macros.h revision bd5cdaf4442872d3cd2ff94eeafadd481d27fcfb
1/* $Id: macros.h,v 1.5 1999/10/13 18:42:50 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  3.1
6 *
7 * Copyright (C) 1999  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28
29
30
31/*
32 * A collection of useful macros.
33 */
34
35
36#ifndef MACROS_H
37#define MACROS_H
38
39#if defined( XFree86LOADER ) && defined( XFree86Server )
40#include <GL/glx_ansic.h>
41#else
42#include <math.h>
43#include <string.h>
44#endif
45
46
47#ifdef DEBUG
48#  include <assert.h>
49#  define ASSERT(X)   assert(X)
50#else
51#  define ASSERT(X)
52#endif
53
54
55#if defined(__GNUC__)
56#define INLINE __inline__
57#elif defined(__MSC__)
58#define INLINE __inline
59#else
60#define INLINE
61#endif
62
63
64/* Stepping a GLfloat pointer by a byte stride
65 */
66#define STRIDE_F(p, i)  (p = (GLfloat *)((GLubyte *)p + i))
67#define STRIDE_UI(p, i)  (p = (GLuint *)((GLubyte *)p + i))
68#define STRIDE_T(p, t, i)  (p = (t *)((GLubyte *)p + i))
69
70
71/* Limits: */
72#define MAX_GLUSHORT	0xffff
73#define MAX_GLUINT	0xffffffff
74
75
76#define ZERO_2V( DST )	(DST)[0] = (DST)[1] = 0
77#define ZERO_3V( DST )	(DST)[0] = (DST)[1] = (DST)[2] = 0
78#define ZERO_4V( DST )	(DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
79
80
81/* Copy short vectors: */
82#define COPY_2V( DST, SRC )			\
83do {						\
84   (DST)[0] = (SRC)[0];				\
85   (DST)[1] = (SRC)[1];				\
86} while (0)
87
88
89#define COPY_3V( DST, SRC )			\
90do {						\
91   (DST)[0] = (SRC)[0];				\
92   (DST)[1] = (SRC)[1];				\
93   (DST)[2] = (SRC)[2];				\
94} while (0)
95
96#define COPY_4V( DST, SRC )			\
97do {						\
98   (DST)[0] = (SRC)[0];				\
99   (DST)[1] = (SRC)[1];				\
100   (DST)[2] = (SRC)[2];				\
101   (DST)[3] = (SRC)[3];				\
102} while (0)
103
104
105#define COPY_2FV( DST, SRC )			\
106do {						\
107   const GLfloat *_tmp = (SRC);			\
108   (DST)[0] = _tmp[0];				\
109   (DST)[1] = _tmp[1];				\
110} while (0)
111
112
113#define COPY_3FV( DST, SRC )			\
114do {						\
115   const GLfloat *_tmp = (SRC);			\
116   (DST)[0] = _tmp[0];				\
117   (DST)[1] = _tmp[1];				\
118   (DST)[2] = _tmp[2];				\
119} while (0)
120
121#define COPY_4FV( DST, SRC )			\
122do {						\
123   const GLfloat *_tmp = (SRC);			\
124   (DST)[0] = _tmp[0];				\
125   (DST)[1] = _tmp[1];				\
126   (DST)[2] = _tmp[2];				\
127   (DST)[3] = _tmp[3];				\
128} while (0)
129
130
131
132#define COPY_SZ_4V(DST, SZ, SRC) 		\
133do {						\
134   switch (SZ) {				\
135   case 4: (DST)[3] = (SRC)[3];			\
136   case 3: (DST)[2] = (SRC)[2];			\
137   case 2: (DST)[1] = (SRC)[1];			\
138   case 1: (DST)[0] = (SRC)[0];			\
139   }  						\
140} while(0)
141
142#define SUB_4V( DST, SRCA, SRCB )		\
143do {						\
144      (DST)[0] = (SRCA)[0] - (SRCB)[0];		\
145      (DST)[1] = (SRCA)[1] - (SRCB)[1];		\
146      (DST)[2] = (SRCA)[2] - (SRCB)[2];		\
147      (DST)[3] = (SRCA)[3] - (SRCB)[3];		\
148} while (0)
149
150#define ADD_4V( DST, SRCA, SRCB )		\
151do {						\
152      (DST)[0] = (SRCA)[0] + (SRCB)[0];		\
153      (DST)[1] = (SRCA)[1] + (SRCB)[1];		\
154      (DST)[2] = (SRCA)[2] + (SRCB)[2];		\
155      (DST)[3] = (SRCA)[3] + (SRCB)[3];		\
156} while (0)
157
158#define SCALE_4V( DST, SRCA, SRCB )		\
159do {						\
160      (DST)[0] = (SRCA)[0] * (SRCB)[0];		\
161      (DST)[1] = (SRCA)[1] * (SRCB)[1];		\
162      (DST)[2] = (SRCA)[2] * (SRCB)[2];		\
163      (DST)[3] = (SRCA)[3] * (SRCB)[3];		\
164} while (0)
165
166#define ACC_4V( DST, SRC )			\
167do {						\
168      (DST)[0] += (SRC)[0];				\
169      (DST)[1] += (SRC)[1];				\
170      (DST)[2] += (SRC)[2];				\
171      (DST)[3] += (SRC)[3];				\
172} while (0)
173
174#define ACC_SCALE_4V( DST, SRCA, SRCB )		\
175do {						\
176      (DST)[0] += (SRCA)[0] * (SRCB)[0];		\
177      (DST)[1] += (SRCA)[1] * (SRCB)[1];		\
178      (DST)[2] += (SRCA)[2] * (SRCB)[2];		\
179      (DST)[3] += (SRCA)[3] * (SRCB)[3];		\
180} while (0)
181
182#define ACC_SCALE_SCALAR_4V( DST, S, SRCB )	\
183do {						\
184      (DST)[0] += S * (SRCB)[0];			\
185      (DST)[1] += S * (SRCB)[1];			\
186      (DST)[2] += S * (SRCB)[2];			\
187      (DST)[3] += S * (SRCB)[3];			\
188} while (0)
189
190#define SCALE_SCALAR_4V( DST, S, SRCB )		\
191do {						\
192      (DST)[0] = S * (SRCB)[0];			\
193      (DST)[1] = S * (SRCB)[1];			\
194      (DST)[2] = S * (SRCB)[2];			\
195      (DST)[3] = S * (SRCB)[3];			\
196} while (0)
197
198
199#define SELF_SCALE_SCALAR_4V( DST, S )		\
200do {						\
201      (DST)[0] *= S;				\
202      (DST)[1] *= S;				\
203      (DST)[2] *= S;				\
204      (DST)[3] *= S;				\
205} while (0)
206
207
208/*
209 * Similarly for 3-vectors.
210 */
211#define SUB_3V( DST, SRCA, SRCB )		\
212do {						\
213      (DST)[0] = (SRCA)[0] - (SRCB)[0];		\
214      (DST)[1] = (SRCA)[1] - (SRCB)[1];		\
215      (DST)[2] = (SRCA)[2] - (SRCB)[2];		\
216} while (0)
217
218#define ADD_3V( DST, SRCA, SRCB )		\
219do {						\
220      (DST)[0] = (SRCA)[0] + (SRCB)[0];		\
221      (DST)[1] = (SRCA)[1] + (SRCB)[1];		\
222      (DST)[2] = (SRCA)[2] + (SRCB)[2];		\
223} while (0)
224
225#define SCALE_3V( DST, SRCA, SRCB )		\
226do {						\
227      (DST)[0] = (SRCA)[0] * (SRCB)[0];		\
228      (DST)[1] = (SRCA)[1] * (SRCB)[1];		\
229      (DST)[2] = (SRCA)[2] * (SRCB)[2];		\
230} while (0)
231
232#define ACC_3V( DST, SRC )			\
233do {						\
234      (DST)[0] += (SRC)[0];			\
235      (DST)[1] += (SRC)[1];			\
236      (DST)[2] += (SRC)[2];			\
237} while (0)
238
239#define ACC_SCALE_3V( DST, SRCA, SRCB )		\
240do {						\
241      (DST)[0] += (SRCA)[0] * (SRCB)[0];	\
242      (DST)[1] += (SRCA)[1] * (SRCB)[1];	\
243      (DST)[2] += (SRCA)[2] * (SRCB)[2];	\
244} while (0)
245
246#define SCALE_SCALAR_3V( DST, S, SRCB ) 	\
247do {						\
248      (DST)[0] = S * (SRCB)[0];			\
249      (DST)[1] = S * (SRCB)[1];			\
250      (DST)[2] = S * (SRCB)[2];			\
251} while (0)
252
253#define ACC_SCALE_SCALAR_3V( DST, S, SRCB )	\
254do {						\
255      (DST)[0] += S * (SRCB)[0];		\
256      (DST)[1] += S * (SRCB)[1];		\
257      (DST)[2] += S * (SRCB)[2];		\
258} while (0)
259
260#define SELF_SCALE_SCALAR_3V( DST, S )		\
261do {						\
262      (DST)[0] *= S;				\
263      (DST)[1] *= S;				\
264      (DST)[2] *= S;				\
265} while (0)
266
267#define ACC_SCALAR_3V( DST, S ) 		\
268do {						\
269      (DST)[0] += S;				\
270      (DST)[1] += S;				\
271      (DST)[2] += S;				\
272} while (0)
273
274/* And also for 2-vectors
275 */
276#define SUB_2V( DST, SRCA, SRCB )		\
277do {						\
278      (DST)[0] = (SRCA)[0] - (SRCB)[0];		\
279      (DST)[1] = (SRCA)[1] - (SRCB)[1];		\
280} while (0)
281
282#define ADD_2V( DST, SRCA, SRCB )		\
283do {						\
284      (DST)[0] = (SRCA)[0] + (SRCB)[0];		\
285      (DST)[1] = (SRCA)[1] + (SRCB)[1];		\
286} while (0)
287
288#define SCALE_2V( DST, SRCA, SRCB )		\
289do {						\
290      (DST)[0] = (SRCA)[0] * (SRCB)[0];		\
291      (DST)[1] = (SRCA)[1] * (SRCB)[1];		\
292} while (0)
293
294#define ACC_2V( DST, SRC )			\
295do {						\
296      (DST)[0] += (SRC)[0];			\
297      (DST)[1] += (SRC)[1];			\
298} while (0)
299
300#define ACC_SCALE_2V( DST, SRCA, SRCB )		\
301do {						\
302      (DST)[0] += (SRCA)[0] * (SRCB)[0];	\
303      (DST)[1] += (SRCA)[1] * (SRCB)[1];	\
304} while (0)
305
306#define SCALE_SCALAR_2V( DST, S, SRCB ) 	\
307do {						\
308      (DST)[0] = S * (SRCB)[0];			\
309      (DST)[1] = S * (SRCB)[1];			\
310} while (0)
311
312#define ACC_SCALE_SCALAR_2V( DST, S, SRCB )	\
313do {						\
314      (DST)[0] += S * (SRCB)[0];		\
315      (DST)[1] += S * (SRCB)[1];		\
316} while (0)
317
318#define SELF_SCALE_SCALAR_2V( DST, S )		\
319do {						\
320      (DST)[0] *= S;				\
321      (DST)[1] *= S;				\
322} while (0)
323
324#define ACC_SCALAR_2V( DST, S ) 		\
325do {						\
326      (DST)[0] += S;				\
327      (DST)[1] += S;				\
328} while (0)
329
330
331
332/*
333 * Copy a vector of 4 GLubytes from SRC to DST.
334 */
335#define COPY_4UBV(DST, SRC)			\
336do {						\
337   if (sizeof(GLuint)==4*sizeof(GLubyte)) {	\
338      *((GLuint*)(DST)) = *((GLuint*)(SRC));	\
339   }						\
340   else {					\
341      (DST)[0] = (SRC)[0];			\
342      (DST)[1] = (SRC)[1];			\
343      (DST)[2] = (SRC)[2];			\
344      (DST)[3] = (SRC)[3];			\
345   }						\
346} while (0)
347
348
349/* Assign scalers to short vectors: */
350#define ASSIGN_2V( V, V0, V1 )  \
351do { V[0] = V0;  V[1] = V1; } while(0)
352
353#define ASSIGN_3V( V, V0, V1, V2 )  \
354do { V[0] = V0;  V[1] = V1;  V[2] = V2; } while(0)
355
356#define ASSIGN_4V( V, V0, V1, V2, V3 ) 		\
357do { 						\
358    V[0] = V0;					\
359    V[1] = V1;					\
360    V[2] = V2;					\
361    V[3] = V3; 					\
362} while(0)
363
364
365
366
367/* Absolute value (for Int, Float, Double): */
368#define ABSI(X)  ((X) < 0 ? -(X) : (X))
369#define ABSF(X)  ((X) < 0.0F ? -(X) : (X))
370#define ABSD(X)  ((X) < 0.0 ? -(X) : (X))
371
372
373
374/* Round a floating-point value to the nearest integer: */
375#define ROUNDF(X)  ( (X)<0.0F ? ((GLint) ((X)-0.5F)) : ((GLint) ((X)+0.5F)) )
376
377
378/* Compute ceiling of integer quotient of A divided by B: */
379#define CEILING( A, B )  ( (A) % (B) == 0 ? (A)/(B) : (A)/(B)+1 )
380
381
382/* Clamp X to [MIN,MAX]: */
383#define CLAMP( X, MIN, MAX )  ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
384
385/* Assign X to CLAMP(X, MIN, MAX) */
386#define CLAMP_SELF(x, mn, mx)  \
387   ( (x)<(mn) ? ((x) = (mn)) : ((x)>(mx) ? ((x)=(mx)) : (x)) )
388
389
390
391/* Min of two values: */
392#define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )
393
394
395/* MAX of two values: */
396#define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )
397
398/* Dot product of two 2-element vectors */
399#define DOT2( a, b )  ( (a)[0]*(b)[0] + (a)[1]*(b)[1] )
400
401/* Dot product of two 3-element vectors */
402#define DOT3( a, b )  ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] )
403
404
405/* Dot product of two 4-element vectors */
406#define DOT4( a, b )  ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \
407			(a)[2]*(b)[2] + (a)[3]*(b)[3] )
408
409#define DOT4V(v,a,b,c,d) (v[0]*a + v[1]*b + v[2]*c + v[3]*d)
410
411
412#define CROSS3(n, u, v) 			\
413do {						\
414   (n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; 	\
415   (n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; 	\
416   (n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0];	\
417} while (0)
418
419
420/*
421 * Integer / float conversion for colors, normals, etc.
422 */
423
424
425
426
427#define BYTE_TO_UBYTE(b)   (b < 0 ? 0 : (GLubyte) b)
428#define SHORT_TO_UBYTE(s)  (s < 0 ? 0 : (GLubyte) (s >> 7))
429#define USHORT_TO_UBYTE(s)              (GLubyte) (s >> 8)
430#define INT_TO_UBYTE(i)    (i < 0 ? 0 : (GLubyte) (i >> 23))
431#define UINT_TO_UBYTE(i)                (GLubyte) (i >> 24)
432
433
434
435
436/* Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
437#define UBYTE_TO_FLOAT(B)	((GLfloat) (B) * (1.0F / 255.0F))
438
439/* Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
440#define FLOAT_TO_UBYTE(X)	((GLubyte) (GLint) (((X)) * 255.0F))
441
442
443/* Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
444#define BYTE_TO_FLOAT(B)	((2.0F * (B) + 1.0F) * (1.0F/255.0F))
445
446/* Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
447#define FLOAT_TO_BYTE(X)	( (((GLint) (255.0F * (X))) - 1) / 2 )
448
449
450/* Convert GLushort in [0,65536] to GLfloat in [0.0,1.0] */
451#define USHORT_TO_FLOAT(S)	((GLfloat) (S) * (1.0F / 65535.0F))
452
453/* Convert GLfloat in [0.0,1.0] to GLushort in [0,65536] */
454#define FLOAT_TO_USHORT(X)	((GLushort) (GLint) ((X) * 65535.0F))
455
456
457/* Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
458#define SHORT_TO_FLOAT(S)	((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
459
460/* Convert GLfloat in [0.0,1.0] to GLshort in [-32768,32767] */
461#define FLOAT_TO_SHORT(X)	( (((GLint) (65535.0F * (X))) - 1) / 2 )
462
463
464/* Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
465#define UINT_TO_FLOAT(U)	((GLfloat) (U) * (1.0F / 4294967295.0F))
466
467/* Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
468#define FLOAT_TO_UINT(X)	((GLuint) ((X) * 4294967295.0))
469
470
471/* Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
472#define INT_TO_FLOAT(I)		((2.0F * (I) + 1.0F) * (1.0F/4294967294.0F))
473
474/* Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
475/* causes overflow:
476#define FLOAT_TO_INT(X)		( (((GLint) (4294967294.0F * (X))) - 1) / 2 )
477*/
478/* a close approximation: */
479#define FLOAT_TO_INT(X)		( (GLint) (2147483647.0 * (X)) )
480
481
482
483/*
484 * Memory allocation
485 * XXX these should probably go into a new glmemory.h file.
486 */
487#ifdef DEBUG
488extern void *gl_malloc(size_t bytes);
489extern void *gl_calloc(size_t bytes);
490extern void gl_free(void *ptr);
491#define MALLOC(BYTES)      gl_malloc(BYTES)
492#define CALLOC(BYTES)      gl_calloc(BYTES)
493#define MALLOC_STRUCT(T)   (struct T *) gl_malloc(sizeof(struct T))
494#define CALLOC_STRUCT(T)   (struct T *) gl_calloc(sizeof(struct T))
495#define FREE(PTR)          gl_free(PTR)
496#else
497#define MALLOC(BYTES)      (void *) malloc(BYTES)
498#define CALLOC(BYTES)      (void *) calloc(1, BYTES)
499#define MALLOC_STRUCT(T)   (struct T *) malloc(sizeof(struct T))
500#define CALLOC_STRUCT(T)   (struct T *) calloc(1,sizeof(struct T))
501#define FREE(PTR)          free(PTR)
502#endif
503
504
505/* Memory copy: */
506#ifdef SUNOS4
507#define MEMCPY( DST, SRC, BYTES) \
508	memcpy( (char *) (DST), (char *) (SRC), (int) (BYTES) )
509#else
510#define MEMCPY( DST, SRC, BYTES) \
511	memcpy( (void *) (DST), (void *) (SRC), (size_t) (BYTES) )
512#endif
513
514
515/* Memory set: */
516#ifdef SUNOS4
517#define MEMSET( DST, VAL, N ) \
518	memset( (char *) (DST), (int) (VAL), (int) (N) )
519#else
520#define MEMSET( DST, VAL, N ) \
521	memset( (void *) (DST), (int) (VAL), (size_t) (N) )
522#endif
523
524
525/* MACs and BeOS don't support static larger than 32kb, so... */
526#if defined(macintosh) && !defined(__MRC__)
527  extern char *AGLAlloc(int size);
528  extern void AGLFree(char* ptr);
529#  define DEFARRAY(TYPE,NAME,SIZE)  			TYPE *NAME = (TYPE*)AGLAlloc(sizeof(TYPE)*(SIZE))
530#  define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2)		TYPE (*NAME)[SIZE2] = (TYPE(*)[SIZE2])AGLAlloc(sizeof(TYPE)*(SIZE1)*(SIZE2))
531#  define CHECKARRAY(NAME,CMD)				do {if (!(NAME)) {CMD;}} while (0)
532#  define UNDEFARRAY(NAME)          			do {if ((NAME)) {AGLFree((char*)NAME);}  }while (0)
533#elif defined(__BEOS__)
534#  define DEFARRAY(TYPE,NAME,SIZE)  			TYPE *NAME = (TYPE*)malloc(sizeof(TYPE)*(SIZE))
535#  define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2)  		TYPE (*NAME)[SIZE2] = (TYPE(*)[SIZE2])malloc(sizeof(TYPE)*(SIZE1)*(SIZE2))
536#  define CHECKARRAY(NAME,CMD)				do {if (!(NAME)) {CMD;}} while (0)
537#  define UNDEFARRAY(NAME)          			do {if ((NAME)) {free((char*)NAME);}  }while (0)
538#else
539#  define DEFARRAY(TYPE,NAME,SIZE)  			TYPE NAME[SIZE]
540#  define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2)		TYPE NAME[SIZE1][SIZE2]
541#  define CHECKARRAY(NAME,CMD)				do {} while(0)
542#  define UNDEFARRAY(NAME)
543#endif
544
545
546/* Some compilers don't like some of Mesa's const usage */
547#ifdef NO_CONST
548#  define CONST
549#else
550#  define CONST const
551#endif
552
553
554
555/* Pi */
556#ifndef M_PI
557#define M_PI (3.1415926)
558#endif
559
560
561/* Degrees to radians conversion: */
562#define DEG2RAD (M_PI/180.0)
563
564
565#ifndef NULL
566#define NULL 0
567#endif
568
569
570
571#endif /*MACROS_H*/
572