nv50_program.c revision ec5c23551cdb4c369d8f8f392208f4d4bf29911b
1/*
2 * Copyright 2008 Ben Skeggs
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23#include "pipe/p_context.h"
24#include "pipe/p_defines.h"
25#include "pipe/p_state.h"
26#include "pipe/p_inlines.h"
27
28#include "pipe/p_shader_tokens.h"
29#include "tgsi/tgsi_parse.h"
30#include "tgsi/tgsi_util.h"
31
32#include "nv50_context.h"
33
34#define NV50_SU_MAX_TEMP 64
35#define NV50_SU_MAX_ADDR 7
36//#define NV50_PROGRAM_DUMP
37
38/* ARL - gallium craps itself on progs/vp/arl.txt
39 *
40 * MSB - Like MAD, but MUL+SUB
41 * 	- Fuck it off, introduce a way to negate args for ops that
42 * 	  support it.
43 *
44 * Look into inlining IMMD for ops other than MOV (make it general?)
45 * 	- Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
46 * 	  but can emit to P_TEMP first - then MOV later. NVIDIA does this
47 *
48 * In ops such as ADD it's possible to construct a bad opcode in the !is_long()
49 * case, if the emit_src() causes the inst to suddenly become long.
50 *
51 * Verify half-insns work where expected - and force disable them where they
52 * don't work - MUL has it forcibly disabled atm as it fixes POW..
53 *
54 * FUCK! watch dst==src vectors, can overwrite components that are needed.
55 * 	ie. SUB R0, R0.yzxw, R0
56 *
57 * Things to check with renouveau:
58 * 	FP attr/result assignment - how?
59 * 		attrib
60 * 			- 0x16bc maps vp output onto fp hpos
61 * 			- 0x16c0 maps vp output onto fp col0
62 * 		result
63 * 			- colr always 0-3
64 * 			- depr always 4
65 * 0x16bc->0x16e8 --> some binding between vp/fp regs
66 * 0x16b8 --> VP output count
67 *
68 * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
69 * 	      "MOV rcol.x, fcol.y" = 0x00000004
70 * 0x19a8 --> as above but 0x00000100 and 0x00000000
71 * 	- 0x00100000 used when KIL used
72 * 0x196c --> as above but 0x00000011 and 0x00000000
73 *
74 * 0x1988 --> 0xXXNNNNNN
75 * 	- XX == FP high something
76 */
77struct nv50_reg {
78	enum {
79		P_TEMP,
80		P_ATTR,
81		P_RESULT,
82		P_CONST,
83		P_IMMD,
84		P_ADDR
85	} type;
86	int index;
87
88	int hw;
89	int neg;
90
91	int rhw; /* result hw for FP outputs, or interpolant index */
92	int acc; /* instruction where this reg is last read (first insn == 1) */
93};
94
95/* arbitrary limits */
96#define MAX_IF_DEPTH 4
97#define MAX_LOOP_DEPTH 4
98
99struct nv50_pc {
100	struct nv50_program *p;
101
102	/* hw resources */
103	struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
104	struct nv50_reg r_addr[NV50_SU_MAX_ADDR];
105
106	/* tgsi resources */
107	struct nv50_reg *temp;
108	int temp_nr;
109	struct nv50_reg *attr;
110	int attr_nr;
111	struct nv50_reg *result;
112	int result_nr;
113	struct nv50_reg *param;
114	int param_nr;
115	struct nv50_reg *immd;
116	float *immd_buf;
117	int immd_nr;
118	struct nv50_reg **addr;
119	int addr_nr;
120
121	struct nv50_reg *temp_temp[16];
122	unsigned temp_temp_nr;
123
124	/* broadcast and destination replacement regs */
125	struct nv50_reg *r_brdc;
126	struct nv50_reg *r_dst[4];
127
128	unsigned interp_mode[32];
129	/* perspective interpolation registers */
130	struct nv50_reg *iv_p;
131	struct nv50_reg *iv_c;
132
133	struct nv50_program_exec *if_cond;
134	struct nv50_program_exec *if_insn[MAX_IF_DEPTH];
135	struct nv50_program_exec *br_join[MAX_IF_DEPTH];
136	struct nv50_program_exec *br_loop[MAX_LOOP_DEPTH]; /* for BRK branch */
137	int if_lvl, loop_lvl;
138	unsigned loop_pos[MAX_LOOP_DEPTH];
139
140	/* current instruction and total number of insns */
141	unsigned insn_cur;
142	unsigned insn_nr;
143
144	boolean allow32;
145};
146
147static INLINE void
148ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
149{
150	reg->type = type;
151	reg->index = index;
152	reg->hw = hw;
153	reg->neg = 0;
154	reg->rhw = -1;
155	reg->acc = 0;
156}
157
158static INLINE unsigned
159popcnt4(uint32_t val)
160{
161	static const unsigned cnt[16]
162	= { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
163	return cnt[val & 0xf];
164}
165
166static void
167terminate_mbb(struct nv50_pc *pc)
168{
169	int i;
170
171	/* remove records of temporary address register values */
172	for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
173		if (pc->r_addr[i].index < 0)
174			pc->r_addr[i].rhw = -1;
175}
176
177static void
178alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
179{
180	int i = 0;
181
182	if (reg->type == P_RESULT) {
183		if (pc->p->cfg.high_result < (reg->hw + 1))
184			pc->p->cfg.high_result = reg->hw + 1;
185	}
186
187	if (reg->type != P_TEMP)
188		return;
189
190	if (reg->hw >= 0) {
191		/*XXX: do this here too to catch FP temp-as-attr usage..
192		 *     not clean, but works */
193		if (pc->p->cfg.high_temp < (reg->hw + 1))
194			pc->p->cfg.high_temp = reg->hw + 1;
195		return;
196	}
197
198	if (reg->rhw != -1) {
199		/* try to allocate temporary with index rhw first */
200		if (!(pc->r_temp[reg->rhw])) {
201			pc->r_temp[reg->rhw] = reg;
202			reg->hw = reg->rhw;
203			if (pc->p->cfg.high_temp < (reg->rhw + 1))
204				pc->p->cfg.high_temp = reg->rhw + 1;
205			return;
206		}
207		/* make sure we don't get things like $r0 needs to go
208		 * in $r1 and $r1 in $r0
209		 */
210		i = pc->result_nr * 4;
211	}
212
213	for (; i < NV50_SU_MAX_TEMP; i++) {
214		if (!(pc->r_temp[i])) {
215			pc->r_temp[i] = reg;
216			reg->hw = i;
217			if (pc->p->cfg.high_temp < (i + 1))
218				pc->p->cfg.high_temp = i + 1;
219			return;
220		}
221	}
222
223	assert(0);
224}
225
226/* XXX: For shaders that aren't executed linearly (e.g. shaders that
227 * contain loops), we need to assign all hw regs to TGSI TEMPs early,
228 * lest we risk temp_temps overwriting regs alloc'd "later".
229 */
230static struct nv50_reg *
231alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
232{
233	struct nv50_reg *r;
234	int i;
235
236	if (dst && dst->type == P_TEMP && dst->hw == -1)
237		return dst;
238
239	for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
240		if (!pc->r_temp[i]) {
241			r = MALLOC_STRUCT(nv50_reg);
242			ctor_reg(r, P_TEMP, -1, i);
243			pc->r_temp[i] = r;
244			return r;
245		}
246	}
247
248	assert(0);
249	return NULL;
250}
251
252/* Assign the hw of the discarded temporary register src
253 * to the tgsi register dst and free src.
254 */
255static void
256assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
257{
258	assert(src->index == -1 && src->hw != -1);
259
260	if (dst->hw != -1)
261		pc->r_temp[dst->hw] = NULL;
262	pc->r_temp[src->hw] = dst;
263	dst->hw = src->hw;
264
265	FREE(src);
266}
267
268/* release the hardware resource held by r */
269static void
270release_hw(struct nv50_pc *pc, struct nv50_reg *r)
271{
272	assert(r->type == P_TEMP);
273	if (r->hw == -1)
274		return;
275
276	assert(pc->r_temp[r->hw] == r);
277	pc->r_temp[r->hw] = NULL;
278
279	r->acc = 0;
280	if (r->index == -1)
281		FREE(r);
282}
283
284static void
285free_temp(struct nv50_pc *pc, struct nv50_reg *r)
286{
287	if (r->index == -1) {
288		unsigned hw = r->hw;
289
290		FREE(pc->r_temp[hw]);
291		pc->r_temp[hw] = NULL;
292	}
293}
294
295static int
296alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
297{
298	int i;
299
300	if ((idx + 4) >= NV50_SU_MAX_TEMP)
301		return 1;
302
303	if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
304	    pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
305		return alloc_temp4(pc, dst, idx + 4);
306
307	for (i = 0; i < 4; i++) {
308		dst[i] = MALLOC_STRUCT(nv50_reg);
309		ctor_reg(dst[i], P_TEMP, -1, idx + i);
310		pc->r_temp[idx + i] = dst[i];
311	}
312
313	return 0;
314}
315
316static void
317free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
318{
319	int i;
320
321	for (i = 0; i < 4; i++)
322		free_temp(pc, reg[i]);
323}
324
325static struct nv50_reg *
326temp_temp(struct nv50_pc *pc)
327{
328	if (pc->temp_temp_nr >= 16)
329		assert(0);
330
331	pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
332	return pc->temp_temp[pc->temp_temp_nr++];
333}
334
335static void
336kill_temp_temp(struct nv50_pc *pc)
337{
338	int i;
339
340	for (i = 0; i < pc->temp_temp_nr; i++)
341		free_temp(pc, pc->temp_temp[i]);
342	pc->temp_temp_nr = 0;
343}
344
345static int
346ctor_immd(struct nv50_pc *pc, float x, float y, float z, float w)
347{
348	pc->immd_buf = REALLOC(pc->immd_buf, (pc->immd_nr * 4 * sizeof(float)),
349			       (pc->immd_nr + 1) * 4 * sizeof(float));
350	pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
351	pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
352	pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
353	pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
354
355	return pc->immd_nr++;
356}
357
358static struct nv50_reg *
359alloc_immd(struct nv50_pc *pc, float f)
360{
361	struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
362	unsigned hw;
363
364	for (hw = 0; hw < pc->immd_nr * 4; hw++)
365		if (pc->immd_buf[hw] == f)
366			break;
367
368	if (hw == pc->immd_nr * 4)
369		hw = ctor_immd(pc, f, -f, 0.5 * f, 0) * 4;
370
371	ctor_reg(r, P_IMMD, -1, hw);
372	return r;
373}
374
375static struct nv50_program_exec *
376exec(struct nv50_pc *pc)
377{
378	struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
379
380	e->param.index = -1;
381	return e;
382}
383
384static void
385emit(struct nv50_pc *pc, struct nv50_program_exec *e)
386{
387	struct nv50_program *p = pc->p;
388
389	if (p->exec_tail)
390		p->exec_tail->next = e;
391	if (!p->exec_head)
392		p->exec_head = e;
393	p->exec_tail = e;
394	p->exec_size += (e->inst[0] & 1) ? 2 : 1;
395}
396
397static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
398
399static boolean
400is_long(struct nv50_program_exec *e)
401{
402	if (e->inst[0] & 1)
403		return TRUE;
404	return FALSE;
405}
406
407static boolean
408is_immd(struct nv50_program_exec *e)
409{
410	if (is_long(e) && (e->inst[1] & 3) == 3)
411		return TRUE;
412	return FALSE;
413}
414
415static INLINE void
416set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
417	 struct nv50_program_exec *e)
418{
419	set_long(pc, e);
420	e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
421	e->inst[1] |= (pred << 7) | (idx << 12);
422}
423
424static INLINE void
425set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
426	    struct nv50_program_exec *e)
427{
428	set_long(pc, e);
429	e->inst[1] &= ~((0x3 << 4) | (1 << 6));
430	e->inst[1] |= (idx << 4) | (on << 6);
431}
432
433static INLINE void
434set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
435{
436	if (is_long(e))
437		return;
438
439	e->inst[0] |= 1;
440	set_pred(pc, 0xf, 0, e);
441	set_pred_wr(pc, 0, 0, e);
442}
443
444static INLINE void
445set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
446{
447	if (dst->type == P_RESULT) {
448		set_long(pc, e);
449		e->inst[1] |= 0x00000008;
450	}
451
452	alloc_reg(pc, dst);
453	e->inst[0] |= (dst->hw << 2);
454}
455
456static INLINE void
457set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
458{
459	float f = pc->immd_buf[imm->hw];
460	unsigned val = fui(imm->neg ? -f : f);
461
462	set_long(pc, e);
463	/*XXX: can't be predicated - bits overlap.. catch cases where both
464	 *     are required and avoid them. */
465	set_pred(pc, 0, 0, e);
466	set_pred_wr(pc, 0, 0, e);
467
468	e->inst[1] |= 0x00000002 | 0x00000001;
469	e->inst[0] |= (val & 0x3f) << 16;
470	e->inst[1] |= (val >> 6) << 2;
471}
472
473static void
474emit_set_addr(struct nv50_pc *pc, struct nv50_reg *dst, unsigned val)
475{
476	struct nv50_program_exec *e = exec(pc);
477
478	assert(val <= 0xffff);
479	e->inst[0] = 0xd0000000 | ((val & 0xffff) << 9);
480	e->inst[1] = 0x20000000;
481	e->inst[0] |= dst->hw << 2;
482	set_long(pc, e);
483
484	emit(pc, e);
485}
486
487static struct nv50_reg *
488alloc_addr(struct nv50_pc *pc, struct nv50_reg *ref)
489{
490	int i;
491	struct nv50_reg *a = NULL;
492
493	if (!ref) {
494		for (i = 0; i < NV50_SU_MAX_ADDR; ++i) {
495			if (pc->r_addr[i].index >= 0)
496				continue;
497			if (pc->r_addr[i].rhw >= 0 &&
498			    pc->r_addr[i].acc == pc->insn_cur)
499				continue;
500
501			pc->r_addr[i].rhw = -1;
502			pc->r_addr[i].index = i;
503			return &pc->r_addr[i];
504		}
505		assert(0);
506		return NULL;
507	}
508
509	for (i = NV50_SU_MAX_ADDR - 1; i >= 0; --i) {
510		if (pc->r_addr[i].index >= 0) /* occupied for TGSI */
511			continue;
512		if (pc->r_addr[i].rhw < 0) { /* unused */
513			a = &pc->r_addr[i];
514			continue;
515		}
516		if (!a && pc->r_addr[i].acc != pc->insn_cur)
517			a = &pc->r_addr[i];
518
519		if (ref->hw - pc->r_addr[i].rhw < 128) {
520		/* alloc'd & suitable */
521			pc->r_addr[i].acc = pc->insn_cur;
522			return &pc->r_addr[i];
523		}
524	}
525	assert(a);
526	emit_set_addr(pc, a, ref->hw * 4);
527
528	a->rhw = ref->hw % 128;
529	a->acc = pc->insn_cur;
530	return a;
531}
532
533#define INTERP_LINEAR		0
534#define INTERP_FLAT		1
535#define INTERP_PERSPECTIVE	2
536#define INTERP_CENTROID		4
537
538/* interpolant index has been stored in dst->rhw */
539static void
540emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
541		unsigned mode)
542{
543	assert(dst->rhw != -1);
544	struct nv50_program_exec *e = exec(pc);
545
546	e->inst[0] |= 0x80000000;
547	set_dst(pc, dst, e);
548	e->inst[0] |= (dst->rhw << 16);
549
550	if (mode & INTERP_FLAT) {
551		e->inst[0] |= (1 << 8);
552	} else {
553		if (mode & INTERP_PERSPECTIVE) {
554			e->inst[0] |= (1 << 25);
555			alloc_reg(pc, iv);
556			e->inst[0] |= (iv->hw << 9);
557		}
558
559		if (mode & INTERP_CENTROID)
560			e->inst[0] |= (1 << 24);
561	}
562
563	emit(pc, e);
564}
565
566static INLINE void
567set_addr(struct nv50_program_exec *e, struct nv50_reg *a)
568{
569	assert(!(e->inst[0] & 0x0c000000));
570	assert(!(e->inst[1] & 0x00000004));
571
572	e->inst[0] |= (a->hw & 3) << 26;
573	e->inst[1] |= (a->hw >> 2) << 2;
574}
575
576static void
577set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
578	 struct nv50_program_exec *e)
579{
580	set_long(pc, e);
581
582	e->param.index = src->hw;
583	e->param.shift = s;
584	e->param.mask = m << (s % 32);
585
586	if (src->hw > 127)
587		set_addr(e, alloc_addr(pc, src));
588	else
589	if (src->acc < 0) {
590		assert(src->type == P_CONST);
591		set_addr(e, pc->addr[src->index]);
592	}
593
594	e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
595}
596
597static void
598emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
599{
600	struct nv50_program_exec *e = exec(pc);
601
602	e->inst[0] = 0x10000000;
603	if (!pc->allow32)
604		set_long(pc, e);
605
606	set_dst(pc, dst, e);
607
608	if (!is_long(e) && src->type == P_IMMD) {
609		set_immd(pc, src, e);
610		/*XXX: 32-bit, but steals part of "half" reg space - need to
611		 *     catch and handle this case if/when we do half-regs
612		 */
613	} else
614	if (src->type == P_IMMD || src->type == P_CONST) {
615		set_long(pc, e);
616		set_data(pc, src, 0x7f, 9, e);
617		e->inst[1] |= 0x20000000; /* src0 const? */
618	} else {
619		if (src->type == P_ATTR) {
620			set_long(pc, e);
621			e->inst[1] |= 0x00200000;
622		}
623
624		alloc_reg(pc, src);
625		e->inst[0] |= (src->hw << 9);
626	}
627
628	if (is_long(e) && !is_immd(e)) {
629		e->inst[1] |= 0x04000000; /* 32-bit */
630		e->inst[1] |= 0x0000c000; /* "subsubop" 0x3 */
631		if (!(e->inst[1] & 0x20000000))
632			e->inst[1] |= 0x00030000; /* "subsubop" 0xf */
633	} else
634		e->inst[0] |= 0x00008000;
635
636	emit(pc, e);
637}
638
639static INLINE void
640emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
641{
642	struct nv50_reg *imm = alloc_immd(pc, f);
643	emit_mov(pc, dst, imm);
644	FREE(imm);
645}
646
647static boolean
648check_swap_src_0_1(struct nv50_pc *pc,
649		   struct nv50_reg **s0, struct nv50_reg **s1)
650{
651	struct nv50_reg *src0 = *s0, *src1 = *s1;
652
653	if (src0->type == P_CONST) {
654		if (src1->type != P_CONST) {
655			*s0 = src1;
656			*s1 = src0;
657			return TRUE;
658		}
659	} else
660	if (src1->type == P_ATTR) {
661		if (src0->type != P_ATTR) {
662			*s0 = src1;
663			*s1 = src0;
664			return TRUE;
665		}
666	}
667
668	return FALSE;
669}
670
671static void
672set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
673		     struct nv50_program_exec *e)
674{
675	struct nv50_reg *temp;
676
677	if (src->type != P_TEMP) {
678		temp = temp_temp(pc);
679		emit_mov(pc, temp, src);
680		src = temp;
681	}
682
683	alloc_reg(pc, src);
684	e->inst[0] |= (src->hw << 9);
685}
686
687static void
688set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
689{
690	if (src->type == P_ATTR) {
691		set_long(pc, e);
692		e->inst[1] |= 0x00200000;
693	} else
694	if (src->type == P_CONST || src->type == P_IMMD) {
695		struct nv50_reg *temp = temp_temp(pc);
696
697		emit_mov(pc, temp, src);
698		src = temp;
699	}
700
701	alloc_reg(pc, src);
702	e->inst[0] |= (src->hw << 9);
703}
704
705static void
706set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
707{
708	if (src->type == P_ATTR) {
709		struct nv50_reg *temp = temp_temp(pc);
710
711		emit_mov(pc, temp, src);
712		src = temp;
713	} else
714	if (src->type == P_CONST || src->type == P_IMMD) {
715		assert(!(e->inst[0] & 0x00800000));
716		if (e->inst[0] & 0x01000000) {
717			struct nv50_reg *temp = temp_temp(pc);
718
719			emit_mov(pc, temp, src);
720			src = temp;
721		} else {
722			set_data(pc, src, 0x7f, 16, e);
723			e->inst[0] |= 0x00800000;
724		}
725	}
726
727	alloc_reg(pc, src);
728	e->inst[0] |= ((src->hw & 127) << 16);
729}
730
731static void
732set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
733{
734	set_long(pc, e);
735
736	if (src->type == P_ATTR) {
737		struct nv50_reg *temp = temp_temp(pc);
738
739		emit_mov(pc, temp, src);
740		src = temp;
741	} else
742	if (src->type == P_CONST || src->type == P_IMMD) {
743		assert(!(e->inst[0] & 0x01000000));
744		if (e->inst[0] & 0x00800000) {
745			struct nv50_reg *temp = temp_temp(pc);
746
747			emit_mov(pc, temp, src);
748			src = temp;
749		} else {
750			set_data(pc, src, 0x7f, 32+14, e);
751			e->inst[0] |= 0x01000000;
752		}
753	}
754
755	alloc_reg(pc, src);
756	e->inst[1] |= ((src->hw & 127) << 14);
757}
758
759static void
760emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
761	 struct nv50_reg *src1)
762{
763	struct nv50_program_exec *e = exec(pc);
764
765	e->inst[0] |= 0xc0000000;
766
767	if (!pc->allow32)
768		set_long(pc, e);
769
770	check_swap_src_0_1(pc, &src0, &src1);
771	set_dst(pc, dst, e);
772	set_src_0(pc, src0, e);
773	if (src1->type == P_IMMD && !is_long(e)) {
774		if (src0->neg)
775			e->inst[0] |= 0x00008000;
776		set_immd(pc, src1, e);
777	} else {
778		set_src_1(pc, src1, e);
779		if (src0->neg ^ src1->neg) {
780			if (is_long(e))
781				e->inst[1] |= 0x08000000;
782			else
783				e->inst[0] |= 0x00008000;
784		}
785	}
786
787	emit(pc, e);
788}
789
790static void
791emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
792	 struct nv50_reg *src0, struct nv50_reg *src1)
793{
794	struct nv50_program_exec *e = exec(pc);
795
796	e->inst[0] |= 0xb0000000;
797
798	check_swap_src_0_1(pc, &src0, &src1);
799
800	if (!pc->allow32 || src0->neg || src1->neg) {
801		set_long(pc, e);
802		e->inst[1] |= (src0->neg << 26) | (src1->neg << 27);
803	}
804
805	set_dst(pc, dst, e);
806	set_src_0(pc, src0, e);
807	if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
808		set_src_2(pc, src1, e);
809	else
810	if (src1->type == P_IMMD)
811		set_immd(pc, src1, e);
812	else
813		set_src_1(pc, src1, e);
814
815	emit(pc, e);
816}
817
818static void
819emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
820	 uint8_t s)
821{
822	struct nv50_program_exec *e = exec(pc);
823
824	set_long(pc, e);
825	e->inst[1] |= 0xc0000000;
826
827	e->inst[0] |= dst->hw << 2;
828	e->inst[0] |= s << 16; /* shift left */
829	set_src_0_restricted(pc, src, e);
830
831	emit(pc, e);
832}
833
834static void
835emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
836	    struct nv50_reg *src0, struct nv50_reg *src1)
837{
838	struct nv50_program_exec *e = exec(pc);
839
840	set_long(pc, e);
841	e->inst[0] |= 0xb0000000;
842	e->inst[1] |= (sub << 29);
843
844	check_swap_src_0_1(pc, &src0, &src1);
845	set_dst(pc, dst, e);
846	set_src_0(pc, src0, e);
847	set_src_1(pc, src1, e);
848
849	emit(pc, e);
850}
851
852static INLINE void
853emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
854	 struct nv50_reg *src1)
855{
856	src1->neg ^= 1;
857	emit_add(pc, dst, src0, src1);
858	src1->neg ^= 1;
859}
860
861static void
862emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
863	 struct nv50_reg *src1, struct nv50_reg *src2)
864{
865	struct nv50_program_exec *e = exec(pc);
866
867	e->inst[0] |= 0xe0000000;
868
869	check_swap_src_0_1(pc, &src0, &src1);
870	set_dst(pc, dst, e);
871	set_src_0(pc, src0, e);
872	set_src_1(pc, src1, e);
873	set_src_2(pc, src2, e);
874
875	if (src0->neg ^ src1->neg)
876		e->inst[1] |= 0x04000000;
877	if (src2->neg)
878		e->inst[1] |= 0x08000000;
879
880	emit(pc, e);
881}
882
883static INLINE void
884emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
885	 struct nv50_reg *src1, struct nv50_reg *src2)
886{
887	src2->neg ^= 1;
888	emit_mad(pc, dst, src0, src1, src2);
889	src2->neg ^= 1;
890}
891
892static void
893emit_flop(struct nv50_pc *pc, unsigned sub,
894	  struct nv50_reg *dst, struct nv50_reg *src)
895{
896	struct nv50_program_exec *e = exec(pc);
897
898	e->inst[0] |= 0x90000000;
899	if (sub) {
900		set_long(pc, e);
901		e->inst[1] |= (sub << 29);
902	}
903
904	set_dst(pc, dst, e);
905
906	if (sub == 0 || sub == 2)
907		set_src_0_restricted(pc, src, e);
908	else
909		set_src_0(pc, src, e);
910
911	emit(pc, e);
912}
913
914static void
915emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
916{
917	struct nv50_program_exec *e = exec(pc);
918
919	e->inst[0] |= 0xb0000000;
920
921	set_dst(pc, dst, e);
922	set_src_0(pc, src, e);
923	set_long(pc, e);
924	e->inst[1] |= (6 << 29) | 0x00004000;
925
926	emit(pc, e);
927}
928
929static void
930emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
931{
932	struct nv50_program_exec *e = exec(pc);
933
934	e->inst[0] |= 0xb0000000;
935
936	set_dst(pc, dst, e);
937	set_src_0(pc, src, e);
938	set_long(pc, e);
939	e->inst[1] |= (6 << 29);
940
941	emit(pc, e);
942}
943
944#define CVTOP_RN	0x01
945#define CVTOP_FLOOR	0x03
946#define CVTOP_CEIL	0x05
947#define CVTOP_TRUNC	0x07
948#define CVTOP_SAT	0x08
949#define CVTOP_ABS	0x10
950
951/* 0x04 == 32 bit dst */
952/* 0x40 == dst is float */
953/* 0x80 == src is float */
954#define CVT_F32_F32 0xc4
955#define CVT_F32_S32 0x44
956#define CVT_F32_U32 0x64
957#define CVT_S32_F32 0x8c
958#define CVT_S32_S32 0x0c
959#define CVT_NEG     0x20
960#define CVT_RI      0x08
961
962static void
963emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
964	 int wp, unsigned cvn, unsigned fmt)
965{
966	struct nv50_program_exec *e;
967
968	e = exec(pc);
969	set_long(pc, e);
970
971	e->inst[0] |= 0xa0000000;
972	e->inst[1] |= 0x00004000; /* 32 bit src */
973	e->inst[1] |= (cvn << 16);
974	e->inst[1] |= (fmt << 24);
975	set_src_0(pc, src, e);
976
977	if (wp >= 0)
978		set_pred_wr(pc, 1, wp, e);
979
980	if (dst)
981		set_dst(pc, dst, e);
982	else {
983		e->inst[0] |= 0x000001fc;
984		e->inst[1] |= 0x00000008;
985	}
986
987	emit(pc, e);
988}
989
990/* nv50 Condition codes:
991 *  0x1 = LT
992 *  0x2 = EQ
993 *  0x3 = LE
994 *  0x4 = GT
995 *  0x5 = NE
996 *  0x6 = GE
997 *  0x7 = set condition code ? (used before bra.lt/le/gt/ge)
998 *  0x8 = unordered bit (allows NaN)
999 */
1000static void
1001emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
1002	 struct nv50_reg *src0, struct nv50_reg *src1)
1003{
1004	static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
1005
1006	struct nv50_program_exec *e = exec(pc);
1007	struct nv50_reg *rdst;
1008
1009	assert(ccode < 16);
1010	if (check_swap_src_0_1(pc, &src0, &src1))
1011		ccode = cc_swapped[ccode & 7] | (ccode & 8);
1012
1013	rdst = dst;
1014	if (dst && dst->type != P_TEMP)
1015		dst = alloc_temp(pc, NULL);
1016
1017	/* set.u32 */
1018	set_long(pc, e);
1019	e->inst[0] |= 0xb0000000;
1020	e->inst[1] |= 0x60000000 | (ccode << 14);
1021
1022	/* XXX: decuda will disasm as .u16 and use .lo/.hi regs, but
1023	 * that doesn't seem to match what the hw actually does
1024	e->inst[1] |= 0x04000000; << breaks things, u32 by default ?
1025	 */
1026
1027	if (wp >= 0)
1028		set_pred_wr(pc, 1, wp, e);
1029	if (dst)
1030		set_dst(pc, dst, e);
1031	else {
1032		e->inst[0] |= 0x000001fc;
1033		e->inst[1] |= 0x00000008;
1034	}
1035
1036	set_src_0(pc, src0, e);
1037	set_src_1(pc, src1, e);
1038
1039	emit(pc, e);
1040	pc->if_cond = pc->p->exec_tail; /* record for OPCODE_IF */
1041
1042	/* cvt.f32.u32/s32 (?) if we didn't only write the predicate */
1043	if (rdst)
1044		emit_cvt(pc, rdst, dst, -1, CVTOP_ABS | CVTOP_RN, CVT_F32_S32);
1045	if (rdst && rdst != dst)
1046		free_temp(pc, dst);
1047}
1048
1049static INLINE unsigned
1050map_tgsi_setop_cc(unsigned op)
1051{
1052	switch (op) {
1053	case TGSI_OPCODE_SLT: return 0x1;
1054	case TGSI_OPCODE_SGE: return 0x6;
1055	case TGSI_OPCODE_SEQ: return 0x2;
1056	case TGSI_OPCODE_SGT: return 0x4;
1057	case TGSI_OPCODE_SLE: return 0x3;
1058	case TGSI_OPCODE_SNE: return 0xd;
1059	default:
1060		assert(0);
1061		return 0;
1062	}
1063}
1064
1065static INLINE void
1066emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1067{
1068	emit_cvt(pc, dst, src, -1, CVTOP_FLOOR, CVT_F32_F32 | CVT_RI);
1069}
1070
1071static void
1072emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
1073	 struct nv50_reg *v, struct nv50_reg *e)
1074{
1075	struct nv50_reg *temp = alloc_temp(pc, NULL);
1076
1077	emit_flop(pc, 3, temp, v);
1078	emit_mul(pc, temp, temp, e);
1079	emit_preex2(pc, temp, temp);
1080	emit_flop(pc, 6, dst, temp);
1081
1082	free_temp(pc, temp);
1083}
1084
1085static INLINE void
1086emit_abs(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1087{
1088	emit_cvt(pc, dst, src, -1, CVTOP_ABS, CVT_F32_F32);
1089}
1090
1091static INLINE void
1092emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1093{
1094	emit_cvt(pc, dst, src, -1, CVTOP_SAT, CVT_F32_F32);
1095}
1096
1097static void
1098emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1099	 struct nv50_reg **src)
1100{
1101	struct nv50_reg *one = alloc_immd(pc, 1.0);
1102	struct nv50_reg *zero = alloc_immd(pc, 0.0);
1103	struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
1104	struct nv50_reg *pos128 = alloc_immd(pc,  127.999999);
1105	struct nv50_reg *tmp[4];
1106	boolean allow32 = pc->allow32;
1107
1108	pc->allow32 = FALSE;
1109
1110	if (mask & (3 << 1)) {
1111		tmp[0] = alloc_temp(pc, NULL);
1112		emit_minmax(pc, 4, tmp[0], src[0], zero);
1113	}
1114
1115	if (mask & (1 << 2)) {
1116		set_pred_wr(pc, 1, 0, pc->p->exec_tail);
1117
1118		tmp[1] = temp_temp(pc);
1119		emit_minmax(pc, 4, tmp[1], src[1], zero);
1120
1121		tmp[3] = temp_temp(pc);
1122		emit_minmax(pc, 4, tmp[3], src[3], neg128);
1123		emit_minmax(pc, 5, tmp[3], tmp[3], pos128);
1124
1125		emit_pow(pc, dst[2], tmp[1], tmp[3]);
1126		emit_mov(pc, dst[2], zero);
1127		set_pred(pc, 3, 0, pc->p->exec_tail);
1128	}
1129
1130	if (mask & (1 << 1))
1131		assimilate_temp(pc, dst[1], tmp[0]);
1132	else
1133	if (mask & (1 << 2))
1134		free_temp(pc, tmp[0]);
1135
1136	pc->allow32 = allow32;
1137
1138	/* do this last, in case src[i,j] == dst[0,3] */
1139	if (mask & (1 << 0))
1140		emit_mov(pc, dst[0], one);
1141
1142	if (mask & (1 << 3))
1143		emit_mov(pc, dst[3], one);
1144
1145	FREE(pos128);
1146	FREE(neg128);
1147	FREE(zero);
1148	FREE(one);
1149}
1150
1151static INLINE void
1152emit_neg(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1153{
1154	emit_cvt(pc, dst, src, -1, CVTOP_RN, CVT_F32_F32 | CVT_NEG);
1155}
1156
1157static void
1158emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
1159{
1160	struct nv50_program_exec *e;
1161	const int r_pred = 1;
1162	unsigned cvn = CVT_F32_F32;
1163
1164	if (src->neg)
1165		cvn |= CVT_NEG;
1166	/* write predicate reg */
1167	emit_cvt(pc, NULL, src, r_pred, CVTOP_RN, cvn);
1168
1169	/* conditional discard */
1170	e = exec(pc);
1171	e->inst[0] = 0x00000002;
1172	set_long(pc, e);
1173	set_pred(pc, 0x1 /* LT */, r_pred, e);
1174	emit(pc, e);
1175}
1176
1177static void
1178emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1179	 struct nv50_reg **src, unsigned unit, unsigned type, boolean proj)
1180{
1181	struct nv50_reg *temp, *t[4];
1182	struct nv50_program_exec *e;
1183
1184	unsigned c, mode, dim;
1185
1186	switch (type) {
1187	case TGSI_TEXTURE_1D:
1188		dim = 1;
1189		break;
1190	case TGSI_TEXTURE_UNKNOWN:
1191	case TGSI_TEXTURE_2D:
1192	case TGSI_TEXTURE_SHADOW1D: /* XXX: x, z */
1193	case TGSI_TEXTURE_RECT:
1194		dim = 2;
1195		break;
1196	case TGSI_TEXTURE_3D:
1197	case TGSI_TEXTURE_CUBE:
1198	case TGSI_TEXTURE_SHADOW2D:
1199	case TGSI_TEXTURE_SHADOWRECT: /* XXX */
1200		dim = 3;
1201		break;
1202	default:
1203		assert(0);
1204		break;
1205	}
1206
1207	/* some cards need t[0]'s hw index to be a multiple of 4 */
1208	alloc_temp4(pc, t, 0);
1209
1210	if (proj) {
1211		if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
1212			mode = pc->interp_mode[src[0]->index];
1213
1214			t[3]->rhw = src[3]->rhw;
1215			emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
1216			emit_flop(pc, 0, t[3], t[3]);
1217
1218			for (c = 0; c < dim; c++) {
1219				t[c]->rhw = src[c]->rhw;
1220				emit_interp(pc, t[c], t[3],
1221					    (mode | INTERP_PERSPECTIVE));
1222			}
1223		} else {
1224			emit_flop(pc, 0, t[3], src[3]);
1225			for (c = 0; c < dim; c++)
1226				emit_mul(pc, t[c], src[c], t[3]);
1227
1228			/* XXX: for some reason the blob sometimes uses MAD:
1229			 * emit_mad(pc, t[c], src[0][c], t[3], t[3])
1230			 * pc->p->exec_tail->inst[1] |= 0x080fc000;
1231			 */
1232		}
1233	} else {
1234		if (type == TGSI_TEXTURE_CUBE) {
1235			temp = temp_temp(pc);
1236			emit_minmax(pc, 4, temp, src[0], src[1]);
1237			emit_minmax(pc, 4, temp, temp, src[2]);
1238			emit_flop(pc, 0, temp, temp);
1239			for (c = 0; c < 3; c++)
1240				emit_mul(pc, t[c], src[c], temp);
1241		} else {
1242			for (c = 0; c < dim; c++)
1243				emit_mov(pc, t[c], src[c]);
1244		}
1245	}
1246
1247	e = exec(pc);
1248	set_long(pc, e);
1249	e->inst[0] |= 0xf0000000;
1250	e->inst[1] |= 0x00000004;
1251	set_dst(pc, t[0], e);
1252	e->inst[0] |= (unit << 9);
1253
1254	if (dim == 2)
1255		e->inst[0] |= 0x00400000;
1256	else
1257	if (dim == 3)
1258		e->inst[0] |= 0x00800000;
1259
1260	e->inst[0] |= (mask & 0x3) << 25;
1261	e->inst[1] |= (mask & 0xc) << 12;
1262
1263	emit(pc, e);
1264
1265#if 1
1266	c = 0;
1267	if (mask & 1) emit_mov(pc, dst[0], t[c++]);
1268	if (mask & 2) emit_mov(pc, dst[1], t[c++]);
1269	if (mask & 4) emit_mov(pc, dst[2], t[c++]);
1270	if (mask & 8) emit_mov(pc, dst[3], t[c]);
1271
1272	free_temp4(pc, t);
1273#else
1274	/* XXX: if p.e. MUL is used directly after TEX, it would still use
1275	 * the texture coordinates, not the fetched values: latency ? */
1276
1277	for (c = 0; c < 4; c++) {
1278		if (mask & (1 << c))
1279			assimilate_temp(pc, dst[c], t[c]);
1280		else
1281			free_temp(pc, t[c]);
1282	}
1283#endif
1284}
1285
1286static void
1287emit_branch(struct nv50_pc *pc, int pred, unsigned cc,
1288	    struct nv50_program_exec **join)
1289{
1290	struct nv50_program_exec *e = exec(pc);
1291
1292	if (join) {
1293		set_long(pc, e);
1294		e->inst[0] |= 0xa0000002;
1295		emit(pc, e);
1296		*join = e;
1297		e = exec(pc);
1298	}
1299
1300	set_long(pc, e);
1301	e->inst[0] |= 0x10000002;
1302	if (pred >= 0)
1303		set_pred(pc, cc, pred, e);
1304	emit(pc, e);
1305}
1306
1307static void
1308emit_nop(struct nv50_pc *pc)
1309{
1310	struct nv50_program_exec *e = exec(pc);
1311
1312	e->inst[0] = 0xf0000000;
1313	set_long(pc, e);
1314	e->inst[1] = 0xe0000000;
1315	emit(pc, e);
1316}
1317
1318static void
1319emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1320{
1321	struct nv50_program_exec *e = exec(pc);
1322
1323	assert(src->type == P_TEMP);
1324
1325	e->inst[0] = 0xc0140000;
1326	e->inst[1] = 0x89800000;
1327	set_long(pc, e);
1328	set_dst(pc, dst, e);
1329	set_src_0(pc, src, e);
1330	set_src_2(pc, src, e);
1331
1332	emit(pc, e);
1333}
1334
1335static void
1336emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1337{
1338	struct nv50_program_exec *e = exec(pc);
1339
1340	assert(src->type == P_TEMP);
1341
1342	if (!src->neg) /* ! double negation */
1343		emit_neg(pc, src, src);
1344
1345	e->inst[0] = 0xc0150000;
1346	e->inst[1] = 0x8a400000;
1347	set_long(pc, e);
1348	set_dst(pc, dst, e);
1349	set_src_0(pc, src, e);
1350	set_src_2(pc, src, e);
1351
1352	emit(pc, e);
1353}
1354
1355static void
1356convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
1357{
1358	unsigned q = 0, m = ~0;
1359
1360	assert(!is_long(e));
1361
1362	switch (e->inst[0] >> 28) {
1363	case 0x1:
1364		/* MOV */
1365		q = 0x0403c000;
1366		m = 0xffff7fff;
1367		break;
1368	case 0x8:
1369		/* INTERP (move centroid, perspective and flat bits) */
1370		m = ~0x03000100;
1371		q = (e->inst[0] & (3 << 24)) >> (24 - 16);
1372		q |= (e->inst[0] & (1 << 8)) << (18 - 8);
1373		break;
1374	case 0x9:
1375		/* RCP */
1376		break;
1377	case 0xB:
1378		/* ADD */
1379		m = ~(127 << 16);
1380		q = ((e->inst[0] & (~m)) >> 2);
1381		break;
1382	case 0xC:
1383		/* MUL */
1384		m = ~0x00008000;
1385		q = ((e->inst[0] & (~m)) << 12);
1386		break;
1387	case 0xE:
1388		/* MAD (if src2 == dst) */
1389		q = ((e->inst[0] & 0x1fc) << 12);
1390		break;
1391	default:
1392		assert(0);
1393		break;
1394	}
1395
1396	set_long(pc, e);
1397	pc->p->exec_size++;
1398
1399	e->inst[0] &= m;
1400	e->inst[1] |= q;
1401}
1402
1403/* Some operations support an optional negation flag. */
1404static boolean
1405negate_supported(const struct tgsi_full_instruction *insn, int i)
1406{
1407	int s;
1408
1409	switch (insn->Instruction.Opcode) {
1410	case TGSI_OPCODE_DDY:
1411	case TGSI_OPCODE_DP3:
1412	case TGSI_OPCODE_DP4:
1413	case TGSI_OPCODE_MUL:
1414	case TGSI_OPCODE_KIL:
1415	case TGSI_OPCODE_ADD:
1416	case TGSI_OPCODE_SUB:
1417	case TGSI_OPCODE_MAD:
1418		break;
1419	case TGSI_OPCODE_POW:
1420		if (i == 1)
1421			break;
1422		return FALSE;
1423	default:
1424		return FALSE;
1425	}
1426
1427	/* Watch out for possible multiple uses of an nv50_reg, we
1428	 * can't use nv50_reg::neg in these cases.
1429	 */
1430	for (s = 0; s < insn->Instruction.NumSrcRegs; ++s) {
1431		if (s == i)
1432			continue;
1433		if ((insn->FullSrcRegisters[s].SrcRegister.Index ==
1434		     insn->FullSrcRegisters[i].SrcRegister.Index) &&
1435		    (insn->FullSrcRegisters[s].SrcRegister.File ==
1436		     insn->FullSrcRegisters[i].SrcRegister.File))
1437			return FALSE;
1438	}
1439
1440	return TRUE;
1441}
1442
1443/* Return a read mask for source registers deduced from opcode & write mask. */
1444static unsigned
1445nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
1446{
1447	unsigned x, mask = insn->FullDstRegisters[0].DstRegister.WriteMask;
1448
1449	switch (insn->Instruction.Opcode) {
1450	case TGSI_OPCODE_COS:
1451	case TGSI_OPCODE_SIN:
1452		return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
1453	case TGSI_OPCODE_DP3:
1454		return 0x7;
1455	case TGSI_OPCODE_DP4:
1456	case TGSI_OPCODE_DPH:
1457	case TGSI_OPCODE_KIL: /* WriteMask ignored */
1458		return 0xf;
1459	case TGSI_OPCODE_DST:
1460		return mask & (c ? 0xa : 0x6);
1461	case TGSI_OPCODE_EX2:
1462	case TGSI_OPCODE_LG2:
1463	case TGSI_OPCODE_POW:
1464	case TGSI_OPCODE_RCP:
1465	case TGSI_OPCODE_RSQ:
1466	case TGSI_OPCODE_SCS:
1467		return 0x1;
1468	case TGSI_OPCODE_LIT:
1469		return 0xb;
1470	case TGSI_OPCODE_TEX:
1471	case TGSI_OPCODE_TXP:
1472	{
1473		const struct tgsi_instruction_ext_texture *tex;
1474
1475		assert(insn->Instruction.Extended);
1476		tex = &insn->InstructionExtTexture;
1477
1478		mask = 0x7;
1479		if (insn->Instruction.Opcode == TGSI_OPCODE_TXP)
1480			mask |= 0x8;
1481
1482		switch (tex->Texture) {
1483		case TGSI_TEXTURE_1D:
1484			mask &= 0x9;
1485			break;
1486		case TGSI_TEXTURE_2D:
1487			mask &= 0xb;
1488			break;
1489		default:
1490			break;
1491		}
1492	}
1493		return mask;
1494	case TGSI_OPCODE_XPD:
1495		x = 0;
1496		if (mask & 1) x |= 0x6;
1497		if (mask & 2) x |= 0x5;
1498		if (mask & 4) x |= 0x3;
1499		return x;
1500	default:
1501		break;
1502	}
1503
1504	return mask;
1505}
1506
1507static struct nv50_reg *
1508tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
1509{
1510	switch (dst->DstRegister.File) {
1511	case TGSI_FILE_TEMPORARY:
1512		return &pc->temp[dst->DstRegister.Index * 4 + c];
1513	case TGSI_FILE_OUTPUT:
1514		return &pc->result[dst->DstRegister.Index * 4 + c];
1515	case TGSI_FILE_ADDRESS:
1516	{
1517		struct nv50_reg *r = pc->addr[dst->DstRegister.Index * 4 + c];
1518		if (!r) {
1519			r = alloc_addr(pc, NULL);
1520			pc->addr[dst->DstRegister.Index * 4 + c] = r;
1521		}
1522		assert(r);
1523		return r;
1524	}
1525	case TGSI_FILE_NULL:
1526		return NULL;
1527	default:
1528		break;
1529	}
1530
1531	return NULL;
1532}
1533
1534static struct nv50_reg *
1535tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
1536	 boolean neg)
1537{
1538	struct nv50_reg *r = NULL;
1539	struct nv50_reg *temp;
1540	unsigned sgn, c, swz;
1541
1542	if (src->SrcRegister.File != TGSI_FILE_CONSTANT)
1543		assert(!src->SrcRegister.Indirect);
1544
1545	sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
1546
1547	c = tgsi_util_get_full_src_register_extswizzle(src, chan);
1548	switch (c) {
1549	case TGSI_EXTSWIZZLE_X:
1550	case TGSI_EXTSWIZZLE_Y:
1551	case TGSI_EXTSWIZZLE_Z:
1552	case TGSI_EXTSWIZZLE_W:
1553		switch (src->SrcRegister.File) {
1554		case TGSI_FILE_INPUT:
1555			r = &pc->attr[src->SrcRegister.Index * 4 + c];
1556			break;
1557		case TGSI_FILE_TEMPORARY:
1558			r = &pc->temp[src->SrcRegister.Index * 4 + c];
1559			break;
1560		case TGSI_FILE_CONSTANT:
1561			if (!src->SrcRegister.Indirect) {
1562				r = &pc->param[src->SrcRegister.Index * 4 + c];
1563				break;
1564			}
1565			/* Indicate indirection by setting r->acc < 0 and
1566			 * use the index field to select the address reg.
1567			 */
1568			r = MALLOC_STRUCT(nv50_reg);
1569			swz = tgsi_util_get_src_register_swizzle(
1570						 &src->SrcRegisterInd, 0);
1571			ctor_reg(r, P_CONST,
1572				 src->SrcRegisterInd.Index * 4 + swz, c);
1573			r->acc = -1;
1574			break;
1575		case TGSI_FILE_IMMEDIATE:
1576			r = &pc->immd[src->SrcRegister.Index * 4 + c];
1577			break;
1578		case TGSI_FILE_SAMPLER:
1579			break;
1580		case TGSI_FILE_ADDRESS:
1581			r = pc->addr[src->SrcRegister.Index * 4 + c];
1582			assert(r);
1583			break;
1584		default:
1585			assert(0);
1586			break;
1587		}
1588		break;
1589	case TGSI_EXTSWIZZLE_ZERO:
1590		r = alloc_immd(pc, 0.0);
1591		return r;
1592	case TGSI_EXTSWIZZLE_ONE:
1593		if (sgn == TGSI_UTIL_SIGN_TOGGLE || sgn == TGSI_UTIL_SIGN_SET)
1594			return alloc_immd(pc, -1.0);
1595		return alloc_immd(pc, 1.0);
1596	default:
1597		assert(0);
1598		break;
1599	}
1600
1601	switch (sgn) {
1602	case TGSI_UTIL_SIGN_KEEP:
1603		break;
1604	case TGSI_UTIL_SIGN_CLEAR:
1605		temp = temp_temp(pc);
1606		emit_abs(pc, temp, r);
1607		r = temp;
1608		break;
1609	case TGSI_UTIL_SIGN_TOGGLE:
1610		if (neg)
1611			r->neg = 1;
1612		else {
1613			temp = temp_temp(pc);
1614			emit_neg(pc, temp, r);
1615			r = temp;
1616		}
1617		break;
1618	case TGSI_UTIL_SIGN_SET:
1619		temp = temp_temp(pc);
1620		emit_abs(pc, temp, r);
1621		if (neg)
1622			temp->neg = 1;
1623		else
1624			emit_neg(pc, temp, temp);
1625		r = temp;
1626		break;
1627	default:
1628		assert(0);
1629		break;
1630	}
1631
1632	return r;
1633}
1634
1635/* return TRUE for ops that produce only a single result */
1636static boolean
1637is_scalar_op(unsigned op)
1638{
1639	switch (op) {
1640	case TGSI_OPCODE_COS:
1641	case TGSI_OPCODE_DP2:
1642	case TGSI_OPCODE_DP3:
1643	case TGSI_OPCODE_DP4:
1644	case TGSI_OPCODE_DPH:
1645	case TGSI_OPCODE_EX2:
1646	case TGSI_OPCODE_LG2:
1647	case TGSI_OPCODE_POW:
1648	case TGSI_OPCODE_RCP:
1649	case TGSI_OPCODE_RSQ:
1650	case TGSI_OPCODE_SIN:
1651		/*
1652	case TGSI_OPCODE_KIL:
1653	case TGSI_OPCODE_LIT:
1654	case TGSI_OPCODE_SCS:
1655		*/
1656		return TRUE;
1657	default:
1658		return FALSE;
1659	}
1660}
1661
1662/* Returns a bitmask indicating which dst components depend
1663 * on source s, component c (reverse of nv50_tgsi_src_mask).
1664 */
1665static unsigned
1666nv50_tgsi_dst_revdep(unsigned op, int s, int c)
1667{
1668	if (is_scalar_op(op))
1669		return 0x1;
1670
1671	switch (op) {
1672	case TGSI_OPCODE_DST:
1673		return (1 << c) & (s ? 0xa : 0x6);
1674	case TGSI_OPCODE_XPD:
1675		switch (c) {
1676		case 0: return 0x6;
1677		case 1: return 0x5;
1678		case 2: return 0x3;
1679		case 3: return 0x0;
1680		default:
1681			assert(0);
1682			return 0x0;
1683		}
1684	case TGSI_OPCODE_LIT:
1685	case TGSI_OPCODE_SCS:
1686	case TGSI_OPCODE_TEX:
1687	case TGSI_OPCODE_TXP:
1688		/* these take care of dangerous swizzles themselves */
1689		return 0x0;
1690	case TGSI_OPCODE_IF:
1691	case TGSI_OPCODE_KIL:
1692		/* don't call this function for these ops */
1693		assert(0);
1694		return 0;
1695	default:
1696		/* linear vector instruction */
1697		return (1 << c);
1698	}
1699}
1700
1701static INLINE boolean
1702has_pred(struct nv50_program_exec *e, unsigned cc)
1703{
1704	if (!is_long(e) || is_immd(e))
1705		return FALSE;
1706	return ((e->inst[1] & 0x780) == (cc << 7));
1707}
1708
1709/* on ENDIF see if we can do "@p0.neu single_op" instead of:
1710 *        join_at ENDIF
1711 *        @p0.eq bra ENDIF
1712 *        single_op
1713 * ENDIF: nop.join
1714 */
1715static boolean
1716nv50_kill_branch(struct nv50_pc *pc)
1717{
1718	int lvl = pc->if_lvl;
1719
1720	if (pc->if_insn[lvl]->next != pc->p->exec_tail)
1721		return FALSE;
1722
1723	/* if ccode == 'true', the BRA is from an ELSE and the predicate
1724	 * reg may no longer be valid, since we currently always use $p0
1725	 */
1726	if (has_pred(pc->if_insn[lvl], 0xf))
1727		return FALSE;
1728	assert(pc->if_insn[lvl] && pc->br_join[lvl]);
1729
1730	/* We'll use the exec allocated for JOIN_AT (as we can't easily
1731	 * update prev's next); if exec_tail is BRK, update the pointer.
1732	 */
1733	if (pc->loop_lvl && pc->br_loop[pc->loop_lvl - 1] == pc->p->exec_tail)
1734		pc->br_loop[pc->loop_lvl - 1] = pc->br_join[lvl];
1735
1736	pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
1737
1738	*pc->br_join[lvl] = *pc->p->exec_tail;
1739
1740	FREE(pc->if_insn[lvl]);
1741	FREE(pc->p->exec_tail);
1742
1743	pc->p->exec_tail = pc->br_join[lvl];
1744	pc->p->exec_tail->next = NULL;
1745	set_pred(pc, 0xd, 0, pc->p->exec_tail);
1746
1747	return TRUE;
1748}
1749
1750static boolean
1751nv50_program_tx_insn(struct nv50_pc *pc,
1752		     const struct tgsi_full_instruction *inst)
1753{
1754	struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
1755	unsigned mask, sat, unit;
1756	int i, c;
1757
1758	mask = inst->FullDstRegisters[0].DstRegister.WriteMask;
1759	sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
1760
1761	memset(src, 0, sizeof(src));
1762
1763	for (c = 0; c < 4; c++) {
1764		if ((mask & (1 << c)) && !pc->r_dst[c])
1765			dst[c] = tgsi_dst(pc, c, &inst->FullDstRegisters[0]);
1766		else
1767			dst[c] = pc->r_dst[c];
1768		rdst[c] = dst[c];
1769	}
1770
1771	for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
1772		const struct tgsi_full_src_register *fs = &inst->FullSrcRegisters[i];
1773		unsigned src_mask;
1774		boolean neg_supp;
1775
1776		src_mask = nv50_tgsi_src_mask(inst, i);
1777		neg_supp = negate_supported(inst, i);
1778
1779		if (fs->SrcRegister.File == TGSI_FILE_SAMPLER)
1780			unit = fs->SrcRegister.Index;
1781
1782		for (c = 0; c < 4; c++)
1783			if (src_mask & (1 << c))
1784				src[i][c] = tgsi_src(pc, c, fs, neg_supp);
1785	}
1786
1787	brdc = temp = pc->r_brdc;
1788	if (brdc && brdc->type != P_TEMP) {
1789		temp = temp_temp(pc);
1790		if (sat)
1791			brdc = temp;
1792	} else
1793	if (sat) {
1794		for (c = 0; c < 4; c++) {
1795			if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
1796				continue;
1797			rdst[c] = dst[c];
1798			dst[c] = temp_temp(pc);
1799		}
1800	}
1801
1802	assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
1803
1804	switch (inst->Instruction.Opcode) {
1805	case TGSI_OPCODE_ABS:
1806		for (c = 0; c < 4; c++) {
1807			if (!(mask & (1 << c)))
1808				continue;
1809			emit_abs(pc, dst[c], src[0][c]);
1810		}
1811		break;
1812	case TGSI_OPCODE_ADD:
1813		for (c = 0; c < 4; c++) {
1814			if (!(mask & (1 << c)))
1815				continue;
1816			emit_add(pc, dst[c], src[0][c], src[1][c]);
1817		}
1818		break;
1819	case TGSI_OPCODE_ARL:
1820		assert(src[0][0]);
1821		temp = temp_temp(pc);
1822		emit_cvt(pc, temp, src[0][0], -1, CVTOP_FLOOR, CVT_S32_F32);
1823		emit_arl(pc, dst[0], temp, 4);
1824		break;
1825	case TGSI_OPCODE_BGNLOOP:
1826		pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
1827		terminate_mbb(pc);
1828		break;
1829	case TGSI_OPCODE_BRK:
1830		emit_branch(pc, -1, 0, NULL);
1831		assert(pc->loop_lvl > 0);
1832		pc->br_loop[pc->loop_lvl - 1] = pc->p->exec_tail;
1833		break;
1834	case TGSI_OPCODE_CEIL:
1835		for (c = 0; c < 4; c++) {
1836			if (!(mask & (1 << c)))
1837				continue;
1838			emit_cvt(pc, dst[c], src[0][c], -1,
1839				 CVTOP_CEIL, CVT_F32_F32 | CVT_RI);
1840		}
1841		break;
1842	case TGSI_OPCODE_CMP:
1843		pc->allow32 = FALSE;
1844		for (c = 0; c < 4; c++) {
1845			if (!(mask & (1 << c)))
1846				continue;
1847			emit_cvt(pc, NULL, src[0][c], 1, CVTOP_RN, CVT_F32_F32);
1848			emit_mov(pc, dst[c], src[1][c]);
1849			set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */
1850			emit_mov(pc, dst[c], src[2][c]);
1851			set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */
1852		}
1853		break;
1854	case TGSI_OPCODE_COS:
1855		if (mask & 8) {
1856			emit_precossin(pc, temp, src[0][3]);
1857			emit_flop(pc, 5, dst[3], temp);
1858			if (!(mask &= 7))
1859				break;
1860			if (temp == dst[3])
1861				temp = brdc = temp_temp(pc);
1862		}
1863		emit_precossin(pc, temp, src[0][0]);
1864		emit_flop(pc, 5, brdc, temp);
1865		break;
1866	case TGSI_OPCODE_DDX:
1867		for (c = 0; c < 4; c++) {
1868			if (!(mask & (1 << c)))
1869				continue;
1870			emit_ddx(pc, dst[c], src[0][c]);
1871		}
1872		break;
1873	case TGSI_OPCODE_DDY:
1874		for (c = 0; c < 4; c++) {
1875			if (!(mask & (1 << c)))
1876				continue;
1877			emit_ddy(pc, dst[c], src[0][c]);
1878		}
1879		break;
1880	case TGSI_OPCODE_DP3:
1881		emit_mul(pc, temp, src[0][0], src[1][0]);
1882		emit_mad(pc, temp, src[0][1], src[1][1], temp);
1883		emit_mad(pc, brdc, src[0][2], src[1][2], temp);
1884		break;
1885	case TGSI_OPCODE_DP4:
1886		emit_mul(pc, temp, src[0][0], src[1][0]);
1887		emit_mad(pc, temp, src[0][1], src[1][1], temp);
1888		emit_mad(pc, temp, src[0][2], src[1][2], temp);
1889		emit_mad(pc, brdc, src[0][3], src[1][3], temp);
1890		break;
1891	case TGSI_OPCODE_DPH:
1892		emit_mul(pc, temp, src[0][0], src[1][0]);
1893		emit_mad(pc, temp, src[0][1], src[1][1], temp);
1894		emit_mad(pc, temp, src[0][2], src[1][2], temp);
1895		emit_add(pc, brdc, src[1][3], temp);
1896		break;
1897	case TGSI_OPCODE_DST:
1898		if (mask & (1 << 1))
1899			emit_mul(pc, dst[1], src[0][1], src[1][1]);
1900		if (mask & (1 << 2))
1901			emit_mov(pc, dst[2], src[0][2]);
1902		if (mask & (1 << 3))
1903			emit_mov(pc, dst[3], src[1][3]);
1904		if (mask & (1 << 0))
1905			emit_mov_immdval(pc, dst[0], 1.0f);
1906		break;
1907	case TGSI_OPCODE_ELSE:
1908		emit_branch(pc, -1, 0, NULL);
1909		pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
1910		pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
1911		terminate_mbb(pc);
1912		break;
1913	case TGSI_OPCODE_ENDIF:
1914		pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
1915
1916		/* try to replace branch over 1 insn with a predicated insn */
1917		if (nv50_kill_branch(pc) == TRUE)
1918			break;
1919
1920		if (pc->br_join[pc->if_lvl]) {
1921			pc->br_join[pc->if_lvl]->param.index = pc->p->exec_size;
1922			pc->br_join[pc->if_lvl] = NULL;
1923		}
1924		terminate_mbb(pc);
1925		/* emit a NOP as join point, we could set it on the next
1926		 * one, but would have to make sure it is long and !immd
1927		 */
1928		emit_nop(pc);
1929		pc->p->exec_tail->inst[1] |= 2;
1930		break;
1931	case TGSI_OPCODE_ENDLOOP:
1932		emit_branch(pc, -1, 0, NULL);
1933		pc->p->exec_tail->param.index = pc->loop_pos[--pc->loop_lvl];
1934		pc->br_loop[pc->loop_lvl]->param.index = pc->p->exec_size;
1935		terminate_mbb(pc);
1936		break;
1937	case TGSI_OPCODE_EX2:
1938		emit_preex2(pc, temp, src[0][0]);
1939		emit_flop(pc, 6, brdc, temp);
1940		break;
1941	case TGSI_OPCODE_FLR:
1942		for (c = 0; c < 4; c++) {
1943			if (!(mask & (1 << c)))
1944				continue;
1945			emit_flr(pc, dst[c], src[0][c]);
1946		}
1947		break;
1948	case TGSI_OPCODE_FRC:
1949		temp = temp_temp(pc);
1950		for (c = 0; c < 4; c++) {
1951			if (!(mask & (1 << c)))
1952				continue;
1953			emit_flr(pc, temp, src[0][c]);
1954			emit_sub(pc, dst[c], src[0][c], temp);
1955		}
1956		break;
1957	case TGSI_OPCODE_IF:
1958		/* emitting a join_at may not be necessary */
1959		assert(pc->if_lvl < MAX_IF_DEPTH);
1960		set_pred_wr(pc, 1, 0, pc->if_cond);
1961		emit_branch(pc, 0, 2, &pc->br_join[pc->if_lvl]);
1962		pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
1963		terminate_mbb(pc);
1964		break;
1965	case TGSI_OPCODE_KIL:
1966		emit_kil(pc, src[0][0]);
1967		emit_kil(pc, src[0][1]);
1968		emit_kil(pc, src[0][2]);
1969		emit_kil(pc, src[0][3]);
1970		break;
1971	case TGSI_OPCODE_LIT:
1972		emit_lit(pc, &dst[0], mask, &src[0][0]);
1973		break;
1974	case TGSI_OPCODE_LG2:
1975		emit_flop(pc, 3, brdc, src[0][0]);
1976		break;
1977	case TGSI_OPCODE_LRP:
1978		temp = temp_temp(pc);
1979		for (c = 0; c < 4; c++) {
1980			if (!(mask & (1 << c)))
1981				continue;
1982			emit_sub(pc, temp, src[1][c], src[2][c]);
1983			emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
1984		}
1985		break;
1986	case TGSI_OPCODE_MAD:
1987		for (c = 0; c < 4; c++) {
1988			if (!(mask & (1 << c)))
1989				continue;
1990			emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
1991		}
1992		break;
1993	case TGSI_OPCODE_MAX:
1994		for (c = 0; c < 4; c++) {
1995			if (!(mask & (1 << c)))
1996				continue;
1997			emit_minmax(pc, 4, dst[c], src[0][c], src[1][c]);
1998		}
1999		break;
2000	case TGSI_OPCODE_MIN:
2001		for (c = 0; c < 4; c++) {
2002			if (!(mask & (1 << c)))
2003				continue;
2004			emit_minmax(pc, 5, dst[c], src[0][c], src[1][c]);
2005		}
2006		break;
2007	case TGSI_OPCODE_MOV:
2008	case TGSI_OPCODE_SWZ:
2009		for (c = 0; c < 4; c++) {
2010			if (!(mask & (1 << c)))
2011				continue;
2012			emit_mov(pc, dst[c], src[0][c]);
2013		}
2014		break;
2015	case TGSI_OPCODE_MUL:
2016		for (c = 0; c < 4; c++) {
2017			if (!(mask & (1 << c)))
2018				continue;
2019			emit_mul(pc, dst[c], src[0][c], src[1][c]);
2020		}
2021		break;
2022	case TGSI_OPCODE_POW:
2023		emit_pow(pc, brdc, src[0][0], src[1][0]);
2024		break;
2025	case TGSI_OPCODE_RCP:
2026		emit_flop(pc, 0, brdc, src[0][0]);
2027		break;
2028	case TGSI_OPCODE_RSQ:
2029		emit_flop(pc, 2, brdc, src[0][0]);
2030		break;
2031	case TGSI_OPCODE_SCS:
2032		temp = temp_temp(pc);
2033		if (mask & 3)
2034			emit_precossin(pc, temp, src[0][0]);
2035		if (mask & (1 << 0))
2036			emit_flop(pc, 5, dst[0], temp);
2037		if (mask & (1 << 1))
2038			emit_flop(pc, 4, dst[1], temp);
2039		if (mask & (1 << 2))
2040			emit_mov_immdval(pc, dst[2], 0.0);
2041		if (mask & (1 << 3))
2042			emit_mov_immdval(pc, dst[3], 1.0);
2043		break;
2044	case TGSI_OPCODE_SIN:
2045		if (mask & 8) {
2046			emit_precossin(pc, temp, src[0][3]);
2047			emit_flop(pc, 4, dst[3], temp);
2048			if (!(mask &= 7))
2049				break;
2050			if (temp == dst[3])
2051				temp = brdc = temp_temp(pc);
2052		}
2053		emit_precossin(pc, temp, src[0][0]);
2054		emit_flop(pc, 4, brdc, temp);
2055		break;
2056	case TGSI_OPCODE_SLT:
2057	case TGSI_OPCODE_SGE:
2058	case TGSI_OPCODE_SEQ:
2059	case TGSI_OPCODE_SGT:
2060	case TGSI_OPCODE_SLE:
2061	case TGSI_OPCODE_SNE:
2062		i = map_tgsi_setop_cc(inst->Instruction.Opcode);
2063		for (c = 0; c < 4; c++) {
2064			if (!(mask & (1 << c)))
2065				continue;
2066			emit_set(pc, i, dst[c], -1, src[0][c], src[1][c]);
2067		}
2068		break;
2069	case TGSI_OPCODE_SUB:
2070		for (c = 0; c < 4; c++) {
2071			if (!(mask & (1 << c)))
2072				continue;
2073			emit_sub(pc, dst[c], src[0][c], src[1][c]);
2074		}
2075		break;
2076	case TGSI_OPCODE_TEX:
2077		emit_tex(pc, dst, mask, src[0], unit,
2078			 inst->InstructionExtTexture.Texture, FALSE);
2079		break;
2080	case TGSI_OPCODE_TXP:
2081		emit_tex(pc, dst, mask, src[0], unit,
2082			 inst->InstructionExtTexture.Texture, TRUE);
2083		break;
2084	case TGSI_OPCODE_TRUNC:
2085		for (c = 0; c < 4; c++) {
2086			if (!(mask & (1 << c)))
2087				continue;
2088			emit_cvt(pc, dst[c], src[0][c], -1,
2089				 CVTOP_TRUNC, CVT_F32_F32 | CVT_RI);
2090		}
2091		break;
2092	case TGSI_OPCODE_XPD:
2093		temp = temp_temp(pc);
2094		if (mask & (1 << 0)) {
2095			emit_mul(pc, temp, src[0][2], src[1][1]);
2096			emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
2097		}
2098		if (mask & (1 << 1)) {
2099			emit_mul(pc, temp, src[0][0], src[1][2]);
2100			emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
2101		}
2102		if (mask & (1 << 2)) {
2103			emit_mul(pc, temp, src[0][1], src[1][0]);
2104			emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
2105		}
2106		if (mask & (1 << 3))
2107			emit_mov_immdval(pc, dst[3], 1.0);
2108		break;
2109	case TGSI_OPCODE_END:
2110		break;
2111	default:
2112		NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
2113		return FALSE;
2114	}
2115
2116	if (brdc) {
2117		if (sat)
2118			emit_sat(pc, brdc, brdc);
2119		for (c = 0; c < 4; c++)
2120			if ((mask & (1 << c)) && dst[c] != brdc)
2121				emit_mov(pc, dst[c], brdc);
2122	} else
2123	if (sat) {
2124		for (c = 0; c < 4; c++) {
2125			if (!(mask & (1 << c)))
2126				continue;
2127			/* in this case we saturate later */
2128			if (dst[c]->type == P_TEMP && dst[c]->index < 0)
2129				continue;
2130			emit_sat(pc, rdst[c], dst[c]);
2131		}
2132	}
2133
2134	for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
2135		for (c = 0; c < 4; c++) {
2136			if (!src[i][c])
2137				continue;
2138			src[i][c]->neg = 0;
2139			if (src[i][c]->index == -1 && src[i][c]->type == P_IMMD)
2140				FREE(src[i][c]);
2141			else
2142			if (src[i][c]->acc < 0 && src[i][c]->type == P_CONST)
2143				FREE(src[i][c]); /* indirect constant */
2144		}
2145	}
2146
2147	kill_temp_temp(pc);
2148	return TRUE;
2149}
2150
2151static void
2152prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
2153{
2154	struct nv50_reg *reg = NULL;
2155	const struct tgsi_full_src_register *src;
2156	const struct tgsi_dst_register *dst;
2157	unsigned i, c, k, mask;
2158
2159	dst = &insn->FullDstRegisters[0].DstRegister;
2160	mask = dst->WriteMask;
2161
2162        if (dst->File == TGSI_FILE_TEMPORARY)
2163                reg = pc->temp;
2164        else
2165        if (dst->File == TGSI_FILE_OUTPUT)
2166                reg = pc->result;
2167
2168	if (reg) {
2169		for (c = 0; c < 4; c++) {
2170			if (!(mask & (1 << c)))
2171				continue;
2172			reg[dst->Index * 4 + c].acc = pc->insn_nr;
2173		}
2174	}
2175
2176	for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2177		src = &insn->FullSrcRegisters[i];
2178
2179		if (src->SrcRegister.File == TGSI_FILE_TEMPORARY)
2180			reg = pc->temp;
2181		else
2182		if (src->SrcRegister.File == TGSI_FILE_INPUT)
2183			reg = pc->attr;
2184		else
2185			continue;
2186
2187		mask = nv50_tgsi_src_mask(insn, i);
2188
2189		for (c = 0; c < 4; c++) {
2190			if (!(mask & (1 << c)))
2191				continue;
2192			k = tgsi_util_get_full_src_register_extswizzle(src, c);
2193
2194			if (k > TGSI_EXTSWIZZLE_W)
2195				continue;
2196
2197			reg[src->SrcRegister.Index * 4 + k].acc = pc->insn_nr;
2198		}
2199	}
2200}
2201
2202/* Returns a bitmask indicating which dst components need to be
2203 * written to temporaries first to avoid 'corrupting' sources.
2204 *
2205 * m[i]   (out) indicate component to write in the i-th position
2206 * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
2207 */
2208static unsigned
2209nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
2210{
2211	unsigned i, c, x, unsafe;
2212
2213	for (c = 0; c < 4; c++)
2214		m[c] = c;
2215
2216	/* Swap as long as a dst component written earlier is depended on
2217	 * by one written later, but the next one isn't depended on by it.
2218	 */
2219	for (c = 0; c < 3; c++) {
2220		if (rdep[m[c + 1]] & (1 << m[c]))
2221			continue; /* if next one is depended on by us */
2222		for (i = c + 1; i < 4; i++)
2223			/* if we are depended on by a later one */
2224			if (rdep[m[c]] & (1 << m[i]))
2225				break;
2226		if (i == 4)
2227			continue;
2228		/* now, swap */
2229		x = m[c];
2230		m[c] = m[c + 1];
2231		m[c + 1] = x;
2232
2233		/* restart */
2234		c = 0;
2235	}
2236
2237	/* mark dependencies that could not be resolved by reordering */
2238	for (i = 0; i < 3; ++i)
2239		for (c = i + 1; c < 4; ++c)
2240			if (rdep[m[i]] & (1 << m[c]))
2241				unsafe |= (1 << i);
2242
2243	/* NOTE: $unsafe is with respect to order, not component */
2244	return unsafe;
2245}
2246
2247/* Select a suitable dst register for broadcasting scalar results,
2248 * or return NULL if we have to allocate an extra TEMP.
2249 *
2250 * If e.g. only 1 component is written, we may also emit the final
2251 * result to a write-only register.
2252 */
2253static struct nv50_reg *
2254tgsi_broadcast_dst(struct nv50_pc *pc,
2255		   const struct tgsi_full_dst_register *fd, unsigned mask)
2256{
2257	if (fd->DstRegister.File == TGSI_FILE_TEMPORARY) {
2258		int c = ffs(~mask & fd->DstRegister.WriteMask);
2259		if (c)
2260			return tgsi_dst(pc, c - 1, fd);
2261	} else {
2262		int c = ffs(fd->DstRegister.WriteMask) - 1;
2263		if ((1 << c) == fd->DstRegister.WriteMask)
2264			return tgsi_dst(pc, c, fd);
2265	}
2266
2267	return NULL;
2268}
2269
2270/* Scan source swizzles and return a bitmask indicating dst regs that
2271 * also occur among the src regs, and fill rdep for nv50_revdep_reoder.
2272 */
2273static unsigned
2274nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
2275		       unsigned rdep[4])
2276{
2277	const struct tgsi_full_dst_register *fd = &insn->FullDstRegisters[0];
2278	const struct tgsi_full_src_register *fs;
2279	unsigned i, deqs = 0;
2280
2281	for (i = 0; i < 4; ++i)
2282		rdep[i] = 0;
2283
2284	for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2285		unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
2286		boolean neg_supp = negate_supported(insn, i);
2287
2288		fs = &insn->FullSrcRegisters[i];
2289		if (fs->SrcRegister.File != fd->DstRegister.File ||
2290		    fs->SrcRegister.Index != fd->DstRegister.Index)
2291			continue;
2292
2293		for (chn = 0; chn < 4; ++chn) {
2294			unsigned s, c;
2295
2296			if (!(mask & (1 << chn))) /* src is not read */
2297				continue;
2298			c = tgsi_util_get_full_src_register_extswizzle(fs, chn);
2299			s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
2300
2301			if (c > TGSI_EXTSWIZZLE_W ||
2302			    !(fd->DstRegister.WriteMask & (1 << c)))
2303				continue;
2304
2305			/* no danger if src is copied to TEMP first */
2306			if ((s != TGSI_UTIL_SIGN_KEEP) &&
2307			    (s != TGSI_UTIL_SIGN_TOGGLE || !neg_supp))
2308				continue;
2309
2310			rdep[c] |= nv50_tgsi_dst_revdep(
2311				insn->Instruction.Opcode, i, chn);
2312			deqs |= (1 << c);
2313		}
2314	}
2315
2316	return deqs;
2317}
2318
2319static boolean
2320nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
2321{
2322	struct tgsi_full_instruction insn = tok->FullInstruction;
2323	const struct tgsi_full_dst_register *fd;
2324	unsigned i, deqs, rdep[4], m[4];
2325
2326	fd = &tok->FullInstruction.FullDstRegisters[0];
2327	deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
2328
2329	if (is_scalar_op(insn.Instruction.Opcode)) {
2330		pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
2331		if (!pc->r_brdc)
2332			pc->r_brdc = temp_temp(pc);
2333		return nv50_program_tx_insn(pc, &insn);
2334	}
2335	pc->r_brdc = NULL;
2336
2337	if (!deqs)
2338		return nv50_program_tx_insn(pc, &insn);
2339
2340	deqs = nv50_revdep_reorder(m, rdep);
2341
2342	for (i = 0; i < 4; ++i) {
2343		assert(pc->r_dst[m[i]] == NULL);
2344
2345		insn.FullDstRegisters[0].DstRegister.WriteMask =
2346			fd->DstRegister.WriteMask & (1 << m[i]);
2347
2348		if (!insn.FullDstRegisters[0].DstRegister.WriteMask)
2349			continue;
2350
2351		if (deqs & (1 << i))
2352			pc->r_dst[m[i]] = alloc_temp(pc, NULL);
2353
2354		if (!nv50_program_tx_insn(pc, &insn))
2355			return FALSE;
2356	}
2357
2358	for (i = 0; i < 4; i++) {
2359		struct nv50_reg *reg = pc->r_dst[i];
2360		if (!reg)
2361			continue;
2362		pc->r_dst[i] = NULL;
2363
2364		if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
2365			emit_sat(pc, tgsi_dst(pc, i, fd), reg);
2366		else
2367			emit_mov(pc, tgsi_dst(pc, i, fd), reg);
2368		free_temp(pc, reg);
2369	}
2370
2371	return TRUE;
2372}
2373
2374static void
2375load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
2376{
2377	struct nv50_reg *iv, **ppiv;
2378	unsigned mode = pc->interp_mode[reg->index];
2379
2380	ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
2381	iv = *ppiv;
2382
2383	if ((mode & INTERP_PERSPECTIVE) && !iv) {
2384		iv = *ppiv = alloc_temp(pc, NULL);
2385		iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
2386
2387		emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
2388		emit_flop(pc, 0, iv, iv);
2389
2390		/* XXX: when loading interpolants dynamically, move these
2391		 * to the program head, or make sure it can't be skipped.
2392		 */
2393	}
2394
2395	emit_interp(pc, reg, iv, mode);
2396}
2397
2398static boolean
2399nv50_program_tx_prep(struct nv50_pc *pc)
2400{
2401	struct tgsi_parse_context tp;
2402	struct nv50_program *p = pc->p;
2403	boolean ret = FALSE;
2404	unsigned i, c, flat_nr = 0;
2405
2406	tgsi_parse_init(&tp, pc->p->pipe.tokens);
2407	while (!tgsi_parse_end_of_tokens(&tp)) {
2408		const union tgsi_full_token *tok = &tp.FullToken;
2409
2410		tgsi_parse_token(&tp);
2411		switch (tok->Token.Type) {
2412		case TGSI_TOKEN_TYPE_IMMEDIATE:
2413		{
2414			const struct tgsi_full_immediate *imm =
2415				&tp.FullToken.FullImmediate;
2416
2417			ctor_immd(pc, imm->u[0].Float,
2418				      imm->u[1].Float,
2419				      imm->u[2].Float,
2420				      imm->u[3].Float);
2421		}
2422			break;
2423		case TGSI_TOKEN_TYPE_DECLARATION:
2424		{
2425			const struct tgsi_full_declaration *d;
2426			unsigned si, last, first, mode;
2427
2428			d = &tp.FullToken.FullDeclaration;
2429			first = d->DeclarationRange.First;
2430			last = d->DeclarationRange.Last;
2431
2432			switch (d->Declaration.File) {
2433			case TGSI_FILE_TEMPORARY:
2434				break;
2435			case TGSI_FILE_OUTPUT:
2436				if (!d->Declaration.Semantic ||
2437				    p->type == PIPE_SHADER_FRAGMENT)
2438					break;
2439
2440				si = d->Semantic.SemanticIndex;
2441				switch (d->Semantic.SemanticName) {
2442				case TGSI_SEMANTIC_BCOLOR:
2443					p->cfg.two_side[si].hw = first;
2444					if (p->cfg.io_nr > first)
2445						p->cfg.io_nr = first;
2446					break;
2447				case TGSI_SEMANTIC_PSIZE:
2448					p->cfg.psiz = first;
2449					if (p->cfg.io_nr > first)
2450						p->cfg.io_nr = first;
2451					break;
2452					/*
2453				case TGSI_SEMANTIC_CLIP_DISTANCE:
2454					p->cfg.clpd = MIN2(p->cfg.clpd, first);
2455					break;
2456					*/
2457				default:
2458					break;
2459				}
2460				break;
2461			case TGSI_FILE_INPUT:
2462			{
2463				if (p->type != PIPE_SHADER_FRAGMENT)
2464					break;
2465
2466				switch (d->Declaration.Interpolate) {
2467				case TGSI_INTERPOLATE_CONSTANT:
2468					mode = INTERP_FLAT;
2469					flat_nr++;
2470					break;
2471				case TGSI_INTERPOLATE_PERSPECTIVE:
2472					mode = INTERP_PERSPECTIVE;
2473					p->cfg.regs[1] |= 0x08 << 24;
2474					break;
2475				default:
2476					mode = INTERP_LINEAR;
2477					break;
2478				}
2479				if (d->Declaration.Centroid)
2480					mode |= INTERP_CENTROID;
2481
2482				assert(last < 32);
2483				for (i = first; i <= last; i++)
2484					pc->interp_mode[i] = mode;
2485			}
2486				break;
2487			case TGSI_FILE_ADDRESS:
2488			case TGSI_FILE_CONSTANT:
2489			case TGSI_FILE_SAMPLER:
2490				break;
2491			default:
2492				NOUVEAU_ERR("bad decl file %d\n",
2493					    d->Declaration.File);
2494				goto out_err;
2495			}
2496		}
2497			break;
2498		case TGSI_TOKEN_TYPE_INSTRUCTION:
2499			pc->insn_nr++;
2500			prep_inspect_insn(pc, &tok->FullInstruction);
2501			break;
2502		default:
2503			break;
2504		}
2505	}
2506
2507	if (p->type == PIPE_SHADER_VERTEX) {
2508		int rid = 0;
2509
2510		for (i = 0; i < pc->attr_nr * 4; ++i) {
2511			if (pc->attr[i].acc) {
2512				pc->attr[i].hw = rid++;
2513				p->cfg.attr[i / 32] |= 1 << (i % 32);
2514			}
2515		}
2516
2517		for (i = 0, rid = 0; i < pc->result_nr; ++i) {
2518			p->cfg.io[i].hw = rid;
2519			p->cfg.io[i].id_vp = i;
2520
2521			for (c = 0; c < 4; ++c) {
2522				int n = i * 4 + c;
2523				if (!pc->result[n].acc)
2524					continue;
2525				pc->result[n].hw = rid++;
2526				p->cfg.io[i].mask |= 1 << c;
2527			}
2528		}
2529
2530		for (c = 0; c < 2; ++c)
2531			if (p->cfg.two_side[c].hw < 0x40)
2532				p->cfg.two_side[c] = p->cfg.io[
2533					p->cfg.two_side[c].hw];
2534
2535		if (p->cfg.psiz < 0x40)
2536			p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
2537	} else
2538	if (p->type == PIPE_SHADER_FRAGMENT) {
2539		int rid, aid;
2540		unsigned n = 0, m = pc->attr_nr - flat_nr;
2541
2542		int base = (TGSI_SEMANTIC_POSITION ==
2543			    p->info.input_semantic_name[0]) ? 0 : 1;
2544
2545		/* non-flat interpolants have to be mapped to
2546		 * the lower hardware IDs, so sort them:
2547		 */
2548		for (i = 0; i < pc->attr_nr; i++) {
2549			if (pc->interp_mode[i] == INTERP_FLAT) {
2550				p->cfg.io[m].id_vp = i + base;
2551				p->cfg.io[m++].id_fp = i;
2552			} else {
2553				if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
2554					p->cfg.io[n].linear = TRUE;
2555				p->cfg.io[n].id_vp = i + base;
2556				p->cfg.io[n++].id_fp = i;
2557			}
2558		}
2559
2560		if (!base) /* set w-coordinate mask from perspective interp */
2561			p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
2562
2563		aid = popcnt4( /* if fcrd isn't contained in cfg.io */
2564			base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
2565
2566		for (n = 0; n < pc->attr_nr; ++n) {
2567			p->cfg.io[n].hw = rid = aid;
2568			i = p->cfg.io[n].id_fp;
2569
2570			for (c = 0; c < 4; ++c) {
2571				if (!pc->attr[i * 4 + c].acc)
2572					continue;
2573				pc->attr[i * 4 + c].rhw = rid++;
2574				p->cfg.io[n].mask |= 1 << c;
2575
2576				load_interpolant(pc, &pc->attr[i * 4 + c]);
2577			}
2578			aid += popcnt4(p->cfg.io[n].mask);
2579		}
2580
2581		if (!base)
2582			p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
2583
2584		m = popcnt4(p->cfg.regs[1] >> 24);
2585
2586		/* set count of non-position inputs and of non-flat
2587		 * non-position inputs for FP_INTERPOLANT_CTRL
2588		 */
2589		p->cfg.regs[1] |= aid - m;
2590
2591		if (flat_nr) {
2592			i = p->cfg.io[pc->attr_nr - flat_nr].hw;
2593			p->cfg.regs[1] |= (i - m) << 16;
2594		} else
2595			p->cfg.regs[1] |= p->cfg.regs[1] << 16;
2596
2597		/* mark color semantic for light-twoside */
2598		n = 0x40;
2599		for (i = 0; i < pc->attr_nr; i++) {
2600			ubyte si, sn;
2601
2602			sn = p->info.input_semantic_name[p->cfg.io[i].id_fp];
2603			si = p->info.input_semantic_index[p->cfg.io[i].id_fp];
2604
2605			if (sn == TGSI_SEMANTIC_COLOR) {
2606				p->cfg.two_side[si] = p->cfg.io[i];
2607
2608				/* increase colour count */
2609				p->cfg.regs[0] += popcnt4(
2610					p->cfg.two_side[si].mask) << 16;
2611
2612				n = MIN2(n, p->cfg.io[i].hw - m);
2613			}
2614		}
2615		if (n < 0x40)
2616			p->cfg.regs[0] += n;
2617
2618		/* Initialize FP results:
2619		 * FragDepth is always first TGSI and last hw output
2620		 */
2621		i = p->info.writes_z ? 4 : 0;
2622		for (rid = 0; i < pc->result_nr * 4; i++)
2623			pc->result[i].rhw = rid++;
2624		if (p->info.writes_z)
2625			pc->result[2].rhw = rid;
2626
2627		p->cfg.high_result = rid;
2628	}
2629
2630	if (pc->immd_nr) {
2631		int rid = 0;
2632
2633		pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
2634		if (!pc->immd)
2635			goto out_err;
2636
2637		for (i = 0; i < pc->immd_nr; i++) {
2638			for (c = 0; c < 4; c++, rid++)
2639				ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
2640		}
2641	}
2642
2643	ret = TRUE;
2644out_err:
2645	if (pc->iv_p)
2646		free_temp(pc, pc->iv_p);
2647	if (pc->iv_c)
2648		free_temp(pc, pc->iv_c);
2649
2650	tgsi_parse_free(&tp);
2651	return ret;
2652}
2653
2654static void
2655free_nv50_pc(struct nv50_pc *pc)
2656{
2657	if (pc->immd)
2658		FREE(pc->immd);
2659	if (pc->param)
2660		FREE(pc->param);
2661	if (pc->result)
2662		FREE(pc->result);
2663	if (pc->attr)
2664		FREE(pc->attr);
2665	if (pc->temp)
2666		FREE(pc->temp);
2667
2668	FREE(pc);
2669}
2670
2671static boolean
2672ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
2673{
2674	int i, c;
2675	unsigned rtype[2] = { P_ATTR, P_RESULT };
2676
2677	pc->p = p;
2678	pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
2679	pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
2680	pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
2681	pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
2682	pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1;
2683	assert(pc->addr_nr <= 2);
2684
2685	p->cfg.high_temp = 4;
2686
2687	p->cfg.two_side[0].hw = 0x40;
2688	p->cfg.two_side[1].hw = 0x40;
2689
2690	switch (p->type) {
2691	case PIPE_SHADER_VERTEX:
2692		p->cfg.psiz = 0x40;
2693		p->cfg.clpd = 0x40;
2694		p->cfg.io_nr = pc->result_nr;
2695		break;
2696	case PIPE_SHADER_FRAGMENT:
2697		rtype[0] = rtype[1] = P_TEMP;
2698
2699		p->cfg.regs[0] = 0x01000004;
2700		p->cfg.io_nr = pc->attr_nr;
2701
2702		if (p->info.writes_z) {
2703			p->cfg.regs[2] |= 0x00000100;
2704			p->cfg.regs[3] |= 0x00000011;
2705		}
2706		if (p->info.uses_kill)
2707			p->cfg.regs[2] |= 0x00100000;
2708		break;
2709	}
2710
2711	if (pc->temp_nr) {
2712		pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
2713		if (!pc->temp)
2714			return FALSE;
2715
2716		for (i = 0; i < pc->temp_nr * 4; ++i)
2717			ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
2718	}
2719
2720	if (pc->attr_nr) {
2721		pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
2722		if (!pc->attr)
2723			return FALSE;
2724
2725		for (i = 0; i < pc->attr_nr * 4; ++i)
2726			ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
2727	}
2728
2729	if (pc->result_nr) {
2730		unsigned nr = pc->result_nr * 4;
2731
2732		pc->result = MALLOC(nr * sizeof(struct nv50_reg));
2733		if (!pc->result)
2734			return FALSE;
2735
2736		for (i = 0; i < nr; ++i)
2737			ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
2738	}
2739
2740	if (pc->param_nr) {
2741		int rid = 0;
2742
2743		pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
2744		if (!pc->param)
2745			return FALSE;
2746
2747		for (i = 0; i < pc->param_nr; ++i)
2748			for (c = 0; c < 4; ++c, ++rid)
2749				ctor_reg(&pc->param[rid], P_CONST, i, rid);
2750	}
2751
2752	if (pc->addr_nr) {
2753		pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *));
2754		if (!pc->addr)
2755			return FALSE;
2756	}
2757	for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
2758		ctor_reg(&pc->r_addr[i], P_ADDR, -1, i + 1);
2759
2760	return TRUE;
2761}
2762
2763static void
2764nv50_fp_move_results(struct nv50_pc *pc)
2765{
2766	struct nv50_reg reg;
2767	unsigned i;
2768
2769	ctor_reg(&reg, P_TEMP, -1, -1);
2770
2771	for (i = 0; i < pc->result_nr * 4; ++i) {
2772		if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
2773			continue;
2774		if (pc->result[i].rhw != pc->result[i].hw) {
2775			reg.hw = pc->result[i].rhw;
2776			emit_mov(pc, &reg, &pc->result[i]);
2777		}
2778	}
2779}
2780
2781static void
2782nv50_program_fixup_insns(struct nv50_pc *pc)
2783{
2784	struct nv50_program_exec *e, *prev = NULL, **bra_list;
2785	unsigned i, n, pos;
2786
2787	bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
2788
2789	/* Collect branch instructions, we need to adjust their offsets
2790	 * when converting 32 bit instructions to 64 bit ones
2791	 */
2792	for (n = 0, e = pc->p->exec_head; e; e = e->next)
2793		if (e->param.index >= 0 && !e->param.mask)
2794			bra_list[n++] = e;
2795
2796	/* Make sure we don't have any single 32 bit instructions. */
2797	for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
2798		pos += is_long(e) ? 2 : 1;
2799
2800		if ((pos & 1) && (!e->next || is_long(e->next))) {
2801			for (i = 0; i < n; ++i)
2802				if (bra_list[i]->param.index >= pos)
2803					bra_list[i]->param.index += 1;
2804			convert_to_long(pc, e);
2805			++pos;
2806		}
2807		if (e->next)
2808			prev = e;
2809	}
2810
2811	assert(!is_immd(pc->p->exec_head));
2812	assert(!is_immd(pc->p->exec_tail));
2813
2814	/* last instruction must be long so it can have the end bit set */
2815	if (!is_long(pc->p->exec_tail)) {
2816		convert_to_long(pc, pc->p->exec_tail);
2817		if (prev)
2818			convert_to_long(pc, prev);
2819	}
2820	assert(!(pc->p->exec_tail->inst[1] & 2));
2821	/* set the end-bit */
2822	pc->p->exec_tail->inst[1] |= 1;
2823
2824	FREE(bra_list);
2825}
2826
2827static boolean
2828nv50_program_tx(struct nv50_program *p)
2829{
2830	struct tgsi_parse_context parse;
2831	struct nv50_pc *pc;
2832	boolean ret;
2833
2834	pc = CALLOC_STRUCT(nv50_pc);
2835	if (!pc)
2836		return FALSE;
2837
2838	ret = ctor_nv50_pc(pc, p);
2839	if (ret == FALSE)
2840		goto out_cleanup;
2841
2842	ret = nv50_program_tx_prep(pc);
2843	if (ret == FALSE)
2844		goto out_cleanup;
2845
2846	tgsi_parse_init(&parse, pc->p->pipe.tokens);
2847	while (!tgsi_parse_end_of_tokens(&parse)) {
2848		const union tgsi_full_token *tok = &parse.FullToken;
2849
2850		/* don't allow half insn/immd on first and last instruction */
2851		pc->allow32 = TRUE;
2852		if (pc->insn_cur == 0 || pc->insn_cur + 2 == pc->insn_nr)
2853			pc->allow32 = FALSE;
2854
2855		tgsi_parse_token(&parse);
2856
2857		switch (tok->Token.Type) {
2858		case TGSI_TOKEN_TYPE_INSTRUCTION:
2859			++pc->insn_cur;
2860			ret = nv50_tgsi_insn(pc, tok);
2861			if (ret == FALSE)
2862				goto out_err;
2863			break;
2864		default:
2865			break;
2866		}
2867	}
2868
2869	if (pc->p->type == PIPE_SHADER_FRAGMENT)
2870		nv50_fp_move_results(pc);
2871
2872	nv50_program_fixup_insns(pc);
2873
2874	p->param_nr = pc->param_nr * 4;
2875	p->immd_nr = pc->immd_nr * 4;
2876	p->immd = pc->immd_buf;
2877
2878out_err:
2879	tgsi_parse_free(&parse);
2880
2881out_cleanup:
2882	free_nv50_pc(pc);
2883	return ret;
2884}
2885
2886static void
2887nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
2888{
2889	if (nv50_program_tx(p) == FALSE)
2890		assert(0);
2891	p->translated = TRUE;
2892}
2893
2894static void
2895nv50_program_upload_data(struct nv50_context *nv50, float *map,
2896			unsigned start, unsigned count, unsigned cbuf)
2897{
2898	struct nouveau_channel *chan = nv50->screen->base.channel;
2899	struct nouveau_grobj *tesla = nv50->screen->tesla;
2900
2901	while (count) {
2902		unsigned nr = count > 2047 ? 2047 : count;
2903
2904		BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
2905		OUT_RING  (chan, (cbuf << 0) | (start << 8));
2906		BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
2907		OUT_RINGp (chan, map, nr);
2908
2909		map += nr;
2910		start += nr;
2911		count -= nr;
2912	}
2913}
2914
2915static void
2916nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
2917{
2918	struct pipe_screen *pscreen = nv50->pipe.screen;
2919
2920	if (!p->data[0] && p->immd_nr) {
2921		struct nouveau_resource *heap = nv50->screen->immd_heap[0];
2922
2923		if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
2924			while (heap->next && heap->size < p->immd_nr) {
2925				struct nv50_program *evict = heap->next->priv;
2926				nouveau_resource_free(&evict->data[0]);
2927			}
2928
2929			if (nouveau_resource_alloc(heap, p->immd_nr, p,
2930						   &p->data[0]))
2931				assert(0);
2932		}
2933
2934		/* immediates only need to be uploaded again when freed */
2935		nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
2936					 p->immd_nr, NV50_CB_PMISC);
2937	}
2938
2939	assert(p->param_nr <= 512);
2940
2941	if (p->param_nr) {
2942		unsigned cb;
2943		float *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
2944					     PIPE_BUFFER_USAGE_CPU_READ);
2945
2946		if (p->type == PIPE_SHADER_VERTEX)
2947			cb = NV50_CB_PVP;
2948		else
2949			cb = NV50_CB_PFP;
2950
2951		nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
2952		pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
2953	}
2954}
2955
2956static void
2957nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
2958{
2959	struct nouveau_channel *chan = nv50->screen->base.channel;
2960	struct nouveau_grobj *tesla = nv50->screen->tesla;
2961	struct nv50_program_exec *e;
2962	struct nouveau_stateobj *so;
2963	const unsigned flags = NOUVEAU_BO_VRAM | NOUVEAU_BO_WR;
2964	unsigned start, count, *up, *ptr;
2965	boolean upload = FALSE;
2966
2967	if (!p->bo) {
2968		nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
2969			       p->exec_size * 4, &p->bo);
2970		upload = TRUE;
2971	}
2972
2973	if (p->data[0] && p->data[0]->start != p->data_start[0])
2974		upload = TRUE;
2975
2976	if (!upload)
2977		return;
2978
2979	for (e = p->exec_head; e; e = e->next) {
2980		unsigned ei, ci, bs;
2981
2982		if (e->param.index < 0)
2983			continue;
2984
2985		if (e->param.mask == 0) {
2986			assert(!(e->param.index & 1));
2987			/* seem to be 8 byte steps */
2988			ei = (e->param.index >> 1) + 0 /* START_ID */;
2989
2990			e->inst[0] &= 0xf0000fff;
2991			e->inst[0] |= ei << 12;
2992			continue;
2993		}
2994
2995		bs = (e->inst[1] >> 22) & 0x07;
2996		assert(bs < 2);
2997		ei = e->param.shift >> 5;
2998		ci = e->param.index;
2999		if (bs == 0)
3000			ci += p->data[bs]->start;
3001
3002		e->inst[ei] &= ~e->param.mask;
3003		e->inst[ei] |= (ci << e->param.shift);
3004	}
3005
3006	if (p->data[0])
3007		p->data_start[0] = p->data[0]->start;
3008
3009#ifdef NV50_PROGRAM_DUMP
3010	NOUVEAU_ERR("-------\n");
3011	for (e = p->exec_head; e; e = e->next) {
3012		NOUVEAU_ERR("0x%08x\n", e->inst[0]);
3013		if (is_long(e))
3014			NOUVEAU_ERR("0x%08x\n", e->inst[1]);
3015	}
3016#endif
3017
3018	up = ptr = MALLOC(p->exec_size * 4);
3019	for (e = p->exec_head; e; e = e->next) {
3020		*(ptr++) = e->inst[0];
3021		if (is_long(e))
3022			*(ptr++) = e->inst[1];
3023	}
3024
3025	so = so_new(4,2);
3026	so_method(so, nv50->screen->tesla, NV50TCL_CB_DEF_ADDRESS_HIGH, 3);
3027	so_reloc (so, p->bo, 0, flags | NOUVEAU_BO_HIGH, 0, 0);
3028	so_reloc (so, p->bo, 0, flags | NOUVEAU_BO_LOW, 0, 0);
3029	so_data  (so, (NV50_CB_PUPLOAD << 16) | 0x0800); //(p->exec_size * 4));
3030
3031	start = 0; count = p->exec_size;
3032	while (count) {
3033		struct nouveau_channel *chan = nv50->screen->base.channel;
3034		unsigned nr;
3035
3036		so_emit(chan, so);
3037
3038		nr = MIN2(count, 2047);
3039		nr = MIN2(chan->pushbuf->remaining, nr);
3040		if (chan->pushbuf->remaining < (nr + 3)) {
3041			FIRE_RING(chan);
3042			continue;
3043		}
3044
3045		BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
3046		OUT_RING  (chan, (start << 8) | NV50_CB_PUPLOAD);
3047		BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
3048		OUT_RINGp (chan, up + start, nr);
3049
3050		start += nr;
3051		count -= nr;
3052	}
3053
3054	FREE(up);
3055	so_ref(NULL, &so);
3056}
3057
3058void
3059nv50_vertprog_validate(struct nv50_context *nv50)
3060{
3061	struct nouveau_grobj *tesla = nv50->screen->tesla;
3062	struct nv50_program *p = nv50->vertprog;
3063	struct nouveau_stateobj *so;
3064
3065	if (!p->translated) {
3066		nv50_program_validate(nv50, p);
3067		if (!p->translated)
3068			assert(0);
3069	}
3070
3071	nv50_program_validate_data(nv50, p);
3072	nv50_program_validate_code(nv50, p);
3073
3074	so = so_new(13, 2);
3075	so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
3076	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3077		      NOUVEAU_BO_HIGH, 0, 0);
3078	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3079		      NOUVEAU_BO_LOW, 0, 0);
3080	so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
3081	so_data  (so, p->cfg.attr[0]);
3082	so_data  (so, p->cfg.attr[1]);
3083	so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
3084	so_data  (so, p->cfg.high_result);
3085	so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
3086	so_data  (so, p->cfg.high_result); //8);
3087	so_data  (so, p->cfg.high_temp);
3088	so_method(so, tesla, NV50TCL_VP_START_ID, 1);
3089	so_data  (so, 0); /* program start offset */
3090	so_ref(so, &nv50->state.vertprog);
3091	so_ref(NULL, &so);
3092}
3093
3094void
3095nv50_fragprog_validate(struct nv50_context *nv50)
3096{
3097	struct nouveau_grobj *tesla = nv50->screen->tesla;
3098	struct nv50_program *p = nv50->fragprog;
3099	struct nouveau_stateobj *so;
3100
3101	if (!p->translated) {
3102		nv50_program_validate(nv50, p);
3103		if (!p->translated)
3104			assert(0);
3105	}
3106
3107	nv50_program_validate_data(nv50, p);
3108	nv50_program_validate_code(nv50, p);
3109
3110	so = so_new(64, 2);
3111	so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
3112	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3113		      NOUVEAU_BO_HIGH, 0, 0);
3114	so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3115		      NOUVEAU_BO_LOW, 0, 0);
3116	so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
3117	so_data  (so, p->cfg.high_temp);
3118	so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
3119	so_data  (so, p->cfg.high_result);
3120	so_method(so, tesla, NV50TCL_FP_CTRL_UNK19A8, 1);
3121	so_data  (so, p->cfg.regs[2]);
3122	so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
3123	so_data  (so, p->cfg.regs[3]);
3124	so_method(so, tesla, NV50TCL_FP_START_ID, 1);
3125	so_data  (so, 0); /* program start offset */
3126	so_ref(so, &nv50->state.fragprog);
3127	so_ref(NULL, &so);
3128}
3129
3130static void
3131nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
3132{
3133	struct nv50_program *fp = nv50->fragprog;
3134	struct nv50_program *vp = nv50->vertprog;
3135	unsigned i, c, m = base;
3136
3137	/* XXX: This can't work correctly in all cases yet, we either
3138	 * have to create TGSI_SEMANTIC_PNTC or sprite_coord_mode has
3139	 * to be per FP input instead of per VP output
3140	 */
3141	memset(pntc, 0, 8 * sizeof(uint32_t));
3142
3143	for (i = 0; i < fp->cfg.io_nr; i++) {
3144		uint8_t sn, si;
3145		uint8_t j = fp->cfg.io[i].id_vp, k = fp->cfg.io[i].id_fp;
3146		unsigned n = popcnt4(fp->cfg.io[i].mask);
3147
3148		if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
3149			m += n;
3150			continue;
3151		}
3152
3153		sn = vp->info.input_semantic_name[j];
3154		si = vp->info.input_semantic_index[j];
3155
3156		if (j < fp->cfg.io_nr && sn == TGSI_SEMANTIC_GENERIC) {
3157			ubyte mode =
3158				nv50->rasterizer->pipe.sprite_coord_mode[si];
3159
3160			if (mode == PIPE_SPRITE_COORD_NONE) {
3161				m += n;
3162				continue;
3163			}
3164		}
3165
3166		/* this is either PointCoord or replaced by sprite coords */
3167		for (c = 0; c < 4; c++) {
3168			if (!(fp->cfg.io[i].mask & (1 << c)))
3169				continue;
3170			pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
3171			++m;
3172		}
3173	}
3174}
3175
3176static int
3177nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
3178	       struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
3179{
3180	int c;
3181	uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
3182	uint8_t *map = (uint8_t *)p_map;
3183
3184	for (c = 0; c < 4; ++c) {
3185		if (mf & 1) {
3186			if (fpi->linear == TRUE)
3187				lin[mid / 32] |= 1 << (mid % 32);
3188			map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
3189		}
3190
3191		oid += mv & 1;
3192		mf >>= 1;
3193		mv >>= 1;
3194	}
3195
3196	return mid;
3197}
3198
3199void
3200nv50_linkage_validate(struct nv50_context *nv50)
3201{
3202	struct nouveau_grobj *tesla = nv50->screen->tesla;
3203	struct nv50_program *vp = nv50->vertprog;
3204	struct nv50_program *fp = nv50->fragprog;
3205	struct nouveau_stateobj *so;
3206	struct nv50_sreg4 dummy, *vpo;
3207	int i, n, c, m = 0;
3208	uint32_t map[16], lin[4], reg[5], pcrd[8];
3209
3210	memset(map, 0, sizeof(map));
3211	memset(lin, 0, sizeof(lin));
3212
3213	reg[1] = 0x00000004; /* low and high clip distance map ids */
3214	reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
3215	reg[3] = 0x00000000; /* point size map id & enable */
3216	reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
3217	reg[4] = fp->cfg.regs[1]; /* interpolant info */
3218
3219	dummy.linear = FALSE;
3220	dummy.mask = 0xf; /* map all components of HPOS */
3221	m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
3222
3223	dummy.mask = 0x0;
3224
3225	if (vp->cfg.clpd < 0x40) {
3226		for (c = 0; c < vp->cfg.clpd_nr; ++c)
3227			map[m++] = vp->cfg.clpd + c;
3228		reg[1] = (m << 8);
3229	}
3230
3231	reg[0] |= m << 8; /* adjust BFC0 id */
3232
3233	/* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
3234	if (nv50->rasterizer->pipe.light_twoside) {
3235		vpo = &vp->cfg.two_side[0];
3236
3237		m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
3238		m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
3239	}
3240
3241	reg[0] += m - 4; /* adjust FFC0 id */
3242	reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
3243
3244	i = 0;
3245	if (fp->info.input_semantic_name[0] == TGSI_SEMANTIC_POSITION)
3246		i = 1;
3247	for (; i < fp->cfg.io_nr; i++) {
3248		ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id_fp];
3249		ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id_fp];
3250
3251		n = fp->cfg.io[i].id_vp;
3252		if (n >= vp->cfg.io_nr ||
3253		    vp->info.output_semantic_name[n] != sn ||
3254		    vp->info.output_semantic_index[n] != si)
3255			vpo = &dummy;
3256		else
3257			vpo = &vp->cfg.io[n];
3258
3259		m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
3260	}
3261
3262	if (nv50->rasterizer->pipe.point_size_per_vertex) {
3263		map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
3264		reg[3] = (m++ << 4) | 1;
3265	}
3266
3267	/* now fill the stateobj */
3268	so = so_new(64, 0);
3269
3270	n = (m + 3) / 4;
3271	so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
3272	so_data  (so, m);
3273	so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
3274	so_datap (so, map, n);
3275
3276	so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
3277	so_datap (so, reg, 4);
3278
3279	so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
3280	so_data  (so, reg[4]);
3281
3282	so_method(so, tesla, 0x1540, 4);
3283	so_datap (so, lin, 4);
3284
3285	if (nv50->rasterizer->pipe.point_sprite) {
3286		nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff);
3287
3288		so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
3289		so_datap (so, pcrd, 8);
3290	}
3291
3292        so_ref(so, &nv50->state.programs);
3293        so_ref(NULL, &so);
3294}
3295
3296void
3297nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
3298{
3299	while (p->exec_head) {
3300		struct nv50_program_exec *e = p->exec_head;
3301
3302		p->exec_head = e->next;
3303		FREE(e);
3304	}
3305	p->exec_tail = NULL;
3306	p->exec_size = 0;
3307
3308	nouveau_bo_ref(NULL, &p->bo);
3309
3310	nouveau_resource_free(&p->data[0]);
3311
3312	p->translated = 0;
3313}
3314