sp_tex_sample.c revision 2083a276eb270b748d1c2668eb9faa5aadc8e700
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008-2010 VMware, Inc.  All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29/**
30 * Texture sampling
31 *
32 * Authors:
33 *   Brian Paul
34 *   Keith Whitwell
35 */
36
37#include "pipe/p_context.h"
38#include "pipe/p_defines.h"
39#include "pipe/p_shader_tokens.h"
40#include "util/u_math.h"
41#include "util/u_memory.h"
42#include "sp_quad.h"   /* only for #define QUAD_* tokens */
43#include "sp_tex_sample.h"
44#include "sp_tex_tile_cache.h"
45
46
47/** Set to one to help debug texture sampling */
48#define DEBUG_TEX 0
49
50
51/*
52 * Return fractional part of 'f'.  Used for computing interpolation weights.
53 * Need to be careful with negative values.
54 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
55 * of improperly weighted linear-filtered textures.
56 * The tests/texwrap.c demo is a good test.
57 */
58static INLINE float
59frac(float f)
60{
61   return f - floorf(f);
62}
63
64
65
66/**
67 * Linear interpolation macro
68 */
69static INLINE float
70lerp(float a, float v0, float v1)
71{
72   return v0 + a * (v1 - v0);
73}
74
75
76/**
77 * Do 2D/bilinear interpolation of float values.
78 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
79 * a and b are the horizontal and vertical interpolants.
80 * It's important that this function is inlined when compiled with
81 * optimization!  If we find that's not true on some systems, convert
82 * to a macro.
83 */
84static INLINE float
85lerp_2d(float a, float b,
86        float v00, float v10, float v01, float v11)
87{
88   const float temp0 = lerp(a, v00, v10);
89   const float temp1 = lerp(a, v01, v11);
90   return lerp(b, temp0, temp1);
91}
92
93
94/**
95 * As above, but 3D interpolation of 8 values.
96 */
97static INLINE float
98lerp_3d(float a, float b, float c,
99        float v000, float v100, float v010, float v110,
100        float v001, float v101, float v011, float v111)
101{
102   const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
103   const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
104   return lerp(c, temp0, temp1);
105}
106
107
108
109/**
110 * Compute coord % size for repeat wrap modes.
111 * Note that if coord is negative, coord % size doesn't give the right
112 * value.  To avoid that problem we add a large multiple of the size
113 * (rather than using a conditional).
114 */
115static INLINE int
116repeat(int coord, unsigned size)
117{
118   return (coord + size * 1024) % size;
119}
120
121
122/**
123 * Apply texture coord wrapping mode and return integer texture indexes
124 * for a vector of four texcoords (S or T or P).
125 * \param wrapMode  PIPE_TEX_WRAP_x
126 * \param s  the incoming texcoords
127 * \param size  the texture image size
128 * \param icoord  returns the integer texcoords
129 * \return  integer texture index
130 */
131static void
132wrap_nearest_repeat(const float s[4], unsigned size, int icoord[4])
133{
134   uint ch;
135   /* s limited to [0,1) */
136   /* i limited to [0,size-1] */
137   for (ch = 0; ch < 4; ch++) {
138      int i = util_ifloor(s[ch] * size);
139      icoord[ch] = repeat(i, size);
140   }
141}
142
143
144static void
145wrap_nearest_clamp(const float s[4], unsigned size, int icoord[4])
146{
147   uint ch;
148   /* s limited to [0,1] */
149   /* i limited to [0,size-1] */
150   for (ch = 0; ch < 4; ch++) {
151      if (s[ch] <= 0.0F)
152         icoord[ch] = 0;
153      else if (s[ch] >= 1.0F)
154         icoord[ch] = size - 1;
155      else
156         icoord[ch] = util_ifloor(s[ch] * size);
157   }
158}
159
160
161static void
162wrap_nearest_clamp_to_edge(const float s[4], unsigned size, int icoord[4])
163{
164   uint ch;
165   /* s limited to [min,max] */
166   /* i limited to [0, size-1] */
167   const float min = 1.0F / (2.0F * size);
168   const float max = 1.0F - min;
169   for (ch = 0; ch < 4; ch++) {
170      if (s[ch] < min)
171         icoord[ch] = 0;
172      else if (s[ch] > max)
173         icoord[ch] = size - 1;
174      else
175         icoord[ch] = util_ifloor(s[ch] * size);
176   }
177}
178
179
180static void
181wrap_nearest_clamp_to_border(const float s[4], unsigned size, int icoord[4])
182{
183   uint ch;
184   /* s limited to [min,max] */
185   /* i limited to [-1, size] */
186   const float min = -1.0F / (2.0F * size);
187   const float max = 1.0F - min;
188   for (ch = 0; ch < 4; ch++) {
189      if (s[ch] <= min)
190         icoord[ch] = -1;
191      else if (s[ch] >= max)
192         icoord[ch] = size;
193      else
194         icoord[ch] = util_ifloor(s[ch] * size);
195   }
196}
197
198
199static void
200wrap_nearest_mirror_repeat(const float s[4], unsigned size, int icoord[4])
201{
202   uint ch;
203   const float min = 1.0F / (2.0F * size);
204   const float max = 1.0F - min;
205   for (ch = 0; ch < 4; ch++) {
206      const int flr = util_ifloor(s[ch]);
207      float u = frac(s[ch]);
208      if (flr & 1)
209         u = 1.0F - u;
210      if (u < min)
211         icoord[ch] = 0;
212      else if (u > max)
213         icoord[ch] = size - 1;
214      else
215         icoord[ch] = util_ifloor(u * size);
216   }
217}
218
219
220static void
221wrap_nearest_mirror_clamp(const float s[4], unsigned size, int icoord[4])
222{
223   uint ch;
224   for (ch = 0; ch < 4; ch++) {
225      /* s limited to [0,1] */
226      /* i limited to [0,size-1] */
227      const float u = fabsf(s[ch]);
228      if (u <= 0.0F)
229         icoord[ch] = 0;
230      else if (u >= 1.0F)
231         icoord[ch] = size - 1;
232      else
233         icoord[ch] = util_ifloor(u * size);
234   }
235}
236
237
238static void
239wrap_nearest_mirror_clamp_to_edge(const float s[4], unsigned size,
240                                  int icoord[4])
241{
242   uint ch;
243   /* s limited to [min,max] */
244   /* i limited to [0, size-1] */
245   const float min = 1.0F / (2.0F * size);
246   const float max = 1.0F - min;
247   for (ch = 0; ch < 4; ch++) {
248      const float u = fabsf(s[ch]);
249      if (u < min)
250         icoord[ch] = 0;
251      else if (u > max)
252         icoord[ch] = size - 1;
253      else
254         icoord[ch] = util_ifloor(u * size);
255   }
256}
257
258
259static void
260wrap_nearest_mirror_clamp_to_border(const float s[4], unsigned size,
261                                    int icoord[4])
262{
263   uint ch;
264   /* s limited to [min,max] */
265   /* i limited to [0, size-1] */
266   const float min = -1.0F / (2.0F * size);
267   const float max = 1.0F - min;
268   for (ch = 0; ch < 4; ch++) {
269      const float u = fabsf(s[ch]);
270      if (u < min)
271         icoord[ch] = -1;
272      else if (u > max)
273         icoord[ch] = size;
274      else
275         icoord[ch] = util_ifloor(u * size);
276   }
277}
278
279
280/**
281 * Used to compute texel locations for linear sampling for four texcoords.
282 * \param wrapMode  PIPE_TEX_WRAP_x
283 * \param s  the texcoords
284 * \param size  the texture image size
285 * \param icoord0  returns first texture indexes
286 * \param icoord1  returns second texture indexes (usually icoord0 + 1)
287 * \param w  returns blend factor/weight between texture indexes
288 * \param icoord  returns the computed integer texture coords
289 */
290static void
291wrap_linear_repeat(const float s[4], unsigned size,
292                   int icoord0[4], int icoord1[4], float w[4])
293{
294   uint ch;
295   for (ch = 0; ch < 4; ch++) {
296      float u = s[ch] * size - 0.5F;
297      icoord0[ch] = repeat(util_ifloor(u), size);
298      icoord1[ch] = repeat(icoord0[ch] + 1, size);
299      w[ch] = frac(u);
300   }
301}
302
303
304static void
305wrap_linear_clamp(const float s[4], unsigned size,
306                  int icoord0[4], int icoord1[4], float w[4])
307{
308   uint ch;
309   for (ch = 0; ch < 4; ch++) {
310      float u = CLAMP(s[ch], 0.0F, 1.0F);
311      u = u * size - 0.5f;
312      icoord0[ch] = util_ifloor(u);
313      icoord1[ch] = icoord0[ch] + 1;
314      w[ch] = frac(u);
315   }
316}
317
318
319static void
320wrap_linear_clamp_to_edge(const float s[4], unsigned size,
321                          int icoord0[4], int icoord1[4], float w[4])
322{
323   uint ch;
324   for (ch = 0; ch < 4; ch++) {
325      float u = CLAMP(s[ch], 0.0F, 1.0F);
326      u = u * size - 0.5f;
327      icoord0[ch] = util_ifloor(u);
328      icoord1[ch] = icoord0[ch] + 1;
329      if (icoord0[ch] < 0)
330         icoord0[ch] = 0;
331      if (icoord1[ch] >= (int) size)
332         icoord1[ch] = size - 1;
333      w[ch] = frac(u);
334   }
335}
336
337
338static void
339wrap_linear_clamp_to_border(const float s[4], unsigned size,
340                            int icoord0[4], int icoord1[4], float w[4])
341{
342   const float min = -1.0F / (2.0F * size);
343   const float max = 1.0F - min;
344   uint ch;
345   for (ch = 0; ch < 4; ch++) {
346      float u = CLAMP(s[ch], min, max);
347      u = u * size - 0.5f;
348      icoord0[ch] = util_ifloor(u);
349      icoord1[ch] = icoord0[ch] + 1;
350      w[ch] = frac(u);
351   }
352}
353
354
355static void
356wrap_linear_mirror_repeat(const float s[4], unsigned size,
357                          int icoord0[4], int icoord1[4], float w[4])
358{
359   uint ch;
360   for (ch = 0; ch < 4; ch++) {
361      const int flr = util_ifloor(s[ch]);
362      float u = frac(s[ch]);
363      if (flr & 1)
364         u = 1.0F - u;
365      u = u * size - 0.5F;
366      icoord0[ch] = util_ifloor(u);
367      icoord1[ch] = icoord0[ch] + 1;
368      if (icoord0[ch] < 0)
369         icoord0[ch] = 0;
370      if (icoord1[ch] >= (int) size)
371         icoord1[ch] = size - 1;
372      w[ch] = frac(u);
373   }
374}
375
376
377static void
378wrap_linear_mirror_clamp(const float s[4], unsigned size,
379                         int icoord0[4], int icoord1[4], float w[4])
380{
381   uint ch;
382   for (ch = 0; ch < 4; ch++) {
383      float u = fabsf(s[ch]);
384      if (u >= 1.0F)
385         u = (float) size;
386      else
387         u *= size;
388      u -= 0.5F;
389      icoord0[ch] = util_ifloor(u);
390      icoord1[ch] = icoord0[ch] + 1;
391      w[ch] = frac(u);
392   }
393}
394
395
396static void
397wrap_linear_mirror_clamp_to_edge(const float s[4], unsigned size,
398                                 int icoord0[4], int icoord1[4], float w[4])
399{
400   uint ch;
401   for (ch = 0; ch < 4; ch++) {
402      float u = fabsf(s[ch]);
403      if (u >= 1.0F)
404         u = (float) size;
405      else
406         u *= size;
407      u -= 0.5F;
408      icoord0[ch] = util_ifloor(u);
409      icoord1[ch] = icoord0[ch] + 1;
410      if (icoord0[ch] < 0)
411         icoord0[ch] = 0;
412      if (icoord1[ch] >= (int) size)
413         icoord1[ch] = size - 1;
414      w[ch] = frac(u);
415   }
416}
417
418
419static void
420wrap_linear_mirror_clamp_to_border(const float s[4], unsigned size,
421                                   int icoord0[4], int icoord1[4], float w[4])
422{
423   const float min = -1.0F / (2.0F * size);
424   const float max = 1.0F - min;
425   uint ch;
426   for (ch = 0; ch < 4; ch++) {
427      float u = fabsf(s[ch]);
428      if (u <= min)
429         u = min * size;
430      else if (u >= max)
431         u = max * size;
432      else
433         u *= size;
434      u -= 0.5F;
435      icoord0[ch] = util_ifloor(u);
436      icoord1[ch] = icoord0[ch] + 1;
437      w[ch] = frac(u);
438   }
439}
440
441
442/**
443 * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
444 */
445static void
446wrap_nearest_unorm_clamp(const float s[4], unsigned size, int icoord[4])
447{
448   uint ch;
449   for (ch = 0; ch < 4; ch++) {
450      int i = util_ifloor(s[ch]);
451      icoord[ch]= CLAMP(i, 0, (int) size-1);
452   }
453}
454
455
456/**
457 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
458 */
459static void
460wrap_nearest_unorm_clamp_to_border(const float s[4], unsigned size,
461                                   int icoord[4])
462{
463   uint ch;
464   for (ch = 0; ch < 4; ch++) {
465      icoord[ch]= util_ifloor( CLAMP(s[ch], -0.5F, (float) size + 0.5F) );
466   }
467}
468
469
470/**
471 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
472 */
473static void
474wrap_nearest_unorm_clamp_to_edge(const float s[4], unsigned size,
475                                 int icoord[4])
476{
477   uint ch;
478   for (ch = 0; ch < 4; ch++) {
479      icoord[ch]= util_ifloor( CLAMP(s[ch], 0.5F, (float) size - 0.5F) );
480   }
481}
482
483
484/**
485 * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
486 */
487static void
488wrap_linear_unorm_clamp(const float s[4], unsigned size,
489                        int icoord0[4], int icoord1[4], float w[4])
490{
491   uint ch;
492   for (ch = 0; ch < 4; ch++) {
493      /* Not exactly what the spec says, but it matches NVIDIA output */
494      float u = CLAMP(s[ch] - 0.5F, 0.0f, (float) size - 1.0f);
495      icoord0[ch] = util_ifloor(u);
496      icoord1[ch] = icoord0[ch] + 1;
497      w[ch] = frac(u);
498   }
499}
500
501
502/**
503 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
504 */
505static void
506wrap_linear_unorm_clamp_to_border(const float s[4], unsigned size,
507                                  int icoord0[4], int icoord1[4], float w[4])
508{
509   uint ch;
510   for (ch = 0; ch < 4; ch++) {
511      float u = CLAMP(s[ch], -0.5F, (float) size + 0.5F);
512      u -= 0.5F;
513      icoord0[ch] = util_ifloor(u);
514      icoord1[ch] = icoord0[ch] + 1;
515      if (icoord1[ch] > (int) size - 1)
516         icoord1[ch] = size - 1;
517      w[ch] = frac(u);
518   }
519}
520
521
522/**
523 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
524 */
525static void
526wrap_linear_unorm_clamp_to_edge(const float s[4], unsigned size,
527                                int icoord0[4], int icoord1[4], float w[4])
528{
529   uint ch;
530   for (ch = 0; ch < 4; ch++) {
531      float u = CLAMP(s[ch], +0.5F, (float) size - 0.5F);
532      u -= 0.5F;
533      icoord0[ch] = util_ifloor(u);
534      icoord1[ch] = icoord0[ch] + 1;
535      if (icoord1[ch] > (int) size - 1)
536         icoord1[ch] = size - 1;
537      w[ch] = frac(u);
538   }
539}
540
541
542/**
543 * Do coordinate to array index conversion.  For array textures.
544 */
545static INLINE void
546wrap_array_layer(const float coord[4], unsigned size, int layer[4])
547{
548   uint ch;
549   for (ch = 0; ch < 4; ch++) {
550      int c = util_ifloor(coord[ch] + 0.5F);
551      layer[ch] = CLAMP(c, 0, size - 1);
552   }
553}
554
555
556/**
557 * Examine the quad's texture coordinates to compute the partial
558 * derivatives w.r.t X and Y, then compute lambda (level of detail).
559 */
560static float
561compute_lambda_1d(const struct sp_sampler_variant *samp,
562                  const float s[QUAD_SIZE],
563                  const float t[QUAD_SIZE],
564                  const float p[QUAD_SIZE])
565{
566   const struct pipe_resource *texture = samp->view->texture;
567   float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
568   float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
569   float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level);
570
571   return util_fast_log2(rho);
572}
573
574
575static float
576compute_lambda_2d(const struct sp_sampler_variant *samp,
577                  const float s[QUAD_SIZE],
578                  const float t[QUAD_SIZE],
579                  const float p[QUAD_SIZE])
580{
581   const struct pipe_resource *texture = samp->view->texture;
582   float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
583   float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
584   float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
585   float dtdy = fabsf(t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]);
586   float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level);
587   float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, samp->view->u.tex.first_level);
588   float rho  = MAX2(maxx, maxy);
589
590   return util_fast_log2(rho);
591}
592
593
594static float
595compute_lambda_3d(const struct sp_sampler_variant *samp,
596                  const float s[QUAD_SIZE],
597                  const float t[QUAD_SIZE],
598                  const float p[QUAD_SIZE])
599{
600   const struct pipe_resource *texture = samp->view->texture;
601   float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
602   float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
603   float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
604   float dtdy = fabsf(t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]);
605   float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
606   float dpdy = fabsf(p[QUAD_TOP_LEFT]     - p[QUAD_BOTTOM_LEFT]);
607   float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level);
608   float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, samp->view->u.tex.first_level);
609   float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, samp->view->u.tex.first_level);
610   float rho;
611
612   rho = MAX2(maxx, maxy);
613   rho = MAX2(rho, maxz);
614
615   return util_fast_log2(rho);
616}
617
618
619/**
620 * Compute lambda for a vertex texture sampler.
621 * Since there aren't derivatives to use, just return 0.
622 */
623static float
624compute_lambda_vert(const struct sp_sampler_variant *samp,
625                    const float s[QUAD_SIZE],
626                    const float t[QUAD_SIZE],
627                    const float p[QUAD_SIZE])
628{
629   return 0.0f;
630}
631
632
633
634/**
635 * Get a texel from a texture, using the texture tile cache.
636 *
637 * \param addr  the template tex address containing cube, z, face info.
638 * \param x  the x coord of texel within 2D image
639 * \param y  the y coord of texel within 2D image
640 * \param rgba  the quad to put the texel/color into
641 *
642 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
643 * sp_get_cached_tile_tex() function.  Also, get 4 texels instead of 1...
644 */
645
646
647
648
649static INLINE const float *
650get_texel_2d_no_border(const struct sp_sampler_variant *samp,
651		       union tex_tile_address addr, int x, int y)
652{
653   const struct softpipe_tex_cached_tile *tile;
654
655   addr.bits.x = x / TILE_SIZE;
656   addr.bits.y = y / TILE_SIZE;
657   y %= TILE_SIZE;
658   x %= TILE_SIZE;
659
660   tile = sp_get_cached_tile_tex(samp->cache, addr);
661
662   return &tile->data.color[y][x][0];
663}
664
665
666static INLINE const float *
667get_texel_2d(const struct sp_sampler_variant *samp,
668	     union tex_tile_address addr, int x, int y)
669{
670   const struct pipe_resource *texture = samp->view->texture;
671   unsigned level = addr.bits.level;
672
673   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
674       y < 0 || y >= (int) u_minify(texture->height0, level)) {
675      return samp->sampler->border_color;
676   }
677   else {
678      return get_texel_2d_no_border( samp, addr, x, y );
679   }
680}
681
682
683/* Gather a quad of adjacent texels within a tile:
684 */
685static INLINE void
686get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_variant *samp,
687					union tex_tile_address addr,
688					unsigned x, unsigned y,
689					const float *out[4])
690{
691   const struct softpipe_tex_cached_tile *tile;
692
693   addr.bits.x = x / TILE_SIZE;
694   addr.bits.y = y / TILE_SIZE;
695   y %= TILE_SIZE;
696   x %= TILE_SIZE;
697
698   tile = sp_get_cached_tile_tex(samp->cache, addr);
699
700   out[0] = &tile->data.color[y  ][x  ][0];
701   out[1] = &tile->data.color[y  ][x+1][0];
702   out[2] = &tile->data.color[y+1][x  ][0];
703   out[3] = &tile->data.color[y+1][x+1][0];
704}
705
706
707/* Gather a quad of potentially non-adjacent texels:
708 */
709static INLINE void
710get_texel_quad_2d_no_border(const struct sp_sampler_variant *samp,
711			    union tex_tile_address addr,
712			    int x0, int y0,
713			    int x1, int y1,
714			    const float *out[4])
715{
716   out[0] = get_texel_2d_no_border( samp, addr, x0, y0 );
717   out[1] = get_texel_2d_no_border( samp, addr, x1, y0 );
718   out[2] = get_texel_2d_no_border( samp, addr, x0, y1 );
719   out[3] = get_texel_2d_no_border( samp, addr, x1, y1 );
720}
721
722/* Can involve a lot of unnecessary checks for border color:
723 */
724static INLINE void
725get_texel_quad_2d(const struct sp_sampler_variant *samp,
726		  union tex_tile_address addr,
727		  int x0, int y0,
728		  int x1, int y1,
729		  const float *out[4])
730{
731   out[0] = get_texel_2d( samp, addr, x0, y0 );
732   out[1] = get_texel_2d( samp, addr, x1, y0 );
733   out[3] = get_texel_2d( samp, addr, x1, y1 );
734   out[2] = get_texel_2d( samp, addr, x0, y1 );
735}
736
737
738
739/* 3d variants:
740 */
741static INLINE const float *
742get_texel_3d_no_border(const struct sp_sampler_variant *samp,
743                       union tex_tile_address addr, int x, int y, int z)
744{
745   const struct softpipe_tex_cached_tile *tile;
746
747   addr.bits.x = x / TILE_SIZE;
748   addr.bits.y = y / TILE_SIZE;
749   addr.bits.z = z;
750   y %= TILE_SIZE;
751   x %= TILE_SIZE;
752
753   tile = sp_get_cached_tile_tex(samp->cache, addr);
754
755   return &tile->data.color[y][x][0];
756}
757
758
759static INLINE const float *
760get_texel_3d(const struct sp_sampler_variant *samp,
761	     union tex_tile_address addr, int x, int y, int z)
762{
763   const struct pipe_resource *texture = samp->view->texture;
764   unsigned level = addr.bits.level;
765
766   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
767       y < 0 || y >= (int) u_minify(texture->height0, level) ||
768       z < 0 || z >= (int) u_minify(texture->depth0, level)) {
769      return samp->sampler->border_color;
770   }
771   else {
772      return get_texel_3d_no_border( samp, addr, x, y, z );
773   }
774}
775
776
777/* Get texel pointer for 1D array texture */
778static INLINE const float *
779get_texel_1d_array(const struct sp_sampler_variant *samp,
780                   union tex_tile_address addr, int x, int y)
781{
782   const struct pipe_resource *texture = samp->view->texture;
783   unsigned level = addr.bits.level;
784
785   if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
786      return samp->sampler->border_color;
787   }
788   else {
789      return get_texel_2d_no_border(samp, addr, x, y);
790   }
791}
792
793
794/* Get texel pointer for 2D array texture */
795static INLINE const float *
796get_texel_2d_array(const struct sp_sampler_variant *samp,
797                   union tex_tile_address addr, int x, int y, int layer)
798{
799   const struct pipe_resource *texture = samp->view->texture;
800   unsigned level = addr.bits.level;
801
802   assert(layer < texture->array_size);
803
804   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
805       y < 0 || y >= (int) u_minify(texture->height0, level)) {
806      return samp->sampler->border_color;
807   }
808   else {
809      return get_texel_3d_no_border(samp, addr, x, y, layer);
810   }
811}
812
813
814/**
815 * Given the logbase2 of a mipmap's base level size and a mipmap level,
816 * return the size (in texels) of that mipmap level.
817 * For example, if level[0].width = 256 then base_pot will be 8.
818 * If level = 2, then we'll return 64 (the width at level=2).
819 * Return 1 if level > base_pot.
820 */
821static INLINE unsigned
822pot_level_size(unsigned base_pot, unsigned level)
823{
824   return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
825}
826
827
828static void
829print_sample(const char *function, float rgba[NUM_CHANNELS][QUAD_SIZE])
830{
831   debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
832                function,
833                rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
834                rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
835                rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
836                rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
837}
838
839
840/* Some image-filter fastpaths:
841 */
842static INLINE void
843img_filter_2d_linear_repeat_POT(struct tgsi_sampler *tgsi_sampler,
844                                const float s[QUAD_SIZE],
845                                const float t[QUAD_SIZE],
846                                const float p[QUAD_SIZE],
847                                const float c0[QUAD_SIZE],
848                                enum tgsi_sampler_control control,
849                                float rgba[NUM_CHANNELS][QUAD_SIZE])
850{
851   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
852   unsigned  j;
853   unsigned level = samp->level;
854   unsigned xpot = pot_level_size(samp->xpot, level);
855   unsigned ypot = pot_level_size(samp->ypot, level);
856   unsigned xmax = (xpot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, xpot) - 1; */
857   unsigned ymax = (ypot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, ypot) - 1; */
858   union tex_tile_address addr;
859
860   addr.value = 0;
861   addr.bits.level = samp->level;
862
863   for (j = 0; j < QUAD_SIZE; j++) {
864      int c;
865
866      float u = s[j] * xpot - 0.5F;
867      float v = t[j] * ypot - 0.5F;
868
869      int uflr = util_ifloor(u);
870      int vflr = util_ifloor(v);
871
872      float xw = u - (float)uflr;
873      float yw = v - (float)vflr;
874
875      int x0 = uflr & (xpot - 1);
876      int y0 = vflr & (ypot - 1);
877
878      const float *tx[4];
879
880      /* Can we fetch all four at once:
881       */
882      if (x0 < xmax && y0 < ymax) {
883         get_texel_quad_2d_no_border_single_tile(samp, addr, x0, y0, tx);
884      }
885      else {
886         unsigned x1 = (x0 + 1) & (xpot - 1);
887         unsigned y1 = (y0 + 1) & (ypot - 1);
888         get_texel_quad_2d_no_border(samp, addr, x0, y0, x1, y1, tx);
889      }
890
891      /* interpolate R, G, B, A */
892      for (c = 0; c < 4; c++) {
893         rgba[c][j] = lerp_2d(xw, yw,
894                              tx[0][c], tx[1][c],
895                              tx[2][c], tx[3][c]);
896      }
897   }
898
899   if (DEBUG_TEX) {
900      print_sample(__FUNCTION__, rgba);
901   }
902}
903
904
905static INLINE void
906img_filter_2d_nearest_repeat_POT(struct tgsi_sampler *tgsi_sampler,
907                                 const float s[QUAD_SIZE],
908                                 const float t[QUAD_SIZE],
909                                 const float p[QUAD_SIZE],
910                                 const float c0[QUAD_SIZE],
911                                 enum tgsi_sampler_control control,
912                                 float rgba[NUM_CHANNELS][QUAD_SIZE])
913{
914   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
915   unsigned  j;
916   unsigned level = samp->level;
917   unsigned xpot = pot_level_size(samp->xpot, level);
918   unsigned ypot = pot_level_size(samp->ypot, level);
919   union tex_tile_address addr;
920
921   addr.value = 0;
922   addr.bits.level = samp->level;
923
924   for (j = 0; j < QUAD_SIZE; j++) {
925      int c;
926
927      float u = s[j] * xpot;
928      float v = t[j] * ypot;
929
930      int uflr = util_ifloor(u);
931      int vflr = util_ifloor(v);
932
933      int x0 = uflr & (xpot - 1);
934      int y0 = vflr & (ypot - 1);
935
936      const float *out = get_texel_2d_no_border(samp, addr, x0, y0);
937
938      for (c = 0; c < 4; c++) {
939         rgba[c][j] = out[c];
940      }
941   }
942
943   if (DEBUG_TEX) {
944      print_sample(__FUNCTION__, rgba);
945   }
946}
947
948
949static INLINE void
950img_filter_2d_nearest_clamp_POT(struct tgsi_sampler *tgsi_sampler,
951                                const float s[QUAD_SIZE],
952                                const float t[QUAD_SIZE],
953                                const float p[QUAD_SIZE],
954                                const float c0[QUAD_SIZE],
955                                enum tgsi_sampler_control control,
956                                float rgba[NUM_CHANNELS][QUAD_SIZE])
957{
958   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
959   unsigned  j;
960   unsigned level = samp->level;
961   unsigned xpot = pot_level_size(samp->xpot, level);
962   unsigned ypot = pot_level_size(samp->ypot, level);
963   union tex_tile_address addr;
964
965   addr.value = 0;
966   addr.bits.level = samp->level;
967
968   for (j = 0; j < QUAD_SIZE; j++) {
969      int c;
970
971      float u = s[j] * xpot;
972      float v = t[j] * ypot;
973
974      int x0, y0;
975      const float *out;
976
977      x0 = util_ifloor(u);
978      if (x0 < 0)
979         x0 = 0;
980      else if (x0 > xpot - 1)
981         x0 = xpot - 1;
982
983      y0 = util_ifloor(v);
984      if (y0 < 0)
985         y0 = 0;
986      else if (y0 > ypot - 1)
987         y0 = ypot - 1;
988
989      out = get_texel_2d_no_border(samp, addr, x0, y0);
990
991      for (c = 0; c < 4; c++) {
992         rgba[c][j] = out[c];
993      }
994   }
995
996   if (DEBUG_TEX) {
997      print_sample(__FUNCTION__, rgba);
998   }
999}
1000
1001
1002static void
1003img_filter_1d_nearest(struct tgsi_sampler *tgsi_sampler,
1004                        const float s[QUAD_SIZE],
1005                        const float t[QUAD_SIZE],
1006                        const float p[QUAD_SIZE],
1007                        const float c0[QUAD_SIZE],
1008                        enum tgsi_sampler_control control,
1009                        float rgba[NUM_CHANNELS][QUAD_SIZE])
1010{
1011   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1012   const struct pipe_resource *texture = samp->view->texture;
1013   unsigned level0, j;
1014   int width;
1015   int x[4];
1016   union tex_tile_address addr;
1017
1018   level0 = samp->level;
1019   width = u_minify(texture->width0, level0);
1020
1021   assert(width > 0);
1022
1023   addr.value = 0;
1024   addr.bits.level = samp->level;
1025
1026   samp->nearest_texcoord_s(s, width, x);
1027
1028   for (j = 0; j < QUAD_SIZE; j++) {
1029      const float *out = get_texel_2d(samp, addr, x[j], 0);
1030      int c;
1031      for (c = 0; c < 4; c++) {
1032         rgba[c][j] = out[c];
1033      }
1034   }
1035
1036   if (DEBUG_TEX) {
1037      print_sample(__FUNCTION__, rgba);
1038   }
1039}
1040
1041
1042static void
1043img_filter_1d_array_nearest(struct tgsi_sampler *tgsi_sampler,
1044                            const float s[QUAD_SIZE],
1045                            const float t[QUAD_SIZE],
1046                            const float p[QUAD_SIZE],
1047                            const float c0[QUAD_SIZE],
1048                            enum tgsi_sampler_control control,
1049                            float rgba[NUM_CHANNELS][QUAD_SIZE])
1050{
1051   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1052   const struct pipe_resource *texture = samp->view->texture;
1053   unsigned level0, j;
1054   int width;
1055   int x[4], layer[4];
1056   union tex_tile_address addr;
1057
1058   level0 = samp->level;
1059   width = u_minify(texture->width0, level0);
1060
1061   assert(width > 0);
1062
1063   addr.value = 0;
1064   addr.bits.level = samp->level;
1065
1066   samp->nearest_texcoord_s(s, width, x);
1067   wrap_array_layer(t, texture->array_size, layer);
1068
1069   for (j = 0; j < QUAD_SIZE; j++) {
1070      const float *out = get_texel_1d_array(samp, addr, x[j], layer[j]);
1071      int c;
1072      for (c = 0; c < 4; c++) {
1073         rgba[c][j] = out[c];
1074      }
1075   }
1076
1077   if (DEBUG_TEX) {
1078      print_sample(__FUNCTION__, rgba);
1079   }
1080}
1081
1082
1083static void
1084img_filter_2d_nearest(struct tgsi_sampler *tgsi_sampler,
1085                      const float s[QUAD_SIZE],
1086                      const float t[QUAD_SIZE],
1087                      const float p[QUAD_SIZE],
1088                      const float c0[QUAD_SIZE],
1089                      enum tgsi_sampler_control control,
1090                      float rgba[NUM_CHANNELS][QUAD_SIZE])
1091{
1092   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1093   const struct pipe_resource *texture = samp->view->texture;
1094   unsigned level0, j;
1095   int width, height;
1096   int x[4], y[4];
1097   union tex_tile_address addr;
1098
1099
1100   level0 = samp->level;
1101   width = u_minify(texture->width0, level0);
1102   height = u_minify(texture->height0, level0);
1103
1104   assert(width > 0);
1105   assert(height > 0);
1106
1107   addr.value = 0;
1108   addr.bits.level = samp->level;
1109
1110   samp->nearest_texcoord_s(s, width, x);
1111   samp->nearest_texcoord_t(t, height, y);
1112
1113   for (j = 0; j < QUAD_SIZE; j++) {
1114      const float *out = get_texel_2d(samp, addr, x[j], y[j]);
1115      int c;
1116      for (c = 0; c < 4; c++) {
1117         rgba[c][j] = out[c];
1118      }
1119   }
1120
1121   if (DEBUG_TEX) {
1122      print_sample(__FUNCTION__, rgba);
1123   }
1124}
1125
1126
1127static void
1128img_filter_2d_array_nearest(struct tgsi_sampler *tgsi_sampler,
1129                            const float s[QUAD_SIZE],
1130                            const float t[QUAD_SIZE],
1131                            const float p[QUAD_SIZE],
1132                            const float c0[QUAD_SIZE],
1133                            enum tgsi_sampler_control control,
1134                            float rgba[NUM_CHANNELS][QUAD_SIZE])
1135{
1136   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1137   const struct pipe_resource *texture = samp->view->texture;
1138   unsigned level0, j;
1139   int width, height;
1140   int x[4], y[4], layer[4];
1141   union tex_tile_address addr;
1142
1143   level0 = samp->level;
1144   width = u_minify(texture->width0, level0);
1145   height = u_minify(texture->height0, level0);
1146
1147   assert(width > 0);
1148   assert(height > 0);
1149
1150   addr.value = 0;
1151   addr.bits.level = samp->level;
1152
1153   samp->nearest_texcoord_s(s, width, x);
1154   samp->nearest_texcoord_t(t, height, y);
1155   wrap_array_layer(p, texture->array_size, layer);
1156
1157   for (j = 0; j < QUAD_SIZE; j++) {
1158      const float *out = get_texel_2d_array(samp, addr, x[j], y[j], layer[j]);
1159      int c;
1160      for (c = 0; c < 4; c++) {
1161         rgba[c][j] = out[c];
1162      }
1163   }
1164
1165   if (DEBUG_TEX) {
1166      print_sample(__FUNCTION__, rgba);
1167   }
1168}
1169
1170
1171static INLINE union tex_tile_address
1172face(union tex_tile_address addr, unsigned face )
1173{
1174   addr.bits.face = face;
1175   return addr;
1176}
1177
1178
1179static void
1180img_filter_cube_nearest(struct tgsi_sampler *tgsi_sampler,
1181                        const float s[QUAD_SIZE],
1182                        const float t[QUAD_SIZE],
1183                        const float p[QUAD_SIZE],
1184                        const float c0[QUAD_SIZE],
1185                        enum tgsi_sampler_control control,
1186                        float rgba[NUM_CHANNELS][QUAD_SIZE])
1187{
1188   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1189   const struct pipe_resource *texture = samp->view->texture;
1190   const unsigned *faces = samp->faces; /* zero when not cube-mapping */
1191   unsigned level0, j;
1192   int width, height;
1193   int x[4], y[4];
1194   union tex_tile_address addr;
1195
1196   level0 = samp->level;
1197   width = u_minify(texture->width0, level0);
1198   height = u_minify(texture->height0, level0);
1199
1200   assert(width > 0);
1201   assert(height > 0);
1202
1203   addr.value = 0;
1204   addr.bits.level = samp->level;
1205
1206   samp->nearest_texcoord_s(s, width, x);
1207   samp->nearest_texcoord_t(t, height, y);
1208
1209   for (j = 0; j < QUAD_SIZE; j++) {
1210      const float *out = get_texel_2d(samp, face(addr, faces[j]), x[j], y[j]);
1211      int c;
1212      for (c = 0; c < 4; c++) {
1213         rgba[c][j] = out[c];
1214      }
1215   }
1216
1217   if (DEBUG_TEX) {
1218      print_sample(__FUNCTION__, rgba);
1219   }
1220}
1221
1222
1223static void
1224img_filter_3d_nearest(struct tgsi_sampler *tgsi_sampler,
1225                      const float s[QUAD_SIZE],
1226                      const float t[QUAD_SIZE],
1227                      const float p[QUAD_SIZE],
1228                      const float c0[QUAD_SIZE],
1229                      enum tgsi_sampler_control control,
1230                      float rgba[NUM_CHANNELS][QUAD_SIZE])
1231{
1232   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1233   const struct pipe_resource *texture = samp->view->texture;
1234   unsigned level0, j;
1235   int width, height, depth;
1236   int x[4], y[4], z[4];
1237   union tex_tile_address addr;
1238
1239   level0 = samp->level;
1240   width = u_minify(texture->width0, level0);
1241   height = u_minify(texture->height0, level0);
1242   depth = u_minify(texture->depth0, level0);
1243
1244   assert(width > 0);
1245   assert(height > 0);
1246   assert(depth > 0);
1247
1248   samp->nearest_texcoord_s(s, width,  x);
1249   samp->nearest_texcoord_t(t, height, y);
1250   samp->nearest_texcoord_p(p, depth,  z);
1251
1252   addr.value = 0;
1253   addr.bits.level = samp->level;
1254
1255   for (j = 0; j < QUAD_SIZE; j++) {
1256      const float *out = get_texel_3d(samp, addr, x[j], y[j], z[j]);
1257      int c;
1258      for (c = 0; c < 4; c++) {
1259         rgba[c][j] = out[c];
1260      }
1261   }
1262}
1263
1264
1265static void
1266img_filter_1d_linear(struct tgsi_sampler *tgsi_sampler,
1267                     const float s[QUAD_SIZE],
1268                     const float t[QUAD_SIZE],
1269                     const float p[QUAD_SIZE],
1270                     const float c0[QUAD_SIZE],
1271                     enum tgsi_sampler_control control,
1272                     float rgba[NUM_CHANNELS][QUAD_SIZE])
1273{
1274   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1275   const struct pipe_resource *texture = samp->view->texture;
1276   unsigned level0, j;
1277   int width;
1278   int x0[4], x1[4];
1279   float xw[4]; /* weights */
1280   union tex_tile_address addr;
1281
1282   level0 = samp->level;
1283   width = u_minify(texture->width0, level0);
1284
1285   assert(width > 0);
1286
1287   addr.value = 0;
1288   addr.bits.level = samp->level;
1289
1290   samp->linear_texcoord_s(s, width, x0, x1, xw);
1291
1292   for (j = 0; j < QUAD_SIZE; j++) {
1293      const float *tx0 = get_texel_2d(samp, addr, x0[j], 0);
1294      const float *tx1 = get_texel_2d(samp, addr, x1[j], 0);
1295      int c;
1296
1297      /* interpolate R, G, B, A */
1298      for (c = 0; c < 4; c++) {
1299         rgba[c][j] = lerp(xw[j], tx0[c], tx1[c]);
1300      }
1301   }
1302}
1303
1304
1305static void
1306img_filter_1d_array_linear(struct tgsi_sampler *tgsi_sampler,
1307                           const float s[QUAD_SIZE],
1308                           const float t[QUAD_SIZE],
1309                           const float p[QUAD_SIZE],
1310                           const float c0[QUAD_SIZE],
1311                           enum tgsi_sampler_control control,
1312                           float rgba[NUM_CHANNELS][QUAD_SIZE])
1313{
1314   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1315   const struct pipe_resource *texture = samp->view->texture;
1316   unsigned level0, j;
1317   int width;
1318   int x0[4], x1[4], layer[4];
1319   float xw[4]; /* weights */
1320   union tex_tile_address addr;
1321
1322   level0 = samp->level;
1323   width = u_minify(texture->width0, level0);
1324
1325   assert(width > 0);
1326
1327   addr.value = 0;
1328   addr.bits.level = samp->level;
1329
1330   samp->linear_texcoord_s(s, width, x0, x1, xw);
1331   wrap_array_layer(t, texture->array_size, layer);
1332
1333   for (j = 0; j < QUAD_SIZE; j++) {
1334      const float *tx0 = get_texel_1d_array(samp, addr, x0[j], layer[j]);
1335      const float *tx1 = get_texel_1d_array(samp, addr, x1[j], layer[j]);
1336      int c;
1337
1338      /* interpolate R, G, B, A */
1339      for (c = 0; c < 4; c++) {
1340         rgba[c][j] = lerp(xw[j], tx0[c], tx1[c]);
1341      }
1342   }
1343}
1344
1345
1346static void
1347img_filter_2d_linear(struct tgsi_sampler *tgsi_sampler,
1348                     const float s[QUAD_SIZE],
1349                     const float t[QUAD_SIZE],
1350                     const float p[QUAD_SIZE],
1351                     const float c0[QUAD_SIZE],
1352                     enum tgsi_sampler_control control,
1353                     float rgba[NUM_CHANNELS][QUAD_SIZE])
1354{
1355   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1356   const struct pipe_resource *texture = samp->view->texture;
1357   unsigned level0, j;
1358   int width, height;
1359   int x0[4], y0[4], x1[4], y1[4];
1360   float xw[4], yw[4]; /* weights */
1361   union tex_tile_address addr;
1362
1363   level0 = samp->level;
1364   width = u_minify(texture->width0, level0);
1365   height = u_minify(texture->height0, level0);
1366
1367   assert(width > 0);
1368   assert(height > 0);
1369
1370   addr.value = 0;
1371   addr.bits.level = samp->level;
1372
1373   samp->linear_texcoord_s(s, width,  x0, x1, xw);
1374   samp->linear_texcoord_t(t, height, y0, y1, yw);
1375
1376   for (j = 0; j < QUAD_SIZE; j++) {
1377      const float *tx0 = get_texel_2d(samp, addr, x0[j], y0[j]);
1378      const float *tx1 = get_texel_2d(samp, addr, x1[j], y0[j]);
1379      const float *tx2 = get_texel_2d(samp, addr, x0[j], y1[j]);
1380      const float *tx3 = get_texel_2d(samp, addr, x1[j], y1[j]);
1381      int c;
1382
1383      /* interpolate R, G, B, A */
1384      for (c = 0; c < 4; c++) {
1385         rgba[c][j] = lerp_2d(xw[j], yw[j],
1386                              tx0[c], tx1[c],
1387                              tx2[c], tx3[c]);
1388      }
1389   }
1390}
1391
1392
1393static void
1394img_filter_2d_array_linear(struct tgsi_sampler *tgsi_sampler,
1395                           const float s[QUAD_SIZE],
1396                           const float t[QUAD_SIZE],
1397                           const float p[QUAD_SIZE],
1398                           const float c0[QUAD_SIZE],
1399                           enum tgsi_sampler_control control,
1400                           float rgba[NUM_CHANNELS][QUAD_SIZE])
1401{
1402   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1403   const struct pipe_resource *texture = samp->view->texture;
1404   unsigned level0, j;
1405   int width, height;
1406   int x0[4], y0[4], x1[4], y1[4], layer[4];
1407   float xw[4], yw[4]; /* weights */
1408   union tex_tile_address addr;
1409
1410   level0 = samp->level;
1411   width = u_minify(texture->width0, level0);
1412   height = u_minify(texture->height0, level0);
1413
1414   assert(width > 0);
1415   assert(height > 0);
1416
1417   addr.value = 0;
1418   addr.bits.level = samp->level;
1419
1420   samp->linear_texcoord_s(s, width,  x0, x1, xw);
1421   samp->linear_texcoord_t(t, height, y0, y1, yw);
1422   wrap_array_layer(p, texture->array_size, layer);
1423
1424   for (j = 0; j < QUAD_SIZE; j++) {
1425      const float *tx0 = get_texel_2d_array(samp, addr, x0[j], y0[j], layer[j]);
1426      const float *tx1 = get_texel_2d_array(samp, addr, x1[j], y0[j], layer[j]);
1427      const float *tx2 = get_texel_2d_array(samp, addr, x0[j], y1[j], layer[j]);
1428      const float *tx3 = get_texel_2d_array(samp, addr, x1[j], y1[j], layer[j]);
1429      int c;
1430
1431      /* interpolate R, G, B, A */
1432      for (c = 0; c < 4; c++) {
1433         rgba[c][j] = lerp_2d(xw[j], yw[j],
1434                              tx0[c], tx1[c],
1435                              tx2[c], tx3[c]);
1436      }
1437   }
1438}
1439
1440
1441static void
1442img_filter_cube_linear(struct tgsi_sampler *tgsi_sampler,
1443                       const float s[QUAD_SIZE],
1444                       const float t[QUAD_SIZE],
1445                       const float p[QUAD_SIZE],
1446                       const float c0[QUAD_SIZE],
1447                       enum tgsi_sampler_control control,
1448                       float rgba[NUM_CHANNELS][QUAD_SIZE])
1449{
1450   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1451   const struct pipe_resource *texture = samp->view->texture;
1452   const unsigned *faces = samp->faces; /* zero when not cube-mapping */
1453   unsigned level0, j;
1454   int width, height;
1455   int x0[4], y0[4], x1[4], y1[4];
1456   float xw[4], yw[4]; /* weights */
1457   union tex_tile_address addr;
1458
1459   level0 = samp->level;
1460   width = u_minify(texture->width0, level0);
1461   height = u_minify(texture->height0, level0);
1462
1463   assert(width > 0);
1464   assert(height > 0);
1465
1466   addr.value = 0;
1467   addr.bits.level = samp->level;
1468
1469   samp->linear_texcoord_s(s, width,  x0, x1, xw);
1470   samp->linear_texcoord_t(t, height, y0, y1, yw);
1471
1472   for (j = 0; j < QUAD_SIZE; j++) {
1473      union tex_tile_address addrj = face(addr, faces[j]);
1474      const float *tx0 = get_texel_2d(samp, addrj, x0[j], y0[j]);
1475      const float *tx1 = get_texel_2d(samp, addrj, x1[j], y0[j]);
1476      const float *tx2 = get_texel_2d(samp, addrj, x0[j], y1[j]);
1477      const float *tx3 = get_texel_2d(samp, addrj, x1[j], y1[j]);
1478      int c;
1479
1480      /* interpolate R, G, B, A */
1481      for (c = 0; c < 4; c++) {
1482         rgba[c][j] = lerp_2d(xw[j], yw[j],
1483                              tx0[c], tx1[c],
1484                              tx2[c], tx3[c]);
1485      }
1486   }
1487}
1488
1489
1490static void
1491img_filter_3d_linear(struct tgsi_sampler *tgsi_sampler,
1492                     const float s[QUAD_SIZE],
1493                     const float t[QUAD_SIZE],
1494                     const float p[QUAD_SIZE],
1495                     const float c0[QUAD_SIZE],
1496                     enum tgsi_sampler_control control,
1497                     float rgba[NUM_CHANNELS][QUAD_SIZE])
1498{
1499   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1500   const struct pipe_resource *texture = samp->view->texture;
1501   unsigned level0, j;
1502   int width, height, depth;
1503   int x0[4], x1[4], y0[4], y1[4], z0[4], z1[4];
1504   float xw[4], yw[4], zw[4]; /* interpolation weights */
1505   union tex_tile_address addr;
1506
1507   level0 = samp->level;
1508   width = u_minify(texture->width0, level0);
1509   height = u_minify(texture->height0, level0);
1510   depth = u_minify(texture->depth0, level0);
1511
1512   addr.value = 0;
1513   addr.bits.level = level0;
1514
1515   assert(width > 0);
1516   assert(height > 0);
1517   assert(depth > 0);
1518
1519   samp->linear_texcoord_s(s, width,  x0, x1, xw);
1520   samp->linear_texcoord_t(t, height, y0, y1, yw);
1521   samp->linear_texcoord_p(p, depth,  z0, z1, zw);
1522
1523   for (j = 0; j < QUAD_SIZE; j++) {
1524      int c;
1525
1526      const float *tx00 = get_texel_3d(samp, addr, x0[j], y0[j], z0[j]);
1527      const float *tx01 = get_texel_3d(samp, addr, x1[j], y0[j], z0[j]);
1528      const float *tx02 = get_texel_3d(samp, addr, x0[j], y1[j], z0[j]);
1529      const float *tx03 = get_texel_3d(samp, addr, x1[j], y1[j], z0[j]);
1530
1531      const float *tx10 = get_texel_3d(samp, addr, x0[j], y0[j], z1[j]);
1532      const float *tx11 = get_texel_3d(samp, addr, x1[j], y0[j], z1[j]);
1533      const float *tx12 = get_texel_3d(samp, addr, x0[j], y1[j], z1[j]);
1534      const float *tx13 = get_texel_3d(samp, addr, x1[j], y1[j], z1[j]);
1535
1536      /* interpolate R, G, B, A */
1537      for (c = 0; c < 4; c++) {
1538         rgba[c][j] = lerp_3d(xw[j], yw[j], zw[j],
1539                              tx00[c], tx01[c],
1540                              tx02[c], tx03[c],
1541                              tx10[c], tx11[c],
1542                              tx12[c], tx13[c]);
1543      }
1544   }
1545}
1546
1547
1548/* Calculate level of detail for every fragment.
1549 * Note that lambda has already been biased by global LOD bias.
1550 */
1551static INLINE void
1552compute_lod(const struct pipe_sampler_state *sampler,
1553            const float biased_lambda,
1554            const float lodbias[QUAD_SIZE],
1555            float lod[QUAD_SIZE])
1556{
1557   uint i;
1558
1559   for (i = 0; i < QUAD_SIZE; i++) {
1560      lod[i] = biased_lambda + lodbias[i];
1561      lod[i] = CLAMP(lod[i], sampler->min_lod, sampler->max_lod);
1562   }
1563}
1564
1565
1566static void
1567mip_filter_linear(struct tgsi_sampler *tgsi_sampler,
1568                  const float s[QUAD_SIZE],
1569                  const float t[QUAD_SIZE],
1570                  const float p[QUAD_SIZE],
1571                  const float c0[QUAD_SIZE],
1572                  enum tgsi_sampler_control control,
1573                  float rgba[NUM_CHANNELS][QUAD_SIZE])
1574{
1575   struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1576   const struct pipe_resource *texture = samp->view->texture;
1577   int level0;
1578   float lambda;
1579   float lod[QUAD_SIZE];
1580
1581   if (control == tgsi_sampler_lod_bias) {
1582      lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
1583      compute_lod(samp->sampler, lambda, c0, lod);
1584   } else {
1585      assert(control == tgsi_sampler_lod_explicit);
1586
1587      memcpy(lod, c0, sizeof(lod));
1588   }
1589
1590   /* XXX: Take into account all lod values.
1591    */
1592   lambda = lod[0];
1593   level0 = samp->view->u.tex.first_level + (int)lambda;
1594
1595   if (lambda < 0.0) {
1596      samp->level = samp->view->u.tex.first_level;
1597      samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1598   }
1599   else if (level0 >= texture->last_level) {
1600      samp->level = texture->last_level;
1601      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1602   }
1603   else {
1604      float levelBlend = frac(lambda);
1605      float rgba0[4][4];
1606      float rgba1[4][4];
1607      int c,j;
1608
1609      samp->level = level0;
1610      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba0);
1611
1612      samp->level = level0+1;
1613      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba1);
1614
1615      for (j = 0; j < QUAD_SIZE; j++) {
1616         for (c = 0; c < 4; c++) {
1617            rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]);
1618         }
1619      }
1620   }
1621
1622   if (DEBUG_TEX) {
1623      print_sample(__FUNCTION__, rgba);
1624   }
1625}
1626
1627
1628/**
1629 * Compute nearest mipmap level from texcoords.
1630 * Then sample the texture level for four elements of a quad.
1631 * \param c0  the LOD bias factors, or absolute LODs (depending on control)
1632 */
1633static void
1634mip_filter_nearest(struct tgsi_sampler *tgsi_sampler,
1635                   const float s[QUAD_SIZE],
1636                   const float t[QUAD_SIZE],
1637                   const float p[QUAD_SIZE],
1638                   const float c0[QUAD_SIZE],
1639                   enum tgsi_sampler_control control,
1640                   float rgba[NUM_CHANNELS][QUAD_SIZE])
1641{
1642   struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1643   const struct pipe_resource *texture = samp->view->texture;
1644   float lambda;
1645   float lod[QUAD_SIZE];
1646
1647   if (control == tgsi_sampler_lod_bias) {
1648      lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
1649      compute_lod(samp->sampler, lambda, c0, lod);
1650   } else {
1651      assert(control == tgsi_sampler_lod_explicit);
1652
1653      memcpy(lod, c0, sizeof(lod));
1654   }
1655
1656   /* XXX: Take into account all lod values.
1657    */
1658   lambda = lod[0];
1659
1660   if (lambda < 0.0) {
1661      samp->level = samp->view->u.tex.first_level;
1662      samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1663   }
1664   else {
1665      samp->level = samp->view->u.tex.first_level + (int)(lambda + 0.5F) ;
1666      samp->level = MIN2(samp->level, (int)texture->last_level);
1667      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1668   }
1669
1670   if (DEBUG_TEX) {
1671      print_sample(__FUNCTION__, rgba);
1672   }
1673}
1674
1675
1676static void
1677mip_filter_none(struct tgsi_sampler *tgsi_sampler,
1678                const float s[QUAD_SIZE],
1679                const float t[QUAD_SIZE],
1680                const float p[QUAD_SIZE],
1681                const float c0[QUAD_SIZE],
1682                enum tgsi_sampler_control control,
1683                float rgba[NUM_CHANNELS][QUAD_SIZE])
1684{
1685   struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1686   float lambda;
1687   float lod[QUAD_SIZE];
1688
1689   if (control == tgsi_sampler_lod_bias) {
1690      lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
1691      compute_lod(samp->sampler, lambda, c0, lod);
1692   } else {
1693      assert(control == tgsi_sampler_lod_explicit);
1694
1695      memcpy(lod, c0, sizeof(lod));
1696   }
1697
1698   /* XXX: Take into account all lod values.
1699    */
1700   lambda = lod[0];
1701
1702   samp->level = samp->view->u.tex.first_level;
1703   if (lambda < 0.0) {
1704      samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1705   }
1706   else {
1707      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1708   }
1709}
1710
1711
1712/* For anisotropic filtering */
1713#define WEIGHT_LUT_SIZE 1024
1714
1715static float *weightLut = NULL;
1716
1717/**
1718 * Creates the look-up table used to speed-up EWA sampling
1719 */
1720static void
1721create_filter_table(void)
1722{
1723   unsigned i;
1724   if (!weightLut) {
1725      weightLut = (float *) malloc(WEIGHT_LUT_SIZE * sizeof(float));
1726
1727      for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
1728         float alpha = 2;
1729         float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
1730         float weight = (float) exp(-alpha * r2);
1731         weightLut[i] = weight;
1732      }
1733   }
1734}
1735
1736
1737/**
1738 * Elliptical weighted average (EWA) filter for producing high quality
1739 * anisotropic filtered results.
1740 * Based on the Higher Quality Elliptical Weighted Avarage Filter
1741 * published by Paul S. Heckbert in his Master's Thesis
1742 * "Fundamentals of Texture Mapping and Image Warping" (1989)
1743 */
1744static void
1745img_filter_2d_ewa(struct tgsi_sampler *tgsi_sampler,
1746                  const float s[QUAD_SIZE],
1747                  const float t[QUAD_SIZE],
1748                  const float p[QUAD_SIZE],
1749                  const float c0[QUAD_SIZE],
1750                  enum tgsi_sampler_control control,
1751                  const float dudx, const float dvdx,
1752                  const float dudy, const float dvdy,
1753                  float rgba[NUM_CHANNELS][QUAD_SIZE])
1754{
1755   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1756   const struct pipe_resource *texture = samp->view->texture;
1757
1758   unsigned level0 = samp->level > 0 ? samp->level : 0;
1759   float scaling = 1.0 / (1 << level0);
1760   int width = u_minify(texture->width0, level0);
1761   int height = u_minify(texture->height0, level0);
1762
1763   float ux = dudx * scaling;
1764   float vx = dvdx * scaling;
1765   float uy = dudy * scaling;
1766   float vy = dvdy * scaling;
1767
1768   /* compute ellipse coefficients to bound the region:
1769    * A*x*x + B*x*y + C*y*y = F.
1770    */
1771   float A = vx*vx+vy*vy+1;
1772   float B = -2*(ux*vx+uy*vy);
1773   float C = ux*ux+uy*uy+1;
1774   float F = A*C-B*B/4.0;
1775
1776   /* check if it is an ellipse */
1777   /* ASSERT(F > 0.0); */
1778
1779   /* Compute the ellipse's (u,v) bounding box in texture space */
1780   float d = -B*B+4.0*C*A;
1781   float box_u = 2.0 / d * sqrt(d*C*F); /* box_u -> half of bbox with   */
1782   float box_v = 2.0 / d * sqrt(A*d*F); /* box_v -> half of bbox height */
1783
1784   float rgba_temp[NUM_CHANNELS][QUAD_SIZE];
1785   float s_buffer[QUAD_SIZE];
1786   float t_buffer[QUAD_SIZE];
1787   float weight_buffer[QUAD_SIZE];
1788   unsigned buffer_next;
1789   int j;
1790   float den;// = 0.0F;
1791   float ddq;
1792   float U;// = u0 - tex_u;
1793   int v;
1794
1795   /* Scale ellipse formula to directly index the Filter Lookup Table.
1796    * i.e. scale so that F = WEIGHT_LUT_SIZE-1
1797    */
1798   double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
1799   A *= formScale;
1800   B *= formScale;
1801   C *= formScale;
1802   /* F *= formScale; */ /* no need to scale F as we don't use it below here */
1803
1804   /* For each quad, the du and dx values are the same and so the ellipse is
1805    * also the same. Note that texel/image access can only be performed using
1806    * a quad, i.e. it is not possible to get the pixel value for a single
1807    * tex coord. In order to have a better performance, the access is buffered
1808    * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is full,
1809    * then the pixel values are read from the image.
1810    */
1811   ddq = 2 * A;
1812
1813   for (j = 0; j < QUAD_SIZE; j++) {
1814      /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
1815       * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
1816       * value, q, is less than F, we're inside the ellipse
1817       */
1818      float tex_u = -0.5F + s[j] * texture->width0 * scaling;
1819      float tex_v = -0.5F + t[j] * texture->height0 * scaling;
1820
1821      int u0 = (int) floorf(tex_u - box_u);
1822      int u1 = (int) ceilf(tex_u + box_u);
1823      int v0 = (int) floorf(tex_v - box_v);
1824      int v1 = (int) ceilf(tex_v + box_v);
1825
1826      float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
1827      buffer_next = 0;
1828      den = 0;
1829      U = u0 - tex_u;
1830      for (v = v0; v <= v1; ++v) {
1831         float V = v - tex_v;
1832         float dq = A * (2 * U + 1) + B * V;
1833         float q = (C * V + B * U) * V + A * U * U;
1834
1835         int u;
1836         for (u = u0; u <= u1; ++u) {
1837            /* Note that the ellipse has been pre-scaled so F = WEIGHT_LUT_SIZE - 1 */
1838            if (q < WEIGHT_LUT_SIZE) {
1839               /* as a LUT is used, q must never be negative;
1840                * should not happen, though
1841                */
1842               const int qClamped = q >= 0.0F ? q : 0;
1843               float weight = weightLut[qClamped];
1844
1845               weight_buffer[buffer_next] = weight;
1846               s_buffer[buffer_next] = u / ((float) width);
1847               t_buffer[buffer_next] = v / ((float) height);
1848
1849               buffer_next++;
1850               if (buffer_next == QUAD_SIZE) {
1851                  /* 4 texel coords are in the buffer -> read it now */
1852                  unsigned jj;
1853                  /* it is assumed that samp->min_img_filter is set to
1854                   * img_filter_2d_nearest or one of the
1855                   * accelerated img_filter_2d_nearest_XXX functions.
1856                   */
1857                  samp->min_img_filter(tgsi_sampler, s_buffer, t_buffer, p, NULL,
1858                                        tgsi_sampler_lod_bias, rgba_temp);
1859                  for (jj = 0; jj < buffer_next; jj++) {
1860                     num[0] += weight_buffer[jj] * rgba_temp[0][jj];
1861                     num[1] += weight_buffer[jj] * rgba_temp[1][jj];
1862                     num[2] += weight_buffer[jj] * rgba_temp[2][jj];
1863                     num[3] += weight_buffer[jj] * rgba_temp[3][jj];
1864                  }
1865
1866                  buffer_next = 0;
1867               }
1868
1869               den += weight;
1870            }
1871            q += dq;
1872            dq += ddq;
1873         }
1874      }
1875
1876      /* if the tex coord buffer contains unread values, we will read them now.
1877       * Note that in most cases we have to read more pixel values than required,
1878       * however, as the img_filter_2d_nearest function(s) does not have a count
1879       * parameter, we need to read the whole quad and ignore the unused values
1880       */
1881      if (buffer_next > 0) {
1882         unsigned jj;
1883         /* it is assumed that samp->min_img_filter is set to
1884          * img_filter_2d_nearest or one of the
1885          * accelerated img_filter_2d_nearest_XXX functions.
1886          */
1887         samp->min_img_filter(tgsi_sampler, s_buffer, t_buffer, p, NULL,
1888                               tgsi_sampler_lod_bias, rgba_temp);
1889         for (jj = 0; jj < buffer_next; jj++) {
1890            num[0] += weight_buffer[jj] * rgba_temp[0][jj];
1891            num[1] += weight_buffer[jj] * rgba_temp[1][jj];
1892            num[2] += weight_buffer[jj] * rgba_temp[2][jj];
1893            num[3] += weight_buffer[jj] * rgba_temp[3][jj];
1894         }
1895      }
1896
1897      if (den <= 0.0F) {
1898         /* Reaching this place would mean
1899          * that no pixels intersected the ellipse.
1900          * This should never happen because
1901          * the filter we use always
1902          * intersects at least one pixel.
1903          */
1904
1905         /*rgba[0]=0;
1906         rgba[1]=0;
1907         rgba[2]=0;
1908         rgba[3]=0;*/
1909         /* not enough pixels in resampling, resort to direct interpolation */
1910         samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba_temp);
1911         den = 1;
1912         num[0] = rgba_temp[0][j];
1913         num[1] = rgba_temp[1][j];
1914         num[2] = rgba_temp[2][j];
1915         num[3] = rgba_temp[3][j];
1916      }
1917
1918      rgba[0][j] = num[0] / den;
1919      rgba[1][j] = num[1] / den;
1920      rgba[2][j] = num[2] / den;
1921      rgba[3][j] = num[3] / den;
1922   }
1923}
1924
1925
1926/**
1927 * Sample 2D texture using an anisotropic filter.
1928 */
1929static void
1930mip_filter_linear_aniso(struct tgsi_sampler *tgsi_sampler,
1931                        const float s[QUAD_SIZE],
1932                        const float t[QUAD_SIZE],
1933                        const float p[QUAD_SIZE],
1934                        const float c0[QUAD_SIZE],
1935                        enum tgsi_sampler_control control,
1936                        float rgba[NUM_CHANNELS][QUAD_SIZE])
1937{
1938   struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1939   const struct pipe_resource *texture = samp->view->texture;
1940   int level0;
1941   float lambda;
1942   float lod[QUAD_SIZE];
1943
1944   float s_to_u = u_minify(texture->width0, samp->view->u.tex.first_level);
1945   float t_to_v = u_minify(texture->height0, samp->view->u.tex.first_level);
1946   float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
1947   float dudy = (s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]) * s_to_u;
1948   float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
1949   float dvdy = (t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]) * t_to_v;
1950
1951   if (control == tgsi_sampler_lod_bias) {
1952      /* note: instead of working with Px and Py, we will use the
1953       * squared length instead, to avoid sqrt.
1954       */
1955      float Px2 = dudx * dudx + dvdx * dvdx;
1956      float Py2 = dudy * dudy + dvdy * dvdy;
1957
1958      float Pmax2;
1959      float Pmin2;
1960      float e;
1961      const float maxEccentricity = samp->sampler->max_anisotropy * samp->sampler->max_anisotropy;
1962
1963      if (Px2 < Py2) {
1964         Pmax2 = Py2;
1965         Pmin2 = Px2;
1966      }
1967      else {
1968         Pmax2 = Px2;
1969         Pmin2 = Py2;
1970      }
1971
1972      /* if the eccentricity of the ellipse is too big, scale up the shorter
1973       * of the two vectors to limit the maximum amount of work per pixel
1974       */
1975      e = Pmax2 / Pmin2;
1976      if (e > maxEccentricity) {
1977         /* float s=e / maxEccentricity;
1978            minor[0] *= s;
1979            minor[1] *= s;
1980            Pmin2 *= s; */
1981         Pmin2 = Pmax2 / maxEccentricity;
1982      }
1983
1984      /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
1985       * this since 0.5*log(x) = log(sqrt(x))
1986       */
1987      lambda = 0.5F * util_fast_log2(Pmin2) + samp->sampler->lod_bias;
1988      compute_lod(samp->sampler, lambda, c0, lod);
1989   }
1990   else {
1991      assert(control == tgsi_sampler_lod_explicit);
1992
1993      memcpy(lod, c0, sizeof(lod));
1994   }
1995
1996   /* XXX: Take into account all lod values.
1997    */
1998   lambda = lod[0];
1999   level0 = samp->view->u.tex.first_level + (int)lambda;
2000
2001   /* If the ellipse covers the whole image, we can
2002    * simply return the average of the whole image.
2003    */
2004   if (level0 >= (int) texture->last_level) {
2005      samp->level = texture->last_level;
2006      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
2007   }
2008   else {
2009      /* don't bother interpolating between multiple LODs; it doesn't
2010       * seem to be worth the extra running time.
2011       */
2012      samp->level = level0;
2013      img_filter_2d_ewa(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias,
2014                        dudx, dvdx, dudy, dvdy, rgba);
2015   }
2016
2017   if (DEBUG_TEX) {
2018      print_sample(__FUNCTION__, rgba);
2019   }
2020}
2021
2022
2023
2024/**
2025 * Specialized version of mip_filter_linear with hard-wired calls to
2026 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
2027 */
2028static void
2029mip_filter_linear_2d_linear_repeat_POT(
2030   struct tgsi_sampler *tgsi_sampler,
2031   const float s[QUAD_SIZE],
2032   const float t[QUAD_SIZE],
2033   const float p[QUAD_SIZE],
2034   const float c0[QUAD_SIZE],
2035   enum tgsi_sampler_control control,
2036   float rgba[NUM_CHANNELS][QUAD_SIZE])
2037{
2038   struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
2039   const struct pipe_resource *texture = samp->view->texture;
2040   int level0;
2041   float lambda;
2042   float lod[QUAD_SIZE];
2043
2044   if (control == tgsi_sampler_lod_bias) {
2045      lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
2046      compute_lod(samp->sampler, lambda, c0, lod);
2047   } else {
2048      assert(control == tgsi_sampler_lod_explicit);
2049
2050      memcpy(lod, c0, sizeof(lod));
2051   }
2052
2053   /* XXX: Take into account all lod values.
2054    */
2055   lambda = lod[0];
2056   level0 = samp->view->u.tex.first_level + (int)lambda;
2057
2058   /* Catches both negative and large values of level0:
2059    */
2060   if ((unsigned)level0 >= texture->last_level) {
2061      if (level0 < 0)
2062         samp->level = samp->view->u.tex.first_level;
2063      else
2064         samp->level = texture->last_level;
2065
2066      img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
2067   }
2068   else {
2069      float levelBlend = frac(lambda);
2070      float rgba0[4][4];
2071      float rgba1[4][4];
2072      int c,j;
2073
2074      samp->level = level0;
2075      img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba0);
2076
2077      samp->level = level0+1;
2078      img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba1);
2079
2080      for (j = 0; j < QUAD_SIZE; j++) {
2081         for (c = 0; c < 4; c++) {
2082            rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]);
2083         }
2084      }
2085   }
2086
2087   if (DEBUG_TEX) {
2088      print_sample(__FUNCTION__, rgba);
2089   }
2090}
2091
2092
2093
2094/**
2095 * Do shadow/depth comparisons.
2096 */
2097static void
2098sample_compare(struct tgsi_sampler *tgsi_sampler,
2099               const float s[QUAD_SIZE],
2100               const float t[QUAD_SIZE],
2101               const float p[QUAD_SIZE],
2102               const float c0[QUAD_SIZE],
2103               enum tgsi_sampler_control control,
2104               float rgba[NUM_CHANNELS][QUAD_SIZE])
2105{
2106   struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
2107   const struct pipe_sampler_state *sampler = samp->sampler;
2108   int j, k0, k1, k2, k3;
2109   float val;
2110   float pc0, pc1, pc2, pc3;
2111
2112   samp->mip_filter(tgsi_sampler, s, t, p, c0, control, rgba);
2113
2114   /**
2115    * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
2116    * When we sampled the depth texture, the depth value was put into all
2117    * RGBA channels.  We look at the red channel here.
2118    */
2119
2120   pc0 = CLAMP(p[0], 0.0F, 1.0F);
2121   pc1 = CLAMP(p[1], 0.0F, 1.0F);
2122   pc2 = CLAMP(p[2], 0.0F, 1.0F);
2123   pc3 = CLAMP(p[3], 0.0F, 1.0F);
2124
2125   /* compare four texcoords vs. four texture samples */
2126   switch (sampler->compare_func) {
2127   case PIPE_FUNC_LESS:
2128      k0 = pc0 < rgba[0][0];
2129      k1 = pc1 < rgba[0][1];
2130      k2 = pc2 < rgba[0][2];
2131      k3 = pc3 < rgba[0][3];
2132      break;
2133   case PIPE_FUNC_LEQUAL:
2134      k0 = pc0 <= rgba[0][0];
2135      k1 = pc1 <= rgba[0][1];
2136      k2 = pc2 <= rgba[0][2];
2137      k3 = pc3 <= rgba[0][3];
2138      break;
2139   case PIPE_FUNC_GREATER:
2140      k0 = pc0 > rgba[0][0];
2141      k1 = pc1 > rgba[0][1];
2142      k2 = pc2 > rgba[0][2];
2143      k3 = pc3 > rgba[0][3];
2144      break;
2145   case PIPE_FUNC_GEQUAL:
2146      k0 = pc0 >= rgba[0][0];
2147      k1 = pc1 >= rgba[0][1];
2148      k2 = pc2 >= rgba[0][2];
2149      k3 = pc3 >= rgba[0][3];
2150      break;
2151   case PIPE_FUNC_EQUAL:
2152      k0 = pc0 == rgba[0][0];
2153      k1 = pc1 == rgba[0][1];
2154      k2 = pc2 == rgba[0][2];
2155      k3 = pc3 == rgba[0][3];
2156      break;
2157   case PIPE_FUNC_NOTEQUAL:
2158      k0 = pc0 != rgba[0][0];
2159      k1 = pc1 != rgba[0][1];
2160      k2 = pc2 != rgba[0][2];
2161      k3 = pc3 != rgba[0][3];
2162      break;
2163   case PIPE_FUNC_ALWAYS:
2164      k0 = k1 = k2 = k3 = 1;
2165      break;
2166   case PIPE_FUNC_NEVER:
2167      k0 = k1 = k2 = k3 = 0;
2168      break;
2169   default:
2170      k0 = k1 = k2 = k3 = 0;
2171      assert(0);
2172      break;
2173   }
2174
2175   /* convert four pass/fail values to an intensity in [0,1] */
2176   val = 0.25F * (k0 + k1 + k2 + k3);
2177
2178   /* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */
2179   for (j = 0; j < 4; j++) {
2180      rgba[0][j] = rgba[1][j] = rgba[2][j] = val;
2181      rgba[3][j] = 1.0F;
2182   }
2183}
2184
2185
2186/**
2187 * Use 3D texcoords to choose a cube face, then sample the 2D cube faces.
2188 * Put face info into the sampler faces[] array.
2189 */
2190static void
2191sample_cube(struct tgsi_sampler *tgsi_sampler,
2192            const float s[QUAD_SIZE],
2193            const float t[QUAD_SIZE],
2194            const float p[QUAD_SIZE],
2195            const float c0[QUAD_SIZE],
2196            enum tgsi_sampler_control control,
2197            float rgba[NUM_CHANNELS][QUAD_SIZE])
2198{
2199   struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
2200   unsigned j;
2201   float ssss[4], tttt[4];
2202
2203   /*
2204     major axis
2205     direction    target                             sc     tc    ma
2206     ----------   -------------------------------    ---    ---   ---
2207     +rx          TEXTURE_CUBE_MAP_POSITIVE_X_EXT    -rz    -ry   rx
2208     -rx          TEXTURE_CUBE_MAP_NEGATIVE_X_EXT    +rz    -ry   rx
2209     +ry          TEXTURE_CUBE_MAP_POSITIVE_Y_EXT    +rx    +rz   ry
2210     -ry          TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT    +rx    -rz   ry
2211     +rz          TEXTURE_CUBE_MAP_POSITIVE_Z_EXT    +rx    -ry   rz
2212     -rz          TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT    -rx    -ry   rz
2213   */
2214
2215   /* Choose the cube face and compute new s/t coords for the 2D face.
2216    *
2217    * Use the same cube face for all four pixels in the quad.
2218    *
2219    * This isn't ideal, but if we want to use a different cube face
2220    * per pixel in the quad, we'd have to also compute the per-face
2221    * LOD here too.  That's because the four post-face-selection
2222    * texcoords are no longer related to each other (they're
2223    * per-face!)  so we can't use subtraction to compute the partial
2224    * deriviates to compute the LOD.  Doing so (near cube edges
2225    * anyway) gives us pretty much random values.
2226    */
2227   {
2228      /* use the average of the four pixel's texcoords to choose the face */
2229      const float rx = 0.25F * (s[0] + s[1] + s[2] + s[3]);
2230      const float ry = 0.25F * (t[0] + t[1] + t[2] + t[3]);
2231      const float rz = 0.25F * (p[0] + p[1] + p[2] + p[3]);
2232      const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
2233
2234      if (arx >= ary && arx >= arz) {
2235         float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
2236         uint face = (rx >= 0.0F) ? PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
2237         for (j = 0; j < QUAD_SIZE; j++) {
2238            const float ima = -0.5F / fabsf(s[j]);
2239            ssss[j] = sign *  p[j] * ima + 0.5F;
2240            tttt[j] =         t[j] * ima + 0.5F;
2241            samp->faces[j] = face;
2242         }
2243      }
2244      else if (ary >= arx && ary >= arz) {
2245         float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
2246         uint face = (ry >= 0.0F) ? PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
2247         for (j = 0; j < QUAD_SIZE; j++) {
2248            const float ima = -0.5F / fabsf(t[j]);
2249            ssss[j] =        -s[j] * ima + 0.5F;
2250            tttt[j] = sign * -p[j] * ima + 0.5F;
2251            samp->faces[j] = face;
2252         }
2253      }
2254      else {
2255         float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
2256         uint face = (rz >= 0.0F) ? PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
2257         for (j = 0; j < QUAD_SIZE; j++) {
2258            const float ima = -0.5F / fabsf(p[j]);
2259            ssss[j] = sign * -s[j] * ima + 0.5F;
2260            tttt[j] =         t[j] * ima + 0.5F;
2261            samp->faces[j] = face;
2262         }
2263      }
2264   }
2265
2266   /* In our little pipeline, the compare stage is next.  If compare
2267    * is not active, this will point somewhere deeper into the
2268    * pipeline, eg. to mip_filter or even img_filter.
2269    */
2270   samp->compare(tgsi_sampler, ssss, tttt, NULL, c0, control, rgba);
2271}
2272
2273
2274static void
2275sample_swizzle(struct tgsi_sampler *tgsi_sampler,
2276               const float s[QUAD_SIZE],
2277               const float t[QUAD_SIZE],
2278               const float p[QUAD_SIZE],
2279               const float c0[QUAD_SIZE],
2280               enum tgsi_sampler_control control,
2281               float rgba[NUM_CHANNELS][QUAD_SIZE])
2282{
2283   struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
2284   float rgba_temp[NUM_CHANNELS][QUAD_SIZE];
2285   const unsigned swizzle_r = samp->key.bits.swizzle_r;
2286   const unsigned swizzle_g = samp->key.bits.swizzle_g;
2287   const unsigned swizzle_b = samp->key.bits.swizzle_b;
2288   const unsigned swizzle_a = samp->key.bits.swizzle_a;
2289   unsigned j;
2290
2291   samp->sample_target(tgsi_sampler, s, t, p, c0, control, rgba_temp);
2292
2293   switch (swizzle_r) {
2294   case PIPE_SWIZZLE_ZERO:
2295      for (j = 0; j < 4; j++)
2296         rgba[0][j] = 0.0f;
2297      break;
2298   case PIPE_SWIZZLE_ONE:
2299      for (j = 0; j < 4; j++)
2300         rgba[0][j] = 1.0f;
2301      break;
2302   default:
2303      assert(swizzle_r < 4);
2304      for (j = 0; j < 4; j++)
2305         rgba[0][j] = rgba_temp[swizzle_r][j];
2306   }
2307
2308   switch (swizzle_g) {
2309   case PIPE_SWIZZLE_ZERO:
2310      for (j = 0; j < 4; j++)
2311         rgba[1][j] = 0.0f;
2312      break;
2313   case PIPE_SWIZZLE_ONE:
2314      for (j = 0; j < 4; j++)
2315         rgba[1][j] = 1.0f;
2316      break;
2317   default:
2318      assert(swizzle_g < 4);
2319      for (j = 0; j < 4; j++)
2320         rgba[1][j] = rgba_temp[swizzle_g][j];
2321   }
2322
2323   switch (swizzle_b) {
2324   case PIPE_SWIZZLE_ZERO:
2325      for (j = 0; j < 4; j++)
2326         rgba[2][j] = 0.0f;
2327      break;
2328   case PIPE_SWIZZLE_ONE:
2329      for (j = 0; j < 4; j++)
2330         rgba[2][j] = 1.0f;
2331      break;
2332   default:
2333      assert(swizzle_b < 4);
2334      for (j = 0; j < 4; j++)
2335         rgba[2][j] = rgba_temp[swizzle_b][j];
2336   }
2337
2338   switch (swizzle_a) {
2339   case PIPE_SWIZZLE_ZERO:
2340      for (j = 0; j < 4; j++)
2341         rgba[3][j] = 0.0f;
2342      break;
2343   case PIPE_SWIZZLE_ONE:
2344      for (j = 0; j < 4; j++)
2345         rgba[3][j] = 1.0f;
2346      break;
2347   default:
2348      assert(swizzle_a < 4);
2349      for (j = 0; j < 4; j++)
2350         rgba[3][j] = rgba_temp[swizzle_a][j];
2351   }
2352}
2353
2354
2355static wrap_nearest_func
2356get_nearest_unorm_wrap(unsigned mode)
2357{
2358   switch (mode) {
2359   case PIPE_TEX_WRAP_CLAMP:
2360      return wrap_nearest_unorm_clamp;
2361   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2362      return wrap_nearest_unorm_clamp_to_edge;
2363   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2364      return wrap_nearest_unorm_clamp_to_border;
2365   default:
2366      assert(0);
2367      return wrap_nearest_unorm_clamp;
2368   }
2369}
2370
2371
2372static wrap_nearest_func
2373get_nearest_wrap(unsigned mode)
2374{
2375   switch (mode) {
2376   case PIPE_TEX_WRAP_REPEAT:
2377      return wrap_nearest_repeat;
2378   case PIPE_TEX_WRAP_CLAMP:
2379      return wrap_nearest_clamp;
2380   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2381      return wrap_nearest_clamp_to_edge;
2382   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2383      return wrap_nearest_clamp_to_border;
2384   case PIPE_TEX_WRAP_MIRROR_REPEAT:
2385      return wrap_nearest_mirror_repeat;
2386   case PIPE_TEX_WRAP_MIRROR_CLAMP:
2387      return wrap_nearest_mirror_clamp;
2388   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2389      return wrap_nearest_mirror_clamp_to_edge;
2390   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2391      return wrap_nearest_mirror_clamp_to_border;
2392   default:
2393      assert(0);
2394      return wrap_nearest_repeat;
2395   }
2396}
2397
2398
2399static wrap_linear_func
2400get_linear_unorm_wrap(unsigned mode)
2401{
2402   switch (mode) {
2403   case PIPE_TEX_WRAP_CLAMP:
2404      return wrap_linear_unorm_clamp;
2405   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2406      return wrap_linear_unorm_clamp_to_edge;
2407   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2408      return wrap_linear_unorm_clamp_to_border;
2409   default:
2410      assert(0);
2411      return wrap_linear_unorm_clamp;
2412   }
2413}
2414
2415
2416static wrap_linear_func
2417get_linear_wrap(unsigned mode)
2418{
2419   switch (mode) {
2420   case PIPE_TEX_WRAP_REPEAT:
2421      return wrap_linear_repeat;
2422   case PIPE_TEX_WRAP_CLAMP:
2423      return wrap_linear_clamp;
2424   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2425      return wrap_linear_clamp_to_edge;
2426   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2427      return wrap_linear_clamp_to_border;
2428   case PIPE_TEX_WRAP_MIRROR_REPEAT:
2429      return wrap_linear_mirror_repeat;
2430   case PIPE_TEX_WRAP_MIRROR_CLAMP:
2431      return wrap_linear_mirror_clamp;
2432   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2433      return wrap_linear_mirror_clamp_to_edge;
2434   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2435      return wrap_linear_mirror_clamp_to_border;
2436   default:
2437      assert(0);
2438      return wrap_linear_repeat;
2439   }
2440}
2441
2442
2443static compute_lambda_func
2444get_lambda_func(const union sp_sampler_key key)
2445{
2446   if (key.bits.processor == TGSI_PROCESSOR_VERTEX)
2447      return compute_lambda_vert;
2448
2449   switch (key.bits.target) {
2450   case PIPE_TEXTURE_1D:
2451   case PIPE_TEXTURE_1D_ARRAY:
2452      return compute_lambda_1d;
2453   case PIPE_TEXTURE_2D:
2454   case PIPE_TEXTURE_2D_ARRAY:
2455   case PIPE_TEXTURE_RECT:
2456   case PIPE_TEXTURE_CUBE:
2457      return compute_lambda_2d;
2458   case PIPE_TEXTURE_3D:
2459      return compute_lambda_3d;
2460   default:
2461      assert(0);
2462      return compute_lambda_1d;
2463   }
2464}
2465
2466
2467static filter_func
2468get_img_filter(const union sp_sampler_key key,
2469               unsigned filter,
2470               const struct pipe_sampler_state *sampler)
2471{
2472   switch (key.bits.target) {
2473   case PIPE_TEXTURE_1D:
2474      if (filter == PIPE_TEX_FILTER_NEAREST)
2475         return img_filter_1d_nearest;
2476      else
2477         return img_filter_1d_linear;
2478      break;
2479   case PIPE_TEXTURE_1D_ARRAY:
2480      if (filter == PIPE_TEX_FILTER_NEAREST)
2481         return img_filter_1d_array_nearest;
2482      else
2483         return img_filter_1d_array_linear;
2484      break;
2485   case PIPE_TEXTURE_2D:
2486   case PIPE_TEXTURE_RECT:
2487      /* Try for fast path:
2488       */
2489      if (key.bits.is_pot &&
2490          sampler->wrap_s == sampler->wrap_t &&
2491          sampler->normalized_coords)
2492      {
2493         switch (sampler->wrap_s) {
2494         case PIPE_TEX_WRAP_REPEAT:
2495            switch (filter) {
2496            case PIPE_TEX_FILTER_NEAREST:
2497               return img_filter_2d_nearest_repeat_POT;
2498            case PIPE_TEX_FILTER_LINEAR:
2499               return img_filter_2d_linear_repeat_POT;
2500            default:
2501               break;
2502            }
2503            break;
2504         case PIPE_TEX_WRAP_CLAMP:
2505            switch (filter) {
2506            case PIPE_TEX_FILTER_NEAREST:
2507               return img_filter_2d_nearest_clamp_POT;
2508            default:
2509               break;
2510            }
2511         }
2512      }
2513      /* Otherwise use default versions:
2514       */
2515      if (filter == PIPE_TEX_FILTER_NEAREST)
2516         return img_filter_2d_nearest;
2517      else
2518         return img_filter_2d_linear;
2519      break;
2520   case PIPE_TEXTURE_2D_ARRAY:
2521      if (filter == PIPE_TEX_FILTER_NEAREST)
2522         return img_filter_2d_array_nearest;
2523      else
2524         return img_filter_2d_array_linear;
2525      break;
2526   case PIPE_TEXTURE_CUBE:
2527      if (filter == PIPE_TEX_FILTER_NEAREST)
2528         return img_filter_cube_nearest;
2529      else
2530         return img_filter_cube_linear;
2531      break;
2532   case PIPE_TEXTURE_3D:
2533      if (filter == PIPE_TEX_FILTER_NEAREST)
2534         return img_filter_3d_nearest;
2535      else
2536         return img_filter_3d_linear;
2537      break;
2538   default:
2539      assert(0);
2540      return img_filter_1d_nearest;
2541   }
2542}
2543
2544
2545/**
2546 * Bind the given texture object and texture cache to the sampler variant.
2547 */
2548void
2549sp_sampler_variant_bind_view( struct sp_sampler_variant *samp,
2550                              struct softpipe_tex_tile_cache *tex_cache,
2551                              const struct pipe_sampler_view *view )
2552{
2553   const struct pipe_resource *texture = view->texture;
2554
2555   samp->view = view;
2556   samp->cache = tex_cache;
2557   samp->xpot = util_logbase2( texture->width0 );
2558   samp->ypot = util_logbase2( texture->height0 );
2559   samp->level = view->u.tex.first_level;
2560}
2561
2562
2563void
2564sp_sampler_variant_destroy( struct sp_sampler_variant *samp )
2565{
2566   FREE(samp);
2567}
2568
2569static void
2570sample_get_dims(struct tgsi_sampler *tgsi_sampler, int level,
2571		int dims[4])
2572{
2573    struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
2574    const struct pipe_sampler_view *view = samp->view;
2575    const struct pipe_resource *texture = view->texture;
2576
2577    /* undefined according to EXT_gpu_program */
2578    level += view->u.tex.first_level;
2579    if (level > view->u.tex.last_level)
2580	return;
2581
2582    dims[0] = u_minify(texture->width0, level);
2583
2584    switch(texture->target) {
2585    case PIPE_TEXTURE_1D_ARRAY:
2586       dims[1] = texture->array_size;
2587       /* fallthrough */
2588    case PIPE_TEXTURE_1D:
2589    case PIPE_BUFFER:
2590       return;
2591    case PIPE_TEXTURE_2D_ARRAY:
2592       dims[2] = texture->array_size;
2593       /* fallthrough */
2594    case PIPE_TEXTURE_2D:
2595    case PIPE_TEXTURE_CUBE:
2596    case PIPE_TEXTURE_RECT:
2597       dims[1] = u_minify(texture->height0, level);
2598       return;
2599    case PIPE_TEXTURE_3D:
2600       dims[1] = u_minify(texture->height0, level);
2601       dims[2] = u_minify(texture->depth0, level);
2602       return;
2603    default:
2604       assert(!"unexpected texture target in sample_get_dims()");
2605       return;
2606    }
2607}
2608
2609/* this function is only used for unfiltered texel gets
2610   via the TGSI TXF opcode. */
2611static void
2612sample_get_texels(struct tgsi_sampler *tgsi_sampler,
2613	   const int v_i[QUAD_SIZE],
2614	   const int v_j[QUAD_SIZE],
2615	   const int v_k[QUAD_SIZE],
2616	   const int lod[QUAD_SIZE],
2617	   const int8_t offset[3],
2618	   float rgba[NUM_CHANNELS][QUAD_SIZE])
2619{
2620   const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
2621   union tex_tile_address addr;
2622   const struct pipe_resource *texture = samp->view->texture;
2623   int j, c;
2624   const float *tx;
2625
2626   addr.value = 0;
2627   /* TODO write a better test for LOD */
2628   addr.bits.level = lod[0];
2629
2630   switch(texture->target) {
2631   case PIPE_TEXTURE_1D:
2632      for (j = 0; j < QUAD_SIZE; j++) {
2633	 tx = get_texel_2d(samp, addr, v_i[j] + offset[0], 0);
2634	 for (c = 0; c < 4; c++) {
2635	    rgba[c][j] = tx[c];
2636	 }
2637      }
2638      break;
2639   case PIPE_TEXTURE_1D_ARRAY:
2640      for (j = 0; j < QUAD_SIZE; j++) {
2641	 tx = get_texel_1d_array(samp, addr, v_i[j] + offset[0],
2642				 v_j[j] + offset[1]);
2643	 for (c = 0; c < 4; c++) {
2644	    rgba[c][j] = tx[c];
2645	 }
2646      }
2647      break;
2648   case PIPE_TEXTURE_2D:
2649   case PIPE_TEXTURE_RECT:
2650      for (j = 0; j < QUAD_SIZE; j++) {
2651	 tx = get_texel_2d(samp, addr, v_i[j] + offset[0],
2652			   v_j[j] + offset[1]);
2653	 for (c = 0; c < 4; c++) {
2654	    rgba[c][j] = tx[c];
2655	 }
2656      }
2657      break;
2658   case PIPE_TEXTURE_2D_ARRAY:
2659      for (j = 0; j < QUAD_SIZE; j++) {
2660	 tx = get_texel_2d_array(samp, addr, v_i[j] + offset[0],
2661				 v_j[j] + offset[1],
2662				 v_k[j] + offset[2]);
2663	 for (c = 0; c < 4; c++) {
2664	    rgba[c][j] = tx[c];
2665	 }
2666      }
2667      break;
2668   case PIPE_TEXTURE_3D:
2669      for (j = 0; j < QUAD_SIZE; j++) {
2670	 tx = get_texel_3d(samp, addr, v_i[j] + offset[0],
2671			   v_j[j] + offset[1],
2672			   v_k[j] + offset[2]);
2673	 for (c = 0; c < 4; c++) {
2674	    rgba[c][j] = tx[c];
2675	 }
2676      }
2677      break;
2678   case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
2679   default:
2680      assert(!"Unknown or CUBE texture type in TXF processing\n");
2681      break;
2682   }
2683}
2684/**
2685 * Create a sampler variant for a given set of non-orthogonal state.
2686 */
2687struct sp_sampler_variant *
2688sp_create_sampler_variant( const struct pipe_sampler_state *sampler,
2689                           const union sp_sampler_key key )
2690{
2691   struct sp_sampler_variant *samp = CALLOC_STRUCT(sp_sampler_variant);
2692   if (!samp)
2693      return NULL;
2694
2695   samp->sampler = sampler;
2696   samp->key = key;
2697
2698   /* Note that (for instance) linear_texcoord_s and
2699    * nearest_texcoord_s may be active at the same time, if the
2700    * sampler min_img_filter differs from its mag_img_filter.
2701    */
2702   if (sampler->normalized_coords) {
2703      samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
2704      samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
2705      samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
2706
2707      samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
2708      samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
2709      samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
2710   }
2711   else {
2712      samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
2713      samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
2714      samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
2715
2716      samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
2717      samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
2718      samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
2719   }
2720
2721   samp->compute_lambda = get_lambda_func( key );
2722
2723   samp->min_img_filter = get_img_filter(key, sampler->min_img_filter, sampler);
2724   samp->mag_img_filter = get_img_filter(key, sampler->mag_img_filter, sampler);
2725
2726   switch (sampler->min_mip_filter) {
2727   case PIPE_TEX_MIPFILTER_NONE:
2728      if (sampler->min_img_filter == sampler->mag_img_filter)
2729         samp->mip_filter = samp->min_img_filter;
2730      else
2731         samp->mip_filter = mip_filter_none;
2732      break;
2733
2734   case PIPE_TEX_MIPFILTER_NEAREST:
2735      samp->mip_filter = mip_filter_nearest;
2736      break;
2737
2738   case PIPE_TEX_MIPFILTER_LINEAR:
2739      if (key.bits.is_pot &&
2740          sampler->min_img_filter == sampler->mag_img_filter &&
2741          sampler->normalized_coords &&
2742          sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
2743          sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
2744          sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
2745         samp->mip_filter = mip_filter_linear_2d_linear_repeat_POT;
2746      }
2747      else {
2748         samp->mip_filter = mip_filter_linear;
2749      }
2750
2751      /* Anisotropic filtering extension. */
2752      if (sampler->max_anisotropy > 1) {
2753      	samp->mip_filter = mip_filter_linear_aniso;
2754
2755      	/* Override min_img_filter:
2756      	 * min_img_filter needs to be set to NEAREST since we need to access
2757      	 * each texture pixel as it is and weight it later; using linear
2758      	 * filters will have incorrect results.
2759      	 * By setting the filter to NEAREST here, we can avoid calling the
2760      	 * generic img_filter_2d_nearest in the anisotropic filter function,
2761      	 * making it possible to use one of the accelerated implementations
2762      	 */
2763      	samp->min_img_filter = get_img_filter(key, PIPE_TEX_FILTER_NEAREST, sampler);
2764
2765      	/* on first access create the lookup table containing the filter weights. */
2766        if (!weightLut) {
2767           create_filter_table();
2768        }
2769      }
2770
2771      break;
2772   }
2773
2774   if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) {
2775      samp->compare = sample_compare;
2776   }
2777   else {
2778      /* Skip compare operation by promoting the mip_filter function
2779       * pointer:
2780       */
2781      samp->compare = samp->mip_filter;
2782   }
2783
2784   if (key.bits.target == PIPE_TEXTURE_CUBE) {
2785      samp->sample_target = sample_cube;
2786   }
2787   else {
2788      samp->faces[0] = 0;
2789      samp->faces[1] = 0;
2790      samp->faces[2] = 0;
2791      samp->faces[3] = 0;
2792
2793      /* Skip cube face determination by promoting the compare
2794       * function pointer:
2795       */
2796      samp->sample_target = samp->compare;
2797   }
2798
2799   if (key.bits.swizzle_r != PIPE_SWIZZLE_RED ||
2800       key.bits.swizzle_g != PIPE_SWIZZLE_GREEN ||
2801       key.bits.swizzle_b != PIPE_SWIZZLE_BLUE ||
2802       key.bits.swizzle_a != PIPE_SWIZZLE_ALPHA) {
2803      samp->base.get_samples = sample_swizzle;
2804   }
2805   else {
2806      samp->base.get_samples = samp->sample_target;
2807   }
2808
2809   samp->base.get_dims = sample_get_dims;
2810   samp->base.get_texel = sample_get_texels;
2811   return samp;
2812}
2813