cases);
91  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
92                                                     BasicBlock *Pred,
93                                                     IRBuilder<> &Builder);
94  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
95                                           IRBuilder<> &Builder);
96
97  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
98  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
99  bool SimplifyUnreachable(UnreachableInst *UI);
100  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
101  bool SimplifyIndirectBr(IndirectBrInst *IBI);
102  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
103  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
104
105public:
106  SimplifyCFGOpt(const DataLayout *td, const TargetTransformInfo *tti)
107      : TD(td), TTI(tti) {}
108  bool run(BasicBlock *BB);
109};
110}
111
112/// SafeToMergeTerminators - Return true if it is safe to merge these two
113/// terminator instructions together.
114///
115static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
116  if (SI1 == SI2) return false;  // Can't merge with self!
117
118  // It is not safe to merge these two switch instructions if they have a common
119  // successor, and if that successor has a PHI node, and if *that* PHI node has
120  // conflicting incoming values from the two switch blocks.
121  BasicBlock *SI1BB = SI1->getParent();
122  BasicBlock *SI2BB = SI2->getParent();
123  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
124
125  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
126    if (SI1Succs.count(*I))
127      for (BasicBlock::iterator BBI = (*I)->begin();
128           isa<PHINode>(BBI); ++BBI) {
129        PHINode *PN = cast<PHINode>(BBI);
130        if (PN->getIncomingValueForBlock(SI1BB) !=
131            PN->getIncomingValueForBlock(SI2BB))
132          return false;
133      }
134
135  return true;
136}
137
138/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
139/// to merge these two terminator instructions together, where SI1 is an
140/// unconditional branch. PhiNodes will store all PHI nodes in common
141/// successors.
142///
143static bool isProfitableToFoldUnconditional(BranchInst *SI1,
144                                          BranchInst *SI2,
145                                          Instruction *Cond,
146                                          SmallVectorImpl<PHINode*> &PhiNodes) {
147  if (SI1 == SI2) return false;  // Can't merge with self!
148  assert(SI1->isUnconditional() && SI2->isConditional());
149
150  // We fold the unconditional branch if we can easily update all PHI nodes in
151  // common successors:
152  // 1> We have a constant incoming value for the conditional branch;
153  // 2> We have "Cond" as the incoming value for the unconditional branch;
154  // 3> SI2->getCondition() and Cond have same operands.
155  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
156  if (!Ci2) return false;
157  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
158        Cond->getOperand(1) == Ci2->getOperand(1)) &&
159      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
160        Cond->getOperand(1) == Ci2->getOperand(0)))
161    return false;
162
163  BasicBlock *SI1BB = SI1->getParent();
164  BasicBlock *SI2BB = SI2->getParent();
165  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
166  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
167    if (SI1Succs.count(*I))
168      for (BasicBlock::iterator BBI = (*I)->begin();
169           isa<PHINode>(BBI); ++BBI) {
170        PHINode *PN = cast<PHINode>(BBI);
171        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
172            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
173          return false;
174        PhiNodes.push_back(PN);
175      }
176  return true;
177}
178
179/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
180/// now be entries in it from the 'NewPred' block.  The values that will be
181/// flowing into the PHI nodes will be the same as those coming in from
182/// ExistPred, an existing predecessor of Succ.
183static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
184                                  BasicBlock *ExistPred) {
185  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
186
187  PHINode *PN;
188  for (BasicBlock::iterator I = Succ->begin();
189       (PN = dyn_cast<PHINode>(I)); ++I)
190    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
191}
192
193
194/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
195/// least one PHI node in it), check to see if the merge at this block is due
196/// to an "if condition".  If so, return the boolean condition that determines
197/// which entry into BB will be taken.  Also, return by references the block
198/// that will be entered from if the condition is true, and the block that will
199/// be entered if the condition is false.
200///
201/// This does no checking to see if the true/false blocks have large or unsavory
202/// instructions in them.
203static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
204                             BasicBlock *&IfFalse) {
205  PHINode *SomePHI = cast<PHINode>(BB->begin());
206  assert(SomePHI->getNumIncomingValues() == 2 &&
207         "Function can only handle blocks with 2 predecessors!");
208  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
209  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
210
211  // We can only handle branches.  Other control flow will be lowered to
212  // branches if possible anyway.
213  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
214  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
215  if (Pred1Br == 0 || Pred2Br == 0)
216    return 0;
217
218  // Eliminate code duplication by ensuring that Pred1Br is conditional if
219  // either are.
220  if (Pred2Br->isConditional()) {
221    // If both branches are conditional, we don't have an "if statement".  In
222    // reality, we could transform this case, but since the condition will be
223    // required anyway, we stand no chance of eliminating it, so the xform is
224    // probably not profitable.
225    if (Pred1Br->isConditional())
226      return 0;
227
228    std::swap(Pred1, Pred2);
229    std::swap(Pred1Br, Pred2Br);
230  }
231
232  if (Pred1Br->isConditional()) {
233    // The only thing we have to watch out for here is to make sure that Pred2
234    // doesn't have incoming edges from other blocks.  If it does, the condition
235    // doesn't dominate BB.
236    if (Pred2->getSinglePredecessor() == 0)
237      return 0;
238
239    // If we found a conditional branch predecessor, make sure that it branches
240    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
241    if (Pred1Br->getSuccessor(0) == BB &&
242        Pred1Br->getSuccessor(1) == Pred2) {
243      IfTrue = Pred1;
244      IfFalse = Pred2;
245    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
246               Pred1Br->getSuccessor(1) == BB) {
247      IfTrue = Pred2;
248      IfFalse = Pred1;
249    } else {
250      // We know that one arm of the conditional goes to BB, so the other must
251      // go somewhere unrelated, and this must not be an "if statement".
252      return 0;
253    }
254
255    return Pred1Br->getCondition();
256  }
257
258  // Ok, if we got here, both predecessors end with an unconditional branch to
259  // BB.  Don't panic!  If both blocks only have a single (identical)
260  // predecessor, and THAT is a conditional branch, then we're all ok!
261  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
262  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
263    return 0;
264
265  // Otherwise, if this is a conditional branch, then we can use it!
266  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
267  if (BI == 0) return 0;
268
269  assert(BI->isConditional() && "Two successors but not conditional?");
270  if (BI->getSuccessor(0) == Pred1) {
271    IfTrue = Pred1;
272    IfFalse = Pred2;
273  } else {
274    IfTrue = Pred2;
275    IfFalse = Pred1;
276  }
277  return BI->getCondition();
278}
279
280/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
281/// given instruction, which is assumed to be safe to speculate. 1 means
282/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
283static unsigned ComputeSpeculationCost(const User *I) {
284  assert(isSafeToSpeculativelyExecute(I) &&
285         "Instruction is not safe to speculatively execute!");
286  switch (Operator::getOpcode(I)) {
287  default:
288    // In doubt, be conservative.
289    return UINT_MAX;
290  case Instruction::GetElementPtr:
291    // GEPs are cheap if all indices are constant.
292    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
293      return UINT_MAX;
294    return 1;
295  case Instruction::Load:
296  case Instruction::Add:
297  case Instruction::Sub:
298  case Instruction::And:
299  case Instruction::Or:
300  case Instruction::Xor:
301  case Instruction::Shl:
302  case Instruction::LShr:
303  case Instruction::AShr:
304  case Instruction::ICmp:
305  case Instruction::Trunc:
306  case Instruction::ZExt:
307  case Instruction::SExt:
308    return 1; // These are all cheap.
309
310  case Instruction::Call:
311  case Instruction::Select:
312    return 2;
313  }
314}
315
316/// DominatesMergePoint - If we have a merge point of an "if condition" as
317/// accepted above, return true if the specified value dominates the block.  We
318/// don't handle the true generality of domination here, just a special case
319/// which works well enough for us.
320///
321/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
322/// see if V (which must be an instruction) and its recursive operands
323/// that do not dominate BB have a combined cost lower than CostRemaining and
324/// are non-trapping.  If both are true, the instruction is inserted into the
325/// set and true is returned.
326///
327/// The cost for most non-trapping instructions is defined as 1 except for
328/// Select whose cost is 2.
329///
330/// After this function returns, CostRemaining is decreased by the cost of
331/// V plus its non-dominating operands.  If that cost is greater than
332/// CostRemaining, false is returned and CostRemaining is undefined.
333static bool DominatesMergePoint(Value *V, BasicBlock *BB,
334                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
335                                unsigned &CostRemaining) {
336  Instruction *I = dyn_cast<Instruction>(V);
337  if (!I) {
338    // Non-instructions all dominate instructions, but not all constantexprs
339    // can be executed unconditionally.
340    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
341      if (C->canTrap())
342        return false;
343    return true;
344  }
345  BasicBlock *PBB = I->getParent();
346
347  // We don't want to allow weird loops that might have the "if condition" in
348  // the bottom of this block.
349  if (PBB == BB) return false;
350
351  // If this instruction is defined in a block that contains an unconditional
352  // branch to BB, then it must be in the 'conditional' part of the "if
353  // statement".  If not, it definitely dominates the region.
354  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
355  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
356    return true;
357
358  // If we aren't allowing aggressive promotion anymore, then don't consider
359  // instructions in the 'if region'.
360  if (AggressiveInsts == 0) return false;
361
362  // If we have seen this instruction before, don't count it again.
363  if (AggressiveInsts->count(I)) return true;
364
365  // Okay, it looks like the instruction IS in the "condition".  Check to
366  // see if it's a cheap instruction to unconditionally compute, and if it
367  // only uses stuff defined outside of the condition.  If so, hoist it out.
368  if (!isSafeToSpeculativelyExecute(I))
369    return false;
370
371  unsigned Cost = ComputeSpeculationCost(I);
372
373  if (Cost > CostRemaining)
374    return false;
375
376  CostRemaining -= Cost;
377
378  // Okay, we can only really hoist these out if their operands do
379  // not take us over the cost threshold.
380  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
381    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
382      return false;
383  // Okay, it's safe to do this!  Remember this instruction.
384  AggressiveInsts->insert(I);
385  return true;
386}
387
388/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
389/// and PointerNullValue. Return NULL if value is not a constant int.
390static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
391  // Normal constant int.
392  ConstantInt *CI = dyn_cast<ConstantInt>(V);
393  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
394    return CI;
395
396  // This is some kind of pointer constant. Turn it into a pointer-sized
397  // ConstantInt if possible.
398  IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
399
400  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
401  if (isa<ConstantPointerNull>(V))
402    return ConstantInt::get(PtrTy, 0);
403
404  // IntToPtr const int.
405  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
406    if (CE->getOpcode() == Instruction::IntToPtr)
407      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
408        // The constant is very likely to have the right type already.
409        if (CI->getType() == PtrTy)
410          return CI;
411        else
412          return cast<ConstantInt>
413            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
414      }
415  return 0;
416}
417
418/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
419/// collection of icmp eq/ne instructions that compare a value against a
420/// constant, return the value being compared, and stick the constant into the
421/// Values vector.
422static Value *
423GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
424                       const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
425  Instruction *I = dyn_cast<Instruction>(V);
426  if (I == 0) return 0;
427
428  // If this is an icmp against a constant, handle this as one of the cases.
429  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
430    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
431      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
432        UsedICmps++;
433        Vals.push_back(C);
434        return I->getOperand(0);
435      }
436
437      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
438      // the set.
439      ConstantRange Span =
440        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
441
442      // If this is an and/!= check then we want to optimize "x ugt 2" into
443      // x != 0 && x != 1.
444      if (!isEQ)
445        Span = Span.inverse();
446
447      // If there are a ton of values, we don't want to make a ginormous switch.
448      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
449        return 0;
450
451      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
452        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
453      UsedICmps++;
454      return I->getOperand(0);
455    }
456    return 0;
457  }
458
459  // Otherwise, we can only handle an | or &, depending on isEQ.
460  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
461    return 0;
462
463  unsigned NumValsBeforeLHS = Vals.size();
464  unsigned UsedICmpsBeforeLHS = UsedICmps;
465  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
466                                          isEQ, UsedICmps)) {
467    unsigned NumVals = Vals.size();
468    unsigned UsedICmpsBeforeRHS = UsedICmps;
469    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
470                                            isEQ, UsedICmps)) {
471      if (LHS == RHS)
472        return LHS;
473      Vals.resize(NumVals);
474      UsedICmps = UsedICmpsBeforeRHS;
475    }
476
477    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
478    // set it and return success.
479    if (Extra == 0 || Extra == I->getOperand(1)) {
480      Extra = I->getOperand(1);
481      return LHS;
482    }
483
484    Vals.resize(NumValsBeforeLHS);
485    UsedICmps = UsedICmpsBeforeLHS;
486    return 0;
487  }
488
489  // If the LHS can't be folded in, but Extra is available and RHS can, try to
490  // use LHS as Extra.
491  if (Extra == 0 || Extra == I->getOperand(0)) {
492    Value *OldExtra = Extra;
493    Extra = I->getOperand(0);
494    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
495                                            isEQ, UsedICmps))
496      return RHS;
497    assert(Vals.size() == NumValsBeforeLHS);
498    Extra = OldExtra;
499  }
500
501  return 0;
502}
503
504static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
505  Instruction *Cond = 0;
506  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
507    Cond = dyn_cast<Instruction>(SI->getCondition());
508  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
509    if (BI->isConditional())
510      Cond = dyn_cast<Instruction>(BI->getCondition());
511  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
512    Cond = dyn_cast<Instruction>(IBI->getAddress());
513  }
514
515  TI->eraseFromParent();
516  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
517}
518
519/// isValueEqualityComparison - Return true if the specified terminator checks
520/// to see if a value is equal to constant integer value.
521Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
522  Value *CV = 0;
523  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
524    // Do not permit merging of large switch instructions into their
525    // predecessors unless there is only one predecessor.
526    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
527                                             pred_end(SI->getParent())) <= 128)
528      CV = SI->getCondition();
529  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
530    if (BI->isConditional() && BI->getCondition()->hasOneUse())
531      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
532        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
533             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
534            GetConstantInt(ICI->getOperand(1), TD))
535          CV = ICI->getOperand(0);
536
537  // Unwrap any lossless ptrtoint cast.
538  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
539    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
540      CV = PTII->getOperand(0);
541  return CV;
542}
543
544/// GetValueEqualityComparisonCases - Given a value comparison instruction,
545/// decode all of the 'cases' that it represents and return the 'default' block.
546BasicBlock *SimplifyCFGOpt::
547GetValueEqualityComparisonCases(TerminatorInst *TI,
548                                std::vector<ValueEqualityComparisonCase>
549                                                                       &Cases) {
550  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
551    Cases.reserve(SI->getNumCases());
552    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
553      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
554                                                  i.getCaseSuccessor()));
555    return SI->getDefaultDest();
556  }
557
558  BranchInst *BI = cast<BranchInst>(TI);
559  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
560  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
561  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
562                                                             TD),
563                                              Succ));
564  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
565}
566
567
568/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
569/// in the list that match the specified block.
570static void EliminateBlockCases(BasicBlock *BB,
571                              std::vector<ValueEqualityComparisonCase> &Cases) {
572  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
573}
574
575/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
576/// well.
577static bool
578ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
579              std::vector<ValueEqualityComparisonCase > &C2) {
580  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
581
582  // Make V1 be smaller than V2.
583  if (V1->size() > V2->size())
584    std::swap(V1, V2);
585
586  if (V1->size() == 0) return false;
587  if (V1->size() == 1) {
588    // Just scan V2.
589    ConstantInt *TheVal = (*V1)[0].Value;
590    for (unsigned i = 0, e = V2->size(); i != e; ++i)
591      if (TheVal == (*V2)[i].Value)
592        return true;
593  }
594
595  // Otherwise, just sort both lists and compare element by element.
596  array_pod_sort(V1->begin(), V1->end());
597  array_pod_sort(V2->begin(), V2->end());
598  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
599  while (i1 != e1 && i2 != e2) {
600    if ((*V1)[i1].Value == (*V2)[i2].Value)
601      return true;
602    if ((*V1)[i1].Value < (*V2)[i2].Value)
603      ++i1;
604    else
605      ++i2;
606  }
607  return false;
608}
609
610/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
611/// terminator instruction and its block is known to only have a single
612/// predecessor block, check to see if that predecessor is also a value
613/// comparison with the same value, and if that comparison determines the
614/// outcome of this comparison.  If so, simplify TI.  This does a very limited
615/// form of jump threading.
616bool SimplifyCFGOpt::
617SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
618                                              BasicBlock *Pred,
619                                              IRBuilder<> &Builder) {
620  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
621  if (!PredVal) return false;  // Not a value comparison in predecessor.
622
623  Value *ThisVal = isValueEqualityComparison(TI);
624  assert(ThisVal && "This isn't a value comparison!!");
625  if (ThisVal != PredVal) return false;  // Different predicates.
626
627  // TODO: Preserve branch weight metadata, similarly to how
628  // FoldValueComparisonIntoPredecessors preserves it.
629
630  // Find out information about when control will move from Pred to TI's block.
631  std::vector<ValueEqualityComparisonCase> PredCases;
632  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
633                                                        PredCases);
634  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
635
636  // Find information about how control leaves this block.
637  std::vector<ValueEqualityComparisonCase> ThisCases;
638  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
639  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
640
641  // If TI's block is the default block from Pred's comparison, potentially
642  // simplify TI based on this knowledge.
643  if (PredDef == TI->getParent()) {
644    // If we are here, we know that the value is none of those cases listed in
645    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
646    // can simplify TI.
647    if (!ValuesOverlap(PredCases, ThisCases))
648      return false;
649
650    if (isa<BranchInst>(TI)) {
651      // Okay, one of the successors of this condbr is dead.  Convert it to a
652      // uncond br.
653      assert(ThisCases.size() == 1 && "Branch can only have one case!");
654      // Insert the new branch.
655      Instruction *NI = Builder.CreateBr(ThisDef);
656      (void) NI;
657
658      // Remove PHI node entries for the dead edge.
659      ThisCases[0].Dest->removePredecessor(TI->getParent());
660
661      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
662           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
663
664      EraseTerminatorInstAndDCECond(TI);
665      return true;
666    }
667
668    SwitchInst *SI = cast<SwitchInst>(TI);
669    // Okay, TI has cases that are statically dead, prune them away.
670    SmallPtrSet<Constant*, 16> DeadCases;
671    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
672      DeadCases.insert(PredCases[i].Value);
673
674    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
675                 << "Through successor TI: " << *TI);
676
677    // Collect branch weights into a vector.
678    SmallVector<uint32_t, 8> Weights;
679    MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
680    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
681    if (HasWeight)
682      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
683           ++MD_i) {
684        ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
685        assert(CI);
686        Weights.push_back(CI->getValue().getZExtValue());
687      }
688    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
689      --i;
690      if (DeadCases.count(i.getCaseValue())) {
691        if (HasWeight) {
692          std::swap(Weights[i.getCaseIndex()+1], Weights.back());
693          Weights.pop_back();
694        }
695        i.getCaseSuccessor()->removePredecessor(TI->getParent());
696        SI->removeCase(i);
697      }
698    }
699    if (HasWeight && Weights.size() >= 2)
700      SI->setMetadata(LLVMContext::MD_prof,
701                      MDBuilder(SI->getParent()->getContext()).
702                      createBranchWeights(Weights));
703
704    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
705    return true;
706  }
707
708  // Otherwise, TI's block must correspond to some matched value.  Find out
709  // which value (or set of values) this is.
710  ConstantInt *TIV = 0;
711  BasicBlock *TIBB = TI->getParent();
712  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
713    if (PredCases[i].Dest == TIBB) {
714      if (TIV != 0)
715        return false;  // Cannot handle multiple values coming to this block.
716      TIV = PredCases[i].Value;
717    }
718  assert(TIV && "No edge from pred to succ?");
719
720  // Okay, we found the one constant that our value can be if we get into TI's
721  // BB.  Find out which successor will unconditionally be branched to.
722  BasicBlock *TheRealDest = 0;
723  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
724    if (ThisCases[i].Value == TIV) {
725      TheRealDest = ThisCases[i].Dest;
726      break;
727    }
728
729  // If not handled by any explicit cases, it is handled by the default case.
730  if (TheRealDest == 0) TheRealDest = ThisDef;
731
732  // Remove PHI node entries for dead edges.
733  BasicBlock *CheckEdge = TheRealDest;
734  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
735    if (*SI != CheckEdge)
736      (*SI)->removePredecessor(TIBB);
737    else
738      CheckEdge = 0;
739
740  // Insert the new branch.
741  Instruction *NI = Builder.CreateBr(TheRealDest);
742  (void) NI;
743
744  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
745            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
746
747  EraseTerminatorInstAndDCECond(TI);
748  return true;
749}
750
751namespace {
752  /// ConstantIntOrdering - This class implements a stable ordering of constant
753  /// integers that does not depend on their address.  This is important for
754  /// applications that sort ConstantInt's to ensure uniqueness.
755  struct ConstantIntOrdering {
756    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
757      return LHS->getValue().ult(RHS->getValue());
758    }
759  };
760}
761
762static int ConstantIntSortPredicate(const void *P1, const void *P2) {
763  const ConstantInt *LHS = *(const ConstantInt*const*)P1;
764  const ConstantInt *RHS = *(const ConstantInt*const*)P2;
765  if (LHS->getValue().ult(RHS->getValue()))
766    return 1;
767  if (LHS->getValue() == RHS->getValue())
768    return 0;
769  return -1;
770}
771
772static inline bool HasBranchWeights(const Instruction* I) {
773  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
774  if (ProfMD && ProfMD->getOperand(0))
775    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
776      return MDS->getString().equals("branch_weights");
777
778  return false;
779}
780
781/// Get Weights of a given TerminatorInst, the default weight is at the front
782/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
783/// metadata.
784static void GetBranchWeights(TerminatorInst *TI,
785                             SmallVectorImpl<uint64_t> &Weights) {
786  MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
787  assert(MD);
788  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
789    ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
790    assert(CI);
791    Weights.push_back(CI->getValue().getZExtValue());
792  }
793
794  // If TI is a conditional eq, the default case is the false case,
795  // and the corresponding branch-weight data is at index 2. We swap the
796  // default weight to be the first entry.
797  if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
798    assert(Weights.size() == 2);
799    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
800    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
801      std::swap(Weights.front(), Weights.back());
802  }
803}
804
805/// Sees if any of the weights are too big for a uint32_t, and halves all the
806/// weights if any are.
807static void FitWeights(MutableArrayRef<uint64_t> Weights) {
808  bool Halve = false;
809  for (unsigned i = 0; i < Weights.size(); ++i)
810    if (Weights[i] > UINT_MAX) {
811      Halve = true;
812      break;
813    }
814
815  if (! Halve)
816    return;
817
818  for (unsigned i = 0; i < Weights.size(); ++i)
819    Weights[i] /= 2;
820}
821
822/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
823/// equality comparison instruction (either a switch or a branch on "X == c").
824/// See if any of the predecessors of the terminator block are value comparisons
825/// on the same value.  If so, and if safe to do so, fold them together.
826bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
827                                                         IRBuilder<> &Builder) {
828  BasicBlock *BB = TI->getParent();
829  Value *CV = isValueEqualityComparison(TI);  // CondVal
830  assert(CV && "Not a comparison?");
831  bool Changed = false;
832
833  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
834  while (!Preds.empty()) {
835    BasicBlock *Pred = Preds.pop_back_val();
836
837    // See if the predecessor is a comparison with the same value.
838    TerminatorInst *PTI = Pred->getTerminator();
839    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
840
841    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
842      // Figure out which 'cases' to copy from SI to PSI.
843      std::vector<ValueEqualityComparisonCase> BBCases;
844      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
845
846      std::vector<ValueEqualityComparisonCase> PredCases;
847      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
848
849      // Based on whether the default edge from PTI goes to BB or not, fill in
850      // PredCases and PredDefault with the new switch cases we would like to
851      // build.
852      SmallVector<BasicBlock*, 8> NewSuccessors;
853
854      // Update the branch weight metadata along the way
855      SmallVector<uint64_t, 8> Weights;
856      bool PredHasWeights = HasBranchWeights(PTI);
857      bool SuccHasWeights = HasBranchWeights(TI);
858
859      if (PredHasWeights) {
860        GetBranchWeights(PTI, Weights);
861        // branch-weight metadata is inconsistent here.
862        if (Weights.size() != 1 + PredCases.size())
863          PredHasWeights = SuccHasWeights = false;
864      } else if (SuccHasWeights)
865        // If there are no predecessor weights but there are successor weights,
866        // populate Weights with 1, which will later be scaled to the sum of
867        // successor's weights
868        Weights.assign(1 + PredCases.size(), 1);
869
870      SmallVector<uint64_t, 8> SuccWeights;
871      if (SuccHasWeights) {
872        GetBranchWeights(TI, SuccWeights);
873        // branch-weight metadata is inconsistent here.
874        if (SuccWeights.size() != 1 + BBCases.size())
875          PredHasWeights = SuccHasWeights = false;
876      } else if (PredHasWeights)
877        SuccWeights.assign(1 + BBCases.size(), 1);
878
879      if (PredDefault == BB) {
880        // If this is the default destination from PTI, only the edges in TI
881        // that don't occur in PTI, or that branch to BB will be activated.
882        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
883        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
884          if (PredCases[i].Dest != BB)
885            PTIHandled.insert(PredCases[i].Value);
886          else {
887            // The default destination is BB, we don't need explicit targets.
888            std::swap(PredCases[i], PredCases.back());
889
890            if (PredHasWeights || SuccHasWeights) {
891              // Increase weight for the default case.
892              Weights[0] += Weights[i+1];
893              std::swap(Weights[i+1], Weights.back());
894              Weights.pop_back();
895            }
896
897            PredCases.pop_back();
898            --i; --e;
899          }
900
901        // Reconstruct the new switch statement we will be building.
902        if (PredDefault != BBDefault) {
903          PredDefault->removePredecessor(Pred);
904          PredDefault = BBDefault;
905          NewSuccessors.push_back(BBDefault);
906        }
907
908        unsigned CasesFromPred = Weights.size();
909        uint64_t ValidTotalSuccWeight = 0;
910        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
911          if (!PTIHandled.count(BBCases[i].Value) &&
912              BBCases[i].Dest != BBDefault) {
913            PredCases.push_back(BBCases[i]);
914            NewSuccessors.push_back(BBCases[i].Dest);
915            if (SuccHasWeights || PredHasWeights) {
916              // The default weight is at index 0, so weight for the ith case
917              // should be at index i+1. Scale the cases from successor by
918              // PredDefaultWeight (Weights[0]).
919              Weights.push_back(Weights[0] * SuccWeights[i+1]);
920              ValidTotalSuccWeight += SuccWeights[i+1];
921            }
922          }
923
924        if (SuccHasWeights || PredHasWeights) {
925          ValidTotalSuccWeight += SuccWeights[0];
926          // Scale the cases from predecessor by ValidTotalSuccWeight.
927          for (unsigned i = 1; i < CasesFromPred; ++i)
928            Weights[i] *= ValidTotalSuccWeight;
929          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
930          Weights[0] *= SuccWeights[0];
931        }
932      } else {
933        // If this is not the default destination from PSI, only the edges
934        // in SI that occur in PSI with a destination of BB will be
935        // activated.
936        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
937        std::map<ConstantInt*, uint64_t> WeightsForHandled;
938        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
939          if (PredCases[i].Dest == BB) {
940            PTIHandled.insert(PredCases[i].Value);
941
942            if (PredHasWeights || SuccHasWeights) {
943              WeightsForHandled[PredCases[i].Value] = Weights[i+1];
944              std::swap(Weights[i+1], Weights.back());
945              Weights.pop_back();
946            }
947
948            std::swap(PredCases[i], PredCases.back());
949            PredCases.pop_back();
950            --i; --e;
951          }
952
953        // Okay, now we know which constants were sent to BB from the
954        // predecessor.  Figure out where they will all go now.
955        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
956          if (PTIHandled.count(BBCases[i].Value)) {
957            // If this is one we are capable of getting...
958            if (PredHasWeights || SuccHasWeights)
959              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
960            PredCases.push_back(BBCases[i]);
961            NewSuccessors.push_back(BBCases[i].Dest);
962            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
963          }
964
965        // If there are any constants vectored to BB that TI doesn't handle,
966        // they must go to the default destination of TI.
967        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
968                                    PTIHandled.begin(),
969               E = PTIHandled.end(); I != E; ++I) {
970          if (PredHasWeights || SuccHasWeights)
971            Weights.push_back(WeightsForHandled[*I]);
972          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
973          NewSuccessors.push_back(BBDefault);
974        }
975      }
976
977      // Okay, at this point, we know which new successor Pred will get.  Make
978      // sure we update the number of entries in the PHI nodes for these
979      // successors.
980      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
981        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
982
983      Builder.SetInsertPoint(PTI);
984      // Convert pointer to int before we switch.
985      if (CV->getType()->isPointerTy()) {
986        assert(TD && "Cannot switch on pointer without DataLayout");
987        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
988                                    "magicptr");
989      }
990
991      // Now that the successors are updated, create the new Switch instruction.
992      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
993                                               PredCases.size());
994      NewSI->setDebugLoc(PTI->getDebugLoc());
995      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
996        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
997
998      if (PredHasWeights || SuccHasWeights) {
999        // Halve the weights if any of them cannot fit in an uint32_t
1000        FitWeights(Weights);
1001
1002        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1003
1004        NewSI->setMetadata(LLVMContext::MD_prof,
1005                           MDBuilder(BB->getContext()).
1006                           createBranchWeights(MDWeights));
1007      }
1008
1009      EraseTerminatorInstAndDCECond(PTI);
1010
1011      // Okay, last check.  If BB is still a successor of PSI, then we must
1012      // have an infinite loop case.  If so, add an infinitely looping block
1013      // to handle the case to preserve the behavior of the code.
1014      BasicBlock *InfLoopBlock = 0;
1015      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1016        if (NewSI->getSuccessor(i) == BB) {
1017          if (InfLoopBlock == 0) {
1018            // Insert it at the end of the function, because it's either code,
1019            // or it won't matter if it's hot. :)
1020            InfLoopBlock = BasicBlock::Create(BB->getContext(),
1021                                              "infloop", BB->getParent());
1022            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1023          }
1024          NewSI->setSuccessor(i, InfLoopBlock);
1025        }
1026
1027      Changed = true;
1028    }
1029  }
1030  return Changed;
1031}
1032
1033// isSafeToHoistInvoke - If we would need to insert a select that uses the
1034// value of this invoke (comments in HoistThenElseCodeToIf explain why we
1035// would need to do this), we can't hoist the invoke, as there is nowhere
1036// to put the select in this case.
1037static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1038                                Instruction *I1, Instruction *I2) {
1039  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1040    PHINode *PN;
1041    for (BasicBlock::iterator BBI = SI->begin();
1042         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1043      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1044      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1045      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1046        return false;
1047      }
1048    }
1049  }
1050  return true;
1051}
1052
1053/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1054/// BB2, hoist any common code in the two blocks up into the branch block.  The
1055/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1056static bool HoistThenElseCodeToIf(BranchInst *BI) {
1057  // This does very trivial matching, with limited scanning, to find identical
1058  // instructions in the two blocks.  In particular, we don't want to get into
1059  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1060  // such, we currently just scan for obviously identical instructions in an
1061  // identical order.
1062  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1063  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1064
1065  BasicBlock::iterator BB1_Itr = BB1->begin();
1066  BasicBlock::iterator BB2_Itr = BB2->begin();
1067
1068  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1069  // Skip debug info if it is not identical.
1070  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1071  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1072  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1073    while (isa<DbgInfoIntrinsic>(I1))
1074      I1 = BB1_Itr++;
1075    while (isa<DbgInfoIntrinsic>(I2))
1076      I2 = BB2_Itr++;
1077  }
1078  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1079      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1080    return false;
1081
1082  // If we get here, we can hoist at least one instruction.
1083  BasicBlock *BIParent = BI->getParent();
1084
1085  do {
1086    // If we are hoisting the terminator instruction, don't move one (making a
1087    // broken BB), instead clone it, and remove BI.
1088    if (isa<TerminatorInst>(I1))
1089      goto HoistTerminator;
1090
1091    // For a normal instruction, we just move one to right before the branch,
1092    // then replace all uses of the other with the first.  Finally, we remove
1093    // the now redundant second instruction.
1094    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1095    if (!I2->use_empty())
1096      I2->replaceAllUsesWith(I1);
1097    I1->intersectOptionalDataWith(I2);
1098    I2->eraseFromParent();
1099
1100    I1 = BB1_Itr++;
1101    I2 = BB2_Itr++;
1102    // Skip debug info if it is not identical.
1103    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1104    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1105    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1106      while (isa<DbgInfoIntrinsic>(I1))
1107        I1 = BB1_Itr++;
1108      while (isa<DbgInfoIntrinsic>(I2))
1109        I2 = BB2_Itr++;
1110    }
1111  } while (I1->isIdenticalToWhenDefined(I2));
1112
1113  return true;
1114
1115HoistTerminator:
1116  // It may not be possible to hoist an invoke.
1117  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1118    return true;
1119
1120  // Okay, it is safe to hoist the terminator.
1121  Instruction *NT = I1->clone();
1122  BIParent->getInstList().insert(BI, NT);
1123  if (!NT->getType()->isVoidTy()) {
1124    I1->replaceAllUsesWith(NT);
1125    I2->replaceAllUsesWith(NT);
1126    NT->takeName(I1);
1127  }
1128
1129  IRBuilder<true, NoFolder> Builder(NT);
1130  // Hoisting one of the terminators from our successor is a great thing.
1131  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1132  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1133  // nodes, so we insert select instruction to compute the final result.
1134  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1135  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1136    PHINode *PN;
1137    for (BasicBlock::iterator BBI = SI->begin();
1138         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1139      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1140      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1141      if (BB1V == BB2V) continue;
1142
1143      // These values do not agree.  Insert a select instruction before NT
1144      // that determines the right value.
1145      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1146      if (SI == 0)
1147        SI = cast<SelectInst>
1148          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1149                                BB1V->getName()+"."+BB2V->getName()));
1150
1151      // Make the PHI node use the select for all incoming values for BB1/BB2
1152      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1153        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1154          PN->setIncomingValue(i, SI);
1155    }
1156  }
1157
1158  // Update any PHI nodes in our new successors.
1159  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1160    AddPredecessorToBlock(*SI, BIParent, BB1);
1161
1162  EraseTerminatorInstAndDCECond(BI);
1163  return true;
1164}
1165
1166/// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1167/// check whether BBEnd has only two predecessors and the other predecessor
1168/// ends with an unconditional branch. If it is true, sink any common code
1169/// in the two predecessors to BBEnd.
1170static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1171  assert(BI1->isUnconditional());
1172  BasicBlock *BB1 = BI1->getParent();
1173  BasicBlock *BBEnd = BI1->getSuccessor(0);
1174
1175  // Check that BBEnd has two predecessors and the other predecessor ends with
1176  // an unconditional branch.
1177  pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1178  BasicBlock *Pred0 = *PI++;
1179  if (PI == PE) // Only one predecessor.
1180    return false;
1181  BasicBlock *Pred1 = *PI++;
1182  if (PI != PE) // More than two predecessors.
1183    return false;
1184  BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1185  BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1186  if (!BI2 || !BI2->isUnconditional())
1187    return false;
1188
1189  // Gather the PHI nodes in BBEnd.
1190  std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1191  Instruction *FirstNonPhiInBBEnd = 0;
1192  for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1193       I != E; ++I) {
1194    if (PHINode *PN = dyn_cast<PHINode>(I)) {
1195      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1196      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1197      MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1198    } else {
1199      FirstNonPhiInBBEnd = &*I;
1200      break;
1201    }
1202  }
1203  if (!FirstNonPhiInBBEnd)
1204    return false;
1205
1206
1207  // This does very trivial matching, with limited scanning, to find identical
1208  // instructions in the two blocks.  We scan backward for obviously identical
1209  // instructions in an identical order.
1210  BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1211      RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1212      RE2 = BB2->getInstList().rend();
1213  // Skip debug info.
1214  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1215  if (RI1 == RE1)
1216    return false;
1217  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1218  if (RI2 == RE2)
1219    return false;
1220  // Skip the unconditional branches.
1221  ++RI1;
1222  ++RI2;
1223
1224  bool Changed = false;
1225  while (RI1 != RE1 && RI2 != RE2) {
1226    // Skip debug info.
1227    while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1228    if (RI1 == RE1)
1229      return Changed;
1230    while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1231    if (RI2 == RE2)
1232      return Changed;
1233
1234    Instruction *I1 = &*RI1, *I2 = &*RI2;
1235    // I1 and I2 should have a single use in the same PHI node, and they
1236    // perform the same operation.
1237    // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1238    if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1239        isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1240        isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1241        isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1242        I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1243        I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1244        !I1->hasOneUse() || !I2->hasOneUse() ||
1245        MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1246        MapValueFromBB1ToBB2[I1].first != I2)
1247      return Changed;
1248
1249    // Check whether we should swap the operands of ICmpInst.
1250    ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1251    bool SwapOpnds = false;
1252    if (ICmp1 && ICmp2 &&
1253        ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1254        ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1255        (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1256         ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1257      ICmp2->swapOperands();
1258      SwapOpnds = true;
1259    }
1260    if (!I1->isSameOperationAs(I2)) {
1261      if (SwapOpnds)
1262        ICmp2->swapOperands();
1263      return Changed;
1264    }
1265
1266    // The operands should be either the same or they need to be generated
1267    // with a PHI node after sinking. We only handle the case where there is
1268    // a single pair of different operands.
1269    Value *DifferentOp1 = 0, *DifferentOp2 = 0;
1270    unsigned Op1Idx = 0;
1271    for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1272      if (I1->getOperand(I) == I2->getOperand(I))
1273        continue;
1274      // Early exit if we have more-than one pair of different operands or
1275      // the different operand is already in MapValueFromBB1ToBB2.
1276      // Early exit if we need a PHI node to replace a constant.
1277      if (DifferentOp1 ||
1278          MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1279          MapValueFromBB1ToBB2.end() ||
1280          isa<Constant>(I1->getOperand(I)) ||
1281          isa<Constant>(I2->getOperand(I))) {
1282        // If we can't sink the instructions, undo the swapping.
1283        if (SwapOpnds)
1284          ICmp2->swapOperands();
1285        return Changed;
1286      }
1287      DifferentOp1 = I1->getOperand(I);
1288      Op1Idx = I;
1289      DifferentOp2 = I2->getOperand(I);
1290    }
1291
1292    // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1293    // remove (I1, I2) from MapValueFromBB1ToBB2.
1294    if (DifferentOp1) {
1295      PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1296                                       DifferentOp1->getName() + ".sink",
1297                                       BBEnd->begin());
1298      MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1299      // I1 should use NewPN instead of DifferentOp1.
1300      I1->setOperand(Op1Idx, NewPN);
1301      NewPN->addIncoming(DifferentOp1, BB1);
1302      NewPN->addIncoming(DifferentOp2, BB2);
1303      DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1304    }
1305    PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1306    MapValueFromBB1ToBB2.erase(I1);
1307
1308    DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1309    DEBUG(dbgs() << "                         " << *I2 << "\n";);
1310    // We need to update RE1 and RE2 if we are going to sink the first
1311    // instruction in the basic block down.
1312    bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1313    // Sink the instruction.
1314    BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1315    if (!OldPN->use_empty())
1316      OldPN->replaceAllUsesWith(I1);
1317    OldPN->eraseFromParent();
1318
1319    if (!I2->use_empty())
1320      I2->replaceAllUsesWith(I1);
1321    I1->intersectOptionalDataWith(I2);
1322    I2->eraseFromParent();
1323
1324    if (UpdateRE1)
1325      RE1 = BB1->getInstList().rend();
1326    if (UpdateRE2)
1327      RE2 = BB2->getInstList().rend();
1328    FirstNonPhiInBBEnd = I1;
1329    NumSinkCommons++;
1330    Changed = true;
1331  }
1332  return Changed;
1333}
1334
1335/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
1336/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
1337/// (for now, restricted to a single instruction that's side effect free) from
1338/// the BB1 into the branch block to speculatively execute it.
1339///
1340/// Turn
1341/// BB:
1342///     %t1 = icmp
1343///     br i1 %t1, label %BB1, label %BB2
1344/// BB1:
1345///     %t3 = add %t2, c
1346///     br label BB2
1347/// BB2:
1348/// =>
1349/// BB:
1350///     %t1 = icmp
1351///     %t4 = add %t2, c
1352///     %t3 = select i1 %t1, %t2, %t3
1353static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
1354  // Only speculatively execution a single instruction (not counting the
1355  // terminator) for now.
1356  Instruction *HInst = NULL;
1357  Instruction *Term = BB1->getTerminator();
1358  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
1359       BBI != BBE; ++BBI) {
1360    Instruction *I = BBI;
1361    // Skip debug info.
1362    if (isa<DbgInfoIntrinsic>(I)) continue;
1363    if (I == Term) break;
1364
1365    if (HInst)
1366      return false;
1367    HInst = I;
1368  }
1369
1370  BasicBlock *BIParent = BI->getParent();
1371
1372  // Check the instruction to be hoisted, if there is one.
1373  if (HInst) {
1374    // Don't hoist the instruction if it's unsafe or expensive.
1375    if (!isSafeToSpeculativelyExecute(HInst))
1376      return false;
1377    if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
1378      return false;
1379
1380    // Do not hoist the instruction if any of its operands are defined but not
1381    // used in this BB. The transformation will prevent the operand from
1382    // being sunk into the use block.
1383    for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1384         i != e; ++i) {
1385      Instruction *OpI = dyn_cast<Instruction>(*i);
1386      if (OpI && OpI->getParent() == BIParent &&
1387          !OpI->mayHaveSideEffects() &&
1388          !OpI->isUsedInBasicBlock(BIParent))
1389        return false;
1390    }
1391  }
1392
1393  // Be conservative for now. FP select instruction can often be expensive.
1394  Value *BrCond = BI->getCondition();
1395  if (isa<FCmpInst>(BrCond))
1396    return false;
1397
1398  // If BB1 is actually on the false edge of the conditional branch, remember
1399  // to swap the select operands later.
1400  bool Invert = false;
1401  if (BB1 != BI->getSuccessor(0)) {
1402    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
1403    Invert = true;
1404  }
1405
1406  // Collect interesting PHIs, and scan for hazards.
1407  SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
1408  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1409  for (BasicBlock::iterator I = BB2->begin();
1410       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1411    Value *BB1V = PN->getIncomingValueForBlock(BB1);
1412    Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
1413
1414    // Skip PHIs which are trivial.
1415    if (BB1V == BIParentV)
1416      continue;
1417
1418    // Check for safety.
1419    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
1420      // An unfolded ConstantExpr could end up getting expanded into
1421      // Instructions. Don't speculate this and another instruction at
1422      // the same time.
1423      if (HInst)
1424        return false;
1425      if (!isSafeToSpeculativelyExecute(CE))
1426        return false;
1427      if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1428        return false;
1429    }
1430
1431    // Ok, we may insert a select for this PHI.
1432    PHIs.insert(std::make_pair(BB1V, BIParentV));
1433  }
1434
1435  // If there are no PHIs to process, bail early. This helps ensure idempotence
1436  // as well.
1437  if (PHIs.empty())
1438    return false;
1439
1440  // If we get here, we can hoist the instruction and if-convert.
1441  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
1442
1443  // Hoist the instruction.
1444  if (HInst)
1445    BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
1446
1447  // Insert selects and rewrite the PHI operands.
1448  IRBuilder<true, NoFolder> Builder(BI);
1449  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1450    Value *TrueV = PHIs[i].first;
1451    Value *FalseV = PHIs[i].second;
1452
1453    // Create a select whose true value is the speculatively executed value and
1454    // false value is the previously determined FalseV.
1455    SelectInst *SI;
1456    if (Invert)
1457      SI = cast<SelectInst>
1458        (Builder.CreateSelect(BrCond, FalseV, TrueV,
1459                              FalseV->getName() + "." + TrueV->getName()));
1460    else
1461      SI = cast<SelectInst>
1462        (Builder.CreateSelect(BrCond, TrueV, FalseV,
1463                              TrueV->getName() + "." + FalseV->getName()));
1464
1465    // Make the PHI node use the select for all incoming values for "then" and
1466    // "if" blocks.
1467    for (BasicBlock::iterator I = BB2->begin();
1468         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1469      unsigned BB1I = PN->getBasicBlockIndex(BB1);
1470      unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
1471      Value *BB1V = PN->getIncomingValue(BB1I);
1472      Value *BIParentV = PN->getIncomingValue(BIParentI);
1473      if (TrueV == BB1V && FalseV == BIParentV) {
1474        PN->setIncomingValue(BB1I, SI);
1475        PN->setIncomingValue(BIParentI, SI);
1476      }
1477    }
1478  }
1479
1480  ++NumSpeculations;
1481  return true;
1482}
1483
1484/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1485/// across this block.
1486static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1487  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1488  unsigned Size = 0;
1489
1490  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1491    if (isa<DbgInfoIntrinsic>(BBI))
1492      continue;
1493    if (Size > 10) return false;  // Don't clone large BB's.
1494    ++Size;
1495
1496    // We can only support instructions that do not define values that are
1497    // live outside of the current basic block.
1498    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1499         UI != E; ++UI) {
1500      Instruction *U = cast<Instruction>(*UI);
1501      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1502    }
1503
1504    // Looks ok, continue checking.
1505  }
1506
1507  return true;
1508}
1509
1510/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1511/// that is defined in the same block as the branch and if any PHI entries are
1512/// constants, thread edges corresponding to that entry to be branches to their
1513/// ultimate destination.
1514static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
1515  BasicBlock *BB = BI->getParent();
1516  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1517  // NOTE: we currently cannot transform this case if the PHI node is used
1518  // outside of the block.
1519  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1520    return false;
1521
1522  // Degenerate case of a single entry PHI.
1523  if (PN->getNumIncomingValues() == 1) {
1524    FoldSingleEntryPHINodes(PN->getParent());
1525    return true;
1526  }
1527
1528  // Now we know that this block has multiple preds and two succs.
1529  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1530
1531  // Okay, this is a simple enough basic block.  See if any phi values are
1532  // constants.
1533  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1534    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1535    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1536
1537    // Okay, we now know that all edges from PredBB should be revectored to
1538    // branch to RealDest.
1539    BasicBlock *PredBB = PN->getIncomingBlock(i);
1540    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1541
1542    if (RealDest == BB) continue;  // Skip self loops.
1543    // Skip if the predecessor's terminator is an indirect branch.
1544    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1545
1546    // The dest block might have PHI nodes, other predecessors and other
1547    // difficult cases.  Instead of being smart about this, just insert a new
1548    // block that jumps to the destination block, effectively splitting
1549    // the edge we are about to create.
1550    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1551                                            RealDest->getName()+".critedge",
1552                                            RealDest->getParent(), RealDest);
1553    BranchInst::Create(RealDest, EdgeBB);
1554
1555    // Update PHI nodes.
1556    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1557
1558    // BB may have instructions that are being threaded over.  Clone these
1559    // instructions into EdgeBB.  We know that there will be no uses of the
1560    // cloned instructions outside of EdgeBB.
1561    BasicBlock::iterator InsertPt = EdgeBB->begin();
1562    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1563    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1564      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1565        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1566        continue;
1567      }
1568      // Clone the instruction.
1569      Instruction *N = BBI->clone();
1570      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1571
1572      // Update operands due to translation.
1573      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1574           i != e; ++i) {
1575        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1576        if (PI != TranslateMap.end())
1577          *i = PI->second;
1578      }
1579
1580      // Check for trivial simplification.
1581      if (Value *V = SimplifyInstruction(N, TD)) {
1582        TranslateMap[BBI] = V;
1583        delete N;   // Instruction folded away, don't need actual inst
1584      } else {
1585        // Insert the new instruction into its new home.
1586        EdgeBB->getInstList().insert(InsertPt, N);
1587        if (!BBI->use_empty())
1588          TranslateMap[BBI] = N;
1589      }
1590    }
1591
1592    // Loop over all of the edges from PredBB to BB, changing them to branch
1593    // to EdgeBB instead.
1594    TerminatorInst *PredBBTI = PredBB->getTerminator();
1595    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1596      if (PredBBTI->getSuccessor(i) == BB) {
1597        BB->removePredecessor(PredBB);
1598        PredBBTI->setSuccessor(i, EdgeBB);
1599      }
1600
1601    // Recurse, simplifying any other constants.
1602    return FoldCondBranchOnPHI(BI, TD) | true;
1603  }
1604
1605  return false;
1606}
1607
1608/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1609/// PHI node, see if we can eliminate it.
1610static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
1611  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1612  // statement", which has a very simple dominance structure.  Basically, we
1613  // are trying to find the condition that is being branched on, which
1614  // subsequently causes this merge to happen.  We really want control
1615  // dependence information for this check, but simplifycfg can't keep it up
1616  // to date, and this catches most of the cases we care about anyway.
1617  BasicBlock *BB = PN->getParent();
1618  BasicBlock *IfTrue, *IfFalse;
1619  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1620  if (!IfCond ||
1621      // Don't bother if the branch will be constant folded trivially.
1622      isa<ConstantInt>(IfCond))
1623    return false;
1624
1625  // Okay, we found that we can merge this two-entry phi node into a select.
1626  // Doing so would require us to fold *all* two entry phi nodes in this block.
1627  // At some point this becomes non-profitable (particularly if the target
1628  // doesn't support cmov's).  Only do this transformation if there are two or
1629  // fewer PHI nodes in this block.
1630  unsigned NumPhis = 0;
1631  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1632    if (NumPhis > 2)
1633      return false;
1634
1635  // Loop over the PHI's seeing if we can promote them all to select
1636  // instructions.  While we are at it, keep track of the instructions
1637  // that need to be moved to the dominating block.
1638  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1639  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1640           MaxCostVal1 = PHINodeFoldingThreshold;
1641
1642  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1643    PHINode *PN = cast<PHINode>(II++);
1644    if (Value *V = SimplifyInstruction(PN, TD)) {
1645      PN->replaceAllUsesWith(V);
1646      PN->eraseFromParent();
1647      continue;
1648    }
1649
1650    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1651                             MaxCostVal0) ||
1652        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1653                             MaxCostVal1))
1654      return false;
1655  }
1656
1657  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1658  // we ran out of PHIs then we simplified them all.
1659  PN = dyn_cast<PHINode>(BB->begin());
1660  if (PN == 0) return true;
1661
1662  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1663  // often be turned into switches and other things.
1664  if (PN->getType()->isIntegerTy(1) &&
1665      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1666       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1667       isa<BinaryOperator>(IfCond)))
1668    return false;
1669
1670  // If we all PHI nodes are promotable, check to make sure that all
1671  // instructions in the predecessor blocks can be promoted as well.  If
1672  // not, we won't be able to get rid of the control flow, so it's not
1673  // worth promoting to select instructions.
1674  BasicBlock *DomBlock = 0;
1675  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1676  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1677  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1678    IfBlock1 = 0;
1679  } else {
1680    DomBlock = *pred_begin(IfBlock1);
1681    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1682      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1683        // This is not an aggressive instruction that we can promote.
1684        // Because of this, we won't be able to get rid of the control
1685        // flow, so the xform is not worth it.
1686        return false;
1687      }
1688  }
1689
1690  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1691    IfBlock2 = 0;
1692  } else {
1693    DomBlock = *pred_begin(IfBlock2);
1694    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1695      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1696        // This is not an aggressive instruction that we can promote.
1697        // Because of this, we won't be able to get rid of the control
1698        // flow, so the xform is not worth it.
1699        return false;
1700      }
1701  }
1702
1703  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1704               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1705
1706  // If we can still promote the PHI nodes after this gauntlet of tests,
1707  // do all of the PHI's now.
1708  Instruction *InsertPt = DomBlock->getTerminator();
1709  IRBuilder<true, NoFolder> Builder(InsertPt);
1710
1711  // Move all 'aggressive' instructions, which are defined in the
1712  // conditional parts of the if's up to the dominating block.
1713  if (IfBlock1)
1714    DomBlock->getInstList().splice(InsertPt,
1715                                   IfBlock1->getInstList(), IfBlock1->begin(),
1716                                   IfBlock1->getTerminator());
1717  if (IfBlock2)
1718    DomBlock->getInstList().splice(InsertPt,
1719                                   IfBlock2->getInstList(), IfBlock2->begin(),
1720                                   IfBlock2->getTerminator());
1721
1722  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1723    // Change the PHI node into a select instruction.
1724    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1725    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1726
1727    SelectInst *NV =
1728      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1729    PN->replaceAllUsesWith(NV);
1730    NV->takeName(PN);
1731    PN->eraseFromParent();
1732  }
1733
1734  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1735  // has been flattened.  Change DomBlock to jump directly to our new block to
1736  // avoid other simplifycfg's kicking in on the diamond.
1737  TerminatorInst *OldTI = DomBlock->getTerminator();
1738  Builder.SetInsertPoint(OldTI);
1739  Builder.CreateBr(BB);
1740  OldTI->eraseFromParent();
1741  return true;
1742}
1743
1744/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1745/// to two returning blocks, try to merge them together into one return,
1746/// introducing a select if the return values disagree.
1747static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1748                                           IRBuilder<> &Builder) {
1749  assert(BI->isConditional() && "Must be a conditional branch");
1750  BasicBlock *TrueSucc = BI->getSuccessor(0);
1751  BasicBlock *FalseSucc = BI->getSuccessor(1);
1752  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1753  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1754
1755  // Check to ensure both blocks are empty (just a return) or optionally empty
1756  // with PHI nodes.  If there are other instructions, merging would cause extra
1757  // computation on one path or the other.
1758  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1759    return false;
1760  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1761    return false;
1762
1763  Builder.SetInsertPoint(BI);
1764  // Okay, we found a branch that is going to two return nodes.  If
1765  // there is no return value for this function, just change the
1766  // branch into a return.
1767  if (FalseRet->getNumOperands() == 0) {
1768    TrueSucc->removePredecessor(BI->getParent());
1769    FalseSucc->removePredecessor(BI->getParent());
1770    Builder.CreateRetVoid();
1771    EraseTerminatorInstAndDCECond(BI);
1772    return true;
1773  }
1774
1775  // Otherwise, figure out what the true and false return values are
1776  // so we can insert a new select instruction.
1777  Value *TrueValue = TrueRet->getReturnValue();
1778  Value *FalseValue = FalseRet->getReturnValue();
1779
1780  // Unwrap any PHI nodes in the return blocks.
1781  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1782    if (TVPN->getParent() == TrueSucc)
1783      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1784  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1785    if (FVPN->getParent() == FalseSucc)
1786      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1787
1788  // In order for this transformation to be safe, we must be able to
1789  // unconditionally execute both operands to the return.  This is
1790  // normally the case, but we could have a potentially-trapping
1791  // constant expression that prevents this transformation from being
1792  // safe.
1793  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1794    if (TCV->canTrap())
1795      return false;
1796  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1797    if (FCV->canTrap())
1798      return false;
1799
1800  // Okay, we collected all the mapped values and checked them for sanity, and
1801  // defined to really do this transformation.  First, update the CFG.
1802  TrueSucc->removePredecessor(BI->getParent());
1803  FalseSucc->removePredecessor(BI->getParent());
1804
1805  // Insert select instructions where needed.
1806  Value *BrCond = BI->getCondition();
1807  if (TrueValue) {
1808    // Insert a select if the results differ.
1809    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1810    } else if (isa<UndefValue>(TrueValue)) {
1811      TrueValue = FalseValue;
1812    } else {
1813      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1814                                       FalseValue, "retval");
1815    }
1816  }
1817
1818  Value *RI = !TrueValue ?
1819    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1820
1821  (void) RI;
1822
1823  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1824               << "\n  " << *BI << "NewRet = " << *RI
1825               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1826
1827  EraseTerminatorInstAndDCECond(BI);
1828
1829  return true;
1830}
1831
1832/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1833/// probabilities of the branch taking each edge. Fills in the two APInt
1834/// parameters and return true, or returns false if no or invalid metadata was
1835/// found.
1836static bool ExtractBranchMetadata(BranchInst *BI,
1837                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
1838  assert(BI->isConditional() &&
1839         "Looking for probabilities on unconditional branch?");
1840  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1841  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1842  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1843  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1844  if (!CITrue || !CIFalse) return false;
1845  ProbTrue = CITrue->getValue().getZExtValue();
1846  ProbFalse = CIFalse->getValue().getZExtValue();
1847  return true;
1848}
1849
1850/// checkCSEInPredecessor - Return true if the given instruction is available
1851/// in its predecessor block. If yes, the instruction will be removed.
1852///
1853static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1854  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1855    return false;
1856  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1857    Instruction *PBI = &*I;
1858    // Check whether Inst and PBI generate the same value.
1859    if (Inst->isIdenticalTo(PBI)) {
1860      Inst->replaceAllUsesWith(PBI);
1861      Inst->eraseFromParent();
1862      return true;
1863    }
1864  }
1865  return false;
1866}
1867
1868/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1869/// predecessor branches to us and one of our successors, fold the block into
1870/// the predecessor and use logical operations to pick the right destination.
1871bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1872  BasicBlock *BB = BI->getParent();
1873
1874  Instruction *Cond = 0;
1875  if (BI->isConditional())
1876    Cond = dyn_cast<Instruction>(BI->getCondition());
1877  else {
1878    // For unconditional branch, check for a simple CFG pattern, where
1879    // BB has a single predecessor and BB's successor is also its predecessor's
1880    // successor. If such pattern exisits, check for CSE between BB and its
1881    // predecessor.
1882    if (BasicBlock *PB = BB->getSinglePredecessor())
1883      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1884        if (PBI->isConditional() &&
1885            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1886             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1887          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1888               I != E; ) {
1889            Instruction *Curr = I++;
1890            if (isa<CmpInst>(Curr)) {
1891              Cond = Curr;
1892              break;
1893            }
1894            // Quit if we can't remove this instruction.
1895            if (!checkCSEInPredecessor(Curr, PB))
1896              return false;
1897          }
1898        }
1899
1900    if (Cond == 0)
1901      return false;
1902  }
1903
1904  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1905    Cond->getParent() != BB || !Cond->hasOneUse())
1906  return false;
1907
1908  // Only allow this if the condition is a simple instruction that can be
1909  // executed unconditionally.  It must be in the same block as the branch, and
1910  // must be at the front of the block.
1911  BasicBlock::iterator FrontIt = BB->front();
1912
1913  // Ignore dbg intrinsics.
1914  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1915
1916  // Allow a single instruction to be hoisted in addition to the compare
1917  // that feeds the branch.  We later ensure that any values that _it_ uses
1918  // were also live in the predecessor, so that we don't unnecessarily create
1919  // register pressure or inhibit out-of-order execution.
1920  Instruction *BonusInst = 0;
1921  if (&*FrontIt != Cond &&
1922      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1923      isSafeToSpeculativelyExecute(FrontIt)) {
1924    BonusInst = &*FrontIt;
1925    ++FrontIt;
1926
1927    // Ignore dbg intrinsics.
1928    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1929  }
1930
1931  // Only a single bonus inst is allowed.
1932  if (&*FrontIt != Cond)
1933    return false;
1934
1935  // Make sure the instruction after the condition is the cond branch.
1936  BasicBlock::iterator CondIt = Cond; ++CondIt;
1937
1938  // Ingore dbg intrinsics.
1939  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1940
1941  if (&*CondIt != BI)
1942    return false;
1943
1944  // Cond is known to be a compare or binary operator.  Check to make sure that
1945  // neither operand is a potentially-trapping constant expression.
1946  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1947    if (CE->canTrap())
1948      return false;
1949  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1950    if (CE->canTrap())
1951      return false;
1952
1953  // Finally, don't infinitely unroll conditional loops.
1954  BasicBlock *TrueDest  = BI->getSuccessor(0);
1955  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
1956  if (TrueDest == BB || FalseDest == BB)
1957    return false;
1958
1959  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1960    BasicBlock *PredBlock = *PI;
1961    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1962
1963    // Check that we have two conditional branches.  If there is a PHI node in
1964    // the common successor, verify that the same value flows in from both
1965    // blocks.
1966    SmallVector<PHINode*, 4> PHIs;
1967    if (PBI == 0 || PBI->isUnconditional() ||
1968        (BI->isConditional() &&
1969         !SafeToMergeTerminators(BI, PBI)) ||
1970        (!BI->isConditional() &&
1971         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
1972      continue;
1973
1974    // Determine if the two branches share a common destination.
1975    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
1976    bool InvertPredCond = false;
1977
1978    if (BI->isConditional()) {
1979      if (PBI->getSuccessor(0) == TrueDest)
1980        Opc = Instruction::Or;
1981      else if (PBI->getSuccessor(1) == FalseDest)
1982        Opc = Instruction::And;
1983      else if (PBI->getSuccessor(0) == FalseDest)
1984        Opc = Instruction::And, InvertPredCond = true;
1985      else if (PBI->getSuccessor(1) == TrueDest)
1986        Opc = Instruction::Or, InvertPredCond = true;
1987      else
1988        continue;
1989    } else {
1990      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
1991        continue;
1992    }
1993
1994    // Ensure that any values used in the bonus instruction are also used
1995    // by the terminator of the predecessor.  This means that those values
1996    // must already have been resolved, so we won't be inhibiting the
1997    // out-of-order core by speculating them earlier.
1998    if (BonusInst) {
1999      // Collect the values used by the bonus inst
2000      SmallPtrSet<Value*, 4> UsedValues;
2001      for (Instruction::op_iterator OI = BonusInst->op_begin(),
2002           OE = BonusInst->op_end(); OI != OE; ++OI) {
2003        Value *V = *OI;
2004        if (!isa<Constant>(V))
2005          UsedValues.insert(V);
2006      }
2007
2008      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
2009      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
2010
2011      // Walk up to four levels back up the use-def chain of the predecessor's
2012      // terminator to see if all those values were used.  The choice of four
2013      // levels is arbitrary, to provide a compile-time-cost bound.
2014      while (!Worklist.empty()) {
2015        std::pair<Value*, unsigned> Pair = Worklist.back();
2016        Worklist.pop_back();
2017
2018        if (Pair.second >= 4) continue;
2019        UsedValues.erase(Pair.first);
2020        if (UsedValues.empty()) break;
2021
2022        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
2023          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
2024               OI != OE; ++OI)
2025            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
2026        }
2027      }
2028
2029      if (!UsedValues.empty()) return false;
2030    }
2031
2032    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2033    IRBuilder<> Builder(PBI);
2034
2035    // If we need to invert the condition in the pred block to match, do so now.
2036    if (InvertPredCond) {
2037      Value *NewCond = PBI->getCondition();
2038
2039      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2040        CmpInst *CI = cast<CmpInst>(NewCond);
2041        CI->setPredicate(CI->getInversePredicate());
2042      } else {
2043        NewCond = Builder.CreateNot(NewCond,
2044                                    PBI->getCondition()->getName()+".not");
2045      }
2046
2047      PBI->setCondition(NewCond);
2048      PBI->swapSuccessors();
2049    }
2050
2051    // If we have a bonus inst, clone it into the predecessor block.
2052    Instruction *NewBonus = 0;
2053    if (BonusInst) {
2054      NewBonus = BonusInst->clone();
2055      PredBlock->getInstList().insert(PBI, NewBonus);
2056      NewBonus->takeName(BonusInst);
2057      BonusInst->setName(BonusInst->getName()+".old");
2058    }
2059
2060    // Clone Cond into the predecessor basic block, and or/and the
2061    // two conditions together.
2062    Instruction *New = Cond->clone();
2063    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
2064    PredBlock->getInstList().insert(PBI, New);
2065    New->takeName(Cond);
2066    Cond->setName(New->getName()+".old");
2067
2068    if (BI->isConditional()) {
2069      Instruction *NewCond =
2070        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2071                                            New, "or.cond"));
2072      PBI->setCondition(NewCond);
2073
2074      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2075      bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2076                                                  PredFalseWeight);
2077      bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2078                                                  SuccFalseWeight);
2079      SmallVector<uint64_t, 8> NewWeights;
2080
2081      if (PBI->getSuccessor(0) == BB) {
2082        if (PredHasWeights && SuccHasWeights) {
2083          // PBI: br i1 %x, BB, FalseDest
2084          // BI:  br i1 %y, TrueDest, FalseDest
2085          //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2086          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2087          //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2088          //               TrueWeight for PBI * FalseWeight for BI.
2089          // We assume that total weights of a BranchInst can fit into 32 bits.
2090          // Therefore, we will not have overflow using 64-bit arithmetic.
2091          NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2092               SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2093        }
2094        AddPredecessorToBlock(TrueDest, PredBlock, BB);
2095        PBI->setSuccessor(0, TrueDest);
2096      }
2097      if (PBI->getSuccessor(1) == BB) {
2098        if (PredHasWeights && SuccHasWeights) {
2099          // PBI: br i1 %x, TrueDest, BB
2100          // BI:  br i1 %y, TrueDest, FalseDest
2101          //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2102          //              FalseWeight for PBI * TrueWeight for BI.
2103          NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2104              SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2105          //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2106          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2107        }
2108        AddPredecessorToBlock(FalseDest, PredBlock, BB);
2109        PBI->setSuccessor(1, FalseDest);
2110      }
2111      if (NewWeights.size() == 2) {
2112        // Halve the weights if any of them cannot fit in an uint32_t
2113        FitWeights(NewWeights);
2114
2115        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2116        PBI->setMetadata(LLVMContext::MD_prof,
2117                         MDBuilder(BI->getContext()).
2118                         createBranchWeights(MDWeights));
2119      } else
2120        PBI->setMetadata(LLVMContext::MD_prof, NULL);
2121    } else {
2122      // Update PHI nodes in the common successors.
2123      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2124        ConstantInt *PBI_C = cast<ConstantInt>(
2125          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2126        assert(PBI_C->getType()->isIntegerTy(1));
2127        Instruction *MergedCond = 0;
2128        if (PBI->getSuccessor(0) == TrueDest) {
2129          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2130          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2131          //       is false: !PBI_Cond and BI_Value
2132          Instruction *NotCond =
2133            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2134                                "not.cond"));
2135          MergedCond =
2136            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2137                                NotCond, New,
2138                                "and.cond"));
2139          if (PBI_C->isOne())
2140            MergedCond =
2141              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2142                                  PBI->getCondition(), MergedCond,
2143                                  "or.cond"));
2144        } else {
2145          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2146          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2147          //       is false: PBI_Cond and BI_Value
2148          MergedCond =
2149            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2150                                PBI->getCondition(), New,
2151                                "and.cond"));
2152          if (PBI_C->isOne()) {
2153            Instruction *NotCond =
2154              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2155                                  "not.cond"));
2156            MergedCond =
2157              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2158                                  NotCond, MergedCond,
2159                                  "or.cond"));
2160          }
2161        }
2162        // Update PHI Node.
2163        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2164                                  MergedCond);
2165      }
2166      // Change PBI from Conditional to Unconditional.
2167      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2168      EraseTerminatorInstAndDCECond(PBI);
2169      PBI = New_PBI;
2170    }
2171
2172    // TODO: If BB is reachable from all paths through PredBlock, then we
2173    // could replace PBI's branch probabilities with BI's.
2174
2175    // Copy any debug value intrinsics into the end of PredBlock.
2176    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2177      if (isa<DbgInfoIntrinsic>(*I))
2178        I->clone()->insertBefore(PBI);
2179
2180    return true;
2181  }
2182  return false;
2183}
2184
2185/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2186/// predecessor of another block, this function tries to simplify it.  We know
2187/// that PBI and BI are both conditional branches, and BI is in one of the
2188/// successor blocks of PBI - PBI branches to BI.
2189static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2190  assert(PBI->isConditional() && BI->isConditional());
2191  BasicBlock *BB = BI->getParent();
2192
2193  // If this block ends with a branch instruction, and if there is a
2194  // predecessor that ends on a branch of the same condition, make
2195  // this conditional branch redundant.
2196  if (PBI->getCondition() == BI->getCondition() &&
2197      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2198    // Okay, the outcome of this conditional branch is statically
2199    // knowable.  If this block had a single pred, handle specially.
2200    if (BB->getSinglePredecessor()) {
2201      // Turn this into a branch on constant.
2202      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2203      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2204                                        CondIsTrue));
2205      return true;  // Nuke the branch on constant.
2206    }
2207
2208    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2209    // in the constant and simplify the block result.  Subsequent passes of
2210    // simplifycfg will thread the block.
2211    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2212      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2213      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2214                                       std::distance(PB, PE),
2215                                       BI->getCondition()->getName() + ".pr",
2216                                       BB->begin());
2217      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2218      // predecessor, compute the PHI'd conditional value for all of the preds.
2219      // Any predecessor where the condition is not computable we keep symbolic.
2220      for (pred_iterator PI = PB; PI != PE; ++PI) {
2221        BasicBlock *P = *PI;
2222        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2223            PBI != BI && PBI->isConditional() &&
2224            PBI->getCondition() == BI->getCondition() &&
2225            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2226          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2227          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2228                                              CondIsTrue), P);
2229        } else {
2230          NewPN->addIncoming(BI->getCondition(), P);
2231        }
2232      }
2233
2234      BI->setCondition(NewPN);
2235      return true;
2236    }
2237  }
2238
2239  // If this is a conditional branch in an empty block, and if any
2240  // predecessors is a conditional branch to one of our destinations,
2241  // fold the conditions into logical ops and one cond br.
2242  BasicBlock::iterator BBI = BB->begin();
2243  // Ignore dbg intrinsics.
2244  while (isa<DbgInfoIntrinsic>(BBI))
2245    ++BBI;
2246  if (&*BBI != BI)
2247    return false;
2248
2249
2250  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2251    if (CE->canTrap())
2252      return false;
2253
2254  int PBIOp, BIOp;
2255  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2256    PBIOp = BIOp = 0;
2257  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2258    PBIOp = 0, BIOp = 1;
2259  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2260    PBIOp = 1, BIOp = 0;
2261  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2262    PBIOp = BIOp = 1;
2263  else
2264    return false;
2265
2266  // Check to make sure that the other destination of this branch
2267  // isn't BB itself.  If so, this is an infinite loop that will
2268  // keep getting unwound.
2269  if (PBI->getSuccessor(PBIOp) == BB)
2270    return false;
2271
2272  // Do not perform this transformation if it would require
2273  // insertion of a large number of select instructions. For targets
2274  // without predication/cmovs, this is a big pessimization.
2275  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2276
2277  unsigned NumPhis = 0;
2278  for (BasicBlock::iterator II = CommonDest->begin();
2279       isa<PHINode>(II); ++II, ++NumPhis)
2280    if (NumPhis > 2) // Disable this xform.
2281      return false;
2282
2283  // Finally, if everything is ok, fold the branches to logical ops.
2284  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2285
2286  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2287               << "AND: " << *BI->getParent());
2288
2289
2290  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2291  // branch in it, where one edge (OtherDest) goes back to itself but the other
2292  // exits.  We don't *know* that the program avoids the infinite loop
2293  // (even though that seems likely).  If we do this xform naively, we'll end up
2294  // recursively unpeeling the loop.  Since we know that (after the xform is
2295  // done) that the block *is* infinite if reached, we just make it an obviously
2296  // infinite loop with no cond branch.
2297  if (OtherDest == BB) {
2298    // Insert it at the end of the function, because it's either code,
2299    // or it won't matter if it's hot. :)
2300    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2301                                                  "infloop", BB->getParent());
2302    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2303    OtherDest = InfLoopBlock;
2304  }
2305
2306  DEBUG(dbgs() << *PBI->getParent()->getParent());
2307
2308  // BI may have other predecessors.  Because of this, we leave
2309  // it alone, but modify PBI.
2310
2311  // Make sure we get to CommonDest on True&True directions.
2312  Value *PBICond = PBI->getCondition();
2313  IRBuilder<true, NoFolder> Builder(PBI);
2314  if (PBIOp)
2315    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2316
2317  Value *BICond = BI->getCondition();
2318  if (BIOp)
2319    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2320
2321  // Merge the conditions.
2322  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2323
2324  // Modify PBI to branch on the new condition to the new dests.
2325  PBI->setCondition(Cond);
2326  PBI->setSuccessor(0, CommonDest);
2327  PBI->setSuccessor(1, OtherDest);
2328
2329  // Update branch weight for PBI.
2330  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2331  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2332                                              PredFalseWeight);
2333  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2334                                              SuccFalseWeight);
2335  if (PredHasWeights && SuccHasWeights) {
2336    uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2337    uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2338    uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2339    uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2340    // The weight to CommonDest should be PredCommon * SuccTotal +
2341    //                                    PredOther * SuccCommon.
2342    // The weight to OtherDest should be PredOther * SuccOther.
2343    SmallVector<uint64_t, 2> NewWeights;
2344    NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2345                         PredOther * SuccCommon);
2346    NewWeights.push_back(PredOther * SuccOther);
2347    // Halve the weights if any of them cannot fit in an uint32_t
2348    FitWeights(NewWeights);
2349
2350    SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2351    PBI->setMetadata(LLVMContext::MD_prof,
2352                     MDBuilder(BI->getContext()).
2353                     createBranchWeights(MDWeights));
2354  }
2355
2356  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2357  // block that are identical to the entries for BI's block.
2358  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2359
2360  // We know that the CommonDest already had an edge from PBI to
2361  // it.  If it has PHIs though, the PHIs may have different
2362  // entries for BB and PBI's BB.  If so, insert a select to make
2363  // them agree.
2364  PHINode *PN;
2365  for (BasicBlock::iterator II = CommonDest->begin();
2366       (PN = dyn_cast<PHINode>(II)); ++II) {
2367    Value *BIV = PN->getIncomingValueForBlock(BB);
2368    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2369    Value *PBIV = PN->getIncomingValue(PBBIdx);
2370    if (BIV != PBIV) {
2371      // Insert a select in PBI to pick the right value.
2372      Value *NV = cast<SelectInst>
2373        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2374      PN->setIncomingValue(PBBIdx, NV);
2375    }
2376  }
2377
2378  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2379  DEBUG(dbgs() << *PBI->getParent()->getParent());
2380
2381  // This basic block is probably dead.  We know it has at least
2382  // one fewer predecessor.
2383  return true;
2384}
2385
2386// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2387// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2388// Takes care of updating the successors and removing the old terminator.
2389// Also makes sure not to introduce new successors by assuming that edges to
2390// non-successor TrueBBs and FalseBBs aren't reachable.
2391static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2392                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
2393                                       uint32_t TrueWeight,
2394                                       uint32_t FalseWeight){
2395  // Remove any superfluous successor edges from the CFG.
2396  // First, figure out which successors to preserve.
2397  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2398  // successor.
2399  BasicBlock *KeepEdge1 = TrueBB;
2400  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2401
2402  // Then remove the rest.
2403  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2404    BasicBlock *Succ = OldTerm->getSuccessor(I);
2405    // Make sure only to keep exactly one copy of each edge.
2406    if (Succ == KeepEdge1)
2407      KeepEdge1 = 0;
2408    else if (Succ == KeepEdge2)
2409      KeepEdge2 = 0;
2410    else
2411      Succ->removePredecessor(OldTerm->getParent());
2412  }
2413
2414  IRBuilder<> Builder(OldTerm);
2415  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2416
2417  // Insert an appropriate new terminator.
2418  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2419    if (TrueBB == FalseBB)
2420      // We were only looking for one successor, and it was present.
2421      // Create an unconditional branch to it.
2422      Builder.CreateBr(TrueBB);
2423    else {
2424      // We found both of the successors we were looking for.
2425      // Create a conditional branch sharing the condition of the select.
2426      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2427      if (TrueWeight != FalseWeight)
2428        NewBI->setMetadata(LLVMContext::MD_prof,
2429                           MDBuilder(OldTerm->getContext()).
2430                           createBranchWeights(TrueWeight, FalseWeight));
2431    }
2432  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2433    // Neither of the selected blocks were successors, so this
2434    // terminator must be unreachable.
2435    new UnreachableInst(OldTerm->getContext(), OldTerm);
2436  } else {
2437    // One of the selected values was a successor, but the other wasn't.
2438    // Insert an unconditional branch to the one that was found;
2439    // the edge to the one that wasn't must be unreachable.
2440    if (KeepEdge1 == 0)
2441      // Only TrueBB was found.
2442      Builder.CreateBr(TrueBB);
2443    else
2444      // Only FalseBB was found.
2445      Builder.CreateBr(FalseBB);
2446  }
2447
2448  EraseTerminatorInstAndDCECond(OldTerm);
2449  return true;
2450}
2451
2452// SimplifySwitchOnSelect - Replaces
2453//   (switch (select cond, X, Y)) on constant X, Y
2454// with a branch - conditional if X and Y lead to distinct BBs,
2455// unconditional otherwise.
2456static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2457  // Check for constant integer values in the select.
2458  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2459  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2460  if (!TrueVal || !FalseVal)
2461    return false;
2462
2463  // Find the relevant condition and destinations.
2464  Value *Condition = Select->getCondition();
2465  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2466  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2467
2468  // Get weight for TrueBB and FalseBB.
2469  uint32_t TrueWeight = 0, FalseWeight = 0;
2470  SmallVector<uint64_t, 8> Weights;
2471  bool HasWeights = HasBranchWeights(SI);
2472  if (HasWeights) {
2473    GetBranchWeights(SI, Weights);
2474    if (Weights.size() == 1 + SI->getNumCases()) {
2475      TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2476                                     getSuccessorIndex()];
2477      FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2478                                      getSuccessorIndex()];
2479    }
2480  }
2481
2482  // Perform the actual simplification.
2483  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2484                                    TrueWeight, FalseWeight);
2485}
2486
2487// SimplifyIndirectBrOnSelect - Replaces
2488//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2489//                             blockaddress(@fn, BlockB)))
2490// with
2491//   (br cond, BlockA, BlockB).
2492static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2493  // Check that both operands of the select are block addresses.
2494  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2495  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2496  if (!TBA || !FBA)
2497    return false;
2498
2499  // Extract the actual blocks.
2500  BasicBlock *TrueBB = TBA->getBasicBlock();
2501  BasicBlock *FalseBB = FBA->getBasicBlock();
2502
2503  // Perform the actual simplification.
2504  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2505                                    0, 0);
2506}
2507
2508/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2509/// instruction (a seteq/setne with a constant) as the only instruction in a
2510/// block that ends with an uncond branch.  We are looking for a very specific
2511/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2512/// this case, we merge the first two "or's of icmp" into a switch, but then the
2513/// default value goes to an uncond block with a seteq in it, we get something
2514/// like:
2515///
2516///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2517/// DEFAULT:
2518///   %tmp = icmp eq i8 %A, 92
2519///   br label %end
2520/// end:
2521///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2522///
2523/// We prefer to split the edge to 'end' so that there is a true/false entry to
2524/// the PHI, merging the third icmp into the switch.
2525static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
2526                                                  const DataLayout *TD,
2527                                                  IRBuilder<> &Builder) {
2528  BasicBlock *BB = ICI->getParent();
2529
2530  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2531  // complex.
2532  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2533
2534  Value *V = ICI->getOperand(0);
2535  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2536
2537  // The pattern we're looking for is where our only predecessor is a switch on
2538  // 'V' and this block is the default case for the switch.  In this case we can
2539  // fold the compared value into the switch to simplify things.
2540  BasicBlock *Pred = BB->getSinglePredecessor();
2541  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2542
2543  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2544  if (SI->getCondition() != V)
2545    return false;
2546
2547  // If BB is reachable on a non-default case, then we simply know the value of
2548  // V in this block.  Substitute it and constant fold the icmp instruction
2549  // away.
2550  if (SI->getDefaultDest() != BB) {
2551    ConstantInt *VVal = SI->findCaseDest(BB);
2552    assert(VVal && "Should have a unique destination value");
2553    ICI->setOperand(0, VVal);
2554
2555    if (Value *V = SimplifyInstruction(ICI, TD)) {
2556      ICI->replaceAllUsesWith(V);
2557      ICI->eraseFromParent();
2558    }
2559    // BB is now empty, so it is likely to simplify away.
2560    return SimplifyCFG(BB) | true;
2561  }
2562
2563  // Ok, the block is reachable from the default dest.  If the constant we're
2564  // comparing exists in one of the other edges, then we can constant fold ICI
2565  // and zap it.
2566  if (SI->findCaseValue(Cst) != SI->case_default()) {
2567    Value *V;
2568    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2569      V = ConstantInt::getFalse(BB->getContext());
2570    else
2571      V = ConstantInt::getTrue(BB->getContext());
2572
2573    ICI->replaceAllUsesWith(V);
2574    ICI->eraseFromParent();
2575    // BB is now empty, so it is likely to simplify away.
2576    return SimplifyCFG(BB) | true;
2577  }
2578
2579  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2580  // the block.
2581  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2582  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2583  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2584      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2585    return false;
2586
2587  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2588  // true in the PHI.
2589  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2590  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2591
2592  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2593    std::swap(DefaultCst, NewCst);
2594
2595  // Replace ICI (which is used by the PHI for the default value) with true or
2596  // false depending on if it is EQ or NE.
2597  ICI->replaceAllUsesWith(DefaultCst);
2598  ICI->eraseFromParent();
2599
2600  // Okay, the switch goes to this block on a default value.  Add an edge from
2601  // the switch to the merge point on the compared value.
2602  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2603                                         BB->getParent(), BB);
2604  SmallVector<uint64_t, 8> Weights;
2605  bool HasWeights = HasBranchWeights(SI);
2606  if (HasWeights) {
2607    GetBranchWeights(SI, Weights);
2608    if (Weights.size() == 1 + SI->getNumCases()) {
2609      // Split weight for default case to case for "Cst".
2610      Weights[0] = (Weights[0]+1) >> 1;
2611      Weights.push_back(Weights[0]);
2612
2613      SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2614      SI->setMetadata(LLVMContext::MD_prof,
2615                      MDBuilder(SI->getContext()).
2616                      createBranchWeights(MDWeights));
2617    }
2618  }
2619  SI->addCase(Cst, NewBB);
2620
2621  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2622  Builder.SetInsertPoint(NewBB);
2623  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2624  Builder.CreateBr(SuccBlock);
2625  PHIUse->addIncoming(NewCst, NewBB);
2626  return true;
2627}
2628
2629/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2630/// Check to see if it is branching on an or/and chain of icmp instructions, and
2631/// fold it into a switch instruction if so.
2632static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
2633                                      IRBuilder<> &Builder) {
2634  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2635  if (Cond == 0) return false;
2636
2637
2638  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2639  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2640  // 'setne's and'ed together, collect them.
2641  Value *CompVal = 0;
2642  std::vector<ConstantInt*> Values;
2643  bool TrueWhenEqual = true;
2644  Value *ExtraCase = 0;
2645  unsigned UsedICmps = 0;
2646
2647  if (Cond->getOpcode() == Instruction::Or) {
2648    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2649                                     UsedICmps);
2650  } else if (Cond->getOpcode() == Instruction::And) {
2651    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2652                                     UsedICmps);
2653    TrueWhenEqual = false;
2654  }
2655
2656  // If we didn't have a multiply compared value, fail.
2657  if (CompVal == 0) return false;
2658
2659  // Avoid turning single icmps into a switch.
2660  if (UsedICmps <= 1)
2661    return false;
2662
2663  // There might be duplicate constants in the list, which the switch
2664  // instruction can't handle, remove them now.
2665  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2666  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2667
2668  // If Extra was used, we require at least two switch values to do the
2669  // transformation.  A switch with one value is just an cond branch.
2670  if (ExtraCase && Values.size() < 2) return false;
2671
2672  // TODO: Preserve branch weight metadata, similarly to how
2673  // FoldValueComparisonIntoPredecessors preserves it.
2674
2675  // Figure out which block is which destination.
2676  BasicBlock *DefaultBB = BI->getSuccessor(1);
2677  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2678  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2679
2680  BasicBlock *BB = BI->getParent();
2681
2682  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2683               << " cases into SWITCH.  BB is:\n" << *BB);
2684
2685  // If there are any extra values that couldn't be folded into the switch
2686  // then we evaluate them with an explicit branch first.  Split the block
2687  // right before the condbr to handle it.
2688  if (ExtraCase) {
2689    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2690    // Remove the uncond branch added to the old block.
2691    TerminatorInst *OldTI = BB->getTerminator();
2692    Builder.SetInsertPoint(OldTI);
2693
2694    if (TrueWhenEqual)
2695      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2696    else
2697      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2698
2699    OldTI->eraseFromParent();
2700
2701    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2702    // for the edge we just added.
2703    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2704
2705    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2706          << "\nEXTRABB = " << *BB);
2707    BB = NewBB;
2708  }
2709
2710  Builder.SetInsertPoint(BI);
2711  // Convert pointer to int before we switch.
2712  if (CompVal->getType()->isPointerTy()) {
2713    assert(TD && "Cannot switch on pointer without DataLayout");
2714    CompVal = Builder.CreatePtrToInt(CompVal,
2715                                     TD->getIntPtrType(CompVal->getContext()),
2716                                     "magicptr");
2717  }
2718
2719  // Create the new switch instruction now.
2720  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2721
2722  // Add all of the 'cases' to the switch instruction.
2723  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2724    New->addCase(Values[i], EdgeBB);
2725
2726  // We added edges from PI to the EdgeBB.  As such, if there were any
2727  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2728  // the number of edges added.
2729  for (BasicBlock::iterator BBI = EdgeBB->begin();
2730       isa<PHINode>(BBI); ++BBI) {
2731    PHINode *PN = cast<PHINode>(BBI);
2732    Value *InVal = PN->getIncomingValueForBlock(BB);
2733    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2734      PN->addIncoming(InVal, BB);
2735  }
2736
2737  // Erase the old branch instruction.
2738  EraseTerminatorInstAndDCECond(BI);
2739
2740  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2741  return true;
2742}
2743
2744bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2745  // If this is a trivial landing pad that just continues unwinding the caught
2746  // exception then zap the landing pad, turning its invokes into calls.
2747  BasicBlock *BB = RI->getParent();
2748  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2749  if (RI->getValue() != LPInst)
2750    // Not a landing pad, or the resume is not unwinding the exception that
2751    // caused control to branch here.
2752    return false;
2753
2754  // Check that there are no other instructions except for debug intrinsics.
2755  BasicBlock::iterator I = LPInst, E = RI;
2756  while (++I != E)
2757    if (!isa<DbgInfoIntrinsic>(I))
2758      return false;
2759
2760  // Turn all invokes that unwind here into calls and delete the basic block.
2761  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2762    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2763    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2764    // Insert a call instruction before the invoke.
2765    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2766    Call->takeName(II);
2767    Call->setCallingConv(II->getCallingConv());
2768    Call->setAttributes(II->getAttributes());
2769    Call->setDebugLoc(II->getDebugLoc());
2770
2771    // Anything that used the value produced by the invoke instruction now uses
2772    // the value produced by the call instruction.  Note that we do this even
2773    // for void functions and calls with no uses so that the callgraph edge is
2774    // updated.
2775    II->replaceAllUsesWith(Call);
2776    BB->removePredecessor(II->getParent());
2777
2778    // Insert a branch to the normal destination right before the invoke.
2779    BranchInst::Create(II->getNormalDest(), II);
2780
2781    // Finally, delete the invoke instruction!
2782    II->eraseFromParent();
2783  }
2784
2785  // The landingpad is now unreachable.  Zap it.
2786  BB->eraseFromParent();
2787  return true;
2788}
2789
2790bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2791  BasicBlock *BB = RI->getParent();
2792  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2793
2794  // Find predecessors that end with branches.
2795  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2796  SmallVector<BranchInst*, 8> CondBranchPreds;
2797  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2798    BasicBlock *P = *PI;
2799    TerminatorInst *PTI = P->getTerminator();
2800    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2801      if (BI->isUnconditional())
2802        UncondBranchPreds.push_back(P);
2803      else
2804        CondBranchPreds.push_back(BI);
2805    }
2806  }
2807
2808  // If we found some, do the transformation!
2809  if (!UncondBranchPreds.empty() && DupRet) {
2810    while (!UncondBranchPreds.empty()) {
2811      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2812      DEBUG(dbgs() << "FOLDING: " << *BB
2813            << "INTO UNCOND BRANCH PRED: " << *Pred);
2814      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2815    }
2816
2817    // If we eliminated all predecessors of the block, delete the block now.
2818    if (pred_begin(BB) == pred_end(BB))
2819      // We know there are no successors, so just nuke the block.
2820      BB->eraseFromParent();
2821
2822    return true;
2823  }
2824
2825  // Check out all of the conditional branches going to this return
2826  // instruction.  If any of them just select between returns, change the
2827  // branch itself into a select/return pair.
2828  while (!CondBranchPreds.empty()) {
2829    BranchInst *BI = CondBranchPreds.pop_back_val();
2830
2831    // Check to see if the non-BB successor is also a return block.
2832    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2833        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2834        SimplifyCondBranchToTwoReturns(BI, Builder))
2835      return true;
2836  }
2837  return false;
2838}
2839
2840bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2841  BasicBlock *BB = UI->getParent();
2842
2843  bool Changed = false;
2844
2845  // If there are any instructions immediately before the unreachable that can
2846  // be removed, do so.
2847  while (UI != BB->begin()) {
2848    BasicBlock::iterator BBI = UI;
2849    --BBI;
2850    // Do not delete instructions that can have side effects which might cause
2851    // the unreachable to not be reachable; specifically, calls and volatile
2852    // operations may have this effect.
2853    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2854
2855    if (BBI->mayHaveSideEffects()) {
2856      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2857        if (SI->isVolatile())
2858          break;
2859      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2860        if (LI->isVolatile())
2861          break;
2862      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2863        if (RMWI->isVolatile())
2864          break;
2865      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2866        if (CXI->isVolatile())
2867          break;
2868      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2869                 !isa<LandingPadInst>(BBI)) {
2870        break;
2871      }
2872      // Note that deleting LandingPad's here is in fact okay, although it
2873      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2874      // all the predecessors of this block will be the unwind edges of Invokes,
2875      // and we can therefore guarantee this block will be erased.
2876    }
2877
2878    // Delete this instruction (any uses are guaranteed to be dead)
2879    if (!BBI->use_empty())
2880      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2881    BBI->eraseFromParent();
2882    Changed = true;
2883  }
2884
2885  // If the unreachable instruction is the first in the block, take a gander
2886  // at all of the predecessors of this instruction, and simplify them.
2887  if (&BB->front() != UI) return Changed;
2888
2889  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2890  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2891    TerminatorInst *TI = Preds[i]->getTerminator();
2892    IRBuilder<> Builder(TI);
2893    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2894      if (BI->isUnconditional()) {
2895        if (BI->getSuccessor(0) == BB) {
2896          new UnreachableInst(TI->getContext(), TI);
2897          TI->eraseFromParent();
2898          Changed = true;
2899        }
2900      } else {
2901        if (BI->getSuccessor(0) == BB) {
2902          Builder.CreateBr(BI->getSuccessor(1));
2903          EraseTerminatorInstAndDCECond(BI);
2904        } else if (BI->getSuccessor(1) == BB) {
2905          Builder.CreateBr(BI->getSuccessor(0));
2906          EraseTerminatorInstAndDCECond(BI);
2907          Changed = true;
2908        }
2909      }
2910    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2911      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2912           i != e; ++i)
2913        if (i.getCaseSuccessor() == BB) {
2914          BB->removePredecessor(SI->getParent());
2915          SI->removeCase(i);
2916          --i; --e;
2917          Changed = true;
2918        }
2919      // If the default value is unreachable, figure out the most popular
2920      // destination and make it the default.
2921      if (SI->getDefaultDest() == BB) {
2922        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2923        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2924             i != e; ++i) {
2925          std::pair<unsigned, unsigned> &entry =
2926              Popularity[i.getCaseSuccessor()];
2927          if (entry.first == 0) {
2928            entry.first = 1;
2929            entry.second = i.getCaseIndex();
2930          } else {
2931            entry.first++;
2932          }
2933        }
2934
2935        // Find the most popular block.
2936        unsigned MaxPop = 0;
2937        unsigned MaxIndex = 0;
2938        BasicBlock *MaxBlock = 0;
2939        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2940             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2941          if (I->second.first > MaxPop ||
2942              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2943            MaxPop = I->second.first;
2944            MaxIndex = I->second.second;
2945            MaxBlock = I->first;
2946          }
2947        }
2948        if (MaxBlock) {
2949          // Make this the new default, allowing us to delete any explicit
2950          // edges to it.
2951          SI->setDefaultDest(MaxBlock);
2952          Changed = true;
2953
2954          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2955          // it.
2956          if (isa<PHINode>(MaxBlock->begin()))
2957            for (unsigned i = 0; i != MaxPop-1; ++i)
2958              MaxBlock->removePredecessor(SI->getParent());
2959
2960          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2961               i != e; ++i)
2962            if (i.getCaseSuccessor() == MaxBlock) {
2963              SI->removeCase(i);
2964              --i; --e;
2965            }
2966        }
2967      }
2968    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2969      if (II->getUnwindDest() == BB) {
2970        // Convert the invoke to a call instruction.  This would be a good
2971        // place to note that the call does not throw though.
2972        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2973        II->removeFromParent();   // Take out of symbol table
2974
2975        // Insert the call now...
2976        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2977        Builder.SetInsertPoint(BI);
2978        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2979                                          Args, II->getName());
2980        CI->setCallingConv(II->getCallingConv());
2981        CI->setAttributes(II->getAttributes());
2982        // If the invoke produced a value, the call does now instead.
2983        II->replaceAllUsesWith(CI);
2984        delete II;
2985        Changed = true;
2986      }
2987    }
2988  }
2989
2990  // If this block is now dead, remove it.
2991  if (pred_begin(BB) == pred_end(BB) &&
2992      BB != &BB->getParent()->getEntryBlock()) {
2993    // We know there are no successors, so just nuke the block.
2994    BB->eraseFromParent();
2995    return true;
2996  }
2997
2998  return Changed;
2999}
3000
3001/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3002/// integer range comparison into a sub, an icmp and a branch.
3003static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3004  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3005
3006  // Make sure all cases point to the same destination and gather the values.
3007  SmallVector<ConstantInt *, 16> Cases;
3008  SwitchInst::CaseIt I = SI->case_begin();
3009  Cases.push_back(I.getCaseValue());
3010  SwitchInst::CaseIt PrevI = I++;
3011  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3012    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3013      return false;
3014    Cases.push_back(I.getCaseValue());
3015  }
3016  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3017
3018  // Sort the case values, then check if they form a range we can transform.
3019  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3020  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3021    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3022      return false;
3023  }
3024
3025  Constant *Offset = ConstantExpr::getNeg(Cases.back());
3026  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3027
3028  Value *Sub = SI->getCondition();
3029  if (!Offset->isNullValue())
3030    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3031  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3032  BranchInst *NewBI = Builder.CreateCondBr(
3033      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3034
3035  // Update weight for the newly-created conditional branch.
3036  SmallVector<uint64_t, 8> Weights;
3037  bool HasWeights = HasBranchWeights(SI);
3038  if (HasWeights) {
3039    GetBranchWeights(SI, Weights);
3040    if (Weights.size() == 1 + SI->getNumCases()) {
3041      // Combine all weights for the cases to be the true weight of NewBI.
3042      // We assume that the sum of all weights for a Terminator can fit into 32
3043      // bits.
3044      uint32_t NewTrueWeight = 0;
3045      for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3046        NewTrueWeight += (uint32_t)Weights[I];
3047      NewBI->setMetadata(LLVMContext::MD_prof,
3048                         MDBuilder(SI->getContext()).
3049                         createBranchWeights(NewTrueWeight,
3050                                             (uint32_t)Weights[0]));
3051    }
3052  }
3053
3054  // Prune obsolete incoming values off the successor's PHI nodes.
3055  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3056       isa<PHINode>(BBI); ++BBI) {
3057    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3058      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3059  }
3060  SI->eraseFromParent();
3061
3062  return true;
3063}
3064
3065/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3066/// and use it to remove dead cases.
3067static bool EliminateDeadSwitchCases(SwitchInst *SI) {
3068  Value *Cond = SI->getCondition();
3069  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
3070  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3071  ComputeMaskedBits(Cond, KnownZero, KnownOne);
3072
3073  // Gather dead cases.
3074  SmallVector<ConstantInt*, 8> DeadCases;
3075  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3076    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3077        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3078      DeadCases.push_back(I.getCaseValue());
3079      DEBUG(dbgs() << "SimplifyCFG: switch case '"
3080                   << I.getCaseValue() << "' is dead.\n");
3081    }
3082  }
3083
3084  SmallVector<uint64_t, 8> Weights;
3085  bool HasWeight = HasBranchWeights(SI);
3086  if (HasWeight) {
3087    GetBranchWeights(SI, Weights);
3088    HasWeight = (Weights.size() == 1 + SI->getNumCases());
3089  }
3090
3091  // Remove dead cases from the switch.
3092  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3093    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3094    assert(Case != SI->case_default() &&
3095           "Case was not found. Probably mistake in DeadCases forming.");
3096    if (HasWeight) {
3097      std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3098      Weights.pop_back();
3099    }
3100
3101    // Prune unused values from PHI nodes.
3102    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3103    SI->removeCase(Case);
3104  }
3105  if (HasWeight) {
3106    SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3107    SI->setMetadata(LLVMContext::MD_prof,
3108                    MDBuilder(SI->getParent()->getContext()).
3109                    createBranchWeights(MDWeights));
3110  }
3111
3112  return !DeadCases.empty();
3113}
3114
3115/// FindPHIForConditionForwarding - If BB would be eligible for simplification
3116/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3117/// by an unconditional branch), look at the phi node for BB in the successor
3118/// block and see if the incoming value is equal to CaseValue. If so, return
3119/// the phi node, and set PhiIndex to BB's index in the phi node.
3120static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3121                                              BasicBlock *BB,
3122                                              int *PhiIndex) {
3123  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3124    return NULL; // BB must be empty to be a candidate for simplification.
3125  if (!BB->getSinglePredecessor())
3126    return NULL; // BB must be dominated by the switch.
3127
3128  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3129  if (!Branch || !Branch->isUnconditional())
3130    return NULL; // Terminator must be unconditional branch.
3131
3132  BasicBlock *Succ = Branch->getSuccessor(0);
3133
3134  BasicBlock::iterator I = Succ->begin();
3135  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3136    int Idx = PHI->getBasicBlockIndex(BB);
3137    assert(Idx >= 0 && "PHI has no entry for predecessor?");
3138
3139    Value *InValue = PHI->getIncomingValue(Idx);
3140    if (InValue != CaseValue) continue;
3141
3142    *PhiIndex = Idx;
3143    return PHI;
3144  }
3145
3146  return NULL;
3147}
3148
3149/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3150/// instruction to a phi node dominated by the switch, if that would mean that
3151/// some of the destination blocks of the switch can be folded away.
3152/// Returns true if a change is made.
3153static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3154  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3155  ForwardingNodesMap ForwardingNodes;
3156
3157  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3158    ConstantInt *CaseValue = I.getCaseValue();
3159    BasicBlock *CaseDest = I.getCaseSuccessor();
3160
3161    int PhiIndex;
3162    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3163                                                 &PhiIndex);
3164    if (!PHI) continue;
3165
3166    ForwardingNodes[PHI].push_back(PhiIndex);
3167  }
3168
3169  bool Changed = false;
3170
3171  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3172       E = ForwardingNodes.end(); I != E; ++I) {
3173    PHINode *Phi = I->first;
3174    SmallVector<int,4> &Indexes = I->second;
3175
3176    if (Indexes.size() < 2) continue;
3177
3178    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3179      Phi->setIncomingValue(Indexes[I], SI->getCondition());
3180    Changed = true;
3181  }
3182
3183  return Changed;
3184}
3185
3186/// ValidLookupTableConstant - Return true if the backend will be able to handle
3187/// initializing an array of constants like C.
3188static bool ValidLookupTableConstant(Constant *C) {
3189  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3190    return CE->isGEPWithNoNotionalOverIndexing();
3191
3192  return isa<ConstantFP>(C) ||
3193      isa<ConstantInt>(C) ||
3194      isa<ConstantPointerNull>(C) ||
3195      isa<GlobalValue>(C) ||
3196      isa<UndefValue>(C);
3197}
3198
3199/// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3200/// its constant value in ConstantPool, returning 0 if it's not there.
3201static Constant *LookupConstant(Value *V,
3202                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3203  if (Constant *C = dyn_cast<Constant>(V))
3204    return C;
3205  return ConstantPool.lookup(V);
3206}
3207
3208/// ConstantFold - Try to fold instruction I into a constant. This works for
3209/// simple instructions such as binary operations where both operands are
3210/// constant or can be replaced by constants from the ConstantPool. Returns the
3211/// resulting constant on success, 0 otherwise.
3212static Constant *ConstantFold(Instruction *I,
3213                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3214  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
3215    Constant *A = LookupConstant(BO->getOperand(0), ConstantPool);
3216    if (!A)
3217      return 0;
3218    Constant *B = LookupConstant(BO->getOperand(1), ConstantPool);
3219    if (!B)
3220      return 0;
3221    return ConstantExpr::get(BO->getOpcode(), A, B);
3222  }
3223
3224  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
3225    Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
3226    if (!A)
3227      return 0;
3228    Constant *B = LookupConstant(I->getOperand(1), ConstantPool);
3229    if (!B)
3230      return 0;
3231    return ConstantExpr::getCompare(Cmp->getPredicate(), A, B);
3232  }
3233
3234  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3235    Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3236    if (!A)
3237      return 0;
3238    if (A->isAllOnesValue())
3239      return LookupConstant(Select->getTrueValue(), ConstantPool);
3240    if (A->isNullValue())
3241      return LookupConstant(Select->getFalseValue(), ConstantPool);
3242    return 0;
3243  }
3244
3245  if (CastInst *Cast = dyn_cast<CastInst>(I)) {
3246    Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
3247    if (!A)
3248      return 0;
3249    return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy());
3250  }
3251
3252  return 0;
3253}
3254
3255/// GetCaseResults - Try to determine the resulting constant values in phi nodes
3256/// at the common destination basic block, *CommonDest, for one of the case
3257/// destionations CaseDest corresponding to value CaseVal (0 for the default
3258/// case), of a switch instruction SI.
3259static bool GetCaseResults(SwitchInst *SI,
3260                           ConstantInt *CaseVal,
3261                           BasicBlock *CaseDest,
3262                           BasicBlock **CommonDest,
3263                           SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
3264  // The block from which we enter the common destination.
3265  BasicBlock *Pred = SI->getParent();
3266
3267  // If CaseDest is empty except for some side-effect free instructions through
3268  // which we can constant-propagate the CaseVal, continue to its successor.
3269  SmallDenseMap<Value*, Constant*> ConstantPool;
3270  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3271  for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3272       ++I) {
3273    if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3274      // If the terminator is a simple branch, continue to the next block.
3275      if (T->getNumSuccessors() != 1)
3276        return false;
3277      Pred = CaseDest;
3278      CaseDest = T->getSuccessor(0);
3279    } else if (isa<DbgInfoIntrinsic>(I)) {
3280      // Skip debug intrinsic.
3281      continue;
3282    } else if (Constant *C = ConstantFold(I, ConstantPool)) {
3283      // Instruction is side-effect free and constant.
3284      ConstantPool.insert(std::make_pair(I, C));
3285    } else {
3286      break;
3287    }
3288  }
3289
3290  // If we did not have a CommonDest before, use the current one.
3291  if (!*CommonDest)
3292    *CommonDest = CaseDest;
3293  // If the destination isn't the common one, abort.
3294  if (CaseDest != *CommonDest)
3295    return false;
3296
3297  // Get the values for this case from phi nodes in the destination block.
3298  BasicBlock::iterator I = (*CommonDest)->begin();
3299  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3300    int Idx = PHI->getBasicBlockIndex(Pred);
3301    if (Idx == -1)
3302      continue;
3303
3304    Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3305                                        ConstantPool);
3306    if (!ConstVal)
3307      return false;
3308
3309    // Note: If the constant comes from constant-propagating the case value
3310    // through the CaseDest basic block, it will be safe to remove the
3311    // instructions in that block. They cannot be used (except in the phi nodes
3312    // we visit) outside CaseDest, because that block does not dominate its
3313    // successor. If it did, we would not be in this phi node.
3314
3315    // Be conservative about which kinds of constants we support.
3316    if (!ValidLookupTableConstant(ConstVal))
3317      return false;
3318
3319    Res.push_back(std::make_pair(PHI, ConstVal));
3320  }
3321
3322  return true;
3323}
3324
3325namespace {
3326  /// SwitchLookupTable - This class represents a lookup table that can be used
3327  /// to replace a switch.
3328  class SwitchLookupTable {
3329  public:
3330    /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3331    /// with the contents of Values, using DefaultValue to fill any holes in the
3332    /// table.
3333    SwitchLookupTable(Module &M,
3334                      uint64_t TableSize,
3335                      ConstantInt *Offset,
3336               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3337                      Constant *DefaultValue,
3338                      const DataLayout *TD);
3339
3340    /// BuildLookup - Build instructions with Builder to retrieve the value at
3341    /// the position given by Index in the lookup table.
3342    Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3343
3344    /// WouldFitInRegister - Return true if a table with TableSize elements of
3345    /// type ElementType would fit in a target-legal register.
3346    static bool WouldFitInRegister(const DataLayout *TD,
3347                                   uint64_t TableSize,
3348                                   const Type *ElementType);
3349
3350  private:
3351    // Depending on the contents of the table, it can be represented in
3352    // different ways.
3353    enum {
3354      // For tables where each element contains the same value, we just have to
3355      // store that single value and return it for each lookup.
3356      SingleValueKind,
3357
3358      // For small tables with integer elements, we can pack them into a bitmap
3359      // that fits into a target-legal register. Values are retrieved by
3360      // shift and mask operations.
3361      BitMapKind,
3362
3363      // The table is stored as an array of values. Values are retrieved by load
3364      // instructions from the table.
3365      ArrayKind
3366    } Kind;
3367
3368    // For SingleValueKind, this is the single value.
3369    Constant *SingleValue;
3370
3371    // For BitMapKind, this is the bitmap.
3372    ConstantInt *BitMap;
3373    IntegerType *BitMapElementTy;
3374
3375    // For ArrayKind, this is the array.
3376    GlobalVariable *Array;
3377  };
3378}
3379
3380SwitchLookupTable::SwitchLookupTable(Module &M,
3381                                     uint64_t TableSize,
3382                                     ConstantInt *Offset,
3383               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3384                                     Constant *DefaultValue,
3385                                     const DataLayout *TD) {
3386  assert(Values.size() && "Can't build lookup table without values!");
3387  assert(TableSize >= Values.size() && "Can't fit values in table!");
3388
3389  // If all values in the table are equal, this is that value.
3390  SingleValue = Values.begin()->second;
3391
3392  // Build up the table contents.
3393  SmallVector<Constant*, 64> TableContents(TableSize);
3394  for (size_t I = 0, E = Values.size(); I != E; ++I) {
3395    ConstantInt *CaseVal = Values[I].first;
3396    Constant *CaseRes = Values[I].second;
3397    assert(CaseRes->getType() == DefaultValue->getType());
3398
3399    uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3400                   .getLimitedValue();
3401    TableContents[Idx] = CaseRes;
3402
3403    if (CaseRes != SingleValue)
3404      SingleValue = 0;
3405  }
3406
3407  // Fill in any holes in the table with the default result.
3408  if (Values.size() < TableSize) {
3409    for (uint64_t I = 0; I < TableSize; ++I) {
3410      if (!TableContents[I])
3411        TableContents[I] = DefaultValue;
3412    }
3413
3414    if (DefaultValue != SingleValue)
3415      SingleValue = 0;
3416  }
3417
3418  // If each element in the table contains the same value, we only need to store
3419  // that single value.
3420  if (SingleValue) {
3421    Kind = SingleValueKind;
3422    return;
3423  }
3424
3425  // If the type is integer and the table fits in a register, build a bitmap.
3426  if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
3427    IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
3428    APInt TableInt(TableSize * IT->getBitWidth(), 0);
3429    for (uint64_t I = TableSize; I > 0; --I) {
3430      TableInt <<= IT->getBitWidth();
3431      // Insert values into the bitmap. Undef values are set to zero.
3432      if (!isa<UndefValue>(TableContents[I - 1])) {
3433        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3434        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3435      }
3436    }
3437    BitMap = ConstantInt::get(M.getContext(), TableInt);
3438    BitMapElementTy = IT;
3439    Kind = BitMapKind;
3440    ++NumBitMaps;
3441    return;
3442  }
3443
3444  // Store the table in an array.
3445  ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
3446  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3447
3448  Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3449                             GlobalVariable::PrivateLinkage,
3450                             Initializer,
3451                             "switch.table");
3452  Array->setUnnamedAddr(true);
3453  Kind = ArrayKind;
3454}
3455
3456Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3457  switch (Kind) {
3458    case SingleValueKind:
3459      return SingleValue;
3460    case BitMapKind: {
3461      // Type of the bitmap (e.g. i59).
3462      IntegerType *MapTy = BitMap->getType();
3463
3464      // Cast Index to the same type as the bitmap.
3465      // Note: The Index is <= the number of elements in the table, so
3466      // truncating it to the width of the bitmask is safe.
3467      Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3468
3469      // Multiply the shift amount by the element width.
3470      ShiftAmt = Builder.CreateMul(ShiftAmt,
3471                      ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3472                                   "switch.shiftamt");
3473
3474      // Shift down.
3475      Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3476                                              "switch.downshift");
3477      // Mask off.
3478      return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3479                                 "switch.masked");
3480    }
3481    case ArrayKind: {
3482      Value *GEPIndices[] = { Builder.getInt32(0), Index };
3483      Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3484                                             "switch.gep");
3485      return Builder.CreateLoad(GEP, "switch.load");
3486    }
3487  }
3488  llvm_unreachable("Unknown lookup table kind!");
3489}
3490
3491bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
3492                                           uint64_t TableSize,
3493                                           const Type *ElementType) {
3494  if (!TD)
3495    return false;
3496  const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3497  if (!IT)
3498    return false;
3499  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3500  // are <= 15, we could try to narrow the type.
3501
3502  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3503  if (TableSize >= UINT_MAX/IT->getBitWidth())
3504    return false;
3505  return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
3506}
3507
3508/// ShouldBuildLookupTable - Determine whether a lookup table should be built
3509/// for this switch, based on the number of caes, size of the table and the
3510/// types of the results.
3511static bool ShouldBuildLookupTable(SwitchInst *SI,
3512                                   uint64_t TableSize,
3513                                   const DataLayout *TD,
3514                            const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3515  // The table density should be at least 40%. This is the same criterion as for
3516  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3517  // FIXME: Find the best cut-off.
3518  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3519    return false; // TableSize overflowed, or mul below might overflow.
3520  if (SI->getNumCases() * 10 >= TableSize * 4)
3521    return true;
3522
3523  // If each table would fit in a register, we should build it anyway.
3524  for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
3525       E = ResultTypes.end(); I != E; ++I) {
3526    if (!SwitchLookupTable::WouldFitInRegister(TD, TableSize, I->second))
3527      return false;
3528  }
3529  return true;
3530}
3531
3532/// SwitchToLookupTable - If the switch is only used to initialize one or more
3533/// phi nodes in a common successor block with different constant values,
3534/// replace the switch with lookup tables.
3535static bool SwitchToLookupTable(SwitchInst *SI,
3536                                IRBuilder<> &Builder,
3537                                const DataLayout* TD,
3538                                const TargetTransformInfo *TTI) {
3539  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3540
3541  // Only build lookup table when we have a target that supports it.
3542  if (!TTI || !TTI->getScalarTargetTransformInfo()->shouldBuildLookupTables())
3543    return false;
3544
3545  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3546  // split off a dense part and build a lookup table for that.
3547
3548  // FIXME: This creates arrays of GEPs to constant strings, which means each
3549  // GEP needs a runtime relocation in PIC code. We should just build one big
3550  // string and lookup indices into that.
3551
3552  // Ignore the switch if the number of cases is too small.
3553  // This is similar to the check when building jump tables in
3554  // SelectionDAGBuilder::handleJTSwitchCase.
3555  // FIXME: Determine the best cut-off.
3556  if (SI->getNumCases() < 4)
3557    return false;
3558
3559  // Figure out the corresponding result for each case value and phi node in the
3560  // common destination, as well as the the min and max case values.
3561  assert(SI->case_begin() != SI->case_end());
3562  SwitchInst::CaseIt CI = SI->case_begin();
3563  ConstantInt *MinCaseVal = CI.getCaseValue();
3564  ConstantInt *MaxCaseVal = CI.getCaseValue();
3565
3566  BasicBlock *CommonDest = 0;
3567  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3568  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3569  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3570  SmallDenseMap<PHINode*, Type*> ResultTypes;
3571  SmallVector<PHINode*, 4> PHIs;
3572
3573  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3574    ConstantInt *CaseVal = CI.getCaseValue();
3575    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3576      MinCaseVal = CaseVal;
3577    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3578      MaxCaseVal = CaseVal;
3579
3580    // Resulting value at phi nodes for this case value.
3581    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3582    ResultsTy Results;
3583    if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
3584                        Results))
3585      return false;
3586
3587    // Append the result from this case to the list for each phi.
3588    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3589      if (!ResultLists.count(I->first))
3590        PHIs.push_back(I->first);
3591      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3592    }
3593  }
3594
3595  // Get the resulting values for the default case.
3596  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3597  if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
3598                      DefaultResultsList))
3599    return false;
3600  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3601    PHINode *PHI = DefaultResultsList[I].first;
3602    Constant *Result = DefaultResultsList[I].second;
3603    DefaultResults[PHI] = Result;
3604    ResultTypes[PHI] = Result->getType();
3605  }
3606
3607  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3608  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3609  if (!ShouldBuildLookupTable(SI, TableSize, TD, ResultTypes))
3610    return false;
3611
3612  // Create the BB that does the lookups.
3613  Module &Mod = *CommonDest->getParent()->getParent();
3614  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3615                                            "switch.lookup",
3616                                            CommonDest->getParent(),
3617                                            CommonDest);
3618
3619  // Check whether the condition value is within the case range, and branch to
3620  // the new BB.
3621  Builder.SetInsertPoint(SI);
3622  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3623                                        "switch.tableidx");
3624  Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3625      MinCaseVal->getType(), TableSize));
3626  Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3627
3628  // Populate the BB that does the lookups.
3629  Builder.SetInsertPoint(LookupBB);
3630  bool ReturnedEarly = false;
3631  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3632    PHINode *PHI = PHIs[I];
3633
3634    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
3635                            DefaultResults[PHI], TD);
3636
3637    Value *Result = Table.BuildLookup(TableIndex, Builder);
3638
3639    // If the result is used to return immediately from the function, we want to
3640    // do that right here.
3641    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
3642        *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
3643      Builder.CreateRet(Result);
3644      ReturnedEarly = true;
3645      break;
3646    }
3647
3648    PHI->addIncoming(Result, LookupBB);
3649  }
3650
3651  if (!ReturnedEarly)
3652    Builder.CreateBr(CommonDest);
3653
3654  // Remove the switch.
3655  for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
3656    BasicBlock *Succ = SI->getSuccessor(i);
3657    if (Succ == SI->getDefaultDest()) continue;
3658    Succ->removePredecessor(SI->getParent());
3659  }
3660  SI->eraseFromParent();
3661
3662  ++NumLookupTables;
3663  return true;
3664}
3665
3666bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3667  BasicBlock *BB = SI->getParent();
3668
3669  if (isValueEqualityComparison(SI)) {
3670    // If we only have one predecessor, and if it is a branch on this value,
3671    // see if that predecessor totally determines the outcome of this switch.
3672    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3673      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3674        return SimplifyCFG(BB) | true;
3675
3676    Value *Cond = SI->getCondition();
3677    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3678      if (SimplifySwitchOnSelect(SI, Select))
3679        return SimplifyCFG(BB) | true;
3680
3681    // If the block only contains the switch, see if we can fold the block
3682    // away into any preds.
3683    BasicBlock::iterator BBI = BB->begin();
3684    // Ignore dbg intrinsics.
3685    while (isa<DbgInfoIntrinsic>(BBI))
3686      ++BBI;
3687    if (SI == &*BBI)
3688      if (FoldValueComparisonIntoPredecessors(SI, Builder))
3689        return SimplifyCFG(BB) | true;
3690  }
3691
3692  // Try to transform the switch into an icmp and a branch.
3693  if (TurnSwitchRangeIntoICmp(SI, Builder))
3694    return SimplifyCFG(BB) | true;
3695
3696  // Remove unreachable cases.
3697  if (EliminateDeadSwitchCases(SI))
3698    return SimplifyCFG(BB) | true;
3699
3700  if (ForwardSwitchConditionToPHI(SI))
3701    return SimplifyCFG(BB) | true;
3702
3703  if (SwitchToLookupTable(SI, Builder, TD, TTI))
3704    return SimplifyCFG(BB) | true;
3705
3706  return false;
3707}
3708
3709bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3710  BasicBlock *BB = IBI->getParent();
3711  bool Changed = false;
3712
3713  // Eliminate redundant destinations.
3714  SmallPtrSet<Value *, 8> Succs;
3715  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3716    BasicBlock *Dest = IBI->getDestination(i);
3717    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3718      Dest->removePredecessor(BB);
3719      IBI->removeDestination(i);
3720      --i; --e;
3721      Changed = true;
3722    }
3723  }
3724
3725  if (IBI->getNumDestinations() == 0) {
3726    // If the indirectbr has no successors, change it to unreachable.
3727    new UnreachableInst(IBI->getContext(), IBI);
3728    EraseTerminatorInstAndDCECond(IBI);
3729    return true;
3730  }
3731
3732  if (IBI->getNumDestinations() == 1) {
3733    // If the indirectbr has one successor, change it to a direct branch.
3734    BranchInst::Create(IBI->getDestination(0), IBI);
3735    EraseTerminatorInstAndDCECond(IBI);
3736    return true;
3737  }
3738
3739  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3740    if (SimplifyIndirectBrOnSelect(IBI, SI))
3741      return SimplifyCFG(BB) | true;
3742  }
3743  return Changed;
3744}
3745
3746bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3747  BasicBlock *BB = BI->getParent();
3748
3749  if (SinkCommon && SinkThenElseCodeToEnd(BI))
3750    return true;
3751
3752  // If the Terminator is the only non-phi instruction, simplify the block.
3753  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3754  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3755      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3756    return true;
3757
3758  // If the only instruction in the block is a seteq/setne comparison
3759  // against a constant, try to simplify the block.
3760  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3761    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3762      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3763        ;
3764      if (I->isTerminator() &&
3765          TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
3766        return true;
3767    }
3768
3769  // If this basic block is ONLY a compare and a branch, and if a predecessor
3770  // branches to us and our successor, fold the comparison into the
3771  // predecessor and use logical operations to update the incoming value
3772  // for PHI nodes in common successor.
3773  if (FoldBranchToCommonDest(BI))
3774    return SimplifyCFG(BB) | true;
3775  return false;
3776}
3777
3778
3779bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3780  BasicBlock *BB = BI->getParent();
3781
3782  // Conditional branch
3783  if (isValueEqualityComparison(BI)) {
3784    // If we only have one predecessor, and if it is a branch on this value,
3785    // see if that predecessor totally determines the outcome of this
3786    // switch.
3787    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3788      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3789        return SimplifyCFG(BB) | true;
3790
3791    // This block must be empty, except for the setcond inst, if it exists.
3792    // Ignore dbg intrinsics.
3793    BasicBlock::iterator I = BB->begin();
3794    // Ignore dbg intrinsics.
3795    while (isa<DbgInfoIntrinsic>(I))
3796      ++I;
3797    if (&*I == BI) {
3798      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3799        return SimplifyCFG(BB) | true;
3800    } else if (&*I == cast<Instruction>(BI->getCondition())){
3801      ++I;
3802      // Ignore dbg intrinsics.
3803      while (isa<DbgInfoIntrinsic>(I))
3804        ++I;
3805      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3806        return SimplifyCFG(BB) | true;
3807    }
3808  }
3809
3810  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3811  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3812    return true;
3813
3814  // If this basic block is ONLY a compare and a branch, and if a predecessor
3815  // branches to us and one of our successors, fold the comparison into the
3816  // predecessor and use logical operations to pick the right destination.
3817  if (FoldBranchToCommonDest(BI))
3818    return SimplifyCFG(BB) | true;
3819
3820  // We have a conditional branch to two blocks that are only reachable
3821  // from BI.  We know that the condbr dominates the two blocks, so see if
3822  // there is any identical code in the "then" and "else" blocks.  If so, we
3823  // can hoist it up to the branching block.
3824  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3825    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3826      if (HoistThenElseCodeToIf(BI))
3827        return SimplifyCFG(BB) | true;
3828    } else {
3829      // If Successor #1 has multiple preds, we may be able to conditionally
3830      // execute Successor #0 if it branches to successor #1.
3831      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3832      if (Succ0TI->getNumSuccessors() == 1 &&
3833          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3834        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3835          return SimplifyCFG(BB) | true;
3836    }
3837  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3838    // If Successor #0 has multiple preds, we may be able to conditionally
3839    // execute Successor #1 if it branches to successor #0.
3840    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3841    if (Succ1TI->getNumSuccessors() == 1 &&
3842        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3843      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3844        return SimplifyCFG(BB) | true;
3845  }
3846
3847  // If this is a branch on a phi node in the current block, thread control
3848  // through this block if any PHI node entries are constants.
3849  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
3850    if (PN->getParent() == BI->getParent())
3851      if (FoldCondBranchOnPHI(BI, TD))
3852        return SimplifyCFG(BB) | true;
3853
3854  // Scan predecessor blocks for conditional branches.
3855  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
3856    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
3857      if (PBI != BI && PBI->isConditional())
3858        if (SimplifyCondBranchToCondBranch(PBI, BI))
3859          return SimplifyCFG(BB) | true;
3860
3861  return false;
3862}
3863
3864/// Check if passing a value to an instruction will cause undefined behavior.
3865static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
3866  Constant *C = dyn_cast<Constant>(V);
3867  if (!C)
3868    return false;
3869
3870  if (I->use_empty())
3871    return false;
3872
3873  if (C->isNullValue()) {
3874    // Only look at the first use, avoid hurting compile time with long uselists
3875    User *Use = *I->use_begin();
3876
3877    // Now make sure that there are no instructions in between that can alter
3878    // control flow (eg. calls)
3879    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
3880      if (i == I->getParent()->end() || i->mayHaveSideEffects())
3881        return false;
3882
3883    // Look through GEPs. A load from a GEP derived from NULL is still undefined
3884    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
3885      if (GEP->getPointerOperand() == I)
3886        return passingValueIsAlwaysUndefined(V, GEP);
3887
3888    // Look through bitcasts.
3889    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
3890      return passingValueIsAlwaysUndefined(V, BC);
3891
3892    // Load from null is undefined.
3893    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
3894      return LI->getPointerAddressSpace() == 0;
3895
3896    // Store to null is undefined.
3897    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
3898      return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
3899  }
3900  return false;
3901}
3902
3903/// If BB has an incoming value that will always trigger undefined behavior
3904/// (eg. null pointer dereference), remove the branch leading here.
3905static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
3906  for (BasicBlock::iterator i = BB->begin();
3907       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
3908    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
3909      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
3910        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
3911        IRBuilder<> Builder(T);
3912        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
3913          BB->removePredecessor(PHI->getIncomingBlock(i));
3914          // Turn uncoditional branches into unreachables and remove the dead
3915          // destination from conditional branches.
3916          if (BI->isUnconditional())
3917            Builder.CreateUnreachable();
3918          else
3919            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
3920                                                         BI->getSuccessor(0));
3921          BI->eraseFromParent();
3922          return true;
3923        }
3924        // TODO: SwitchInst.
3925      }
3926
3927  return false;
3928}
3929
3930bool SimplifyCFGOpt::run(BasicBlock *BB) {
3931  bool Changed = false;
3932
3933  assert(BB && BB->getParent() && "Block not embedded in function!");
3934  assert(BB->getTerminator() && "Degenerate basic block encountered!");
3935
3936  // Remove basic blocks that have no predecessors (except the entry block)...
3937  // or that just have themself as a predecessor.  These are unreachable.
3938  if ((pred_begin(BB) == pred_end(BB) &&
3939       BB != &BB->getParent()->getEntryBlock()) ||
3940      BB->getSinglePredecessor() == BB) {
3941    DEBUG(dbgs() << "Removing BB: \n" << *BB);
3942    DeleteDeadBlock(BB);
3943    return true;
3944  }
3945
3946  // Check to see if we can constant propagate this terminator instruction
3947  // away...
3948  Changed |= ConstantFoldTerminator(BB, true);
3949
3950  // Check for and eliminate duplicate PHI nodes in this block.
3951  Changed |= EliminateDuplicatePHINodes(BB);
3952
3953  // Check for and remove branches that will always cause undefined behavior.
3954  Changed |= removeUndefIntroducingPredecessor(BB);
3955
3956  // Merge basic blocks into their predecessor if there is only one distinct
3957  // pred, and if there is only one distinct successor of the predecessor, and
3958  // if there are no PHI nodes.
3959  //
3960  if (MergeBlockIntoPredecessor(BB))
3961    return true;
3962
3963  IRBuilder<> Builder(BB);
3964
3965  // If there is a trivial two-entry PHI node in this basic block, and we can
3966  // eliminate it, do so now.
3967  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
3968    if (PN->getNumIncomingValues() == 2)
3969      Changed |= FoldTwoEntryPHINode(PN, TD);
3970
3971  Builder.SetInsertPoint(BB->getTerminator());
3972  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
3973    if (BI->isUnconditional()) {
3974      if (SimplifyUncondBranch(BI, Builder)) return true;
3975    } else {
3976      if (SimplifyCondBranch(BI, Builder)) return true;
3977    }
3978  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
3979    if (SimplifyReturn(RI, Builder)) return true;
3980  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
3981    if (SimplifyResume(RI, Builder)) return true;
3982  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
3983    if (SimplifySwitch(SI, Builder)) return true;
3984  } else if (UnreachableInst *UI =
3985               dyn_cast<UnreachableInst>(BB->getTerminator())) {
3986    if (SimplifyUnreachable(UI)) return true;
3987  } else if (IndirectBrInst *IBI =
3988               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
3989    if (SimplifyIndirectBr(IBI)) return true;
3990  }
3991
3992  return Changed;
3993}
3994
3995/// SimplifyCFG - This function is used to do simplification of a CFG.  For
3996/// example, it adjusts branches to branches to eliminate the extra hop, it
3997/// eliminates unreachable basic blocks, and does other "peephole" optimization
3998/// of the CFG.  It returns true if a modification was made.
3999///
4000bool llvm::SimplifyCFG(BasicBlock *BB, const DataLayout *TD,
4001                       const TargetTransformInfo *TTI) {
4002  return SimplifyCFGOpt(TD, TTI).run(BB);
4003}
4004