1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_FACTORY_H_
6#define V8_FACTORY_H_
7
8#include "src/isolate.h"
9#include "src/messages.h"
10#include "src/type-feedback-vector.h"
11
12namespace v8 {
13namespace internal {
14
15// Interface for handle based allocation.
16class Factory final {
17 public:
18  Handle<Oddball> NewOddball(Handle<Map> map, const char* to_string,
19                             Handle<Object> to_number, const char* type_of,
20                             byte kind);
21
22  // Allocates a fixed array initialized with undefined values.
23  Handle<FixedArray> NewFixedArray(
24      int size,
25      PretenureFlag pretenure = NOT_TENURED);
26
27  // Allocate a new fixed array with non-existing entries (the hole).
28  Handle<FixedArray> NewFixedArrayWithHoles(
29      int size,
30      PretenureFlag pretenure = NOT_TENURED);
31
32  // Allocates an uninitialized fixed array. It must be filled by the caller.
33  Handle<FixedArray> NewUninitializedFixedArray(int size);
34
35  // Allocate a new uninitialized fixed double array.
36  // The function returns a pre-allocated empty fixed array for capacity = 0,
37  // so the return type must be the general fixed array class.
38  Handle<FixedArrayBase> NewFixedDoubleArray(
39      int size,
40      PretenureFlag pretenure = NOT_TENURED);
41
42  // Allocate a new fixed double array with hole values.
43  Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(
44      int size,
45      PretenureFlag pretenure = NOT_TENURED);
46
47  Handle<OrderedHashSet> NewOrderedHashSet();
48  Handle<OrderedHashMap> NewOrderedHashMap();
49
50  // Create a new boxed value.
51  Handle<Box> NewBox(Handle<Object> value);
52
53  // Create a new PrototypeInfo struct.
54  Handle<PrototypeInfo> NewPrototypeInfo();
55
56  // Create a new SloppyBlockWithEvalContextExtension struct.
57  Handle<SloppyBlockWithEvalContextExtension>
58  NewSloppyBlockWithEvalContextExtension(Handle<ScopeInfo> scope_info,
59                                         Handle<JSObject> extension);
60
61  // Create a pre-tenured empty AccessorPair.
62  Handle<AccessorPair> NewAccessorPair();
63
64  // Create an empty TypeFeedbackInfo.
65  Handle<TypeFeedbackInfo> NewTypeFeedbackInfo();
66
67  // Finds the internalized copy for string in the string table.
68  // If not found, a new string is added to the table and returned.
69  Handle<String> InternalizeUtf8String(Vector<const char> str);
70  Handle<String> InternalizeUtf8String(const char* str) {
71    return InternalizeUtf8String(CStrVector(str));
72  }
73  Handle<String> InternalizeString(Handle<String> str);
74  Handle<String> InternalizeOneByteString(Vector<const uint8_t> str);
75  Handle<String> InternalizeOneByteString(
76      Handle<SeqOneByteString>, int from, int length);
77
78  Handle<String> InternalizeTwoByteString(Vector<const uc16> str);
79
80  template<class StringTableKey>
81  Handle<String> InternalizeStringWithKey(StringTableKey* key);
82
83  Handle<Name> InternalizeName(Handle<Name> name);
84
85
86  // String creation functions.  Most of the string creation functions take
87  // a Heap::PretenureFlag argument to optionally request that they be
88  // allocated in the old generation.  The pretenure flag defaults to
89  // DONT_TENURE.
90  //
91  // Creates a new String object.  There are two String encodings: one-byte and
92  // two-byte.  One should choose between the three string factory functions
93  // based on the encoding of the string buffer that the string is
94  // initialized from.
95  //   - ...FromOneByte initializes the string from a buffer that is Latin1
96  //     encoded (it does not check that the buffer is Latin1 encoded) and
97  //     the result will be Latin1 encoded.
98  //   - ...FromUtf8 initializes the string from a buffer that is UTF-8
99  //     encoded.  If the characters are all ASCII characters, the result
100  //     will be Latin1 encoded, otherwise it will converted to two-byte.
101  //   - ...FromTwoByte initializes the string from a buffer that is two-byte
102  //     encoded.  If the characters are all Latin1 characters, the result
103  //     will be converted to Latin1, otherwise it will be left as two-byte.
104  //
105  // One-byte strings are pretenured when used as keys in the SourceCodeCache.
106  MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte(
107      Vector<const uint8_t> str,
108      PretenureFlag pretenure = NOT_TENURED);
109
110  template <size_t N>
111  inline Handle<String> NewStringFromStaticChars(
112      const char (&str)[N], PretenureFlag pretenure = NOT_TENURED) {
113    DCHECK(N == StrLength(str) + 1);
114    return NewStringFromOneByte(STATIC_CHAR_VECTOR(str), pretenure)
115        .ToHandleChecked();
116  }
117
118  inline Handle<String> NewStringFromAsciiChecked(
119      const char* str,
120      PretenureFlag pretenure = NOT_TENURED) {
121    return NewStringFromOneByte(
122        OneByteVector(str), pretenure).ToHandleChecked();
123  }
124
125
126  // Allocates and fully initializes a String.  There are two String encodings:
127  // one-byte and two-byte. One should choose between the threestring
128  // allocation functions based on the encoding of the string buffer used to
129  // initialized the string.
130  //   - ...FromOneByte initializes the string from a buffer that is Latin1
131  //     encoded (it does not check that the buffer is Latin1 encoded) and the
132  //     result will be Latin1 encoded.
133  //   - ...FromUTF8 initializes the string from a buffer that is UTF-8
134  //     encoded.  If the characters are all ASCII characters, the result
135  //     will be Latin1 encoded, otherwise it will converted to two-byte.
136  //   - ...FromTwoByte initializes the string from a buffer that is two-byte
137  //     encoded.  If the characters are all Latin1 characters, the
138  //     result will be converted to Latin1, otherwise it will be left as
139  //     two-byte.
140
141  // TODO(dcarney): remove this function.
142  MUST_USE_RESULT inline MaybeHandle<String> NewStringFromAscii(
143      Vector<const char> str,
144      PretenureFlag pretenure = NOT_TENURED) {
145    return NewStringFromOneByte(Vector<const uint8_t>::cast(str), pretenure);
146  }
147
148  // UTF8 strings are pretenured when used for regexp literal patterns and
149  // flags in the parser.
150  MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8(
151      Vector<const char> str,
152      PretenureFlag pretenure = NOT_TENURED);
153
154  MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
155      Vector<const uc16> str,
156      PretenureFlag pretenure = NOT_TENURED);
157
158  // Allocates an internalized string in old space based on the character
159  // stream.
160  Handle<String> NewInternalizedStringFromUtf8(Vector<const char> str,
161                                               int chars, uint32_t hash_field);
162
163  Handle<String> NewOneByteInternalizedString(Vector<const uint8_t> str,
164                                              uint32_t hash_field);
165
166  Handle<String> NewOneByteInternalizedSubString(
167      Handle<SeqOneByteString> string, int offset, int length,
168      uint32_t hash_field);
169
170  Handle<String> NewTwoByteInternalizedString(Vector<const uc16> str,
171                                              uint32_t hash_field);
172
173  Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars,
174                                           uint32_t hash_field);
175
176  // Compute the matching internalized string map for a string if possible.
177  // Empty handle is returned if string is in new space or not flattened.
178  MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString(
179      Handle<String> string);
180
181  // Allocates and partially initializes an one-byte or two-byte String. The
182  // characters of the string are uninitialized. Currently used in regexp code
183  // only, where they are pretenured.
184  MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString(
185      int length,
186      PretenureFlag pretenure = NOT_TENURED);
187  MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString(
188      int length,
189      PretenureFlag pretenure = NOT_TENURED);
190
191  // Creates a single character string where the character has given code.
192  // A cache is used for Latin1 codes.
193  Handle<String> LookupSingleCharacterStringFromCode(uint32_t code);
194
195  // Create a new cons string object which consists of a pair of strings.
196  MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left,
197                                                    Handle<String> right);
198
199  // Create a new string object which holds a proper substring of a string.
200  Handle<String> NewProperSubString(Handle<String> str,
201                                    int begin,
202                                    int end);
203
204  // Create a new string object which holds a substring of a string.
205  Handle<String> NewSubString(Handle<String> str, int begin, int end) {
206    if (begin == 0 && end == str->length()) return str;
207    return NewProperSubString(str, begin, end);
208  }
209
210  // Creates a new external String object.  There are two String encodings
211  // in the system: one-byte and two-byte.  Unlike other String types, it does
212  // not make sense to have a UTF-8 factory function for external strings,
213  // because we cannot change the underlying buffer.  Note that these strings
214  // are backed by a string resource that resides outside the V8 heap.
215  MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromOneByte(
216      const ExternalOneByteString::Resource* resource);
217  MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
218      const ExternalTwoByteString::Resource* resource);
219
220  // Create a symbol.
221  Handle<Symbol> NewSymbol();
222  Handle<Symbol> NewPrivateSymbol();
223
224  // Create a global (but otherwise uninitialized) context.
225  Handle<Context> NewNativeContext();
226
227  // Create a script context.
228  Handle<Context> NewScriptContext(Handle<JSFunction> function,
229                                   Handle<ScopeInfo> scope_info);
230
231  // Create an empty script context table.
232  Handle<ScriptContextTable> NewScriptContextTable();
233
234  // Create a module context.
235  Handle<Context> NewModuleContext(Handle<ScopeInfo> scope_info);
236
237  // Create a function context.
238  Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function);
239
240  // Create a catch context.
241  Handle<Context> NewCatchContext(Handle<JSFunction> function,
242                                  Handle<Context> previous,
243                                  Handle<String> name,
244                                  Handle<Object> thrown_object);
245
246  // Create a 'with' context.
247  Handle<Context> NewWithContext(Handle<JSFunction> function,
248                                 Handle<Context> previous,
249                                 Handle<JSReceiver> extension);
250
251  // Create a block context.
252  Handle<Context> NewBlockContext(Handle<JSFunction> function,
253                                  Handle<Context> previous,
254                                  Handle<ScopeInfo> scope_info);
255
256  // Allocate a new struct.  The struct is pretenured (allocated directly in
257  // the old generation).
258  Handle<Struct> NewStruct(InstanceType type);
259
260  Handle<CodeCache> NewCodeCache();
261
262  Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
263      int aliased_context_slot);
264
265  Handle<ExecutableAccessorInfo> NewExecutableAccessorInfo();
266
267  Handle<Script> NewScript(Handle<String> source);
268
269  // Foreign objects are pretenured when allocated by the bootstrapper.
270  Handle<Foreign> NewForeign(Address addr,
271                             PretenureFlag pretenure = NOT_TENURED);
272
273  // Allocate a new foreign object.  The foreign is pretenured (allocated
274  // directly in the old generation).
275  Handle<Foreign> NewForeign(const AccessorDescriptor* foreign);
276
277  Handle<ByteArray> NewByteArray(int length,
278                                 PretenureFlag pretenure = NOT_TENURED);
279
280  Handle<BytecodeArray> NewBytecodeArray(int length, const byte* raw_bytecodes,
281                                         int frame_size, int parameter_count,
282                                         Handle<FixedArray> constant_pool);
283
284  Handle<FixedTypedArrayBase> NewFixedTypedArrayWithExternalPointer(
285      int length, ExternalArrayType array_type, void* external_pointer,
286      PretenureFlag pretenure = NOT_TENURED);
287
288  Handle<FixedTypedArrayBase> NewFixedTypedArray(
289      int length, ExternalArrayType array_type, bool initialize,
290      PretenureFlag pretenure = NOT_TENURED);
291
292  Handle<Cell> NewCell(Handle<Object> value);
293
294  Handle<PropertyCell> NewPropertyCell();
295
296  Handle<WeakCell> NewWeakCell(Handle<HeapObject> value);
297
298  Handle<TransitionArray> NewTransitionArray(int capacity);
299
300  // Allocate a tenured AllocationSite. It's payload is null.
301  Handle<AllocationSite> NewAllocationSite();
302
303  Handle<Map> NewMap(
304      InstanceType type,
305      int instance_size,
306      ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
307
308  Handle<HeapObject> NewFillerObject(int size,
309                                     bool double_align,
310                                     AllocationSpace space);
311
312  Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
313
314  Handle<JSObject> CopyJSObject(Handle<JSObject> object);
315
316  Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
317                                                  Handle<AllocationSite> site);
318
319  Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
320                                           Handle<Map> map);
321
322  Handle<FixedArray> CopyFixedArrayAndGrow(
323      Handle<FixedArray> array, int grow_by,
324      PretenureFlag pretenure = NOT_TENURED);
325
326  Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
327
328  // This method expects a COW array in new space, and creates a copy
329  // of it in old space.
330  Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array);
331
332  Handle<FixedDoubleArray> CopyFixedDoubleArray(
333      Handle<FixedDoubleArray> array);
334
335  // Numbers (e.g. literals) are pretenured by the parser.
336  // The return value may be a smi or a heap number.
337  Handle<Object> NewNumber(double value,
338                           PretenureFlag pretenure = NOT_TENURED);
339
340  Handle<Object> NewNumberFromInt(int32_t value,
341                                  PretenureFlag pretenure = NOT_TENURED);
342  Handle<Object> NewNumberFromUint(uint32_t value,
343                                  PretenureFlag pretenure = NOT_TENURED);
344  Handle<Object> NewNumberFromSize(size_t value,
345                                   PretenureFlag pretenure = NOT_TENURED) {
346    // We can't use Smi::IsValid() here because that operates on a signed
347    // intptr_t, and casting from size_t could create a bogus sign bit.
348    if (value <= static_cast<size_t>(Smi::kMaxValue)) {
349      return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)),
350                            isolate());
351    }
352    return NewNumber(static_cast<double>(value), pretenure);
353  }
354  Handle<HeapNumber> NewHeapNumber(double value,
355                                   MutableMode mode = IMMUTABLE,
356                                   PretenureFlag pretenure = NOT_TENURED);
357
358#define SIMD128_NEW_DECL(TYPE, Type, type, lane_count, lane_type) \
359  Handle<Type> New##Type(lane_type lanes[lane_count],             \
360                         PretenureFlag pretenure = NOT_TENURED);
361  SIMD128_TYPES(SIMD128_NEW_DECL)
362#undef SIMD128_NEW_DECL
363
364  // These objects are used by the api to create env-independent data
365  // structures in the heap.
366  inline Handle<JSObject> NewNeanderObject() {
367    return NewJSObjectFromMap(neander_map());
368  }
369
370  Handle<JSWeakMap> NewJSWeakMap();
371
372  Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length);
373
374  // JS objects are pretenured when allocated by the bootstrapper and
375  // runtime.
376  Handle<JSObject> NewJSObject(Handle<JSFunction> constructor,
377                               PretenureFlag pretenure = NOT_TENURED);
378  // JSObject that should have a memento pointing to the allocation site.
379  Handle<JSObject> NewJSObjectWithMemento(Handle<JSFunction> constructor,
380                                          Handle<AllocationSite> site);
381
382  // Global objects are pretenured and initialized based on a constructor.
383  Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor);
384
385  // JS objects are pretenured when allocated by the bootstrapper and
386  // runtime.
387  Handle<JSObject> NewJSObjectFromMap(
388      Handle<Map> map,
389      PretenureFlag pretenure = NOT_TENURED,
390      Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
391
392  // JS modules are pretenured.
393  Handle<JSModule> NewJSModule(Handle<Context> context,
394                               Handle<ScopeInfo> scope_info);
395
396  // JS arrays are pretenured when allocated by the parser.
397
398  // Create a JSArray with no elements.
399  Handle<JSArray> NewJSArray(ElementsKind elements_kind,
400                             Strength strength = Strength::WEAK,
401                             PretenureFlag pretenure = NOT_TENURED);
402
403  // Create a JSArray with a specified length and elements initialized
404  // according to the specified mode.
405  Handle<JSArray> NewJSArray(
406      ElementsKind elements_kind, int length, int capacity,
407      Strength strength = Strength::WEAK,
408      ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
409      PretenureFlag pretenure = NOT_TENURED);
410
411  Handle<JSArray> NewJSArray(
412      int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
413      Strength strength = Strength::WEAK,
414      PretenureFlag pretenure = NOT_TENURED) {
415    if (capacity != 0) {
416      elements_kind = GetHoleyElementsKind(elements_kind);
417    }
418    return NewJSArray(elements_kind, 0, capacity, strength,
419                      INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure);
420  }
421
422  // Create a JSArray with the given elements.
423  Handle<JSArray> NewJSArrayWithElements(Handle<FixedArrayBase> elements,
424                                         ElementsKind elements_kind, int length,
425                                         Strength strength = Strength::WEAK,
426                                         PretenureFlag pretenure = NOT_TENURED);
427
428  Handle<JSArray> NewJSArrayWithElements(
429      Handle<FixedArrayBase> elements,
430      ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
431      Strength strength = Strength::WEAK,
432      PretenureFlag pretenure = NOT_TENURED) {
433    return NewJSArrayWithElements(elements, elements_kind, elements->length(),
434                                  strength, pretenure);
435  }
436
437  void NewJSArrayStorage(
438      Handle<JSArray> array,
439      int length,
440      int capacity,
441      ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
442
443  Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
444
445  Handle<JSArrayBuffer> NewJSArrayBuffer(
446      SharedFlag shared = SharedFlag::kNotShared,
447      PretenureFlag pretenure = NOT_TENURED);
448
449  Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
450                                       PretenureFlag pretenure = NOT_TENURED);
451
452  Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
453                                       PretenureFlag pretenure = NOT_TENURED);
454
455  // Creates a new JSTypedArray with the specified buffer.
456  Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
457                                       Handle<JSArrayBuffer> buffer,
458                                       size_t byte_offset, size_t length,
459                                       PretenureFlag pretenure = NOT_TENURED);
460
461  // Creates a new on-heap JSTypedArray.
462  Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
463                                       size_t number_of_elements,
464                                       PretenureFlag pretenure = NOT_TENURED);
465
466  Handle<JSDataView> NewJSDataView();
467  Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer,
468                                   size_t byte_offset, size_t byte_length);
469
470  Handle<JSMap> NewJSMap();
471  Handle<JSSet> NewJSSet();
472
473  // TODO(aandrey): Maybe these should take table, index and kind arguments.
474  Handle<JSMapIterator> NewJSMapIterator();
475  Handle<JSSetIterator> NewJSSetIterator();
476
477  // Creates a new JSIteratorResult object with the arguments {value} and
478  // {done}.  Implemented according to ES6 section 7.4.7 CreateIterResultObject.
479  Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value,
480                                               Handle<Object> done);
481
482  // Allocates a bound function.
483  MaybeHandle<JSBoundFunction> NewJSBoundFunction(
484      Handle<JSReceiver> target_function, Handle<Object> bound_this,
485      Vector<Handle<Object>> bound_args);
486
487  // Allocates a Harmony proxy.
488  Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target,
489                             Handle<JSReceiver> handler);
490
491  // Reinitialize an JSGlobalProxy based on a constructor.  The object
492  // must have the same size as objects allocated using the
493  // constructor.  The object is reinitialized and behaves as an
494  // object that has been freshly allocated using the constructor.
495  void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
496                                 Handle<JSFunction> constructor);
497
498  Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy();
499
500  Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
501                                 Handle<Object> prototype,
502                                 bool read_only_prototype = false,
503                                 bool is_strict = false);
504  Handle<JSFunction> NewFunction(Handle<String> name);
505  Handle<JSFunction> NewFunctionWithoutPrototype(Handle<String> name,
506                                                 Handle<Code> code,
507                                                 bool is_strict = false);
508
509  Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
510      Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info,
511      Handle<Context> context, PretenureFlag pretenure = TENURED);
512
513  Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
514      Handle<SharedFunctionInfo> function_info, Handle<Context> context,
515      PretenureFlag pretenure = TENURED);
516
517  Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
518                                 Handle<Object> prototype, InstanceType type,
519                                 int instance_size,
520                                 bool read_only_prototype = false,
521                                 bool install_constructor = false,
522                                 bool is_strict = false);
523  Handle<JSFunction> NewFunction(Handle<String> name,
524                                 Handle<Code> code,
525                                 InstanceType type,
526                                 int instance_size);
527  Handle<JSFunction> NewFunction(Handle<Map> map, Handle<String> name,
528                                 MaybeHandle<Code> maybe_code);
529
530  // Create a serialized scope info.
531  Handle<ScopeInfo> NewScopeInfo(int length);
532
533  // Create an External object for V8's external API.
534  Handle<JSObject> NewExternal(void* value);
535
536  // The reference to the Code object is stored in self_reference.
537  // This allows generated code to reference its own Code object
538  // by containing this handle.
539  Handle<Code> NewCode(const CodeDesc& desc,
540                       Code::Flags flags,
541                       Handle<Object> self_reference,
542                       bool immovable = false,
543                       bool crankshafted = false,
544                       int prologue_offset = Code::kPrologueOffsetNotSet,
545                       bool is_debug = false);
546
547  Handle<Code> CopyCode(Handle<Code> code);
548
549  Handle<Code> CopyCode(Handle<Code> code, Vector<byte> reloc_info);
550
551  // Interface for creating error objects.
552  Handle<Object> NewError(Handle<JSFunction> constructor,
553                          Handle<String> message);
554
555  Handle<Object> NewInvalidStringLengthError() {
556    return NewRangeError(MessageTemplate::kInvalidStringLength);
557  }
558
559  Handle<Object> NewError(Handle<JSFunction> constructor,
560                          MessageTemplate::Template template_index,
561                          Handle<Object> arg0 = Handle<Object>(),
562                          Handle<Object> arg1 = Handle<Object>(),
563                          Handle<Object> arg2 = Handle<Object>());
564
565#define DECLARE_ERROR(NAME)                                          \
566  Handle<Object> New##NAME(MessageTemplate::Template template_index, \
567                           Handle<Object> arg0 = Handle<Object>(),   \
568                           Handle<Object> arg1 = Handle<Object>(),   \
569                           Handle<Object> arg2 = Handle<Object>());
570  DECLARE_ERROR(Error)
571  DECLARE_ERROR(EvalError)
572  DECLARE_ERROR(RangeError)
573  DECLARE_ERROR(ReferenceError)
574  DECLARE_ERROR(SyntaxError)
575  DECLARE_ERROR(TypeError)
576#undef DEFINE_ERROR
577
578  Handle<String> NumberToString(Handle<Object> number,
579                                bool check_number_string_cache = true);
580
581  Handle<String> Uint32ToString(uint32_t value) {
582    return NumberToString(NewNumberFromUint(value));
583  }
584
585  Handle<JSFunction> InstallMembers(Handle<JSFunction> function);
586
587#define ROOT_ACCESSOR(type, name, camel_name)                         \
588  inline Handle<type> name() {                                        \
589    return Handle<type>(bit_cast<type**>(                             \
590        &isolate()->heap()->roots_[Heap::k##camel_name##RootIndex])); \
591  }
592  ROOT_LIST(ROOT_ACCESSOR)
593#undef ROOT_ACCESSOR
594
595#define STRUCT_MAP_ACCESSOR(NAME, Name, name)                      \
596  inline Handle<Map> name##_map() {                                \
597    return Handle<Map>(bit_cast<Map**>(                            \
598        &isolate()->heap()->roots_[Heap::k##Name##MapRootIndex])); \
599  }
600  STRUCT_LIST(STRUCT_MAP_ACCESSOR)
601#undef STRUCT_MAP_ACCESSOR
602
603#define STRING_ACCESSOR(name, str)                              \
604  inline Handle<String> name() {                                \
605    return Handle<String>(bit_cast<String**>(                   \
606        &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
607  }
608  INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
609#undef STRING_ACCESSOR
610
611#define SYMBOL_ACCESSOR(name)                                   \
612  inline Handle<Symbol> name() {                                \
613    return Handle<Symbol>(bit_cast<Symbol**>(                   \
614        &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
615  }
616  PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
617#undef SYMBOL_ACCESSOR
618
619#define SYMBOL_ACCESSOR(name, description)                      \
620  inline Handle<Symbol> name() {                                \
621    return Handle<Symbol>(bit_cast<Symbol**>(                   \
622        &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
623  }
624  PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
625  WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
626#undef SYMBOL_ACCESSOR
627
628  // Allocates a new SharedFunctionInfo object.
629  Handle<SharedFunctionInfo> NewSharedFunctionInfo(
630      Handle<String> name, int number_of_literals, FunctionKind kind,
631      Handle<Code> code, Handle<ScopeInfo> scope_info,
632      Handle<TypeFeedbackVector> feedback_vector);
633  Handle<SharedFunctionInfo> NewSharedFunctionInfo(Handle<String> name,
634                                                   MaybeHandle<Code> code,
635                                                   bool is_constructor);
636
637  // Allocates a new JSMessageObject object.
638  Handle<JSMessageObject> NewJSMessageObject(MessageTemplate::Template message,
639                                             Handle<Object> argument,
640                                             int start_position,
641                                             int end_position,
642                                             Handle<Object> script,
643                                             Handle<Object> stack_frames);
644
645  Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
646
647  // Return a map for given number of properties using the map cache in the
648  // native context.
649  Handle<Map> ObjectLiteralMapFromCache(Handle<Context> context,
650                                        int number_of_properties,
651                                        bool is_strong,
652                                        bool* is_result_from_cache);
653
654  // Creates a new FixedArray that holds the data associated with the
655  // atom regexp and stores it in the regexp.
656  void SetRegExpAtomData(Handle<JSRegExp> regexp,
657                         JSRegExp::Type type,
658                         Handle<String> source,
659                         JSRegExp::Flags flags,
660                         Handle<Object> match_pattern);
661
662  // Creates a new FixedArray that holds the data associated with the
663  // irregexp regexp and stores it in the regexp.
664  void SetRegExpIrregexpData(Handle<JSRegExp> regexp,
665                             JSRegExp::Type type,
666                             Handle<String> source,
667                             JSRegExp::Flags flags,
668                             int capture_count);
669
670  // Returns the value for a known global constant (a property of the global
671  // object which is neither configurable nor writable) like 'undefined'.
672  // Returns a null handle when the given name is unknown.
673  Handle<Object> GlobalConstantFor(Handle<Name> name);
674
675  // Converts the given boolean condition to JavaScript boolean value.
676  Handle<Object> ToBoolean(bool value);
677
678 private:
679  Isolate* isolate() { return reinterpret_cast<Isolate*>(this); }
680
681  // Creates a heap object based on the map. The fields of the heap object are
682  // not initialized by New<>() functions. It's the responsibility of the caller
683  // to do that.
684  template<typename T>
685  Handle<T> New(Handle<Map> map, AllocationSpace space);
686
687  template<typename T>
688  Handle<T> New(Handle<Map> map,
689                AllocationSpace space,
690                Handle<AllocationSite> allocation_site);
691
692  // Creates a code object that is not yet fully initialized yet.
693  inline Handle<Code> NewCodeRaw(int object_size, bool immovable);
694
695  // Attempt to find the number in a small cache.  If we finds it, return
696  // the string representation of the number.  Otherwise return undefined.
697  Handle<Object> GetNumberStringCache(Handle<Object> number);
698
699  // Update the cache with a new number-string pair.
700  void SetNumberStringCache(Handle<Object> number, Handle<String> string);
701
702  // Creates a function initialized with a shared part.
703  Handle<JSFunction> NewFunction(Handle<Map> map,
704                                 Handle<SharedFunctionInfo> info,
705                                 Handle<Context> context,
706                                 PretenureFlag pretenure = TENURED);
707};
708
709}  // namespace internal
710}  // namespace v8
711
712#endif  // V8_FACTORY_H_
713