1/* $Id: tif_color.c,v 1.19 2010-12-14 02:22:42 faxguy Exp $ */
2
3/*
4 * Copyright (c) 1988-1997 Sam Leffler
5 * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6 *
7 * Permission to use, copy, modify, distribute, and sell this software and
8 * its documentation for any purpose is hereby granted without fee, provided
9 * that (i) the above copyright notices and this permission notice appear in
10 * all copies of the software and related documentation, and (ii) the names of
11 * Sam Leffler and Silicon Graphics may not be used in any advertising or
12 * publicity relating to the software without the specific, prior written
13 * permission of Sam Leffler and Silicon Graphics.
14 *
15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18 *
19 * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24 * OF THIS SOFTWARE.
25 */
26
27/*
28 * CIE L*a*b* to CIE XYZ and CIE XYZ to RGB conversion routines are taken
29 * from the VIPS library (http://www.vips.ecs.soton.ac.uk) with
30 * the permission of John Cupitt, the VIPS author.
31 */
32
33/*
34 * TIFF Library.
35 *
36 * Color space conversion routines.
37 */
38
39#include "tiffiop.h"
40#include <math.h>
41
42/*
43 * Convert color value from the CIE L*a*b* 1976 space to CIE XYZ.
44 */
45void
46TIFFCIELabToXYZ(TIFFCIELabToRGB *cielab, uint32 l, int32 a, int32 b,
47        float *X, float *Y, float *Z)
48{
49    float L = (float)l * 100.0F / 255.0F;
50    float cby, tmp;
51
52    if( L < 8.856F ) {
53        *Y = (L * cielab->Y0) / 903.292F;
54        cby = 7.787F * (*Y / cielab->Y0) + 16.0F / 116.0F;
55    } else {
56        cby = (L + 16.0F) / 116.0F;
57        *Y = cielab->Y0 * cby * cby * cby;
58    }
59
60    tmp = (float)a / 500.0F + cby;
61    if( tmp < 0.2069F )
62        *X = cielab->X0 * (tmp - 0.13793F) / 7.787F;
63    else
64        *X = cielab->X0 * tmp * tmp * tmp;
65
66    tmp = cby - (float)b / 200.0F;
67    if( tmp < 0.2069F )
68        *Z = cielab->Z0 * (tmp - 0.13793F) / 7.787F;
69    else
70        *Z = cielab->Z0 * tmp * tmp * tmp;
71}
72
73#define RINT(R) ((uint32)((R)>0?((R)+0.5):((R)-0.5)))
74/*
75 * Convert color value from the XYZ space to RGB.
76 */
77void
78TIFFXYZToRGB(TIFFCIELabToRGB *cielab, float X, float Y, float Z,
79         uint32 *r, uint32 *g, uint32 *b)
80{
81    int i;
82    float Yr, Yg, Yb;
83    float *matrix = &cielab->display.d_mat[0][0];
84
85    /* Multiply through the matrix to get luminosity values. */
86    Yr =  matrix[0] * X + matrix[1] * Y + matrix[2] * Z;
87    Yg =  matrix[3] * X + matrix[4] * Y + matrix[5] * Z;
88    Yb =  matrix[6] * X + matrix[7] * Y + matrix[8] * Z;
89
90    /* Clip input */
91    Yr = TIFFmax(Yr, cielab->display.d_Y0R);
92    Yg = TIFFmax(Yg, cielab->display.d_Y0G);
93    Yb = TIFFmax(Yb, cielab->display.d_Y0B);
94
95    /* Avoid overflow in case of wrong input values */
96    Yr = TIFFmin(Yr, cielab->display.d_YCR);
97    Yg = TIFFmin(Yg, cielab->display.d_YCG);
98    Yb = TIFFmin(Yb, cielab->display.d_YCB);
99
100    /* Turn luminosity to colour value. */
101    i = (int)((Yr - cielab->display.d_Y0R) / cielab->rstep);
102    i = TIFFmin(cielab->range, i);
103    *r = RINT(cielab->Yr2r[i]);
104
105    i = (int)((Yg - cielab->display.d_Y0G) / cielab->gstep);
106    i = TIFFmin(cielab->range, i);
107    *g = RINT(cielab->Yg2g[i]);
108
109    i = (int)((Yb - cielab->display.d_Y0B) / cielab->bstep);
110    i = TIFFmin(cielab->range, i);
111    *b = RINT(cielab->Yb2b[i]);
112
113    /* Clip output. */
114    *r = TIFFmin(*r, cielab->display.d_Vrwr);
115    *g = TIFFmin(*g, cielab->display.d_Vrwg);
116    *b = TIFFmin(*b, cielab->display.d_Vrwb);
117}
118#undef RINT
119
120/*
121 * Allocate conversion state structures and make look_up tables for
122 * the Yr,Yb,Yg <=> r,g,b conversions.
123 */
124int
125TIFFCIELabToRGBInit(TIFFCIELabToRGB* cielab,
126            const TIFFDisplay *display, float *refWhite)
127{
128    int i;
129    double gamma;
130
131    cielab->range = CIELABTORGB_TABLE_RANGE;
132
133    _TIFFmemcpy(&cielab->display, display, sizeof(TIFFDisplay));
134
135    /* Red */
136    gamma = 1.0 / cielab->display.d_gammaR ;
137    cielab->rstep =
138        (cielab->display.d_YCR - cielab->display.d_Y0R)	/ cielab->range;
139    for(i = 0; i <= cielab->range; i++) {
140        cielab->Yr2r[i] = cielab->display.d_Vrwr
141            * ((float)pow((double)i / cielab->range, gamma));
142    }
143
144    /* Green */
145    gamma = 1.0 / cielab->display.d_gammaG ;
146    cielab->gstep =
147        (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
148    for(i = 0; i <= cielab->range; i++) {
149        cielab->Yg2g[i] = cielab->display.d_Vrwg
150            * ((float)pow((double)i / cielab->range, gamma));
151    }
152
153    /* Blue */
154    gamma = 1.0 / cielab->display.d_gammaB ;
155    cielab->bstep =
156        (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
157    for(i = 0; i <= cielab->range; i++) {
158        cielab->Yb2b[i] = cielab->display.d_Vrwb
159            * ((float)pow((double)i / cielab->range, gamma));
160    }
161
162    /* Init reference white point */
163    cielab->X0 = refWhite[0];
164    cielab->Y0 = refWhite[1];
165    cielab->Z0 = refWhite[2];
166
167    return 0;
168}
169
170/*
171 * Convert color value from the YCbCr space to CIE XYZ.
172 * The colorspace conversion algorithm comes from the IJG v5a code;
173 * see below for more information on how it works.
174 */
175#define	SHIFT			16
176#define	FIX(x)			((int32)((x) * (1L<<SHIFT) + 0.5))
177#define	ONE_HALF		((int32)(1<<(SHIFT-1)))
178#define	Code2V(c, RB, RW, CR)	((((c)-(int32)(RB))*(float)(CR))/(float)(((RW)-(RB)) ? ((RW)-(RB)) : 1))
179#define	CLAMP(f,min,max)	((f)<(min)?(min):(f)>(max)?(max):(f))
180#define HICLAMP(f,max)		((f)>(max)?(max):(f))
181
182void
183TIFFYCbCrtoRGB(TIFFYCbCrToRGB *ycbcr, uint32 Y, int32 Cb, int32 Cr,
184           uint32 *r, uint32 *g, uint32 *b)
185{
186    int32 i;
187
188    /* XXX: Only 8-bit YCbCr input supported for now */
189    Y = HICLAMP(Y, 255), Cb = CLAMP(Cb, 0, 255), Cr = CLAMP(Cr, 0, 255);
190
191    i = ycbcr->Y_tab[Y] + ycbcr->Cr_r_tab[Cr];
192    *r = CLAMP(i, 0, 255);
193    i = ycbcr->Y_tab[Y]
194        + (int)((ycbcr->Cb_g_tab[Cb] + ycbcr->Cr_g_tab[Cr]) >> SHIFT);
195    *g = CLAMP(i, 0, 255);
196    i = ycbcr->Y_tab[Y] + ycbcr->Cb_b_tab[Cb];
197    *b = CLAMP(i, 0, 255);
198}
199
200/*
201 * Initialize the YCbCr->RGB conversion tables.  The conversion
202 * is done according to the 6.0 spec:
203 *
204 *    R = Y + Cr*(2 - 2*LumaRed)
205 *    B = Y + Cb*(2 - 2*LumaBlue)
206 *    G =   Y
207 *        - LumaBlue*Cb*(2-2*LumaBlue)/LumaGreen
208 *        - LumaRed*Cr*(2-2*LumaRed)/LumaGreen
209 *
210 * To avoid floating point arithmetic the fractional constants that
211 * come out of the equations are represented as fixed point values
212 * in the range 0...2^16.  We also eliminate multiplications by
213 * pre-calculating possible values indexed by Cb and Cr (this code
214 * assumes conversion is being done for 8-bit samples).
215 */
216int
217TIFFYCbCrToRGBInit(TIFFYCbCrToRGB* ycbcr, float *luma, float *refBlackWhite)
218{
219    TIFFRGBValue* clamptab;
220    int i;
221
222#define LumaRed	    luma[0]
223#define LumaGreen   luma[1]
224#define LumaBlue    luma[2]
225
226    clamptab = (TIFFRGBValue*)(
227    (uint8*) ycbcr+TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long)));
228    _TIFFmemset(clamptab, 0, 256);		/* v < 0 => 0 */
229    ycbcr->clamptab = (clamptab += 256);
230    for (i = 0; i < 256; i++)
231    clamptab[i] = (TIFFRGBValue) i;
232    _TIFFmemset(clamptab+256, 255, 2*256);	/* v > 255 => 255 */
233    ycbcr->Cr_r_tab = (int*) (clamptab + 3*256);
234    ycbcr->Cb_b_tab = ycbcr->Cr_r_tab + 256;
235    ycbcr->Cr_g_tab = (int32*) (ycbcr->Cb_b_tab + 256);
236    ycbcr->Cb_g_tab = ycbcr->Cr_g_tab + 256;
237    ycbcr->Y_tab = ycbcr->Cb_g_tab + 256;
238
239    { float f1 = 2-2*LumaRed;		int32 D1 = FIX(f1);
240      float f2 = LumaRed*f1/LumaGreen;	int32 D2 = -FIX(f2);
241      float f3 = 2-2*LumaBlue;		int32 D3 = FIX(f3);
242      float f4 = LumaBlue*f3/LumaGreen;	int32 D4 = -FIX(f4);
243      int x;
244
245#undef LumaBlue
246#undef LumaGreen
247#undef LumaRed
248
249      /*
250       * i is the actual input pixel value in the range 0..255
251       * Cb and Cr values are in the range -128..127 (actually
252       * they are in a range defined by the ReferenceBlackWhite
253       * tag) so there is some range shifting to do here when
254       * constructing tables indexed by the raw pixel data.
255       */
256      for (i = 0, x = -128; i < 256; i++, x++) {
257        int32 Cr = (int32)Code2V(x, refBlackWhite[4] - 128.0F,
258                refBlackWhite[5] - 128.0F, 127);
259        int32 Cb = (int32)Code2V(x, refBlackWhite[2] - 128.0F,
260                refBlackWhite[3] - 128.0F, 127);
261
262        ycbcr->Cr_r_tab[i] = (int32)((D1*Cr + ONE_HALF)>>SHIFT);
263        ycbcr->Cb_b_tab[i] = (int32)((D3*Cb + ONE_HALF)>>SHIFT);
264        ycbcr->Cr_g_tab[i] = D2*Cr;
265        ycbcr->Cb_g_tab[i] = D4*Cb + ONE_HALF;
266        ycbcr->Y_tab[i] =
267            (int32)Code2V(x + 128, refBlackWhite[0], refBlackWhite[1], 255);
268      }
269    }
270
271    return 0;
272}
273#undef	HICLAMP
274#undef	CLAMP
275#undef	Code2V
276#undef	SHIFT
277#undef	ONE_HALF
278#undef	FIX
279
280/* vim: set ts=8 sts=8 sw=8 noet: */
281/*
282 * Local Variables:
283 * mode: c
284 * c-basic-offset: 8
285 * fill-column: 78
286 * End:
287 */
288