ast_function.cpp revision 2d2d6a80c14612de683001d24cbbbb9a8f620dd5
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include "glsl_symbol_table.h"
25#include "ast.h"
26#include "glsl_types.h"
27#include "ir.h"
28#include "main/core.h" /* for MIN2 */
29
30static ir_rvalue *
31convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33bool
34apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35                          struct _mesa_glsl_parse_state *state);
36
37static unsigned
38process_parameters(exec_list *instructions, exec_list *actual_parameters,
39		   exec_list *parameters,
40		   struct _mesa_glsl_parse_state *state)
41{
42   unsigned count = 0;
43
44   foreach_list (n, parameters) {
45      ast_node *const ast = exec_node_data(ast_node, n, link);
46      ir_rvalue *result = ast->hir(instructions, state);
47
48      ir_constant *const constant = result->constant_expression_value();
49      if (constant != NULL)
50	 result = constant;
51
52      actual_parameters->push_tail(result);
53      count++;
54   }
55
56   return count;
57}
58
59
60/**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function.  May be \c NULL.
64 * \param name        Name of the function.
65 * \param parameters  Parameter list for the function.  This may be either a
66 *                    formal or actual parameter list.  Only the type is used.
67 *
68 * \return
69 * A talloced string representing the prototype of the function.
70 */
71char *
72prototype_string(const glsl_type *return_type, const char *name,
73		 exec_list *parameters)
74{
75   char *str = NULL;
76
77   if (return_type != NULL)
78      str = talloc_asprintf(str, "%s ", return_type->name);
79
80   str = talloc_asprintf_append(str, "%s(", name);
81
82   const char *comma = "";
83   foreach_list(node, parameters) {
84      const ir_instruction *const param = (ir_instruction *) node;
85
86      str = talloc_asprintf_append(str, "%s%s", comma, param->type->name);
87      comma = ", ";
88   }
89
90   str = talloc_strdup_append(str, ")");
91   return str;
92}
93
94
95static ir_rvalue *
96process_call(exec_list *instructions, ir_function *f,
97	     YYLTYPE *loc, exec_list *actual_parameters,
98	     struct _mesa_glsl_parse_state *state)
99{
100   void *ctx = state;
101
102   ir_function_signature *sig = f->matching_signature(actual_parameters);
103
104   if (sig != NULL) {
105      /* Verify that 'out' and 'inout' actual parameters are lvalues.  This
106       * isn't done in ir_function::matching_signature because that function
107       * cannot generate the necessary diagnostics.
108       */
109      exec_list_iterator actual_iter = actual_parameters->iterator();
110      exec_list_iterator formal_iter = sig->parameters.iterator();
111
112      while (actual_iter.has_next()) {
113	 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
114	 ir_variable *formal = (ir_variable *) formal_iter.get();
115
116	 assert(actual != NULL);
117	 assert(formal != NULL);
118
119	 if ((formal->mode == ir_var_out)
120	     || (formal->mode == ir_var_inout)) {
121	    if (! actual->is_lvalue()) {
122	       /* FINISHME: Log a better diagnostic here.  There is no way
123		* FINISHME: to tell the user which parameter is invalid.
124		*/
125	       _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
126				(formal->mode == ir_var_out) ? "out" : "inout");
127	    }
128	 }
129
130	 if (formal->type->is_numeric() || formal->type->is_boolean()) {
131	    ir_rvalue *converted = convert_component(actual, formal->type);
132	    actual->replace_with(converted);
133	 }
134
135	 actual_iter.next();
136	 formal_iter.next();
137      }
138
139      /* Always insert the call in the instruction stream, and return a deref
140       * of its return val if it returns a value, since we don't know if
141       * the rvalue is going to be assigned to anything or not.
142       */
143      ir_call *call = new(ctx) ir_call(sig, actual_parameters);
144      if (!sig->return_type->is_void()) {
145	 ir_variable *var;
146	 ir_dereference_variable *deref;
147
148	 var = new(ctx) ir_variable(sig->return_type,
149				    talloc_asprintf(ctx, "%s_retval",
150						    sig->function_name()),
151				    ir_var_temporary);
152	 instructions->push_tail(var);
153
154	 deref = new(ctx) ir_dereference_variable(var);
155	 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
156	 instructions->push_tail(assign);
157	 if (state->language_version >= 120)
158	    var->constant_value = call->constant_expression_value();
159
160	 deref = new(ctx) ir_dereference_variable(var);
161	 return deref;
162      } else {
163	 instructions->push_tail(call);
164	 return NULL;
165      }
166   } else {
167      char *str = prototype_string(NULL, f->name, actual_parameters);
168
169      _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
170		       str);
171      talloc_free(str);
172
173      const char *prefix = "candidates are: ";
174      foreach_list (node, &f->signatures) {
175	 ir_function_signature *sig = (ir_function_signature *) node;
176
177	 str = prototype_string(sig->return_type, f->name, &sig->parameters);
178	 _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
179	 talloc_free(str);
180
181	 prefix = "                ";
182      }
183
184      return ir_call::get_error_instruction(ctx);
185   }
186}
187
188
189static ir_rvalue *
190match_function_by_name(exec_list *instructions, const char *name,
191		       YYLTYPE *loc, exec_list *actual_parameters,
192		       struct _mesa_glsl_parse_state *state)
193{
194   void *ctx = state;
195   ir_function *f = state->symbols->get_function(name);
196
197   if (f == NULL) {
198      _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
199      return ir_call::get_error_instruction(ctx);
200   }
201
202   /* Once we've determined that the function being called might exist, try
203    * to find an overload of the function that matches the parameters.
204    */
205   return process_call(instructions, f, loc, actual_parameters, state);
206}
207
208
209/**
210 * Perform automatic type conversion of constructor parameters
211 *
212 * This implements the rules in the "Conversion and Scalar Constructors"
213 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
214 */
215static ir_rvalue *
216convert_component(ir_rvalue *src, const glsl_type *desired_type)
217{
218   void *ctx = talloc_parent(src);
219   const unsigned a = desired_type->base_type;
220   const unsigned b = src->type->base_type;
221   ir_expression *result = NULL;
222
223   if (src->type->is_error())
224      return src;
225
226   assert(a <= GLSL_TYPE_BOOL);
227   assert(b <= GLSL_TYPE_BOOL);
228
229   if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
230      return src;
231
232   switch (a) {
233   case GLSL_TYPE_UINT:
234   case GLSL_TYPE_INT:
235      if (b == GLSL_TYPE_FLOAT)
236	 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
237      else {
238	 assert(b == GLSL_TYPE_BOOL);
239	 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
240      }
241      break;
242   case GLSL_TYPE_FLOAT:
243      switch (b) {
244      case GLSL_TYPE_UINT:
245	 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
246	 break;
247      case GLSL_TYPE_INT:
248	 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
249	 break;
250      case GLSL_TYPE_BOOL:
251	 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
252	 break;
253      }
254      break;
255   case GLSL_TYPE_BOOL:
256      switch (b) {
257      case GLSL_TYPE_UINT:
258      case GLSL_TYPE_INT:
259	 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
260	 break;
261      case GLSL_TYPE_FLOAT:
262	 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
263	 break;
264      }
265      break;
266   }
267
268   assert(result != NULL);
269
270   /* Try constant folding; it may fold in the conversion we just added. */
271   ir_constant *const constant = result->constant_expression_value();
272   return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
273}
274
275/**
276 * Dereference a specific component from a scalar, vector, or matrix
277 */
278static ir_rvalue *
279dereference_component(ir_rvalue *src, unsigned component)
280{
281   void *ctx = talloc_parent(src);
282   assert(component < src->type->components());
283
284   /* If the source is a constant, just create a new constant instead of a
285    * dereference of the existing constant.
286    */
287   ir_constant *constant = src->as_constant();
288   if (constant)
289      return new(ctx) ir_constant(constant, component);
290
291   if (src->type->is_scalar()) {
292      return src;
293   } else if (src->type->is_vector()) {
294      return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
295   } else {
296      assert(src->type->is_matrix());
297
298      /* Dereference a row of the matrix, then call this function again to get
299       * a specific element from that row.
300       */
301      const int c = component / src->type->column_type()->vector_elements;
302      const int r = component % src->type->column_type()->vector_elements;
303      ir_constant *const col_index = new(ctx) ir_constant(c);
304      ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
305
306      col->type = src->type->column_type();
307
308      return dereference_component(col, r);
309   }
310
311   assert(!"Should not get here.");
312   return NULL;
313}
314
315
316static ir_rvalue *
317process_array_constructor(exec_list *instructions,
318			  const glsl_type *constructor_type,
319			  YYLTYPE *loc, exec_list *parameters,
320			  struct _mesa_glsl_parse_state *state)
321{
322   void *ctx = state;
323   /* Array constructors come in two forms: sized and unsized.  Sized array
324    * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
325    * variables.  In this case the number of parameters must exactly match the
326    * specified size of the array.
327    *
328    * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
329    * are vec4 variables.  In this case the size of the array being constructed
330    * is determined by the number of parameters.
331    *
332    * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
333    *
334    *    "There must be exactly the same number of arguments as the size of
335    *    the array being constructed. If no size is present in the
336    *    constructor, then the array is explicitly sized to the number of
337    *    arguments provided. The arguments are assigned in order, starting at
338    *    element 0, to the elements of the constructed array. Each argument
339    *    must be the same type as the element type of the array, or be a type
340    *    that can be converted to the element type of the array according to
341    *    Section 4.1.10 "Implicit Conversions.""
342    */
343   exec_list actual_parameters;
344   const unsigned parameter_count =
345      process_parameters(instructions, &actual_parameters, parameters, state);
346
347   if ((parameter_count == 0)
348       || ((constructor_type->length != 0)
349	   && (constructor_type->length != parameter_count))) {
350      const unsigned min_param = (constructor_type->length == 0)
351	 ? 1 : constructor_type->length;
352
353      _mesa_glsl_error(loc, state, "array constructor must have %s %u "
354		       "parameter%s",
355		       (constructor_type->length != 0) ? "at least" : "exactly",
356		       min_param, (min_param <= 1) ? "" : "s");
357      return ir_call::get_error_instruction(ctx);
358   }
359
360   if (constructor_type->length == 0) {
361      constructor_type =
362	 glsl_type::get_array_instance(constructor_type->element_type(),
363				       parameter_count);
364      assert(constructor_type != NULL);
365      assert(constructor_type->length == parameter_count);
366   }
367
368   bool all_parameters_are_constant = true;
369
370   /* Type cast each parameter and, if possible, fold constants. */
371   foreach_list_safe(n, &actual_parameters) {
372      ir_rvalue *ir = (ir_rvalue *) n;
373      ir_rvalue *result = ir;
374
375      /* Apply implicit conversions (not the scalar constructor rules!) */
376      if (constructor_type->element_type()->is_float()) {
377	 const glsl_type *desired_type =
378	    glsl_type::get_instance(GLSL_TYPE_FLOAT,
379				    ir->type->vector_elements,
380				    ir->type->matrix_columns);
381	 result = convert_component(ir, desired_type);
382      }
383
384      if (result->type != constructor_type->element_type()) {
385	 _mesa_glsl_error(loc, state, "type error in array constructor: "
386			  "expected: %s, found %s",
387			  constructor_type->element_type()->name,
388			  result->type->name);
389      }
390
391      /* Attempt to convert the parameter to a constant valued expression.
392       * After doing so, track whether or not all the parameters to the
393       * constructor are trivially constant valued expressions.
394       */
395      ir_rvalue *const constant = result->constant_expression_value();
396
397      if (constant != NULL)
398         result = constant;
399      else
400         all_parameters_are_constant = false;
401
402      ir->replace_with(result);
403   }
404
405   if (all_parameters_are_constant)
406      return new(ctx) ir_constant(constructor_type, &actual_parameters);
407
408   ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
409					   ir_var_temporary);
410   instructions->push_tail(var);
411
412   int i = 0;
413   foreach_list(node, &actual_parameters) {
414      ir_rvalue *rhs = (ir_rvalue *) node;
415      ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
416						     new(ctx) ir_constant(i));
417
418      ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
419      instructions->push_tail(assignment);
420
421      i++;
422   }
423
424   return new(ctx) ir_dereference_variable(var);
425}
426
427
428/**
429 * Try to convert a record constructor to a constant expression
430 */
431static ir_constant *
432constant_record_constructor(const glsl_type *constructor_type,
433			    exec_list *parameters, void *mem_ctx)
434{
435   foreach_list(node, parameters) {
436      ir_constant *constant = ((ir_instruction *) node)->as_constant();
437      if (constant == NULL)
438	 return NULL;
439      node->replace_with(constant);
440   }
441
442   return new(mem_ctx) ir_constant(constructor_type, parameters);
443}
444
445
446/**
447 * Determine if a list consists of a single scalar r-value
448 */
449bool
450single_scalar_parameter(exec_list *parameters)
451{
452   const ir_rvalue *const p = (ir_rvalue *) parameters->head;
453   assert(((ir_rvalue *)p)->as_rvalue() != NULL);
454
455   return (p->type->is_scalar() && p->next->is_tail_sentinel());
456}
457
458
459/**
460 * Generate inline code for a vector constructor
461 *
462 * The generated constructor code will consist of a temporary variable
463 * declaration of the same type as the constructor.  A sequence of assignments
464 * from constructor parameters to the temporary will follow.
465 *
466 * \return
467 * An \c ir_dereference_variable of the temprorary generated in the constructor
468 * body.
469 */
470ir_rvalue *
471emit_inline_vector_constructor(const glsl_type *type,
472			       exec_list *instructions,
473			       exec_list *parameters,
474			       void *ctx)
475{
476   assert(!parameters->is_empty());
477
478   ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
479   instructions->push_tail(var);
480
481   /* There are two kinds of vector constructors.
482    *
483    *  - Construct a vector from a single scalar by replicating that scalar to
484    *    all components of the vector.
485    *
486    *  - Construct a vector from an arbirary combination of vectors and
487    *    scalars.  The components of the constructor parameters are assigned
488    *    to the vector in order until the vector is full.
489    */
490   const unsigned lhs_components = type->components();
491   if (single_scalar_parameter(parameters)) {
492      ir_rvalue *first_param = (ir_rvalue *)parameters->head;
493      ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
494					   lhs_components);
495      ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
496      const unsigned mask = (1U << lhs_components) - 1;
497
498      assert(rhs->type == lhs->type);
499
500      ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
501      instructions->push_tail(inst);
502   } else {
503      unsigned base_component = 0;
504      unsigned base_lhs_component = 0;
505      ir_constant_data data;
506      unsigned constant_mask = 0, constant_components = 0;
507
508      memset(&data, 0, sizeof(data));
509
510      foreach_list(node, parameters) {
511	 ir_rvalue *param = (ir_rvalue *) node;
512	 unsigned rhs_components = param->type->components();
513
514	 /* Do not try to assign more components to the vector than it has!
515	  */
516	 if ((rhs_components + base_lhs_component) > lhs_components) {
517	    rhs_components = lhs_components - base_lhs_component;
518	 }
519
520	 const ir_constant *const c = param->as_constant();
521	 if (c != NULL) {
522	    for (unsigned i = 0; i < rhs_components; i++) {
523	       switch (c->type->base_type) {
524	       case GLSL_TYPE_UINT:
525		  data.u[i + base_component] = c->get_uint_component(i);
526		  break;
527	       case GLSL_TYPE_INT:
528		  data.i[i + base_component] = c->get_int_component(i);
529		  break;
530	       case GLSL_TYPE_FLOAT:
531		  data.f[i + base_component] = c->get_float_component(i);
532		  break;
533	       case GLSL_TYPE_BOOL:
534		  data.b[i + base_component] = c->get_bool_component(i);
535		  break;
536	       default:
537		  assert(!"Should not get here.");
538		  break;
539	       }
540	    }
541
542	    /* Mask of fields to be written in the assignment.
543	     */
544	    constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
545	    constant_components += rhs_components;
546
547	    base_component += rhs_components;
548	 }
549	 /* Advance the component index by the number of components
550	  * that were just assigned.
551	  */
552	 base_lhs_component += rhs_components;
553      }
554
555      if (constant_mask != 0) {
556	 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
557	 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
558							     constant_components,
559							     1);
560	 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
561
562	 ir_instruction *inst =
563	    new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
564	 instructions->push_tail(inst);
565      }
566
567      base_component = 0;
568      foreach_list(node, parameters) {
569	 ir_rvalue *param = (ir_rvalue *) node;
570	 unsigned rhs_components = param->type->components();
571
572	 /* Do not try to assign more components to the vector than it has!
573	  */
574	 if ((rhs_components + base_component) > lhs_components) {
575	    rhs_components = lhs_components - base_component;
576	 }
577
578	 const ir_constant *const c = param->as_constant();
579	 if (c == NULL) {
580	    /* Mask of fields to be written in the assignment.
581	     */
582	    const unsigned write_mask = ((1U << rhs_components) - 1)
583	       << base_component;
584
585	    ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
586
587	    /* Generate a swizzle so that LHS and RHS sizes match.
588	     */
589	    ir_rvalue *rhs =
590	       new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
591
592	    ir_instruction *inst =
593	       new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
594	    instructions->push_tail(inst);
595	 }
596
597	 /* Advance the component index by the number of components that were
598	  * just assigned.
599	  */
600	 base_component += rhs_components;
601      }
602   }
603   return new(ctx) ir_dereference_variable(var);
604}
605
606
607/**
608 * Generate assignment of a portion of a vector to a portion of a matrix column
609 *
610 * \param src_base  First component of the source to be used in assignment
611 * \param column    Column of destination to be assiged
612 * \param row_base  First component of the destination column to be assigned
613 * \param count     Number of components to be assigned
614 *
615 * \note
616 * \c src_base + \c count must be less than or equal to the number of components
617 * in the source vector.
618 */
619ir_instruction *
620assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
621			ir_rvalue *src, unsigned src_base, unsigned count,
622			void *mem_ctx)
623{
624   ir_constant *col_idx = new(mem_ctx) ir_constant(column);
625   ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
626
627   assert(column_ref->type->components() >= (row_base + count));
628   assert(src->type->components() >= (src_base + count));
629
630   /* Generate a swizzle that puts the first element of the source at the
631    * location of the first element of the destination.
632    */
633   unsigned swiz[4] = { src_base, src_base, src_base, src_base };
634   for (unsigned i = 0; i < count; i++)
635      swiz[i + row_base] = i;
636
637   ir_rvalue *const rhs =
638      new(mem_ctx) ir_swizzle(src, swiz, count);
639
640   /* Mask of fields to be written in the assignment.
641    */
642   const unsigned write_mask = ((1U << count) - 1) << row_base;
643
644   return new(mem_ctx) ir_assignment(column_ref, rhs, NULL, write_mask);
645}
646
647
648/**
649 * Generate inline code for a matrix constructor
650 *
651 * The generated constructor code will consist of a temporary variable
652 * declaration of the same type as the constructor.  A sequence of assignments
653 * from constructor parameters to the temporary will follow.
654 *
655 * \return
656 * An \c ir_dereference_variable of the temprorary generated in the constructor
657 * body.
658 */
659ir_rvalue *
660emit_inline_matrix_constructor(const glsl_type *type,
661			       exec_list *instructions,
662			       exec_list *parameters,
663			       void *ctx)
664{
665   assert(!parameters->is_empty());
666
667   ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
668   instructions->push_tail(var);
669
670   /* There are three kinds of matrix constructors.
671    *
672    *  - Construct a matrix from a single scalar by replicating that scalar to
673    *    along the diagonal of the matrix and setting all other components to
674    *    zero.
675    *
676    *  - Construct a matrix from an arbirary combination of vectors and
677    *    scalars.  The components of the constructor parameters are assigned
678    *    to the matrix in colum-major order until the matrix is full.
679    *
680    *  - Construct a matrix from a single matrix.  The source matrix is copied
681    *    to the upper left portion of the constructed matrix, and the remaining
682    *    elements take values from the identity matrix.
683    */
684   ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
685   if (single_scalar_parameter(parameters)) {
686      /* Assign the scalar to the X component of a vec4, and fill the remaining
687       * components with zero.
688       */
689      ir_variable *rhs_var =
690	 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
691			      ir_var_temporary);
692      instructions->push_tail(rhs_var);
693
694      ir_constant_data zero;
695      zero.f[0] = 0.0;
696      zero.f[1] = 0.0;
697      zero.f[2] = 0.0;
698      zero.f[3] = 0.0;
699
700      ir_instruction *inst =
701	 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
702				new(ctx) ir_constant(rhs_var->type, &zero),
703				NULL);
704      instructions->push_tail(inst);
705
706      ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
707
708      inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
709      instructions->push_tail(inst);
710
711      /* Assign the temporary vector to each column of the destination matrix
712       * with a swizzle that puts the X component on the diagonal of the
713       * matrix.  In some cases this may mean that the X component does not
714       * get assigned into the column at all (i.e., when the matrix has more
715       * columns than rows).
716       */
717      static const unsigned rhs_swiz[4][4] = {
718	 { 0, 1, 1, 1 },
719	 { 1, 0, 1, 1 },
720	 { 1, 1, 0, 1 },
721	 { 1, 1, 1, 0 }
722      };
723
724      const unsigned cols_to_init = MIN2(type->matrix_columns,
725					 type->vector_elements);
726      for (unsigned i = 0; i < cols_to_init; i++) {
727	 ir_constant *const col_idx = new(ctx) ir_constant(i);
728	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
729
730	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
731	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
732						    type->vector_elements);
733
734	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
735	 instructions->push_tail(inst);
736      }
737
738      for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
739	 ir_constant *const col_idx = new(ctx) ir_constant(i);
740	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
741
742	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
743	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
744						    type->vector_elements);
745
746	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
747	 instructions->push_tail(inst);
748      }
749   } else if (first_param->type->is_matrix()) {
750      /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
751       *
752       *     "If a matrix is constructed from a matrix, then each component
753       *     (column i, row j) in the result that has a corresponding
754       *     component (column i, row j) in the argument will be initialized
755       *     from there. All other components will be initialized to the
756       *     identity matrix. If a matrix argument is given to a matrix
757       *     constructor, it is an error to have any other arguments."
758       */
759      assert(first_param->next->is_tail_sentinel());
760      ir_rvalue *const src_matrix = first_param;
761
762      /* If the source matrix is smaller, pre-initialize the relavent parts of
763       * the destination matrix to the identity matrix.
764       */
765      if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
766	  || (src_matrix->type->vector_elements < var->type->vector_elements)) {
767
768	 /* If the source matrix has fewer rows, every column of the destination
769	  * must be initialized.  Otherwise only the columns in the destination
770	  * that do not exist in the source must be initialized.
771	  */
772	 unsigned col =
773	    (src_matrix->type->vector_elements < var->type->vector_elements)
774	    ? 0 : src_matrix->type->matrix_columns;
775
776	 const glsl_type *const col_type = var->type->column_type();
777	 for (/* empty */; col < var->type->matrix_columns; col++) {
778	    ir_constant_data ident;
779
780	    ident.f[0] = 0.0;
781	    ident.f[1] = 0.0;
782	    ident.f[2] = 0.0;
783	    ident.f[3] = 0.0;
784
785	    ident.f[col] = 1.0;
786
787	    ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
788
789	    ir_rvalue *const lhs =
790	       new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
791
792	    ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
793	    instructions->push_tail(inst);
794	 }
795      }
796
797      /* Assign columns from the source matrix to the destination matrix.
798       *
799       * Since the parameter will be used in the RHS of multiple assignments,
800       * generate a temporary and copy the paramter there.
801       */
802      ir_variable *const rhs_var =
803	 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
804			      ir_var_temporary);
805      instructions->push_tail(rhs_var);
806
807      ir_dereference *const rhs_var_ref =
808	 new(ctx) ir_dereference_variable(rhs_var);
809      ir_instruction *const inst =
810	 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
811      instructions->push_tail(inst);
812
813      const unsigned last_row = MIN2(src_matrix->type->vector_elements,
814				     var->type->vector_elements);
815      const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
816				     var->type->matrix_columns);
817
818      unsigned swiz[4] = { 0, 0, 0, 0 };
819      for (unsigned i = 1; i < last_row; i++)
820	 swiz[i] = i;
821
822      const unsigned write_mask = (1U << last_row) - 1;
823
824      for (unsigned i = 0; i < last_col; i++) {
825	 ir_dereference *const lhs =
826	    new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
827	 ir_rvalue *const rhs_col =
828	    new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
829
830	 /* If one matrix has columns that are smaller than the columns of the
831	  * other matrix, wrap the column access of the larger with a swizzle
832	  * so that the LHS and RHS of the assignment have the same size (and
833	  * therefore have the same type).
834	  *
835	  * It would be perfectly valid to unconditionally generate the
836	  * swizzles, this this will typically result in a more compact IR tree.
837	  */
838	 ir_rvalue *rhs;
839	 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
840	    rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
841	 } else {
842	    rhs = rhs_col;
843	 }
844
845	 ir_instruction *inst =
846	    new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
847	 instructions->push_tail(inst);
848      }
849   } else {
850      const unsigned cols = type->matrix_columns;
851      const unsigned rows = type->vector_elements;
852      unsigned col_idx = 0;
853      unsigned row_idx = 0;
854
855      foreach_list (node, parameters) {
856	 ir_rvalue *const rhs = (ir_rvalue *) node;
857	 const unsigned components_remaining_this_column = rows - row_idx;
858	 unsigned rhs_components = rhs->type->components();
859	 unsigned rhs_base = 0;
860
861	 /* Since the parameter might be used in the RHS of two assignments,
862	  * generate a temporary and copy the paramter there.
863	  */
864	 ir_variable *rhs_var =
865	    new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
866	 instructions->push_tail(rhs_var);
867
868	 ir_dereference *rhs_var_ref =
869	    new(ctx) ir_dereference_variable(rhs_var);
870	 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
871	 instructions->push_tail(inst);
872
873	 /* Assign the current parameter to as many components of the matrix
874	  * as it will fill.
875	  *
876	  * NOTE: A single vector parameter can span two matrix columns.  A
877	  * single vec4, for example, can completely fill a mat2.
878	  */
879	 if (rhs_components >= components_remaining_this_column) {
880	    const unsigned count = MIN2(rhs_components,
881					components_remaining_this_column);
882
883	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
884
885	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
886							   row_idx,
887							   rhs_var_ref, 0,
888							   count, ctx);
889	    instructions->push_tail(inst);
890
891	    rhs_base = count;
892
893	    col_idx++;
894	    row_idx = 0;
895	 }
896
897	 /* If there is data left in the parameter and components left to be
898	  * set in the destination, emit another assignment.  It is possible
899	  * that the assignment could be of a vec4 to the last element of the
900	  * matrix.  In this case col_idx==cols, but there is still data
901	  * left in the source parameter.  Obviously, don't emit an assignment
902	  * to data outside the destination matrix.
903	  */
904	 if ((col_idx < cols) && (rhs_base < rhs_components)) {
905	    const unsigned count = rhs_components - rhs_base;
906
907	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
908
909	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
910							   row_idx,
911							   rhs_var_ref,
912							   rhs_base,
913							   count, ctx);
914	    instructions->push_tail(inst);
915
916	    row_idx += count;
917	 }
918      }
919   }
920
921   return new(ctx) ir_dereference_variable(var);
922}
923
924
925ir_rvalue *
926emit_inline_record_constructor(const glsl_type *type,
927			       exec_list *instructions,
928			       exec_list *parameters,
929			       void *mem_ctx)
930{
931   ir_variable *const var =
932      new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
933   ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
934
935   instructions->push_tail(var);
936
937   exec_node *node = parameters->head;
938   for (unsigned i = 0; i < type->length; i++) {
939      assert(!node->is_tail_sentinel());
940
941      ir_dereference *const lhs =
942	 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
943					    type->fields.structure[i].name);
944
945      ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
946      assert(rhs != NULL);
947
948      ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
949
950      instructions->push_tail(assign);
951      node = node->next;
952   }
953
954   return d;
955}
956
957
958ir_rvalue *
959ast_function_expression::hir(exec_list *instructions,
960			     struct _mesa_glsl_parse_state *state)
961{
962   void *ctx = state;
963   /* There are three sorts of function calls.
964    *
965    * 1. constructors - The first subexpression is an ast_type_specifier.
966    * 2. methods - Only the .length() method of array types.
967    * 3. functions - Calls to regular old functions.
968    *
969    * Method calls are actually detected when the ast_field_selection
970    * expression is handled.
971    */
972   if (is_constructor()) {
973      const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
974      YYLTYPE loc = type->get_location();
975      const char *name;
976
977      const glsl_type *const constructor_type = type->glsl_type(& name, state);
978
979
980      /* Constructors for samplers are illegal.
981       */
982      if (constructor_type->is_sampler()) {
983	 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
984			  constructor_type->name);
985	 return ir_call::get_error_instruction(ctx);
986      }
987
988      if (constructor_type->is_array()) {
989	 if (state->language_version <= 110) {
990	    _mesa_glsl_error(& loc, state,
991			     "array constructors forbidden in GLSL 1.10");
992	    return ir_call::get_error_instruction(ctx);
993	 }
994
995	 return process_array_constructor(instructions, constructor_type,
996					  & loc, &this->expressions, state);
997      }
998
999
1000      /* There are two kinds of constructor call.  Constructors for built-in
1001       * language types, such as mat4 and vec2, are free form.  The only
1002       * requirement is that the parameters must provide enough values of the
1003       * correct scalar type.  Constructors for arrays and structures must
1004       * have the exact number of parameters with matching types in the
1005       * correct order.  These constructors follow essentially the same type
1006       * matching rules as functions.
1007       */
1008      if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1009	 return ir_call::get_error_instruction(ctx);
1010
1011      /* Total number of components of the type being constructed. */
1012      const unsigned type_components = constructor_type->components();
1013
1014      /* Number of components from parameters that have actually been
1015       * consumed.  This is used to perform several kinds of error checking.
1016       */
1017      unsigned components_used = 0;
1018
1019      unsigned matrix_parameters = 0;
1020      unsigned nonmatrix_parameters = 0;
1021      exec_list actual_parameters;
1022
1023      foreach_list (n, &this->expressions) {
1024	 ast_node *ast = exec_node_data(ast_node, n, link);
1025	 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1026
1027	 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1028	  *
1029	  *    "It is an error to provide extra arguments beyond this
1030	  *    last used argument."
1031	  */
1032	 if (components_used >= type_components) {
1033	    _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1034			     "constructor",
1035			     constructor_type->name);
1036	    return ir_call::get_error_instruction(ctx);
1037	 }
1038
1039	 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1040	    _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1041			     "non-numeric data type",
1042			     constructor_type->name);
1043	    return ir_call::get_error_instruction(ctx);
1044	 }
1045
1046	 /* Count the number of matrix and nonmatrix parameters.  This
1047	  * is used below to enforce some of the constructor rules.
1048	  */
1049	 if (result->type->is_matrix())
1050	    matrix_parameters++;
1051	 else
1052	    nonmatrix_parameters++;
1053
1054	 actual_parameters.push_tail(result);
1055	 components_used += result->type->components();
1056      }
1057
1058      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1059       *
1060       *    "It is an error to construct matrices from other matrices. This
1061       *    is reserved for future use."
1062       */
1063      if (state->language_version == 110 && matrix_parameters > 0
1064	  && constructor_type->is_matrix()) {
1065	 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1066			  "matrix in GLSL 1.10",
1067			  constructor_type->name);
1068	 return ir_call::get_error_instruction(ctx);
1069      }
1070
1071      /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1072       *
1073       *    "If a matrix argument is given to a matrix constructor, it is
1074       *    an error to have any other arguments."
1075       */
1076      if ((matrix_parameters > 0)
1077	  && ((matrix_parameters + nonmatrix_parameters) > 1)
1078	  && constructor_type->is_matrix()) {
1079	 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1080			  "matrix must be only parameter",
1081			  constructor_type->name);
1082	 return ir_call::get_error_instruction(ctx);
1083      }
1084
1085      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1086       *
1087       *    "In these cases, there must be enough components provided in the
1088       *    arguments to provide an initializer for every component in the
1089       *    constructed value."
1090       */
1091      if (components_used < type_components && components_used != 1
1092	  && matrix_parameters == 0) {
1093	 _mesa_glsl_error(& loc, state, "too few components to construct "
1094			  "`%s'",
1095			  constructor_type->name);
1096	 return ir_call::get_error_instruction(ctx);
1097      }
1098
1099      /* Later, we cast each parameter to the same base type as the
1100       * constructor.  Since there are no non-floating point matrices, we
1101       * need to break them up into a series of column vectors.
1102       */
1103      if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1104	 foreach_list_safe(n, &actual_parameters) {
1105	    ir_rvalue *matrix = (ir_rvalue *) n;
1106
1107	    if (!matrix->type->is_matrix())
1108	       continue;
1109
1110	    /* Create a temporary containing the matrix. */
1111	    ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1112						    ir_var_temporary);
1113	    instructions->push_tail(var);
1114	    instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1115	       ir_dereference_variable(var), matrix, NULL));
1116	    var->constant_value = matrix->constant_expression_value();
1117
1118	    /* Replace the matrix with dereferences of its columns. */
1119	    for (int i = 0; i < matrix->type->matrix_columns; i++) {
1120	       matrix->insert_before(new (ctx) ir_dereference_array(var,
1121		  new(ctx) ir_constant(i)));
1122	    }
1123	    matrix->remove();
1124	 }
1125      }
1126
1127      bool all_parameters_are_constant = true;
1128
1129      /* Type cast each parameter and, if possible, fold constants.*/
1130      foreach_list_safe(n, &actual_parameters) {
1131	 ir_rvalue *ir = (ir_rvalue *) n;
1132
1133	 const glsl_type *desired_type =
1134	    glsl_type::get_instance(constructor_type->base_type,
1135				    ir->type->vector_elements,
1136				    ir->type->matrix_columns);
1137	 ir_rvalue *result = convert_component(ir, desired_type);
1138
1139	 /* Attempt to convert the parameter to a constant valued expression.
1140	  * After doing so, track whether or not all the parameters to the
1141	  * constructor are trivially constant valued expressions.
1142	  */
1143	 ir_rvalue *const constant = result->constant_expression_value();
1144
1145	 if (constant != NULL)
1146	    result = constant;
1147	 else
1148	    all_parameters_are_constant = false;
1149
1150	 if (result != ir) {
1151	    ir->replace_with(result);
1152	 }
1153      }
1154
1155      /* If all of the parameters are trivially constant, create a
1156       * constant representing the complete collection of parameters.
1157       */
1158      if (all_parameters_are_constant) {
1159	 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1160      } else if (constructor_type->is_scalar()) {
1161	 return dereference_component((ir_rvalue *) actual_parameters.head,
1162				      0);
1163      } else if (constructor_type->is_vector()) {
1164	 return emit_inline_vector_constructor(constructor_type,
1165					       instructions,
1166					       &actual_parameters,
1167					       ctx);
1168      } else {
1169	 assert(constructor_type->is_matrix());
1170	 return emit_inline_matrix_constructor(constructor_type,
1171					       instructions,
1172					       &actual_parameters,
1173					       ctx);
1174      }
1175   } else {
1176      const ast_expression *id = subexpressions[0];
1177      YYLTYPE loc = id->get_location();
1178      exec_list actual_parameters;
1179
1180      process_parameters(instructions, &actual_parameters, &this->expressions,
1181			 state);
1182
1183      const glsl_type *const type =
1184	 state->symbols->get_type(id->primary_expression.identifier);
1185
1186      if ((type != NULL) && type->is_record()) {
1187	 exec_node *node = actual_parameters.head;
1188	 for (unsigned i = 0; i < type->length; i++) {
1189	    ir_rvalue *ir = (ir_rvalue *) node;
1190
1191	    if (node->is_tail_sentinel()) {
1192	       _mesa_glsl_error(&loc, state,
1193				"insufficient parameters to constructor "
1194				"for `%s'",
1195				type->name);
1196	       return ir_call::get_error_instruction(ctx);
1197	    }
1198
1199	    if (apply_implicit_conversion(type->fields.structure[i].type, ir,
1200					  state)) {
1201	       node->replace_with(ir);
1202	    } else {
1203	       _mesa_glsl_error(&loc, state,
1204				"parameter type mismatch in constructor "
1205				"for `%s.%s' (%s vs %s)",
1206				type->name,
1207				type->fields.structure[i].name,
1208				ir->type->name,
1209				type->fields.structure[i].type->name);
1210	       return ir_call::get_error_instruction(ctx);;
1211	    }
1212
1213	    node = node->next;
1214	 }
1215
1216	 if (!node->is_tail_sentinel()) {
1217	    _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1218			     "for `%s'", type->name);
1219	    return ir_call::get_error_instruction(ctx);
1220	 }
1221
1222	 ir_rvalue *const constant =
1223	    constant_record_constructor(type, &actual_parameters, state);
1224
1225	 return (constant != NULL)
1226	    ? constant
1227	    : emit_inline_record_constructor(type, instructions,
1228					     &actual_parameters, state);
1229      }
1230
1231      return match_function_by_name(instructions,
1232				    id->primary_expression.identifier, & loc,
1233				    &actual_parameters, state);
1234   }
1235
1236   return ir_call::get_error_instruction(ctx);
1237}
1238