SimplifyCFG.cpp revision ee28e0fdd1955d9fe7acc05b3250ceee759ac3c6
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Metadata.h"
23#include "llvm/Operator.h"
24#include "llvm/Type.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Transforms/Utils/BasicBlockUtils.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SetVector.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/ConstantRange.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/IRBuilder.h"
40#include "llvm/Support/MDBuilder.h"
41#include "llvm/Support/NoFolder.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <set>
45#include <map>
46using namespace llvm;
47
48static cl::opt<unsigned>
49PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
50   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
51
52static cl::opt<bool>
53DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
54       cl::desc("Duplicate return instructions into unconditional branches"));
55
56STATISTIC(NumSpeculations, "Number of speculative executed instructions");
57
58namespace {
59  /// ValueEqualityComparisonCase - Represents a case of a switch.
60  struct ValueEqualityComparisonCase {
61    ConstantInt *Value;
62    BasicBlock *Dest;
63
64    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
65      : Value(Value), Dest(Dest) {}
66
67    bool operator<(ValueEqualityComparisonCase RHS) const {
68      // Comparing pointers is ok as we only rely on the order for uniquing.
69      return Value < RHS.Value;
70    }
71  };
72
73class SimplifyCFGOpt {
74  const TargetData *const TD;
75
76  Value *isValueEqualityComparison(TerminatorInst *TI);
77  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
78                               std::vector<ValueEqualityComparisonCase> &Cases);
79  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
80                                                     BasicBlock *Pred,
81                                                     IRBuilder<> &Builder);
82  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
83                                           IRBuilder<> &Builder);
84
85  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
86  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
87  bool SimplifyUnreachable(UnreachableInst *UI);
88  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
89  bool SimplifyIndirectBr(IndirectBrInst *IBI);
90  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
91  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
92
93public:
94  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
95  bool run(BasicBlock *BB);
96};
97}
98
99/// SafeToMergeTerminators - Return true if it is safe to merge these two
100/// terminator instructions together.
101///
102static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
103  if (SI1 == SI2) return false;  // Can't merge with self!
104
105  // It is not safe to merge these two switch instructions if they have a common
106  // successor, and if that successor has a PHI node, and if *that* PHI node has
107  // conflicting incoming values from the two switch blocks.
108  BasicBlock *SI1BB = SI1->getParent();
109  BasicBlock *SI2BB = SI2->getParent();
110  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
111
112  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
113    if (SI1Succs.count(*I))
114      for (BasicBlock::iterator BBI = (*I)->begin();
115           isa<PHINode>(BBI); ++BBI) {
116        PHINode *PN = cast<PHINode>(BBI);
117        if (PN->getIncomingValueForBlock(SI1BB) !=
118            PN->getIncomingValueForBlock(SI2BB))
119          return false;
120      }
121
122  return true;
123}
124
125/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
126/// to merge these two terminator instructions together, where SI1 is an
127/// unconditional branch. PhiNodes will store all PHI nodes in common
128/// successors.
129///
130static bool isProfitableToFoldUnconditional(BranchInst *SI1,
131                                          BranchInst *SI2,
132                                          Instruction* Cond,
133                                          SmallVectorImpl<PHINode*> &PhiNodes) {
134  if (SI1 == SI2) return false;  // Can't merge with self!
135  assert(SI1->isUnconditional() && SI2->isConditional());
136
137  // We fold the unconditional branch if we can easily update all PHI nodes in
138  // common successors:
139  // 1> We have a constant incoming value for the conditional branch;
140  // 2> We have "Cond" as the incoming value for the unconditional branch;
141  // 3> SI2->getCondition() and Cond have same operands.
142  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
143  if (!Ci2) return false;
144  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
145        Cond->getOperand(1) == Ci2->getOperand(1)) &&
146      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
147        Cond->getOperand(1) == Ci2->getOperand(0)))
148    return false;
149
150  BasicBlock *SI1BB = SI1->getParent();
151  BasicBlock *SI2BB = SI2->getParent();
152  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
153  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
154    if (SI1Succs.count(*I))
155      for (BasicBlock::iterator BBI = (*I)->begin();
156           isa<PHINode>(BBI); ++BBI) {
157        PHINode *PN = cast<PHINode>(BBI);
158        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
159            !isa<Constant>(PN->getIncomingValueForBlock(SI2BB)))
160          return false;
161        PhiNodes.push_back(PN);
162      }
163  return true;
164}
165
166/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
167/// now be entries in it from the 'NewPred' block.  The values that will be
168/// flowing into the PHI nodes will be the same as those coming in from
169/// ExistPred, an existing predecessor of Succ.
170static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
171                                  BasicBlock *ExistPred) {
172  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
173
174  PHINode *PN;
175  for (BasicBlock::iterator I = Succ->begin();
176       (PN = dyn_cast<PHINode>(I)); ++I)
177    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
178}
179
180
181/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
182/// least one PHI node in it), check to see if the merge at this block is due
183/// to an "if condition".  If so, return the boolean condition that determines
184/// which entry into BB will be taken.  Also, return by references the block
185/// that will be entered from if the condition is true, and the block that will
186/// be entered if the condition is false.
187///
188/// This does no checking to see if the true/false blocks have large or unsavory
189/// instructions in them.
190static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
191                             BasicBlock *&IfFalse) {
192  PHINode *SomePHI = cast<PHINode>(BB->begin());
193  assert(SomePHI->getNumIncomingValues() == 2 &&
194         "Function can only handle blocks with 2 predecessors!");
195  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
196  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
197
198  // We can only handle branches.  Other control flow will be lowered to
199  // branches if possible anyway.
200  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
201  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
202  if (Pred1Br == 0 || Pred2Br == 0)
203    return 0;
204
205  // Eliminate code duplication by ensuring that Pred1Br is conditional if
206  // either are.
207  if (Pred2Br->isConditional()) {
208    // If both branches are conditional, we don't have an "if statement".  In
209    // reality, we could transform this case, but since the condition will be
210    // required anyway, we stand no chance of eliminating it, so the xform is
211    // probably not profitable.
212    if (Pred1Br->isConditional())
213      return 0;
214
215    std::swap(Pred1, Pred2);
216    std::swap(Pred1Br, Pred2Br);
217  }
218
219  if (Pred1Br->isConditional()) {
220    // The only thing we have to watch out for here is to make sure that Pred2
221    // doesn't have incoming edges from other blocks.  If it does, the condition
222    // doesn't dominate BB.
223    if (Pred2->getSinglePredecessor() == 0)
224      return 0;
225
226    // If we found a conditional branch predecessor, make sure that it branches
227    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
228    if (Pred1Br->getSuccessor(0) == BB &&
229        Pred1Br->getSuccessor(1) == Pred2) {
230      IfTrue = Pred1;
231      IfFalse = Pred2;
232    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
233               Pred1Br->getSuccessor(1) == BB) {
234      IfTrue = Pred2;
235      IfFalse = Pred1;
236    } else {
237      // We know that one arm of the conditional goes to BB, so the other must
238      // go somewhere unrelated, and this must not be an "if statement".
239      return 0;
240    }
241
242    return Pred1Br->getCondition();
243  }
244
245  // Ok, if we got here, both predecessors end with an unconditional branch to
246  // BB.  Don't panic!  If both blocks only have a single (identical)
247  // predecessor, and THAT is a conditional branch, then we're all ok!
248  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
249  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
250    return 0;
251
252  // Otherwise, if this is a conditional branch, then we can use it!
253  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
254  if (BI == 0) return 0;
255
256  assert(BI->isConditional() && "Two successors but not conditional?");
257  if (BI->getSuccessor(0) == Pred1) {
258    IfTrue = Pred1;
259    IfFalse = Pred2;
260  } else {
261    IfTrue = Pred2;
262    IfFalse = Pred1;
263  }
264  return BI->getCondition();
265}
266
267/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
268/// given instruction, which is assumed to be safe to speculate. 1 means
269/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
270static unsigned ComputeSpeculationCost(const User *I) {
271  assert(isSafeToSpeculativelyExecute(I) &&
272         "Instruction is not safe to speculatively execute!");
273  switch (Operator::getOpcode(I)) {
274  default:
275    // In doubt, be conservative.
276    return UINT_MAX;
277  case Instruction::GetElementPtr:
278    // GEPs are cheap if all indices are constant.
279    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
280      return UINT_MAX;
281    return 1;
282  case Instruction::Load:
283  case Instruction::Add:
284  case Instruction::Sub:
285  case Instruction::And:
286  case Instruction::Or:
287  case Instruction::Xor:
288  case Instruction::Shl:
289  case Instruction::LShr:
290  case Instruction::AShr:
291  case Instruction::ICmp:
292  case Instruction::Trunc:
293  case Instruction::ZExt:
294  case Instruction::SExt:
295    return 1; // These are all cheap.
296
297  case Instruction::Call:
298  case Instruction::Select:
299    return 2;
300  }
301}
302
303/// DominatesMergePoint - If we have a merge point of an "if condition" as
304/// accepted above, return true if the specified value dominates the block.  We
305/// don't handle the true generality of domination here, just a special case
306/// which works well enough for us.
307///
308/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
309/// see if V (which must be an instruction) and its recursive operands
310/// that do not dominate BB have a combined cost lower than CostRemaining and
311/// are non-trapping.  If both are true, the instruction is inserted into the
312/// set and true is returned.
313///
314/// The cost for most non-trapping instructions is defined as 1 except for
315/// Select whose cost is 2.
316///
317/// After this function returns, CostRemaining is decreased by the cost of
318/// V plus its non-dominating operands.  If that cost is greater than
319/// CostRemaining, false is returned and CostRemaining is undefined.
320static bool DominatesMergePoint(Value *V, BasicBlock *BB,
321                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
322                                unsigned &CostRemaining) {
323  Instruction *I = dyn_cast<Instruction>(V);
324  if (!I) {
325    // Non-instructions all dominate instructions, but not all constantexprs
326    // can be executed unconditionally.
327    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
328      if (C->canTrap())
329        return false;
330    return true;
331  }
332  BasicBlock *PBB = I->getParent();
333
334  // We don't want to allow weird loops that might have the "if condition" in
335  // the bottom of this block.
336  if (PBB == BB) return false;
337
338  // If this instruction is defined in a block that contains an unconditional
339  // branch to BB, then it must be in the 'conditional' part of the "if
340  // statement".  If not, it definitely dominates the region.
341  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
342  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
343    return true;
344
345  // If we aren't allowing aggressive promotion anymore, then don't consider
346  // instructions in the 'if region'.
347  if (AggressiveInsts == 0) return false;
348
349  // If we have seen this instruction before, don't count it again.
350  if (AggressiveInsts->count(I)) return true;
351
352  // Okay, it looks like the instruction IS in the "condition".  Check to
353  // see if it's a cheap instruction to unconditionally compute, and if it
354  // only uses stuff defined outside of the condition.  If so, hoist it out.
355  if (!isSafeToSpeculativelyExecute(I))
356    return false;
357
358  unsigned Cost = ComputeSpeculationCost(I);
359
360  if (Cost > CostRemaining)
361    return false;
362
363  CostRemaining -= Cost;
364
365  // Okay, we can only really hoist these out if their operands do
366  // not take us over the cost threshold.
367  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
368    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
369      return false;
370  // Okay, it's safe to do this!  Remember this instruction.
371  AggressiveInsts->insert(I);
372  return true;
373}
374
375/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
376/// and PointerNullValue. Return NULL if value is not a constant int.
377static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
378  // Normal constant int.
379  ConstantInt *CI = dyn_cast<ConstantInt>(V);
380  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
381    return CI;
382
383  // This is some kind of pointer constant. Turn it into a pointer-sized
384  // ConstantInt if possible.
385  IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
386
387  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
388  if (isa<ConstantPointerNull>(V))
389    return ConstantInt::get(PtrTy, 0);
390
391  // IntToPtr const int.
392  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
393    if (CE->getOpcode() == Instruction::IntToPtr)
394      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
395        // The constant is very likely to have the right type already.
396        if (CI->getType() == PtrTy)
397          return CI;
398        else
399          return cast<ConstantInt>
400            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
401      }
402  return 0;
403}
404
405/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
406/// collection of icmp eq/ne instructions that compare a value against a
407/// constant, return the value being compared, and stick the constant into the
408/// Values vector.
409static Value *
410GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
411                       const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
412  Instruction *I = dyn_cast<Instruction>(V);
413  if (I == 0) return 0;
414
415  // If this is an icmp against a constant, handle this as one of the cases.
416  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
417    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
418      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
419        UsedICmps++;
420        Vals.push_back(C);
421        return I->getOperand(0);
422      }
423
424      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
425      // the set.
426      ConstantRange Span =
427        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
428
429      // If this is an and/!= check then we want to optimize "x ugt 2" into
430      // x != 0 && x != 1.
431      if (!isEQ)
432        Span = Span.inverse();
433
434      // If there are a ton of values, we don't want to make a ginormous switch.
435      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
436        return 0;
437
438      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
439        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
440      UsedICmps++;
441      return I->getOperand(0);
442    }
443    return 0;
444  }
445
446  // Otherwise, we can only handle an | or &, depending on isEQ.
447  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
448    return 0;
449
450  unsigned NumValsBeforeLHS = Vals.size();
451  unsigned UsedICmpsBeforeLHS = UsedICmps;
452  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
453                                          isEQ, UsedICmps)) {
454    unsigned NumVals = Vals.size();
455    unsigned UsedICmpsBeforeRHS = UsedICmps;
456    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
457                                            isEQ, UsedICmps)) {
458      if (LHS == RHS)
459        return LHS;
460      Vals.resize(NumVals);
461      UsedICmps = UsedICmpsBeforeRHS;
462    }
463
464    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
465    // set it and return success.
466    if (Extra == 0 || Extra == I->getOperand(1)) {
467      Extra = I->getOperand(1);
468      return LHS;
469    }
470
471    Vals.resize(NumValsBeforeLHS);
472    UsedICmps = UsedICmpsBeforeLHS;
473    return 0;
474  }
475
476  // If the LHS can't be folded in, but Extra is available and RHS can, try to
477  // use LHS as Extra.
478  if (Extra == 0 || Extra == I->getOperand(0)) {
479    Value *OldExtra = Extra;
480    Extra = I->getOperand(0);
481    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
482                                            isEQ, UsedICmps))
483      return RHS;
484    assert(Vals.size() == NumValsBeforeLHS);
485    Extra = OldExtra;
486  }
487
488  return 0;
489}
490
491static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
492  Instruction *Cond = 0;
493  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
494    Cond = dyn_cast<Instruction>(SI->getCondition());
495  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
496    if (BI->isConditional())
497      Cond = dyn_cast<Instruction>(BI->getCondition());
498  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
499    Cond = dyn_cast<Instruction>(IBI->getAddress());
500  }
501
502  TI->eraseFromParent();
503  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
504}
505
506/// isValueEqualityComparison - Return true if the specified terminator checks
507/// to see if a value is equal to constant integer value.
508Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
509  Value *CV = 0;
510  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
511    // Do not permit merging of large switch instructions into their
512    // predecessors unless there is only one predecessor.
513    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
514                                             pred_end(SI->getParent())) <= 128)
515      CV = SI->getCondition();
516  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
517    if (BI->isConditional() && BI->getCondition()->hasOneUse())
518      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
519        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
520             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
521            GetConstantInt(ICI->getOperand(1), TD))
522          CV = ICI->getOperand(0);
523
524  // Unwrap any lossless ptrtoint cast.
525  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
526    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
527      CV = PTII->getOperand(0);
528  return CV;
529}
530
531/// GetValueEqualityComparisonCases - Given a value comparison instruction,
532/// decode all of the 'cases' that it represents and return the 'default' block.
533BasicBlock *SimplifyCFGOpt::
534GetValueEqualityComparisonCases(TerminatorInst *TI,
535                                std::vector<ValueEqualityComparisonCase>
536                                                                       &Cases) {
537  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
538    Cases.reserve(SI->getNumCases());
539    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
540      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
541                                                  i.getCaseSuccessor()));
542    return SI->getDefaultDest();
543  }
544
545  BranchInst *BI = cast<BranchInst>(TI);
546  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
547  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
548  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
549                                                             TD),
550                                              Succ));
551  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
552}
553
554
555/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
556/// in the list that match the specified block.
557static void EliminateBlockCases(BasicBlock *BB,
558                              std::vector<ValueEqualityComparisonCase> &Cases) {
559  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
560    if (Cases[i].Dest == BB) {
561      Cases.erase(Cases.begin()+i);
562      --i; --e;
563    }
564}
565
566/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
567/// well.
568static bool
569ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
570              std::vector<ValueEqualityComparisonCase > &C2) {
571  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
572
573  // Make V1 be smaller than V2.
574  if (V1->size() > V2->size())
575    std::swap(V1, V2);
576
577  if (V1->size() == 0) return false;
578  if (V1->size() == 1) {
579    // Just scan V2.
580    ConstantInt *TheVal = (*V1)[0].Value;
581    for (unsigned i = 0, e = V2->size(); i != e; ++i)
582      if (TheVal == (*V2)[i].Value)
583        return true;
584  }
585
586  // Otherwise, just sort both lists and compare element by element.
587  array_pod_sort(V1->begin(), V1->end());
588  array_pod_sort(V2->begin(), V2->end());
589  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
590  while (i1 != e1 && i2 != e2) {
591    if ((*V1)[i1].Value == (*V2)[i2].Value)
592      return true;
593    if ((*V1)[i1].Value < (*V2)[i2].Value)
594      ++i1;
595    else
596      ++i2;
597  }
598  return false;
599}
600
601/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
602/// terminator instruction and its block is known to only have a single
603/// predecessor block, check to see if that predecessor is also a value
604/// comparison with the same value, and if that comparison determines the
605/// outcome of this comparison.  If so, simplify TI.  This does a very limited
606/// form of jump threading.
607bool SimplifyCFGOpt::
608SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
609                                              BasicBlock *Pred,
610                                              IRBuilder<> &Builder) {
611  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
612  if (!PredVal) return false;  // Not a value comparison in predecessor.
613
614  Value *ThisVal = isValueEqualityComparison(TI);
615  assert(ThisVal && "This isn't a value comparison!!");
616  if (ThisVal != PredVal) return false;  // Different predicates.
617
618  // Find out information about when control will move from Pred to TI's block.
619  std::vector<ValueEqualityComparisonCase> PredCases;
620  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
621                                                        PredCases);
622  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
623
624  // Find information about how control leaves this block.
625  std::vector<ValueEqualityComparisonCase> ThisCases;
626  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
627  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
628
629  // If TI's block is the default block from Pred's comparison, potentially
630  // simplify TI based on this knowledge.
631  if (PredDef == TI->getParent()) {
632    // If we are here, we know that the value is none of those cases listed in
633    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
634    // can simplify TI.
635    if (!ValuesOverlap(PredCases, ThisCases))
636      return false;
637
638    if (isa<BranchInst>(TI)) {
639      // Okay, one of the successors of this condbr is dead.  Convert it to a
640      // uncond br.
641      assert(ThisCases.size() == 1 && "Branch can only have one case!");
642      // Insert the new branch.
643      Instruction *NI = Builder.CreateBr(ThisDef);
644      (void) NI;
645
646      // Remove PHI node entries for the dead edge.
647      ThisCases[0].Dest->removePredecessor(TI->getParent());
648
649      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
650           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
651
652      EraseTerminatorInstAndDCECond(TI);
653      return true;
654    }
655
656    SwitchInst *SI = cast<SwitchInst>(TI);
657    // Okay, TI has cases that are statically dead, prune them away.
658    SmallPtrSet<Constant*, 16> DeadCases;
659    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
660      DeadCases.insert(PredCases[i].Value);
661
662    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
663                 << "Through successor TI: " << *TI);
664
665    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
666      --i;
667      if (DeadCases.count(i.getCaseValue())) {
668        i.getCaseSuccessor()->removePredecessor(TI->getParent());
669        SI->removeCase(i);
670      }
671    }
672
673    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
674    return true;
675  }
676
677  // Otherwise, TI's block must correspond to some matched value.  Find out
678  // which value (or set of values) this is.
679  ConstantInt *TIV = 0;
680  BasicBlock *TIBB = TI->getParent();
681  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
682    if (PredCases[i].Dest == TIBB) {
683      if (TIV != 0)
684        return false;  // Cannot handle multiple values coming to this block.
685      TIV = PredCases[i].Value;
686    }
687  assert(TIV && "No edge from pred to succ?");
688
689  // Okay, we found the one constant that our value can be if we get into TI's
690  // BB.  Find out which successor will unconditionally be branched to.
691  BasicBlock *TheRealDest = 0;
692  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
693    if (ThisCases[i].Value == TIV) {
694      TheRealDest = ThisCases[i].Dest;
695      break;
696    }
697
698  // If not handled by any explicit cases, it is handled by the default case.
699  if (TheRealDest == 0) TheRealDest = ThisDef;
700
701  // Remove PHI node entries for dead edges.
702  BasicBlock *CheckEdge = TheRealDest;
703  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
704    if (*SI != CheckEdge)
705      (*SI)->removePredecessor(TIBB);
706    else
707      CheckEdge = 0;
708
709  // Insert the new branch.
710  Instruction *NI = Builder.CreateBr(TheRealDest);
711  (void) NI;
712
713  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
714            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
715
716  EraseTerminatorInstAndDCECond(TI);
717  return true;
718}
719
720namespace {
721  /// ConstantIntOrdering - This class implements a stable ordering of constant
722  /// integers that does not depend on their address.  This is important for
723  /// applications that sort ConstantInt's to ensure uniqueness.
724  struct ConstantIntOrdering {
725    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
726      return LHS->getValue().ult(RHS->getValue());
727    }
728  };
729}
730
731static int ConstantIntSortPredicate(const void *P1, const void *P2) {
732  const ConstantInt *LHS = *(const ConstantInt**)P1;
733  const ConstantInt *RHS = *(const ConstantInt**)P2;
734  if (LHS->getValue().ult(RHS->getValue()))
735    return 1;
736  if (LHS->getValue() == RHS->getValue())
737    return 0;
738  return -1;
739}
740
741/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
742/// equality comparison instruction (either a switch or a branch on "X == c").
743/// See if any of the predecessors of the terminator block are value comparisons
744/// on the same value.  If so, and if safe to do so, fold them together.
745bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
746                                                         IRBuilder<> &Builder) {
747  BasicBlock *BB = TI->getParent();
748  Value *CV = isValueEqualityComparison(TI);  // CondVal
749  assert(CV && "Not a comparison?");
750  bool Changed = false;
751
752  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
753  while (!Preds.empty()) {
754    BasicBlock *Pred = Preds.pop_back_val();
755
756    // See if the predecessor is a comparison with the same value.
757    TerminatorInst *PTI = Pred->getTerminator();
758    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
759
760    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
761      // Figure out which 'cases' to copy from SI to PSI.
762      std::vector<ValueEqualityComparisonCase> BBCases;
763      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
764
765      std::vector<ValueEqualityComparisonCase> PredCases;
766      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
767
768      // Based on whether the default edge from PTI goes to BB or not, fill in
769      // PredCases and PredDefault with the new switch cases we would like to
770      // build.
771      SmallVector<BasicBlock*, 8> NewSuccessors;
772
773      if (PredDefault == BB) {
774        // If this is the default destination from PTI, only the edges in TI
775        // that don't occur in PTI, or that branch to BB will be activated.
776        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
777        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
778          if (PredCases[i].Dest != BB)
779            PTIHandled.insert(PredCases[i].Value);
780          else {
781            // The default destination is BB, we don't need explicit targets.
782            std::swap(PredCases[i], PredCases.back());
783            PredCases.pop_back();
784            --i; --e;
785          }
786
787        // Reconstruct the new switch statement we will be building.
788        if (PredDefault != BBDefault) {
789          PredDefault->removePredecessor(Pred);
790          PredDefault = BBDefault;
791          NewSuccessors.push_back(BBDefault);
792        }
793        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
794          if (!PTIHandled.count(BBCases[i].Value) &&
795              BBCases[i].Dest != BBDefault) {
796            PredCases.push_back(BBCases[i]);
797            NewSuccessors.push_back(BBCases[i].Dest);
798          }
799
800      } else {
801        // If this is not the default destination from PSI, only the edges
802        // in SI that occur in PSI with a destination of BB will be
803        // activated.
804        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
805        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
806          if (PredCases[i].Dest == BB) {
807            PTIHandled.insert(PredCases[i].Value);
808            std::swap(PredCases[i], PredCases.back());
809            PredCases.pop_back();
810            --i; --e;
811          }
812
813        // Okay, now we know which constants were sent to BB from the
814        // predecessor.  Figure out where they will all go now.
815        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
816          if (PTIHandled.count(BBCases[i].Value)) {
817            // If this is one we are capable of getting...
818            PredCases.push_back(BBCases[i]);
819            NewSuccessors.push_back(BBCases[i].Dest);
820            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
821          }
822
823        // If there are any constants vectored to BB that TI doesn't handle,
824        // they must go to the default destination of TI.
825        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
826                                    PTIHandled.begin(),
827               E = PTIHandled.end(); I != E; ++I) {
828          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
829          NewSuccessors.push_back(BBDefault);
830        }
831      }
832
833      // Okay, at this point, we know which new successor Pred will get.  Make
834      // sure we update the number of entries in the PHI nodes for these
835      // successors.
836      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
837        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
838
839      Builder.SetInsertPoint(PTI);
840      // Convert pointer to int before we switch.
841      if (CV->getType()->isPointerTy()) {
842        assert(TD && "Cannot switch on pointer without TargetData");
843        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
844                                    "magicptr");
845      }
846
847      // Now that the successors are updated, create the new Switch instruction.
848      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
849                                               PredCases.size());
850      NewSI->setDebugLoc(PTI->getDebugLoc());
851      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
852        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
853
854      EraseTerminatorInstAndDCECond(PTI);
855
856      // Okay, last check.  If BB is still a successor of PSI, then we must
857      // have an infinite loop case.  If so, add an infinitely looping block
858      // to handle the case to preserve the behavior of the code.
859      BasicBlock *InfLoopBlock = 0;
860      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
861        if (NewSI->getSuccessor(i) == BB) {
862          if (InfLoopBlock == 0) {
863            // Insert it at the end of the function, because it's either code,
864            // or it won't matter if it's hot. :)
865            InfLoopBlock = BasicBlock::Create(BB->getContext(),
866                                              "infloop", BB->getParent());
867            BranchInst::Create(InfLoopBlock, InfLoopBlock);
868          }
869          NewSI->setSuccessor(i, InfLoopBlock);
870        }
871
872      Changed = true;
873    }
874  }
875  return Changed;
876}
877
878// isSafeToHoistInvoke - If we would need to insert a select that uses the
879// value of this invoke (comments in HoistThenElseCodeToIf explain why we
880// would need to do this), we can't hoist the invoke, as there is nowhere
881// to put the select in this case.
882static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
883                                Instruction *I1, Instruction *I2) {
884  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
885    PHINode *PN;
886    for (BasicBlock::iterator BBI = SI->begin();
887         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
888      Value *BB1V = PN->getIncomingValueForBlock(BB1);
889      Value *BB2V = PN->getIncomingValueForBlock(BB2);
890      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
891        return false;
892      }
893    }
894  }
895  return true;
896}
897
898/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
899/// BB2, hoist any common code in the two blocks up into the branch block.  The
900/// caller of this function guarantees that BI's block dominates BB1 and BB2.
901static bool HoistThenElseCodeToIf(BranchInst *BI) {
902  // This does very trivial matching, with limited scanning, to find identical
903  // instructions in the two blocks.  In particular, we don't want to get into
904  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
905  // such, we currently just scan for obviously identical instructions in an
906  // identical order.
907  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
908  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
909
910  BasicBlock::iterator BB1_Itr = BB1->begin();
911  BasicBlock::iterator BB2_Itr = BB2->begin();
912
913  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
914  // Skip debug info if it is not identical.
915  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
916  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
917  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
918    while (isa<DbgInfoIntrinsic>(I1))
919      I1 = BB1_Itr++;
920    while (isa<DbgInfoIntrinsic>(I2))
921      I2 = BB2_Itr++;
922  }
923  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
924      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
925    return false;
926
927  // If we get here, we can hoist at least one instruction.
928  BasicBlock *BIParent = BI->getParent();
929
930  do {
931    // If we are hoisting the terminator instruction, don't move one (making a
932    // broken BB), instead clone it, and remove BI.
933    if (isa<TerminatorInst>(I1))
934      goto HoistTerminator;
935
936    // For a normal instruction, we just move one to right before the branch,
937    // then replace all uses of the other with the first.  Finally, we remove
938    // the now redundant second instruction.
939    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
940    if (!I2->use_empty())
941      I2->replaceAllUsesWith(I1);
942    I1->intersectOptionalDataWith(I2);
943    I2->eraseFromParent();
944
945    I1 = BB1_Itr++;
946    I2 = BB2_Itr++;
947    // Skip debug info if it is not identical.
948    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
949    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
950    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
951      while (isa<DbgInfoIntrinsic>(I1))
952        I1 = BB1_Itr++;
953      while (isa<DbgInfoIntrinsic>(I2))
954        I2 = BB2_Itr++;
955    }
956  } while (I1->isIdenticalToWhenDefined(I2));
957
958  return true;
959
960HoistTerminator:
961  // It may not be possible to hoist an invoke.
962  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
963    return true;
964
965  // Okay, it is safe to hoist the terminator.
966  Instruction *NT = I1->clone();
967  BIParent->getInstList().insert(BI, NT);
968  if (!NT->getType()->isVoidTy()) {
969    I1->replaceAllUsesWith(NT);
970    I2->replaceAllUsesWith(NT);
971    NT->takeName(I1);
972  }
973
974  IRBuilder<true, NoFolder> Builder(NT);
975  // Hoisting one of the terminators from our successor is a great thing.
976  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
977  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
978  // nodes, so we insert select instruction to compute the final result.
979  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
980  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
981    PHINode *PN;
982    for (BasicBlock::iterator BBI = SI->begin();
983         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
984      Value *BB1V = PN->getIncomingValueForBlock(BB1);
985      Value *BB2V = PN->getIncomingValueForBlock(BB2);
986      if (BB1V == BB2V) continue;
987
988      // These values do not agree.  Insert a select instruction before NT
989      // that determines the right value.
990      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
991      if (SI == 0)
992        SI = cast<SelectInst>
993          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
994                                BB1V->getName()+"."+BB2V->getName()));
995
996      // Make the PHI node use the select for all incoming values for BB1/BB2
997      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
998        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
999          PN->setIncomingValue(i, SI);
1000    }
1001  }
1002
1003  // Update any PHI nodes in our new successors.
1004  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1005    AddPredecessorToBlock(*SI, BIParent, BB1);
1006
1007  EraseTerminatorInstAndDCECond(BI);
1008  return true;
1009}
1010
1011/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
1012/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
1013/// (for now, restricted to a single instruction that's side effect free) from
1014/// the BB1 into the branch block to speculatively execute it.
1015///
1016/// Turn
1017/// BB:
1018///     %t1 = icmp
1019///     br i1 %t1, label %BB1, label %BB2
1020/// BB1:
1021///     %t3 = add %t2, c
1022///     br label BB2
1023/// BB2:
1024/// =>
1025/// BB:
1026///     %t1 = icmp
1027///     %t4 = add %t2, c
1028///     %t3 = select i1 %t1, %t2, %t3
1029static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
1030  // Only speculatively execution a single instruction (not counting the
1031  // terminator) for now.
1032  Instruction *HInst = NULL;
1033  Instruction *Term = BB1->getTerminator();
1034  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
1035       BBI != BBE; ++BBI) {
1036    Instruction *I = BBI;
1037    // Skip debug info.
1038    if (isa<DbgInfoIntrinsic>(I)) continue;
1039    if (I == Term) break;
1040
1041    if (HInst)
1042      return false;
1043    HInst = I;
1044  }
1045
1046  BasicBlock *BIParent = BI->getParent();
1047
1048  // Check the instruction to be hoisted, if there is one.
1049  if (HInst) {
1050    // Don't hoist the instruction if it's unsafe or expensive.
1051    if (!isSafeToSpeculativelyExecute(HInst))
1052      return false;
1053    if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
1054      return false;
1055
1056    // Do not hoist the instruction if any of its operands are defined but not
1057    // used in this BB. The transformation will prevent the operand from
1058    // being sunk into the use block.
1059    for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1060         i != e; ++i) {
1061      Instruction *OpI = dyn_cast<Instruction>(*i);
1062      if (OpI && OpI->getParent() == BIParent &&
1063          !OpI->mayHaveSideEffects() &&
1064          !OpI->isUsedInBasicBlock(BIParent))
1065        return false;
1066    }
1067  }
1068
1069  // Be conservative for now. FP select instruction can often be expensive.
1070  Value *BrCond = BI->getCondition();
1071  if (isa<FCmpInst>(BrCond))
1072    return false;
1073
1074  // If BB1 is actually on the false edge of the conditional branch, remember
1075  // to swap the select operands later.
1076  bool Invert = false;
1077  if (BB1 != BI->getSuccessor(0)) {
1078    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
1079    Invert = true;
1080  }
1081
1082  // Collect interesting PHIs, and scan for hazards.
1083  SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
1084  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1085  for (BasicBlock::iterator I = BB2->begin();
1086       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1087    Value *BB1V = PN->getIncomingValueForBlock(BB1);
1088    Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
1089
1090    // Skip PHIs which are trivial.
1091    if (BB1V == BIParentV)
1092      continue;
1093
1094    // Check for saftey.
1095    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
1096      // An unfolded ConstantExpr could end up getting expanded into
1097      // Instructions. Don't speculate this and another instruction at
1098      // the same time.
1099      if (HInst)
1100        return false;
1101      if (!isSafeToSpeculativelyExecute(CE))
1102        return false;
1103      if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1104        return false;
1105    }
1106
1107    // Ok, we may insert a select for this PHI.
1108    PHIs.insert(std::make_pair(BB1V, BIParentV));
1109  }
1110
1111  // If there are no PHIs to process, bail early. This helps ensure idempotence
1112  // as well.
1113  if (PHIs.empty())
1114    return false;
1115
1116  // If we get here, we can hoist the instruction and if-convert.
1117  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
1118
1119  // Hoist the instruction.
1120  if (HInst)
1121    BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
1122
1123  // Insert selects and rewrite the PHI operands.
1124  IRBuilder<true, NoFolder> Builder(BI);
1125  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1126    Value *TrueV = PHIs[i].first;
1127    Value *FalseV = PHIs[i].second;
1128
1129    // Create a select whose true value is the speculatively executed value and
1130    // false value is the previously determined FalseV.
1131    SelectInst *SI;
1132    if (Invert)
1133      SI = cast<SelectInst>
1134        (Builder.CreateSelect(BrCond, FalseV, TrueV,
1135                              FalseV->getName() + "." + TrueV->getName()));
1136    else
1137      SI = cast<SelectInst>
1138        (Builder.CreateSelect(BrCond, TrueV, FalseV,
1139                              TrueV->getName() + "." + FalseV->getName()));
1140
1141    // Make the PHI node use the select for all incoming values for "then" and
1142    // "if" blocks.
1143    for (BasicBlock::iterator I = BB2->begin();
1144         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1145      unsigned BB1I = PN->getBasicBlockIndex(BB1);
1146      unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
1147      Value *BB1V = PN->getIncomingValue(BB1I);
1148      Value *BIParentV = PN->getIncomingValue(BIParentI);
1149      if (TrueV == BB1V && FalseV == BIParentV) {
1150        PN->setIncomingValue(BB1I, SI);
1151        PN->setIncomingValue(BIParentI, SI);
1152      }
1153    }
1154  }
1155
1156  ++NumSpeculations;
1157  return true;
1158}
1159
1160/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1161/// across this block.
1162static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1163  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1164  unsigned Size = 0;
1165
1166  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1167    if (isa<DbgInfoIntrinsic>(BBI))
1168      continue;
1169    if (Size > 10) return false;  // Don't clone large BB's.
1170    ++Size;
1171
1172    // We can only support instructions that do not define values that are
1173    // live outside of the current basic block.
1174    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1175         UI != E; ++UI) {
1176      Instruction *U = cast<Instruction>(*UI);
1177      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1178    }
1179
1180    // Looks ok, continue checking.
1181  }
1182
1183  return true;
1184}
1185
1186/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1187/// that is defined in the same block as the branch and if any PHI entries are
1188/// constants, thread edges corresponding to that entry to be branches to their
1189/// ultimate destination.
1190static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1191  BasicBlock *BB = BI->getParent();
1192  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1193  // NOTE: we currently cannot transform this case if the PHI node is used
1194  // outside of the block.
1195  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1196    return false;
1197
1198  // Degenerate case of a single entry PHI.
1199  if (PN->getNumIncomingValues() == 1) {
1200    FoldSingleEntryPHINodes(PN->getParent());
1201    return true;
1202  }
1203
1204  // Now we know that this block has multiple preds and two succs.
1205  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1206
1207  // Okay, this is a simple enough basic block.  See if any phi values are
1208  // constants.
1209  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1210    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1211    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1212
1213    // Okay, we now know that all edges from PredBB should be revectored to
1214    // branch to RealDest.
1215    BasicBlock *PredBB = PN->getIncomingBlock(i);
1216    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1217
1218    if (RealDest == BB) continue;  // Skip self loops.
1219    // Skip if the predecessor's terminator is an indirect branch.
1220    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1221
1222    // The dest block might have PHI nodes, other predecessors and other
1223    // difficult cases.  Instead of being smart about this, just insert a new
1224    // block that jumps to the destination block, effectively splitting
1225    // the edge we are about to create.
1226    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1227                                            RealDest->getName()+".critedge",
1228                                            RealDest->getParent(), RealDest);
1229    BranchInst::Create(RealDest, EdgeBB);
1230
1231    // Update PHI nodes.
1232    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1233
1234    // BB may have instructions that are being threaded over.  Clone these
1235    // instructions into EdgeBB.  We know that there will be no uses of the
1236    // cloned instructions outside of EdgeBB.
1237    BasicBlock::iterator InsertPt = EdgeBB->begin();
1238    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1239    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1240      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1241        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1242        continue;
1243      }
1244      // Clone the instruction.
1245      Instruction *N = BBI->clone();
1246      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1247
1248      // Update operands due to translation.
1249      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1250           i != e; ++i) {
1251        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1252        if (PI != TranslateMap.end())
1253          *i = PI->second;
1254      }
1255
1256      // Check for trivial simplification.
1257      if (Value *V = SimplifyInstruction(N, TD)) {
1258        TranslateMap[BBI] = V;
1259        delete N;   // Instruction folded away, don't need actual inst
1260      } else {
1261        // Insert the new instruction into its new home.
1262        EdgeBB->getInstList().insert(InsertPt, N);
1263        if (!BBI->use_empty())
1264          TranslateMap[BBI] = N;
1265      }
1266    }
1267
1268    // Loop over all of the edges from PredBB to BB, changing them to branch
1269    // to EdgeBB instead.
1270    TerminatorInst *PredBBTI = PredBB->getTerminator();
1271    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1272      if (PredBBTI->getSuccessor(i) == BB) {
1273        BB->removePredecessor(PredBB);
1274        PredBBTI->setSuccessor(i, EdgeBB);
1275      }
1276
1277    // Recurse, simplifying any other constants.
1278    return FoldCondBranchOnPHI(BI, TD) | true;
1279  }
1280
1281  return false;
1282}
1283
1284/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1285/// PHI node, see if we can eliminate it.
1286static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1287  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1288  // statement", which has a very simple dominance structure.  Basically, we
1289  // are trying to find the condition that is being branched on, which
1290  // subsequently causes this merge to happen.  We really want control
1291  // dependence information for this check, but simplifycfg can't keep it up
1292  // to date, and this catches most of the cases we care about anyway.
1293  BasicBlock *BB = PN->getParent();
1294  BasicBlock *IfTrue, *IfFalse;
1295  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1296  if (!IfCond ||
1297      // Don't bother if the branch will be constant folded trivially.
1298      isa<ConstantInt>(IfCond))
1299    return false;
1300
1301  // Okay, we found that we can merge this two-entry phi node into a select.
1302  // Doing so would require us to fold *all* two entry phi nodes in this block.
1303  // At some point this becomes non-profitable (particularly if the target
1304  // doesn't support cmov's).  Only do this transformation if there are two or
1305  // fewer PHI nodes in this block.
1306  unsigned NumPhis = 0;
1307  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1308    if (NumPhis > 2)
1309      return false;
1310
1311  // Loop over the PHI's seeing if we can promote them all to select
1312  // instructions.  While we are at it, keep track of the instructions
1313  // that need to be moved to the dominating block.
1314  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1315  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1316           MaxCostVal1 = PHINodeFoldingThreshold;
1317
1318  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1319    PHINode *PN = cast<PHINode>(II++);
1320    if (Value *V = SimplifyInstruction(PN, TD)) {
1321      PN->replaceAllUsesWith(V);
1322      PN->eraseFromParent();
1323      continue;
1324    }
1325
1326    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1327                             MaxCostVal0) ||
1328        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1329                             MaxCostVal1))
1330      return false;
1331  }
1332
1333  // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
1334  // we ran out of PHIs then we simplified them all.
1335  PN = dyn_cast<PHINode>(BB->begin());
1336  if (PN == 0) return true;
1337
1338  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1339  // often be turned into switches and other things.
1340  if (PN->getType()->isIntegerTy(1) &&
1341      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1342       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1343       isa<BinaryOperator>(IfCond)))
1344    return false;
1345
1346  // If we all PHI nodes are promotable, check to make sure that all
1347  // instructions in the predecessor blocks can be promoted as well.  If
1348  // not, we won't be able to get rid of the control flow, so it's not
1349  // worth promoting to select instructions.
1350  BasicBlock *DomBlock = 0;
1351  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1352  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1353  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1354    IfBlock1 = 0;
1355  } else {
1356    DomBlock = *pred_begin(IfBlock1);
1357    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1358      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1359        // This is not an aggressive instruction that we can promote.
1360        // Because of this, we won't be able to get rid of the control
1361        // flow, so the xform is not worth it.
1362        return false;
1363      }
1364  }
1365
1366  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1367    IfBlock2 = 0;
1368  } else {
1369    DomBlock = *pred_begin(IfBlock2);
1370    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1371      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1372        // This is not an aggressive instruction that we can promote.
1373        // Because of this, we won't be able to get rid of the control
1374        // flow, so the xform is not worth it.
1375        return false;
1376      }
1377  }
1378
1379  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1380               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1381
1382  // If we can still promote the PHI nodes after this gauntlet of tests,
1383  // do all of the PHI's now.
1384  Instruction *InsertPt = DomBlock->getTerminator();
1385  IRBuilder<true, NoFolder> Builder(InsertPt);
1386
1387  // Move all 'aggressive' instructions, which are defined in the
1388  // conditional parts of the if's up to the dominating block.
1389  if (IfBlock1)
1390    DomBlock->getInstList().splice(InsertPt,
1391                                   IfBlock1->getInstList(), IfBlock1->begin(),
1392                                   IfBlock1->getTerminator());
1393  if (IfBlock2)
1394    DomBlock->getInstList().splice(InsertPt,
1395                                   IfBlock2->getInstList(), IfBlock2->begin(),
1396                                   IfBlock2->getTerminator());
1397
1398  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1399    // Change the PHI node into a select instruction.
1400    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1401    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1402
1403    SelectInst *NV =
1404      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1405    PN->replaceAllUsesWith(NV);
1406    NV->takeName(PN);
1407    PN->eraseFromParent();
1408  }
1409
1410  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1411  // has been flattened.  Change DomBlock to jump directly to our new block to
1412  // avoid other simplifycfg's kicking in on the diamond.
1413  TerminatorInst *OldTI = DomBlock->getTerminator();
1414  Builder.SetInsertPoint(OldTI);
1415  Builder.CreateBr(BB);
1416  OldTI->eraseFromParent();
1417  return true;
1418}
1419
1420/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1421/// to two returning blocks, try to merge them together into one return,
1422/// introducing a select if the return values disagree.
1423static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1424                                           IRBuilder<> &Builder) {
1425  assert(BI->isConditional() && "Must be a conditional branch");
1426  BasicBlock *TrueSucc = BI->getSuccessor(0);
1427  BasicBlock *FalseSucc = BI->getSuccessor(1);
1428  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1429  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1430
1431  // Check to ensure both blocks are empty (just a return) or optionally empty
1432  // with PHI nodes.  If there are other instructions, merging would cause extra
1433  // computation on one path or the other.
1434  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1435    return false;
1436  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1437    return false;
1438
1439  Builder.SetInsertPoint(BI);
1440  // Okay, we found a branch that is going to two return nodes.  If
1441  // there is no return value for this function, just change the
1442  // branch into a return.
1443  if (FalseRet->getNumOperands() == 0) {
1444    TrueSucc->removePredecessor(BI->getParent());
1445    FalseSucc->removePredecessor(BI->getParent());
1446    Builder.CreateRetVoid();
1447    EraseTerminatorInstAndDCECond(BI);
1448    return true;
1449  }
1450
1451  // Otherwise, figure out what the true and false return values are
1452  // so we can insert a new select instruction.
1453  Value *TrueValue = TrueRet->getReturnValue();
1454  Value *FalseValue = FalseRet->getReturnValue();
1455
1456  // Unwrap any PHI nodes in the return blocks.
1457  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1458    if (TVPN->getParent() == TrueSucc)
1459      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1460  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1461    if (FVPN->getParent() == FalseSucc)
1462      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1463
1464  // In order for this transformation to be safe, we must be able to
1465  // unconditionally execute both operands to the return.  This is
1466  // normally the case, but we could have a potentially-trapping
1467  // constant expression that prevents this transformation from being
1468  // safe.
1469  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1470    if (TCV->canTrap())
1471      return false;
1472  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1473    if (FCV->canTrap())
1474      return false;
1475
1476  // Okay, we collected all the mapped values and checked them for sanity, and
1477  // defined to really do this transformation.  First, update the CFG.
1478  TrueSucc->removePredecessor(BI->getParent());
1479  FalseSucc->removePredecessor(BI->getParent());
1480
1481  // Insert select instructions where needed.
1482  Value *BrCond = BI->getCondition();
1483  if (TrueValue) {
1484    // Insert a select if the results differ.
1485    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1486    } else if (isa<UndefValue>(TrueValue)) {
1487      TrueValue = FalseValue;
1488    } else {
1489      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1490                                       FalseValue, "retval");
1491    }
1492  }
1493
1494  Value *RI = !TrueValue ?
1495    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1496
1497  (void) RI;
1498
1499  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1500               << "\n  " << *BI << "NewRet = " << *RI
1501               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1502
1503  EraseTerminatorInstAndDCECond(BI);
1504
1505  return true;
1506}
1507
1508/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1509/// probabilities of the branch taking each edge. Fills in the two APInt
1510/// parameters and return true, or returns false if no or invalid metadata was
1511/// found.
1512static bool ExtractBranchMetadata(BranchInst *BI,
1513                                  APInt &ProbTrue, APInt &ProbFalse) {
1514  assert(BI->isConditional() &&
1515         "Looking for probabilities on unconditional branch?");
1516  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1517  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1518  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1519  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1520  if (!CITrue || !CIFalse) return false;
1521  ProbTrue = CITrue->getValue();
1522  ProbFalse = CIFalse->getValue();
1523  assert(ProbTrue.getBitWidth() == 32 && ProbFalse.getBitWidth() == 32 &&
1524         "Branch probability metadata must be 32-bit integers");
1525  return true;
1526}
1527
1528/// MultiplyAndLosePrecision - Multiplies A and B, then returns the result. In
1529/// the event of overflow, logically-shifts all four inputs right until the
1530/// multiply fits.
1531static APInt MultiplyAndLosePrecision(APInt &A, APInt &B, APInt &C, APInt &D,
1532                                      unsigned &BitsLost) {
1533  BitsLost = 0;
1534  bool Overflow = false;
1535  APInt Result = A.umul_ov(B, Overflow);
1536  if (Overflow) {
1537    APInt MaxB = APInt::getMaxValue(A.getBitWidth()).udiv(A);
1538    do {
1539      B = B.lshr(1);
1540      ++BitsLost;
1541    } while (B.ugt(MaxB));
1542    A = A.lshr(BitsLost);
1543    C = C.lshr(BitsLost);
1544    D = D.lshr(BitsLost);
1545    Result = A * B;
1546  }
1547  return Result;
1548}
1549
1550/// checkCSEInPredecessor - Return true if the given instruction is available
1551/// in its predecessor block. If yes, the instruction will be removed.
1552///
1553bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1554  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1555    return false;
1556  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1557    Instruction *PBI = &*I;
1558    // Check whether Inst and PBI generate the same value.
1559    if (Inst->isIdenticalTo(PBI)) {
1560      Inst->replaceAllUsesWith(PBI);
1561      Inst->eraseFromParent();
1562      return true;
1563    }
1564  }
1565  return false;
1566}
1567
1568/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1569/// predecessor branches to us and one of our successors, fold the block into
1570/// the predecessor and use logical operations to pick the right destination.
1571bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1572  BasicBlock *BB = BI->getParent();
1573
1574  Instruction *Cond = 0;
1575  if (BI->isConditional())
1576    Cond = dyn_cast<Instruction>(BI->getCondition());
1577  else {
1578    // For unconditional branch, check for a simple CFG pattern, where
1579    // BB has a single predecessor and BB's successor is also its predecessor's
1580    // successor. If such pattern exisits, check for CSE between BB and its
1581    // predecessor.
1582    if (BasicBlock *PB = BB->getSinglePredecessor())
1583      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1584        if (PBI->isConditional() &&
1585            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1586             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1587          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1588               I != E; ) {
1589            Instruction *Curr = I++;
1590            if (isa<CmpInst>(Curr)) {
1591              Cond = Curr;
1592              break;
1593            }
1594            // Quit if we can't remove this instruction.
1595            if (!checkCSEInPredecessor(Curr, PB))
1596              return false;
1597          }
1598        }
1599
1600    if (Cond == 0)
1601      return false;
1602  }
1603
1604  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1605    Cond->getParent() != BB || !Cond->hasOneUse())
1606  return false;
1607
1608  // Only allow this if the condition is a simple instruction that can be
1609  // executed unconditionally.  It must be in the same block as the branch, and
1610  // must be at the front of the block.
1611  BasicBlock::iterator FrontIt = BB->front();
1612
1613  // Ignore dbg intrinsics.
1614  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1615
1616  // Allow a single instruction to be hoisted in addition to the compare
1617  // that feeds the branch.  We later ensure that any values that _it_ uses
1618  // were also live in the predecessor, so that we don't unnecessarily create
1619  // register pressure or inhibit out-of-order execution.
1620  Instruction *BonusInst = 0;
1621  if (&*FrontIt != Cond &&
1622      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1623      isSafeToSpeculativelyExecute(FrontIt)) {
1624    BonusInst = &*FrontIt;
1625    ++FrontIt;
1626
1627    // Ignore dbg intrinsics.
1628    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1629  }
1630
1631  // Only a single bonus inst is allowed.
1632  if (&*FrontIt != Cond)
1633    return false;
1634
1635  // Make sure the instruction after the condition is the cond branch.
1636  BasicBlock::iterator CondIt = Cond; ++CondIt;
1637
1638  // Ingore dbg intrinsics.
1639  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1640
1641  if (&*CondIt != BI)
1642    return false;
1643
1644  // Cond is known to be a compare or binary operator.  Check to make sure that
1645  // neither operand is a potentially-trapping constant expression.
1646  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1647    if (CE->canTrap())
1648      return false;
1649  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1650    if (CE->canTrap())
1651      return false;
1652
1653  // Finally, don't infinitely unroll conditional loops.
1654  BasicBlock *TrueDest  = BI->getSuccessor(0);
1655  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
1656  if (TrueDest == BB || FalseDest == BB)
1657    return false;
1658
1659  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1660    BasicBlock *PredBlock = *PI;
1661    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1662
1663    // Check that we have two conditional branches.  If there is a PHI node in
1664    // the common successor, verify that the same value flows in from both
1665    // blocks.
1666    SmallVector<PHINode*, 4> PHIs;
1667    if (PBI == 0 || PBI->isUnconditional() ||
1668        (BI->isConditional() &&
1669         !SafeToMergeTerminators(BI, PBI)) ||
1670        (!BI->isConditional() &&
1671         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
1672      continue;
1673
1674    // Determine if the two branches share a common destination.
1675    Instruction::BinaryOps Opc;
1676    bool InvertPredCond = false;
1677
1678    if (BI->isConditional()) {
1679      if (PBI->getSuccessor(0) == TrueDest)
1680        Opc = Instruction::Or;
1681      else if (PBI->getSuccessor(1) == FalseDest)
1682        Opc = Instruction::And;
1683      else if (PBI->getSuccessor(0) == FalseDest)
1684        Opc = Instruction::And, InvertPredCond = true;
1685      else if (PBI->getSuccessor(1) == TrueDest)
1686        Opc = Instruction::Or, InvertPredCond = true;
1687      else
1688        continue;
1689    } else {
1690      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
1691        continue;
1692    }
1693
1694    // Ensure that any values used in the bonus instruction are also used
1695    // by the terminator of the predecessor.  This means that those values
1696    // must already have been resolved, so we won't be inhibiting the
1697    // out-of-order core by speculating them earlier.
1698    if (BonusInst) {
1699      // Collect the values used by the bonus inst
1700      SmallPtrSet<Value*, 4> UsedValues;
1701      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1702           OE = BonusInst->op_end(); OI != OE; ++OI) {
1703        Value *V = *OI;
1704        if (!isa<Constant>(V))
1705          UsedValues.insert(V);
1706      }
1707
1708      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1709      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1710
1711      // Walk up to four levels back up the use-def chain of the predecessor's
1712      // terminator to see if all those values were used.  The choice of four
1713      // levels is arbitrary, to provide a compile-time-cost bound.
1714      while (!Worklist.empty()) {
1715        std::pair<Value*, unsigned> Pair = Worklist.back();
1716        Worklist.pop_back();
1717
1718        if (Pair.second >= 4) continue;
1719        UsedValues.erase(Pair.first);
1720        if (UsedValues.empty()) break;
1721
1722        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1723          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1724               OI != OE; ++OI)
1725            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1726        }
1727      }
1728
1729      if (!UsedValues.empty()) return false;
1730    }
1731
1732    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1733    IRBuilder<> Builder(PBI);
1734
1735    // If we need to invert the condition in the pred block to match, do so now.
1736    if (InvertPredCond) {
1737      Value *NewCond = PBI->getCondition();
1738
1739      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1740        CmpInst *CI = cast<CmpInst>(NewCond);
1741        CI->setPredicate(CI->getInversePredicate());
1742      } else {
1743        NewCond = Builder.CreateNot(NewCond,
1744                                    PBI->getCondition()->getName()+".not");
1745      }
1746
1747      PBI->setCondition(NewCond);
1748      PBI->swapSuccessors();
1749    }
1750
1751    // If we have a bonus inst, clone it into the predecessor block.
1752    Instruction *NewBonus = 0;
1753    if (BonusInst) {
1754      NewBonus = BonusInst->clone();
1755      PredBlock->getInstList().insert(PBI, NewBonus);
1756      NewBonus->takeName(BonusInst);
1757      BonusInst->setName(BonusInst->getName()+".old");
1758    }
1759
1760    // Clone Cond into the predecessor basic block, and or/and the
1761    // two conditions together.
1762    Instruction *New = Cond->clone();
1763    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1764    PredBlock->getInstList().insert(PBI, New);
1765    New->takeName(Cond);
1766    Cond->setName(New->getName()+".old");
1767
1768    if (BI->isConditional()) {
1769      Instruction *NewCond =
1770        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1771                                            New, "or.cond"));
1772      PBI->setCondition(NewCond);
1773
1774      if (PBI->getSuccessor(0) == BB) {
1775        AddPredecessorToBlock(TrueDest, PredBlock, BB);
1776        PBI->setSuccessor(0, TrueDest);
1777      }
1778      if (PBI->getSuccessor(1) == BB) {
1779        AddPredecessorToBlock(FalseDest, PredBlock, BB);
1780        PBI->setSuccessor(1, FalseDest);
1781      }
1782    } else {
1783      // Update PHI nodes in the common successors.
1784      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1785        ConstantInt *PBI_C = dyn_cast<ConstantInt>(
1786          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
1787        assert(PBI_C->getType()->isIntegerTy(1));
1788        Instruction *MergedCond = 0;
1789        if (PBI->getSuccessor(0) == TrueDest) {
1790          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
1791          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
1792          //       is false: !PBI_Cond and BI_Value
1793          Instruction *NotCond =
1794            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1795                                "not.cond"));
1796          MergedCond =
1797            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1798                                NotCond, New,
1799                                "and.cond"));
1800          if (PBI_C->isOne())
1801            MergedCond =
1802              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1803                                  PBI->getCondition(), MergedCond,
1804                                  "or.cond"));
1805        } else {
1806          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
1807          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
1808          //       is false: PBI_Cond and BI_Value
1809          MergedCond =
1810            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1811                                PBI->getCondition(), New,
1812                                "and.cond"));
1813          if (PBI_C->isOne()) {
1814            Instruction *NotCond =
1815              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1816                                  "not.cond"));
1817            MergedCond =
1818              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1819                                  NotCond, MergedCond,
1820                                  "or.cond"));
1821          }
1822        }
1823        // Update PHI Node.
1824        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
1825                                  MergedCond);
1826      }
1827      // Change PBI from Conditional to Unconditional.
1828      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
1829      EraseTerminatorInstAndDCECond(PBI);
1830      PBI = New_PBI;
1831    }
1832
1833    // TODO: If BB is reachable from all paths through PredBlock, then we
1834    // could replace PBI's branch probabilities with BI's.
1835
1836    // Merge probability data into PredBlock's branch.
1837    APInt A, B, C, D;
1838    if (PBI->isConditional() && BI->isConditional() &&
1839        ExtractBranchMetadata(PBI, C, D) && ExtractBranchMetadata(BI, A, B)) {
1840      // Given IR which does:
1841      //   bbA:
1842      //     br i1 %x, label %bbB, label %bbC
1843      //   bbB:
1844      //     br i1 %y, label %bbD, label %bbC
1845      // Let's call the probability that we take the edge from %bbA to %bbB
1846      // 'a', from %bbA to %bbC, 'b', from %bbB to %bbD 'c' and from %bbB to
1847      // %bbC probability 'd'.
1848      //
1849      // We transform the IR into:
1850      //   bbA:
1851      //     br i1 %z, label %bbD, label %bbC
1852      // where the probability of going to %bbD is (a*c) and going to bbC is
1853      // (b+a*d).
1854      //
1855      // Probabilities aren't stored as ratios directly. Using branch weights,
1856      // we get:
1857      // (a*c)% = A*C, (b+(a*d))% = A*D+B*C+B*D.
1858
1859      // In the event of overflow, we want to drop the LSB of the input
1860      // probabilities.
1861      unsigned BitsLost;
1862
1863      // Ignore overflow result on ProbTrue.
1864      APInt ProbTrue = MultiplyAndLosePrecision(A, C, B, D, BitsLost);
1865
1866      APInt Tmp1 = MultiplyAndLosePrecision(B, D, A, C, BitsLost);
1867      if (BitsLost) {
1868        ProbTrue = ProbTrue.lshr(BitsLost*2);
1869      }
1870
1871      APInt Tmp2 = MultiplyAndLosePrecision(A, D, C, B, BitsLost);
1872      if (BitsLost) {
1873        ProbTrue = ProbTrue.lshr(BitsLost*2);
1874        Tmp1 = Tmp1.lshr(BitsLost*2);
1875      }
1876
1877      APInt Tmp3 = MultiplyAndLosePrecision(B, C, A, D, BitsLost);
1878      if (BitsLost) {
1879        ProbTrue = ProbTrue.lshr(BitsLost*2);
1880        Tmp1 = Tmp1.lshr(BitsLost*2);
1881        Tmp2 = Tmp2.lshr(BitsLost*2);
1882      }
1883
1884      bool Overflow1 = false, Overflow2 = false;
1885      APInt Tmp4 = Tmp2.uadd_ov(Tmp3, Overflow1);
1886      APInt ProbFalse = Tmp4.uadd_ov(Tmp1, Overflow2);
1887
1888      if (Overflow1 || Overflow2) {
1889        ProbTrue = ProbTrue.lshr(1);
1890        Tmp1 = Tmp1.lshr(1);
1891        Tmp2 = Tmp2.lshr(1);
1892        Tmp3 = Tmp3.lshr(1);
1893        Tmp4 = Tmp2 + Tmp3;
1894        ProbFalse = Tmp4 + Tmp1;
1895      }
1896
1897      // The sum of branch weights must fit in 32-bits.
1898      if (ProbTrue.isNegative() && ProbFalse.isNegative()) {
1899        ProbTrue = ProbTrue.lshr(1);
1900        ProbFalse = ProbFalse.lshr(1);
1901      }
1902
1903      if (ProbTrue != ProbFalse) {
1904        // Normalize the result.
1905        APInt GCD = APIntOps::GreatestCommonDivisor(ProbTrue, ProbFalse);
1906        ProbTrue = ProbTrue.udiv(GCD);
1907        ProbFalse = ProbFalse.udiv(GCD);
1908
1909        MDBuilder MDB(BI->getContext());
1910        MDNode *N = MDB.createBranchWeights(ProbTrue.getZExtValue(),
1911                                            ProbFalse.getZExtValue());
1912        PBI->setMetadata(LLVMContext::MD_prof, N);
1913      } else {
1914        PBI->setMetadata(LLVMContext::MD_prof, NULL);
1915      }
1916    } else {
1917      PBI->setMetadata(LLVMContext::MD_prof, NULL);
1918    }
1919
1920    // Copy any debug value intrinsics into the end of PredBlock.
1921    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1922      if (isa<DbgInfoIntrinsic>(*I))
1923        I->clone()->insertBefore(PBI);
1924
1925    return true;
1926  }
1927  return false;
1928}
1929
1930/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1931/// predecessor of another block, this function tries to simplify it.  We know
1932/// that PBI and BI are both conditional branches, and BI is in one of the
1933/// successor blocks of PBI - PBI branches to BI.
1934static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1935  assert(PBI->isConditional() && BI->isConditional());
1936  BasicBlock *BB = BI->getParent();
1937
1938  // If this block ends with a branch instruction, and if there is a
1939  // predecessor that ends on a branch of the same condition, make
1940  // this conditional branch redundant.
1941  if (PBI->getCondition() == BI->getCondition() &&
1942      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1943    // Okay, the outcome of this conditional branch is statically
1944    // knowable.  If this block had a single pred, handle specially.
1945    if (BB->getSinglePredecessor()) {
1946      // Turn this into a branch on constant.
1947      bool CondIsTrue = PBI->getSuccessor(0) == BB;
1948      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1949                                        CondIsTrue));
1950      return true;  // Nuke the branch on constant.
1951    }
1952
1953    // Otherwise, if there are multiple predecessors, insert a PHI that merges
1954    // in the constant and simplify the block result.  Subsequent passes of
1955    // simplifycfg will thread the block.
1956    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1957      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
1958      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1959                                       std::distance(PB, PE),
1960                                       BI->getCondition()->getName() + ".pr",
1961                                       BB->begin());
1962      // Okay, we're going to insert the PHI node.  Since PBI is not the only
1963      // predecessor, compute the PHI'd conditional value for all of the preds.
1964      // Any predecessor where the condition is not computable we keep symbolic.
1965      for (pred_iterator PI = PB; PI != PE; ++PI) {
1966        BasicBlock *P = *PI;
1967        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1968            PBI != BI && PBI->isConditional() &&
1969            PBI->getCondition() == BI->getCondition() &&
1970            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1971          bool CondIsTrue = PBI->getSuccessor(0) == BB;
1972          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1973                                              CondIsTrue), P);
1974        } else {
1975          NewPN->addIncoming(BI->getCondition(), P);
1976        }
1977      }
1978
1979      BI->setCondition(NewPN);
1980      return true;
1981    }
1982  }
1983
1984  // If this is a conditional branch in an empty block, and if any
1985  // predecessors is a conditional branch to one of our destinations,
1986  // fold the conditions into logical ops and one cond br.
1987  BasicBlock::iterator BBI = BB->begin();
1988  // Ignore dbg intrinsics.
1989  while (isa<DbgInfoIntrinsic>(BBI))
1990    ++BBI;
1991  if (&*BBI != BI)
1992    return false;
1993
1994
1995  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1996    if (CE->canTrap())
1997      return false;
1998
1999  int PBIOp, BIOp;
2000  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2001    PBIOp = BIOp = 0;
2002  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2003    PBIOp = 0, BIOp = 1;
2004  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2005    PBIOp = 1, BIOp = 0;
2006  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2007    PBIOp = BIOp = 1;
2008  else
2009    return false;
2010
2011  // Check to make sure that the other destination of this branch
2012  // isn't BB itself.  If so, this is an infinite loop that will
2013  // keep getting unwound.
2014  if (PBI->getSuccessor(PBIOp) == BB)
2015    return false;
2016
2017  // Do not perform this transformation if it would require
2018  // insertion of a large number of select instructions. For targets
2019  // without predication/cmovs, this is a big pessimization.
2020  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2021
2022  unsigned NumPhis = 0;
2023  for (BasicBlock::iterator II = CommonDest->begin();
2024       isa<PHINode>(II); ++II, ++NumPhis)
2025    if (NumPhis > 2) // Disable this xform.
2026      return false;
2027
2028  // Finally, if everything is ok, fold the branches to logical ops.
2029  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2030
2031  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2032               << "AND: " << *BI->getParent());
2033
2034
2035  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2036  // branch in it, where one edge (OtherDest) goes back to itself but the other
2037  // exits.  We don't *know* that the program avoids the infinite loop
2038  // (even though that seems likely).  If we do this xform naively, we'll end up
2039  // recursively unpeeling the loop.  Since we know that (after the xform is
2040  // done) that the block *is* infinite if reached, we just make it an obviously
2041  // infinite loop with no cond branch.
2042  if (OtherDest == BB) {
2043    // Insert it at the end of the function, because it's either code,
2044    // or it won't matter if it's hot. :)
2045    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2046                                                  "infloop", BB->getParent());
2047    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2048    OtherDest = InfLoopBlock;
2049  }
2050
2051  DEBUG(dbgs() << *PBI->getParent()->getParent());
2052
2053  // BI may have other predecessors.  Because of this, we leave
2054  // it alone, but modify PBI.
2055
2056  // Make sure we get to CommonDest on True&True directions.
2057  Value *PBICond = PBI->getCondition();
2058  IRBuilder<true, NoFolder> Builder(PBI);
2059  if (PBIOp)
2060    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2061
2062  Value *BICond = BI->getCondition();
2063  if (BIOp)
2064    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2065
2066  // Merge the conditions.
2067  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2068
2069  // Modify PBI to branch on the new condition to the new dests.
2070  PBI->setCondition(Cond);
2071  PBI->setSuccessor(0, CommonDest);
2072  PBI->setSuccessor(1, OtherDest);
2073
2074  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2075  // block that are identical to the entries for BI's block.
2076  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2077
2078  // We know that the CommonDest already had an edge from PBI to
2079  // it.  If it has PHIs though, the PHIs may have different
2080  // entries for BB and PBI's BB.  If so, insert a select to make
2081  // them agree.
2082  PHINode *PN;
2083  for (BasicBlock::iterator II = CommonDest->begin();
2084       (PN = dyn_cast<PHINode>(II)); ++II) {
2085    Value *BIV = PN->getIncomingValueForBlock(BB);
2086    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2087    Value *PBIV = PN->getIncomingValue(PBBIdx);
2088    if (BIV != PBIV) {
2089      // Insert a select in PBI to pick the right value.
2090      Value *NV = cast<SelectInst>
2091        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2092      PN->setIncomingValue(PBBIdx, NV);
2093    }
2094  }
2095
2096  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2097  DEBUG(dbgs() << *PBI->getParent()->getParent());
2098
2099  // This basic block is probably dead.  We know it has at least
2100  // one fewer predecessor.
2101  return true;
2102}
2103
2104// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2105// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2106// Takes care of updating the successors and removing the old terminator.
2107// Also makes sure not to introduce new successors by assuming that edges to
2108// non-successor TrueBBs and FalseBBs aren't reachable.
2109static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2110                                       BasicBlock *TrueBB, BasicBlock *FalseBB){
2111  // Remove any superfluous successor edges from the CFG.
2112  // First, figure out which successors to preserve.
2113  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2114  // successor.
2115  BasicBlock *KeepEdge1 = TrueBB;
2116  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2117
2118  // Then remove the rest.
2119  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2120    BasicBlock *Succ = OldTerm->getSuccessor(I);
2121    // Make sure only to keep exactly one copy of each edge.
2122    if (Succ == KeepEdge1)
2123      KeepEdge1 = 0;
2124    else if (Succ == KeepEdge2)
2125      KeepEdge2 = 0;
2126    else
2127      Succ->removePredecessor(OldTerm->getParent());
2128  }
2129
2130  IRBuilder<> Builder(OldTerm);
2131  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2132
2133  // Insert an appropriate new terminator.
2134  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2135    if (TrueBB == FalseBB)
2136      // We were only looking for one successor, and it was present.
2137      // Create an unconditional branch to it.
2138      Builder.CreateBr(TrueBB);
2139    else
2140      // We found both of the successors we were looking for.
2141      // Create a conditional branch sharing the condition of the select.
2142      Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2143  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2144    // Neither of the selected blocks were successors, so this
2145    // terminator must be unreachable.
2146    new UnreachableInst(OldTerm->getContext(), OldTerm);
2147  } else {
2148    // One of the selected values was a successor, but the other wasn't.
2149    // Insert an unconditional branch to the one that was found;
2150    // the edge to the one that wasn't must be unreachable.
2151    if (KeepEdge1 == 0)
2152      // Only TrueBB was found.
2153      Builder.CreateBr(TrueBB);
2154    else
2155      // Only FalseBB was found.
2156      Builder.CreateBr(FalseBB);
2157  }
2158
2159  EraseTerminatorInstAndDCECond(OldTerm);
2160  return true;
2161}
2162
2163// SimplifySwitchOnSelect - Replaces
2164//   (switch (select cond, X, Y)) on constant X, Y
2165// with a branch - conditional if X and Y lead to distinct BBs,
2166// unconditional otherwise.
2167static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2168  // Check for constant integer values in the select.
2169  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2170  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2171  if (!TrueVal || !FalseVal)
2172    return false;
2173
2174  // Find the relevant condition and destinations.
2175  Value *Condition = Select->getCondition();
2176  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2177  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2178
2179  // Perform the actual simplification.
2180  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
2181}
2182
2183// SimplifyIndirectBrOnSelect - Replaces
2184//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2185//                             blockaddress(@fn, BlockB)))
2186// with
2187//   (br cond, BlockA, BlockB).
2188static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2189  // Check that both operands of the select are block addresses.
2190  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2191  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2192  if (!TBA || !FBA)
2193    return false;
2194
2195  // Extract the actual blocks.
2196  BasicBlock *TrueBB = TBA->getBasicBlock();
2197  BasicBlock *FalseBB = FBA->getBasicBlock();
2198
2199  // Perform the actual simplification.
2200  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
2201}
2202
2203/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2204/// instruction (a seteq/setne with a constant) as the only instruction in a
2205/// block that ends with an uncond branch.  We are looking for a very specific
2206/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2207/// this case, we merge the first two "or's of icmp" into a switch, but then the
2208/// default value goes to an uncond block with a seteq in it, we get something
2209/// like:
2210///
2211///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2212/// DEFAULT:
2213///   %tmp = icmp eq i8 %A, 92
2214///   br label %end
2215/// end:
2216///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2217///
2218/// We prefer to split the edge to 'end' so that there is a true/false entry to
2219/// the PHI, merging the third icmp into the switch.
2220static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
2221                                                  const TargetData *TD,
2222                                                  IRBuilder<> &Builder) {
2223  BasicBlock *BB = ICI->getParent();
2224
2225  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2226  // complex.
2227  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2228
2229  Value *V = ICI->getOperand(0);
2230  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2231
2232  // The pattern we're looking for is where our only predecessor is a switch on
2233  // 'V' and this block is the default case for the switch.  In this case we can
2234  // fold the compared value into the switch to simplify things.
2235  BasicBlock *Pred = BB->getSinglePredecessor();
2236  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2237
2238  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2239  if (SI->getCondition() != V)
2240    return false;
2241
2242  // If BB is reachable on a non-default case, then we simply know the value of
2243  // V in this block.  Substitute it and constant fold the icmp instruction
2244  // away.
2245  if (SI->getDefaultDest() != BB) {
2246    ConstantInt *VVal = SI->findCaseDest(BB);
2247    assert(VVal && "Should have a unique destination value");
2248    ICI->setOperand(0, VVal);
2249
2250    if (Value *V = SimplifyInstruction(ICI, TD)) {
2251      ICI->replaceAllUsesWith(V);
2252      ICI->eraseFromParent();
2253    }
2254    // BB is now empty, so it is likely to simplify away.
2255    return SimplifyCFG(BB) | true;
2256  }
2257
2258  // Ok, the block is reachable from the default dest.  If the constant we're
2259  // comparing exists in one of the other edges, then we can constant fold ICI
2260  // and zap it.
2261  if (SI->findCaseValue(Cst) != SI->case_default()) {
2262    Value *V;
2263    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2264      V = ConstantInt::getFalse(BB->getContext());
2265    else
2266      V = ConstantInt::getTrue(BB->getContext());
2267
2268    ICI->replaceAllUsesWith(V);
2269    ICI->eraseFromParent();
2270    // BB is now empty, so it is likely to simplify away.
2271    return SimplifyCFG(BB) | true;
2272  }
2273
2274  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2275  // the block.
2276  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2277  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2278  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2279      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2280    return false;
2281
2282  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2283  // true in the PHI.
2284  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2285  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2286
2287  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2288    std::swap(DefaultCst, NewCst);
2289
2290  // Replace ICI (which is used by the PHI for the default value) with true or
2291  // false depending on if it is EQ or NE.
2292  ICI->replaceAllUsesWith(DefaultCst);
2293  ICI->eraseFromParent();
2294
2295  // Okay, the switch goes to this block on a default value.  Add an edge from
2296  // the switch to the merge point on the compared value.
2297  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2298                                         BB->getParent(), BB);
2299  SI->addCase(Cst, NewBB);
2300
2301  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2302  Builder.SetInsertPoint(NewBB);
2303  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2304  Builder.CreateBr(SuccBlock);
2305  PHIUse->addIncoming(NewCst, NewBB);
2306  return true;
2307}
2308
2309/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2310/// Check to see if it is branching on an or/and chain of icmp instructions, and
2311/// fold it into a switch instruction if so.
2312static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2313                                      IRBuilder<> &Builder) {
2314  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2315  if (Cond == 0) return false;
2316
2317
2318  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2319  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2320  // 'setne's and'ed together, collect them.
2321  Value *CompVal = 0;
2322  std::vector<ConstantInt*> Values;
2323  bool TrueWhenEqual = true;
2324  Value *ExtraCase = 0;
2325  unsigned UsedICmps = 0;
2326
2327  if (Cond->getOpcode() == Instruction::Or) {
2328    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2329                                     UsedICmps);
2330  } else if (Cond->getOpcode() == Instruction::And) {
2331    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2332                                     UsedICmps);
2333    TrueWhenEqual = false;
2334  }
2335
2336  // If we didn't have a multiply compared value, fail.
2337  if (CompVal == 0) return false;
2338
2339  // Avoid turning single icmps into a switch.
2340  if (UsedICmps <= 1)
2341    return false;
2342
2343  // There might be duplicate constants in the list, which the switch
2344  // instruction can't handle, remove them now.
2345  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2346  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2347
2348  // If Extra was used, we require at least two switch values to do the
2349  // transformation.  A switch with one value is just an cond branch.
2350  if (ExtraCase && Values.size() < 2) return false;
2351
2352  // Figure out which block is which destination.
2353  BasicBlock *DefaultBB = BI->getSuccessor(1);
2354  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2355  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2356
2357  BasicBlock *BB = BI->getParent();
2358
2359  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2360               << " cases into SWITCH.  BB is:\n" << *BB);
2361
2362  // If there are any extra values that couldn't be folded into the switch
2363  // then we evaluate them with an explicit branch first.  Split the block
2364  // right before the condbr to handle it.
2365  if (ExtraCase) {
2366    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2367    // Remove the uncond branch added to the old block.
2368    TerminatorInst *OldTI = BB->getTerminator();
2369    Builder.SetInsertPoint(OldTI);
2370
2371    if (TrueWhenEqual)
2372      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2373    else
2374      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2375
2376    OldTI->eraseFromParent();
2377
2378    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2379    // for the edge we just added.
2380    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2381
2382    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2383          << "\nEXTRABB = " << *BB);
2384    BB = NewBB;
2385  }
2386
2387  Builder.SetInsertPoint(BI);
2388  // Convert pointer to int before we switch.
2389  if (CompVal->getType()->isPointerTy()) {
2390    assert(TD && "Cannot switch on pointer without TargetData");
2391    CompVal = Builder.CreatePtrToInt(CompVal,
2392                                     TD->getIntPtrType(CompVal->getContext()),
2393                                     "magicptr");
2394  }
2395
2396  // Create the new switch instruction now.
2397  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2398
2399  // Add all of the 'cases' to the switch instruction.
2400  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2401    New->addCase(Values[i], EdgeBB);
2402
2403  // We added edges from PI to the EdgeBB.  As such, if there were any
2404  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2405  // the number of edges added.
2406  for (BasicBlock::iterator BBI = EdgeBB->begin();
2407       isa<PHINode>(BBI); ++BBI) {
2408    PHINode *PN = cast<PHINode>(BBI);
2409    Value *InVal = PN->getIncomingValueForBlock(BB);
2410    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2411      PN->addIncoming(InVal, BB);
2412  }
2413
2414  // Erase the old branch instruction.
2415  EraseTerminatorInstAndDCECond(BI);
2416
2417  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2418  return true;
2419}
2420
2421bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2422  // If this is a trivial landing pad that just continues unwinding the caught
2423  // exception then zap the landing pad, turning its invokes into calls.
2424  BasicBlock *BB = RI->getParent();
2425  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2426  if (RI->getValue() != LPInst)
2427    // Not a landing pad, or the resume is not unwinding the exception that
2428    // caused control to branch here.
2429    return false;
2430
2431  // Check that there are no other instructions except for debug intrinsics.
2432  BasicBlock::iterator I = LPInst, E = RI;
2433  while (++I != E)
2434    if (!isa<DbgInfoIntrinsic>(I))
2435      return false;
2436
2437  // Turn all invokes that unwind here into calls and delete the basic block.
2438  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2439    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2440    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2441    // Insert a call instruction before the invoke.
2442    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2443    Call->takeName(II);
2444    Call->setCallingConv(II->getCallingConv());
2445    Call->setAttributes(II->getAttributes());
2446    Call->setDebugLoc(II->getDebugLoc());
2447
2448    // Anything that used the value produced by the invoke instruction now uses
2449    // the value produced by the call instruction.  Note that we do this even
2450    // for void functions and calls with no uses so that the callgraph edge is
2451    // updated.
2452    II->replaceAllUsesWith(Call);
2453    BB->removePredecessor(II->getParent());
2454
2455    // Insert a branch to the normal destination right before the invoke.
2456    BranchInst::Create(II->getNormalDest(), II);
2457
2458    // Finally, delete the invoke instruction!
2459    II->eraseFromParent();
2460  }
2461
2462  // The landingpad is now unreachable.  Zap it.
2463  BB->eraseFromParent();
2464  return true;
2465}
2466
2467bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2468  BasicBlock *BB = RI->getParent();
2469  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2470
2471  // Find predecessors that end with branches.
2472  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2473  SmallVector<BranchInst*, 8> CondBranchPreds;
2474  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2475    BasicBlock *P = *PI;
2476    TerminatorInst *PTI = P->getTerminator();
2477    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2478      if (BI->isUnconditional())
2479        UncondBranchPreds.push_back(P);
2480      else
2481        CondBranchPreds.push_back(BI);
2482    }
2483  }
2484
2485  // If we found some, do the transformation!
2486  if (!UncondBranchPreds.empty() && DupRet) {
2487    while (!UncondBranchPreds.empty()) {
2488      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2489      DEBUG(dbgs() << "FOLDING: " << *BB
2490            << "INTO UNCOND BRANCH PRED: " << *Pred);
2491      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2492    }
2493
2494    // If we eliminated all predecessors of the block, delete the block now.
2495    if (pred_begin(BB) == pred_end(BB))
2496      // We know there are no successors, so just nuke the block.
2497      BB->eraseFromParent();
2498
2499    return true;
2500  }
2501
2502  // Check out all of the conditional branches going to this return
2503  // instruction.  If any of them just select between returns, change the
2504  // branch itself into a select/return pair.
2505  while (!CondBranchPreds.empty()) {
2506    BranchInst *BI = CondBranchPreds.pop_back_val();
2507
2508    // Check to see if the non-BB successor is also a return block.
2509    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2510        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2511        SimplifyCondBranchToTwoReturns(BI, Builder))
2512      return true;
2513  }
2514  return false;
2515}
2516
2517bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2518  BasicBlock *BB = UI->getParent();
2519
2520  bool Changed = false;
2521
2522  // If there are any instructions immediately before the unreachable that can
2523  // be removed, do so.
2524  while (UI != BB->begin()) {
2525    BasicBlock::iterator BBI = UI;
2526    --BBI;
2527    // Do not delete instructions that can have side effects which might cause
2528    // the unreachable to not be reachable; specifically, calls and volatile
2529    // operations may have this effect.
2530    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2531
2532    if (BBI->mayHaveSideEffects()) {
2533      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2534        if (SI->isVolatile())
2535          break;
2536      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2537        if (LI->isVolatile())
2538          break;
2539      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2540        if (RMWI->isVolatile())
2541          break;
2542      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2543        if (CXI->isVolatile())
2544          break;
2545      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2546                 !isa<LandingPadInst>(BBI)) {
2547        break;
2548      }
2549      // Note that deleting LandingPad's here is in fact okay, although it
2550      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2551      // all the predecessors of this block will be the unwind edges of Invokes,
2552      // and we can therefore guarantee this block will be erased.
2553    }
2554
2555    // Delete this instruction (any uses are guaranteed to be dead)
2556    if (!BBI->use_empty())
2557      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2558    BBI->eraseFromParent();
2559    Changed = true;
2560  }
2561
2562  // If the unreachable instruction is the first in the block, take a gander
2563  // at all of the predecessors of this instruction, and simplify them.
2564  if (&BB->front() != UI) return Changed;
2565
2566  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2567  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2568    TerminatorInst *TI = Preds[i]->getTerminator();
2569    IRBuilder<> Builder(TI);
2570    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2571      if (BI->isUnconditional()) {
2572        if (BI->getSuccessor(0) == BB) {
2573          new UnreachableInst(TI->getContext(), TI);
2574          TI->eraseFromParent();
2575          Changed = true;
2576        }
2577      } else {
2578        if (BI->getSuccessor(0) == BB) {
2579          Builder.CreateBr(BI->getSuccessor(1));
2580          EraseTerminatorInstAndDCECond(BI);
2581        } else if (BI->getSuccessor(1) == BB) {
2582          Builder.CreateBr(BI->getSuccessor(0));
2583          EraseTerminatorInstAndDCECond(BI);
2584          Changed = true;
2585        }
2586      }
2587    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2588      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2589           i != e; ++i)
2590        if (i.getCaseSuccessor() == BB) {
2591          BB->removePredecessor(SI->getParent());
2592          SI->removeCase(i);
2593          --i; --e;
2594          Changed = true;
2595        }
2596      // If the default value is unreachable, figure out the most popular
2597      // destination and make it the default.
2598      if (SI->getDefaultDest() == BB) {
2599        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2600        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2601             i != e; ++i) {
2602          std::pair<unsigned, unsigned> &entry =
2603              Popularity[i.getCaseSuccessor()];
2604          if (entry.first == 0) {
2605            entry.first = 1;
2606            entry.second = i.getCaseIndex();
2607          } else {
2608            entry.first++;
2609          }
2610        }
2611
2612        // Find the most popular block.
2613        unsigned MaxPop = 0;
2614        unsigned MaxIndex = 0;
2615        BasicBlock *MaxBlock = 0;
2616        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2617             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2618          if (I->second.first > MaxPop ||
2619              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2620            MaxPop = I->second.first;
2621            MaxIndex = I->second.second;
2622            MaxBlock = I->first;
2623          }
2624        }
2625        if (MaxBlock) {
2626          // Make this the new default, allowing us to delete any explicit
2627          // edges to it.
2628          SI->setDefaultDest(MaxBlock);
2629          Changed = true;
2630
2631          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2632          // it.
2633          if (isa<PHINode>(MaxBlock->begin()))
2634            for (unsigned i = 0; i != MaxPop-1; ++i)
2635              MaxBlock->removePredecessor(SI->getParent());
2636
2637          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2638               i != e; ++i)
2639            if (i.getCaseSuccessor() == MaxBlock) {
2640              SI->removeCase(i);
2641              --i; --e;
2642            }
2643        }
2644      }
2645    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2646      if (II->getUnwindDest() == BB) {
2647        // Convert the invoke to a call instruction.  This would be a good
2648        // place to note that the call does not throw though.
2649        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2650        II->removeFromParent();   // Take out of symbol table
2651
2652        // Insert the call now...
2653        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2654        Builder.SetInsertPoint(BI);
2655        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2656                                          Args, II->getName());
2657        CI->setCallingConv(II->getCallingConv());
2658        CI->setAttributes(II->getAttributes());
2659        // If the invoke produced a value, the call does now instead.
2660        II->replaceAllUsesWith(CI);
2661        delete II;
2662        Changed = true;
2663      }
2664    }
2665  }
2666
2667  // If this block is now dead, remove it.
2668  if (pred_begin(BB) == pred_end(BB) &&
2669      BB != &BB->getParent()->getEntryBlock()) {
2670    // We know there are no successors, so just nuke the block.
2671    BB->eraseFromParent();
2672    return true;
2673  }
2674
2675  return Changed;
2676}
2677
2678/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2679/// integer range comparison into a sub, an icmp and a branch.
2680static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2681  assert(SI->getNumCases() > 1 && "Degenerate switch?");
2682
2683  // Make sure all cases point to the same destination and gather the values.
2684  SmallVector<ConstantInt *, 16> Cases;
2685  SwitchInst::CaseIt I = SI->case_begin();
2686  Cases.push_back(I.getCaseValue());
2687  SwitchInst::CaseIt PrevI = I++;
2688  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
2689    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
2690      return false;
2691    Cases.push_back(I.getCaseValue());
2692  }
2693  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
2694
2695  // Sort the case values, then check if they form a range we can transform.
2696  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2697  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2698    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2699      return false;
2700  }
2701
2702  Constant *Offset = ConstantExpr::getNeg(Cases.back());
2703  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
2704
2705  Value *Sub = SI->getCondition();
2706  if (!Offset->isNullValue())
2707    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2708  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2709  Builder.CreateCondBr(
2710      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
2711
2712  // Prune obsolete incoming values off the successor's PHI nodes.
2713  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
2714       isa<PHINode>(BBI); ++BBI) {
2715    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
2716      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2717  }
2718  SI->eraseFromParent();
2719
2720  return true;
2721}
2722
2723/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2724/// and use it to remove dead cases.
2725static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2726  Value *Cond = SI->getCondition();
2727  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2728  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2729  ComputeMaskedBits(Cond, KnownZero, KnownOne);
2730
2731  // Gather dead cases.
2732  SmallVector<ConstantInt*, 8> DeadCases;
2733  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2734    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
2735        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
2736      DeadCases.push_back(I.getCaseValue());
2737      DEBUG(dbgs() << "SimplifyCFG: switch case '"
2738                   << I.getCaseValue() << "' is dead.\n");
2739    }
2740  }
2741
2742  // Remove dead cases from the switch.
2743  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2744    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
2745    assert(Case != SI->case_default() &&
2746           "Case was not found. Probably mistake in DeadCases forming.");
2747    // Prune unused values from PHI nodes.
2748    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
2749    SI->removeCase(Case);
2750  }
2751
2752  return !DeadCases.empty();
2753}
2754
2755/// FindPHIForConditionForwarding - If BB would be eligible for simplification
2756/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2757/// by an unconditional branch), look at the phi node for BB in the successor
2758/// block and see if the incoming value is equal to CaseValue. If so, return
2759/// the phi node, and set PhiIndex to BB's index in the phi node.
2760static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2761                                              BasicBlock *BB,
2762                                              int *PhiIndex) {
2763  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2764    return NULL; // BB must be empty to be a candidate for simplification.
2765  if (!BB->getSinglePredecessor())
2766    return NULL; // BB must be dominated by the switch.
2767
2768  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2769  if (!Branch || !Branch->isUnconditional())
2770    return NULL; // Terminator must be unconditional branch.
2771
2772  BasicBlock *Succ = Branch->getSuccessor(0);
2773
2774  BasicBlock::iterator I = Succ->begin();
2775  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2776    int Idx = PHI->getBasicBlockIndex(BB);
2777    assert(Idx >= 0 && "PHI has no entry for predecessor?");
2778
2779    Value *InValue = PHI->getIncomingValue(Idx);
2780    if (InValue != CaseValue) continue;
2781
2782    *PhiIndex = Idx;
2783    return PHI;
2784  }
2785
2786  return NULL;
2787}
2788
2789/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2790/// instruction to a phi node dominated by the switch, if that would mean that
2791/// some of the destination blocks of the switch can be folded away.
2792/// Returns true if a change is made.
2793static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2794  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2795  ForwardingNodesMap ForwardingNodes;
2796
2797  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2798    ConstantInt *CaseValue = I.getCaseValue();
2799    BasicBlock *CaseDest = I.getCaseSuccessor();
2800
2801    int PhiIndex;
2802    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2803                                                 &PhiIndex);
2804    if (!PHI) continue;
2805
2806    ForwardingNodes[PHI].push_back(PhiIndex);
2807  }
2808
2809  bool Changed = false;
2810
2811  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2812       E = ForwardingNodes.end(); I != E; ++I) {
2813    PHINode *Phi = I->first;
2814    SmallVector<int,4> &Indexes = I->second;
2815
2816    if (Indexes.size() < 2) continue;
2817
2818    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2819      Phi->setIncomingValue(Indexes[I], SI->getCondition());
2820    Changed = true;
2821  }
2822
2823  return Changed;
2824}
2825
2826bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
2827  // If this switch is too complex to want to look at, ignore it.
2828  if (!isValueEqualityComparison(SI))
2829    return false;
2830
2831  BasicBlock *BB = SI->getParent();
2832
2833  // If we only have one predecessor, and if it is a branch on this value,
2834  // see if that predecessor totally determines the outcome of this switch.
2835  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2836    if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
2837      return SimplifyCFG(BB) | true;
2838
2839  Value *Cond = SI->getCondition();
2840  if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2841    if (SimplifySwitchOnSelect(SI, Select))
2842      return SimplifyCFG(BB) | true;
2843
2844  // If the block only contains the switch, see if we can fold the block
2845  // away into any preds.
2846  BasicBlock::iterator BBI = BB->begin();
2847  // Ignore dbg intrinsics.
2848  while (isa<DbgInfoIntrinsic>(BBI))
2849    ++BBI;
2850  if (SI == &*BBI)
2851    if (FoldValueComparisonIntoPredecessors(SI, Builder))
2852      return SimplifyCFG(BB) | true;
2853
2854  // Try to transform the switch into an icmp and a branch.
2855  if (TurnSwitchRangeIntoICmp(SI, Builder))
2856    return SimplifyCFG(BB) | true;
2857
2858  // Remove unreachable cases.
2859  if (EliminateDeadSwitchCases(SI))
2860    return SimplifyCFG(BB) | true;
2861
2862  if (ForwardSwitchConditionToPHI(SI))
2863    return SimplifyCFG(BB) | true;
2864
2865  return false;
2866}
2867
2868bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2869  BasicBlock *BB = IBI->getParent();
2870  bool Changed = false;
2871
2872  // Eliminate redundant destinations.
2873  SmallPtrSet<Value *, 8> Succs;
2874  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2875    BasicBlock *Dest = IBI->getDestination(i);
2876    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2877      Dest->removePredecessor(BB);
2878      IBI->removeDestination(i);
2879      --i; --e;
2880      Changed = true;
2881    }
2882  }
2883
2884  if (IBI->getNumDestinations() == 0) {
2885    // If the indirectbr has no successors, change it to unreachable.
2886    new UnreachableInst(IBI->getContext(), IBI);
2887    EraseTerminatorInstAndDCECond(IBI);
2888    return true;
2889  }
2890
2891  if (IBI->getNumDestinations() == 1) {
2892    // If the indirectbr has one successor, change it to a direct branch.
2893    BranchInst::Create(IBI->getDestination(0), IBI);
2894    EraseTerminatorInstAndDCECond(IBI);
2895    return true;
2896  }
2897
2898  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2899    if (SimplifyIndirectBrOnSelect(IBI, SI))
2900      return SimplifyCFG(BB) | true;
2901  }
2902  return Changed;
2903}
2904
2905bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
2906  BasicBlock *BB = BI->getParent();
2907
2908  // If the Terminator is the only non-phi instruction, simplify the block.
2909  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
2910  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2911      TryToSimplifyUncondBranchFromEmptyBlock(BB))
2912    return true;
2913
2914  // If the only instruction in the block is a seteq/setne comparison
2915  // against a constant, try to simplify the block.
2916  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2917    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2918      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2919        ;
2920      if (I->isTerminator() &&
2921          TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
2922        return true;
2923    }
2924
2925  // If this basic block is ONLY a compare and a branch, and if a predecessor
2926  // branches to us and our successor, fold the comparison into the
2927  // predecessor and use logical operations to update the incoming value
2928  // for PHI nodes in common successor.
2929  if (FoldBranchToCommonDest(BI))
2930    return SimplifyCFG(BB) | true;
2931  return false;
2932}
2933
2934
2935bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
2936  BasicBlock *BB = BI->getParent();
2937
2938  // Conditional branch
2939  if (isValueEqualityComparison(BI)) {
2940    // If we only have one predecessor, and if it is a branch on this value,
2941    // see if that predecessor totally determines the outcome of this
2942    // switch.
2943    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2944      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
2945        return SimplifyCFG(BB) | true;
2946
2947    // This block must be empty, except for the setcond inst, if it exists.
2948    // Ignore dbg intrinsics.
2949    BasicBlock::iterator I = BB->begin();
2950    // Ignore dbg intrinsics.
2951    while (isa<DbgInfoIntrinsic>(I))
2952      ++I;
2953    if (&*I == BI) {
2954      if (FoldValueComparisonIntoPredecessors(BI, Builder))
2955        return SimplifyCFG(BB) | true;
2956    } else if (&*I == cast<Instruction>(BI->getCondition())){
2957      ++I;
2958      // Ignore dbg intrinsics.
2959      while (isa<DbgInfoIntrinsic>(I))
2960        ++I;
2961      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
2962        return SimplifyCFG(BB) | true;
2963    }
2964  }
2965
2966  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2967  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
2968    return true;
2969
2970  // If this basic block is ONLY a compare and a branch, and if a predecessor
2971  // branches to us and one of our successors, fold the comparison into the
2972  // predecessor and use logical operations to pick the right destination.
2973  if (FoldBranchToCommonDest(BI))
2974    return SimplifyCFG(BB) | true;
2975
2976  // We have a conditional branch to two blocks that are only reachable
2977  // from BI.  We know that the condbr dominates the two blocks, so see if
2978  // there is any identical code in the "then" and "else" blocks.  If so, we
2979  // can hoist it up to the branching block.
2980  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2981    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2982      if (HoistThenElseCodeToIf(BI))
2983        return SimplifyCFG(BB) | true;
2984    } else {
2985      // If Successor #1 has multiple preds, we may be able to conditionally
2986      // execute Successor #0 if it branches to successor #1.
2987      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2988      if (Succ0TI->getNumSuccessors() == 1 &&
2989          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2990        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2991          return SimplifyCFG(BB) | true;
2992    }
2993  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2994    // If Successor #0 has multiple preds, we may be able to conditionally
2995    // execute Successor #1 if it branches to successor #0.
2996    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2997    if (Succ1TI->getNumSuccessors() == 1 &&
2998        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2999      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3000        return SimplifyCFG(BB) | true;
3001  }
3002
3003  // If this is a branch on a phi node in the current block, thread control
3004  // through this block if any PHI node entries are constants.
3005  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
3006    if (PN->getParent() == BI->getParent())
3007      if (FoldCondBranchOnPHI(BI, TD))
3008        return SimplifyCFG(BB) | true;
3009
3010  // Scan predecessor blocks for conditional branches.
3011  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
3012    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
3013      if (PBI != BI && PBI->isConditional())
3014        if (SimplifyCondBranchToCondBranch(PBI, BI))
3015          return SimplifyCFG(BB) | true;
3016
3017  return false;
3018}
3019
3020/// Check if passing a value to an instruction will cause undefined behavior.
3021static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
3022  Constant *C = dyn_cast<Constant>(V);
3023  if (!C)
3024    return false;
3025
3026  if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
3027    return false;
3028
3029  if (C->isNullValue()) {
3030    Instruction *Use = I->use_back();
3031
3032    // Now make sure that there are no instructions in between that can alter
3033    // control flow (eg. calls)
3034    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
3035      if (i == I->getParent()->end() || i->mayHaveSideEffects())
3036        return false;
3037
3038    // Look through GEPs. A load from a GEP derived from NULL is still undefined
3039    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
3040      if (GEP->getPointerOperand() == I)
3041        return passingValueIsAlwaysUndefined(V, GEP);
3042
3043    // Look through bitcasts.
3044    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
3045      return passingValueIsAlwaysUndefined(V, BC);
3046
3047    // Load from null is undefined.
3048    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
3049      return LI->getPointerAddressSpace() == 0;
3050
3051    // Store to null is undefined.
3052    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
3053      return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
3054  }
3055  return false;
3056}
3057
3058/// If BB has an incoming value that will always trigger undefined behavior
3059/// (eg. null pointer dereference), remove the branch leading here.
3060static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
3061  for (BasicBlock::iterator i = BB->begin();
3062       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
3063    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
3064      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
3065        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
3066        IRBuilder<> Builder(T);
3067        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
3068          BB->removePredecessor(PHI->getIncomingBlock(i));
3069          // Turn uncoditional branches into unreachables and remove the dead
3070          // destination from conditional branches.
3071          if (BI->isUnconditional())
3072            Builder.CreateUnreachable();
3073          else
3074            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
3075                                                         BI->getSuccessor(0));
3076          BI->eraseFromParent();
3077          return true;
3078        }
3079        // TODO: SwitchInst.
3080      }
3081
3082  return false;
3083}
3084
3085bool SimplifyCFGOpt::run(BasicBlock *BB) {
3086  bool Changed = false;
3087
3088  assert(BB && BB->getParent() && "Block not embedded in function!");
3089  assert(BB->getTerminator() && "Degenerate basic block encountered!");
3090
3091  // Remove basic blocks that have no predecessors (except the entry block)...
3092  // or that just have themself as a predecessor.  These are unreachable.
3093  if ((pred_begin(BB) == pred_end(BB) &&
3094       BB != &BB->getParent()->getEntryBlock()) ||
3095      BB->getSinglePredecessor() == BB) {
3096    DEBUG(dbgs() << "Removing BB: \n" << *BB);
3097    DeleteDeadBlock(BB);
3098    return true;
3099  }
3100
3101  // Check to see if we can constant propagate this terminator instruction
3102  // away...
3103  Changed |= ConstantFoldTerminator(BB, true);
3104
3105  // Check for and eliminate duplicate PHI nodes in this block.
3106  Changed |= EliminateDuplicatePHINodes(BB);
3107
3108  // Check for and remove branches that will always cause undefined behavior.
3109  Changed |= removeUndefIntroducingPredecessor(BB);
3110
3111  // Merge basic blocks into their predecessor if there is only one distinct
3112  // pred, and if there is only one distinct successor of the predecessor, and
3113  // if there are no PHI nodes.
3114  //
3115  if (MergeBlockIntoPredecessor(BB))
3116    return true;
3117
3118  IRBuilder<> Builder(BB);
3119
3120  // If there is a trivial two-entry PHI node in this basic block, and we can
3121  // eliminate it, do so now.
3122  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
3123    if (PN->getNumIncomingValues() == 2)
3124      Changed |= FoldTwoEntryPHINode(PN, TD);
3125
3126  Builder.SetInsertPoint(BB->getTerminator());
3127  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
3128    if (BI->isUnconditional()) {
3129      if (SimplifyUncondBranch(BI, Builder)) return true;
3130    } else {
3131      if (SimplifyCondBranch(BI, Builder)) return true;
3132    }
3133  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
3134    if (SimplifyReturn(RI, Builder)) return true;
3135  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
3136    if (SimplifyResume(RI, Builder)) return true;
3137  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
3138    if (SimplifySwitch(SI, Builder)) return true;
3139  } else if (UnreachableInst *UI =
3140               dyn_cast<UnreachableInst>(BB->getTerminator())) {
3141    if (SimplifyUnreachable(UI)) return true;
3142  } else if (IndirectBrInst *IBI =
3143               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
3144    if (SimplifyIndirectBr(IBI)) return true;
3145  }
3146
3147  return Changed;
3148}
3149
3150/// SimplifyCFG - This function is used to do simplification of a CFG.  For
3151/// example, it adjusts branches to branches to eliminate the extra hop, it
3152/// eliminates unreachable basic blocks, and does other "peephole" optimization
3153/// of the CFG.  It returns true if a modification was made.
3154///
3155bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
3156  return SimplifyCFGOpt(TD).run(BB);
3157}
3158