assembler-arm64.cc revision 958fae7ec3f466955f8e5b50fa5b8d38b9e91675
1// Copyright 2013 the V8 project authors. All rights reserved.
2//
3// Redistribution and use in source and binary forms, with or without
4// modification, are permitted provided that the following conditions are
5// met:
6//
7//     * Redistributions of source code must retain the above copyright
8//       notice, this list of conditions and the following disclaimer.
9//     * Redistributions in binary form must reproduce the above
10//       copyright notice, this list of conditions and the following
11//       disclaimer in the documentation and/or other materials provided
12//       with the distribution.
13//     * Neither the name of Google Inc. nor the names of its
14//       contributors may be used to endorse or promote products derived
15//       from this software without specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29#include "src/v8.h"
30
31#if V8_TARGET_ARCH_ARM64
32
33#define ARM64_DEFINE_REG_STATICS
34
35#include "src/arm64/assembler-arm64-inl.h"
36#include "src/base/bits.h"
37#include "src/base/cpu.h"
38
39namespace v8 {
40namespace internal {
41
42
43// -----------------------------------------------------------------------------
44// CpuFeatures implementation.
45
46void CpuFeatures::ProbeImpl(bool cross_compile) {
47  // AArch64 has no configuration options, no further probing is required.
48  supported_ = 0;
49
50  // Only use statically determined features for cross compile (snapshot).
51  if (cross_compile) return;
52
53  // Probe for runtime features
54  base::CPU cpu;
55  if (cpu.implementer() == base::CPU::NVIDIA &&
56      cpu.variant() == base::CPU::NVIDIA_DENVER) {
57    supported_ |= 1u << COHERENT_CACHE;
58  }
59}
60
61
62void CpuFeatures::PrintTarget() { }
63
64
65void CpuFeatures::PrintFeatures() {
66  printf("COHERENT_CACHE=%d\n", CpuFeatures::IsSupported(COHERENT_CACHE));
67}
68
69
70// -----------------------------------------------------------------------------
71// CPURegList utilities.
72
73CPURegister CPURegList::PopLowestIndex() {
74  DCHECK(IsValid());
75  if (IsEmpty()) {
76    return NoCPUReg;
77  }
78  int index = CountTrailingZeros(list_, kRegListSizeInBits);
79  DCHECK((1 << index) & list_);
80  Remove(index);
81  return CPURegister::Create(index, size_, type_);
82}
83
84
85CPURegister CPURegList::PopHighestIndex() {
86  DCHECK(IsValid());
87  if (IsEmpty()) {
88    return NoCPUReg;
89  }
90  int index = CountLeadingZeros(list_, kRegListSizeInBits);
91  index = kRegListSizeInBits - 1 - index;
92  DCHECK((1 << index) & list_);
93  Remove(index);
94  return CPURegister::Create(index, size_, type_);
95}
96
97
98void CPURegList::RemoveCalleeSaved() {
99  if (type() == CPURegister::kRegister) {
100    Remove(GetCalleeSaved(RegisterSizeInBits()));
101  } else if (type() == CPURegister::kFPRegister) {
102    Remove(GetCalleeSavedFP(RegisterSizeInBits()));
103  } else {
104    DCHECK(type() == CPURegister::kNoRegister);
105    DCHECK(IsEmpty());
106    // The list must already be empty, so do nothing.
107  }
108}
109
110
111CPURegList CPURegList::GetCalleeSaved(unsigned size) {
112  return CPURegList(CPURegister::kRegister, size, 19, 29);
113}
114
115
116CPURegList CPURegList::GetCalleeSavedFP(unsigned size) {
117  return CPURegList(CPURegister::kFPRegister, size, 8, 15);
118}
119
120
121CPURegList CPURegList::GetCallerSaved(unsigned size) {
122  // Registers x0-x18 and lr (x30) are caller-saved.
123  CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
124  list.Combine(lr);
125  return list;
126}
127
128
129CPURegList CPURegList::GetCallerSavedFP(unsigned size) {
130  // Registers d0-d7 and d16-d31 are caller-saved.
131  CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
132  list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
133  return list;
134}
135
136
137// This function defines the list of registers which are associated with a
138// safepoint slot. Safepoint register slots are saved contiguously on the stack.
139// MacroAssembler::SafepointRegisterStackIndex handles mapping from register
140// code to index in the safepoint register slots. Any change here can affect
141// this mapping.
142CPURegList CPURegList::GetSafepointSavedRegisters() {
143  CPURegList list = CPURegList::GetCalleeSaved();
144  list.Combine(
145      CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
146
147  // Note that unfortunately we can't use symbolic names for registers and have
148  // to directly use register codes. This is because this function is used to
149  // initialize some static variables and we can't rely on register variables
150  // to be initialized due to static initialization order issues in C++.
151
152  // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
153  // preserved outside of the macro assembler.
154  list.Remove(16);
155  list.Remove(17);
156
157  // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
158  // is a caller-saved register according to the procedure call standard.
159  list.Combine(18);
160
161  // Drop jssp as the stack pointer doesn't need to be included.
162  list.Remove(28);
163
164  // Add the link register (x30) to the safepoint list.
165  list.Combine(30);
166
167  return list;
168}
169
170
171// -----------------------------------------------------------------------------
172// Implementation of RelocInfo
173
174const int RelocInfo::kApplyMask = 0;
175
176
177bool RelocInfo::IsCodedSpecially() {
178  // The deserializer needs to know whether a pointer is specially coded. Being
179  // specially coded on ARM64 means that it is a movz/movk sequence. We don't
180  // generate those for relocatable pointers.
181  return false;
182}
183
184
185bool RelocInfo::IsInConstantPool() {
186  Instruction* instr = reinterpret_cast<Instruction*>(pc_);
187  return instr->IsLdrLiteralX();
188}
189
190
191void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
192  // Patch the code at the current address with the supplied instructions.
193  Instr* pc = reinterpret_cast<Instr*>(pc_);
194  Instr* instr = reinterpret_cast<Instr*>(instructions);
195  for (int i = 0; i < instruction_count; i++) {
196    *(pc + i) = *(instr + i);
197  }
198
199  // Indicate that code has changed.
200  CpuFeatures::FlushICache(pc_, instruction_count * kInstructionSize);
201}
202
203
204// Patch the code at the current PC with a call to the target address.
205// Additional guard instructions can be added if required.
206void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
207  UNIMPLEMENTED();
208}
209
210
211Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
212                                              Register reg3, Register reg4) {
213  CPURegList regs(reg1, reg2, reg3, reg4);
214  for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
215    Register candidate = Register::FromAllocationIndex(i);
216    if (regs.IncludesAliasOf(candidate)) continue;
217    return candidate;
218  }
219  UNREACHABLE();
220  return NoReg;
221}
222
223
224bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
225                const CPURegister& reg3, const CPURegister& reg4,
226                const CPURegister& reg5, const CPURegister& reg6,
227                const CPURegister& reg7, const CPURegister& reg8) {
228  int number_of_valid_regs = 0;
229  int number_of_valid_fpregs = 0;
230
231  RegList unique_regs = 0;
232  RegList unique_fpregs = 0;
233
234  const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
235
236  for (unsigned i = 0; i < arraysize(regs); i++) {
237    if (regs[i].IsRegister()) {
238      number_of_valid_regs++;
239      unique_regs |= regs[i].Bit();
240    } else if (regs[i].IsFPRegister()) {
241      number_of_valid_fpregs++;
242      unique_fpregs |= regs[i].Bit();
243    } else {
244      DCHECK(!regs[i].IsValid());
245    }
246  }
247
248  int number_of_unique_regs =
249    CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
250  int number_of_unique_fpregs =
251    CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
252
253  DCHECK(number_of_valid_regs >= number_of_unique_regs);
254  DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
255
256  return (number_of_valid_regs != number_of_unique_regs) ||
257         (number_of_valid_fpregs != number_of_unique_fpregs);
258}
259
260
261bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
262                        const CPURegister& reg3, const CPURegister& reg4,
263                        const CPURegister& reg5, const CPURegister& reg6,
264                        const CPURegister& reg7, const CPURegister& reg8) {
265  DCHECK(reg1.IsValid());
266  bool match = true;
267  match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
268  match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
269  match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
270  match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
271  match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
272  match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
273  match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
274  return match;
275}
276
277
278void Immediate::InitializeHandle(Handle<Object> handle) {
279  AllowDeferredHandleDereference using_raw_address;
280
281  // Verify all Objects referred by code are NOT in new space.
282  Object* obj = *handle;
283  if (obj->IsHeapObject()) {
284    DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
285    value_ = reinterpret_cast<intptr_t>(handle.location());
286    rmode_ = RelocInfo::EMBEDDED_OBJECT;
287  } else {
288    STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
289    value_ = reinterpret_cast<intptr_t>(obj);
290    rmode_ = RelocInfo::NONE64;
291  }
292}
293
294
295bool Operand::NeedsRelocation(const Assembler* assembler) const {
296  RelocInfo::Mode rmode = immediate_.rmode();
297
298  if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
299    return assembler->serializer_enabled();
300  }
301
302  return !RelocInfo::IsNone(rmode);
303}
304
305
306// Constant Pool.
307void ConstPool::RecordEntry(intptr_t data,
308                            RelocInfo::Mode mode) {
309  DCHECK(mode != RelocInfo::COMMENT &&
310         mode != RelocInfo::POSITION &&
311         mode != RelocInfo::STATEMENT_POSITION &&
312         mode != RelocInfo::CONST_POOL &&
313         mode != RelocInfo::VENEER_POOL &&
314         mode != RelocInfo::CODE_AGE_SEQUENCE);
315
316  uint64_t raw_data = static_cast<uint64_t>(data);
317  int offset = assm_->pc_offset();
318  if (IsEmpty()) {
319    first_use_ = offset;
320  }
321
322  std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
323  if (CanBeShared(mode)) {
324    shared_entries_.insert(entry);
325    if (shared_entries_.count(entry.first) == 1) {
326      shared_entries_count++;
327    }
328  } else {
329    unique_entries_.push_back(entry);
330  }
331
332  if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
333    // Request constant pool emission after the next instruction.
334    assm_->SetNextConstPoolCheckIn(1);
335  }
336}
337
338
339int ConstPool::DistanceToFirstUse() {
340  DCHECK(first_use_ >= 0);
341  return assm_->pc_offset() - first_use_;
342}
343
344
345int ConstPool::MaxPcOffset() {
346  // There are no pending entries in the pool so we can never get out of
347  // range.
348  if (IsEmpty()) return kMaxInt;
349
350  // Entries are not necessarily emitted in the order they are added so in the
351  // worst case the first constant pool use will be accessing the last entry.
352  return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
353}
354
355
356int ConstPool::WorstCaseSize() {
357  if (IsEmpty()) return 0;
358
359  // Max size prologue:
360  //   b   over
361  //   ldr xzr, #pool_size
362  //   blr xzr
363  //   nop
364  // All entries are 64-bit for now.
365  return 4 * kInstructionSize + EntryCount() * kPointerSize;
366}
367
368
369int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
370  if (IsEmpty()) return 0;
371
372  // Prologue is:
373  //   b   over  ;; if require_jump
374  //   ldr xzr, #pool_size
375  //   blr xzr
376  //   nop       ;; if not 64-bit aligned
377  int prologue_size = require_jump ? kInstructionSize : 0;
378  prologue_size += 2 * kInstructionSize;
379  prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
380                   0 : kInstructionSize;
381
382  // All entries are 64-bit for now.
383  return prologue_size + EntryCount() * kPointerSize;
384}
385
386
387void ConstPool::Emit(bool require_jump) {
388  DCHECK(!assm_->is_const_pool_blocked());
389  // Prevent recursive pool emission and protect from veneer pools.
390  Assembler::BlockPoolsScope block_pools(assm_);
391
392  int size = SizeIfEmittedAtCurrentPc(require_jump);
393  Label size_check;
394  assm_->bind(&size_check);
395
396  assm_->RecordConstPool(size);
397  // Emit the constant pool. It is preceded by an optional branch if
398  // require_jump and a header which will:
399  //  1) Encode the size of the constant pool, for use by the disassembler.
400  //  2) Terminate the program, to try to prevent execution from accidentally
401  //     flowing into the constant pool.
402  //  3) align the pool entries to 64-bit.
403  // The header is therefore made of up to three arm64 instructions:
404  //   ldr xzr, #<size of the constant pool in 32-bit words>
405  //   blr xzr
406  //   nop
407  //
408  // If executed, the header will likely segfault and lr will point to the
409  // instruction following the offending blr.
410  // TODO(all): Make the alignment part less fragile. Currently code is
411  // allocated as a byte array so there are no guarantees the alignment will
412  // be preserved on compaction. Currently it works as allocation seems to be
413  // 64-bit aligned.
414
415  // Emit branch if required
416  Label after_pool;
417  if (require_jump) {
418    assm_->b(&after_pool);
419  }
420
421  // Emit the header.
422  assm_->RecordComment("[ Constant Pool");
423  EmitMarker();
424  EmitGuard();
425  assm_->Align(8);
426
427  // Emit constant pool entries.
428  // TODO(all): currently each relocated constant is 64 bits, consider adding
429  // support for 32-bit entries.
430  EmitEntries();
431  assm_->RecordComment("]");
432
433  if (after_pool.is_linked()) {
434    assm_->bind(&after_pool);
435  }
436
437  DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
438         static_cast<unsigned>(size));
439}
440
441
442void ConstPool::Clear() {
443  shared_entries_.clear();
444  shared_entries_count = 0;
445  unique_entries_.clear();
446  first_use_ = -1;
447}
448
449
450bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
451  // Constant pool currently does not support 32-bit entries.
452  DCHECK(mode != RelocInfo::NONE32);
453
454  return RelocInfo::IsNone(mode) ||
455         (!assm_->serializer_enabled() && (mode >= RelocInfo::CELL));
456}
457
458
459void ConstPool::EmitMarker() {
460  // A constant pool size is expressed in number of 32-bits words.
461  // Currently all entries are 64-bit.
462  // + 1 is for the crash guard.
463  // + 0/1 for alignment.
464  int word_count = EntryCount() * 2 + 1 +
465                   (IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
466  assm_->Emit(LDR_x_lit                          |
467              Assembler::ImmLLiteral(word_count) |
468              Assembler::Rt(xzr));
469}
470
471
472MemOperand::PairResult MemOperand::AreConsistentForPair(
473    const MemOperand& operandA,
474    const MemOperand& operandB,
475    int access_size_log2) {
476  DCHECK(access_size_log2 >= 0);
477  DCHECK(access_size_log2 <= 3);
478  // Step one: check that they share the same base, that the mode is Offset
479  // and that the offset is a multiple of access size.
480  if (!operandA.base().Is(operandB.base()) ||
481      (operandA.addrmode() != Offset) ||
482      (operandB.addrmode() != Offset) ||
483      ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
484    return kNotPair;
485  }
486  // Step two: check that the offsets are contiguous and that the range
487  // is OK for ldp/stp.
488  if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
489      is_int7(operandA.offset() >> access_size_log2)) {
490    return kPairAB;
491  }
492  if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
493      is_int7(operandB.offset() >> access_size_log2)) {
494    return kPairBA;
495  }
496  return kNotPair;
497}
498
499
500void ConstPool::EmitGuard() {
501#ifdef DEBUG
502  Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
503  DCHECK(instr->preceding()->IsLdrLiteralX() &&
504         instr->preceding()->Rt() == xzr.code());
505#endif
506  assm_->EmitPoolGuard();
507}
508
509
510void ConstPool::EmitEntries() {
511  DCHECK(IsAligned(assm_->pc_offset(), 8));
512
513  typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
514  SharedEntriesIterator value_it;
515  // Iterate through the keys (constant pool values).
516  for (value_it = shared_entries_.begin();
517       value_it != shared_entries_.end();
518       value_it = shared_entries_.upper_bound(value_it->first)) {
519    std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
520    uint64_t data = value_it->first;
521    range = shared_entries_.equal_range(data);
522    SharedEntriesIterator offset_it;
523    // Iterate through the offsets of a given key.
524    for (offset_it = range.first; offset_it != range.second; offset_it++) {
525      Instruction* instr = assm_->InstructionAt(offset_it->second);
526
527      // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
528      DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
529      instr->SetImmPCOffsetTarget(assm_->pc());
530    }
531    assm_->dc64(data);
532  }
533  shared_entries_.clear();
534  shared_entries_count = 0;
535
536  // Emit unique entries.
537  std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
538  for (unique_it = unique_entries_.begin();
539       unique_it != unique_entries_.end();
540       unique_it++) {
541    Instruction* instr = assm_->InstructionAt(unique_it->second);
542
543    // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
544    DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
545    instr->SetImmPCOffsetTarget(assm_->pc());
546    assm_->dc64(unique_it->first);
547  }
548  unique_entries_.clear();
549  first_use_ = -1;
550}
551
552
553// Assembler
554Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
555    : AssemblerBase(isolate, buffer, buffer_size),
556      constpool_(this),
557      recorded_ast_id_(TypeFeedbackId::None()),
558      unresolved_branches_(),
559      positions_recorder_(this) {
560  const_pool_blocked_nesting_ = 0;
561  veneer_pool_blocked_nesting_ = 0;
562  Reset();
563}
564
565
566Assembler::~Assembler() {
567  DCHECK(constpool_.IsEmpty());
568  DCHECK(const_pool_blocked_nesting_ == 0);
569  DCHECK(veneer_pool_blocked_nesting_ == 0);
570}
571
572
573void Assembler::Reset() {
574#ifdef DEBUG
575  DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
576  DCHECK(const_pool_blocked_nesting_ == 0);
577  DCHECK(veneer_pool_blocked_nesting_ == 0);
578  DCHECK(unresolved_branches_.empty());
579  memset(buffer_, 0, pc_ - buffer_);
580#endif
581  pc_ = buffer_;
582  reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
583                               reinterpret_cast<byte*>(pc_));
584  constpool_.Clear();
585  next_constant_pool_check_ = 0;
586  next_veneer_pool_check_ = kMaxInt;
587  no_const_pool_before_ = 0;
588  ClearRecordedAstId();
589}
590
591
592void Assembler::GetCode(CodeDesc* desc) {
593  // Emit constant pool if necessary.
594  CheckConstPool(true, false);
595  DCHECK(constpool_.IsEmpty());
596
597  // Set up code descriptor.
598  if (desc) {
599    desc->buffer = reinterpret_cast<byte*>(buffer_);
600    desc->buffer_size = buffer_size_;
601    desc->instr_size = pc_offset();
602    desc->reloc_size = (reinterpret_cast<byte*>(buffer_) + buffer_size_) -
603                       reloc_info_writer.pos();
604    desc->origin = this;
605  }
606}
607
608
609void Assembler::Align(int m) {
610  DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
611  while ((pc_offset() & (m - 1)) != 0) {
612    nop();
613  }
614}
615
616
617void Assembler::CheckLabelLinkChain(Label const * label) {
618#ifdef DEBUG
619  if (label->is_linked()) {
620    static const int kMaxLinksToCheck = 64;  // Avoid O(n2) behaviour.
621    int links_checked = 0;
622    int linkoffset = label->pos();
623    bool end_of_chain = false;
624    while (!end_of_chain) {
625      if (++links_checked > kMaxLinksToCheck) break;
626      Instruction * link = InstructionAt(linkoffset);
627      int linkpcoffset = link->ImmPCOffset();
628      int prevlinkoffset = linkoffset + linkpcoffset;
629
630      end_of_chain = (linkoffset == prevlinkoffset);
631      linkoffset = linkoffset + linkpcoffset;
632    }
633  }
634#endif
635}
636
637
638void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
639                                               Label* label,
640                                               Instruction* label_veneer) {
641  DCHECK(label->is_linked());
642
643  CheckLabelLinkChain(label);
644
645  Instruction* link = InstructionAt(label->pos());
646  Instruction* prev_link = link;
647  Instruction* next_link;
648  bool end_of_chain = false;
649
650  while (link != branch && !end_of_chain) {
651    next_link = link->ImmPCOffsetTarget();
652    end_of_chain = (link == next_link);
653    prev_link = link;
654    link = next_link;
655  }
656
657  DCHECK(branch == link);
658  next_link = branch->ImmPCOffsetTarget();
659
660  if (branch == prev_link) {
661    // The branch is the first instruction in the chain.
662    if (branch == next_link) {
663      // It is also the last instruction in the chain, so it is the only branch
664      // currently referring to this label.
665      label->Unuse();
666    } else {
667      label->link_to(reinterpret_cast<byte*>(next_link) - buffer_);
668    }
669
670  } else if (branch == next_link) {
671    // The branch is the last (but not also the first) instruction in the chain.
672    prev_link->SetImmPCOffsetTarget(prev_link);
673
674  } else {
675    // The branch is in the middle of the chain.
676    if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
677      prev_link->SetImmPCOffsetTarget(next_link);
678    } else if (label_veneer != NULL) {
679      // Use the veneer for all previous links in the chain.
680      prev_link->SetImmPCOffsetTarget(prev_link);
681
682      end_of_chain = false;
683      link = next_link;
684      while (!end_of_chain) {
685        next_link = link->ImmPCOffsetTarget();
686        end_of_chain = (link == next_link);
687        link->SetImmPCOffsetTarget(label_veneer);
688        link = next_link;
689      }
690    } else {
691      // The assert below will fire.
692      // Some other work could be attempted to fix up the chain, but it would be
693      // rather complicated. If we crash here, we may want to consider using an
694      // other mechanism than a chain of branches.
695      //
696      // Note that this situation currently should not happen, as we always call
697      // this function with a veneer to the target label.
698      // However this could happen with a MacroAssembler in the following state:
699      //    [previous code]
700      //    B(label);
701      //    [20KB code]
702      //    Tbz(label);   // First tbz. Pointing to unconditional branch.
703      //    [20KB code]
704      //    Tbz(label);   // Second tbz. Pointing to the first tbz.
705      //    [more code]
706      // and this function is called to remove the first tbz from the label link
707      // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
708      // the unconditional branch.
709      CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
710      UNREACHABLE();
711    }
712  }
713
714  CheckLabelLinkChain(label);
715}
716
717
718void Assembler::bind(Label* label) {
719  // Bind label to the address at pc_. All instructions (most likely branches)
720  // that are linked to this label will be updated to point to the newly-bound
721  // label.
722
723  DCHECK(!label->is_near_linked());
724  DCHECK(!label->is_bound());
725
726  DeleteUnresolvedBranchInfoForLabel(label);
727
728  // If the label is linked, the link chain looks something like this:
729  //
730  // |--I----I-------I-------L
731  // |---------------------->| pc_offset
732  // |-------------->|         linkoffset = label->pos()
733  //         |<------|         link->ImmPCOffset()
734  // |------>|                 prevlinkoffset = linkoffset + link->ImmPCOffset()
735  //
736  // On each iteration, the last link is updated and then removed from the
737  // chain until only one remains. At that point, the label is bound.
738  //
739  // If the label is not linked, no preparation is required before binding.
740  while (label->is_linked()) {
741    int linkoffset = label->pos();
742    Instruction* link = InstructionAt(linkoffset);
743    int prevlinkoffset = linkoffset + link->ImmPCOffset();
744
745    CheckLabelLinkChain(label);
746
747    DCHECK(linkoffset >= 0);
748    DCHECK(linkoffset < pc_offset());
749    DCHECK((linkoffset > prevlinkoffset) ||
750           (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
751    DCHECK(prevlinkoffset >= 0);
752
753    // Update the link to point to the label.
754    link->SetImmPCOffsetTarget(reinterpret_cast<Instruction*>(pc_));
755
756    // Link the label to the previous link in the chain.
757    if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
758      // We hit kStartOfLabelLinkChain, so the chain is fully processed.
759      label->Unuse();
760    } else {
761      // Update the label for the next iteration.
762      label->link_to(prevlinkoffset);
763    }
764  }
765  label->bind_to(pc_offset());
766
767  DCHECK(label->is_bound());
768  DCHECK(!label->is_linked());
769}
770
771
772int Assembler::LinkAndGetByteOffsetTo(Label* label) {
773  DCHECK(sizeof(*pc_) == 1);
774  CheckLabelLinkChain(label);
775
776  int offset;
777  if (label->is_bound()) {
778    // The label is bound, so it does not need to be updated. Referring
779    // instructions must link directly to the label as they will not be
780    // updated.
781    //
782    // In this case, label->pos() returns the offset of the label from the
783    // start of the buffer.
784    //
785    // Note that offset can be zero for self-referential instructions. (This
786    // could be useful for ADR, for example.)
787    offset = label->pos() - pc_offset();
788    DCHECK(offset <= 0);
789  } else {
790    if (label->is_linked()) {
791      // The label is linked, so the referring instruction should be added onto
792      // the end of the label's link chain.
793      //
794      // In this case, label->pos() returns the offset of the last linked
795      // instruction from the start of the buffer.
796      offset = label->pos() - pc_offset();
797      DCHECK(offset != kStartOfLabelLinkChain);
798      // Note that the offset here needs to be PC-relative only so that the
799      // first instruction in a buffer can link to an unbound label. Otherwise,
800      // the offset would be 0 for this case, and 0 is reserved for
801      // kStartOfLabelLinkChain.
802    } else {
803      // The label is unused, so it now becomes linked and the referring
804      // instruction is at the start of the new link chain.
805      offset = kStartOfLabelLinkChain;
806    }
807    // The instruction at pc is now the last link in the label's chain.
808    label->link_to(pc_offset());
809  }
810
811  return offset;
812}
813
814
815void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
816  DCHECK(label->is_linked());
817  CheckLabelLinkChain(label);
818
819  int link_offset = label->pos();
820  int link_pcoffset;
821  bool end_of_chain = false;
822
823  while (!end_of_chain) {
824    Instruction * link = InstructionAt(link_offset);
825    link_pcoffset = link->ImmPCOffset();
826
827    // ADR instructions are not handled by veneers.
828    if (link->IsImmBranch()) {
829      int max_reachable_pc = InstructionOffset(link) +
830          Instruction::ImmBranchRange(link->BranchType());
831      typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
832      std::pair<unresolved_info_it, unresolved_info_it> range;
833      range = unresolved_branches_.equal_range(max_reachable_pc);
834      unresolved_info_it it;
835      for (it = range.first; it != range.second; ++it) {
836        if (it->second.pc_offset_ == link_offset) {
837          unresolved_branches_.erase(it);
838          break;
839        }
840      }
841    }
842
843    end_of_chain = (link_pcoffset == 0);
844    link_offset = link_offset + link_pcoffset;
845  }
846}
847
848
849void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
850  if (unresolved_branches_.empty()) {
851    DCHECK(next_veneer_pool_check_ == kMaxInt);
852    return;
853  }
854
855  if (label->is_linked()) {
856    // Branches to this label will be resolved when the label is bound, normally
857    // just after all the associated info has been deleted.
858    DeleteUnresolvedBranchInfoForLabelTraverse(label);
859  }
860  if (unresolved_branches_.empty()) {
861    next_veneer_pool_check_ = kMaxInt;
862  } else {
863    next_veneer_pool_check_ =
864      unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
865  }
866}
867
868
869void Assembler::StartBlockConstPool() {
870  if (const_pool_blocked_nesting_++ == 0) {
871    // Prevent constant pool checks happening by setting the next check to
872    // the biggest possible offset.
873    next_constant_pool_check_ = kMaxInt;
874  }
875}
876
877
878void Assembler::EndBlockConstPool() {
879  if (--const_pool_blocked_nesting_ == 0) {
880    // Check the constant pool hasn't been blocked for too long.
881    DCHECK(pc_offset() < constpool_.MaxPcOffset());
882    // Two cases:
883    //  * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
884    //    still blocked
885    //  * no_const_pool_before_ < next_constant_pool_check_ and the next emit
886    //    will trigger a check.
887    next_constant_pool_check_ = no_const_pool_before_;
888  }
889}
890
891
892bool Assembler::is_const_pool_blocked() const {
893  return (const_pool_blocked_nesting_ > 0) ||
894         (pc_offset() < no_const_pool_before_);
895}
896
897
898bool Assembler::IsConstantPoolAt(Instruction* instr) {
899  // The constant pool marker is made of two instructions. These instructions
900  // will never be emitted by the JIT, so checking for the first one is enough:
901  // 0: ldr xzr, #<size of pool>
902  bool result = instr->IsLdrLiteralX() && (instr->Rt() == xzr.code());
903
904  // It is still worth asserting the marker is complete.
905  // 4: blr xzr
906  DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
907                     instr->following()->Rn() == xzr.code()));
908
909  return result;
910}
911
912
913int Assembler::ConstantPoolSizeAt(Instruction* instr) {
914#ifdef USE_SIMULATOR
915  // Assembler::debug() embeds constants directly into the instruction stream.
916  // Although this is not a genuine constant pool, treat it like one to avoid
917  // disassembling the constants.
918  if ((instr->Mask(ExceptionMask) == HLT) &&
919      (instr->ImmException() == kImmExceptionIsDebug)) {
920    const char* message =
921        reinterpret_cast<const char*>(
922            instr->InstructionAtOffset(kDebugMessageOffset));
923    int size = kDebugMessageOffset + strlen(message) + 1;
924    return RoundUp(size, kInstructionSize) / kInstructionSize;
925  }
926  // Same for printf support, see MacroAssembler::CallPrintf().
927  if ((instr->Mask(ExceptionMask) == HLT) &&
928      (instr->ImmException() == kImmExceptionIsPrintf)) {
929    return kPrintfLength / kInstructionSize;
930  }
931#endif
932  if (IsConstantPoolAt(instr)) {
933    return instr->ImmLLiteral();
934  } else {
935    return -1;
936  }
937}
938
939
940void Assembler::EmitPoolGuard() {
941  // We must generate only one instruction as this is used in scopes that
942  // control the size of the code generated.
943  Emit(BLR | Rn(xzr));
944}
945
946
947void Assembler::StartBlockVeneerPool() {
948  ++veneer_pool_blocked_nesting_;
949}
950
951
952void Assembler::EndBlockVeneerPool() {
953  if (--veneer_pool_blocked_nesting_ == 0) {
954    // Check the veneer pool hasn't been blocked for too long.
955    DCHECK(unresolved_branches_.empty() ||
956           (pc_offset() < unresolved_branches_first_limit()));
957  }
958}
959
960
961void Assembler::br(const Register& xn) {
962  positions_recorder()->WriteRecordedPositions();
963  DCHECK(xn.Is64Bits());
964  Emit(BR | Rn(xn));
965}
966
967
968void Assembler::blr(const Register& xn) {
969  positions_recorder()->WriteRecordedPositions();
970  DCHECK(xn.Is64Bits());
971  // The pattern 'blr xzr' is used as a guard to detect when execution falls
972  // through the constant pool. It should not be emitted.
973  DCHECK(!xn.Is(xzr));
974  Emit(BLR | Rn(xn));
975}
976
977
978void Assembler::ret(const Register& xn) {
979  positions_recorder()->WriteRecordedPositions();
980  DCHECK(xn.Is64Bits());
981  Emit(RET | Rn(xn));
982}
983
984
985void Assembler::b(int imm26) {
986  Emit(B | ImmUncondBranch(imm26));
987}
988
989
990void Assembler::b(Label* label) {
991  positions_recorder()->WriteRecordedPositions();
992  b(LinkAndGetInstructionOffsetTo(label));
993}
994
995
996void Assembler::b(int imm19, Condition cond) {
997  Emit(B_cond | ImmCondBranch(imm19) | cond);
998}
999
1000
1001void Assembler::b(Label* label, Condition cond) {
1002  positions_recorder()->WriteRecordedPositions();
1003  b(LinkAndGetInstructionOffsetTo(label), cond);
1004}
1005
1006
1007void Assembler::bl(int imm26) {
1008  positions_recorder()->WriteRecordedPositions();
1009  Emit(BL | ImmUncondBranch(imm26));
1010}
1011
1012
1013void Assembler::bl(Label* label) {
1014  positions_recorder()->WriteRecordedPositions();
1015  bl(LinkAndGetInstructionOffsetTo(label));
1016}
1017
1018
1019void Assembler::cbz(const Register& rt,
1020                    int imm19) {
1021  positions_recorder()->WriteRecordedPositions();
1022  Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
1023}
1024
1025
1026void Assembler::cbz(const Register& rt,
1027                    Label* label) {
1028  positions_recorder()->WriteRecordedPositions();
1029  cbz(rt, LinkAndGetInstructionOffsetTo(label));
1030}
1031
1032
1033void Assembler::cbnz(const Register& rt,
1034                     int imm19) {
1035  positions_recorder()->WriteRecordedPositions();
1036  Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
1037}
1038
1039
1040void Assembler::cbnz(const Register& rt,
1041                     Label* label) {
1042  positions_recorder()->WriteRecordedPositions();
1043  cbnz(rt, LinkAndGetInstructionOffsetTo(label));
1044}
1045
1046
1047void Assembler::tbz(const Register& rt,
1048                    unsigned bit_pos,
1049                    int imm14) {
1050  positions_recorder()->WriteRecordedPositions();
1051  DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1052  Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1053}
1054
1055
1056void Assembler::tbz(const Register& rt,
1057                    unsigned bit_pos,
1058                    Label* label) {
1059  positions_recorder()->WriteRecordedPositions();
1060  tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1061}
1062
1063
1064void Assembler::tbnz(const Register& rt,
1065                     unsigned bit_pos,
1066                     int imm14) {
1067  positions_recorder()->WriteRecordedPositions();
1068  DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1069  Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1070}
1071
1072
1073void Assembler::tbnz(const Register& rt,
1074                     unsigned bit_pos,
1075                     Label* label) {
1076  positions_recorder()->WriteRecordedPositions();
1077  tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1078}
1079
1080
1081void Assembler::adr(const Register& rd, int imm21) {
1082  DCHECK(rd.Is64Bits());
1083  Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
1084}
1085
1086
1087void Assembler::adr(const Register& rd, Label* label) {
1088  adr(rd, LinkAndGetByteOffsetTo(label));
1089}
1090
1091
1092void Assembler::add(const Register& rd,
1093                    const Register& rn,
1094                    const Operand& operand) {
1095  AddSub(rd, rn, operand, LeaveFlags, ADD);
1096}
1097
1098
1099void Assembler::adds(const Register& rd,
1100                     const Register& rn,
1101                     const Operand& operand) {
1102  AddSub(rd, rn, operand, SetFlags, ADD);
1103}
1104
1105
1106void Assembler::cmn(const Register& rn,
1107                    const Operand& operand) {
1108  Register zr = AppropriateZeroRegFor(rn);
1109  adds(zr, rn, operand);
1110}
1111
1112
1113void Assembler::sub(const Register& rd,
1114                    const Register& rn,
1115                    const Operand& operand) {
1116  AddSub(rd, rn, operand, LeaveFlags, SUB);
1117}
1118
1119
1120void Assembler::subs(const Register& rd,
1121                     const Register& rn,
1122                     const Operand& operand) {
1123  AddSub(rd, rn, operand, SetFlags, SUB);
1124}
1125
1126
1127void Assembler::cmp(const Register& rn, const Operand& operand) {
1128  Register zr = AppropriateZeroRegFor(rn);
1129  subs(zr, rn, operand);
1130}
1131
1132
1133void Assembler::neg(const Register& rd, const Operand& operand) {
1134  Register zr = AppropriateZeroRegFor(rd);
1135  sub(rd, zr, operand);
1136}
1137
1138
1139void Assembler::negs(const Register& rd, const Operand& operand) {
1140  Register zr = AppropriateZeroRegFor(rd);
1141  subs(rd, zr, operand);
1142}
1143
1144
1145void Assembler::adc(const Register& rd,
1146                    const Register& rn,
1147                    const Operand& operand) {
1148  AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
1149}
1150
1151
1152void Assembler::adcs(const Register& rd,
1153                     const Register& rn,
1154                     const Operand& operand) {
1155  AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
1156}
1157
1158
1159void Assembler::sbc(const Register& rd,
1160                    const Register& rn,
1161                    const Operand& operand) {
1162  AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
1163}
1164
1165
1166void Assembler::sbcs(const Register& rd,
1167                     const Register& rn,
1168                     const Operand& operand) {
1169  AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
1170}
1171
1172
1173void Assembler::ngc(const Register& rd, const Operand& operand) {
1174  Register zr = AppropriateZeroRegFor(rd);
1175  sbc(rd, zr, operand);
1176}
1177
1178
1179void Assembler::ngcs(const Register& rd, const Operand& operand) {
1180  Register zr = AppropriateZeroRegFor(rd);
1181  sbcs(rd, zr, operand);
1182}
1183
1184
1185// Logical instructions.
1186void Assembler::and_(const Register& rd,
1187                     const Register& rn,
1188                     const Operand& operand) {
1189  Logical(rd, rn, operand, AND);
1190}
1191
1192
1193void Assembler::ands(const Register& rd,
1194                     const Register& rn,
1195                     const Operand& operand) {
1196  Logical(rd, rn, operand, ANDS);
1197}
1198
1199
1200void Assembler::tst(const Register& rn,
1201                    const Operand& operand) {
1202  ands(AppropriateZeroRegFor(rn), rn, operand);
1203}
1204
1205
1206void Assembler::bic(const Register& rd,
1207                    const Register& rn,
1208                    const Operand& operand) {
1209  Logical(rd, rn, operand, BIC);
1210}
1211
1212
1213void Assembler::bics(const Register& rd,
1214                     const Register& rn,
1215                     const Operand& operand) {
1216  Logical(rd, rn, operand, BICS);
1217}
1218
1219
1220void Assembler::orr(const Register& rd,
1221                    const Register& rn,
1222                    const Operand& operand) {
1223  Logical(rd, rn, operand, ORR);
1224}
1225
1226
1227void Assembler::orn(const Register& rd,
1228                    const Register& rn,
1229                    const Operand& operand) {
1230  Logical(rd, rn, operand, ORN);
1231}
1232
1233
1234void Assembler::eor(const Register& rd,
1235                    const Register& rn,
1236                    const Operand& operand) {
1237  Logical(rd, rn, operand, EOR);
1238}
1239
1240
1241void Assembler::eon(const Register& rd,
1242                    const Register& rn,
1243                    const Operand& operand) {
1244  Logical(rd, rn, operand, EON);
1245}
1246
1247
1248void Assembler::lslv(const Register& rd,
1249                     const Register& rn,
1250                     const Register& rm) {
1251  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1252  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1253  Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
1254}
1255
1256
1257void Assembler::lsrv(const Register& rd,
1258                     const Register& rn,
1259                     const Register& rm) {
1260  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1261  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1262  Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
1263}
1264
1265
1266void Assembler::asrv(const Register& rd,
1267                     const Register& rn,
1268                     const Register& rm) {
1269  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1270  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1271  Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
1272}
1273
1274
1275void Assembler::rorv(const Register& rd,
1276                     const Register& rn,
1277                     const Register& rm) {
1278  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1279  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1280  Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
1281}
1282
1283
1284// Bitfield operations.
1285void Assembler::bfm(const Register& rd,
1286                     const Register& rn,
1287                     unsigned immr,
1288                     unsigned imms) {
1289  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1290  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1291  Emit(SF(rd) | BFM | N |
1292       ImmR(immr, rd.SizeInBits()) |
1293       ImmS(imms, rn.SizeInBits()) |
1294       Rn(rn) | Rd(rd));
1295}
1296
1297
1298void Assembler::sbfm(const Register& rd,
1299                     const Register& rn,
1300                     unsigned immr,
1301                     unsigned imms) {
1302  DCHECK(rd.Is64Bits() || rn.Is32Bits());
1303  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1304  Emit(SF(rd) | SBFM | N |
1305       ImmR(immr, rd.SizeInBits()) |
1306       ImmS(imms, rn.SizeInBits()) |
1307       Rn(rn) | Rd(rd));
1308}
1309
1310
1311void Assembler::ubfm(const Register& rd,
1312                     const Register& rn,
1313                     unsigned immr,
1314                     unsigned imms) {
1315  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1316  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1317  Emit(SF(rd) | UBFM | N |
1318       ImmR(immr, rd.SizeInBits()) |
1319       ImmS(imms, rn.SizeInBits()) |
1320       Rn(rn) | Rd(rd));
1321}
1322
1323
1324void Assembler::extr(const Register& rd,
1325                     const Register& rn,
1326                     const Register& rm,
1327                     unsigned lsb) {
1328  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1329  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1330  Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1331  Emit(SF(rd) | EXTR | N | Rm(rm) |
1332       ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
1333}
1334
1335
1336void Assembler::csel(const Register& rd,
1337                     const Register& rn,
1338                     const Register& rm,
1339                     Condition cond) {
1340  ConditionalSelect(rd, rn, rm, cond, CSEL);
1341}
1342
1343
1344void Assembler::csinc(const Register& rd,
1345                      const Register& rn,
1346                      const Register& rm,
1347                      Condition cond) {
1348  ConditionalSelect(rd, rn, rm, cond, CSINC);
1349}
1350
1351
1352void Assembler::csinv(const Register& rd,
1353                      const Register& rn,
1354                      const Register& rm,
1355                      Condition cond) {
1356  ConditionalSelect(rd, rn, rm, cond, CSINV);
1357}
1358
1359
1360void Assembler::csneg(const Register& rd,
1361                      const Register& rn,
1362                      const Register& rm,
1363                      Condition cond) {
1364  ConditionalSelect(rd, rn, rm, cond, CSNEG);
1365}
1366
1367
1368void Assembler::cset(const Register &rd, Condition cond) {
1369  DCHECK((cond != al) && (cond != nv));
1370  Register zr = AppropriateZeroRegFor(rd);
1371  csinc(rd, zr, zr, NegateCondition(cond));
1372}
1373
1374
1375void Assembler::csetm(const Register &rd, Condition cond) {
1376  DCHECK((cond != al) && (cond != nv));
1377  Register zr = AppropriateZeroRegFor(rd);
1378  csinv(rd, zr, zr, NegateCondition(cond));
1379}
1380
1381
1382void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
1383  DCHECK((cond != al) && (cond != nv));
1384  csinc(rd, rn, rn, NegateCondition(cond));
1385}
1386
1387
1388void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
1389  DCHECK((cond != al) && (cond != nv));
1390  csinv(rd, rn, rn, NegateCondition(cond));
1391}
1392
1393
1394void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
1395  DCHECK((cond != al) && (cond != nv));
1396  csneg(rd, rn, rn, NegateCondition(cond));
1397}
1398
1399
1400void Assembler::ConditionalSelect(const Register& rd,
1401                                  const Register& rn,
1402                                  const Register& rm,
1403                                  Condition cond,
1404                                  ConditionalSelectOp op) {
1405  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1406  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1407  Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
1408}
1409
1410
1411void Assembler::ccmn(const Register& rn,
1412                     const Operand& operand,
1413                     StatusFlags nzcv,
1414                     Condition cond) {
1415  ConditionalCompare(rn, operand, nzcv, cond, CCMN);
1416}
1417
1418
1419void Assembler::ccmp(const Register& rn,
1420                     const Operand& operand,
1421                     StatusFlags nzcv,
1422                     Condition cond) {
1423  ConditionalCompare(rn, operand, nzcv, cond, CCMP);
1424}
1425
1426
1427void Assembler::DataProcessing3Source(const Register& rd,
1428                                      const Register& rn,
1429                                      const Register& rm,
1430                                      const Register& ra,
1431                                      DataProcessing3SourceOp op) {
1432  Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
1433}
1434
1435
1436void Assembler::mul(const Register& rd,
1437                    const Register& rn,
1438                    const Register& rm) {
1439  DCHECK(AreSameSizeAndType(rd, rn, rm));
1440  Register zr = AppropriateZeroRegFor(rn);
1441  DataProcessing3Source(rd, rn, rm, zr, MADD);
1442}
1443
1444
1445void Assembler::madd(const Register& rd,
1446                     const Register& rn,
1447                     const Register& rm,
1448                     const Register& ra) {
1449  DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1450  DataProcessing3Source(rd, rn, rm, ra, MADD);
1451}
1452
1453
1454void Assembler::mneg(const Register& rd,
1455                     const Register& rn,
1456                     const Register& rm) {
1457  DCHECK(AreSameSizeAndType(rd, rn, rm));
1458  Register zr = AppropriateZeroRegFor(rn);
1459  DataProcessing3Source(rd, rn, rm, zr, MSUB);
1460}
1461
1462
1463void Assembler::msub(const Register& rd,
1464                     const Register& rn,
1465                     const Register& rm,
1466                     const Register& ra) {
1467  DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1468  DataProcessing3Source(rd, rn, rm, ra, MSUB);
1469}
1470
1471
1472void Assembler::smaddl(const Register& rd,
1473                       const Register& rn,
1474                       const Register& rm,
1475                       const Register& ra) {
1476  DCHECK(rd.Is64Bits() && ra.Is64Bits());
1477  DCHECK(rn.Is32Bits() && rm.Is32Bits());
1478  DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
1479}
1480
1481
1482void Assembler::smsubl(const Register& rd,
1483                       const Register& rn,
1484                       const Register& rm,
1485                       const Register& ra) {
1486  DCHECK(rd.Is64Bits() && ra.Is64Bits());
1487  DCHECK(rn.Is32Bits() && rm.Is32Bits());
1488  DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
1489}
1490
1491
1492void Assembler::umaddl(const Register& rd,
1493                       const Register& rn,
1494                       const Register& rm,
1495                       const Register& ra) {
1496  DCHECK(rd.Is64Bits() && ra.Is64Bits());
1497  DCHECK(rn.Is32Bits() && rm.Is32Bits());
1498  DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
1499}
1500
1501
1502void Assembler::umsubl(const Register& rd,
1503                       const Register& rn,
1504                       const Register& rm,
1505                       const Register& ra) {
1506  DCHECK(rd.Is64Bits() && ra.Is64Bits());
1507  DCHECK(rn.Is32Bits() && rm.Is32Bits());
1508  DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
1509}
1510
1511
1512void Assembler::smull(const Register& rd,
1513                      const Register& rn,
1514                      const Register& rm) {
1515  DCHECK(rd.Is64Bits());
1516  DCHECK(rn.Is32Bits() && rm.Is32Bits());
1517  DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
1518}
1519
1520
1521void Assembler::smulh(const Register& rd,
1522                      const Register& rn,
1523                      const Register& rm) {
1524  DCHECK(AreSameSizeAndType(rd, rn, rm));
1525  DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
1526}
1527
1528
1529void Assembler::sdiv(const Register& rd,
1530                     const Register& rn,
1531                     const Register& rm) {
1532  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1533  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1534  Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
1535}
1536
1537
1538void Assembler::udiv(const Register& rd,
1539                     const Register& rn,
1540                     const Register& rm) {
1541  DCHECK(rd.SizeInBits() == rn.SizeInBits());
1542  DCHECK(rd.SizeInBits() == rm.SizeInBits());
1543  Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
1544}
1545
1546
1547void Assembler::rbit(const Register& rd,
1548                     const Register& rn) {
1549  DataProcessing1Source(rd, rn, RBIT);
1550}
1551
1552
1553void Assembler::rev16(const Register& rd,
1554                      const Register& rn) {
1555  DataProcessing1Source(rd, rn, REV16);
1556}
1557
1558
1559void Assembler::rev32(const Register& rd,
1560                      const Register& rn) {
1561  DCHECK(rd.Is64Bits());
1562  DataProcessing1Source(rd, rn, REV);
1563}
1564
1565
1566void Assembler::rev(const Register& rd,
1567                    const Register& rn) {
1568  DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
1569}
1570
1571
1572void Assembler::clz(const Register& rd,
1573                    const Register& rn) {
1574  DataProcessing1Source(rd, rn, CLZ);
1575}
1576
1577
1578void Assembler::cls(const Register& rd,
1579                    const Register& rn) {
1580  DataProcessing1Source(rd, rn, CLS);
1581}
1582
1583
1584void Assembler::ldp(const CPURegister& rt,
1585                    const CPURegister& rt2,
1586                    const MemOperand& src) {
1587  LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
1588}
1589
1590
1591void Assembler::stp(const CPURegister& rt,
1592                    const CPURegister& rt2,
1593                    const MemOperand& dst) {
1594  LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
1595}
1596
1597
1598void Assembler::ldpsw(const Register& rt,
1599                      const Register& rt2,
1600                      const MemOperand& src) {
1601  DCHECK(rt.Is64Bits());
1602  LoadStorePair(rt, rt2, src, LDPSW_x);
1603}
1604
1605
1606void Assembler::LoadStorePair(const CPURegister& rt,
1607                              const CPURegister& rt2,
1608                              const MemOperand& addr,
1609                              LoadStorePairOp op) {
1610  // 'rt' and 'rt2' can only be aliased for stores.
1611  DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
1612  DCHECK(AreSameSizeAndType(rt, rt2));
1613
1614  Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
1615                ImmLSPair(addr.offset(), CalcLSPairDataSize(op));
1616
1617  Instr addrmodeop;
1618  if (addr.IsImmediateOffset()) {
1619    addrmodeop = LoadStorePairOffsetFixed;
1620  } else {
1621    // Pre-index and post-index modes.
1622    DCHECK(!rt.Is(addr.base()));
1623    DCHECK(!rt2.Is(addr.base()));
1624    DCHECK(addr.offset() != 0);
1625    if (addr.IsPreIndex()) {
1626      addrmodeop = LoadStorePairPreIndexFixed;
1627    } else {
1628      DCHECK(addr.IsPostIndex());
1629      addrmodeop = LoadStorePairPostIndexFixed;
1630    }
1631  }
1632  Emit(addrmodeop | memop);
1633}
1634
1635
1636void Assembler::ldnp(const CPURegister& rt,
1637                     const CPURegister& rt2,
1638                     const MemOperand& src) {
1639  LoadStorePairNonTemporal(rt, rt2, src,
1640                           LoadPairNonTemporalOpFor(rt, rt2));
1641}
1642
1643
1644void Assembler::stnp(const CPURegister& rt,
1645                     const CPURegister& rt2,
1646                     const MemOperand& dst) {
1647  LoadStorePairNonTemporal(rt, rt2, dst,
1648                           StorePairNonTemporalOpFor(rt, rt2));
1649}
1650
1651
1652void Assembler::LoadStorePairNonTemporal(const CPURegister& rt,
1653                                         const CPURegister& rt2,
1654                                         const MemOperand& addr,
1655                                         LoadStorePairNonTemporalOp op) {
1656  DCHECK(!rt.Is(rt2));
1657  DCHECK(AreSameSizeAndType(rt, rt2));
1658  DCHECK(addr.IsImmediateOffset());
1659
1660  LSDataSize size = CalcLSPairDataSize(
1661    static_cast<LoadStorePairOp>(op & LoadStorePairMask));
1662  Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
1663       ImmLSPair(addr.offset(), size));
1664}
1665
1666
1667// Memory instructions.
1668void Assembler::ldrb(const Register& rt, const MemOperand& src) {
1669  LoadStore(rt, src, LDRB_w);
1670}
1671
1672
1673void Assembler::strb(const Register& rt, const MemOperand& dst) {
1674  LoadStore(rt, dst, STRB_w);
1675}
1676
1677
1678void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
1679  LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
1680}
1681
1682
1683void Assembler::ldrh(const Register& rt, const MemOperand& src) {
1684  LoadStore(rt, src, LDRH_w);
1685}
1686
1687
1688void Assembler::strh(const Register& rt, const MemOperand& dst) {
1689  LoadStore(rt, dst, STRH_w);
1690}
1691
1692
1693void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
1694  LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
1695}
1696
1697
1698void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
1699  LoadStore(rt, src, LoadOpFor(rt));
1700}
1701
1702
1703void Assembler::str(const CPURegister& rt, const MemOperand& src) {
1704  LoadStore(rt, src, StoreOpFor(rt));
1705}
1706
1707
1708void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
1709  DCHECK(rt.Is64Bits());
1710  LoadStore(rt, src, LDRSW_x);
1711}
1712
1713
1714void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
1715  // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
1716  // constant pool. It should not be emitted.
1717  DCHECK(!rt.IsZero());
1718  Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
1719}
1720
1721
1722void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
1723  // Currently we only support 64-bit literals.
1724  DCHECK(rt.Is64Bits());
1725
1726  RecordRelocInfo(imm.rmode(), imm.value());
1727  BlockConstPoolFor(1);
1728  // The load will be patched when the constpool is emitted, patching code
1729  // expect a load literal with offset 0.
1730  ldr_pcrel(rt, 0);
1731}
1732
1733
1734void Assembler::mov(const Register& rd, const Register& rm) {
1735  // Moves involving the stack pointer are encoded as add immediate with
1736  // second operand of zero. Otherwise, orr with first operand zr is
1737  // used.
1738  if (rd.IsSP() || rm.IsSP()) {
1739    add(rd, rm, 0);
1740  } else {
1741    orr(rd, AppropriateZeroRegFor(rd), rm);
1742  }
1743}
1744
1745
1746void Assembler::mvn(const Register& rd, const Operand& operand) {
1747  orn(rd, AppropriateZeroRegFor(rd), operand);
1748}
1749
1750
1751void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
1752  DCHECK(rt.Is64Bits());
1753  Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
1754}
1755
1756
1757void Assembler::msr(SystemRegister sysreg, const Register& rt) {
1758  DCHECK(rt.Is64Bits());
1759  Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
1760}
1761
1762
1763void Assembler::hint(SystemHint code) {
1764  Emit(HINT | ImmHint(code) | Rt(xzr));
1765}
1766
1767
1768void Assembler::dmb(BarrierDomain domain, BarrierType type) {
1769  Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1770}
1771
1772
1773void Assembler::dsb(BarrierDomain domain, BarrierType type) {
1774  Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1775}
1776
1777
1778void Assembler::isb() {
1779  Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
1780}
1781
1782
1783void Assembler::fmov(FPRegister fd, double imm) {
1784  DCHECK(fd.Is64Bits());
1785  DCHECK(IsImmFP64(imm));
1786  Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
1787}
1788
1789
1790void Assembler::fmov(FPRegister fd, float imm) {
1791  DCHECK(fd.Is32Bits());
1792  DCHECK(IsImmFP32(imm));
1793  Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
1794}
1795
1796
1797void Assembler::fmov(Register rd, FPRegister fn) {
1798  DCHECK(rd.SizeInBits() == fn.SizeInBits());
1799  FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
1800  Emit(op | Rd(rd) | Rn(fn));
1801}
1802
1803
1804void Assembler::fmov(FPRegister fd, Register rn) {
1805  DCHECK(fd.SizeInBits() == rn.SizeInBits());
1806  FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
1807  Emit(op | Rd(fd) | Rn(rn));
1808}
1809
1810
1811void Assembler::fmov(FPRegister fd, FPRegister fn) {
1812  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1813  Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
1814}
1815
1816
1817void Assembler::fadd(const FPRegister& fd,
1818                     const FPRegister& fn,
1819                     const FPRegister& fm) {
1820  FPDataProcessing2Source(fd, fn, fm, FADD);
1821}
1822
1823
1824void Assembler::fsub(const FPRegister& fd,
1825                     const FPRegister& fn,
1826                     const FPRegister& fm) {
1827  FPDataProcessing2Source(fd, fn, fm, FSUB);
1828}
1829
1830
1831void Assembler::fmul(const FPRegister& fd,
1832                     const FPRegister& fn,
1833                     const FPRegister& fm) {
1834  FPDataProcessing2Source(fd, fn, fm, FMUL);
1835}
1836
1837
1838void Assembler::fmadd(const FPRegister& fd,
1839                      const FPRegister& fn,
1840                      const FPRegister& fm,
1841                      const FPRegister& fa) {
1842  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
1843}
1844
1845
1846void Assembler::fmsub(const FPRegister& fd,
1847                      const FPRegister& fn,
1848                      const FPRegister& fm,
1849                      const FPRegister& fa) {
1850  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
1851}
1852
1853
1854void Assembler::fnmadd(const FPRegister& fd,
1855                       const FPRegister& fn,
1856                       const FPRegister& fm,
1857                       const FPRegister& fa) {
1858  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
1859}
1860
1861
1862void Assembler::fnmsub(const FPRegister& fd,
1863                       const FPRegister& fn,
1864                       const FPRegister& fm,
1865                       const FPRegister& fa) {
1866  FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
1867}
1868
1869
1870void Assembler::fdiv(const FPRegister& fd,
1871                     const FPRegister& fn,
1872                     const FPRegister& fm) {
1873  FPDataProcessing2Source(fd, fn, fm, FDIV);
1874}
1875
1876
1877void Assembler::fmax(const FPRegister& fd,
1878                     const FPRegister& fn,
1879                     const FPRegister& fm) {
1880  FPDataProcessing2Source(fd, fn, fm, FMAX);
1881}
1882
1883
1884void Assembler::fmaxnm(const FPRegister& fd,
1885                       const FPRegister& fn,
1886                       const FPRegister& fm) {
1887  FPDataProcessing2Source(fd, fn, fm, FMAXNM);
1888}
1889
1890
1891void Assembler::fmin(const FPRegister& fd,
1892                     const FPRegister& fn,
1893                     const FPRegister& fm) {
1894  FPDataProcessing2Source(fd, fn, fm, FMIN);
1895}
1896
1897
1898void Assembler::fminnm(const FPRegister& fd,
1899                       const FPRegister& fn,
1900                       const FPRegister& fm) {
1901  FPDataProcessing2Source(fd, fn, fm, FMINNM);
1902}
1903
1904
1905void Assembler::fabs(const FPRegister& fd,
1906                     const FPRegister& fn) {
1907  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1908  FPDataProcessing1Source(fd, fn, FABS);
1909}
1910
1911
1912void Assembler::fneg(const FPRegister& fd,
1913                     const FPRegister& fn) {
1914  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1915  FPDataProcessing1Source(fd, fn, FNEG);
1916}
1917
1918
1919void Assembler::fsqrt(const FPRegister& fd,
1920                      const FPRegister& fn) {
1921  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1922  FPDataProcessing1Source(fd, fn, FSQRT);
1923}
1924
1925
1926void Assembler::frinta(const FPRegister& fd,
1927                       const FPRegister& fn) {
1928  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1929  FPDataProcessing1Source(fd, fn, FRINTA);
1930}
1931
1932
1933void Assembler::frintm(const FPRegister& fd,
1934                       const FPRegister& fn) {
1935  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1936  FPDataProcessing1Source(fd, fn, FRINTM);
1937}
1938
1939
1940void Assembler::frintn(const FPRegister& fd,
1941                       const FPRegister& fn) {
1942  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1943  FPDataProcessing1Source(fd, fn, FRINTN);
1944}
1945
1946
1947void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
1948  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1949  FPDataProcessing1Source(fd, fn, FRINTP);
1950}
1951
1952
1953void Assembler::frintz(const FPRegister& fd,
1954                       const FPRegister& fn) {
1955  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1956  FPDataProcessing1Source(fd, fn, FRINTZ);
1957}
1958
1959
1960void Assembler::fcmp(const FPRegister& fn,
1961                     const FPRegister& fm) {
1962  DCHECK(fn.SizeInBits() == fm.SizeInBits());
1963  Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
1964}
1965
1966
1967void Assembler::fcmp(const FPRegister& fn,
1968                     double value) {
1969  USE(value);
1970  // Although the fcmp instruction can strictly only take an immediate value of
1971  // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
1972  // affect the result of the comparison.
1973  DCHECK(value == 0.0);
1974  Emit(FPType(fn) | FCMP_zero | Rn(fn));
1975}
1976
1977
1978void Assembler::fccmp(const FPRegister& fn,
1979                      const FPRegister& fm,
1980                      StatusFlags nzcv,
1981                      Condition cond) {
1982  DCHECK(fn.SizeInBits() == fm.SizeInBits());
1983  Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
1984}
1985
1986
1987void Assembler::fcsel(const FPRegister& fd,
1988                      const FPRegister& fn,
1989                      const FPRegister& fm,
1990                      Condition cond) {
1991  DCHECK(fd.SizeInBits() == fn.SizeInBits());
1992  DCHECK(fd.SizeInBits() == fm.SizeInBits());
1993  Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
1994}
1995
1996
1997void Assembler::FPConvertToInt(const Register& rd,
1998                               const FPRegister& fn,
1999                               FPIntegerConvertOp op) {
2000  Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
2001}
2002
2003
2004void Assembler::fcvt(const FPRegister& fd,
2005                     const FPRegister& fn) {
2006  if (fd.Is64Bits()) {
2007    // Convert float to double.
2008    DCHECK(fn.Is32Bits());
2009    FPDataProcessing1Source(fd, fn, FCVT_ds);
2010  } else {
2011    // Convert double to float.
2012    DCHECK(fn.Is64Bits());
2013    FPDataProcessing1Source(fd, fn, FCVT_sd);
2014  }
2015}
2016
2017
2018void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
2019  FPConvertToInt(rd, fn, FCVTAU);
2020}
2021
2022
2023void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
2024  FPConvertToInt(rd, fn, FCVTAS);
2025}
2026
2027
2028void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
2029  FPConvertToInt(rd, fn, FCVTMU);
2030}
2031
2032
2033void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
2034  FPConvertToInt(rd, fn, FCVTMS);
2035}
2036
2037
2038void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
2039  FPConvertToInt(rd, fn, FCVTNU);
2040}
2041
2042
2043void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
2044  FPConvertToInt(rd, fn, FCVTNS);
2045}
2046
2047
2048void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
2049  FPConvertToInt(rd, fn, FCVTZU);
2050}
2051
2052
2053void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
2054  FPConvertToInt(rd, fn, FCVTZS);
2055}
2056
2057
2058void Assembler::scvtf(const FPRegister& fd,
2059                      const Register& rn,
2060                      unsigned fbits) {
2061  if (fbits == 0) {
2062    Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
2063  } else {
2064    Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2065         Rd(fd));
2066  }
2067}
2068
2069
2070void Assembler::ucvtf(const FPRegister& fd,
2071                      const Register& rn,
2072                      unsigned fbits) {
2073  if (fbits == 0) {
2074    Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
2075  } else {
2076    Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2077         Rd(fd));
2078  }
2079}
2080
2081
2082// Note:
2083// Below, a difference in case for the same letter indicates a
2084// negated bit.
2085// If b is 1, then B is 0.
2086Instr Assembler::ImmFP32(float imm) {
2087  DCHECK(IsImmFP32(imm));
2088  // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
2089  uint32_t bits = float_to_rawbits(imm);
2090  // bit7: a000.0000
2091  uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
2092  // bit6: 0b00.0000
2093  uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
2094  // bit5_to_0: 00cd.efgh
2095  uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
2096
2097  return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
2098}
2099
2100
2101Instr Assembler::ImmFP64(double imm) {
2102  DCHECK(IsImmFP64(imm));
2103  // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2104  //       0000.0000.0000.0000.0000.0000.0000.0000
2105  uint64_t bits = double_to_rawbits(imm);
2106  // bit7: a000.0000
2107  uint32_t bit7 = ((bits >> 63) & 0x1) << 7;
2108  // bit6: 0b00.0000
2109  uint32_t bit6 = ((bits >> 61) & 0x1) << 6;
2110  // bit5_to_0: 00cd.efgh
2111  uint32_t bit5_to_0 = (bits >> 48) & 0x3f;
2112
2113  return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
2114}
2115
2116
2117// Code generation helpers.
2118void Assembler::MoveWide(const Register& rd,
2119                         uint64_t imm,
2120                         int shift,
2121                         MoveWideImmediateOp mov_op) {
2122  // Ignore the top 32 bits of an immediate if we're moving to a W register.
2123  if (rd.Is32Bits()) {
2124    // Check that the top 32 bits are zero (a positive 32-bit number) or top
2125    // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
2126    DCHECK(((imm >> kWRegSizeInBits) == 0) ||
2127           ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
2128    imm &= kWRegMask;
2129  }
2130
2131  if (shift >= 0) {
2132    // Explicit shift specified.
2133    DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
2134    DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
2135    shift /= 16;
2136  } else {
2137    // Calculate a new immediate and shift combination to encode the immediate
2138    // argument.
2139    shift = 0;
2140    if ((imm & ~0xffffUL) == 0) {
2141      // Nothing to do.
2142    } else if ((imm & ~(0xffffUL << 16)) == 0) {
2143      imm >>= 16;
2144      shift = 1;
2145    } else if ((imm & ~(0xffffUL << 32)) == 0) {
2146      DCHECK(rd.Is64Bits());
2147      imm >>= 32;
2148      shift = 2;
2149    } else if ((imm & ~(0xffffUL << 48)) == 0) {
2150      DCHECK(rd.Is64Bits());
2151      imm >>= 48;
2152      shift = 3;
2153    }
2154  }
2155
2156  DCHECK(is_uint16(imm));
2157
2158  Emit(SF(rd) | MoveWideImmediateFixed | mov_op |
2159       Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift));
2160}
2161
2162
2163void Assembler::AddSub(const Register& rd,
2164                       const Register& rn,
2165                       const Operand& operand,
2166                       FlagsUpdate S,
2167                       AddSubOp op) {
2168  DCHECK(rd.SizeInBits() == rn.SizeInBits());
2169  DCHECK(!operand.NeedsRelocation(this));
2170  if (operand.IsImmediate()) {
2171    int64_t immediate = operand.ImmediateValue();
2172    DCHECK(IsImmAddSub(immediate));
2173    Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2174    Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
2175         ImmAddSub(immediate) | dest_reg | RnSP(rn));
2176  } else if (operand.IsShiftedRegister()) {
2177    DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2178    DCHECK(operand.shift() != ROR);
2179
2180    // For instructions of the form:
2181    //   add/sub   wsp, <Wn>, <Wm> [, LSL #0-3 ]
2182    //   add/sub   <Wd>, wsp, <Wm> [, LSL #0-3 ]
2183    //   add/sub   wsp, wsp, <Wm> [, LSL #0-3 ]
2184    //   adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
2185    // or their 64-bit register equivalents, convert the operand from shifted to
2186    // extended register mode, and emit an add/sub extended instruction.
2187    if (rn.IsSP() || rd.IsSP()) {
2188      DCHECK(!(rd.IsSP() && (S == SetFlags)));
2189      DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
2190                               AddSubExtendedFixed | op);
2191    } else {
2192      DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
2193    }
2194  } else {
2195    DCHECK(operand.IsExtendedRegister());
2196    DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
2197  }
2198}
2199
2200
2201void Assembler::AddSubWithCarry(const Register& rd,
2202                                const Register& rn,
2203                                const Operand& operand,
2204                                FlagsUpdate S,
2205                                AddSubWithCarryOp op) {
2206  DCHECK(rd.SizeInBits() == rn.SizeInBits());
2207  DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
2208  DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2209  DCHECK(!operand.NeedsRelocation(this));
2210  Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
2211}
2212
2213
2214void Assembler::hlt(int code) {
2215  DCHECK(is_uint16(code));
2216  Emit(HLT | ImmException(code));
2217}
2218
2219
2220void Assembler::brk(int code) {
2221  DCHECK(is_uint16(code));
2222  Emit(BRK | ImmException(code));
2223}
2224
2225
2226void Assembler::EmitStringData(const char* string) {
2227  size_t len = strlen(string) + 1;
2228  DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
2229  EmitData(string, len);
2230  // Pad with NULL characters until pc_ is aligned.
2231  const char pad[] = {'\0', '\0', '\0', '\0'};
2232  STATIC_ASSERT(sizeof(pad) == kInstructionSize);
2233  EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
2234}
2235
2236
2237void Assembler::debug(const char* message, uint32_t code, Instr params) {
2238#ifdef USE_SIMULATOR
2239  // Don't generate simulator specific code if we are building a snapshot, which
2240  // might be run on real hardware.
2241  if (!serializer_enabled()) {
2242    // The arguments to the debug marker need to be contiguous in memory, so
2243    // make sure we don't try to emit pools.
2244    BlockPoolsScope scope(this);
2245
2246    Label start;
2247    bind(&start);
2248
2249    // Refer to instructions-arm64.h for a description of the marker and its
2250    // arguments.
2251    hlt(kImmExceptionIsDebug);
2252    DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
2253    dc32(code);
2254    DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
2255    dc32(params);
2256    DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
2257    EmitStringData(message);
2258    hlt(kImmExceptionIsUnreachable);
2259
2260    return;
2261  }
2262  // Fall through if Serializer is enabled.
2263#endif
2264
2265  if (params & BREAK) {
2266    hlt(kImmExceptionIsDebug);
2267  }
2268}
2269
2270
2271void Assembler::Logical(const Register& rd,
2272                        const Register& rn,
2273                        const Operand& operand,
2274                        LogicalOp op) {
2275  DCHECK(rd.SizeInBits() == rn.SizeInBits());
2276  DCHECK(!operand.NeedsRelocation(this));
2277  if (operand.IsImmediate()) {
2278    int64_t immediate = operand.ImmediateValue();
2279    unsigned reg_size = rd.SizeInBits();
2280
2281    DCHECK(immediate != 0);
2282    DCHECK(immediate != -1);
2283    DCHECK(rd.Is64Bits() || is_uint32(immediate));
2284
2285    // If the operation is NOT, invert the operation and immediate.
2286    if ((op & NOT) == NOT) {
2287      op = static_cast<LogicalOp>(op & ~NOT);
2288      immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
2289    }
2290
2291    unsigned n, imm_s, imm_r;
2292    if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
2293      // Immediate can be encoded in the instruction.
2294      LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
2295    } else {
2296      // This case is handled in the macro assembler.
2297      UNREACHABLE();
2298    }
2299  } else {
2300    DCHECK(operand.IsShiftedRegister());
2301    DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2302    Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
2303    DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
2304  }
2305}
2306
2307
2308void Assembler::LogicalImmediate(const Register& rd,
2309                                 const Register& rn,
2310                                 unsigned n,
2311                                 unsigned imm_s,
2312                                 unsigned imm_r,
2313                                 LogicalOp op) {
2314  unsigned reg_size = rd.SizeInBits();
2315  Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
2316  Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
2317       ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
2318       Rn(rn));
2319}
2320
2321
2322void Assembler::ConditionalCompare(const Register& rn,
2323                                   const Operand& operand,
2324                                   StatusFlags nzcv,
2325                                   Condition cond,
2326                                   ConditionalCompareOp op) {
2327  Instr ccmpop;
2328  DCHECK(!operand.NeedsRelocation(this));
2329  if (operand.IsImmediate()) {
2330    int64_t immediate = operand.ImmediateValue();
2331    DCHECK(IsImmConditionalCompare(immediate));
2332    ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(immediate);
2333  } else {
2334    DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2335    ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
2336  }
2337  Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
2338}
2339
2340
2341void Assembler::DataProcessing1Source(const Register& rd,
2342                                      const Register& rn,
2343                                      DataProcessing1SourceOp op) {
2344  DCHECK(rd.SizeInBits() == rn.SizeInBits());
2345  Emit(SF(rn) | op | Rn(rn) | Rd(rd));
2346}
2347
2348
2349void Assembler::FPDataProcessing1Source(const FPRegister& fd,
2350                                        const FPRegister& fn,
2351                                        FPDataProcessing1SourceOp op) {
2352  Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
2353}
2354
2355
2356void Assembler::FPDataProcessing2Source(const FPRegister& fd,
2357                                        const FPRegister& fn,
2358                                        const FPRegister& fm,
2359                                        FPDataProcessing2SourceOp op) {
2360  DCHECK(fd.SizeInBits() == fn.SizeInBits());
2361  DCHECK(fd.SizeInBits() == fm.SizeInBits());
2362  Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
2363}
2364
2365
2366void Assembler::FPDataProcessing3Source(const FPRegister& fd,
2367                                        const FPRegister& fn,
2368                                        const FPRegister& fm,
2369                                        const FPRegister& fa,
2370                                        FPDataProcessing3SourceOp op) {
2371  DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
2372  Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
2373}
2374
2375
2376void Assembler::EmitShift(const Register& rd,
2377                          const Register& rn,
2378                          Shift shift,
2379                          unsigned shift_amount) {
2380  switch (shift) {
2381    case LSL:
2382      lsl(rd, rn, shift_amount);
2383      break;
2384    case LSR:
2385      lsr(rd, rn, shift_amount);
2386      break;
2387    case ASR:
2388      asr(rd, rn, shift_amount);
2389      break;
2390    case ROR:
2391      ror(rd, rn, shift_amount);
2392      break;
2393    default:
2394      UNREACHABLE();
2395  }
2396}
2397
2398
2399void Assembler::EmitExtendShift(const Register& rd,
2400                                const Register& rn,
2401                                Extend extend,
2402                                unsigned left_shift) {
2403  DCHECK(rd.SizeInBits() >= rn.SizeInBits());
2404  unsigned reg_size = rd.SizeInBits();
2405  // Use the correct size of register.
2406  Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
2407  // Bits extracted are high_bit:0.
2408  unsigned high_bit = (8 << (extend & 0x3)) - 1;
2409  // Number of bits left in the result that are not introduced by the shift.
2410  unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
2411
2412  if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
2413    switch (extend) {
2414      case UXTB:
2415      case UXTH:
2416      case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
2417      case SXTB:
2418      case SXTH:
2419      case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
2420      case UXTX:
2421      case SXTX: {
2422        DCHECK(rn.SizeInBits() == kXRegSizeInBits);
2423        // Nothing to extend. Just shift.
2424        lsl(rd, rn_, left_shift);
2425        break;
2426      }
2427      default: UNREACHABLE();
2428    }
2429  } else {
2430    // No need to extend as the extended bits would be shifted away.
2431    lsl(rd, rn_, left_shift);
2432  }
2433}
2434
2435
2436void Assembler::DataProcShiftedRegister(const Register& rd,
2437                                        const Register& rn,
2438                                        const Operand& operand,
2439                                        FlagsUpdate S,
2440                                        Instr op) {
2441  DCHECK(operand.IsShiftedRegister());
2442  DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
2443  DCHECK(!operand.NeedsRelocation(this));
2444  Emit(SF(rd) | op | Flags(S) |
2445       ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
2446       Rm(operand.reg()) | Rn(rn) | Rd(rd));
2447}
2448
2449
2450void Assembler::DataProcExtendedRegister(const Register& rd,
2451                                         const Register& rn,
2452                                         const Operand& operand,
2453                                         FlagsUpdate S,
2454                                         Instr op) {
2455  DCHECK(!operand.NeedsRelocation(this));
2456  Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2457  Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
2458       ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
2459       dest_reg | RnSP(rn));
2460}
2461
2462
2463bool Assembler::IsImmAddSub(int64_t immediate) {
2464  return is_uint12(immediate) ||
2465         (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
2466}
2467
2468void Assembler::LoadStore(const CPURegister& rt,
2469                          const MemOperand& addr,
2470                          LoadStoreOp op) {
2471  Instr memop = op | Rt(rt) | RnSP(addr.base());
2472  int64_t offset = addr.offset();
2473
2474  if (addr.IsImmediateOffset()) {
2475    LSDataSize size = CalcLSDataSize(op);
2476    if (IsImmLSScaled(offset, size)) {
2477      // Use the scaled addressing mode.
2478      Emit(LoadStoreUnsignedOffsetFixed | memop |
2479           ImmLSUnsigned(offset >> size));
2480    } else if (IsImmLSUnscaled(offset)) {
2481      // Use the unscaled addressing mode.
2482      Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
2483    } else {
2484      // This case is handled in the macro assembler.
2485      UNREACHABLE();
2486    }
2487  } else if (addr.IsRegisterOffset()) {
2488    Extend ext = addr.extend();
2489    Shift shift = addr.shift();
2490    unsigned shift_amount = addr.shift_amount();
2491
2492    // LSL is encoded in the option field as UXTX.
2493    if (shift == LSL) {
2494      ext = UXTX;
2495    }
2496
2497    // Shifts are encoded in one bit, indicating a left shift by the memory
2498    // access size.
2499    DCHECK((shift_amount == 0) ||
2500           (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
2501    Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
2502         ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
2503  } else {
2504    // Pre-index and post-index modes.
2505    DCHECK(!rt.Is(addr.base()));
2506    if (IsImmLSUnscaled(offset)) {
2507      if (addr.IsPreIndex()) {
2508        Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
2509      } else {
2510        DCHECK(addr.IsPostIndex());
2511        Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
2512      }
2513    } else {
2514      // This case is handled in the macro assembler.
2515      UNREACHABLE();
2516    }
2517  }
2518}
2519
2520
2521bool Assembler::IsImmLSUnscaled(int64_t offset) {
2522  return is_int9(offset);
2523}
2524
2525
2526bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
2527  bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2528  return offset_is_size_multiple && is_uint12(offset >> size);
2529}
2530
2531
2532bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
2533  bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2534  return offset_is_size_multiple && is_int7(offset >> size);
2535}
2536
2537
2538// Test if a given value can be encoded in the immediate field of a logical
2539// instruction.
2540// If it can be encoded, the function returns true, and values pointed to by n,
2541// imm_s and imm_r are updated with immediates encoded in the format required
2542// by the corresponding fields in the logical instruction.
2543// If it can not be encoded, the function returns false, and the values pointed
2544// to by n, imm_s and imm_r are undefined.
2545bool Assembler::IsImmLogical(uint64_t value,
2546                             unsigned width,
2547                             unsigned* n,
2548                             unsigned* imm_s,
2549                             unsigned* imm_r) {
2550  DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
2551  DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
2552
2553  bool negate = false;
2554
2555  // Logical immediates are encoded using parameters n, imm_s and imm_r using
2556  // the following table:
2557  //
2558  //    N   imms    immr    size        S             R
2559  //    1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
2560  //    0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
2561  //    0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
2562  //    0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
2563  //    0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
2564  //    0  11110s  xxxxxr     2    UInt(s)       UInt(r)
2565  // (s bits must not be all set)
2566  //
2567  // A pattern is constructed of size bits, where the least significant S+1 bits
2568  // are set. The pattern is rotated right by R, and repeated across a 32 or
2569  // 64-bit value, depending on destination register width.
2570  //
2571  // Put another way: the basic format of a logical immediate is a single
2572  // contiguous stretch of 1 bits, repeated across the whole word at intervals
2573  // given by a power of 2. To identify them quickly, we first locate the
2574  // lowest stretch of 1 bits, then the next 1 bit above that; that combination
2575  // is different for every logical immediate, so it gives us all the
2576  // information we need to identify the only logical immediate that our input
2577  // could be, and then we simply check if that's the value we actually have.
2578  //
2579  // (The rotation parameter does give the possibility of the stretch of 1 bits
2580  // going 'round the end' of the word. To deal with that, we observe that in
2581  // any situation where that happens the bitwise NOT of the value is also a
2582  // valid logical immediate. So we simply invert the input whenever its low bit
2583  // is set, and then we know that the rotated case can't arise.)
2584
2585  if (value & 1) {
2586    // If the low bit is 1, negate the value, and set a flag to remember that we
2587    // did (so that we can adjust the return values appropriately).
2588    negate = true;
2589    value = ~value;
2590  }
2591
2592  if (width == kWRegSizeInBits) {
2593    // To handle 32-bit logical immediates, the very easiest thing is to repeat
2594    // the input value twice to make a 64-bit word. The correct encoding of that
2595    // as a logical immediate will also be the correct encoding of the 32-bit
2596    // value.
2597
2598    // The most-significant 32 bits may not be zero (ie. negate is true) so
2599    // shift the value left before duplicating it.
2600    value <<= kWRegSizeInBits;
2601    value |= value >> kWRegSizeInBits;
2602  }
2603
2604  // The basic analysis idea: imagine our input word looks like this.
2605  //
2606  //    0011111000111110001111100011111000111110001111100011111000111110
2607  //                                                          c  b    a
2608  //                                                          |<--d-->|
2609  //
2610  // We find the lowest set bit (as an actual power-of-2 value, not its index)
2611  // and call it a. Then we add a to our original number, which wipes out the
2612  // bottommost stretch of set bits and replaces it with a 1 carried into the
2613  // next zero bit. Then we look for the new lowest set bit, which is in
2614  // position b, and subtract it, so now our number is just like the original
2615  // but with the lowest stretch of set bits completely gone. Now we find the
2616  // lowest set bit again, which is position c in the diagram above. Then we'll
2617  // measure the distance d between bit positions a and c (using CLZ), and that
2618  // tells us that the only valid logical immediate that could possibly be equal
2619  // to this number is the one in which a stretch of bits running from a to just
2620  // below b is replicated every d bits.
2621  uint64_t a = LargestPowerOf2Divisor(value);
2622  uint64_t value_plus_a = value + a;
2623  uint64_t b = LargestPowerOf2Divisor(value_plus_a);
2624  uint64_t value_plus_a_minus_b = value_plus_a - b;
2625  uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
2626
2627  int d, clz_a, out_n;
2628  uint64_t mask;
2629
2630  if (c != 0) {
2631    // The general case, in which there is more than one stretch of set bits.
2632    // Compute the repeat distance d, and set up a bitmask covering the basic
2633    // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
2634    // of these cases the N bit of the output will be zero.
2635    clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2636    int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
2637    d = clz_a - clz_c;
2638    mask = ((V8_UINT64_C(1) << d) - 1);
2639    out_n = 0;
2640  } else {
2641    // Handle degenerate cases.
2642    //
2643    // If any of those 'find lowest set bit' operations didn't find a set bit at
2644    // all, then the word will have been zero thereafter, so in particular the
2645    // last lowest_set_bit operation will have returned zero. So we can test for
2646    // all the special case conditions in one go by seeing if c is zero.
2647    if (a == 0) {
2648      // The input was zero (or all 1 bits, which will come to here too after we
2649      // inverted it at the start of the function), for which we just return
2650      // false.
2651      return false;
2652    } else {
2653      // Otherwise, if c was zero but a was not, then there's just one stretch
2654      // of set bits in our word, meaning that we have the trivial case of
2655      // d == 64 and only one 'repetition'. Set up all the same variables as in
2656      // the general case above, and set the N bit in the output.
2657      clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2658      d = 64;
2659      mask = ~V8_UINT64_C(0);
2660      out_n = 1;
2661    }
2662  }
2663
2664  // If the repeat period d is not a power of two, it can't be encoded.
2665  if (!IS_POWER_OF_TWO(d)) {
2666    return false;
2667  }
2668
2669  if (((b - a) & ~mask) != 0) {
2670    // If the bit stretch (b - a) does not fit within the mask derived from the
2671    // repeat period, then fail.
2672    return false;
2673  }
2674
2675  // The only possible option is b - a repeated every d bits. Now we're going to
2676  // actually construct the valid logical immediate derived from that
2677  // specification, and see if it equals our original input.
2678  //
2679  // To repeat a value every d bits, we multiply it by a number of the form
2680  // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
2681  // be derived using a table lookup on CLZ(d).
2682  static const uint64_t multipliers[] = {
2683    0x0000000000000001UL,
2684    0x0000000100000001UL,
2685    0x0001000100010001UL,
2686    0x0101010101010101UL,
2687    0x1111111111111111UL,
2688    0x5555555555555555UL,
2689  };
2690  int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
2691  // Ensure that the index to the multipliers array is within bounds.
2692  DCHECK((multiplier_idx >= 0) &&
2693         (static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
2694  uint64_t multiplier = multipliers[multiplier_idx];
2695  uint64_t candidate = (b - a) * multiplier;
2696
2697  if (value != candidate) {
2698    // The candidate pattern doesn't match our input value, so fail.
2699    return false;
2700  }
2701
2702  // We have a match! This is a valid logical immediate, so now we have to
2703  // construct the bits and pieces of the instruction encoding that generates
2704  // it.
2705
2706  // Count the set bits in our basic stretch. The special case of clz(0) == -1
2707  // makes the answer come out right for stretches that reach the very top of
2708  // the word (e.g. numbers like 0xffffc00000000000).
2709  int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
2710  int s = clz_a - clz_b;
2711
2712  // Decide how many bits to rotate right by, to put the low bit of that basic
2713  // stretch in position a.
2714  int r;
2715  if (negate) {
2716    // If we inverted the input right at the start of this function, here's
2717    // where we compensate: the number of set bits becomes the number of clear
2718    // bits, and the rotation count is based on position b rather than position
2719    // a (since b is the location of the 'lowest' 1 bit after inversion).
2720    s = d - s;
2721    r = (clz_b + 1) & (d - 1);
2722  } else {
2723    r = (clz_a + 1) & (d - 1);
2724  }
2725
2726  // Now we're done, except for having to encode the S output in such a way that
2727  // it gives both the number of set bits and the length of the repeated
2728  // segment. The s field is encoded like this:
2729  //
2730  //     imms    size        S
2731  //    ssssss    64    UInt(ssssss)
2732  //    0sssss    32    UInt(sssss)
2733  //    10ssss    16    UInt(ssss)
2734  //    110sss     8    UInt(sss)
2735  //    1110ss     4    UInt(ss)
2736  //    11110s     2    UInt(s)
2737  //
2738  // So we 'or' (-d << 1) with our computed s to form imms.
2739  *n = out_n;
2740  *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
2741  *imm_r = r;
2742
2743  return true;
2744}
2745
2746
2747bool Assembler::IsImmConditionalCompare(int64_t immediate) {
2748  return is_uint5(immediate);
2749}
2750
2751
2752bool Assembler::IsImmFP32(float imm) {
2753  // Valid values will have the form:
2754  // aBbb.bbbc.defg.h000.0000.0000.0000.0000
2755  uint32_t bits = float_to_rawbits(imm);
2756  // bits[19..0] are cleared.
2757  if ((bits & 0x7ffff) != 0) {
2758    return false;
2759  }
2760
2761  // bits[29..25] are all set or all cleared.
2762  uint32_t b_pattern = (bits >> 16) & 0x3e00;
2763  if (b_pattern != 0 && b_pattern != 0x3e00) {
2764    return false;
2765  }
2766
2767  // bit[30] and bit[29] are opposite.
2768  if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
2769    return false;
2770  }
2771
2772  return true;
2773}
2774
2775
2776bool Assembler::IsImmFP64(double imm) {
2777  // Valid values will have the form:
2778  // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2779  // 0000.0000.0000.0000.0000.0000.0000.0000
2780  uint64_t bits = double_to_rawbits(imm);
2781  // bits[47..0] are cleared.
2782  if ((bits & 0xffffffffffffL) != 0) {
2783    return false;
2784  }
2785
2786  // bits[61..54] are all set or all cleared.
2787  uint32_t b_pattern = (bits >> 48) & 0x3fc0;
2788  if (b_pattern != 0 && b_pattern != 0x3fc0) {
2789    return false;
2790  }
2791
2792  // bit[62] and bit[61] are opposite.
2793  if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
2794    return false;
2795  }
2796
2797  return true;
2798}
2799
2800
2801void Assembler::GrowBuffer() {
2802  if (!own_buffer_) FATAL("external code buffer is too small");
2803
2804  // Compute new buffer size.
2805  CodeDesc desc;  // the new buffer
2806  if (buffer_size_ < 1 * MB) {
2807    desc.buffer_size = 2 * buffer_size_;
2808  } else {
2809    desc.buffer_size = buffer_size_ + 1 * MB;
2810  }
2811  CHECK_GT(desc.buffer_size, 0);  // No overflow.
2812
2813  byte* buffer = reinterpret_cast<byte*>(buffer_);
2814
2815  // Set up new buffer.
2816  desc.buffer = NewArray<byte>(desc.buffer_size);
2817
2818  desc.instr_size = pc_offset();
2819  desc.reloc_size = (buffer + buffer_size_) - reloc_info_writer.pos();
2820
2821  // Copy the data.
2822  intptr_t pc_delta = desc.buffer - buffer;
2823  intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
2824                      (buffer + buffer_size_);
2825  memmove(desc.buffer, buffer, desc.instr_size);
2826  memmove(reloc_info_writer.pos() + rc_delta,
2827          reloc_info_writer.pos(), desc.reloc_size);
2828
2829  // Switch buffers.
2830  DeleteArray(buffer_);
2831  buffer_ = desc.buffer;
2832  buffer_size_ = desc.buffer_size;
2833  pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
2834  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2835                               reloc_info_writer.last_pc() + pc_delta);
2836
2837  // None of our relocation types are pc relative pointing outside the code
2838  // buffer nor pc absolute pointing inside the code buffer, so there is no need
2839  // to relocate any emitted relocation entries.
2840
2841  // Pending relocation entries are also relative, no need to relocate.
2842}
2843
2844
2845void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2846  // We do not try to reuse pool constants.
2847  RelocInfo rinfo(reinterpret_cast<byte*>(pc_), rmode, data, NULL);
2848  if (((rmode >= RelocInfo::JS_RETURN) &&
2849       (rmode <= RelocInfo::DEBUG_BREAK_SLOT)) ||
2850      (rmode == RelocInfo::CONST_POOL) ||
2851      (rmode == RelocInfo::VENEER_POOL)) {
2852    // Adjust code for new modes.
2853    DCHECK(RelocInfo::IsDebugBreakSlot(rmode)
2854           || RelocInfo::IsJSReturn(rmode)
2855           || RelocInfo::IsComment(rmode)
2856           || RelocInfo::IsPosition(rmode)
2857           || RelocInfo::IsConstPool(rmode)
2858           || RelocInfo::IsVeneerPool(rmode));
2859    // These modes do not need an entry in the constant pool.
2860  } else {
2861    constpool_.RecordEntry(data, rmode);
2862    // Make sure the constant pool is not emitted in place of the next
2863    // instruction for which we just recorded relocation info.
2864    BlockConstPoolFor(1);
2865  }
2866
2867  if (!RelocInfo::IsNone(rmode)) {
2868    // Don't record external references unless the heap will be serialized.
2869    if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2870        !serializer_enabled() && !emit_debug_code()) {
2871      return;
2872    }
2873    DCHECK(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
2874    if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
2875      RelocInfo reloc_info_with_ast_id(
2876          reinterpret_cast<byte*>(pc_), rmode, RecordedAstId().ToInt(), NULL);
2877      ClearRecordedAstId();
2878      reloc_info_writer.Write(&reloc_info_with_ast_id);
2879    } else {
2880      reloc_info_writer.Write(&rinfo);
2881    }
2882  }
2883}
2884
2885
2886void Assembler::BlockConstPoolFor(int instructions) {
2887  int pc_limit = pc_offset() + instructions * kInstructionSize;
2888  if (no_const_pool_before_ < pc_limit) {
2889    no_const_pool_before_ = pc_limit;
2890    // Make sure the pool won't be blocked for too long.
2891    DCHECK(pc_limit < constpool_.MaxPcOffset());
2892  }
2893
2894  if (next_constant_pool_check_ < no_const_pool_before_) {
2895    next_constant_pool_check_ = no_const_pool_before_;
2896  }
2897}
2898
2899
2900void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
2901  // Some short sequence of instruction mustn't be broken up by constant pool
2902  // emission, such sequences are protected by calls to BlockConstPoolFor and
2903  // BlockConstPoolScope.
2904  if (is_const_pool_blocked()) {
2905    // Something is wrong if emission is forced and blocked at the same time.
2906    DCHECK(!force_emit);
2907    return;
2908  }
2909
2910  // There is nothing to do if there are no pending constant pool entries.
2911  if (constpool_.IsEmpty())  {
2912    // Calculate the offset of the next check.
2913    SetNextConstPoolCheckIn(kCheckConstPoolInterval);
2914    return;
2915  }
2916
2917  // We emit a constant pool when:
2918  //  * requested to do so by parameter force_emit (e.g. after each function).
2919  //  * the distance to the first instruction accessing the constant pool is
2920  //    kApproxMaxDistToConstPool or more.
2921  //  * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
2922  int dist = constpool_.DistanceToFirstUse();
2923  int count = constpool_.EntryCount();
2924  if (!force_emit &&
2925      (dist < kApproxMaxDistToConstPool) &&
2926      (count < kApproxMaxPoolEntryCount)) {
2927    return;
2928  }
2929
2930
2931  // Emit veneers for branches that would go out of range during emission of the
2932  // constant pool.
2933  int worst_case_size = constpool_.WorstCaseSize();
2934  CheckVeneerPool(false, require_jump,
2935                  kVeneerDistanceMargin + worst_case_size);
2936
2937  // Check that the code buffer is large enough before emitting the constant
2938  // pool (this includes the gap to the relocation information).
2939  int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
2940  while (buffer_space() <= needed_space) {
2941    GrowBuffer();
2942  }
2943
2944  Label size_check;
2945  bind(&size_check);
2946  constpool_.Emit(require_jump);
2947  DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
2948         static_cast<unsigned>(worst_case_size));
2949
2950  // Since a constant pool was just emitted, move the check offset forward by
2951  // the standard interval.
2952  SetNextConstPoolCheckIn(kCheckConstPoolInterval);
2953}
2954
2955
2956bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
2957  // Account for the branch around the veneers and the guard.
2958  int protection_offset = 2 * kInstructionSize;
2959  return pc_offset() > max_reachable_pc - margin - protection_offset -
2960    static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
2961}
2962
2963
2964void Assembler::RecordVeneerPool(int location_offset, int size) {
2965  RelocInfo rinfo(buffer_ + location_offset,
2966                  RelocInfo::VENEER_POOL, static_cast<intptr_t>(size),
2967                  NULL);
2968  reloc_info_writer.Write(&rinfo);
2969}
2970
2971
2972void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
2973  BlockPoolsScope scope(this);
2974  RecordComment("[ Veneers");
2975
2976  // The exact size of the veneer pool must be recorded (see the comment at the
2977  // declaration site of RecordConstPool()), but computing the number of
2978  // veneers that will be generated is not obvious. So instead we remember the
2979  // current position and will record the size after the pool has been
2980  // generated.
2981  Label size_check;
2982  bind(&size_check);
2983  int veneer_pool_relocinfo_loc = pc_offset();
2984
2985  Label end;
2986  if (need_protection) {
2987    b(&end);
2988  }
2989
2990  EmitVeneersGuard();
2991
2992  Label veneer_size_check;
2993
2994  std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
2995
2996  it = unresolved_branches_.begin();
2997  while (it != unresolved_branches_.end()) {
2998    if (force_emit || ShouldEmitVeneer(it->first, margin)) {
2999      Instruction* branch = InstructionAt(it->second.pc_offset_);
3000      Label* label = it->second.label_;
3001
3002#ifdef DEBUG
3003      bind(&veneer_size_check);
3004#endif
3005      // Patch the branch to point to the current position, and emit a branch
3006      // to the label.
3007      Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
3008      RemoveBranchFromLabelLinkChain(branch, label, veneer);
3009      branch->SetImmPCOffsetTarget(veneer);
3010      b(label);
3011#ifdef DEBUG
3012      DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
3013             static_cast<uint64_t>(kMaxVeneerCodeSize));
3014      veneer_size_check.Unuse();
3015#endif
3016
3017      it_to_delete = it++;
3018      unresolved_branches_.erase(it_to_delete);
3019    } else {
3020      ++it;
3021    }
3022  }
3023
3024  // Record the veneer pool size.
3025  int pool_size = SizeOfCodeGeneratedSince(&size_check);
3026  RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
3027
3028  if (unresolved_branches_.empty()) {
3029    next_veneer_pool_check_ = kMaxInt;
3030  } else {
3031    next_veneer_pool_check_ =
3032      unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3033  }
3034
3035  bind(&end);
3036
3037  RecordComment("]");
3038}
3039
3040
3041void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
3042                                int margin) {
3043  // There is nothing to do if there are no pending veneer pool entries.
3044  if (unresolved_branches_.empty())  {
3045    DCHECK(next_veneer_pool_check_ == kMaxInt);
3046    return;
3047  }
3048
3049  DCHECK(pc_offset() < unresolved_branches_first_limit());
3050
3051  // Some short sequence of instruction mustn't be broken up by veneer pool
3052  // emission, such sequences are protected by calls to BlockVeneerPoolFor and
3053  // BlockVeneerPoolScope.
3054  if (is_veneer_pool_blocked()) {
3055    DCHECK(!force_emit);
3056    return;
3057  }
3058
3059  if (!require_jump) {
3060    // Prefer emitting veneers protected by an existing instruction.
3061    margin *= kVeneerNoProtectionFactor;
3062  }
3063  if (force_emit || ShouldEmitVeneers(margin)) {
3064    EmitVeneers(force_emit, require_jump, margin);
3065  } else {
3066    next_veneer_pool_check_ =
3067      unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3068  }
3069}
3070
3071
3072void Assembler::RecordComment(const char* msg) {
3073  if (FLAG_code_comments) {
3074    CheckBuffer();
3075    RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
3076  }
3077}
3078
3079
3080int Assembler::buffer_space() const {
3081  return reloc_info_writer.pos() - reinterpret_cast<byte*>(pc_);
3082}
3083
3084
3085void Assembler::RecordJSReturn() {
3086  positions_recorder()->WriteRecordedPositions();
3087  CheckBuffer();
3088  RecordRelocInfo(RelocInfo::JS_RETURN);
3089}
3090
3091
3092void Assembler::RecordDebugBreakSlot() {
3093  positions_recorder()->WriteRecordedPositions();
3094  CheckBuffer();
3095  RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
3096}
3097
3098
3099void Assembler::RecordConstPool(int size) {
3100  // We only need this for debugger support, to correctly compute offsets in the
3101  // code.
3102  RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3103}
3104
3105
3106Handle<ConstantPoolArray> Assembler::NewConstantPool(Isolate* isolate) {
3107  // No out-of-line constant pool support.
3108  DCHECK(!FLAG_enable_ool_constant_pool);
3109  return isolate->factory()->empty_constant_pool_array();
3110}
3111
3112
3113void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
3114  // No out-of-line constant pool support.
3115  DCHECK(!FLAG_enable_ool_constant_pool);
3116  return;
3117}
3118
3119
3120void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
3121  // The code at the current instruction should be:
3122  //   adr  rd, 0
3123  //   nop  (adr_far)
3124  //   nop  (adr_far)
3125  //   movz scratch, 0
3126
3127  // Verify the expected code.
3128  Instruction* expected_adr = InstructionAt(0);
3129  CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
3130  int rd_code = expected_adr->Rd();
3131  for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
3132    CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
3133  }
3134  Instruction* expected_movz =
3135      InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
3136  CHECK(expected_movz->IsMovz() &&
3137        (expected_movz->ImmMoveWide() == 0) &&
3138        (expected_movz->ShiftMoveWide() == 0));
3139  int scratch_code = expected_movz->Rd();
3140
3141  // Patch to load the correct address.
3142  Register rd = Register::XRegFromCode(rd_code);
3143  Register scratch = Register::XRegFromCode(scratch_code);
3144  // Addresses are only 48 bits.
3145  adr(rd, target_offset & 0xFFFF);
3146  movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
3147  movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
3148  DCHECK((target_offset >> 48) == 0);
3149  add(rd, rd, scratch);
3150}
3151
3152
3153} }  // namespace v8::internal
3154
3155#endif  // V8_TARGET_ARCH_ARM64
3156