1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                        Intel License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2000, Intel Corporation, all rights reserved.
14// Third party copyrights are property of their respective owners.
15//
16// Redistribution and use in source and binary forms, with or without modification,
17// are permitted provided that the following conditions are met:
18//
19//   * Redistribution's of source code must retain the above copyright notice,
20//     this list of conditions and the following disclaimer.
21//
22//   * Redistribution's in binary form must reproduce the above copyright notice,
23//     this list of conditions and the following disclaimer in the documentation
24//     and/or other materials provided with the distribution.
25//
26//   * The name of Intel Corporation may not be used to endorse or promote products
27//     derived from this software without specific prior written permission.
28//
29// This software is provided by the copyright holders and contributors "as is" and
30// any express or implied warranties, including, but not limited to, the implied
31// warranties of merchantability and fitness for a particular purpose are disclaimed.
32// In no event shall the Intel Corporation or contributors be liable for any direct,
33// indirect, incidental, special, exemplary, or consequential damages
34// (including, but not limited to, procurement of substitute goods or services;
35// loss of use, data, or profits; or business interruption) however caused
36// and on any theory of liability, whether in contract, strict liability,
37// or tort (including negligence or otherwise) arising in any way out of
38// the use of this software, even if advised of the possibility of such damage.
39//
40//M*/
41
42#include "precomp.hpp"
43#include <iostream>
44
45namespace cv
46{
47
48template<typename _Tp>
49static int Sklansky_( Point_<_Tp>** array, int start, int end, int* stack, int nsign, int sign2 )
50{
51    int incr = end > start ? 1 : -1;
52    // prepare first triangle
53    int pprev = start, pcur = pprev + incr, pnext = pcur + incr;
54    int stacksize = 3;
55
56    if( start == end ||
57       (array[start]->x == array[end]->x &&
58        array[start]->y == array[end]->y) )
59    {
60        stack[0] = start;
61        return 1;
62    }
63
64    stack[0] = pprev;
65    stack[1] = pcur;
66    stack[2] = pnext;
67
68    end += incr; // make end = afterend
69
70    while( pnext != end )
71    {
72        // check the angle p1,p2,p3
73        _Tp cury = array[pcur]->y;
74        _Tp nexty = array[pnext]->y;
75        _Tp by = nexty - cury;
76
77        if( CV_SIGN( by ) != nsign )
78        {
79            _Tp ax = array[pcur]->x - array[pprev]->x;
80            _Tp bx = array[pnext]->x - array[pcur]->x;
81            _Tp ay = cury - array[pprev]->y;
82            _Tp convexity = ay*bx - ax*by; // if >0 then convex angle
83
84            if( CV_SIGN( convexity ) == sign2 && (ax != 0 || ay != 0) )
85            {
86                pprev = pcur;
87                pcur = pnext;
88                pnext += incr;
89                stack[stacksize] = pnext;
90                stacksize++;
91            }
92            else
93            {
94                if( pprev == start )
95                {
96                    pcur = pnext;
97                    stack[1] = pcur;
98                    pnext += incr;
99                    stack[2] = pnext;
100                }
101                else
102                {
103                    stack[stacksize-2] = pnext;
104                    pcur = pprev;
105                    pprev = stack[stacksize-4];
106                    stacksize--;
107                }
108            }
109        }
110        else
111        {
112            pnext += incr;
113            stack[stacksize-1] = pnext;
114        }
115    }
116
117    return --stacksize;
118}
119
120
121template<typename _Tp>
122struct CHullCmpPoints
123{
124    bool operator()(const Point_<_Tp>* p1, const Point_<_Tp>* p2) const
125    { return p1->x < p2->x || (p1->x == p2->x && p1->y < p2->y); }
126};
127
128
129void convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool returnPoints )
130{
131    Mat points = _points.getMat();
132    int i, total = points.checkVector(2), depth = points.depth(), nout = 0;
133    int miny_ind = 0, maxy_ind = 0;
134    CV_Assert(total >= 0 && (depth == CV_32F || depth == CV_32S));
135
136    if( total == 0 )
137    {
138        _hull.release();
139        return;
140    }
141
142    returnPoints = !_hull.fixedType() ? returnPoints : _hull.type() != CV_32S;
143
144    bool is_float = depth == CV_32F;
145    AutoBuffer<Point*> _pointer(total);
146    AutoBuffer<int> _stack(total + 2), _hullbuf(total);
147    Point** pointer = _pointer;
148    Point2f** pointerf = (Point2f**)pointer;
149    Point* data0 = points.ptr<Point>();
150    int* stack = _stack;
151    int* hullbuf = _hullbuf;
152
153    CV_Assert(points.isContinuous());
154
155    for( i = 0; i < total; i++ )
156        pointer[i] = &data0[i];
157
158    // sort the point set by x-coordinate, find min and max y
159    if( !is_float )
160    {
161        std::sort(pointer, pointer + total, CHullCmpPoints<int>());
162        for( i = 1; i < total; i++ )
163        {
164            int y = pointer[i]->y;
165            if( pointer[miny_ind]->y > y )
166                miny_ind = i;
167            if( pointer[maxy_ind]->y < y )
168                maxy_ind = i;
169        }
170    }
171    else
172    {
173        std::sort(pointerf, pointerf + total, CHullCmpPoints<float>());
174        for( i = 1; i < total; i++ )
175        {
176            float y = pointerf[i]->y;
177            if( pointerf[miny_ind]->y > y )
178                miny_ind = i;
179            if( pointerf[maxy_ind]->y < y )
180                maxy_ind = i;
181        }
182    }
183
184    if( pointer[0]->x == pointer[total-1]->x &&
185        pointer[0]->y == pointer[total-1]->y )
186    {
187        hullbuf[nout++] = 0;
188    }
189    else
190    {
191        // upper half
192        int *tl_stack = stack;
193        int tl_count = !is_float ?
194            Sklansky_( pointer, 0, maxy_ind, tl_stack, -1, 1) :
195            Sklansky_( pointerf, 0, maxy_ind, tl_stack, -1, 1);
196        int *tr_stack = stack + tl_count;
197        int tr_count = !is_float ?
198            Sklansky_( pointer, total-1, maxy_ind, tr_stack, -1, -1) :
199            Sklansky_( pointerf, total-1, maxy_ind, tr_stack, -1, -1);
200
201        // gather upper part of convex hull to output
202        if( !clockwise )
203        {
204            std::swap( tl_stack, tr_stack );
205            std::swap( tl_count, tr_count );
206        }
207
208        for( i = 0; i < tl_count-1; i++ )
209            hullbuf[nout++] = int(pointer[tl_stack[i]] - data0);
210        for( i = tr_count - 1; i > 0; i-- )
211            hullbuf[nout++] = int(pointer[tr_stack[i]] - data0);
212        int stop_idx = tr_count > 2 ? tr_stack[1] : tl_count > 2 ? tl_stack[tl_count - 2] : -1;
213
214        // lower half
215        int *bl_stack = stack;
216        int bl_count = !is_float ?
217            Sklansky_( pointer, 0, miny_ind, bl_stack, 1, -1) :
218            Sklansky_( pointerf, 0, miny_ind, bl_stack, 1, -1);
219        int *br_stack = stack + bl_count;
220        int br_count = !is_float ?
221            Sklansky_( pointer, total-1, miny_ind, br_stack, 1, 1) :
222            Sklansky_( pointerf, total-1, miny_ind, br_stack, 1, 1);
223
224        if( clockwise )
225        {
226            std::swap( bl_stack, br_stack );
227            std::swap( bl_count, br_count );
228        }
229
230        if( stop_idx >= 0 )
231        {
232            int check_idx = bl_count > 2 ? bl_stack[1] :
233            bl_count + br_count > 2 ? br_stack[2-bl_count] : -1;
234            if( check_idx == stop_idx || (check_idx >= 0 &&
235                                          pointer[check_idx]->x == pointer[stop_idx]->x &&
236                                          pointer[check_idx]->y == pointer[stop_idx]->y) )
237            {
238                // if all the points lie on the same line, then
239                // the bottom part of the convex hull is the mirrored top part
240                // (except the exteme points).
241                bl_count = MIN( bl_count, 2 );
242                br_count = MIN( br_count, 2 );
243            }
244        }
245
246        for( i = 0; i < bl_count-1; i++ )
247            hullbuf[nout++] = int(pointer[bl_stack[i]] - data0);
248        for( i = br_count-1; i > 0; i-- )
249            hullbuf[nout++] = int(pointer[br_stack[i]] - data0);
250    }
251
252    if( !returnPoints )
253        Mat(nout, 1, CV_32S, hullbuf).copyTo(_hull);
254    else
255    {
256        _hull.create(nout, 1, CV_MAKETYPE(depth, 2));
257        Mat hull = _hull.getMat();
258        size_t step = !hull.isContinuous() ? hull.step[0] : sizeof(Point);
259        for( i = 0; i < nout; i++ )
260            *(Point*)(hull.ptr() + i*step) = data0[hullbuf[i]];
261    }
262}
263
264
265void convexityDefects( InputArray _points, InputArray _hull, OutputArray _defects )
266{
267    Mat points = _points.getMat();
268    int i, j = 0, npoints = points.checkVector(2, CV_32S);
269    CV_Assert( npoints >= 0 );
270
271    if( npoints <= 3 )
272    {
273        _defects.release();
274        return;
275    }
276
277    Mat hull = _hull.getMat();
278    int hpoints = hull.checkVector(1, CV_32S);
279    CV_Assert( hpoints > 2 );
280
281    const Point* ptr = points.ptr<Point>();
282    const int* hptr = hull.ptr<int>();
283    std::vector<Vec4i> defects;
284
285    // 1. recognize co-orientation of the contour and its hull
286    bool rev_orientation = ((hptr[1] > hptr[0]) + (hptr[2] > hptr[1]) + (hptr[0] > hptr[2])) != 2;
287
288    // 2. cycle through points and hull, compute defects
289    int hcurr = hptr[rev_orientation ? 0 : hpoints-1];
290    CV_Assert( 0 <= hcurr && hcurr < npoints );
291
292    for( i = 0; i < hpoints; i++ )
293    {
294        int hnext = hptr[rev_orientation ? hpoints - i - 1 : i];
295        CV_Assert( 0 <= hnext && hnext < npoints );
296
297        Point pt0 = ptr[hcurr], pt1 = ptr[hnext];
298        double dx0 = pt1.x - pt0.x;
299        double dy0 = pt1.y - pt0.y;
300        double scale = dx0 == 0 && dy0 == 0 ? 0. : 1./std::sqrt(dx0*dx0 + dy0*dy0);
301
302        int defect_deepest_point = -1;
303        double defect_depth = 0;
304        bool is_defect = false;
305
306        for(;;)
307        {
308            // go through points to achieve next hull point
309            j++;
310            j &= j >= npoints ? 0 : -1;
311            if( j == hnext )
312                break;
313
314            // compute distance from current point to hull edge
315            double dx = ptr[j].x - pt0.x;
316            double dy = ptr[j].y - pt0.y;
317            double dist = fabs(-dy0*dx + dx0*dy) * scale;
318
319            if( dist > defect_depth )
320            {
321                defect_depth = dist;
322                defect_deepest_point = j;
323                is_defect = true;
324            }
325        }
326
327        if( is_defect )
328        {
329            int idepth = cvRound(defect_depth*256);
330            defects.push_back(Vec4i(hcurr, hnext, defect_deepest_point, idepth));
331        }
332
333        hcurr = hnext;
334    }
335
336    Mat(defects).copyTo(_defects);
337}
338
339
340template<typename _Tp>
341static bool isContourConvex_( const Point_<_Tp>* p, int n )
342{
343    Point_<_Tp> prev_pt = p[(n-2+n) % n];
344    Point_<_Tp> cur_pt = p[n-1];
345
346    _Tp dx0 = cur_pt.x - prev_pt.x;
347    _Tp dy0 = cur_pt.y - prev_pt.y;
348    int orientation = 0;
349
350    for( int i = 0; i < n; i++ )
351    {
352        _Tp dxdy0, dydx0;
353        _Tp dx, dy;
354
355        prev_pt = cur_pt;
356        cur_pt = p[i];
357
358        dx = cur_pt.x - prev_pt.x;
359        dy = cur_pt.y - prev_pt.y;
360        dxdy0 = dx * dy0;
361        dydx0 = dy * dx0;
362
363        // find orientation
364        // orient = -dy0 * dx + dx0 * dy;
365        // orientation |= (orient > 0) ? 1 : 2;
366        orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
367        if( orientation == 3 )
368            return false;
369
370        dx0 = dx;
371        dy0 = dy;
372    }
373
374    return true;
375}
376
377
378bool isContourConvex( InputArray _contour )
379{
380    Mat contour = _contour.getMat();
381    int total = contour.checkVector(2), depth = contour.depth();
382    CV_Assert(total >= 0 && (depth == CV_32F || depth == CV_32S));
383
384    if( total == 0 )
385        return false;
386
387    return depth == CV_32S ?
388    isContourConvex_(contour.ptr<Point>(), total ) :
389    isContourConvex_(contour.ptr<Point2f>(), total );
390}
391
392}
393
394CV_IMPL CvSeq*
395cvConvexHull2( const CvArr* array, void* hull_storage,
396               int orientation, int return_points )
397{
398    union { CvContour* c; CvSeq* s; } hull;
399    hull.s = 0;
400
401    CvMat* mat = 0;
402    CvContour contour_header;
403    CvSeq hull_header;
404    CvSeqBlock block, hullblock;
405    CvSeq* ptseq = 0;
406    CvSeq* hullseq = 0;
407
408    if( CV_IS_SEQ( array ))
409    {
410        ptseq = (CvSeq*)array;
411        if( !CV_IS_SEQ_POINT_SET( ptseq ))
412            CV_Error( CV_StsBadArg, "Unsupported sequence type" );
413        if( hull_storage == 0 )
414            hull_storage = ptseq->storage;
415    }
416    else
417    {
418        ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
419    }
420
421    if( CV_IS_STORAGE( hull_storage ))
422    {
423        if( return_points )
424        {
425            hullseq = cvCreateSeq(CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE(ptseq)|
426                                  CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
427                                  sizeof(CvContour), sizeof(CvPoint),(CvMemStorage*)hull_storage );
428        }
429        else
430        {
431            hullseq = cvCreateSeq(
432                                  CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_PPOINT|
433                                  CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
434                                  sizeof(CvContour), sizeof(CvPoint*), (CvMemStorage*)hull_storage );
435        }
436    }
437    else
438    {
439        if( !CV_IS_MAT( hull_storage ))
440            CV_Error(CV_StsBadArg, "Destination must be valid memory storage or matrix");
441
442        mat = (CvMat*)hull_storage;
443
444        if( (mat->cols != 1 && mat->rows != 1) || !CV_IS_MAT_CONT(mat->type))
445            CV_Error( CV_StsBadArg,
446                     "The hull matrix should be continuous and have a single row or a single column" );
447
448        if( mat->cols + mat->rows - 1 < ptseq->total )
449            CV_Error( CV_StsBadSize, "The hull matrix size might be not enough to fit the hull" );
450
451        if( CV_MAT_TYPE(mat->type) != CV_SEQ_ELTYPE(ptseq) &&
452           CV_MAT_TYPE(mat->type) != CV_32SC1 )
453            CV_Error( CV_StsUnsupportedFormat,
454                     "The hull matrix must have the same type as input or 32sC1 (integers)" );
455
456        hullseq = cvMakeSeqHeaderForArray(
457                                          CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
458                                          sizeof(hull_header), CV_ELEM_SIZE(mat->type), mat->data.ptr,
459                                          mat->cols + mat->rows - 1, &hull_header, &hullblock );
460        cvClearSeq( hullseq );
461    }
462
463    int hulltype = CV_SEQ_ELTYPE(hullseq);
464    int total = ptseq->total;
465    if( total == 0 )
466    {
467        if( mat )
468            CV_Error( CV_StsBadSize,
469                     "Point sequence can not be empty if the output is matrix" );
470        return hull.s;
471    }
472
473    cv::AutoBuffer<double> _ptbuf;
474    cv::Mat h0;
475    cv::convexHull(cv::cvarrToMat(ptseq, false, false, 0, &_ptbuf), h0,
476                   orientation == CV_CLOCKWISE, CV_MAT_CN(hulltype) == 2);
477
478
479    if( hulltype == CV_SEQ_ELTYPE_PPOINT )
480    {
481        const int* idx = h0.ptr<int>();
482        int ctotal = (int)h0.total();
483        for( int i = 0; i < ctotal; i++ )
484        {
485            void* ptr = cvGetSeqElem(ptseq, idx[i]);
486            cvSeqPush( hullseq, &ptr );
487        }
488    }
489    else
490        cvSeqPushMulti(hullseq, h0.ptr(), (int)h0.total());
491
492    if( mat )
493    {
494        if( mat->rows > mat->cols )
495            mat->rows = hullseq->total;
496        else
497            mat->cols = hullseq->total;
498    }
499    else
500    {
501        hull.s = hullseq;
502        hull.c->rect = cvBoundingRect( ptseq,
503                                       ptseq->header_size < (int)sizeof(CvContour) ||
504                                       &ptseq->flags == &contour_header.flags );
505    }
506
507    return hull.s;
508}
509
510
511/* contour must be a simple polygon */
512/* it must have more than 3 points  */
513CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
514                                  const CvArr* hullarray,
515                                  CvMemStorage* storage )
516{
517    CvSeq* defects = 0;
518
519    int i, index;
520    CvPoint* hull_cur;
521
522    /* is orientation of hull different from contour one */
523    int rev_orientation;
524
525    CvContour contour_header;
526    CvSeq hull_header;
527    CvSeqBlock block, hullblock;
528    CvSeq *ptseq = (CvSeq*)array, *hull = (CvSeq*)hullarray;
529
530    CvSeqReader hull_reader;
531    CvSeqReader ptseq_reader;
532    CvSeqWriter writer;
533    int is_index;
534
535    if( CV_IS_SEQ( ptseq ))
536    {
537        if( !CV_IS_SEQ_POINT_SET( ptseq ))
538            CV_Error( CV_StsUnsupportedFormat,
539                     "Input sequence is not a sequence of points" );
540        if( !storage )
541            storage = ptseq->storage;
542    }
543    else
544    {
545        ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
546    }
547
548    if( CV_SEQ_ELTYPE( ptseq ) != CV_32SC2 )
549        CV_Error( CV_StsUnsupportedFormat, "Floating-point coordinates are not supported here" );
550
551    if( CV_IS_SEQ( hull ))
552    {
553        int hulltype = CV_SEQ_ELTYPE( hull );
554        if( hulltype != CV_SEQ_ELTYPE_PPOINT && hulltype != CV_SEQ_ELTYPE_INDEX )
555            CV_Error( CV_StsUnsupportedFormat,
556                     "Convex hull must represented as a sequence "
557                     "of indices or sequence of pointers" );
558        if( !storage )
559            storage = hull->storage;
560    }
561    else
562    {
563        CvMat* mat = (CvMat*)hull;
564
565        if( !CV_IS_MAT( hull ))
566            CV_Error(CV_StsBadArg, "Convex hull is neither sequence nor matrix");
567
568        if( (mat->cols != 1 && mat->rows != 1) ||
569           !CV_IS_MAT_CONT(mat->type) || CV_MAT_TYPE(mat->type) != CV_32SC1 )
570            CV_Error( CV_StsBadArg,
571                     "The matrix should be 1-dimensional and continuous array of int's" );
572
573        if( mat->cols + mat->rows - 1 > ptseq->total )
574            CV_Error( CV_StsBadSize, "Convex hull is larger than the point sequence" );
575
576        hull = cvMakeSeqHeaderForArray(
577                                       CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
578                                       sizeof(CvContour), CV_ELEM_SIZE(mat->type), mat->data.ptr,
579                                       mat->cols + mat->rows - 1, &hull_header, &hullblock );
580    }
581
582    is_index = CV_SEQ_ELTYPE(hull) == CV_SEQ_ELTYPE_INDEX;
583
584    if( !storage )
585        CV_Error( CV_StsNullPtr, "NULL storage pointer" );
586
587    defects = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq), sizeof(CvConvexityDefect), storage );
588
589    if( ptseq->total < 4 || hull->total < 3)
590    {
591        //CV_ERROR( CV_StsBadSize,
592        //    "point seq size must be >= 4, convex hull size must be >= 3" );
593        return defects;
594    }
595
596    /* recognize co-orientation of ptseq and its hull */
597    {
598        int sign = 0;
599        int index1, index2, index3;
600
601        if( !is_index )
602        {
603            CvPoint* pos = *CV_SEQ_ELEM( hull, CvPoint*, 0 );
604            index1 = cvSeqElemIdx( ptseq, pos );
605
606            pos = *CV_SEQ_ELEM( hull, CvPoint*, 1 );
607            index2 = cvSeqElemIdx( ptseq, pos );
608
609            pos = *CV_SEQ_ELEM( hull, CvPoint*, 2 );
610            index3 = cvSeqElemIdx( ptseq, pos );
611        }
612        else
613        {
614            index1 = *CV_SEQ_ELEM( hull, int, 0 );
615            index2 = *CV_SEQ_ELEM( hull, int, 1 );
616            index3 = *CV_SEQ_ELEM( hull, int, 2 );
617        }
618
619        sign += (index2 > index1) ? 1 : 0;
620        sign += (index3 > index2) ? 1 : 0;
621        sign += (index1 > index3) ? 1 : 0;
622
623        rev_orientation = (sign == 2) ? 0 : 1;
624    }
625
626    cvStartReadSeq( ptseq, &ptseq_reader, 0 );
627    cvStartReadSeq( hull, &hull_reader, rev_orientation );
628
629    if( !is_index )
630    {
631        hull_cur = *(CvPoint**)hull_reader.prev_elem;
632        index = cvSeqElemIdx( ptseq, (char*)hull_cur, 0 );
633    }
634    else
635    {
636        index = *(int*)hull_reader.prev_elem;
637        hull_cur = CV_GET_SEQ_ELEM( CvPoint, ptseq, index );
638    }
639    cvSetSeqReaderPos( &ptseq_reader, index );
640    cvStartAppendToSeq( defects, &writer );
641
642    /* cycle through ptseq and hull with computing defects */
643    for( i = 0; i < hull->total; i++ )
644    {
645        CvConvexityDefect defect;
646        int is_defect = 0;
647        double dx0, dy0;
648        double depth = 0, scale;
649        CvPoint* hull_next;
650
651        if( !is_index )
652            hull_next = *(CvPoint**)hull_reader.ptr;
653        else
654        {
655            int t = *(int*)hull_reader.ptr;
656            hull_next = CV_GET_SEQ_ELEM( CvPoint, ptseq, t );
657        }
658
659        dx0 = (double)hull_next->x - (double)hull_cur->x;
660        dy0 = (double)hull_next->y - (double)hull_cur->y;
661        assert( dx0 != 0 || dy0 != 0 );
662        scale = 1./std::sqrt(dx0*dx0 + dy0*dy0);
663
664        defect.start = hull_cur;
665        defect.end = hull_next;
666
667        for(;;)
668        {
669            /* go through ptseq to achieve next hull point */
670            CV_NEXT_SEQ_ELEM( sizeof(CvPoint), ptseq_reader );
671
672            if( ptseq_reader.ptr == (schar*)hull_next )
673                break;
674            else
675            {
676                CvPoint* cur = (CvPoint*)ptseq_reader.ptr;
677
678                /* compute distance from current point to hull edge */
679                double dx = (double)cur->x - (double)hull_cur->x;
680                double dy = (double)cur->y - (double)hull_cur->y;
681
682                /* compute depth */
683                double dist = fabs(-dy0*dx + dx0*dy) * scale;
684
685                if( dist > depth )
686                {
687                    depth = dist;
688                    defect.depth_point = cur;
689                    defect.depth = (float)depth;
690                    is_defect = 1;
691                }
692            }
693        }
694        if( is_defect )
695        {
696            CV_WRITE_SEQ_ELEM( defect, writer );
697        }
698
699        hull_cur = hull_next;
700        if( rev_orientation )
701        {
702            CV_PREV_SEQ_ELEM( hull->elem_size, hull_reader );
703        }
704        else
705        {
706            CV_NEXT_SEQ_ELEM( hull->elem_size, hull_reader );
707        }
708    }
709
710    return cvEndWriteSeq( &writer );
711}
712
713
714CV_IMPL int
715cvCheckContourConvexity( const CvArr* array )
716{
717    CvContour contour_header;
718    CvSeqBlock block;
719    CvSeq* contour = (CvSeq*)array;
720
721    if( CV_IS_SEQ(contour) )
722    {
723        if( !CV_IS_SEQ_POINT_SET(contour))
724            CV_Error( CV_StsUnsupportedFormat,
725                     "Input sequence must be polygon (closed 2d curve)" );
726    }
727    else
728    {
729        contour = cvPointSeqFromMat(CV_SEQ_KIND_CURVE|
730            CV_SEQ_FLAG_CLOSED, array, &contour_header, &block );
731    }
732
733    if( contour->total == 0 )
734        return -1;
735
736    cv::AutoBuffer<double> _buf;
737    return cv::isContourConvex(cv::cvarrToMat(contour, false, false, 0, &_buf)) ? 1 : 0;
738}
739
740/* End of file. */
741