macros.h revision d203dbc73d3b036937e0404b580fb04d23e10652
1/**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6/*
7 * Mesa 3-D graphics library
8 * Version:  6.5.2
9 *
10 * Copyright (C) 1999-2006  Brian Paul   All Rights Reserved.
11 *
12 * Permission is hereby granted, free of charge, to any person obtaining a
13 * copy of this software and associated documentation files (the "Software"),
14 * to deal in the Software without restriction, including without limitation
15 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
16 * and/or sell copies of the Software, and to permit persons to whom the
17 * Software is furnished to do so, subject to the following conditions:
18 *
19 * The above copyright notice and this permission notice shall be included
20 * in all copies or substantial portions of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
25 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
26 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
27 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31#ifndef MACROS_H
32#define MACROS_H
33
34#include "imports.h"
35
36
37/**
38 * \name Integer / float conversion for colors, normals, etc.
39 */
40/*@{*/
41
42/** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
43extern GLfloat _mesa_ubyte_to_float_color_tab[256];
44#define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
45
46/** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
47#define FLOAT_TO_UBYTE(X)   ((GLubyte) (GLint) ((X) * 255.0F))
48
49
50/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
51#define BYTE_TO_FLOAT(B)    ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
52
53/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
54#define FLOAT_TO_BYTE(X)    ( (((GLint) (255.0F * (X))) - 1) / 2 )
55
56
57/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
58#define BYTE_TO_FLOAT_TEX(B)    ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
59
60/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
61#define FLOAT_TO_BYTE_TEX(X)    ( (GLint) (127.0F * (X)) )
62
63
64/** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
65#define USHORT_TO_FLOAT(S)  ((GLfloat) (S) * (1.0F / 65535.0F))
66
67/** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
68#define FLOAT_TO_USHORT(X)   ((GLuint) ((X) * 65535.0F))
69
70
71/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
72#define SHORT_TO_FLOAT(S)   ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
73
74/** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
75#define FLOAT_TO_SHORT(X)   ( (((GLint) (65535.0F * (X))) - 1) / 2 )
76
77
78/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
79#define SHORT_TO_FLOAT_TEX(S)    ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
80
81/** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
82#define FLOAT_TO_SHORT_TEX(X)    ( (GLint) (32767.0F * (X)) )
83
84
85/** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
86#define UINT_TO_FLOAT(U)    ((GLfloat) (U) * (1.0F / 4294967295.0))
87
88/** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
89#define FLOAT_TO_UINT(X)    ((GLuint) ((X) * 4294967295.0))
90
91
92/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
93#define INT_TO_FLOAT(I)     ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0))
94
95/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
96/* causes overflow:
97#define FLOAT_TO_INT(X)     ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
98*/
99/* a close approximation: */
100#define FLOAT_TO_INT(X)     ( (GLint) (2147483647.0 * (X)) )
101
102/** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
103#define FLOAT_TO_INT64(X)     ( (GLint64) (9223372036854775807.0 * (double)(X)) )
104
105
106/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
107#define INT_TO_FLOAT_TEX(I)    ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
108
109/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
110#define FLOAT_TO_INT_TEX(X)    ( (GLint) (2147483647.0 * (X)) )
111
112
113#define BYTE_TO_UBYTE(b)   ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
114#define SHORT_TO_UBYTE(s)  ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
115#define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
116#define INT_TO_UBYTE(i)    ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
117#define UINT_TO_UBYTE(i)   ((GLubyte) ((i) >> 24))
118
119
120#define BYTE_TO_USHORT(b)  ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
121#define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
122#define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
123#define INT_TO_USHORT(i)   ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
124#define UINT_TO_USHORT(i)  ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
125#define UNCLAMPED_FLOAT_TO_USHORT(us, f)  \
126        us = ( (GLushort) IROUND( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
127#define CLAMPED_FLOAT_TO_USHORT(us, f)  \
128        us = ( (GLushort) IROUND( (f) * 65535.0F) )
129
130/*@}*/
131
132
133/** Stepping a GLfloat pointer by a byte stride */
134#define STRIDE_F(p, i)  (p = (GLfloat *)((GLubyte *)p + i))
135/** Stepping a GLuint pointer by a byte stride */
136#define STRIDE_UI(p, i)  (p = (GLuint *)((GLubyte *)p + i))
137/** Stepping a GLubyte[4] pointer by a byte stride */
138#define STRIDE_4UB(p, i)  (p = (GLubyte (*)[4])((GLubyte *)p + i))
139/** Stepping a GLfloat[4] pointer by a byte stride */
140#define STRIDE_4F(p, i)  (p = (GLfloat (*)[4])((GLubyte *)p + i))
141/** Stepping a GLchan[4] pointer by a byte stride */
142#define STRIDE_4CHAN(p, i)  (p = (GLchan (*)[4])((GLubyte *)p + i))
143/** Stepping a GLchan pointer by a byte stride */
144#define STRIDE_CHAN(p, i)  (p = (GLchan *)((GLubyte *)p + i))
145/** Stepping a \p t pointer by a byte stride */
146#define STRIDE_T(p, t, i)  (p = (t)((GLubyte *)p + i))
147
148
149/**********************************************************************/
150/** \name 4-element vector operations */
151/*@{*/
152
153/** Zero */
154#define ZERO_4V( DST )  (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
155
156/** Test for equality */
157#define TEST_EQ_4V(a,b)  ((a)[0] == (b)[0] &&   \
158              (a)[1] == (b)[1] &&   \
159              (a)[2] == (b)[2] &&   \
160              (a)[3] == (b)[3])
161
162/** Test for equality (unsigned bytes) */
163#if defined(__i386__)
164#define TEST_EQ_4UBV(DST, SRC) *((GLuint*)(DST)) == *((GLuint*)(SRC))
165#else
166#define TEST_EQ_4UBV(DST, SRC) TEST_EQ_4V(DST, SRC)
167#endif
168
169/** Copy a 4-element vector */
170#define COPY_4V( DST, SRC )         \
171do {                                \
172   (DST)[0] = (SRC)[0];             \
173   (DST)[1] = (SRC)[1];             \
174   (DST)[2] = (SRC)[2];             \
175   (DST)[3] = (SRC)[3];             \
176} while (0)
177
178/** Copy a 4-element vector with cast */
179#define COPY_4V_CAST( DST, SRC, CAST )  \
180do {                                    \
181   (DST)[0] = (CAST)(SRC)[0];           \
182   (DST)[1] = (CAST)(SRC)[1];           \
183   (DST)[2] = (CAST)(SRC)[2];           \
184   (DST)[3] = (CAST)(SRC)[3];           \
185} while (0)
186
187/** Copy a 4-element unsigned byte vector */
188#if defined(__i386__)
189#define COPY_4UBV(DST, SRC)                 \
190do {                                        \
191   *((GLuint*)(DST)) = *((GLuint*)(SRC));   \
192} while (0)
193#else
194/* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
195#define COPY_4UBV(DST, SRC)         \
196do {                                \
197   (DST)[0] = (SRC)[0];             \
198   (DST)[1] = (SRC)[1];             \
199   (DST)[2] = (SRC)[2];             \
200   (DST)[3] = (SRC)[3];             \
201} while (0)
202#endif
203
204/**
205 * Copy a 4-element float vector
206 * memcpy seems to be most efficient
207 */
208#define COPY_4FV( DST, SRC )                  \
209do {                                          \
210   _mesa_memcpy(DST, SRC, sizeof(GLfloat) * 4);       \
211} while (0)
212
213/** Copy \p SZ elements into a 4-element vector */
214#define COPY_SZ_4V(DST, SZ, SRC)  \
215do {                              \
216   switch (SZ) {                  \
217   case 4: (DST)[3] = (SRC)[3];   \
218   case 3: (DST)[2] = (SRC)[2];   \
219   case 2: (DST)[1] = (SRC)[1];   \
220   case 1: (DST)[0] = (SRC)[0];   \
221   }                              \
222} while(0)
223
224/** Copy \p SZ elements into a homegeneous (4-element) vector, giving
225 * default values to the remaining */
226#define COPY_CLEAN_4V(DST, SZ, SRC)  \
227do {                                 \
228      ASSIGN_4V( DST, 0, 0, 0, 1 );  \
229      COPY_SZ_4V( DST, SZ, SRC );    \
230} while (0)
231
232/** Subtraction */
233#define SUB_4V( DST, SRCA, SRCB )           \
234do {                                        \
235      (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
236      (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
237      (DST)[2] = (SRCA)[2] - (SRCB)[2];     \
238      (DST)[3] = (SRCA)[3] - (SRCB)[3];     \
239} while (0)
240
241/** Addition */
242#define ADD_4V( DST, SRCA, SRCB )           \
243do {                                        \
244      (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
245      (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
246      (DST)[2] = (SRCA)[2] + (SRCB)[2];     \
247      (DST)[3] = (SRCA)[3] + (SRCB)[3];     \
248} while (0)
249
250/** Element-wise multiplication */
251#define SCALE_4V( DST, SRCA, SRCB )         \
252do {                                        \
253      (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
254      (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
255      (DST)[2] = (SRCA)[2] * (SRCB)[2];     \
256      (DST)[3] = (SRCA)[3] * (SRCB)[3];     \
257} while (0)
258
259/** In-place addition */
260#define ACC_4V( DST, SRC )          \
261do {                                \
262      (DST)[0] += (SRC)[0];         \
263      (DST)[1] += (SRC)[1];         \
264      (DST)[2] += (SRC)[2];         \
265      (DST)[3] += (SRC)[3];         \
266} while (0)
267
268/** Element-wise multiplication and addition */
269#define ACC_SCALE_4V( DST, SRCA, SRCB )     \
270do {                                        \
271      (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
272      (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
273      (DST)[2] += (SRCA)[2] * (SRCB)[2];    \
274      (DST)[3] += (SRCA)[3] * (SRCB)[3];    \
275} while (0)
276
277/** In-place scalar multiplication and addition */
278#define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
279do {                                        \
280      (DST)[0] += S * (SRCB)[0];            \
281      (DST)[1] += S * (SRCB)[1];            \
282      (DST)[2] += S * (SRCB)[2];            \
283      (DST)[3] += S * (SRCB)[3];            \
284} while (0)
285
286/** Scalar multiplication */
287#define SCALE_SCALAR_4V( DST, S, SRCB ) \
288do {                                    \
289      (DST)[0] = S * (SRCB)[0];         \
290      (DST)[1] = S * (SRCB)[1];         \
291      (DST)[2] = S * (SRCB)[2];         \
292      (DST)[3] = S * (SRCB)[3];         \
293} while (0)
294
295/** In-place scalar multiplication */
296#define SELF_SCALE_SCALAR_4V( DST, S ) \
297do {                                   \
298      (DST)[0] *= S;                   \
299      (DST)[1] *= S;                   \
300      (DST)[2] *= S;                   \
301      (DST)[3] *= S;                   \
302} while (0)
303
304/** Assignment */
305#define ASSIGN_4V( V, V0, V1, V2, V3 )  \
306do {                                    \
307    V[0] = V0;                          \
308    V[1] = V1;                          \
309    V[2] = V2;                          \
310    V[3] = V3;                          \
311} while(0)
312
313/*@}*/
314
315
316/**********************************************************************/
317/** \name 3-element vector operations*/
318/*@{*/
319
320/** Zero */
321#define ZERO_3V( DST )  (DST)[0] = (DST)[1] = (DST)[2] = 0
322
323/** Test for equality */
324#define TEST_EQ_3V(a,b)  \
325   ((a)[0] == (b)[0] &&  \
326    (a)[1] == (b)[1] &&  \
327    (a)[2] == (b)[2])
328
329/** Copy a 3-element vector */
330#define COPY_3V( DST, SRC )         \
331do {                                \
332   (DST)[0] = (SRC)[0];             \
333   (DST)[1] = (SRC)[1];             \
334   (DST)[2] = (SRC)[2];             \
335} while (0)
336
337/** Copy a 3-element vector with cast */
338#define COPY_3V_CAST( DST, SRC, CAST )  \
339do {                                    \
340   (DST)[0] = (CAST)(SRC)[0];           \
341   (DST)[1] = (CAST)(SRC)[1];           \
342   (DST)[2] = (CAST)(SRC)[2];           \
343} while (0)
344
345/** Copy a 3-element float vector */
346#define COPY_3FV( DST, SRC )        \
347do {                                \
348   const GLfloat *_tmp = (SRC);     \
349   (DST)[0] = _tmp[0];              \
350   (DST)[1] = _tmp[1];              \
351   (DST)[2] = _tmp[2];              \
352} while (0)
353
354/** Subtraction */
355#define SUB_3V( DST, SRCA, SRCB )        \
356do {                                     \
357      (DST)[0] = (SRCA)[0] - (SRCB)[0];  \
358      (DST)[1] = (SRCA)[1] - (SRCB)[1];  \
359      (DST)[2] = (SRCA)[2] - (SRCB)[2];  \
360} while (0)
361
362/** Addition */
363#define ADD_3V( DST, SRCA, SRCB )       \
364do {                                    \
365      (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
366      (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
367      (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
368} while (0)
369
370/** In-place scalar multiplication */
371#define SCALE_3V( DST, SRCA, SRCB )     \
372do {                                    \
373      (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
374      (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
375      (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
376} while (0)
377
378/** In-place element-wise multiplication */
379#define SELF_SCALE_3V( DST, SRC )   \
380do {                                \
381      (DST)[0] *= (SRC)[0];         \
382      (DST)[1] *= (SRC)[1];         \
383      (DST)[2] *= (SRC)[2];         \
384} while (0)
385
386/** In-place addition */
387#define ACC_3V( DST, SRC )          \
388do {                                \
389      (DST)[0] += (SRC)[0];         \
390      (DST)[1] += (SRC)[1];         \
391      (DST)[2] += (SRC)[2];         \
392} while (0)
393
394/** Element-wise multiplication and addition */
395#define ACC_SCALE_3V( DST, SRCA, SRCB )     \
396do {                                        \
397      (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
398      (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
399      (DST)[2] += (SRCA)[2] * (SRCB)[2];    \
400} while (0)
401
402/** Scalar multiplication */
403#define SCALE_SCALAR_3V( DST, S, SRCB ) \
404do {                                    \
405      (DST)[0] = S * (SRCB)[0];         \
406      (DST)[1] = S * (SRCB)[1];         \
407      (DST)[2] = S * (SRCB)[2];         \
408} while (0)
409
410/** In-place scalar multiplication and addition */
411#define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
412do {                                        \
413      (DST)[0] += S * (SRCB)[0];            \
414      (DST)[1] += S * (SRCB)[1];            \
415      (DST)[2] += S * (SRCB)[2];            \
416} while (0)
417
418/** In-place scalar multiplication */
419#define SELF_SCALE_SCALAR_3V( DST, S ) \
420do {                                   \
421      (DST)[0] *= S;                   \
422      (DST)[1] *= S;                   \
423      (DST)[2] *= S;                   \
424} while (0)
425
426/** In-place scalar addition */
427#define ACC_SCALAR_3V( DST, S )     \
428do {                                \
429      (DST)[0] += S;                \
430      (DST)[1] += S;                \
431      (DST)[2] += S;                \
432} while (0)
433
434/** Assignment */
435#define ASSIGN_3V( V, V0, V1, V2 )  \
436do {                                \
437    V[0] = V0;                      \
438    V[1] = V1;                      \
439    V[2] = V2;                      \
440} while(0)
441
442/*@}*/
443
444
445/**********************************************************************/
446/** \name 2-element vector operations*/
447/*@{*/
448
449/** Zero */
450#define ZERO_2V( DST )  (DST)[0] = (DST)[1] = 0
451
452/** Copy a 2-element vector */
453#define COPY_2V( DST, SRC )         \
454do {                        \
455   (DST)[0] = (SRC)[0];             \
456   (DST)[1] = (SRC)[1];             \
457} while (0)
458
459/** Copy a 2-element vector with cast */
460#define COPY_2V_CAST( DST, SRC, CAST )      \
461do {                        \
462   (DST)[0] = (CAST)(SRC)[0];           \
463   (DST)[1] = (CAST)(SRC)[1];           \
464} while (0)
465
466/** Copy a 2-element float vector */
467#define COPY_2FV( DST, SRC )            \
468do {                        \
469   const GLfloat *_tmp = (SRC);         \
470   (DST)[0] = _tmp[0];              \
471   (DST)[1] = _tmp[1];              \
472} while (0)
473
474/** Subtraction */
475#define SUB_2V( DST, SRCA, SRCB )       \
476do {                        \
477      (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
478      (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
479} while (0)
480
481/** Addition */
482#define ADD_2V( DST, SRCA, SRCB )       \
483do {                        \
484      (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
485      (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
486} while (0)
487
488/** In-place scalar multiplication */
489#define SCALE_2V( DST, SRCA, SRCB )     \
490do {                        \
491      (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
492      (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
493} while (0)
494
495/** In-place addition */
496#define ACC_2V( DST, SRC )          \
497do {                        \
498      (DST)[0] += (SRC)[0];         \
499      (DST)[1] += (SRC)[1];         \
500} while (0)
501
502/** Element-wise multiplication and addition */
503#define ACC_SCALE_2V( DST, SRCA, SRCB )     \
504do {                        \
505      (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
506      (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
507} while (0)
508
509/** Scalar multiplication */
510#define SCALE_SCALAR_2V( DST, S, SRCB )     \
511do {                        \
512      (DST)[0] = S * (SRCB)[0];         \
513      (DST)[1] = S * (SRCB)[1];         \
514} while (0)
515
516/** In-place scalar multiplication and addition */
517#define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
518do {                        \
519      (DST)[0] += S * (SRCB)[0];        \
520      (DST)[1] += S * (SRCB)[1];        \
521} while (0)
522
523/** In-place scalar multiplication */
524#define SELF_SCALE_SCALAR_2V( DST, S )      \
525do {                        \
526      (DST)[0] *= S;                \
527      (DST)[1] *= S;                \
528} while (0)
529
530/** In-place scalar addition */
531#define ACC_SCALAR_2V( DST, S )         \
532do {                        \
533      (DST)[0] += S;                \
534      (DST)[1] += S;                \
535} while (0)
536
537/** Assign scalers to short vectors */
538#define ASSIGN_2V( V, V0, V1 )	\
539do {				\
540    V[0] = V0;			\
541    V[1] = V1;			\
542} while(0)
543
544/*@}*/
545
546
547/** \name Linear interpolation macros */
548/*@{*/
549
550/**
551 * Linear interpolation
552 *
553 * \note \p OUT argument is evaluated twice!
554 * \note Be wary of using *coord++ as an argument to any of these macros!
555 */
556#define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
557
558/* Can do better with integer math
559 */
560#define INTERP_UB( t, dstub, outub, inub )  \
561do {                        \
562   GLfloat inf = UBYTE_TO_FLOAT( inub );    \
563   GLfloat outf = UBYTE_TO_FLOAT( outub );  \
564   GLfloat dstf = LINTERP( t, outf, inf );  \
565   UNCLAMPED_FLOAT_TO_UBYTE( dstub, dstf ); \
566} while (0)
567
568#define INTERP_CHAN( t, dstc, outc, inc )   \
569do {                        \
570   GLfloat inf = CHAN_TO_FLOAT( inc );      \
571   GLfloat outf = CHAN_TO_FLOAT( outc );    \
572   GLfloat dstf = LINTERP( t, outf, inf );  \
573   UNCLAMPED_FLOAT_TO_CHAN( dstc, dstf );   \
574} while (0)
575
576#define INTERP_UI( t, dstui, outui, inui )  \
577   dstui = (GLuint) (GLint) LINTERP( (t), (GLfloat) (outui), (GLfloat) (inui) )
578
579#define INTERP_F( t, dstf, outf, inf )      \
580   dstf = LINTERP( t, outf, inf )
581
582#define INTERP_4F( t, dst, out, in )        \
583do {                        \
584   dst[0] = LINTERP( (t), (out)[0], (in)[0] );  \
585   dst[1] = LINTERP( (t), (out)[1], (in)[1] );  \
586   dst[2] = LINTERP( (t), (out)[2], (in)[2] );  \
587   dst[3] = LINTERP( (t), (out)[3], (in)[3] );  \
588} while (0)
589
590#define INTERP_3F( t, dst, out, in )        \
591do {                        \
592   dst[0] = LINTERP( (t), (out)[0], (in)[0] );  \
593   dst[1] = LINTERP( (t), (out)[1], (in)[1] );  \
594   dst[2] = LINTERP( (t), (out)[2], (in)[2] );  \
595} while (0)
596
597#define INTERP_4CHAN( t, dst, out, in )         \
598do {                            \
599   INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
600   INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
601   INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
602   INTERP_CHAN( (t), (dst)[3], (out)[3], (in)[3] ); \
603} while (0)
604
605#define INTERP_3CHAN( t, dst, out, in )         \
606do {                            \
607   INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
608   INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
609   INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
610} while (0)
611
612#define INTERP_SZ( t, vec, to, out, in, sz )                \
613do {                                    \
614   switch (sz) {                            \
615   case 4: vec[to][3] = LINTERP( (t), (vec)[out][3], (vec)[in][3] );    \
616   case 3: vec[to][2] = LINTERP( (t), (vec)[out][2], (vec)[in][2] );    \
617   case 2: vec[to][1] = LINTERP( (t), (vec)[out][1], (vec)[in][1] );    \
618   case 1: vec[to][0] = LINTERP( (t), (vec)[out][0], (vec)[in][0] );    \
619   }                                    \
620} while(0)
621
622/*@}*/
623
624
625
626/** Clamp X to [MIN,MAX] */
627#define CLAMP( X, MIN, MAX )  ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
628
629/** Minimum of two values: */
630#define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )
631
632/** Maximum of two values: */
633#define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )
634
635/** Dot product of two 2-element vectors */
636#define DOT2( a, b )  ( (a)[0]*(b)[0] + (a)[1]*(b)[1] )
637
638/** Dot product of two 3-element vectors */
639#define DOT3( a, b )  ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] )
640
641/** Dot product of two 4-element vectors */
642#define DOT4( a, b )  ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \
643            (a)[2]*(b)[2] + (a)[3]*(b)[3] )
644
645/** Dot product of two 4-element vectors */
646#define DOT4V(v,a,b,c,d) (v[0]*(a) + v[1]*(b) + v[2]*(c) + v[3]*(d))
647
648
649/** Cross product of two 3-element vectors */
650#define CROSS3(n, u, v)             \
651do {                        \
652   (n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1];  \
653   (n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2];  \
654   (n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0];  \
655} while (0)
656
657
658/* Normalize a 3-element vector to unit length. */
659#define NORMALIZE_3FV( V )          \
660do {                        \
661   GLfloat len = (GLfloat) LEN_SQUARED_3FV(V);  \
662   if (len) {                   \
663      len = INV_SQRTF(len);         \
664      (V)[0] = (GLfloat) ((V)[0] * len);    \
665      (V)[1] = (GLfloat) ((V)[1] * len);    \
666      (V)[2] = (GLfloat) ((V)[2] * len);    \
667   }                        \
668} while(0)
669
670#define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]))
671#define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]))
672
673#define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])
674#define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1])
675
676
677/** casts to silence warnings with some compilers */
678#define ENUM_TO_INT(E)     ((GLint)(E))
679#define ENUM_TO_FLOAT(E)   ((GLfloat)(GLint)(E))
680#define ENUM_TO_DOUBLE(E)  ((GLdouble)(GLint)(E))
681#define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
682
683
684#endif
685