1// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_ARM64
6
7#include "src/ast/scopes.h"
8#include "src/code-factory.h"
9#include "src/code-stubs.h"
10#include "src/codegen.h"
11#include "src/debug/debug.h"
12#include "src/full-codegen/full-codegen.h"
13#include "src/ic/ic.h"
14#include "src/parsing/parser.h"
15
16#include "src/arm64/code-stubs-arm64.h"
17#include "src/arm64/frames-arm64.h"
18#include "src/arm64/macro-assembler-arm64.h"
19
20namespace v8 {
21namespace internal {
22
23#define __ ACCESS_MASM(masm_)
24
25class JumpPatchSite BASE_EMBEDDED {
26 public:
27  explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm), reg_(NoReg) {
28#ifdef DEBUG
29    info_emitted_ = false;
30#endif
31  }
32
33  ~JumpPatchSite() {
34    if (patch_site_.is_bound()) {
35      DCHECK(info_emitted_);
36    } else {
37      DCHECK(reg_.IsNone());
38    }
39  }
40
41  void EmitJumpIfNotSmi(Register reg, Label* target) {
42    // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc.
43    InstructionAccurateScope scope(masm_, 1);
44    DCHECK(!info_emitted_);
45    DCHECK(reg.Is64Bits());
46    DCHECK(!reg.Is(csp));
47    reg_ = reg;
48    __ bind(&patch_site_);
49    __ tbz(xzr, 0, target);   // Always taken before patched.
50  }
51
52  void EmitJumpIfSmi(Register reg, Label* target) {
53    // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc.
54    InstructionAccurateScope scope(masm_, 1);
55    DCHECK(!info_emitted_);
56    DCHECK(reg.Is64Bits());
57    DCHECK(!reg.Is(csp));
58    reg_ = reg;
59    __ bind(&patch_site_);
60    __ tbnz(xzr, 0, target);  // Never taken before patched.
61  }
62
63  void EmitJumpIfEitherNotSmi(Register reg1, Register reg2, Label* target) {
64    UseScratchRegisterScope temps(masm_);
65    Register temp = temps.AcquireX();
66    __ Orr(temp, reg1, reg2);
67    EmitJumpIfNotSmi(temp, target);
68  }
69
70  void EmitPatchInfo() {
71    Assembler::BlockPoolsScope scope(masm_);
72    InlineSmiCheckInfo::Emit(masm_, reg_, &patch_site_);
73#ifdef DEBUG
74    info_emitted_ = true;
75#endif
76  }
77
78 private:
79  MacroAssembler* masm_;
80  Label patch_site_;
81  Register reg_;
82#ifdef DEBUG
83  bool info_emitted_;
84#endif
85};
86
87
88// Generate code for a JS function. On entry to the function the receiver
89// and arguments have been pushed on the stack left to right. The actual
90// argument count matches the formal parameter count expected by the
91// function.
92//
93// The live registers are:
94//   - x1: the JS function object being called (i.e. ourselves).
95//   - x3: the new target value
96//   - cp: our context.
97//   - fp: our caller's frame pointer.
98//   - jssp: stack pointer.
99//   - lr: return address.
100//
101// The function builds a JS frame. See JavaScriptFrameConstants in
102// frames-arm.h for its layout.
103void FullCodeGenerator::Generate() {
104  CompilationInfo* info = info_;
105  profiling_counter_ = isolate()->factory()->NewCell(
106      Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
107  SetFunctionPosition(literal());
108  Comment cmnt(masm_, "[ Function compiled by full code generator");
109
110  ProfileEntryHookStub::MaybeCallEntryHook(masm_);
111
112#ifdef DEBUG
113  if (strlen(FLAG_stop_at) > 0 &&
114      info->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
115    __ Debug("stop-at", __LINE__, BREAK);
116  }
117#endif
118
119  if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
120    int receiver_offset = info->scope()->num_parameters() * kXRegSize;
121    __ Peek(x10, receiver_offset);
122    __ AssertNotSmi(x10);
123    __ CompareObjectType(x10, x10, x11, FIRST_JS_RECEIVER_TYPE);
124    __ Assert(ge, kSloppyFunctionExpectsJSReceiverReceiver);
125  }
126
127  // Open a frame scope to indicate that there is a frame on the stack.
128  // The MANUAL indicates that the scope shouldn't actually generate code
129  // to set up the frame because we do it manually below.
130  FrameScope frame_scope(masm_, StackFrame::MANUAL);
131
132  // This call emits the following sequence in a way that can be patched for
133  // code ageing support:
134  //  Push(lr, fp, cp, x1);
135  //  Add(fp, jssp, 2 * kPointerSize);
136  info->set_prologue_offset(masm_->pc_offset());
137  __ Prologue(info->GeneratePreagedPrologue());
138
139  // Reserve space on the stack for locals.
140  { Comment cmnt(masm_, "[ Allocate locals");
141    int locals_count = info->scope()->num_stack_slots();
142    // Generators allocate locals, if any, in context slots.
143    DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0);
144
145    if (locals_count > 0) {
146      if (locals_count >= 128) {
147        Label ok;
148        DCHECK(jssp.Is(__ StackPointer()));
149        __ Sub(x10, jssp, locals_count * kPointerSize);
150        __ CompareRoot(x10, Heap::kRealStackLimitRootIndex);
151        __ B(hs, &ok);
152        __ CallRuntime(Runtime::kThrowStackOverflow);
153        __ Bind(&ok);
154      }
155      __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
156      if (FLAG_optimize_for_size) {
157        __ PushMultipleTimes(x10 , locals_count);
158      } else {
159        const int kMaxPushes = 32;
160        if (locals_count >= kMaxPushes) {
161          int loop_iterations = locals_count / kMaxPushes;
162          __ Mov(x2, loop_iterations);
163          Label loop_header;
164          __ Bind(&loop_header);
165          // Do pushes.
166          __ PushMultipleTimes(x10 , kMaxPushes);
167          __ Subs(x2, x2, 1);
168          __ B(ne, &loop_header);
169        }
170        int remaining = locals_count % kMaxPushes;
171        // Emit the remaining pushes.
172        __ PushMultipleTimes(x10 , remaining);
173      }
174    }
175  }
176
177  bool function_in_register_x1 = true;
178
179  if (info->scope()->num_heap_slots() > 0) {
180    // Argument to NewContext is the function, which is still in x1.
181    Comment cmnt(masm_, "[ Allocate context");
182    bool need_write_barrier = true;
183    int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
184    if (info->scope()->is_script_scope()) {
185      __ Mov(x10, Operand(info->scope()->GetScopeInfo(info->isolate())));
186      __ Push(x1, x10);
187      __ CallRuntime(Runtime::kNewScriptContext);
188      PrepareForBailoutForId(BailoutId::ScriptContext(), TOS_REG);
189      // The new target value is not used, clobbering is safe.
190      DCHECK_NULL(info->scope()->new_target_var());
191    } else {
192      if (info->scope()->new_target_var() != nullptr) {
193        __ Push(x3);  // Preserve new target.
194      }
195      if (slots <= FastNewContextStub::kMaximumSlots) {
196        FastNewContextStub stub(isolate(), slots);
197        __ CallStub(&stub);
198        // Result of FastNewContextStub is always in new space.
199        need_write_barrier = false;
200      } else {
201        __ Push(x1);
202        __ CallRuntime(Runtime::kNewFunctionContext);
203      }
204      if (info->scope()->new_target_var() != nullptr) {
205        __ Pop(x3);  // Restore new target.
206      }
207    }
208    function_in_register_x1 = false;
209    // Context is returned in x0.  It replaces the context passed to us.
210    // It's saved in the stack and kept live in cp.
211    __ Mov(cp, x0);
212    __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
213    // Copy any necessary parameters into the context.
214    int num_parameters = info->scope()->num_parameters();
215    int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
216    for (int i = first_parameter; i < num_parameters; i++) {
217      Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
218      if (var->IsContextSlot()) {
219        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
220            (num_parameters - 1 - i) * kPointerSize;
221        // Load parameter from stack.
222        __ Ldr(x10, MemOperand(fp, parameter_offset));
223        // Store it in the context.
224        MemOperand target = ContextMemOperand(cp, var->index());
225        __ Str(x10, target);
226
227        // Update the write barrier.
228        if (need_write_barrier) {
229          __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()), x10,
230                                    x11, kLRHasBeenSaved, kDontSaveFPRegs);
231        } else if (FLAG_debug_code) {
232          Label done;
233          __ JumpIfInNewSpace(cp, &done);
234          __ Abort(kExpectedNewSpaceObject);
235          __ bind(&done);
236        }
237      }
238    }
239  }
240
241  // Register holding this function and new target are both trashed in case we
242  // bailout here. But since that can happen only when new target is not used
243  // and we allocate a context, the value of |function_in_register| is correct.
244  PrepareForBailoutForId(BailoutId::FunctionContext(), NO_REGISTERS);
245
246  // Possibly set up a local binding to the this function which is used in
247  // derived constructors with super calls.
248  Variable* this_function_var = scope()->this_function_var();
249  if (this_function_var != nullptr) {
250    Comment cmnt(masm_, "[ This function");
251    if (!function_in_register_x1) {
252      __ Ldr(x1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
253      // The write barrier clobbers register again, keep it marked as such.
254    }
255    SetVar(this_function_var, x1, x0, x2);
256  }
257
258  // Possibly set up a local binding to the new target value.
259  Variable* new_target_var = scope()->new_target_var();
260  if (new_target_var != nullptr) {
261    Comment cmnt(masm_, "[ new.target");
262    SetVar(new_target_var, x3, x0, x2);
263  }
264
265  // Possibly allocate RestParameters
266  int rest_index;
267  Variable* rest_param = scope()->rest_parameter(&rest_index);
268  if (rest_param) {
269    Comment cmnt(masm_, "[ Allocate rest parameter array");
270
271    int num_parameters = info->scope()->num_parameters();
272    int offset = num_parameters * kPointerSize;
273    __ Mov(RestParamAccessDescriptor::parameter_count(),
274           Smi::FromInt(num_parameters));
275    __ Add(RestParamAccessDescriptor::parameter_pointer(), fp,
276           StandardFrameConstants::kCallerSPOffset + offset);
277    __ Mov(RestParamAccessDescriptor::rest_parameter_index(),
278           Smi::FromInt(rest_index));
279
280    function_in_register_x1 = false;
281
282    RestParamAccessStub stub(isolate());
283    __ CallStub(&stub);
284
285    SetVar(rest_param, x0, x1, x2);
286  }
287
288  Variable* arguments = scope()->arguments();
289  if (arguments != NULL) {
290    // Function uses arguments object.
291    Comment cmnt(masm_, "[ Allocate arguments object");
292    DCHECK(x1.is(ArgumentsAccessNewDescriptor::function()));
293    if (!function_in_register_x1) {
294      // Load this again, if it's used by the local context below.
295      __ Ldr(x1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
296    }
297    // Receiver is just before the parameters on the caller's stack.
298    int num_parameters = info->scope()->num_parameters();
299    int offset = num_parameters * kPointerSize;
300    __ Mov(ArgumentsAccessNewDescriptor::parameter_count(),
301           Smi::FromInt(num_parameters));
302    __ Add(ArgumentsAccessNewDescriptor::parameter_pointer(), fp,
303           StandardFrameConstants::kCallerSPOffset + offset);
304
305    // Arguments to ArgumentsAccessStub:
306    //   function, parameter pointer, parameter count.
307    // The stub will rewrite parameter pointer and parameter count if the
308    // previous stack frame was an arguments adapter frame.
309    bool is_unmapped = is_strict(language_mode()) || !has_simple_parameters();
310    ArgumentsAccessStub::Type type = ArgumentsAccessStub::ComputeType(
311        is_unmapped, literal()->has_duplicate_parameters());
312    ArgumentsAccessStub stub(isolate(), type);
313    __ CallStub(&stub);
314
315    SetVar(arguments, x0, x1, x2);
316  }
317
318  if (FLAG_trace) {
319    __ CallRuntime(Runtime::kTraceEnter);
320  }
321
322  // Visit the declarations and body unless there is an illegal
323  // redeclaration.
324  if (scope()->HasIllegalRedeclaration()) {
325    Comment cmnt(masm_, "[ Declarations");
326    VisitForEffect(scope()->GetIllegalRedeclaration());
327
328  } else {
329    PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
330    { Comment cmnt(masm_, "[ Declarations");
331      VisitDeclarations(scope()->declarations());
332    }
333
334    // Assert that the declarations do not use ICs. Otherwise the debugger
335    // won't be able to redirect a PC at an IC to the correct IC in newly
336    // recompiled code.
337    DCHECK_EQ(0, ic_total_count_);
338
339    {
340      Comment cmnt(masm_, "[ Stack check");
341      PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
342      Label ok;
343      DCHECK(jssp.Is(__ StackPointer()));
344      __ CompareRoot(jssp, Heap::kStackLimitRootIndex);
345      __ B(hs, &ok);
346      PredictableCodeSizeScope predictable(masm_,
347                                           Assembler::kCallSizeWithRelocation);
348      __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
349      __ Bind(&ok);
350    }
351
352    {
353      Comment cmnt(masm_, "[ Body");
354      DCHECK(loop_depth() == 0);
355      VisitStatements(literal()->body());
356      DCHECK(loop_depth() == 0);
357    }
358  }
359
360  // Always emit a 'return undefined' in case control fell off the end of
361  // the body.
362  { Comment cmnt(masm_, "[ return <undefined>;");
363    __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
364  }
365  EmitReturnSequence();
366
367  // Force emission of the pools, so they don't get emitted in the middle
368  // of the back edge table.
369  masm()->CheckVeneerPool(true, false);
370  masm()->CheckConstPool(true, false);
371}
372
373
374void FullCodeGenerator::ClearAccumulator() {
375  __ Mov(x0, Smi::FromInt(0));
376}
377
378
379void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
380  __ Mov(x2, Operand(profiling_counter_));
381  __ Ldr(x3, FieldMemOperand(x2, Cell::kValueOffset));
382  __ Subs(x3, x3, Smi::FromInt(delta));
383  __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset));
384}
385
386
387void FullCodeGenerator::EmitProfilingCounterReset() {
388  int reset_value = FLAG_interrupt_budget;
389  __ Mov(x2, Operand(profiling_counter_));
390  __ Mov(x3, Smi::FromInt(reset_value));
391  __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset));
392}
393
394
395void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
396                                                Label* back_edge_target) {
397  DCHECK(jssp.Is(__ StackPointer()));
398  Comment cmnt(masm_, "[ Back edge bookkeeping");
399  // Block literal pools whilst emitting back edge code.
400  Assembler::BlockPoolsScope block_const_pool(masm_);
401  Label ok;
402
403  DCHECK(back_edge_target->is_bound());
404  // We want to do a round rather than a floor of distance/kCodeSizeMultiplier
405  // to reduce the absolute error due to the integer division. To do that,
406  // we add kCodeSizeMultiplier/2 to the distance (equivalent to adding 0.5 to
407  // the result).
408  int distance =
409      static_cast<int>(masm_->SizeOfCodeGeneratedSince(back_edge_target) +
410                       kCodeSizeMultiplier / 2);
411  int weight = Min(kMaxBackEdgeWeight,
412                   Max(1, distance / kCodeSizeMultiplier));
413  EmitProfilingCounterDecrement(weight);
414  __ B(pl, &ok);
415  __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
416
417  // Record a mapping of this PC offset to the OSR id.  This is used to find
418  // the AST id from the unoptimized code in order to use it as a key into
419  // the deoptimization input data found in the optimized code.
420  RecordBackEdge(stmt->OsrEntryId());
421
422  EmitProfilingCounterReset();
423
424  __ Bind(&ok);
425  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
426  // Record a mapping of the OSR id to this PC.  This is used if the OSR
427  // entry becomes the target of a bailout.  We don't expect it to be, but
428  // we want it to work if it is.
429  PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
430}
431
432
433void FullCodeGenerator::EmitReturnSequence() {
434  Comment cmnt(masm_, "[ Return sequence");
435
436  if (return_label_.is_bound()) {
437    __ B(&return_label_);
438
439  } else {
440    __ Bind(&return_label_);
441    if (FLAG_trace) {
442      // Push the return value on the stack as the parameter.
443      // Runtime::TraceExit returns its parameter in x0.
444      __ Push(result_register());
445      __ CallRuntime(Runtime::kTraceExit);
446      DCHECK(x0.Is(result_register()));
447    }
448    // Pretend that the exit is a backwards jump to the entry.
449    int weight = 1;
450    if (info_->ShouldSelfOptimize()) {
451      weight = FLAG_interrupt_budget / FLAG_self_opt_count;
452    } else {
453      int distance = masm_->pc_offset() + kCodeSizeMultiplier / 2;
454      weight = Min(kMaxBackEdgeWeight,
455                   Max(1, distance / kCodeSizeMultiplier));
456    }
457    EmitProfilingCounterDecrement(weight);
458    Label ok;
459    __ B(pl, &ok);
460    __ Push(x0);
461    __ Call(isolate()->builtins()->InterruptCheck(),
462            RelocInfo::CODE_TARGET);
463    __ Pop(x0);
464    EmitProfilingCounterReset();
465    __ Bind(&ok);
466
467    SetReturnPosition(literal());
468    const Register& current_sp = __ StackPointer();
469    // Nothing ensures 16 bytes alignment here.
470    DCHECK(!current_sp.Is(csp));
471    __ Mov(current_sp, fp);
472    __ Ldp(fp, lr, MemOperand(current_sp, 2 * kXRegSize, PostIndex));
473    // Drop the arguments and receiver and return.
474    // TODO(all): This implementation is overkill as it supports 2**31+1
475    // arguments, consider how to improve it without creating a security
476    // hole.
477    __ ldr_pcrel(ip0, (3 * kInstructionSize) >> kLoadLiteralScaleLog2);
478    __ Add(current_sp, current_sp, ip0);
479    __ Ret();
480    int32_t arg_count = info_->scope()->num_parameters() + 1;
481    __ dc64(kXRegSize * arg_count);
482  }
483}
484
485
486void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
487  DCHECK(var->IsStackAllocated() || var->IsContextSlot());
488  codegen()->GetVar(result_register(), var);
489  __ Push(result_register());
490}
491
492
493void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
494  // Root values have no side effects.
495}
496
497
498void FullCodeGenerator::AccumulatorValueContext::Plug(
499    Heap::RootListIndex index) const {
500  __ LoadRoot(result_register(), index);
501}
502
503
504void FullCodeGenerator::StackValueContext::Plug(
505    Heap::RootListIndex index) const {
506  __ LoadRoot(result_register(), index);
507  __ Push(result_register());
508}
509
510
511void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
512  codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
513                                          false_label_);
514  if (index == Heap::kUndefinedValueRootIndex ||
515      index == Heap::kNullValueRootIndex ||
516      index == Heap::kFalseValueRootIndex) {
517    if (false_label_ != fall_through_) __ B(false_label_);
518  } else if (index == Heap::kTrueValueRootIndex) {
519    if (true_label_ != fall_through_) __ B(true_label_);
520  } else {
521    __ LoadRoot(result_register(), index);
522    codegen()->DoTest(this);
523  }
524}
525
526
527void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
528}
529
530
531void FullCodeGenerator::AccumulatorValueContext::Plug(
532    Handle<Object> lit) const {
533  __ Mov(result_register(), Operand(lit));
534}
535
536
537void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
538  // Immediates cannot be pushed directly.
539  __ Mov(result_register(), Operand(lit));
540  __ Push(result_register());
541}
542
543
544void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
545  codegen()->PrepareForBailoutBeforeSplit(condition(),
546                                          true,
547                                          true_label_,
548                                          false_label_);
549  DCHECK(!lit->IsUndetectableObject());  // There are no undetectable literals.
550  if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
551    if (false_label_ != fall_through_) __ B(false_label_);
552  } else if (lit->IsTrue() || lit->IsJSObject()) {
553    if (true_label_ != fall_through_) __ B(true_label_);
554  } else if (lit->IsString()) {
555    if (String::cast(*lit)->length() == 0) {
556      if (false_label_ != fall_through_) __ B(false_label_);
557    } else {
558      if (true_label_ != fall_through_) __ B(true_label_);
559    }
560  } else if (lit->IsSmi()) {
561    if (Smi::cast(*lit)->value() == 0) {
562      if (false_label_ != fall_through_) __ B(false_label_);
563    } else {
564      if (true_label_ != fall_through_) __ B(true_label_);
565    }
566  } else {
567    // For simplicity we always test the accumulator register.
568    __ Mov(result_register(), Operand(lit));
569    codegen()->DoTest(this);
570  }
571}
572
573
574void FullCodeGenerator::EffectContext::DropAndPlug(int count,
575                                                   Register reg) const {
576  DCHECK(count > 0);
577  __ Drop(count);
578}
579
580
581void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
582    int count,
583    Register reg) const {
584  DCHECK(count > 0);
585  __ Drop(count);
586  __ Move(result_register(), reg);
587}
588
589
590void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
591                                                       Register reg) const {
592  DCHECK(count > 0);
593  if (count > 1) __ Drop(count - 1);
594  __ Poke(reg, 0);
595}
596
597
598void FullCodeGenerator::TestContext::DropAndPlug(int count,
599                                                 Register reg) const {
600  DCHECK(count > 0);
601  // For simplicity we always test the accumulator register.
602  __ Drop(count);
603  __ Mov(result_register(), reg);
604  codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
605  codegen()->DoTest(this);
606}
607
608
609void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
610                                            Label* materialize_false) const {
611  DCHECK(materialize_true == materialize_false);
612  __ Bind(materialize_true);
613}
614
615
616void FullCodeGenerator::AccumulatorValueContext::Plug(
617    Label* materialize_true,
618    Label* materialize_false) const {
619  Label done;
620  __ Bind(materialize_true);
621  __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
622  __ B(&done);
623  __ Bind(materialize_false);
624  __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
625  __ Bind(&done);
626}
627
628
629void FullCodeGenerator::StackValueContext::Plug(
630    Label* materialize_true,
631    Label* materialize_false) const {
632  Label done;
633  __ Bind(materialize_true);
634  __ LoadRoot(x10, Heap::kTrueValueRootIndex);
635  __ B(&done);
636  __ Bind(materialize_false);
637  __ LoadRoot(x10, Heap::kFalseValueRootIndex);
638  __ Bind(&done);
639  __ Push(x10);
640}
641
642
643void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
644                                          Label* materialize_false) const {
645  DCHECK(materialize_true == true_label_);
646  DCHECK(materialize_false == false_label_);
647}
648
649
650void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
651  Heap::RootListIndex value_root_index =
652      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
653  __ LoadRoot(result_register(), value_root_index);
654}
655
656
657void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
658  Heap::RootListIndex value_root_index =
659      flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
660  __ LoadRoot(x10, value_root_index);
661  __ Push(x10);
662}
663
664
665void FullCodeGenerator::TestContext::Plug(bool flag) const {
666  codegen()->PrepareForBailoutBeforeSplit(condition(),
667                                          true,
668                                          true_label_,
669                                          false_label_);
670  if (flag) {
671    if (true_label_ != fall_through_) {
672      __ B(true_label_);
673    }
674  } else {
675    if (false_label_ != fall_through_) {
676      __ B(false_label_);
677    }
678  }
679}
680
681
682void FullCodeGenerator::DoTest(Expression* condition,
683                               Label* if_true,
684                               Label* if_false,
685                               Label* fall_through) {
686  Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
687  CallIC(ic, condition->test_id());
688  __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
689  Split(eq, if_true, if_false, fall_through);
690}
691
692
693// If (cond), branch to if_true.
694// If (!cond), branch to if_false.
695// fall_through is used as an optimization in cases where only one branch
696// instruction is necessary.
697void FullCodeGenerator::Split(Condition cond,
698                              Label* if_true,
699                              Label* if_false,
700                              Label* fall_through) {
701  if (if_false == fall_through) {
702    __ B(cond, if_true);
703  } else if (if_true == fall_through) {
704    DCHECK(if_false != fall_through);
705    __ B(NegateCondition(cond), if_false);
706  } else {
707    __ B(cond, if_true);
708    __ B(if_false);
709  }
710}
711
712
713MemOperand FullCodeGenerator::StackOperand(Variable* var) {
714  // Offset is negative because higher indexes are at lower addresses.
715  int offset = -var->index() * kXRegSize;
716  // Adjust by a (parameter or local) base offset.
717  if (var->IsParameter()) {
718    offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
719  } else {
720    offset += JavaScriptFrameConstants::kLocal0Offset;
721  }
722  return MemOperand(fp, offset);
723}
724
725
726MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
727  DCHECK(var->IsContextSlot() || var->IsStackAllocated());
728  if (var->IsContextSlot()) {
729    int context_chain_length = scope()->ContextChainLength(var->scope());
730    __ LoadContext(scratch, context_chain_length);
731    return ContextMemOperand(scratch, var->index());
732  } else {
733    return StackOperand(var);
734  }
735}
736
737
738void FullCodeGenerator::GetVar(Register dest, Variable* var) {
739  // Use destination as scratch.
740  MemOperand location = VarOperand(var, dest);
741  __ Ldr(dest, location);
742}
743
744
745void FullCodeGenerator::SetVar(Variable* var,
746                               Register src,
747                               Register scratch0,
748                               Register scratch1) {
749  DCHECK(var->IsContextSlot() || var->IsStackAllocated());
750  DCHECK(!AreAliased(src, scratch0, scratch1));
751  MemOperand location = VarOperand(var, scratch0);
752  __ Str(src, location);
753
754  // Emit the write barrier code if the location is in the heap.
755  if (var->IsContextSlot()) {
756    // scratch0 contains the correct context.
757    __ RecordWriteContextSlot(scratch0, static_cast<int>(location.offset()),
758                              src, scratch1, kLRHasBeenSaved, kDontSaveFPRegs);
759  }
760}
761
762
763void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
764                                                     bool should_normalize,
765                                                     Label* if_true,
766                                                     Label* if_false) {
767  // Only prepare for bailouts before splits if we're in a test
768  // context. Otherwise, we let the Visit function deal with the
769  // preparation to avoid preparing with the same AST id twice.
770  if (!context()->IsTest()) return;
771
772  // TODO(all): Investigate to see if there is something to work on here.
773  Label skip;
774  if (should_normalize) {
775    __ B(&skip);
776  }
777  PrepareForBailout(expr, TOS_REG);
778  if (should_normalize) {
779    __ CompareRoot(x0, Heap::kTrueValueRootIndex);
780    Split(eq, if_true, if_false, NULL);
781    __ Bind(&skip);
782  }
783}
784
785
786void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
787  // The variable in the declaration always resides in the current function
788  // context.
789  DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
790  if (generate_debug_code_) {
791    // Check that we're not inside a with or catch context.
792    __ Ldr(x1, FieldMemOperand(cp, HeapObject::kMapOffset));
793    __ CompareRoot(x1, Heap::kWithContextMapRootIndex);
794    __ Check(ne, kDeclarationInWithContext);
795    __ CompareRoot(x1, Heap::kCatchContextMapRootIndex);
796    __ Check(ne, kDeclarationInCatchContext);
797  }
798}
799
800
801void FullCodeGenerator::VisitVariableDeclaration(
802    VariableDeclaration* declaration) {
803  // If it was not possible to allocate the variable at compile time, we
804  // need to "declare" it at runtime to make sure it actually exists in the
805  // local context.
806  VariableProxy* proxy = declaration->proxy();
807  VariableMode mode = declaration->mode();
808  Variable* variable = proxy->var();
809  bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
810
811  switch (variable->location()) {
812    case VariableLocation::GLOBAL:
813    case VariableLocation::UNALLOCATED:
814      globals_->Add(variable->name(), zone());
815      globals_->Add(variable->binding_needs_init()
816                        ? isolate()->factory()->the_hole_value()
817                        : isolate()->factory()->undefined_value(),
818                    zone());
819      break;
820
821    case VariableLocation::PARAMETER:
822    case VariableLocation::LOCAL:
823      if (hole_init) {
824        Comment cmnt(masm_, "[ VariableDeclaration");
825        __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
826        __ Str(x10, StackOperand(variable));
827      }
828      break;
829
830    case VariableLocation::CONTEXT:
831      if (hole_init) {
832        Comment cmnt(masm_, "[ VariableDeclaration");
833        EmitDebugCheckDeclarationContext(variable);
834        __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
835        __ Str(x10, ContextMemOperand(cp, variable->index()));
836        // No write barrier since the_hole_value is in old space.
837        PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
838      }
839      break;
840
841    case VariableLocation::LOOKUP: {
842      Comment cmnt(masm_, "[ VariableDeclaration");
843      __ Mov(x2, Operand(variable->name()));
844      // Declaration nodes are always introduced in one of four modes.
845      DCHECK(IsDeclaredVariableMode(mode));
846      // Push initial value, if any.
847      // Note: For variables we must not push an initial value (such as
848      // 'undefined') because we may have a (legal) redeclaration and we
849      // must not destroy the current value.
850      if (hole_init) {
851        __ LoadRoot(x0, Heap::kTheHoleValueRootIndex);
852        __ Push(x2, x0);
853      } else {
854        // Pushing 0 (xzr) indicates no initial value.
855        __ Push(x2, xzr);
856      }
857      __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
858      __ CallRuntime(Runtime::kDeclareLookupSlot);
859      break;
860    }
861  }
862}
863
864
865void FullCodeGenerator::VisitFunctionDeclaration(
866    FunctionDeclaration* declaration) {
867  VariableProxy* proxy = declaration->proxy();
868  Variable* variable = proxy->var();
869  switch (variable->location()) {
870    case VariableLocation::GLOBAL:
871    case VariableLocation::UNALLOCATED: {
872      globals_->Add(variable->name(), zone());
873      Handle<SharedFunctionInfo> function =
874          Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
875      // Check for stack overflow exception.
876      if (function.is_null()) return SetStackOverflow();
877      globals_->Add(function, zone());
878      break;
879    }
880
881    case VariableLocation::PARAMETER:
882    case VariableLocation::LOCAL: {
883      Comment cmnt(masm_, "[ Function Declaration");
884      VisitForAccumulatorValue(declaration->fun());
885      __ Str(result_register(), StackOperand(variable));
886      break;
887    }
888
889    case VariableLocation::CONTEXT: {
890      Comment cmnt(masm_, "[ Function Declaration");
891      EmitDebugCheckDeclarationContext(variable);
892      VisitForAccumulatorValue(declaration->fun());
893      __ Str(result_register(), ContextMemOperand(cp, variable->index()));
894      int offset = Context::SlotOffset(variable->index());
895      // We know that we have written a function, which is not a smi.
896      __ RecordWriteContextSlot(cp,
897                                offset,
898                                result_register(),
899                                x2,
900                                kLRHasBeenSaved,
901                                kDontSaveFPRegs,
902                                EMIT_REMEMBERED_SET,
903                                OMIT_SMI_CHECK);
904      PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
905      break;
906    }
907
908    case VariableLocation::LOOKUP: {
909      Comment cmnt(masm_, "[ Function Declaration");
910      __ Mov(x2, Operand(variable->name()));
911      __ Push(x2);
912      // Push initial value for function declaration.
913      VisitForStackValue(declaration->fun());
914      __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
915      __ CallRuntime(Runtime::kDeclareLookupSlot);
916      break;
917    }
918  }
919}
920
921
922void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
923  // Call the runtime to declare the globals.
924  __ Mov(x11, Operand(pairs));
925  Register flags = xzr;
926  if (Smi::FromInt(DeclareGlobalsFlags())) {
927    flags = x10;
928  __ Mov(flags, Smi::FromInt(DeclareGlobalsFlags()));
929  }
930  __ Push(x11, flags);
931  __ CallRuntime(Runtime::kDeclareGlobals);
932  // Return value is ignored.
933}
934
935
936void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
937  // Call the runtime to declare the modules.
938  __ Push(descriptions);
939  __ CallRuntime(Runtime::kDeclareModules);
940  // Return value is ignored.
941}
942
943
944void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
945  ASM_LOCATION("FullCodeGenerator::VisitSwitchStatement");
946  Comment cmnt(masm_, "[ SwitchStatement");
947  Breakable nested_statement(this, stmt);
948  SetStatementPosition(stmt);
949
950  // Keep the switch value on the stack until a case matches.
951  VisitForStackValue(stmt->tag());
952  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
953
954  ZoneList<CaseClause*>* clauses = stmt->cases();
955  CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
956
957  Label next_test;  // Recycled for each test.
958  // Compile all the tests with branches to their bodies.
959  for (int i = 0; i < clauses->length(); i++) {
960    CaseClause* clause = clauses->at(i);
961    clause->body_target()->Unuse();
962
963    // The default is not a test, but remember it as final fall through.
964    if (clause->is_default()) {
965      default_clause = clause;
966      continue;
967    }
968
969    Comment cmnt(masm_, "[ Case comparison");
970    __ Bind(&next_test);
971    next_test.Unuse();
972
973    // Compile the label expression.
974    VisitForAccumulatorValue(clause->label());
975
976    // Perform the comparison as if via '==='.
977    __ Peek(x1, 0);   // Switch value.
978
979    JumpPatchSite patch_site(masm_);
980    if (ShouldInlineSmiCase(Token::EQ_STRICT)) {
981      Label slow_case;
982      patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case);
983      __ Cmp(x1, x0);
984      __ B(ne, &next_test);
985      __ Drop(1);  // Switch value is no longer needed.
986      __ B(clause->body_target());
987      __ Bind(&slow_case);
988    }
989
990    // Record position before stub call for type feedback.
991    SetExpressionPosition(clause);
992    Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT,
993                                             strength(language_mode())).code();
994    CallIC(ic, clause->CompareId());
995    patch_site.EmitPatchInfo();
996
997    Label skip;
998    __ B(&skip);
999    PrepareForBailout(clause, TOS_REG);
1000    __ JumpIfNotRoot(x0, Heap::kTrueValueRootIndex, &next_test);
1001    __ Drop(1);
1002    __ B(clause->body_target());
1003    __ Bind(&skip);
1004
1005    __ Cbnz(x0, &next_test);
1006    __ Drop(1);  // Switch value is no longer needed.
1007    __ B(clause->body_target());
1008  }
1009
1010  // Discard the test value and jump to the default if present, otherwise to
1011  // the end of the statement.
1012  __ Bind(&next_test);
1013  __ Drop(1);  // Switch value is no longer needed.
1014  if (default_clause == NULL) {
1015    __ B(nested_statement.break_label());
1016  } else {
1017    __ B(default_clause->body_target());
1018  }
1019
1020  // Compile all the case bodies.
1021  for (int i = 0; i < clauses->length(); i++) {
1022    Comment cmnt(masm_, "[ Case body");
1023    CaseClause* clause = clauses->at(i);
1024    __ Bind(clause->body_target());
1025    PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
1026    VisitStatements(clause->statements());
1027  }
1028
1029  __ Bind(nested_statement.break_label());
1030  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1031}
1032
1033
1034void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
1035  ASM_LOCATION("FullCodeGenerator::VisitForInStatement");
1036  Comment cmnt(masm_, "[ ForInStatement");
1037  SetStatementPosition(stmt, SKIP_BREAK);
1038
1039  FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
1040
1041  // TODO(all): This visitor probably needs better comments and a revisit.
1042
1043  Label loop, exit;
1044  ForIn loop_statement(this, stmt);
1045  increment_loop_depth();
1046
1047  // Get the object to enumerate over. If the object is null or undefined, skip
1048  // over the loop.  See ECMA-262 version 5, section 12.6.4.
1049  SetExpressionAsStatementPosition(stmt->enumerable());
1050  VisitForAccumulatorValue(stmt->enumerable());
1051  __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, &exit);
1052  Register null_value = x15;
1053  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1054  __ Cmp(x0, null_value);
1055  __ B(eq, &exit);
1056
1057  PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1058
1059  // Convert the object to a JS object.
1060  Label convert, done_convert;
1061  __ JumpIfSmi(x0, &convert);
1062  __ JumpIfObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE, &done_convert, ge);
1063  __ Bind(&convert);
1064  ToObjectStub stub(isolate());
1065  __ CallStub(&stub);
1066  __ Bind(&done_convert);
1067  PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
1068  __ Push(x0);
1069
1070  // Check for proxies.
1071  Label call_runtime;
1072  __ JumpIfObjectType(x0, x10, x11, JS_PROXY_TYPE, &call_runtime, eq);
1073
1074  // Check cache validity in generated code. This is a fast case for
1075  // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1076  // guarantee cache validity, call the runtime system to check cache
1077  // validity or get the property names in a fixed array.
1078  __ CheckEnumCache(x0, null_value, x10, x11, x12, x13, &call_runtime);
1079
1080  // The enum cache is valid.  Load the map of the object being
1081  // iterated over and use the cache for the iteration.
1082  Label use_cache;
1083  __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
1084  __ B(&use_cache);
1085
1086  // Get the set of properties to enumerate.
1087  __ Bind(&call_runtime);
1088  __ Push(x0);  // Duplicate the enumerable object on the stack.
1089  __ CallRuntime(Runtime::kGetPropertyNamesFast);
1090  PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
1091
1092  // If we got a map from the runtime call, we can do a fast
1093  // modification check. Otherwise, we got a fixed array, and we have
1094  // to do a slow check.
1095  Label fixed_array, no_descriptors;
1096  __ Ldr(x2, FieldMemOperand(x0, HeapObject::kMapOffset));
1097  __ JumpIfNotRoot(x2, Heap::kMetaMapRootIndex, &fixed_array);
1098
1099  // We got a map in register x0. Get the enumeration cache from it.
1100  __ Bind(&use_cache);
1101
1102  __ EnumLengthUntagged(x1, x0);
1103  __ Cbz(x1, &no_descriptors);
1104
1105  __ LoadInstanceDescriptors(x0, x2);
1106  __ Ldr(x2, FieldMemOperand(x2, DescriptorArray::kEnumCacheOffset));
1107  __ Ldr(x2,
1108         FieldMemOperand(x2, DescriptorArray::kEnumCacheBridgeCacheOffset));
1109
1110  // Set up the four remaining stack slots.
1111  __ SmiTag(x1);
1112  // Map, enumeration cache, enum cache length, zero (both last as smis).
1113  __ Push(x0, x2, x1, xzr);
1114  __ B(&loop);
1115
1116  __ Bind(&no_descriptors);
1117  __ Drop(1);
1118  __ B(&exit);
1119
1120  // We got a fixed array in register x0. Iterate through that.
1121  __ Bind(&fixed_array);
1122
1123  __ EmitLoadTypeFeedbackVector(x1);
1124  __ Mov(x10, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
1125  int vector_index = SmiFromSlot(slot)->value();
1126  __ Str(x10, FieldMemOperand(x1, FixedArray::OffsetOfElementAt(vector_index)));
1127  __ Mov(x1, Smi::FromInt(1));  // Smi(1) indicates slow check.
1128  __ Ldr(x2, FieldMemOperand(x0, FixedArray::kLengthOffset));
1129  // Smi and array, fixed array length (as smi) and initial index.
1130  __ Push(x1, x0, x2, xzr);
1131
1132  // Generate code for doing the condition check.
1133  __ Bind(&loop);
1134  SetExpressionAsStatementPosition(stmt->each());
1135
1136  // Load the current count to x0, load the length to x1.
1137  __ PeekPair(x0, x1, 0);
1138  __ Cmp(x0, x1);  // Compare to the array length.
1139  __ B(hs, loop_statement.break_label());
1140
1141  // Get the current entry of the array into register r3.
1142  __ Peek(x10, 2 * kXRegSize);
1143  __ Add(x10, x10, Operand::UntagSmiAndScale(x0, kPointerSizeLog2));
1144  __ Ldr(x3, MemOperand(x10, FixedArray::kHeaderSize - kHeapObjectTag));
1145
1146  // Get the expected map from the stack or a smi in the
1147  // permanent slow case into register x10.
1148  __ Peek(x2, 3 * kXRegSize);
1149
1150  // Check if the expected map still matches that of the enumerable.
1151  // If not, we may have to filter the key.
1152  Label update_each;
1153  __ Peek(x1, 4 * kXRegSize);
1154  __ Ldr(x11, FieldMemOperand(x1, HeapObject::kMapOffset));
1155  __ Cmp(x11, x2);
1156  __ B(eq, &update_each);
1157
1158  // Convert the entry to a string or (smi) 0 if it isn't a property
1159  // any more. If the property has been removed while iterating, we
1160  // just skip it.
1161  __ Push(x1, x3);
1162  __ CallRuntime(Runtime::kForInFilter);
1163  PrepareForBailoutForId(stmt->FilterId(), TOS_REG);
1164  __ Mov(x3, x0);
1165  __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex,
1166                loop_statement.continue_label());
1167
1168  // Update the 'each' property or variable from the possibly filtered
1169  // entry in register x3.
1170  __ Bind(&update_each);
1171  __ Mov(result_register(), x3);
1172  // Perform the assignment as if via '='.
1173  { EffectContext context(this);
1174    EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
1175    PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS);
1176  }
1177
1178  // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body().
1179  PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1180  // Generate code for the body of the loop.
1181  Visit(stmt->body());
1182
1183  // Generate code for going to the next element by incrementing
1184  // the index (smi) stored on top of the stack.
1185  __ Bind(loop_statement.continue_label());
1186  // TODO(all): We could use a callee saved register to avoid popping.
1187  __ Pop(x0);
1188  __ Add(x0, x0, Smi::FromInt(1));
1189  __ Push(x0);
1190
1191  EmitBackEdgeBookkeeping(stmt, &loop);
1192  __ B(&loop);
1193
1194  // Remove the pointers stored on the stack.
1195  __ Bind(loop_statement.break_label());
1196  __ Drop(5);
1197
1198  // Exit and decrement the loop depth.
1199  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1200  __ Bind(&exit);
1201  decrement_loop_depth();
1202}
1203
1204
1205void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1206                                       bool pretenure) {
1207  // Use the fast case closure allocation code that allocates in new space for
1208  // nested functions that don't need literals cloning. If we're running with
1209  // the --always-opt or the --prepare-always-opt flag, we need to use the
1210  // runtime function so that the new function we are creating here gets a
1211  // chance to have its code optimized and doesn't just get a copy of the
1212  // existing unoptimized code.
1213  if (!FLAG_always_opt &&
1214      !FLAG_prepare_always_opt &&
1215      !pretenure &&
1216      scope()->is_function_scope() &&
1217      info->num_literals() == 0) {
1218    FastNewClosureStub stub(isolate(), info->language_mode(), info->kind());
1219    __ Mov(x2, Operand(info));
1220    __ CallStub(&stub);
1221  } else {
1222    __ Push(info);
1223    __ CallRuntime(pretenure ? Runtime::kNewClosure_Tenured
1224                             : Runtime::kNewClosure);
1225  }
1226  context()->Plug(x0);
1227}
1228
1229
1230void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
1231                                          FeedbackVectorSlot slot) {
1232  DCHECK(NeedsHomeObject(initializer));
1233  __ Peek(StoreDescriptor::ReceiverRegister(), 0);
1234  __ Mov(StoreDescriptor::NameRegister(),
1235         Operand(isolate()->factory()->home_object_symbol()));
1236  __ Peek(StoreDescriptor::ValueRegister(), offset * kPointerSize);
1237  EmitLoadStoreICSlot(slot);
1238  CallStoreIC();
1239}
1240
1241
1242void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
1243                                                     int offset,
1244                                                     FeedbackVectorSlot slot) {
1245  DCHECK(NeedsHomeObject(initializer));
1246  __ Move(StoreDescriptor::ReceiverRegister(), x0);
1247  __ Mov(StoreDescriptor::NameRegister(),
1248         Operand(isolate()->factory()->home_object_symbol()));
1249  __ Peek(StoreDescriptor::ValueRegister(), offset * kPointerSize);
1250  EmitLoadStoreICSlot(slot);
1251  CallStoreIC();
1252}
1253
1254
1255void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1256                                                      TypeofMode typeof_mode,
1257                                                      Label* slow) {
1258  Register current = cp;
1259  Register next = x10;
1260  Register temp = x11;
1261
1262  Scope* s = scope();
1263  while (s != NULL) {
1264    if (s->num_heap_slots() > 0) {
1265      if (s->calls_sloppy_eval()) {
1266        // Check that extension is "the hole".
1267        __ Ldr(temp, ContextMemOperand(current, Context::EXTENSION_INDEX));
1268        __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1269      }
1270      // Load next context in chain.
1271      __ Ldr(next, ContextMemOperand(current, Context::PREVIOUS_INDEX));
1272      // Walk the rest of the chain without clobbering cp.
1273      current = next;
1274    }
1275    // If no outer scope calls eval, we do not need to check more
1276    // context extensions.
1277    if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1278    s = s->outer_scope();
1279  }
1280
1281  if (s->is_eval_scope()) {
1282    Label loop, fast;
1283    __ Mov(next, current);
1284
1285    __ Bind(&loop);
1286    // Terminate at native context.
1287    __ Ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset));
1288    __ JumpIfRoot(temp, Heap::kNativeContextMapRootIndex, &fast);
1289    // Check that extension is "the hole".
1290    __ Ldr(temp, ContextMemOperand(next, Context::EXTENSION_INDEX));
1291    __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1292    // Load next context in chain.
1293    __ Ldr(next, ContextMemOperand(next, Context::PREVIOUS_INDEX));
1294    __ B(&loop);
1295    __ Bind(&fast);
1296  }
1297
1298  // All extension objects were empty and it is safe to use a normal global
1299  // load machinery.
1300  EmitGlobalVariableLoad(proxy, typeof_mode);
1301}
1302
1303
1304MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1305                                                                Label* slow) {
1306  DCHECK(var->IsContextSlot());
1307  Register context = cp;
1308  Register next = x10;
1309  Register temp = x11;
1310
1311  for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1312    if (s->num_heap_slots() > 0) {
1313      if (s->calls_sloppy_eval()) {
1314        // Check that extension is "the hole".
1315        __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
1316        __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1317      }
1318      __ Ldr(next, ContextMemOperand(context, Context::PREVIOUS_INDEX));
1319      // Walk the rest of the chain without clobbering cp.
1320      context = next;
1321    }
1322  }
1323  // Check that last extension is "the hole".
1324  __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
1325  __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1326
1327  // This function is used only for loads, not stores, so it's safe to
1328  // return an cp-based operand (the write barrier cannot be allowed to
1329  // destroy the cp register).
1330  return ContextMemOperand(context, var->index());
1331}
1332
1333
1334void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1335                                                  TypeofMode typeof_mode,
1336                                                  Label* slow, Label* done) {
1337  // Generate fast-case code for variables that might be shadowed by
1338  // eval-introduced variables.  Eval is used a lot without
1339  // introducing variables.  In those cases, we do not want to
1340  // perform a runtime call for all variables in the scope
1341  // containing the eval.
1342  Variable* var = proxy->var();
1343  if (var->mode() == DYNAMIC_GLOBAL) {
1344    EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
1345    __ B(done);
1346  } else if (var->mode() == DYNAMIC_LOCAL) {
1347    Variable* local = var->local_if_not_shadowed();
1348    __ Ldr(x0, ContextSlotOperandCheckExtensions(local, slow));
1349    if (local->mode() == LET || local->mode() == CONST ||
1350        local->mode() == CONST_LEGACY) {
1351      __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, done);
1352      if (local->mode() == CONST_LEGACY) {
1353        __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
1354      } else {  // LET || CONST
1355        __ Mov(x0, Operand(var->name()));
1356        __ Push(x0);
1357        __ CallRuntime(Runtime::kThrowReferenceError);
1358      }
1359    }
1360    __ B(done);
1361  }
1362}
1363
1364
1365void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy,
1366                                               TypeofMode typeof_mode) {
1367  Variable* var = proxy->var();
1368  DCHECK(var->IsUnallocatedOrGlobalSlot() ||
1369         (var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL));
1370  __ LoadGlobalObject(LoadDescriptor::ReceiverRegister());
1371  __ Mov(LoadDescriptor::NameRegister(), Operand(var->name()));
1372  __ Mov(LoadDescriptor::SlotRegister(),
1373         SmiFromSlot(proxy->VariableFeedbackSlot()));
1374  CallLoadIC(typeof_mode);
1375}
1376
1377
1378void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
1379                                         TypeofMode typeof_mode) {
1380  // Record position before possible IC call.
1381  SetExpressionPosition(proxy);
1382  PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS);
1383  Variable* var = proxy->var();
1384
1385  // Three cases: global variables, lookup variables, and all other types of
1386  // variables.
1387  switch (var->location()) {
1388    case VariableLocation::GLOBAL:
1389    case VariableLocation::UNALLOCATED: {
1390      Comment cmnt(masm_, "Global variable");
1391      EmitGlobalVariableLoad(proxy, typeof_mode);
1392      context()->Plug(x0);
1393      break;
1394    }
1395
1396    case VariableLocation::PARAMETER:
1397    case VariableLocation::LOCAL:
1398    case VariableLocation::CONTEXT: {
1399      DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
1400      Comment cmnt(masm_, var->IsContextSlot()
1401                              ? "Context variable"
1402                              : "Stack variable");
1403      if (NeedsHoleCheckForLoad(proxy)) {
1404        // Let and const need a read barrier.
1405        GetVar(x0, var);
1406        Label done;
1407        __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, &done);
1408        if (var->mode() == LET || var->mode() == CONST) {
1409          // Throw a reference error when using an uninitialized let/const
1410          // binding in harmony mode.
1411          __ Mov(x0, Operand(var->name()));
1412          __ Push(x0);
1413          __ CallRuntime(Runtime::kThrowReferenceError);
1414          __ Bind(&done);
1415        } else {
1416          // Uninitialized legacy const bindings are unholed.
1417          DCHECK(var->mode() == CONST_LEGACY);
1418          __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
1419          __ Bind(&done);
1420        }
1421        context()->Plug(x0);
1422        break;
1423      }
1424      context()->Plug(var);
1425      break;
1426    }
1427
1428    case VariableLocation::LOOKUP: {
1429      Label done, slow;
1430      // Generate code for loading from variables potentially shadowed by
1431      // eval-introduced variables.
1432      EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
1433      __ Bind(&slow);
1434      Comment cmnt(masm_, "Lookup variable");
1435      __ Mov(x1, Operand(var->name()));
1436      __ Push(cp, x1);  // Context and name.
1437      Runtime::FunctionId function_id =
1438          typeof_mode == NOT_INSIDE_TYPEOF
1439              ? Runtime::kLoadLookupSlot
1440              : Runtime::kLoadLookupSlotNoReferenceError;
1441      __ CallRuntime(function_id);
1442      __ Bind(&done);
1443      context()->Plug(x0);
1444      break;
1445    }
1446  }
1447}
1448
1449
1450void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1451  Comment cmnt(masm_, "[ RegExpLiteral");
1452  __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1453  __ Mov(x2, Smi::FromInt(expr->literal_index()));
1454  __ Mov(x1, Operand(expr->pattern()));
1455  __ Mov(x0, Smi::FromInt(expr->flags()));
1456  FastCloneRegExpStub stub(isolate());
1457  __ CallStub(&stub);
1458  context()->Plug(x0);
1459}
1460
1461
1462void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
1463  Expression* expression = (property == NULL) ? NULL : property->value();
1464  if (expression == NULL) {
1465    __ LoadRoot(x10, Heap::kNullValueRootIndex);
1466    __ Push(x10);
1467  } else {
1468    VisitForStackValue(expression);
1469    if (NeedsHomeObject(expression)) {
1470      DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
1471             property->kind() == ObjectLiteral::Property::SETTER);
1472      int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
1473      EmitSetHomeObject(expression, offset, property->GetSlot());
1474    }
1475  }
1476}
1477
1478
1479void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1480  Comment cmnt(masm_, "[ ObjectLiteral");
1481
1482  Handle<FixedArray> constant_properties = expr->constant_properties();
1483  __ Ldr(x3, MemOperand(fp,  JavaScriptFrameConstants::kFunctionOffset));
1484  __ Mov(x2, Smi::FromInt(expr->literal_index()));
1485  __ Mov(x1, Operand(constant_properties));
1486  int flags = expr->ComputeFlags();
1487  __ Mov(x0, Smi::FromInt(flags));
1488  if (MustCreateObjectLiteralWithRuntime(expr)) {
1489    __ Push(x3, x2, x1, x0);
1490    __ CallRuntime(Runtime::kCreateObjectLiteral);
1491  } else {
1492    FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
1493    __ CallStub(&stub);
1494  }
1495  PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
1496
1497  // If result_saved is true the result is on top of the stack.  If
1498  // result_saved is false the result is in x0.
1499  bool result_saved = false;
1500
1501  AccessorTable accessor_table(zone());
1502  int property_index = 0;
1503  for (; property_index < expr->properties()->length(); property_index++) {
1504    ObjectLiteral::Property* property = expr->properties()->at(property_index);
1505    if (property->is_computed_name()) break;
1506    if (property->IsCompileTimeValue()) continue;
1507
1508    Literal* key = property->key()->AsLiteral();
1509    Expression* value = property->value();
1510    if (!result_saved) {
1511      __ Push(x0);  // Save result on stack
1512      result_saved = true;
1513    }
1514    switch (property->kind()) {
1515      case ObjectLiteral::Property::CONSTANT:
1516        UNREACHABLE();
1517      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1518        DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
1519        // Fall through.
1520      case ObjectLiteral::Property::COMPUTED:
1521        // It is safe to use [[Put]] here because the boilerplate already
1522        // contains computed properties with an uninitialized value.
1523        if (key->value()->IsInternalizedString()) {
1524          if (property->emit_store()) {
1525            VisitForAccumulatorValue(value);
1526            DCHECK(StoreDescriptor::ValueRegister().is(x0));
1527            __ Mov(StoreDescriptor::NameRegister(), Operand(key->value()));
1528            __ Peek(StoreDescriptor::ReceiverRegister(), 0);
1529            EmitLoadStoreICSlot(property->GetSlot(0));
1530            CallStoreIC();
1531            PrepareForBailoutForId(key->id(), NO_REGISTERS);
1532
1533            if (NeedsHomeObject(value)) {
1534              EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
1535            }
1536          } else {
1537            VisitForEffect(value);
1538          }
1539          break;
1540        }
1541        __ Peek(x0, 0);
1542        __ Push(x0);
1543        VisitForStackValue(key);
1544        VisitForStackValue(value);
1545        if (property->emit_store()) {
1546          if (NeedsHomeObject(value)) {
1547            EmitSetHomeObject(value, 2, property->GetSlot());
1548          }
1549          __ Mov(x0, Smi::FromInt(SLOPPY));  // Language mode
1550          __ Push(x0);
1551          __ CallRuntime(Runtime::kSetProperty);
1552        } else {
1553          __ Drop(3);
1554        }
1555        break;
1556      case ObjectLiteral::Property::PROTOTYPE:
1557        DCHECK(property->emit_store());
1558        // Duplicate receiver on stack.
1559        __ Peek(x0, 0);
1560        __ Push(x0);
1561        VisitForStackValue(value);
1562        __ CallRuntime(Runtime::kInternalSetPrototype);
1563        PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1564                               NO_REGISTERS);
1565        break;
1566      case ObjectLiteral::Property::GETTER:
1567        if (property->emit_store()) {
1568          accessor_table.lookup(key)->second->getter = property;
1569        }
1570        break;
1571      case ObjectLiteral::Property::SETTER:
1572        if (property->emit_store()) {
1573          accessor_table.lookup(key)->second->setter = property;
1574        }
1575        break;
1576    }
1577  }
1578
1579  // Emit code to define accessors, using only a single call to the runtime for
1580  // each pair of corresponding getters and setters.
1581  for (AccessorTable::Iterator it = accessor_table.begin();
1582       it != accessor_table.end();
1583       ++it) {
1584      __ Peek(x10, 0);  // Duplicate receiver.
1585      __ Push(x10);
1586      VisitForStackValue(it->first);
1587      EmitAccessor(it->second->getter);
1588      EmitAccessor(it->second->setter);
1589      __ Mov(x10, Smi::FromInt(NONE));
1590      __ Push(x10);
1591      __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked);
1592  }
1593
1594  // Object literals have two parts. The "static" part on the left contains no
1595  // computed property names, and so we can compute its map ahead of time; see
1596  // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
1597  // starts with the first computed property name, and continues with all
1598  // properties to its right.  All the code from above initializes the static
1599  // component of the object literal, and arranges for the map of the result to
1600  // reflect the static order in which the keys appear. For the dynamic
1601  // properties, we compile them into a series of "SetOwnProperty" runtime
1602  // calls. This will preserve insertion order.
1603  for (; property_index < expr->properties()->length(); property_index++) {
1604    ObjectLiteral::Property* property = expr->properties()->at(property_index);
1605
1606    Expression* value = property->value();
1607    if (!result_saved) {
1608      __ Push(x0);  // Save result on stack
1609      result_saved = true;
1610    }
1611
1612    __ Peek(x10, 0);  // Duplicate receiver.
1613    __ Push(x10);
1614
1615    if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
1616      DCHECK(!property->is_computed_name());
1617      VisitForStackValue(value);
1618      DCHECK(property->emit_store());
1619      __ CallRuntime(Runtime::kInternalSetPrototype);
1620      PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1621                             NO_REGISTERS);
1622    } else {
1623      EmitPropertyKey(property, expr->GetIdForPropertyName(property_index));
1624      VisitForStackValue(value);
1625      if (NeedsHomeObject(value)) {
1626        EmitSetHomeObject(value, 2, property->GetSlot());
1627      }
1628
1629      switch (property->kind()) {
1630        case ObjectLiteral::Property::CONSTANT:
1631        case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1632        case ObjectLiteral::Property::COMPUTED:
1633          if (property->emit_store()) {
1634            __ Mov(x0, Smi::FromInt(NONE));
1635            __ Push(x0);
1636            __ CallRuntime(Runtime::kDefineDataPropertyUnchecked);
1637          } else {
1638            __ Drop(3);
1639          }
1640          break;
1641
1642        case ObjectLiteral::Property::PROTOTYPE:
1643          UNREACHABLE();
1644          break;
1645
1646        case ObjectLiteral::Property::GETTER:
1647          __ Mov(x0, Smi::FromInt(NONE));
1648          __ Push(x0);
1649          __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
1650          break;
1651
1652        case ObjectLiteral::Property::SETTER:
1653          __ Mov(x0, Smi::FromInt(NONE));
1654          __ Push(x0);
1655          __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
1656          break;
1657      }
1658    }
1659  }
1660
1661  if (expr->has_function()) {
1662    DCHECK(result_saved);
1663    __ Peek(x0, 0);
1664    __ Push(x0);
1665    __ CallRuntime(Runtime::kToFastProperties);
1666  }
1667
1668  if (result_saved) {
1669    context()->PlugTOS();
1670  } else {
1671    context()->Plug(x0);
1672  }
1673}
1674
1675
1676void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1677  Comment cmnt(masm_, "[ ArrayLiteral");
1678
1679  Handle<FixedArray> constant_elements = expr->constant_elements();
1680  bool has_fast_elements =
1681      IsFastObjectElementsKind(expr->constant_elements_kind());
1682
1683  AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1684  if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
1685    // If the only customer of allocation sites is transitioning, then
1686    // we can turn it off if we don't have anywhere else to transition to.
1687    allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1688  }
1689
1690  __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1691  __ Mov(x2, Smi::FromInt(expr->literal_index()));
1692  __ Mov(x1, Operand(constant_elements));
1693  if (MustCreateArrayLiteralWithRuntime(expr)) {
1694    __ Mov(x0, Smi::FromInt(expr->ComputeFlags()));
1695    __ Push(x3, x2, x1, x0);
1696    __ CallRuntime(Runtime::kCreateArrayLiteral);
1697  } else {
1698    FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1699    __ CallStub(&stub);
1700  }
1701  PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
1702
1703  bool result_saved = false;  // Is the result saved to the stack?
1704  ZoneList<Expression*>* subexprs = expr->values();
1705  int length = subexprs->length();
1706
1707  // Emit code to evaluate all the non-constant subexpressions and to store
1708  // them into the newly cloned array.
1709  int array_index = 0;
1710  for (; array_index < length; array_index++) {
1711    Expression* subexpr = subexprs->at(array_index);
1712    if (subexpr->IsSpread()) break;
1713
1714    // If the subexpression is a literal or a simple materialized literal it
1715    // is already set in the cloned array.
1716    if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1717
1718    if (!result_saved) {
1719      __ Push(x0);
1720      result_saved = true;
1721    }
1722    VisitForAccumulatorValue(subexpr);
1723
1724    __ Mov(StoreDescriptor::NameRegister(), Smi::FromInt(array_index));
1725    __ Peek(StoreDescriptor::ReceiverRegister(), 0);
1726    EmitLoadStoreICSlot(expr->LiteralFeedbackSlot());
1727    Handle<Code> ic =
1728        CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
1729    CallIC(ic);
1730
1731    PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
1732  }
1733
1734  // In case the array literal contains spread expressions it has two parts. The
1735  // first part is  the "static" array which has a literal index is  handled
1736  // above. The second part is the part after the first spread expression
1737  // (inclusive) and these elements gets appended to the array. Note that the
1738  // number elements an iterable produces is unknown ahead of time.
1739  if (array_index < length && result_saved) {
1740    __ Pop(x0);
1741    result_saved = false;
1742  }
1743  for (; array_index < length; array_index++) {
1744    Expression* subexpr = subexprs->at(array_index);
1745
1746    __ Push(x0);
1747    if (subexpr->IsSpread()) {
1748      VisitForStackValue(subexpr->AsSpread()->expression());
1749      __ InvokeBuiltin(Context::CONCAT_ITERABLE_TO_ARRAY_BUILTIN_INDEX,
1750                       CALL_FUNCTION);
1751    } else {
1752      VisitForStackValue(subexpr);
1753      __ CallRuntime(Runtime::kAppendElement);
1754    }
1755
1756    PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
1757  }
1758
1759  if (result_saved) {
1760    context()->PlugTOS();
1761  } else {
1762    context()->Plug(x0);
1763  }
1764}
1765
1766
1767void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1768  DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
1769
1770  Comment cmnt(masm_, "[ Assignment");
1771  SetExpressionPosition(expr, INSERT_BREAK);
1772
1773  Property* property = expr->target()->AsProperty();
1774  LhsKind assign_type = Property::GetAssignType(property);
1775
1776  // Evaluate LHS expression.
1777  switch (assign_type) {
1778    case VARIABLE:
1779      // Nothing to do here.
1780      break;
1781    case NAMED_PROPERTY:
1782      if (expr->is_compound()) {
1783        // We need the receiver both on the stack and in the register.
1784        VisitForStackValue(property->obj());
1785        __ Peek(LoadDescriptor::ReceiverRegister(), 0);
1786      } else {
1787        VisitForStackValue(property->obj());
1788      }
1789      break;
1790    case NAMED_SUPER_PROPERTY:
1791      VisitForStackValue(
1792          property->obj()->AsSuperPropertyReference()->this_var());
1793      VisitForAccumulatorValue(
1794          property->obj()->AsSuperPropertyReference()->home_object());
1795      __ Push(result_register());
1796      if (expr->is_compound()) {
1797        const Register scratch = x10;
1798        __ Peek(scratch, kPointerSize);
1799        __ Push(scratch, result_register());
1800      }
1801      break;
1802    case KEYED_SUPER_PROPERTY:
1803      VisitForStackValue(
1804          property->obj()->AsSuperPropertyReference()->this_var());
1805      VisitForStackValue(
1806          property->obj()->AsSuperPropertyReference()->home_object());
1807      VisitForAccumulatorValue(property->key());
1808      __ Push(result_register());
1809      if (expr->is_compound()) {
1810        const Register scratch1 = x10;
1811        const Register scratch2 = x11;
1812        __ Peek(scratch1, 2 * kPointerSize);
1813        __ Peek(scratch2, kPointerSize);
1814        __ Push(scratch1, scratch2, result_register());
1815      }
1816      break;
1817    case KEYED_PROPERTY:
1818      if (expr->is_compound()) {
1819        VisitForStackValue(property->obj());
1820        VisitForStackValue(property->key());
1821        __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize);
1822        __ Peek(LoadDescriptor::NameRegister(), 0);
1823      } else {
1824        VisitForStackValue(property->obj());
1825        VisitForStackValue(property->key());
1826      }
1827      break;
1828  }
1829
1830  // For compound assignments we need another deoptimization point after the
1831  // variable/property load.
1832  if (expr->is_compound()) {
1833    { AccumulatorValueContext context(this);
1834      switch (assign_type) {
1835        case VARIABLE:
1836          EmitVariableLoad(expr->target()->AsVariableProxy());
1837          PrepareForBailout(expr->target(), TOS_REG);
1838          break;
1839        case NAMED_PROPERTY:
1840          EmitNamedPropertyLoad(property);
1841          PrepareForBailoutForId(property->LoadId(), TOS_REG);
1842          break;
1843        case NAMED_SUPER_PROPERTY:
1844          EmitNamedSuperPropertyLoad(property);
1845          PrepareForBailoutForId(property->LoadId(), TOS_REG);
1846          break;
1847        case KEYED_SUPER_PROPERTY:
1848          EmitKeyedSuperPropertyLoad(property);
1849          PrepareForBailoutForId(property->LoadId(), TOS_REG);
1850          break;
1851        case KEYED_PROPERTY:
1852          EmitKeyedPropertyLoad(property);
1853          PrepareForBailoutForId(property->LoadId(), TOS_REG);
1854          break;
1855      }
1856    }
1857
1858    Token::Value op = expr->binary_op();
1859    __ Push(x0);  // Left operand goes on the stack.
1860    VisitForAccumulatorValue(expr->value());
1861
1862    AccumulatorValueContext context(this);
1863    if (ShouldInlineSmiCase(op)) {
1864      EmitInlineSmiBinaryOp(expr->binary_operation(),
1865                            op,
1866                            expr->target(),
1867                            expr->value());
1868    } else {
1869      EmitBinaryOp(expr->binary_operation(), op);
1870    }
1871
1872    // Deoptimization point in case the binary operation may have side effects.
1873    PrepareForBailout(expr->binary_operation(), TOS_REG);
1874  } else {
1875    VisitForAccumulatorValue(expr->value());
1876  }
1877
1878  SetExpressionPosition(expr);
1879
1880  // Store the value.
1881  switch (assign_type) {
1882    case VARIABLE:
1883      EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1884                             expr->op(), expr->AssignmentSlot());
1885      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1886      context()->Plug(x0);
1887      break;
1888    case NAMED_PROPERTY:
1889      EmitNamedPropertyAssignment(expr);
1890      break;
1891    case NAMED_SUPER_PROPERTY:
1892      EmitNamedSuperPropertyStore(property);
1893      context()->Plug(x0);
1894      break;
1895    case KEYED_SUPER_PROPERTY:
1896      EmitKeyedSuperPropertyStore(property);
1897      context()->Plug(x0);
1898      break;
1899    case KEYED_PROPERTY:
1900      EmitKeyedPropertyAssignment(expr);
1901      break;
1902  }
1903}
1904
1905
1906void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
1907  SetExpressionPosition(prop);
1908  Literal* key = prop->key()->AsLiteral();
1909  DCHECK(!prop->IsSuperAccess());
1910
1911  __ Mov(LoadDescriptor::NameRegister(), Operand(key->value()));
1912  __ Mov(LoadDescriptor::SlotRegister(),
1913         SmiFromSlot(prop->PropertyFeedbackSlot()));
1914  CallLoadIC(NOT_INSIDE_TYPEOF, language_mode());
1915}
1916
1917
1918void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
1919  // Stack: receiver, home_object.
1920  SetExpressionPosition(prop);
1921  Literal* key = prop->key()->AsLiteral();
1922  DCHECK(!key->value()->IsSmi());
1923  DCHECK(prop->IsSuperAccess());
1924
1925  __ Push(key->value());
1926  __ Push(Smi::FromInt(language_mode()));
1927  __ CallRuntime(Runtime::kLoadFromSuper);
1928}
1929
1930
1931void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
1932  SetExpressionPosition(prop);
1933  // Call keyed load IC. It has arguments key and receiver in x0 and x1.
1934  Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code();
1935  __ Mov(LoadDescriptor::SlotRegister(),
1936         SmiFromSlot(prop->PropertyFeedbackSlot()));
1937  CallIC(ic);
1938}
1939
1940
1941void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
1942  // Stack: receiver, home_object, key.
1943  SetExpressionPosition(prop);
1944  __ Push(Smi::FromInt(language_mode()));
1945  __ CallRuntime(Runtime::kLoadKeyedFromSuper);
1946}
1947
1948
1949void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
1950                                              Token::Value op,
1951                                              Expression* left_expr,
1952                                              Expression* right_expr) {
1953  Label done, both_smis, stub_call;
1954
1955  // Get the arguments.
1956  Register left = x1;
1957  Register right = x0;
1958  Register result = x0;
1959  __ Pop(left);
1960
1961  // Perform combined smi check on both operands.
1962  __ Orr(x10, left, right);
1963  JumpPatchSite patch_site(masm_);
1964  patch_site.EmitJumpIfSmi(x10, &both_smis);
1965
1966  __ Bind(&stub_call);
1967
1968  Handle<Code> code =
1969      CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
1970  {
1971    Assembler::BlockPoolsScope scope(masm_);
1972    CallIC(code, expr->BinaryOperationFeedbackId());
1973    patch_site.EmitPatchInfo();
1974  }
1975  __ B(&done);
1976
1977  __ Bind(&both_smis);
1978  // Smi case. This code works in the same way as the smi-smi case in the type
1979  // recording binary operation stub, see
1980  // BinaryOpStub::GenerateSmiSmiOperation for comments.
1981  // TODO(all): That doesn't exist any more. Where are the comments?
1982  //
1983  // The set of operations that needs to be supported here is controlled by
1984  // FullCodeGenerator::ShouldInlineSmiCase().
1985  switch (op) {
1986    case Token::SAR:
1987      __ Ubfx(right, right, kSmiShift, 5);
1988      __ Asr(result, left, right);
1989      __ Bic(result, result, kSmiShiftMask);
1990      break;
1991    case Token::SHL:
1992      __ Ubfx(right, right, kSmiShift, 5);
1993      __ Lsl(result, left, right);
1994      break;
1995    case Token::SHR:
1996      // If `left >>> right` >= 0x80000000, the result is not representable in a
1997      // signed 32-bit smi.
1998      __ Ubfx(right, right, kSmiShift, 5);
1999      __ Lsr(x10, left, right);
2000      __ Tbnz(x10, kXSignBit, &stub_call);
2001      __ Bic(result, x10, kSmiShiftMask);
2002      break;
2003    case Token::ADD:
2004      __ Adds(x10, left, right);
2005      __ B(vs, &stub_call);
2006      __ Mov(result, x10);
2007      break;
2008    case Token::SUB:
2009      __ Subs(x10, left, right);
2010      __ B(vs, &stub_call);
2011      __ Mov(result, x10);
2012      break;
2013    case Token::MUL: {
2014      Label not_minus_zero, done;
2015      STATIC_ASSERT(static_cast<unsigned>(kSmiShift) == (kXRegSizeInBits / 2));
2016      STATIC_ASSERT(kSmiTag == 0);
2017      __ Smulh(x10, left, right);
2018      __ Cbnz(x10, &not_minus_zero);
2019      __ Eor(x11, left, right);
2020      __ Tbnz(x11, kXSignBit, &stub_call);
2021      __ Mov(result, x10);
2022      __ B(&done);
2023      __ Bind(&not_minus_zero);
2024      __ Cls(x11, x10);
2025      __ Cmp(x11, kXRegSizeInBits - kSmiShift);
2026      __ B(lt, &stub_call);
2027      __ SmiTag(result, x10);
2028      __ Bind(&done);
2029      break;
2030    }
2031    case Token::BIT_OR:
2032      __ Orr(result, left, right);
2033      break;
2034    case Token::BIT_AND:
2035      __ And(result, left, right);
2036      break;
2037    case Token::BIT_XOR:
2038      __ Eor(result, left, right);
2039      break;
2040    default:
2041      UNREACHABLE();
2042  }
2043
2044  __ Bind(&done);
2045  context()->Plug(x0);
2046}
2047
2048
2049void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
2050  __ Pop(x1);
2051  Handle<Code> code =
2052      CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
2053  JumpPatchSite patch_site(masm_);    // Unbound, signals no inlined smi code.
2054  {
2055    Assembler::BlockPoolsScope scope(masm_);
2056    CallIC(code, expr->BinaryOperationFeedbackId());
2057    patch_site.EmitPatchInfo();
2058  }
2059  context()->Plug(x0);
2060}
2061
2062
2063void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
2064  // Constructor is in x0.
2065  DCHECK(lit != NULL);
2066  __ push(x0);
2067
2068  // No access check is needed here since the constructor is created by the
2069  // class literal.
2070  Register scratch = x1;
2071  __ Ldr(scratch,
2072         FieldMemOperand(x0, JSFunction::kPrototypeOrInitialMapOffset));
2073  __ Push(scratch);
2074
2075  for (int i = 0; i < lit->properties()->length(); i++) {
2076    ObjectLiteral::Property* property = lit->properties()->at(i);
2077    Expression* value = property->value();
2078
2079    if (property->is_static()) {
2080      __ Peek(scratch, kPointerSize);  // constructor
2081    } else {
2082      __ Peek(scratch, 0);  // prototype
2083    }
2084    __ Push(scratch);
2085    EmitPropertyKey(property, lit->GetIdForProperty(i));
2086
2087    // The static prototype property is read only. We handle the non computed
2088    // property name case in the parser. Since this is the only case where we
2089    // need to check for an own read only property we special case this so we do
2090    // not need to do this for every property.
2091    if (property->is_static() && property->is_computed_name()) {
2092      __ CallRuntime(Runtime::kThrowIfStaticPrototype);
2093      __ Push(x0);
2094    }
2095
2096    VisitForStackValue(value);
2097    if (NeedsHomeObject(value)) {
2098      EmitSetHomeObject(value, 2, property->GetSlot());
2099    }
2100
2101    switch (property->kind()) {
2102      case ObjectLiteral::Property::CONSTANT:
2103      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
2104      case ObjectLiteral::Property::PROTOTYPE:
2105        UNREACHABLE();
2106      case ObjectLiteral::Property::COMPUTED:
2107        __ CallRuntime(Runtime::kDefineClassMethod);
2108        break;
2109
2110      case ObjectLiteral::Property::GETTER:
2111        __ Mov(x0, Smi::FromInt(DONT_ENUM));
2112        __ Push(x0);
2113        __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
2114        break;
2115
2116      case ObjectLiteral::Property::SETTER:
2117        __ Mov(x0, Smi::FromInt(DONT_ENUM));
2118        __ Push(x0);
2119        __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
2120        break;
2121
2122      default:
2123        UNREACHABLE();
2124    }
2125  }
2126
2127  // Set both the prototype and constructor to have fast properties, and also
2128  // freeze them in strong mode.
2129  __ CallRuntime(Runtime::kFinalizeClassDefinition);
2130}
2131
2132
2133void FullCodeGenerator::EmitAssignment(Expression* expr,
2134                                       FeedbackVectorSlot slot) {
2135  DCHECK(expr->IsValidReferenceExpressionOrThis());
2136
2137  Property* prop = expr->AsProperty();
2138  LhsKind assign_type = Property::GetAssignType(prop);
2139
2140  switch (assign_type) {
2141    case VARIABLE: {
2142      Variable* var = expr->AsVariableProxy()->var();
2143      EffectContext context(this);
2144      EmitVariableAssignment(var, Token::ASSIGN, slot);
2145      break;
2146    }
2147    case NAMED_PROPERTY: {
2148      __ Push(x0);  // Preserve value.
2149      VisitForAccumulatorValue(prop->obj());
2150      // TODO(all): We could introduce a VisitForRegValue(reg, expr) to avoid
2151      // this copy.
2152      __ Mov(StoreDescriptor::ReceiverRegister(), x0);
2153      __ Pop(StoreDescriptor::ValueRegister());  // Restore value.
2154      __ Mov(StoreDescriptor::NameRegister(),
2155             Operand(prop->key()->AsLiteral()->value()));
2156      EmitLoadStoreICSlot(slot);
2157      CallStoreIC();
2158      break;
2159    }
2160    case NAMED_SUPER_PROPERTY: {
2161      __ Push(x0);
2162      VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2163      VisitForAccumulatorValue(
2164          prop->obj()->AsSuperPropertyReference()->home_object());
2165      // stack: value, this; x0: home_object
2166      Register scratch = x10;
2167      Register scratch2 = x11;
2168      __ mov(scratch, result_register());  // home_object
2169      __ Peek(x0, kPointerSize);           // value
2170      __ Peek(scratch2, 0);                // this
2171      __ Poke(scratch2, kPointerSize);     // this
2172      __ Poke(scratch, 0);                 // home_object
2173      // stack: this, home_object; x0: value
2174      EmitNamedSuperPropertyStore(prop);
2175      break;
2176    }
2177    case KEYED_SUPER_PROPERTY: {
2178      __ Push(x0);
2179      VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2180      VisitForStackValue(
2181          prop->obj()->AsSuperPropertyReference()->home_object());
2182      VisitForAccumulatorValue(prop->key());
2183      Register scratch = x10;
2184      Register scratch2 = x11;
2185      __ Peek(scratch2, 2 * kPointerSize);  // value
2186      // stack: value, this, home_object; x0: key, x11: value
2187      __ Peek(scratch, kPointerSize);  // this
2188      __ Poke(scratch, 2 * kPointerSize);
2189      __ Peek(scratch, 0);  // home_object
2190      __ Poke(scratch, kPointerSize);
2191      __ Poke(x0, 0);
2192      __ Move(x0, scratch2);
2193      // stack: this, home_object, key; x0: value.
2194      EmitKeyedSuperPropertyStore(prop);
2195      break;
2196    }
2197    case KEYED_PROPERTY: {
2198      __ Push(x0);  // Preserve value.
2199      VisitForStackValue(prop->obj());
2200      VisitForAccumulatorValue(prop->key());
2201      __ Mov(StoreDescriptor::NameRegister(), x0);
2202      __ Pop(StoreDescriptor::ReceiverRegister(),
2203             StoreDescriptor::ValueRegister());
2204      EmitLoadStoreICSlot(slot);
2205      Handle<Code> ic =
2206          CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
2207      CallIC(ic);
2208      break;
2209    }
2210  }
2211  context()->Plug(x0);
2212}
2213
2214
2215void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2216    Variable* var, MemOperand location) {
2217  __ Str(result_register(), location);
2218  if (var->IsContextSlot()) {
2219    // RecordWrite may destroy all its register arguments.
2220    __ Mov(x10, result_register());
2221    int offset = Context::SlotOffset(var->index());
2222    __ RecordWriteContextSlot(
2223        x1, offset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
2224  }
2225}
2226
2227
2228void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
2229                                               FeedbackVectorSlot slot) {
2230  ASM_LOCATION("FullCodeGenerator::EmitVariableAssignment");
2231  if (var->IsUnallocated()) {
2232    // Global var, const, or let.
2233    __ Mov(StoreDescriptor::NameRegister(), Operand(var->name()));
2234    __ LoadGlobalObject(StoreDescriptor::ReceiverRegister());
2235    EmitLoadStoreICSlot(slot);
2236    CallStoreIC();
2237
2238  } else if (var->mode() == LET && op != Token::INIT) {
2239    // Non-initializing assignment to let variable needs a write barrier.
2240    DCHECK(!var->IsLookupSlot());
2241    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2242    Label assign;
2243    MemOperand location = VarOperand(var, x1);
2244    __ Ldr(x10, location);
2245    __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &assign);
2246    __ Mov(x10, Operand(var->name()));
2247    __ Push(x10);
2248    __ CallRuntime(Runtime::kThrowReferenceError);
2249    // Perform the assignment.
2250    __ Bind(&assign);
2251    EmitStoreToStackLocalOrContextSlot(var, location);
2252
2253  } else if (var->mode() == CONST && op != Token::INIT) {
2254    // Assignment to const variable needs a write barrier.
2255    DCHECK(!var->IsLookupSlot());
2256    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2257    Label const_error;
2258    MemOperand location = VarOperand(var, x1);
2259    __ Ldr(x10, location);
2260    __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &const_error);
2261    __ Mov(x10, Operand(var->name()));
2262    __ Push(x10);
2263    __ CallRuntime(Runtime::kThrowReferenceError);
2264    __ Bind(&const_error);
2265    __ CallRuntime(Runtime::kThrowConstAssignError);
2266
2267  } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
2268    // Initializing assignment to const {this} needs a write barrier.
2269    DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2270    Label uninitialized_this;
2271    MemOperand location = VarOperand(var, x1);
2272    __ Ldr(x10, location);
2273    __ JumpIfRoot(x10, Heap::kTheHoleValueRootIndex, &uninitialized_this);
2274    __ Mov(x0, Operand(var->name()));
2275    __ Push(x0);
2276    __ CallRuntime(Runtime::kThrowReferenceError);
2277    __ bind(&uninitialized_this);
2278    EmitStoreToStackLocalOrContextSlot(var, location);
2279
2280  } else if (!var->is_const_mode() ||
2281             (var->mode() == CONST && op == Token::INIT)) {
2282    if (var->IsLookupSlot()) {
2283      // Assignment to var.
2284      __ Mov(x11, Operand(var->name()));
2285      __ Mov(x10, Smi::FromInt(language_mode()));
2286      // jssp[0]  : mode.
2287      // jssp[8]  : name.
2288      // jssp[16] : context.
2289      // jssp[24] : value.
2290      __ Push(x0, cp, x11, x10);
2291      __ CallRuntime(Runtime::kStoreLookupSlot);
2292    } else {
2293      // Assignment to var or initializing assignment to let/const in harmony
2294      // mode.
2295      DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2296      MemOperand location = VarOperand(var, x1);
2297      if (FLAG_debug_code && var->mode() == LET && op == Token::INIT) {
2298        __ Ldr(x10, location);
2299        __ CompareRoot(x10, Heap::kTheHoleValueRootIndex);
2300        __ Check(eq, kLetBindingReInitialization);
2301      }
2302      EmitStoreToStackLocalOrContextSlot(var, location);
2303    }
2304
2305  } else if (var->mode() == CONST_LEGACY && op == Token::INIT) {
2306    // Const initializers need a write barrier.
2307    DCHECK(!var->IsParameter());  // No const parameters.
2308    if (var->IsLookupSlot()) {
2309      __ Mov(x1, Operand(var->name()));
2310      __ Push(x0, cp, x1);
2311      __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot);
2312    } else {
2313      DCHECK(var->IsStackLocal() || var->IsContextSlot());
2314      Label skip;
2315      MemOperand location = VarOperand(var, x1);
2316      __ Ldr(x10, location);
2317      __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &skip);
2318      EmitStoreToStackLocalOrContextSlot(var, location);
2319      __ Bind(&skip);
2320    }
2321
2322  } else {
2323    DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT);
2324    if (is_strict(language_mode())) {
2325      __ CallRuntime(Runtime::kThrowConstAssignError);
2326    }
2327    // Silently ignore store in sloppy mode.
2328  }
2329}
2330
2331
2332void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2333  ASM_LOCATION("FullCodeGenerator::EmitNamedPropertyAssignment");
2334  // Assignment to a property, using a named store IC.
2335  Property* prop = expr->target()->AsProperty();
2336  DCHECK(prop != NULL);
2337  DCHECK(prop->key()->IsLiteral());
2338
2339  __ Mov(StoreDescriptor::NameRegister(),
2340         Operand(prop->key()->AsLiteral()->value()));
2341  __ Pop(StoreDescriptor::ReceiverRegister());
2342  EmitLoadStoreICSlot(expr->AssignmentSlot());
2343  CallStoreIC();
2344
2345  PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2346  context()->Plug(x0);
2347}
2348
2349
2350void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
2351  // Assignment to named property of super.
2352  // x0 : value
2353  // stack : receiver ('this'), home_object
2354  DCHECK(prop != NULL);
2355  Literal* key = prop->key()->AsLiteral();
2356  DCHECK(key != NULL);
2357
2358  __ Push(key->value());
2359  __ Push(x0);
2360  __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict
2361                                             : Runtime::kStoreToSuper_Sloppy));
2362}
2363
2364
2365void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
2366  // Assignment to named property of super.
2367  // x0 : value
2368  // stack : receiver ('this'), home_object, key
2369  DCHECK(prop != NULL);
2370
2371  __ Push(x0);
2372  __ CallRuntime((is_strict(language_mode())
2373                      ? Runtime::kStoreKeyedToSuper_Strict
2374                      : Runtime::kStoreKeyedToSuper_Sloppy));
2375}
2376
2377
2378void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2379  ASM_LOCATION("FullCodeGenerator::EmitKeyedPropertyAssignment");
2380  // Assignment to a property, using a keyed store IC.
2381
2382  // TODO(all): Could we pass this in registers rather than on the stack?
2383  __ Pop(StoreDescriptor::NameRegister(), StoreDescriptor::ReceiverRegister());
2384  DCHECK(StoreDescriptor::ValueRegister().is(x0));
2385
2386  Handle<Code> ic =
2387      CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
2388  EmitLoadStoreICSlot(expr->AssignmentSlot());
2389  CallIC(ic);
2390
2391  PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2392  context()->Plug(x0);
2393}
2394
2395
2396void FullCodeGenerator::VisitProperty(Property* expr) {
2397  Comment cmnt(masm_, "[ Property");
2398  SetExpressionPosition(expr);
2399  Expression* key = expr->key();
2400
2401  if (key->IsPropertyName()) {
2402    if (!expr->IsSuperAccess()) {
2403      VisitForAccumulatorValue(expr->obj());
2404      __ Move(LoadDescriptor::ReceiverRegister(), x0);
2405      EmitNamedPropertyLoad(expr);
2406    } else {
2407      VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
2408      VisitForStackValue(
2409          expr->obj()->AsSuperPropertyReference()->home_object());
2410      EmitNamedSuperPropertyLoad(expr);
2411    }
2412  } else {
2413    if (!expr->IsSuperAccess()) {
2414      VisitForStackValue(expr->obj());
2415      VisitForAccumulatorValue(expr->key());
2416      __ Move(LoadDescriptor::NameRegister(), x0);
2417      __ Pop(LoadDescriptor::ReceiverRegister());
2418      EmitKeyedPropertyLoad(expr);
2419    } else {
2420      VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
2421      VisitForStackValue(
2422          expr->obj()->AsSuperPropertyReference()->home_object());
2423      VisitForStackValue(expr->key());
2424      EmitKeyedSuperPropertyLoad(expr);
2425    }
2426  }
2427  PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2428  context()->Plug(x0);
2429}
2430
2431
2432void FullCodeGenerator::CallIC(Handle<Code> code,
2433                               TypeFeedbackId ast_id) {
2434  ic_total_count_++;
2435  // All calls must have a predictable size in full-codegen code to ensure that
2436  // the debugger can patch them correctly.
2437  __ Call(code, RelocInfo::CODE_TARGET, ast_id);
2438}
2439
2440
2441// Code common for calls using the IC.
2442void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2443  ASM_LOCATION("FullCodeGenerator::EmitCallWithLoadIC");
2444  Expression* callee = expr->expression();
2445
2446  // Get the target function.
2447  ConvertReceiverMode convert_mode;
2448  if (callee->IsVariableProxy()) {
2449    { StackValueContext context(this);
2450      EmitVariableLoad(callee->AsVariableProxy());
2451      PrepareForBailout(callee, NO_REGISTERS);
2452    }
2453    // Push undefined as receiver. This is patched in the method prologue if it
2454    // is a sloppy mode method.
2455    {
2456      UseScratchRegisterScope temps(masm_);
2457      Register temp = temps.AcquireX();
2458      __ LoadRoot(temp, Heap::kUndefinedValueRootIndex);
2459      __ Push(temp);
2460    }
2461    convert_mode = ConvertReceiverMode::kNullOrUndefined;
2462  } else {
2463    // Load the function from the receiver.
2464    DCHECK(callee->IsProperty());
2465    DCHECK(!callee->AsProperty()->IsSuperAccess());
2466    __ Peek(LoadDescriptor::ReceiverRegister(), 0);
2467    EmitNamedPropertyLoad(callee->AsProperty());
2468    PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2469    // Push the target function under the receiver.
2470    __ Pop(x10);
2471    __ Push(x0, x10);
2472    convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
2473  }
2474
2475  EmitCall(expr, convert_mode);
2476}
2477
2478
2479void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2480  ASM_LOCATION("FullCodeGenerator::EmitSuperCallWithLoadIC");
2481  Expression* callee = expr->expression();
2482  DCHECK(callee->IsProperty());
2483  Property* prop = callee->AsProperty();
2484  DCHECK(prop->IsSuperAccess());
2485  SetExpressionPosition(prop);
2486
2487  Literal* key = prop->key()->AsLiteral();
2488  DCHECK(!key->value()->IsSmi());
2489
2490  // Load the function from the receiver.
2491  const Register scratch = x10;
2492  SuperPropertyReference* super_ref =
2493      callee->AsProperty()->obj()->AsSuperPropertyReference();
2494  VisitForStackValue(super_ref->home_object());
2495  VisitForAccumulatorValue(super_ref->this_var());
2496  __ Push(x0);
2497  __ Peek(scratch, kPointerSize);
2498  __ Push(x0, scratch);
2499  __ Push(key->value());
2500  __ Push(Smi::FromInt(language_mode()));
2501
2502  // Stack here:
2503  //  - home_object
2504  //  - this (receiver)
2505  //  - this (receiver) <-- LoadFromSuper will pop here and below.
2506  //  - home_object
2507  //  - language_mode
2508  __ CallRuntime(Runtime::kLoadFromSuper);
2509
2510  // Replace home_object with target function.
2511  __ Poke(x0, kPointerSize);
2512
2513  // Stack here:
2514  // - target function
2515  // - this (receiver)
2516  EmitCall(expr);
2517}
2518
2519
2520// Code common for calls using the IC.
2521void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2522                                                Expression* key) {
2523  ASM_LOCATION("FullCodeGenerator::EmitKeyedCallWithLoadIC");
2524  // Load the key.
2525  VisitForAccumulatorValue(key);
2526
2527  Expression* callee = expr->expression();
2528
2529  // Load the function from the receiver.
2530  DCHECK(callee->IsProperty());
2531  __ Peek(LoadDescriptor::ReceiverRegister(), 0);
2532  __ Move(LoadDescriptor::NameRegister(), x0);
2533  EmitKeyedPropertyLoad(callee->AsProperty());
2534  PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2535
2536  // Push the target function under the receiver.
2537  __ Pop(x10);
2538  __ Push(x0, x10);
2539
2540  EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
2541}
2542
2543
2544void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
2545  ASM_LOCATION("FullCodeGenerator::EmitKeyedSuperCallWithLoadIC");
2546  Expression* callee = expr->expression();
2547  DCHECK(callee->IsProperty());
2548  Property* prop = callee->AsProperty();
2549  DCHECK(prop->IsSuperAccess());
2550  SetExpressionPosition(prop);
2551
2552  // Load the function from the receiver.
2553  const Register scratch = x10;
2554  SuperPropertyReference* super_ref =
2555      callee->AsProperty()->obj()->AsSuperPropertyReference();
2556  VisitForStackValue(super_ref->home_object());
2557  VisitForAccumulatorValue(super_ref->this_var());
2558  __ Push(x0);
2559  __ Peek(scratch, kPointerSize);
2560  __ Push(x0, scratch);
2561  VisitForStackValue(prop->key());
2562  __ Push(Smi::FromInt(language_mode()));
2563
2564  // Stack here:
2565  //  - home_object
2566  //  - this (receiver)
2567  //  - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
2568  //  - home_object
2569  //  - key
2570  //  - language_mode
2571  __ CallRuntime(Runtime::kLoadKeyedFromSuper);
2572
2573  // Replace home_object with target function.
2574  __ Poke(x0, kPointerSize);
2575
2576  // Stack here:
2577  // - target function
2578  // - this (receiver)
2579  EmitCall(expr);
2580}
2581
2582
2583void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
2584  ASM_LOCATION("FullCodeGenerator::EmitCall");
2585  // Load the arguments.
2586  ZoneList<Expression*>* args = expr->arguments();
2587  int arg_count = args->length();
2588  for (int i = 0; i < arg_count; i++) {
2589    VisitForStackValue(args->at(i));
2590  }
2591
2592  PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
2593  SetCallPosition(expr);
2594
2595  Handle<Code> ic = CodeFactory::CallIC(isolate(), arg_count, mode).code();
2596  __ Mov(x3, SmiFromSlot(expr->CallFeedbackICSlot()));
2597  __ Peek(x1, (arg_count + 1) * kXRegSize);
2598  // Don't assign a type feedback id to the IC, since type feedback is provided
2599  // by the vector above.
2600  CallIC(ic);
2601
2602  RecordJSReturnSite(expr);
2603  // Restore context register.
2604  __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2605  context()->DropAndPlug(1, x0);
2606}
2607
2608
2609void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2610  ASM_LOCATION("FullCodeGenerator::EmitResolvePossiblyDirectEval");
2611  // Prepare to push a copy of the first argument or undefined if it doesn't
2612  // exist.
2613  if (arg_count > 0) {
2614    __ Peek(x9, arg_count * kXRegSize);
2615  } else {
2616    __ LoadRoot(x9, Heap::kUndefinedValueRootIndex);
2617  }
2618
2619  __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2620
2621  // Prepare to push the language mode.
2622  __ Mov(x11, Smi::FromInt(language_mode()));
2623  // Prepare to push the start position of the scope the calls resides in.
2624  __ Mov(x12, Smi::FromInt(scope()->start_position()));
2625
2626  // Push.
2627  __ Push(x9, x10, x11, x12);
2628
2629  // Do the runtime call.
2630  __ CallRuntime(Runtime::kResolvePossiblyDirectEval);
2631}
2632
2633
2634// See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
2635void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
2636  VariableProxy* callee = expr->expression()->AsVariableProxy();
2637  if (callee->var()->IsLookupSlot()) {
2638    Label slow, done;
2639    SetExpressionPosition(callee);
2640      // Generate code for loading from variables potentially shadowed
2641      // by eval-introduced variables.
2642      EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
2643
2644    __ Bind(&slow);
2645    // Call the runtime to find the function to call (returned in x0)
2646    // and the object holding it (returned in x1).
2647    __ Mov(x10, Operand(callee->name()));
2648    __ Push(context_register(), x10);
2649    __ CallRuntime(Runtime::kLoadLookupSlot);
2650    __ Push(x0, x1);  // Receiver, function.
2651    PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS);
2652
2653    // If fast case code has been generated, emit code to push the
2654    // function and receiver and have the slow path jump around this
2655    // code.
2656    if (done.is_linked()) {
2657      Label call;
2658      __ B(&call);
2659      __ Bind(&done);
2660      // Push function.
2661      // The receiver is implicitly the global receiver. Indicate this
2662      // by passing the undefined to the call function stub.
2663      __ LoadRoot(x1, Heap::kUndefinedValueRootIndex);
2664      __ Push(x0, x1);
2665      __ Bind(&call);
2666    }
2667  } else {
2668    VisitForStackValue(callee);
2669    // refEnv.WithBaseObject()
2670    __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
2671    __ Push(x10);  // Reserved receiver slot.
2672  }
2673}
2674
2675
2676void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) {
2677  ASM_LOCATION("FullCodeGenerator::EmitPossiblyEvalCall");
2678  // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
2679  // to resolve the function we need to call.  Then we call the resolved
2680  // function using the given arguments.
2681  ZoneList<Expression*>* args = expr->arguments();
2682  int arg_count = args->length();
2683
2684  PushCalleeAndWithBaseObject(expr);
2685
2686  // Push the arguments.
2687  for (int i = 0; i < arg_count; i++) {
2688    VisitForStackValue(args->at(i));
2689  }
2690
2691  // Push a copy of the function (found below the arguments) and
2692  // resolve eval.
2693  __ Peek(x10, (arg_count + 1) * kPointerSize);
2694  __ Push(x10);
2695  EmitResolvePossiblyDirectEval(arg_count);
2696
2697  // Touch up the stack with the resolved function.
2698  __ Poke(x0, (arg_count + 1) * kPointerSize);
2699
2700  PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS);
2701
2702  // Record source position for debugger.
2703  SetCallPosition(expr);
2704
2705  // Call the evaluated function.
2706  __ Peek(x1, (arg_count + 1) * kXRegSize);
2707  __ Mov(x0, arg_count);
2708  __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
2709  RecordJSReturnSite(expr);
2710  // Restore context register.
2711  __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2712  context()->DropAndPlug(1, x0);
2713}
2714
2715
2716void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2717  Comment cmnt(masm_, "[ CallNew");
2718  // According to ECMA-262, section 11.2.2, page 44, the function
2719  // expression in new calls must be evaluated before the
2720  // arguments.
2721
2722  // Push constructor on the stack.  If it's not a function it's used as
2723  // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2724  // ignored.
2725  DCHECK(!expr->expression()->IsSuperPropertyReference());
2726  VisitForStackValue(expr->expression());
2727
2728  // Push the arguments ("left-to-right") on the stack.
2729  ZoneList<Expression*>* args = expr->arguments();
2730  int arg_count = args->length();
2731  for (int i = 0; i < arg_count; i++) {
2732    VisitForStackValue(args->at(i));
2733  }
2734
2735  // Call the construct call builtin that handles allocation and
2736  // constructor invocation.
2737  SetConstructCallPosition(expr);
2738
2739  // Load function and argument count into x1 and x0.
2740  __ Mov(x0, arg_count);
2741  __ Peek(x1, arg_count * kXRegSize);
2742
2743  // Record call targets in unoptimized code.
2744  __ EmitLoadTypeFeedbackVector(x2);
2745  __ Mov(x3, SmiFromSlot(expr->CallNewFeedbackSlot()));
2746
2747  CallConstructStub stub(isolate());
2748  __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
2749  PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2750  // Restore context register.
2751  __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2752  context()->Plug(x0);
2753}
2754
2755
2756void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
2757  ASM_LOCATION("FullCodeGenerator::EmitSuperConstructorCall");
2758  SuperCallReference* super_call_ref =
2759      expr->expression()->AsSuperCallReference();
2760  DCHECK_NOT_NULL(super_call_ref);
2761
2762  // Push the super constructor target on the stack (may be null,
2763  // but the Construct builtin can deal with that properly).
2764  VisitForAccumulatorValue(super_call_ref->this_function_var());
2765  __ AssertFunction(result_register());
2766  __ Ldr(result_register(),
2767         FieldMemOperand(result_register(), HeapObject::kMapOffset));
2768  __ Ldr(result_register(),
2769         FieldMemOperand(result_register(), Map::kPrototypeOffset));
2770  __ Push(result_register());
2771
2772  // Push the arguments ("left-to-right") on the stack.
2773  ZoneList<Expression*>* args = expr->arguments();
2774  int arg_count = args->length();
2775  for (int i = 0; i < arg_count; i++) {
2776    VisitForStackValue(args->at(i));
2777  }
2778
2779  // Call the construct call builtin that handles allocation and
2780  // constructor invocation.
2781  SetConstructCallPosition(expr);
2782
2783  // Load new target into x3.
2784  VisitForAccumulatorValue(super_call_ref->new_target_var());
2785  __ Mov(x3, result_register());
2786
2787  // Load function and argument count into x1 and x0.
2788  __ Mov(x0, arg_count);
2789  __ Peek(x1, arg_count * kXRegSize);
2790
2791  __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
2792
2793  RecordJSReturnSite(expr);
2794
2795  // Restore context register.
2796  __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2797  context()->Plug(x0);
2798}
2799
2800
2801void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2802  ZoneList<Expression*>* args = expr->arguments();
2803  DCHECK(args->length() == 1);
2804
2805  VisitForAccumulatorValue(args->at(0));
2806
2807  Label materialize_true, materialize_false;
2808  Label* if_true = NULL;
2809  Label* if_false = NULL;
2810  Label* fall_through = NULL;
2811  context()->PrepareTest(&materialize_true, &materialize_false,
2812                         &if_true, &if_false, &fall_through);
2813
2814  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2815  __ TestAndSplit(x0, kSmiTagMask, if_true, if_false, fall_through);
2816
2817  context()->Plug(if_true, if_false);
2818}
2819
2820
2821void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
2822  ZoneList<Expression*>* args = expr->arguments();
2823  DCHECK(args->length() == 1);
2824
2825  VisitForAccumulatorValue(args->at(0));
2826
2827  Label materialize_true, materialize_false;
2828  Label* if_true = NULL;
2829  Label* if_false = NULL;
2830  Label* fall_through = NULL;
2831  context()->PrepareTest(&materialize_true, &materialize_false,
2832                         &if_true, &if_false, &fall_through);
2833
2834  __ JumpIfSmi(x0, if_false);
2835  __ CompareObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE);
2836  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2837  Split(ge, if_true, if_false, fall_through);
2838
2839  context()->Plug(if_true, if_false);
2840}
2841
2842
2843void FullCodeGenerator::EmitIsSimdValue(CallRuntime* expr) {
2844  ZoneList<Expression*>* args = expr->arguments();
2845  DCHECK(args->length() == 1);
2846
2847  VisitForAccumulatorValue(args->at(0));
2848
2849  Label materialize_true, materialize_false;
2850  Label* if_true = NULL;
2851  Label* if_false = NULL;
2852  Label* fall_through = NULL;
2853  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2854                         &if_false, &fall_through);
2855
2856  __ JumpIfSmi(x0, if_false);
2857  __ CompareObjectType(x0, x10, x11, SIMD128_VALUE_TYPE);
2858  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2859  Split(eq, if_true, if_false, fall_through);
2860
2861  context()->Plug(if_true, if_false);
2862}
2863
2864
2865void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
2866  ZoneList<Expression*>* args = expr->arguments();
2867  DCHECK(args->length() == 1);
2868
2869  VisitForAccumulatorValue(args->at(0));
2870
2871  Label materialize_true, materialize_false;
2872  Label* if_true = NULL;
2873  Label* if_false = NULL;
2874  Label* fall_through = NULL;
2875  context()->PrepareTest(&materialize_true, &materialize_false,
2876                         &if_true, &if_false, &fall_through);
2877
2878  __ JumpIfSmi(x0, if_false);
2879  __ CompareObjectType(x0, x10, x11, FIRST_FUNCTION_TYPE);
2880  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2881  Split(hs, if_true, if_false, fall_through);
2882
2883  context()->Plug(if_true, if_false);
2884}
2885
2886
2887void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
2888  ZoneList<Expression*>* args = expr->arguments();
2889  DCHECK(args->length() == 1);
2890
2891  VisitForAccumulatorValue(args->at(0));
2892
2893  Label materialize_true, materialize_false;
2894  Label* if_true = NULL;
2895  Label* if_false = NULL;
2896  Label* fall_through = NULL;
2897  context()->PrepareTest(&materialize_true, &materialize_false,
2898                         &if_true, &if_false, &fall_through);
2899
2900  // Only a HeapNumber can be -0.0, so return false if we have something else.
2901  __ JumpIfNotHeapNumber(x0, if_false, DO_SMI_CHECK);
2902
2903  // Test the bit pattern.
2904  __ Ldr(x10, FieldMemOperand(x0, HeapNumber::kValueOffset));
2905  __ Cmp(x10, 1);   // Set V on 0x8000000000000000.
2906
2907  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2908  Split(vs, if_true, if_false, fall_through);
2909
2910  context()->Plug(if_true, if_false);
2911}
2912
2913
2914void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
2915  ZoneList<Expression*>* args = expr->arguments();
2916  DCHECK(args->length() == 1);
2917
2918  VisitForAccumulatorValue(args->at(0));
2919
2920  Label materialize_true, materialize_false;
2921  Label* if_true = NULL;
2922  Label* if_false = NULL;
2923  Label* fall_through = NULL;
2924  context()->PrepareTest(&materialize_true, &materialize_false,
2925                         &if_true, &if_false, &fall_through);
2926
2927  __ JumpIfSmi(x0, if_false);
2928  __ CompareObjectType(x0, x10, x11, JS_ARRAY_TYPE);
2929  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2930  Split(eq, if_true, if_false, fall_through);
2931
2932  context()->Plug(if_true, if_false);
2933}
2934
2935
2936void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
2937  ZoneList<Expression*>* args = expr->arguments();
2938  DCHECK(args->length() == 1);
2939
2940  VisitForAccumulatorValue(args->at(0));
2941
2942  Label materialize_true, materialize_false;
2943  Label* if_true = NULL;
2944  Label* if_false = NULL;
2945  Label* fall_through = NULL;
2946  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2947                         &if_false, &fall_through);
2948
2949  __ JumpIfSmi(x0, if_false);
2950  __ CompareObjectType(x0, x10, x11, JS_TYPED_ARRAY_TYPE);
2951  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2952  Split(eq, if_true, if_false, fall_through);
2953
2954  context()->Plug(if_true, if_false);
2955}
2956
2957
2958void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
2959  ZoneList<Expression*>* args = expr->arguments();
2960  DCHECK(args->length() == 1);
2961
2962  VisitForAccumulatorValue(args->at(0));
2963
2964  Label materialize_true, materialize_false;
2965  Label* if_true = NULL;
2966  Label* if_false = NULL;
2967  Label* fall_through = NULL;
2968  context()->PrepareTest(&materialize_true, &materialize_false,
2969                         &if_true, &if_false, &fall_through);
2970
2971  __ JumpIfSmi(x0, if_false);
2972  __ CompareObjectType(x0, x10, x11, JS_REGEXP_TYPE);
2973  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2974  Split(eq, if_true, if_false, fall_through);
2975
2976  context()->Plug(if_true, if_false);
2977}
2978
2979
2980void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
2981  ZoneList<Expression*>* args = expr->arguments();
2982  DCHECK(args->length() == 1);
2983
2984  VisitForAccumulatorValue(args->at(0));
2985
2986  Label materialize_true, materialize_false;
2987  Label* if_true = NULL;
2988  Label* if_false = NULL;
2989  Label* fall_through = NULL;
2990  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2991                         &if_false, &fall_through);
2992
2993  __ JumpIfSmi(x0, if_false);
2994  __ CompareObjectType(x0, x10, x11, JS_PROXY_TYPE);
2995  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2996  Split(eq, if_true, if_false, fall_through);
2997
2998  context()->Plug(if_true, if_false);
2999}
3000
3001
3002void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3003  ZoneList<Expression*>* args = expr->arguments();
3004  DCHECK(args->length() == 2);
3005
3006  // Load the two objects into registers and perform the comparison.
3007  VisitForStackValue(args->at(0));
3008  VisitForAccumulatorValue(args->at(1));
3009
3010  Label materialize_true, materialize_false;
3011  Label* if_true = NULL;
3012  Label* if_false = NULL;
3013  Label* fall_through = NULL;
3014  context()->PrepareTest(&materialize_true, &materialize_false,
3015                         &if_true, &if_false, &fall_through);
3016
3017  __ Pop(x1);
3018  __ Cmp(x0, x1);
3019  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3020  Split(eq, if_true, if_false, fall_through);
3021
3022  context()->Plug(if_true, if_false);
3023}
3024
3025
3026void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3027  ZoneList<Expression*>* args = expr->arguments();
3028  DCHECK(args->length() == 1);
3029
3030  // ArgumentsAccessStub expects the key in x1.
3031  VisitForAccumulatorValue(args->at(0));
3032  __ Mov(x1, x0);
3033  __ Mov(x0, Smi::FromInt(info_->scope()->num_parameters()));
3034  ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3035  __ CallStub(&stub);
3036  context()->Plug(x0);
3037}
3038
3039
3040void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3041  DCHECK(expr->arguments()->length() == 0);
3042  Label exit;
3043  // Get the number of formal parameters.
3044  __ Mov(x0, Smi::FromInt(info_->scope()->num_parameters()));
3045
3046  // Check if the calling frame is an arguments adaptor frame.
3047  __ Ldr(x12, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3048  __ Ldr(x13, MemOperand(x12, StandardFrameConstants::kContextOffset));
3049  __ Cmp(x13, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3050  __ B(ne, &exit);
3051
3052  // Arguments adaptor case: Read the arguments length from the
3053  // adaptor frame.
3054  __ Ldr(x0, MemOperand(x12, ArgumentsAdaptorFrameConstants::kLengthOffset));
3055
3056  __ Bind(&exit);
3057  context()->Plug(x0);
3058}
3059
3060
3061void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3062  ASM_LOCATION("FullCodeGenerator::EmitClassOf");
3063  ZoneList<Expression*>* args = expr->arguments();
3064  DCHECK(args->length() == 1);
3065  Label done, null, function, non_function_constructor;
3066
3067  VisitForAccumulatorValue(args->at(0));
3068
3069  // If the object is not a JSReceiver, we return null.
3070  __ JumpIfSmi(x0, &null);
3071  STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
3072  __ CompareObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE);
3073  // x10: object's map.
3074  // x11: object's type.
3075  __ B(lt, &null);
3076
3077  // Return 'Function' for JSFunction objects.
3078  __ Cmp(x11, JS_FUNCTION_TYPE);
3079  __ B(eq, &function);
3080
3081  // Check if the constructor in the map is a JS function.
3082  Register instance_type = x14;
3083  __ GetMapConstructor(x12, x10, x13, instance_type);
3084  __ Cmp(instance_type, JS_FUNCTION_TYPE);
3085  __ B(ne, &non_function_constructor);
3086
3087  // x12 now contains the constructor function. Grab the
3088  // instance class name from there.
3089  __ Ldr(x13, FieldMemOperand(x12, JSFunction::kSharedFunctionInfoOffset));
3090  __ Ldr(x0,
3091         FieldMemOperand(x13, SharedFunctionInfo::kInstanceClassNameOffset));
3092  __ B(&done);
3093
3094  // Functions have class 'Function'.
3095  __ Bind(&function);
3096  __ LoadRoot(x0, Heap::kFunction_stringRootIndex);
3097  __ B(&done);
3098
3099  // Objects with a non-function constructor have class 'Object'.
3100  __ Bind(&non_function_constructor);
3101  __ LoadRoot(x0, Heap::kObject_stringRootIndex);
3102  __ B(&done);
3103
3104  // Non-JS objects have class null.
3105  __ Bind(&null);
3106  __ LoadRoot(x0, Heap::kNullValueRootIndex);
3107
3108  // All done.
3109  __ Bind(&done);
3110
3111  context()->Plug(x0);
3112}
3113
3114
3115void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3116  ASM_LOCATION("FullCodeGenerator::EmitValueOf");
3117  ZoneList<Expression*>* args = expr->arguments();
3118  DCHECK(args->length() == 1);
3119  VisitForAccumulatorValue(args->at(0));  // Load the object.
3120
3121  Label done;
3122  // If the object is a smi return the object.
3123  __ JumpIfSmi(x0, &done);
3124  // If the object is not a value type, return the object.
3125  __ JumpIfNotObjectType(x0, x10, x11, JS_VALUE_TYPE, &done);
3126  __ Ldr(x0, FieldMemOperand(x0, JSValue::kValueOffset));
3127
3128  __ Bind(&done);
3129  context()->Plug(x0);
3130}
3131
3132
3133void FullCodeGenerator::EmitIsDate(CallRuntime* expr) {
3134  ZoneList<Expression*>* args = expr->arguments();
3135  DCHECK_EQ(1, args->length());
3136
3137  VisitForAccumulatorValue(args->at(0));
3138
3139  Label materialize_true, materialize_false;
3140  Label* if_true = nullptr;
3141  Label* if_false = nullptr;
3142  Label* fall_through = nullptr;
3143  context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3144                         &if_false, &fall_through);
3145
3146  __ JumpIfSmi(x0, if_false);
3147  __ CompareObjectType(x0, x10, x11, JS_DATE_TYPE);
3148  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3149  Split(eq, if_true, if_false, fall_through);
3150
3151  context()->Plug(if_true, if_false);
3152}
3153
3154
3155void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3156  ZoneList<Expression*>* args = expr->arguments();
3157  DCHECK_EQ(3, args->length());
3158
3159  Register string = x0;
3160  Register index = x1;
3161  Register value = x2;
3162  Register scratch = x10;
3163
3164  VisitForStackValue(args->at(0));        // index
3165  VisitForStackValue(args->at(1));        // value
3166  VisitForAccumulatorValue(args->at(2));  // string
3167  __ Pop(value, index);
3168
3169  if (FLAG_debug_code) {
3170    __ AssertSmi(value, kNonSmiValue);
3171    __ AssertSmi(index, kNonSmiIndex);
3172    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3173    __ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch,
3174                                 one_byte_seq_type);
3175  }
3176
3177  __ Add(scratch, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3178  __ SmiUntag(value);
3179  __ SmiUntag(index);
3180  __ Strb(value, MemOperand(scratch, index));
3181  context()->Plug(string);
3182}
3183
3184
3185void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3186  ZoneList<Expression*>* args = expr->arguments();
3187  DCHECK_EQ(3, args->length());
3188
3189  Register string = x0;
3190  Register index = x1;
3191  Register value = x2;
3192  Register scratch = x10;
3193
3194  VisitForStackValue(args->at(0));        // index
3195  VisitForStackValue(args->at(1));        // value
3196  VisitForAccumulatorValue(args->at(2));  // string
3197  __ Pop(value, index);
3198
3199  if (FLAG_debug_code) {
3200    __ AssertSmi(value, kNonSmiValue);
3201    __ AssertSmi(index, kNonSmiIndex);
3202    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3203    __ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch,
3204                                 two_byte_seq_type);
3205  }
3206
3207  __ Add(scratch, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
3208  __ SmiUntag(value);
3209  __ SmiUntag(index);
3210  __ Strh(value, MemOperand(scratch, index, LSL, 1));
3211  context()->Plug(string);
3212}
3213
3214
3215void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3216  ZoneList<Expression*>* args = expr->arguments();
3217  DCHECK(args->length() == 2);
3218  VisitForStackValue(args->at(0));  // Load the object.
3219  VisitForAccumulatorValue(args->at(1));  // Load the value.
3220  __ Pop(x1);
3221  // x0 = value.
3222  // x1 = object.
3223
3224  Label done;
3225  // If the object is a smi, return the value.
3226  __ JumpIfSmi(x1, &done);
3227
3228  // If the object is not a value type, return the value.
3229  __ JumpIfNotObjectType(x1, x10, x11, JS_VALUE_TYPE, &done);
3230
3231  // Store the value.
3232  __ Str(x0, FieldMemOperand(x1, JSValue::kValueOffset));
3233  // Update the write barrier. Save the value as it will be
3234  // overwritten by the write barrier code and is needed afterward.
3235  __ Mov(x10, x0);
3236  __ RecordWriteField(
3237      x1, JSValue::kValueOffset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
3238
3239  __ Bind(&done);
3240  context()->Plug(x0);
3241}
3242
3243
3244void FullCodeGenerator::EmitToInteger(CallRuntime* expr) {
3245  ZoneList<Expression*>* args = expr->arguments();
3246  DCHECK_EQ(1, args->length());
3247
3248  // Load the argument into x0 and convert it.
3249  VisitForAccumulatorValue(args->at(0));
3250
3251  // Convert the object to an integer.
3252  Label done_convert;
3253  __ JumpIfSmi(x0, &done_convert);
3254  __ Push(x0);
3255  __ CallRuntime(Runtime::kToInteger);
3256  __ bind(&done_convert);
3257  context()->Plug(x0);
3258}
3259
3260
3261void FullCodeGenerator::EmitToName(CallRuntime* expr) {
3262  ZoneList<Expression*>* args = expr->arguments();
3263  DCHECK_EQ(1, args->length());
3264
3265  // Load the argument into x0 and convert it.
3266  VisitForAccumulatorValue(args->at(0));
3267
3268  Label convert, done_convert;
3269  __ JumpIfSmi(x0, &convert);
3270  STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
3271  __ JumpIfObjectType(x0, x1, x1, LAST_NAME_TYPE, &done_convert, ls);
3272  __ Bind(&convert);
3273  __ Push(x0);
3274  __ CallRuntime(Runtime::kToName);
3275  __ Bind(&done_convert);
3276  context()->Plug(x0);
3277}
3278
3279
3280void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3281  ZoneList<Expression*>* args = expr->arguments();
3282  DCHECK(args->length() == 1);
3283
3284  VisitForAccumulatorValue(args->at(0));
3285
3286  Label done;
3287  Register code = x0;
3288  Register result = x1;
3289
3290  StringCharFromCodeGenerator generator(code, result);
3291  generator.GenerateFast(masm_);
3292  __ B(&done);
3293
3294  NopRuntimeCallHelper call_helper;
3295  generator.GenerateSlow(masm_, call_helper);
3296
3297  __ Bind(&done);
3298  context()->Plug(result);
3299}
3300
3301
3302void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3303  ZoneList<Expression*>* args = expr->arguments();
3304  DCHECK(args->length() == 2);
3305
3306  VisitForStackValue(args->at(0));
3307  VisitForAccumulatorValue(args->at(1));
3308
3309  Register object = x1;
3310  Register index = x0;
3311  Register result = x3;
3312
3313  __ Pop(object);
3314
3315  Label need_conversion;
3316  Label index_out_of_range;
3317  Label done;
3318  StringCharCodeAtGenerator generator(object,
3319                                      index,
3320                                      result,
3321                                      &need_conversion,
3322                                      &need_conversion,
3323                                      &index_out_of_range,
3324                                      STRING_INDEX_IS_NUMBER);
3325  generator.GenerateFast(masm_);
3326  __ B(&done);
3327
3328  __ Bind(&index_out_of_range);
3329  // When the index is out of range, the spec requires us to return NaN.
3330  __ LoadRoot(result, Heap::kNanValueRootIndex);
3331  __ B(&done);
3332
3333  __ Bind(&need_conversion);
3334  // Load the undefined value into the result register, which will
3335  // trigger conversion.
3336  __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3337  __ B(&done);
3338
3339  NopRuntimeCallHelper call_helper;
3340  generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
3341
3342  __ Bind(&done);
3343  context()->Plug(result);
3344}
3345
3346
3347void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3348  ZoneList<Expression*>* args = expr->arguments();
3349  DCHECK(args->length() == 2);
3350
3351  VisitForStackValue(args->at(0));
3352  VisitForAccumulatorValue(args->at(1));
3353
3354  Register object = x1;
3355  Register index = x0;
3356  Register result = x0;
3357
3358  __ Pop(object);
3359
3360  Label need_conversion;
3361  Label index_out_of_range;
3362  Label done;
3363  StringCharAtGenerator generator(object,
3364                                  index,
3365                                  x3,
3366                                  result,
3367                                  &need_conversion,
3368                                  &need_conversion,
3369                                  &index_out_of_range,
3370                                  STRING_INDEX_IS_NUMBER);
3371  generator.GenerateFast(masm_);
3372  __ B(&done);
3373
3374  __ Bind(&index_out_of_range);
3375  // When the index is out of range, the spec requires us to return
3376  // the empty string.
3377  __ LoadRoot(result, Heap::kempty_stringRootIndex);
3378  __ B(&done);
3379
3380  __ Bind(&need_conversion);
3381  // Move smi zero into the result register, which will trigger conversion.
3382  __ Mov(result, Smi::FromInt(0));
3383  __ B(&done);
3384
3385  NopRuntimeCallHelper call_helper;
3386  generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
3387
3388  __ Bind(&done);
3389  context()->Plug(result);
3390}
3391
3392
3393void FullCodeGenerator::EmitCall(CallRuntime* expr) {
3394  ASM_LOCATION("FullCodeGenerator::EmitCall");
3395  ZoneList<Expression*>* args = expr->arguments();
3396  DCHECK_LE(2, args->length());
3397  // Push target, receiver and arguments onto the stack.
3398  for (Expression* const arg : *args) {
3399    VisitForStackValue(arg);
3400  }
3401  PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
3402  // Move target to x1.
3403  int const argc = args->length() - 2;
3404  __ Peek(x1, (argc + 1) * kXRegSize);
3405  // Call the target.
3406  __ Mov(x0, argc);
3407  __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
3408  // Restore context register.
3409  __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3410  // Discard the function left on TOS.
3411  context()->DropAndPlug(1, x0);
3412}
3413
3414
3415void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3416  ZoneList<Expression*>* args = expr->arguments();
3417  VisitForAccumulatorValue(args->at(0));
3418
3419  Label materialize_true, materialize_false;
3420  Label* if_true = NULL;
3421  Label* if_false = NULL;
3422  Label* fall_through = NULL;
3423  context()->PrepareTest(&materialize_true, &materialize_false,
3424                         &if_true, &if_false, &fall_through);
3425
3426  __ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset));
3427  __ Tst(x10, String::kContainsCachedArrayIndexMask);
3428  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3429  Split(eq, if_true, if_false, fall_through);
3430
3431  context()->Plug(if_true, if_false);
3432}
3433
3434
3435void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3436  ZoneList<Expression*>* args = expr->arguments();
3437  DCHECK(args->length() == 1);
3438  VisitForAccumulatorValue(args->at(0));
3439
3440  __ AssertString(x0);
3441
3442  __ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset));
3443  __ IndexFromHash(x10, x0);
3444
3445  context()->Plug(x0);
3446}
3447
3448
3449void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
3450  ZoneList<Expression*>* args = expr->arguments();
3451  DCHECK_EQ(1, args->length());
3452  VisitForAccumulatorValue(args->at(0));
3453  __ AssertFunction(x0);
3454  __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
3455  __ Ldr(x0, FieldMemOperand(x0, Map::kPrototypeOffset));
3456  context()->Plug(x0);
3457}
3458
3459
3460void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
3461  ASM_LOCATION("FullCodeGenerator::EmitFastOneByteArrayJoin");
3462
3463  ZoneList<Expression*>* args = expr->arguments();
3464  DCHECK(args->length() == 2);
3465  VisitForStackValue(args->at(1));
3466  VisitForAccumulatorValue(args->at(0));
3467
3468  Register array = x0;
3469  Register result = x0;
3470  Register elements = x1;
3471  Register element = x2;
3472  Register separator = x3;
3473  Register array_length = x4;
3474  Register result_pos = x5;
3475  Register map = x6;
3476  Register string_length = x10;
3477  Register elements_end = x11;
3478  Register string = x12;
3479  Register scratch1 = x13;
3480  Register scratch2 = x14;
3481  Register scratch3 = x7;
3482  Register separator_length = x15;
3483
3484  Label bailout, done, one_char_separator, long_separator,
3485      non_trivial_array, not_size_one_array, loop,
3486      empty_separator_loop, one_char_separator_loop,
3487      one_char_separator_loop_entry, long_separator_loop;
3488
3489  // The separator operand is on the stack.
3490  __ Pop(separator);
3491
3492  // Check that the array is a JSArray.
3493  __ JumpIfSmi(array, &bailout);
3494  __ JumpIfNotObjectType(array, map, scratch1, JS_ARRAY_TYPE, &bailout);
3495
3496  // Check that the array has fast elements.
3497  __ CheckFastElements(map, scratch1, &bailout);
3498
3499  // If the array has length zero, return the empty string.
3500  // Load and untag the length of the array.
3501  // It is an unsigned value, so we can skip sign extension.
3502  // We assume little endianness.
3503  __ Ldrsw(array_length,
3504           UntagSmiFieldMemOperand(array, JSArray::kLengthOffset));
3505  __ Cbnz(array_length, &non_trivial_array);
3506  __ LoadRoot(result, Heap::kempty_stringRootIndex);
3507  __ B(&done);
3508
3509  __ Bind(&non_trivial_array);
3510  // Get the FixedArray containing array's elements.
3511  __ Ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset));
3512
3513  // Check that all array elements are sequential one-byte strings, and
3514  // accumulate the sum of their lengths.
3515  __ Mov(string_length, 0);
3516  __ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag);
3517  __ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
3518  // Loop condition: while (element < elements_end).
3519  // Live values in registers:
3520  //   elements: Fixed array of strings.
3521  //   array_length: Length of the fixed array of strings (not smi)
3522  //   separator: Separator string
3523  //   string_length: Accumulated sum of string lengths (not smi).
3524  //   element: Current array element.
3525  //   elements_end: Array end.
3526  if (FLAG_debug_code) {
3527    __ Cmp(array_length, 0);
3528    __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
3529  }
3530  __ Bind(&loop);
3531  __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3532  __ JumpIfSmi(string, &bailout);
3533  __ Ldr(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
3534  __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3535  __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
3536  __ Ldrsw(scratch1,
3537           UntagSmiFieldMemOperand(string, SeqOneByteString::kLengthOffset));
3538  __ Adds(string_length, string_length, scratch1);
3539  __ B(vs, &bailout);
3540  __ Cmp(element, elements_end);
3541  __ B(lt, &loop);
3542
3543  // If array_length is 1, return elements[0], a string.
3544  __ Cmp(array_length, 1);
3545  __ B(ne, &not_size_one_array);
3546  __ Ldr(result, FieldMemOperand(elements, FixedArray::kHeaderSize));
3547  __ B(&done);
3548
3549  __ Bind(&not_size_one_array);
3550
3551  // Live values in registers:
3552  //   separator: Separator string
3553  //   array_length: Length of the array (not smi).
3554  //   string_length: Sum of string lengths (not smi).
3555  //   elements: FixedArray of strings.
3556
3557  // Check that the separator is a flat one-byte string.
3558  __ JumpIfSmi(separator, &bailout);
3559  __ Ldr(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
3560  __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3561  __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
3562
3563  // Add (separator length times array_length) - separator length to the
3564  // string_length to get the length of the result string.
3565  // Load the separator length as untagged.
3566  // We assume little endianness, and that the length is positive.
3567  __ Ldrsw(separator_length,
3568           UntagSmiFieldMemOperand(separator,
3569                                   SeqOneByteString::kLengthOffset));
3570  __ Sub(string_length, string_length, separator_length);
3571  __ Umaddl(string_length, array_length.W(), separator_length.W(),
3572            string_length);
3573
3574  // Bailout for large object allocations.
3575  __ Cmp(string_length, Page::kMaxRegularHeapObjectSize);
3576  __ B(gt, &bailout);
3577
3578  // Get first element in the array.
3579  __ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag);
3580  // Live values in registers:
3581  //   element: First array element
3582  //   separator: Separator string
3583  //   string_length: Length of result string (not smi)
3584  //   array_length: Length of the array (not smi).
3585  __ AllocateOneByteString(result, string_length, scratch1, scratch2, scratch3,
3586                           &bailout);
3587
3588  // Prepare for looping. Set up elements_end to end of the array. Set
3589  // result_pos to the position of the result where to write the first
3590  // character.
3591  // TODO(all): useless unless AllocateOneByteString trashes the register.
3592  __ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
3593  __ Add(result_pos, result, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3594
3595  // Check the length of the separator.
3596  __ Cmp(separator_length, 1);
3597  __ B(eq, &one_char_separator);
3598  __ B(gt, &long_separator);
3599
3600  // Empty separator case
3601  __ Bind(&empty_separator_loop);
3602  // Live values in registers:
3603  //   result_pos: the position to which we are currently copying characters.
3604  //   element: Current array element.
3605  //   elements_end: Array end.
3606
3607  // Copy next array element to the result.
3608  __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3609  __ Ldrsw(string_length,
3610           UntagSmiFieldMemOperand(string, String::kLengthOffset));
3611  __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3612  __ CopyBytes(result_pos, string, string_length, scratch1);
3613  __ Cmp(element, elements_end);
3614  __ B(lt, &empty_separator_loop);  // End while (element < elements_end).
3615  __ B(&done);
3616
3617  // One-character separator case
3618  __ Bind(&one_char_separator);
3619  // Replace separator with its one-byte character value.
3620  __ Ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
3621  // Jump into the loop after the code that copies the separator, so the first
3622  // element is not preceded by a separator
3623  __ B(&one_char_separator_loop_entry);
3624
3625  __ Bind(&one_char_separator_loop);
3626  // Live values in registers:
3627  //   result_pos: the position to which we are currently copying characters.
3628  //   element: Current array element.
3629  //   elements_end: Array end.
3630  //   separator: Single separator one-byte char (in lower byte).
3631
3632  // Copy the separator character to the result.
3633  __ Strb(separator, MemOperand(result_pos, 1, PostIndex));
3634
3635  // Copy next array element to the result.
3636  __ Bind(&one_char_separator_loop_entry);
3637  __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3638  __ Ldrsw(string_length,
3639           UntagSmiFieldMemOperand(string, String::kLengthOffset));
3640  __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3641  __ CopyBytes(result_pos, string, string_length, scratch1);
3642  __ Cmp(element, elements_end);
3643  __ B(lt, &one_char_separator_loop);  // End while (element < elements_end).
3644  __ B(&done);
3645
3646  // Long separator case (separator is more than one character). Entry is at the
3647  // label long_separator below.
3648  __ Bind(&long_separator_loop);
3649  // Live values in registers:
3650  //   result_pos: the position to which we are currently copying characters.
3651  //   element: Current array element.
3652  //   elements_end: Array end.
3653  //   separator: Separator string.
3654
3655  // Copy the separator to the result.
3656  // TODO(all): hoist next two instructions.
3657  __ Ldrsw(string_length,
3658           UntagSmiFieldMemOperand(separator, String::kLengthOffset));
3659  __ Add(string, separator, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3660  __ CopyBytes(result_pos, string, string_length, scratch1);
3661
3662  __ Bind(&long_separator);
3663  __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3664  __ Ldrsw(string_length,
3665           UntagSmiFieldMemOperand(string, String::kLengthOffset));
3666  __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3667  __ CopyBytes(result_pos, string, string_length, scratch1);
3668  __ Cmp(element, elements_end);
3669  __ B(lt, &long_separator_loop);  // End while (element < elements_end).
3670  __ B(&done);
3671
3672  __ Bind(&bailout);
3673  // Returning undefined will force slower code to handle it.
3674  __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3675  __ Bind(&done);
3676  context()->Plug(result);
3677}
3678
3679
3680void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
3681  DCHECK(expr->arguments()->length() == 0);
3682  ExternalReference debug_is_active =
3683      ExternalReference::debug_is_active_address(isolate());
3684  __ Mov(x10, debug_is_active);
3685  __ Ldrb(x0, MemOperand(x10));
3686  __ SmiTag(x0);
3687  context()->Plug(x0);
3688}
3689
3690
3691void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) {
3692  ZoneList<Expression*>* args = expr->arguments();
3693  DCHECK_EQ(2, args->length());
3694  VisitForStackValue(args->at(0));
3695  VisitForStackValue(args->at(1));
3696
3697  Label runtime, done;
3698
3699  Register result = x0;
3700  __ Allocate(JSIteratorResult::kSize, result, x10, x11, &runtime, TAG_OBJECT);
3701  Register map_reg = x1;
3702  Register result_value = x2;
3703  Register boolean_done = x3;
3704  Register empty_fixed_array = x4;
3705  Register untagged_result = x5;
3706  __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, map_reg);
3707  __ Pop(boolean_done);
3708  __ Pop(result_value);
3709  __ LoadRoot(empty_fixed_array, Heap::kEmptyFixedArrayRootIndex);
3710  STATIC_ASSERT(JSObject::kPropertiesOffset + kPointerSize ==
3711                JSObject::kElementsOffset);
3712  STATIC_ASSERT(JSIteratorResult::kValueOffset + kPointerSize ==
3713                JSIteratorResult::kDoneOffset);
3714  __ ObjectUntag(untagged_result, result);
3715  __ Str(map_reg, MemOperand(untagged_result, HeapObject::kMapOffset));
3716  __ Stp(empty_fixed_array, empty_fixed_array,
3717         MemOperand(untagged_result, JSObject::kPropertiesOffset));
3718  __ Stp(result_value, boolean_done,
3719         MemOperand(untagged_result, JSIteratorResult::kValueOffset));
3720  STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
3721  __ B(&done);
3722
3723  __ Bind(&runtime);
3724  __ CallRuntime(Runtime::kCreateIterResultObject);
3725
3726  __ Bind(&done);
3727  context()->Plug(x0);
3728}
3729
3730
3731void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
3732  // Push undefined as the receiver.
3733  __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
3734  __ Push(x0);
3735
3736  __ LoadNativeContextSlot(expr->context_index(), x0);
3737}
3738
3739
3740void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
3741  ZoneList<Expression*>* args = expr->arguments();
3742  int arg_count = args->length();
3743
3744  SetCallPosition(expr);
3745  __ Peek(x1, (arg_count + 1) * kPointerSize);
3746  __ Mov(x0, arg_count);
3747  __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
3748          RelocInfo::CODE_TARGET);
3749}
3750
3751
3752void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
3753  ZoneList<Expression*>* args = expr->arguments();
3754  int arg_count = args->length();
3755
3756  if (expr->is_jsruntime()) {
3757    Comment cmnt(masm_, "[ CallRunTime");
3758    EmitLoadJSRuntimeFunction(expr);
3759
3760    // Push the target function under the receiver.
3761    __ Pop(x10);
3762    __ Push(x0, x10);
3763
3764    for (int i = 0; i < arg_count; i++) {
3765      VisitForStackValue(args->at(i));
3766    }
3767
3768    PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
3769    EmitCallJSRuntimeFunction(expr);
3770
3771    // Restore context register.
3772    __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3773
3774    context()->DropAndPlug(1, x0);
3775
3776  } else {
3777    const Runtime::Function* function = expr->function();
3778    switch (function->function_id) {
3779#define CALL_INTRINSIC_GENERATOR(Name)     \
3780  case Runtime::kInline##Name: {           \
3781    Comment cmnt(masm_, "[ Inline" #Name); \
3782    return Emit##Name(expr);               \
3783  }
3784      FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR)
3785#undef CALL_INTRINSIC_GENERATOR
3786      default: {
3787        Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic");
3788        // Push the arguments ("left-to-right").
3789        for (int i = 0; i < arg_count; i++) {
3790          VisitForStackValue(args->at(i));
3791        }
3792
3793        // Call the C runtime function.
3794        PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
3795        __ CallRuntime(expr->function(), arg_count);
3796        context()->Plug(x0);
3797      }
3798    }
3799  }
3800}
3801
3802
3803void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
3804  switch (expr->op()) {
3805    case Token::DELETE: {
3806      Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
3807      Property* property = expr->expression()->AsProperty();
3808      VariableProxy* proxy = expr->expression()->AsVariableProxy();
3809
3810      if (property != NULL) {
3811        VisitForStackValue(property->obj());
3812        VisitForStackValue(property->key());
3813        __ CallRuntime(is_strict(language_mode())
3814                           ? Runtime::kDeleteProperty_Strict
3815                           : Runtime::kDeleteProperty_Sloppy);
3816        context()->Plug(x0);
3817      } else if (proxy != NULL) {
3818        Variable* var = proxy->var();
3819        // Delete of an unqualified identifier is disallowed in strict mode but
3820        // "delete this" is allowed.
3821        bool is_this = var->HasThisName(isolate());
3822        DCHECK(is_sloppy(language_mode()) || is_this);
3823        if (var->IsUnallocatedOrGlobalSlot()) {
3824          __ LoadGlobalObject(x12);
3825          __ Mov(x11, Operand(var->name()));
3826          __ Push(x12, x11);
3827          __ CallRuntime(Runtime::kDeleteProperty_Sloppy);
3828          context()->Plug(x0);
3829        } else if (var->IsStackAllocated() || var->IsContextSlot()) {
3830          // Result of deleting non-global, non-dynamic variables is false.
3831          // The subexpression does not have side effects.
3832          context()->Plug(is_this);
3833        } else {
3834          // Non-global variable.  Call the runtime to try to delete from the
3835          // context where the variable was introduced.
3836          __ Mov(x2, Operand(var->name()));
3837          __ Push(context_register(), x2);
3838          __ CallRuntime(Runtime::kDeleteLookupSlot);
3839          context()->Plug(x0);
3840        }
3841      } else {
3842        // Result of deleting non-property, non-variable reference is true.
3843        // The subexpression may have side effects.
3844        VisitForEffect(expr->expression());
3845        context()->Plug(true);
3846      }
3847      break;
3848      break;
3849    }
3850    case Token::VOID: {
3851      Comment cmnt(masm_, "[ UnaryOperation (VOID)");
3852      VisitForEffect(expr->expression());
3853      context()->Plug(Heap::kUndefinedValueRootIndex);
3854      break;
3855    }
3856    case Token::NOT: {
3857      Comment cmnt(masm_, "[ UnaryOperation (NOT)");
3858      if (context()->IsEffect()) {
3859        // Unary NOT has no side effects so it's only necessary to visit the
3860        // subexpression.  Match the optimizing compiler by not branching.
3861        VisitForEffect(expr->expression());
3862      } else if (context()->IsTest()) {
3863        const TestContext* test = TestContext::cast(context());
3864        // The labels are swapped for the recursive call.
3865        VisitForControl(expr->expression(),
3866                        test->false_label(),
3867                        test->true_label(),
3868                        test->fall_through());
3869        context()->Plug(test->true_label(), test->false_label());
3870      } else {
3871        DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
3872        // TODO(jbramley): This could be much more efficient using (for
3873        // example) the CSEL instruction.
3874        Label materialize_true, materialize_false, done;
3875        VisitForControl(expr->expression(),
3876                        &materialize_false,
3877                        &materialize_true,
3878                        &materialize_true);
3879
3880        __ Bind(&materialize_true);
3881        PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
3882        __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
3883        __ B(&done);
3884
3885        __ Bind(&materialize_false);
3886        PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
3887        __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
3888        __ B(&done);
3889
3890        __ Bind(&done);
3891        if (context()->IsStackValue()) {
3892          __ Push(result_register());
3893        }
3894      }
3895      break;
3896    }
3897    case Token::TYPEOF: {
3898      Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
3899      {
3900        AccumulatorValueContext context(this);
3901        VisitForTypeofValue(expr->expression());
3902      }
3903      __ Mov(x3, x0);
3904      TypeofStub typeof_stub(isolate());
3905      __ CallStub(&typeof_stub);
3906      context()->Plug(x0);
3907      break;
3908    }
3909    default:
3910      UNREACHABLE();
3911  }
3912}
3913
3914
3915void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
3916  DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
3917
3918  Comment cmnt(masm_, "[ CountOperation");
3919
3920  Property* prop = expr->expression()->AsProperty();
3921  LhsKind assign_type = Property::GetAssignType(prop);
3922
3923  // Evaluate expression and get value.
3924  if (assign_type == VARIABLE) {
3925    DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
3926    AccumulatorValueContext context(this);
3927    EmitVariableLoad(expr->expression()->AsVariableProxy());
3928  } else {
3929    // Reserve space for result of postfix operation.
3930    if (expr->is_postfix() && !context()->IsEffect()) {
3931      __ Push(xzr);
3932    }
3933    switch (assign_type) {
3934      case NAMED_PROPERTY: {
3935        // Put the object both on the stack and in the register.
3936        VisitForStackValue(prop->obj());
3937        __ Peek(LoadDescriptor::ReceiverRegister(), 0);
3938        EmitNamedPropertyLoad(prop);
3939        break;
3940      }
3941
3942      case NAMED_SUPER_PROPERTY: {
3943        VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
3944        VisitForAccumulatorValue(
3945            prop->obj()->AsSuperPropertyReference()->home_object());
3946        __ Push(result_register());
3947        const Register scratch = x10;
3948        __ Peek(scratch, kPointerSize);
3949        __ Push(scratch, result_register());
3950        EmitNamedSuperPropertyLoad(prop);
3951        break;
3952      }
3953
3954      case KEYED_SUPER_PROPERTY: {
3955        VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
3956        VisitForStackValue(
3957            prop->obj()->AsSuperPropertyReference()->home_object());
3958        VisitForAccumulatorValue(prop->key());
3959        __ Push(result_register());
3960        const Register scratch1 = x10;
3961        const Register scratch2 = x11;
3962        __ Peek(scratch1, 2 * kPointerSize);
3963        __ Peek(scratch2, kPointerSize);
3964        __ Push(scratch1, scratch2, result_register());
3965        EmitKeyedSuperPropertyLoad(prop);
3966        break;
3967      }
3968
3969      case KEYED_PROPERTY: {
3970        VisitForStackValue(prop->obj());
3971        VisitForStackValue(prop->key());
3972        __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize);
3973        __ Peek(LoadDescriptor::NameRegister(), 0);
3974        EmitKeyedPropertyLoad(prop);
3975        break;
3976      }
3977
3978      case VARIABLE:
3979        UNREACHABLE();
3980    }
3981  }
3982
3983  // We need a second deoptimization point after loading the value
3984  // in case evaluating the property load my have a side effect.
3985  if (assign_type == VARIABLE) {
3986    PrepareForBailout(expr->expression(), TOS_REG);
3987  } else {
3988    PrepareForBailoutForId(prop->LoadId(), TOS_REG);
3989  }
3990
3991  // Inline smi case if we are in a loop.
3992  Label stub_call, done;
3993  JumpPatchSite patch_site(masm_);
3994
3995  int count_value = expr->op() == Token::INC ? 1 : -1;
3996  if (ShouldInlineSmiCase(expr->op())) {
3997    Label slow;
3998    patch_site.EmitJumpIfNotSmi(x0, &slow);
3999
4000    // Save result for postfix expressions.
4001    if (expr->is_postfix()) {
4002      if (!context()->IsEffect()) {
4003        // Save the result on the stack. If we have a named or keyed property we
4004        // store the result under the receiver that is currently on top of the
4005        // stack.
4006        switch (assign_type) {
4007          case VARIABLE:
4008            __ Push(x0);
4009            break;
4010          case NAMED_PROPERTY:
4011            __ Poke(x0, kPointerSize);
4012            break;
4013          case NAMED_SUPER_PROPERTY:
4014            __ Poke(x0, kPointerSize * 2);
4015            break;
4016          case KEYED_PROPERTY:
4017            __ Poke(x0, kPointerSize * 2);
4018            break;
4019          case KEYED_SUPER_PROPERTY:
4020            __ Poke(x0, kPointerSize * 3);
4021            break;
4022        }
4023      }
4024    }
4025
4026    __ Adds(x0, x0, Smi::FromInt(count_value));
4027    __ B(vc, &done);
4028    // Call stub. Undo operation first.
4029    __ Sub(x0, x0, Smi::FromInt(count_value));
4030    __ B(&stub_call);
4031    __ Bind(&slow);
4032  }
4033  if (!is_strong(language_mode())) {
4034    ToNumberStub convert_stub(isolate());
4035    __ CallStub(&convert_stub);
4036    PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
4037  }
4038
4039  // Save result for postfix expressions.
4040  if (expr->is_postfix()) {
4041    if (!context()->IsEffect()) {
4042      // Save the result on the stack. If we have a named or keyed property
4043      // we store the result under the receiver that is currently on top
4044      // of the stack.
4045      switch (assign_type) {
4046        case VARIABLE:
4047          __ Push(x0);
4048          break;
4049        case NAMED_PROPERTY:
4050          __ Poke(x0, kXRegSize);
4051          break;
4052        case NAMED_SUPER_PROPERTY:
4053          __ Poke(x0, 2 * kXRegSize);
4054          break;
4055        case KEYED_PROPERTY:
4056          __ Poke(x0, 2 * kXRegSize);
4057          break;
4058        case KEYED_SUPER_PROPERTY:
4059          __ Poke(x0, 3 * kXRegSize);
4060          break;
4061      }
4062    }
4063  }
4064
4065  __ Bind(&stub_call);
4066  __ Mov(x1, x0);
4067  __ Mov(x0, Smi::FromInt(count_value));
4068
4069  SetExpressionPosition(expr);
4070
4071  {
4072    Assembler::BlockPoolsScope scope(masm_);
4073    Handle<Code> code =
4074        CodeFactory::BinaryOpIC(isolate(), Token::ADD,
4075                                strength(language_mode())).code();
4076    CallIC(code, expr->CountBinOpFeedbackId());
4077    patch_site.EmitPatchInfo();
4078  }
4079  __ Bind(&done);
4080
4081  if (is_strong(language_mode())) {
4082    PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
4083  }
4084  // Store the value returned in x0.
4085  switch (assign_type) {
4086    case VARIABLE:
4087      if (expr->is_postfix()) {
4088        { EffectContext context(this);
4089          EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4090                                 Token::ASSIGN, expr->CountSlot());
4091          PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4092          context.Plug(x0);
4093        }
4094        // For all contexts except EffectConstant We have the result on
4095        // top of the stack.
4096        if (!context()->IsEffect()) {
4097          context()->PlugTOS();
4098        }
4099      } else {
4100        EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4101                               Token::ASSIGN, expr->CountSlot());
4102        PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4103        context()->Plug(x0);
4104      }
4105      break;
4106    case NAMED_PROPERTY: {
4107      __ Mov(StoreDescriptor::NameRegister(),
4108             Operand(prop->key()->AsLiteral()->value()));
4109      __ Pop(StoreDescriptor::ReceiverRegister());
4110      EmitLoadStoreICSlot(expr->CountSlot());
4111      CallStoreIC();
4112      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4113      if (expr->is_postfix()) {
4114        if (!context()->IsEffect()) {
4115          context()->PlugTOS();
4116        }
4117      } else {
4118        context()->Plug(x0);
4119      }
4120      break;
4121    }
4122    case NAMED_SUPER_PROPERTY: {
4123      EmitNamedSuperPropertyStore(prop);
4124      if (expr->is_postfix()) {
4125        if (!context()->IsEffect()) {
4126          context()->PlugTOS();
4127        }
4128      } else {
4129        context()->Plug(x0);
4130      }
4131      break;
4132    }
4133    case KEYED_SUPER_PROPERTY: {
4134      EmitKeyedSuperPropertyStore(prop);
4135      if (expr->is_postfix()) {
4136        if (!context()->IsEffect()) {
4137          context()->PlugTOS();
4138        }
4139      } else {
4140        context()->Plug(x0);
4141      }
4142      break;
4143    }
4144    case KEYED_PROPERTY: {
4145      __ Pop(StoreDescriptor::NameRegister());
4146      __ Pop(StoreDescriptor::ReceiverRegister());
4147      Handle<Code> ic =
4148          CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
4149      EmitLoadStoreICSlot(expr->CountSlot());
4150      CallIC(ic);
4151      PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4152      if (expr->is_postfix()) {
4153        if (!context()->IsEffect()) {
4154          context()->PlugTOS();
4155        }
4156      } else {
4157        context()->Plug(x0);
4158      }
4159      break;
4160    }
4161  }
4162}
4163
4164
4165void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4166                                                 Expression* sub_expr,
4167                                                 Handle<String> check) {
4168  ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof");
4169  Comment cmnt(masm_, "[ EmitLiteralCompareTypeof");
4170  Label materialize_true, materialize_false;
4171  Label* if_true = NULL;
4172  Label* if_false = NULL;
4173  Label* fall_through = NULL;
4174  context()->PrepareTest(&materialize_true, &materialize_false,
4175                         &if_true, &if_false, &fall_through);
4176
4177  { AccumulatorValueContext context(this);
4178    VisitForTypeofValue(sub_expr);
4179  }
4180  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4181
4182  Factory* factory = isolate()->factory();
4183  if (String::Equals(check, factory->number_string())) {
4184    ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof number_string");
4185    __ JumpIfSmi(x0, if_true);
4186    __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
4187    __ CompareRoot(x0, Heap::kHeapNumberMapRootIndex);
4188    Split(eq, if_true, if_false, fall_through);
4189  } else if (String::Equals(check, factory->string_string())) {
4190    ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof string_string");
4191    __ JumpIfSmi(x0, if_false);
4192    __ CompareObjectType(x0, x0, x1, FIRST_NONSTRING_TYPE);
4193    Split(lt, if_true, if_false, fall_through);
4194  } else if (String::Equals(check, factory->symbol_string())) {
4195    ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof symbol_string");
4196    __ JumpIfSmi(x0, if_false);
4197    __ CompareObjectType(x0, x0, x1, SYMBOL_TYPE);
4198    Split(eq, if_true, if_false, fall_through);
4199  } else if (String::Equals(check, factory->boolean_string())) {
4200    ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof boolean_string");
4201    __ JumpIfRoot(x0, Heap::kTrueValueRootIndex, if_true);
4202    __ CompareRoot(x0, Heap::kFalseValueRootIndex);
4203    Split(eq, if_true, if_false, fall_through);
4204  } else if (String::Equals(check, factory->undefined_string())) {
4205    ASM_LOCATION(
4206        "FullCodeGenerator::EmitLiteralCompareTypeof undefined_string");
4207    __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, if_true);
4208    __ JumpIfSmi(x0, if_false);
4209    // Check for undetectable objects => true.
4210    __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
4211    __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset));
4212    __ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_false, if_true,
4213                    fall_through);
4214  } else if (String::Equals(check, factory->function_string())) {
4215    ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof function_string");
4216    __ JumpIfSmi(x0, if_false);
4217    __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
4218    __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset));
4219    __ And(x1, x1, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
4220    __ CompareAndSplit(x1, Operand(1 << Map::kIsCallable), eq, if_true,
4221                       if_false, fall_through);
4222  } else if (String::Equals(check, factory->object_string())) {
4223    ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof object_string");
4224    __ JumpIfSmi(x0, if_false);
4225    __ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true);
4226    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
4227    __ JumpIfObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE, if_false, lt);
4228    // Check for callable or undetectable objects => false.
4229    __ Ldrb(x10, FieldMemOperand(x10, Map::kBitFieldOffset));
4230    __ TestAndSplit(x10, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable),
4231                    if_true, if_false, fall_through);
4232// clang-format off
4233#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)   \
4234  } else if (String::Equals(check, factory->type##_string())) { \
4235    ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof " \
4236                 #type "_string");                              \
4237    __ JumpIfSmi(x0, if_true);                                  \
4238    __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));    \
4239    __ CompareRoot(x0, Heap::k##Type##MapRootIndex);            \
4240    Split(eq, if_true, if_false, fall_through);
4241  SIMD128_TYPES(SIMD128_TYPE)
4242#undef SIMD128_TYPE
4243    // clang-format on
4244  } else {
4245    ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof other");
4246    if (if_false != fall_through) __ B(if_false);
4247  }
4248  context()->Plug(if_true, if_false);
4249}
4250
4251
4252void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4253  Comment cmnt(masm_, "[ CompareOperation");
4254  SetExpressionPosition(expr);
4255
4256  // Try to generate an optimized comparison with a literal value.
4257  // TODO(jbramley): This only checks common values like NaN or undefined.
4258  // Should it also handle ARM64 immediate operands?
4259  if (TryLiteralCompare(expr)) {
4260    return;
4261  }
4262
4263  // Assign labels according to context()->PrepareTest.
4264  Label materialize_true;
4265  Label materialize_false;
4266  Label* if_true = NULL;
4267  Label* if_false = NULL;
4268  Label* fall_through = NULL;
4269  context()->PrepareTest(&materialize_true, &materialize_false,
4270                         &if_true, &if_false, &fall_through);
4271
4272  Token::Value op = expr->op();
4273  VisitForStackValue(expr->left());
4274  switch (op) {
4275    case Token::IN:
4276      VisitForStackValue(expr->right());
4277      __ CallRuntime(Runtime::kHasProperty);
4278      PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4279      __ CompareRoot(x0, Heap::kTrueValueRootIndex);
4280      Split(eq, if_true, if_false, fall_through);
4281      break;
4282
4283    case Token::INSTANCEOF: {
4284      VisitForAccumulatorValue(expr->right());
4285      __ Pop(x1);
4286      InstanceOfStub stub(isolate());
4287      __ CallStub(&stub);
4288      PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4289      __ CompareRoot(x0, Heap::kTrueValueRootIndex);
4290      Split(eq, if_true, if_false, fall_through);
4291      break;
4292    }
4293
4294    default: {
4295      VisitForAccumulatorValue(expr->right());
4296      Condition cond = CompareIC::ComputeCondition(op);
4297
4298      // Pop the stack value.
4299      __ Pop(x1);
4300
4301      JumpPatchSite patch_site(masm_);
4302      if (ShouldInlineSmiCase(op)) {
4303        Label slow_case;
4304        patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case);
4305        __ Cmp(x1, x0);
4306        Split(cond, if_true, if_false, NULL);
4307        __ Bind(&slow_case);
4308      }
4309
4310      Handle<Code> ic = CodeFactory::CompareIC(
4311                            isolate(), op, strength(language_mode())).code();
4312      CallIC(ic, expr->CompareOperationFeedbackId());
4313      patch_site.EmitPatchInfo();
4314      PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4315      __ CompareAndSplit(x0, 0, cond, if_true, if_false, fall_through);
4316    }
4317  }
4318
4319  // Convert the result of the comparison into one expected for this
4320  // expression's context.
4321  context()->Plug(if_true, if_false);
4322}
4323
4324
4325void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4326                                              Expression* sub_expr,
4327                                              NilValue nil) {
4328  ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareNil");
4329  Label materialize_true, materialize_false;
4330  Label* if_true = NULL;
4331  Label* if_false = NULL;
4332  Label* fall_through = NULL;
4333  context()->PrepareTest(&materialize_true, &materialize_false,
4334                         &if_true, &if_false, &fall_through);
4335
4336  VisitForAccumulatorValue(sub_expr);
4337  PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4338
4339  if (expr->op() == Token::EQ_STRICT) {
4340    Heap::RootListIndex nil_value = nil == kNullValue ?
4341        Heap::kNullValueRootIndex :
4342        Heap::kUndefinedValueRootIndex;
4343    __ CompareRoot(x0, nil_value);
4344    Split(eq, if_true, if_false, fall_through);
4345  } else {
4346    Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
4347    CallIC(ic, expr->CompareOperationFeedbackId());
4348    __ CompareRoot(x0, Heap::kTrueValueRootIndex);
4349    Split(eq, if_true, if_false, fall_through);
4350  }
4351
4352  context()->Plug(if_true, if_false);
4353}
4354
4355
4356void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4357  __ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4358  context()->Plug(x0);
4359}
4360
4361
4362void FullCodeGenerator::VisitYield(Yield* expr) {
4363  Comment cmnt(masm_, "[ Yield");
4364  SetExpressionPosition(expr);
4365
4366  // Evaluate yielded value first; the initial iterator definition depends on
4367  // this. It stays on the stack while we update the iterator.
4368  VisitForStackValue(expr->expression());
4369
4370  // TODO(jbramley): Tidy this up once the merge is done, using named registers
4371  // and suchlike. The implementation changes a little by bleeding_edge so I
4372  // don't want to spend too much time on it now.
4373
4374  switch (expr->yield_kind()) {
4375    case Yield::kSuspend:
4376      // Pop value from top-of-stack slot; box result into result register.
4377      EmitCreateIteratorResult(false);
4378      __ Push(result_register());
4379      // Fall through.
4380    case Yield::kInitial: {
4381      Label suspend, continuation, post_runtime, resume;
4382
4383      __ B(&suspend);
4384      // TODO(jbramley): This label is bound here because the following code
4385      // looks at its pos(). Is it possible to do something more efficient here,
4386      // perhaps using Adr?
4387      __ Bind(&continuation);
4388      __ RecordGeneratorContinuation();
4389      __ B(&resume);
4390
4391      __ Bind(&suspend);
4392      VisitForAccumulatorValue(expr->generator_object());
4393      DCHECK((continuation.pos() > 0) && Smi::IsValid(continuation.pos()));
4394      __ Mov(x1, Smi::FromInt(continuation.pos()));
4395      __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset));
4396      __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset));
4397      __ Mov(x1, cp);
4398      __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2,
4399                          kLRHasBeenSaved, kDontSaveFPRegs);
4400      __ Add(x1, fp, StandardFrameConstants::kExpressionsOffset);
4401      __ Cmp(__ StackPointer(), x1);
4402      __ B(eq, &post_runtime);
4403      __ Push(x0);  // generator object
4404      __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
4405      __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4406      __ Bind(&post_runtime);
4407      __ Pop(result_register());
4408      EmitReturnSequence();
4409
4410      __ Bind(&resume);
4411      context()->Plug(result_register());
4412      break;
4413    }
4414
4415    case Yield::kFinal: {
4416      VisitForAccumulatorValue(expr->generator_object());
4417      __ Mov(x1, Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
4418      __ Str(x1, FieldMemOperand(result_register(),
4419                                 JSGeneratorObject::kContinuationOffset));
4420      // Pop value from top-of-stack slot, box result into result register.
4421      EmitCreateIteratorResult(true);
4422      EmitUnwindBeforeReturn();
4423      EmitReturnSequence();
4424      break;
4425    }
4426
4427    case Yield::kDelegating: {
4428      VisitForStackValue(expr->generator_object());
4429
4430      // Initial stack layout is as follows:
4431      // [sp + 1 * kPointerSize] iter
4432      // [sp + 0 * kPointerSize] g
4433
4434      Label l_catch, l_try, l_suspend, l_continuation, l_resume;
4435      Label l_next, l_call, l_loop;
4436      Register load_receiver = LoadDescriptor::ReceiverRegister();
4437      Register load_name = LoadDescriptor::NameRegister();
4438
4439      // Initial send value is undefined.
4440      __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
4441      __ B(&l_next);
4442
4443      // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
4444      __ Bind(&l_catch);
4445      __ LoadRoot(load_name, Heap::kthrow_stringRootIndex);  // "throw"
4446      __ Peek(x3, 1 * kPointerSize);                         // iter
4447      __ Push(load_name, x3, x0);                       // "throw", iter, except
4448      __ B(&l_call);
4449
4450      // try { received = %yield result }
4451      // Shuffle the received result above a try handler and yield it without
4452      // re-boxing.
4453      __ Bind(&l_try);
4454      __ Pop(x0);                                        // result
4455      int handler_index = NewHandlerTableEntry();
4456      EnterTryBlock(handler_index, &l_catch);
4457      const int try_block_size = TryCatch::kElementCount * kPointerSize;
4458      __ Push(x0);                                       // result
4459
4460      __ B(&l_suspend);
4461      // TODO(jbramley): This label is bound here because the following code
4462      // looks at its pos(). Is it possible to do something more efficient here,
4463      // perhaps using Adr?
4464      __ Bind(&l_continuation);
4465      __ RecordGeneratorContinuation();
4466      __ B(&l_resume);
4467
4468      __ Bind(&l_suspend);
4469      const int generator_object_depth = kPointerSize + try_block_size;
4470      __ Peek(x0, generator_object_depth);
4471      __ Push(x0);                                       // g
4472      __ Push(Smi::FromInt(handler_index));              // handler-index
4473      DCHECK((l_continuation.pos() > 0) && Smi::IsValid(l_continuation.pos()));
4474      __ Mov(x1, Smi::FromInt(l_continuation.pos()));
4475      __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset));
4476      __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset));
4477      __ Mov(x1, cp);
4478      __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2,
4479                          kLRHasBeenSaved, kDontSaveFPRegs);
4480      __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2);
4481      __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4482      __ Pop(x0);                                        // result
4483      EmitReturnSequence();
4484      __ Bind(&l_resume);                                // received in x0
4485      ExitTryBlock(handler_index);
4486
4487      // receiver = iter; f = 'next'; arg = received;
4488      __ Bind(&l_next);
4489
4490      __ LoadRoot(load_name, Heap::knext_stringRootIndex);  // "next"
4491      __ Peek(x3, 1 * kPointerSize);                        // iter
4492      __ Push(load_name, x3, x0);                      // "next", iter, received
4493
4494      // result = receiver[f](arg);
4495      __ Bind(&l_call);
4496      __ Peek(load_receiver, 1 * kPointerSize);
4497      __ Peek(load_name, 2 * kPointerSize);
4498      __ Mov(LoadDescriptor::SlotRegister(),
4499             SmiFromSlot(expr->KeyedLoadFeedbackSlot()));
4500      Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code();
4501      CallIC(ic, TypeFeedbackId::None());
4502      __ Mov(x1, x0);
4503      __ Poke(x1, 2 * kPointerSize);
4504      SetCallPosition(expr);
4505      __ Mov(x0, 1);
4506      __ Call(
4507          isolate()->builtins()->Call(ConvertReceiverMode::kNotNullOrUndefined),
4508          RelocInfo::CODE_TARGET);
4509
4510      __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4511      __ Drop(1);  // The function is still on the stack; drop it.
4512
4513      // if (!result.done) goto l_try;
4514      __ Bind(&l_loop);
4515      __ Move(load_receiver, x0);
4516
4517      __ Push(load_receiver);                               // save result
4518      __ LoadRoot(load_name, Heap::kdone_stringRootIndex);  // "done"
4519      __ Mov(LoadDescriptor::SlotRegister(),
4520             SmiFromSlot(expr->DoneFeedbackSlot()));
4521      CallLoadIC(NOT_INSIDE_TYPEOF);  // x0=result.done
4522      // The ToBooleanStub argument (result.done) is in x0.
4523      Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
4524      CallIC(bool_ic);
4525      __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
4526      __ B(ne, &l_try);
4527
4528      // result.value
4529      __ Pop(load_receiver);                                 // result
4530      __ LoadRoot(load_name, Heap::kvalue_stringRootIndex);  // "value"
4531      __ Mov(LoadDescriptor::SlotRegister(),
4532             SmiFromSlot(expr->ValueFeedbackSlot()));
4533      CallLoadIC(NOT_INSIDE_TYPEOF);                         // x0=result.value
4534      context()->DropAndPlug(2, x0);                         // drop iter and g
4535      break;
4536    }
4537  }
4538}
4539
4540
4541void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
4542    Expression *value,
4543    JSGeneratorObject::ResumeMode resume_mode) {
4544  ASM_LOCATION("FullCodeGenerator::EmitGeneratorResume");
4545  Register generator_object = x1;
4546  Register the_hole = x2;
4547  Register operand_stack_size = w3;
4548  Register function = x4;
4549
4550  // The value stays in x0, and is ultimately read by the resumed generator, as
4551  // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
4552  // is read to throw the value when the resumed generator is already closed. x1
4553  // will hold the generator object until the activation has been resumed.
4554  VisitForStackValue(generator);
4555  VisitForAccumulatorValue(value);
4556  __ Pop(generator_object);
4557
4558  // Load suspended function and context.
4559  __ Ldr(cp, FieldMemOperand(generator_object,
4560                             JSGeneratorObject::kContextOffset));
4561  __ Ldr(function, FieldMemOperand(generator_object,
4562                                   JSGeneratorObject::kFunctionOffset));
4563
4564  // Load receiver and store as the first argument.
4565  __ Ldr(x10, FieldMemOperand(generator_object,
4566                              JSGeneratorObject::kReceiverOffset));
4567  __ Push(x10);
4568
4569  // Push holes for the rest of the arguments to the generator function.
4570  __ Ldr(x10, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
4571
4572  // The number of arguments is stored as an int32_t, and -1 is a marker
4573  // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
4574  // extension to correctly handle it. However, in this case, we operate on
4575  // 32-bit W registers, so extension isn't required.
4576  __ Ldr(w10, FieldMemOperand(x10,
4577                              SharedFunctionInfo::kFormalParameterCountOffset));
4578  __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
4579  __ PushMultipleTimes(the_hole, w10);
4580
4581  // Enter a new JavaScript frame, and initialize its slots as they were when
4582  // the generator was suspended.
4583  Label resume_frame, done;
4584  __ Bl(&resume_frame);
4585  __ B(&done);
4586
4587  __ Bind(&resume_frame);
4588  __ Push(lr,           // Return address.
4589          fp,           // Caller's frame pointer.
4590          cp,           // Callee's context.
4591          function);    // Callee's JS Function.
4592  __ Add(fp, __ StackPointer(), kPointerSize * 2);
4593
4594  // Load and untag the operand stack size.
4595  __ Ldr(x10, FieldMemOperand(generator_object,
4596                              JSGeneratorObject::kOperandStackOffset));
4597  __ Ldr(operand_stack_size,
4598         UntagSmiFieldMemOperand(x10, FixedArray::kLengthOffset));
4599
4600  // If we are sending a value and there is no operand stack, we can jump back
4601  // in directly.
4602  if (resume_mode == JSGeneratorObject::NEXT) {
4603    Label slow_resume;
4604    __ Cbnz(operand_stack_size, &slow_resume);
4605    __ Ldr(x10, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4606    __ Ldrsw(x11,
4607             UntagSmiFieldMemOperand(generator_object,
4608                                     JSGeneratorObject::kContinuationOffset));
4609    __ Add(x10, x10, x11);
4610    __ Mov(x12, Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
4611    __ Str(x12, FieldMemOperand(generator_object,
4612                                JSGeneratorObject::kContinuationOffset));
4613    __ Br(x10);
4614
4615    __ Bind(&slow_resume);
4616  }
4617
4618  // Otherwise, we push holes for the operand stack and call the runtime to fix
4619  // up the stack and the handlers.
4620  __ PushMultipleTimes(the_hole, operand_stack_size);
4621
4622  __ Mov(x10, Smi::FromInt(resume_mode));
4623  __ Push(generator_object, result_register(), x10);
4624  __ CallRuntime(Runtime::kResumeJSGeneratorObject);
4625  // Not reached: the runtime call returns elsewhere.
4626  __ Unreachable();
4627
4628  __ Bind(&done);
4629  context()->Plug(result_register());
4630}
4631
4632
4633void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
4634  Label allocate, done_allocate;
4635
4636  // Allocate and populate an object with this form: { value: VAL, done: DONE }
4637
4638  Register result = x0;
4639  __ Allocate(JSIteratorResult::kSize, result, x10, x11, &allocate, TAG_OBJECT);
4640  __ B(&done_allocate);
4641
4642  __ Bind(&allocate);
4643  __ Push(Smi::FromInt(JSIteratorResult::kSize));
4644  __ CallRuntime(Runtime::kAllocateInNewSpace);
4645
4646  __ Bind(&done_allocate);
4647  Register map_reg = x1;
4648  Register result_value = x2;
4649  Register boolean_done = x3;
4650  Register empty_fixed_array = x4;
4651  Register untagged_result = x5;
4652  __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, map_reg);
4653  __ Pop(result_value);
4654  __ LoadRoot(boolean_done,
4655              done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
4656  __ LoadRoot(empty_fixed_array, Heap::kEmptyFixedArrayRootIndex);
4657  STATIC_ASSERT(JSObject::kPropertiesOffset + kPointerSize ==
4658                JSObject::kElementsOffset);
4659  STATIC_ASSERT(JSIteratorResult::kValueOffset + kPointerSize ==
4660                JSIteratorResult::kDoneOffset);
4661  __ ObjectUntag(untagged_result, result);
4662  __ Str(map_reg, MemOperand(untagged_result, HeapObject::kMapOffset));
4663  __ Stp(empty_fixed_array, empty_fixed_array,
4664         MemOperand(untagged_result, JSObject::kPropertiesOffset));
4665  __ Stp(result_value, boolean_done,
4666         MemOperand(untagged_result, JSIteratorResult::kValueOffset));
4667  STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
4668}
4669
4670
4671// TODO(all): I don't like this method.
4672// It seems to me that in too many places x0 is used in place of this.
4673// Also, this function is not suitable for all places where x0 should be
4674// abstracted (eg. when used as an argument). But some places assume that the
4675// first argument register is x0, and use this function instead.
4676// Considering that most of the register allocation is hard-coded in the
4677// FullCodeGen, that it is unlikely we will need to change it extensively, and
4678// that abstracting the allocation through functions would not yield any
4679// performance benefit, I think the existence of this function is debatable.
4680Register FullCodeGenerator::result_register() {
4681  return x0;
4682}
4683
4684
4685Register FullCodeGenerator::context_register() {
4686  return cp;
4687}
4688
4689
4690void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4691  DCHECK(POINTER_SIZE_ALIGN(frame_offset) == frame_offset);
4692  __ Str(value, MemOperand(fp, frame_offset));
4693}
4694
4695
4696void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4697  __ Ldr(dst, ContextMemOperand(cp, context_index));
4698}
4699
4700
4701void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4702  Scope* closure_scope = scope()->ClosureScope();
4703  if (closure_scope->is_script_scope() ||
4704      closure_scope->is_module_scope()) {
4705    // Contexts nested in the native context have a canonical empty function
4706    // as their closure, not the anonymous closure containing the global
4707    // code.
4708    DCHECK(kSmiTag == 0);
4709    __ LoadNativeContextSlot(Context::CLOSURE_INDEX, x10);
4710  } else if (closure_scope->is_eval_scope()) {
4711    // Contexts created by a call to eval have the same closure as the
4712    // context calling eval, not the anonymous closure containing the eval
4713    // code.  Fetch it from the context.
4714    __ Ldr(x10, ContextMemOperand(cp, Context::CLOSURE_INDEX));
4715  } else {
4716    DCHECK(closure_scope->is_function_scope());
4717    __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4718  }
4719  __ Push(x10);
4720}
4721
4722
4723void FullCodeGenerator::EnterFinallyBlock() {
4724  ASM_LOCATION("FullCodeGenerator::EnterFinallyBlock");
4725  DCHECK(!result_register().is(x10));
4726  // Preserve the result register while executing finally block.
4727  // Also cook the return address in lr to the stack (smi encoded Code* delta).
4728  __ Sub(x10, lr, Operand(masm_->CodeObject()));
4729  __ SmiTag(x10);
4730  __ Push(result_register(), x10);
4731
4732  // Store pending message while executing finally block.
4733  ExternalReference pending_message_obj =
4734      ExternalReference::address_of_pending_message_obj(isolate());
4735  __ Mov(x10, pending_message_obj);
4736  __ Ldr(x10, MemOperand(x10));
4737  __ Push(x10);
4738
4739  ClearPendingMessage();
4740}
4741
4742
4743void FullCodeGenerator::ExitFinallyBlock() {
4744  ASM_LOCATION("FullCodeGenerator::ExitFinallyBlock");
4745  DCHECK(!result_register().is(x10));
4746
4747  // Restore pending message from stack.
4748  __ Pop(x10);
4749  ExternalReference pending_message_obj =
4750      ExternalReference::address_of_pending_message_obj(isolate());
4751  __ Mov(x13, pending_message_obj);
4752  __ Str(x10, MemOperand(x13));
4753
4754  // Restore result register and cooked return address from the stack.
4755  __ Pop(x10, result_register());
4756
4757  // Uncook the return address (see EnterFinallyBlock).
4758  __ SmiUntag(x10);
4759  __ Add(x11, x10, Operand(masm_->CodeObject()));
4760  __ Br(x11);
4761}
4762
4763
4764void FullCodeGenerator::ClearPendingMessage() {
4765  DCHECK(!result_register().is(x10));
4766  ExternalReference pending_message_obj =
4767      ExternalReference::address_of_pending_message_obj(isolate());
4768  __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
4769  __ Mov(x13, pending_message_obj);
4770  __ Str(x10, MemOperand(x13));
4771}
4772
4773
4774void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorSlot slot) {
4775  DCHECK(!slot.IsInvalid());
4776  __ Mov(VectorStoreICTrampolineDescriptor::SlotRegister(), SmiFromSlot(slot));
4777}
4778
4779
4780#undef __
4781
4782
4783void BackEdgeTable::PatchAt(Code* unoptimized_code,
4784                            Address pc,
4785                            BackEdgeState target_state,
4786                            Code* replacement_code) {
4787  // Turn the jump into a nop.
4788  Address branch_address = pc - 3 * kInstructionSize;
4789  Isolate* isolate = unoptimized_code->GetIsolate();
4790  PatchingAssembler patcher(isolate, branch_address, 1);
4791
4792  DCHECK(Instruction::Cast(branch_address)
4793             ->IsNop(Assembler::INTERRUPT_CODE_NOP) ||
4794         (Instruction::Cast(branch_address)->IsCondBranchImm() &&
4795          Instruction::Cast(branch_address)->ImmPCOffset() ==
4796              6 * kInstructionSize));
4797
4798  switch (target_state) {
4799    case INTERRUPT:
4800      //  <decrement profiling counter>
4801      //  .. .. .. ..       b.pl ok
4802      //  .. .. .. ..       ldr x16, pc+<interrupt stub address>
4803      //  .. .. .. ..       blr x16
4804      //  ... more instructions.
4805      //  ok-label
4806      // Jump offset is 6 instructions.
4807      patcher.b(6, pl);
4808      break;
4809    case ON_STACK_REPLACEMENT:
4810    case OSR_AFTER_STACK_CHECK:
4811      //  <decrement profiling counter>
4812      //  .. .. .. ..       mov x0, x0 (NOP)
4813      //  .. .. .. ..       ldr x16, pc+<on-stack replacement address>
4814      //  .. .. .. ..       blr x16
4815      patcher.nop(Assembler::INTERRUPT_CODE_NOP);
4816      break;
4817  }
4818
4819  // Replace the call address.
4820  Instruction* load = Instruction::Cast(pc)->preceding(2);
4821  Address interrupt_address_pointer =
4822      reinterpret_cast<Address>(load) + load->ImmPCOffset();
4823  DCHECK((Memory::uint64_at(interrupt_address_pointer) ==
4824          reinterpret_cast<uint64_t>(
4825              isolate->builtins()->OnStackReplacement()->entry())) ||
4826         (Memory::uint64_at(interrupt_address_pointer) ==
4827          reinterpret_cast<uint64_t>(
4828              isolate->builtins()->InterruptCheck()->entry())) ||
4829         (Memory::uint64_at(interrupt_address_pointer) ==
4830          reinterpret_cast<uint64_t>(
4831              isolate->builtins()->OsrAfterStackCheck()->entry())) ||
4832         (Memory::uint64_at(interrupt_address_pointer) ==
4833          reinterpret_cast<uint64_t>(
4834              isolate->builtins()->OnStackReplacement()->entry())));
4835  Memory::uint64_at(interrupt_address_pointer) =
4836      reinterpret_cast<uint64_t>(replacement_code->entry());
4837
4838  unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
4839      unoptimized_code, reinterpret_cast<Address>(load), replacement_code);
4840}
4841
4842
4843BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
4844    Isolate* isolate,
4845    Code* unoptimized_code,
4846    Address pc) {
4847  // TODO(jbramley): There should be some extra assertions here (as in the ARM
4848  // back-end), but this function is gone in bleeding_edge so it might not
4849  // matter anyway.
4850  Instruction* jump_or_nop = Instruction::Cast(pc)->preceding(3);
4851
4852  if (jump_or_nop->IsNop(Assembler::INTERRUPT_CODE_NOP)) {
4853    Instruction* load = Instruction::Cast(pc)->preceding(2);
4854    uint64_t entry = Memory::uint64_at(reinterpret_cast<Address>(load) +
4855                                       load->ImmPCOffset());
4856    if (entry == reinterpret_cast<uint64_t>(
4857        isolate->builtins()->OnStackReplacement()->entry())) {
4858      return ON_STACK_REPLACEMENT;
4859    } else if (entry == reinterpret_cast<uint64_t>(
4860        isolate->builtins()->OsrAfterStackCheck()->entry())) {
4861      return OSR_AFTER_STACK_CHECK;
4862    } else {
4863      UNREACHABLE();
4864    }
4865  }
4866
4867  return INTERRUPT;
4868}
4869
4870
4871}  // namespace internal
4872}  // namespace v8
4873
4874#endif  // V8_TARGET_ARCH_ARM64
4875