1/*
2 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/modules/audio_coding/neteq/neteq_impl.h"
12
13#include <assert.h>
14#include <memory.h>  // memset
15
16#include <algorithm>
17
18#include "webrtc/base/checks.h"
19#include "webrtc/base/logging.h"
20#include "webrtc/base/safe_conversions.h"
21#include "webrtc/base/trace_event.h"
22#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
23#include "webrtc/modules/audio_coding/codecs/audio_decoder.h"
24#include "webrtc/modules/audio_coding/neteq/accelerate.h"
25#include "webrtc/modules/audio_coding/neteq/background_noise.h"
26#include "webrtc/modules/audio_coding/neteq/buffer_level_filter.h"
27#include "webrtc/modules/audio_coding/neteq/comfort_noise.h"
28#include "webrtc/modules/audio_coding/neteq/decision_logic.h"
29#include "webrtc/modules/audio_coding/neteq/decoder_database.h"
30#include "webrtc/modules/audio_coding/neteq/defines.h"
31#include "webrtc/modules/audio_coding/neteq/delay_manager.h"
32#include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h"
33#include "webrtc/modules/audio_coding/neteq/dtmf_buffer.h"
34#include "webrtc/modules/audio_coding/neteq/dtmf_tone_generator.h"
35#include "webrtc/modules/audio_coding/neteq/expand.h"
36#include "webrtc/modules/audio_coding/neteq/merge.h"
37#include "webrtc/modules/audio_coding/neteq/nack.h"
38#include "webrtc/modules/audio_coding/neteq/normal.h"
39#include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
40#include "webrtc/modules/audio_coding/neteq/packet.h"
41#include "webrtc/modules/audio_coding/neteq/payload_splitter.h"
42#include "webrtc/modules/audio_coding/neteq/post_decode_vad.h"
43#include "webrtc/modules/audio_coding/neteq/preemptive_expand.h"
44#include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
45#include "webrtc/modules/audio_coding/neteq/timestamp_scaler.h"
46#include "webrtc/modules/include/module_common_types.h"
47#include "webrtc/system_wrappers/include/critical_section_wrapper.h"
48
49// Modify the code to obtain backwards bit-exactness. Once bit-exactness is no
50// longer required, this #define should be removed (and the code that it
51// enables).
52#define LEGACY_BITEXACT
53
54namespace webrtc {
55
56NetEqImpl::NetEqImpl(const NetEq::Config& config,
57                     BufferLevelFilter* buffer_level_filter,
58                     DecoderDatabase* decoder_database,
59                     DelayManager* delay_manager,
60                     DelayPeakDetector* delay_peak_detector,
61                     DtmfBuffer* dtmf_buffer,
62                     DtmfToneGenerator* dtmf_tone_generator,
63                     PacketBuffer* packet_buffer,
64                     PayloadSplitter* payload_splitter,
65                     TimestampScaler* timestamp_scaler,
66                     AccelerateFactory* accelerate_factory,
67                     ExpandFactory* expand_factory,
68                     PreemptiveExpandFactory* preemptive_expand_factory,
69                     bool create_components)
70    : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
71      buffer_level_filter_(buffer_level_filter),
72      decoder_database_(decoder_database),
73      delay_manager_(delay_manager),
74      delay_peak_detector_(delay_peak_detector),
75      dtmf_buffer_(dtmf_buffer),
76      dtmf_tone_generator_(dtmf_tone_generator),
77      packet_buffer_(packet_buffer),
78      payload_splitter_(payload_splitter),
79      timestamp_scaler_(timestamp_scaler),
80      vad_(new PostDecodeVad()),
81      expand_factory_(expand_factory),
82      accelerate_factory_(accelerate_factory),
83      preemptive_expand_factory_(preemptive_expand_factory),
84      last_mode_(kModeNormal),
85      decoded_buffer_length_(kMaxFrameSize),
86      decoded_buffer_(new int16_t[decoded_buffer_length_]),
87      playout_timestamp_(0),
88      new_codec_(false),
89      timestamp_(0),
90      reset_decoder_(false),
91      current_rtp_payload_type_(0xFF),      // Invalid RTP payload type.
92      current_cng_rtp_payload_type_(0xFF),  // Invalid RTP payload type.
93      ssrc_(0),
94      first_packet_(true),
95      error_code_(0),
96      decoder_error_code_(0),
97      background_noise_mode_(config.background_noise_mode),
98      playout_mode_(config.playout_mode),
99      enable_fast_accelerate_(config.enable_fast_accelerate),
100      nack_enabled_(false) {
101  LOG(LS_INFO) << "NetEq config: " << config.ToString();
102  int fs = config.sample_rate_hz;
103  if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) {
104    LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " <<
105        "Changing to 8000 Hz.";
106    fs = 8000;
107  }
108  fs_hz_ = fs;
109  fs_mult_ = fs / 8000;
110  last_output_sample_rate_hz_ = fs;
111  output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
112  decoder_frame_length_ = 3 * output_size_samples_;
113  WebRtcSpl_Init();
114  if (create_components) {
115    SetSampleRateAndChannels(fs, 1);  // Default is 1 channel.
116  }
117  RTC_DCHECK(!vad_->enabled());
118  if (config.enable_post_decode_vad) {
119    vad_->Enable();
120  }
121}
122
123NetEqImpl::~NetEqImpl() = default;
124
125int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header,
126                            rtc::ArrayView<const uint8_t> payload,
127                            uint32_t receive_timestamp) {
128  TRACE_EVENT0("webrtc", "NetEqImpl::InsertPacket");
129  CriticalSectionScoped lock(crit_sect_.get());
130  int error =
131      InsertPacketInternal(rtp_header, payload, receive_timestamp, false);
132  if (error != 0) {
133    error_code_ = error;
134    return kFail;
135  }
136  return kOK;
137}
138
139int NetEqImpl::InsertSyncPacket(const WebRtcRTPHeader& rtp_header,
140                                uint32_t receive_timestamp) {
141  CriticalSectionScoped lock(crit_sect_.get());
142  const uint8_t kSyncPayload[] = { 's', 'y', 'n', 'c' };
143  int error =
144      InsertPacketInternal(rtp_header, kSyncPayload, receive_timestamp, true);
145
146  if (error != 0) {
147    error_code_ = error;
148    return kFail;
149  }
150  return kOK;
151}
152
153int NetEqImpl::GetAudio(size_t max_length, int16_t* output_audio,
154                        size_t* samples_per_channel, size_t* num_channels,
155                        NetEqOutputType* type) {
156  TRACE_EVENT0("webrtc", "NetEqImpl::GetAudio");
157  CriticalSectionScoped lock(crit_sect_.get());
158  int error = GetAudioInternal(max_length, output_audio, samples_per_channel,
159                               num_channels);
160  if (error != 0) {
161    error_code_ = error;
162    return kFail;
163  }
164  if (type) {
165    *type = LastOutputType();
166  }
167  last_output_sample_rate_hz_ =
168      rtc::checked_cast<int>(*samples_per_channel * 100);
169  RTC_DCHECK(last_output_sample_rate_hz_ == 8000 ||
170             last_output_sample_rate_hz_ == 16000 ||
171             last_output_sample_rate_hz_ == 32000 ||
172             last_output_sample_rate_hz_ == 48000)
173      << "Unexpected sample rate " << last_output_sample_rate_hz_;
174  return kOK;
175}
176
177int NetEqImpl::RegisterPayloadType(NetEqDecoder codec,
178                                   const std::string& name,
179                                   uint8_t rtp_payload_type) {
180  CriticalSectionScoped lock(crit_sect_.get());
181  LOG(LS_VERBOSE) << "RegisterPayloadType "
182                  << static_cast<int>(rtp_payload_type) << " "
183                  << static_cast<int>(codec);
184  int ret = decoder_database_->RegisterPayload(rtp_payload_type, codec, name);
185  if (ret != DecoderDatabase::kOK) {
186    switch (ret) {
187      case DecoderDatabase::kInvalidRtpPayloadType:
188        error_code_ = kInvalidRtpPayloadType;
189        break;
190      case DecoderDatabase::kCodecNotSupported:
191        error_code_ = kCodecNotSupported;
192        break;
193      case DecoderDatabase::kDecoderExists:
194        error_code_ = kDecoderExists;
195        break;
196      default:
197        error_code_ = kOtherError;
198    }
199    return kFail;
200  }
201  return kOK;
202}
203
204int NetEqImpl::RegisterExternalDecoder(AudioDecoder* decoder,
205                                       NetEqDecoder codec,
206                                       const std::string& codec_name,
207                                       uint8_t rtp_payload_type,
208                                       int sample_rate_hz) {
209  CriticalSectionScoped lock(crit_sect_.get());
210  LOG(LS_VERBOSE) << "RegisterExternalDecoder "
211                  << static_cast<int>(rtp_payload_type) << " "
212                  << static_cast<int>(codec);
213  if (!decoder) {
214    LOG(LS_ERROR) << "Cannot register external decoder with NULL pointer";
215    assert(false);
216    return kFail;
217  }
218  int ret = decoder_database_->InsertExternal(
219      rtp_payload_type, codec, codec_name, sample_rate_hz, decoder);
220  if (ret != DecoderDatabase::kOK) {
221    switch (ret) {
222      case DecoderDatabase::kInvalidRtpPayloadType:
223        error_code_ = kInvalidRtpPayloadType;
224        break;
225      case DecoderDatabase::kCodecNotSupported:
226        error_code_ = kCodecNotSupported;
227        break;
228      case DecoderDatabase::kDecoderExists:
229        error_code_ = kDecoderExists;
230        break;
231      case DecoderDatabase::kInvalidSampleRate:
232        error_code_ = kInvalidSampleRate;
233        break;
234      case DecoderDatabase::kInvalidPointer:
235        error_code_ = kInvalidPointer;
236        break;
237      default:
238        error_code_ = kOtherError;
239    }
240    return kFail;
241  }
242  return kOK;
243}
244
245int NetEqImpl::RemovePayloadType(uint8_t rtp_payload_type) {
246  CriticalSectionScoped lock(crit_sect_.get());
247  int ret = decoder_database_->Remove(rtp_payload_type);
248  if (ret == DecoderDatabase::kOK) {
249    return kOK;
250  } else if (ret == DecoderDatabase::kDecoderNotFound) {
251    error_code_ = kDecoderNotFound;
252  } else {
253    error_code_ = kOtherError;
254  }
255  return kFail;
256}
257
258bool NetEqImpl::SetMinimumDelay(int delay_ms) {
259  CriticalSectionScoped lock(crit_sect_.get());
260  if (delay_ms >= 0 && delay_ms < 10000) {
261    assert(delay_manager_.get());
262    return delay_manager_->SetMinimumDelay(delay_ms);
263  }
264  return false;
265}
266
267bool NetEqImpl::SetMaximumDelay(int delay_ms) {
268  CriticalSectionScoped lock(crit_sect_.get());
269  if (delay_ms >= 0 && delay_ms < 10000) {
270    assert(delay_manager_.get());
271    return delay_manager_->SetMaximumDelay(delay_ms);
272  }
273  return false;
274}
275
276int NetEqImpl::LeastRequiredDelayMs() const {
277  CriticalSectionScoped lock(crit_sect_.get());
278  assert(delay_manager_.get());
279  return delay_manager_->least_required_delay_ms();
280}
281
282int NetEqImpl::SetTargetDelay() {
283  return kNotImplemented;
284}
285
286int NetEqImpl::TargetDelay() {
287  return kNotImplemented;
288}
289
290int NetEqImpl::CurrentDelayMs() const {
291  CriticalSectionScoped lock(crit_sect_.get());
292  if (fs_hz_ == 0)
293    return 0;
294  // Sum up the samples in the packet buffer with the future length of the sync
295  // buffer, and divide the sum by the sample rate.
296  const size_t delay_samples =
297      packet_buffer_->NumSamplesInBuffer(decoder_database_.get(),
298                                         decoder_frame_length_) +
299      sync_buffer_->FutureLength();
300  // The division below will truncate.
301  const int delay_ms =
302      static_cast<int>(delay_samples) / rtc::CheckedDivExact(fs_hz_, 1000);
303  return delay_ms;
304}
305
306// Deprecated.
307// TODO(henrik.lundin) Delete.
308void NetEqImpl::SetPlayoutMode(NetEqPlayoutMode mode) {
309  CriticalSectionScoped lock(crit_sect_.get());
310  if (mode != playout_mode_) {
311    playout_mode_ = mode;
312    CreateDecisionLogic();
313  }
314}
315
316// Deprecated.
317// TODO(henrik.lundin) Delete.
318NetEqPlayoutMode NetEqImpl::PlayoutMode() const {
319  CriticalSectionScoped lock(crit_sect_.get());
320  return playout_mode_;
321}
322
323int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) {
324  CriticalSectionScoped lock(crit_sect_.get());
325  assert(decoder_database_.get());
326  const size_t total_samples_in_buffers =
327      packet_buffer_->NumSamplesInBuffer(decoder_database_.get(),
328                                         decoder_frame_length_) +
329      sync_buffer_->FutureLength();
330  assert(delay_manager_.get());
331  assert(decision_logic_.get());
332  stats_.GetNetworkStatistics(fs_hz_, total_samples_in_buffers,
333                              decoder_frame_length_, *delay_manager_.get(),
334                              *decision_logic_.get(), stats);
335  return 0;
336}
337
338void NetEqImpl::GetRtcpStatistics(RtcpStatistics* stats) {
339  CriticalSectionScoped lock(crit_sect_.get());
340  if (stats) {
341    rtcp_.GetStatistics(false, stats);
342  }
343}
344
345void NetEqImpl::GetRtcpStatisticsNoReset(RtcpStatistics* stats) {
346  CriticalSectionScoped lock(crit_sect_.get());
347  if (stats) {
348    rtcp_.GetStatistics(true, stats);
349  }
350}
351
352void NetEqImpl::EnableVad() {
353  CriticalSectionScoped lock(crit_sect_.get());
354  assert(vad_.get());
355  vad_->Enable();
356}
357
358void NetEqImpl::DisableVad() {
359  CriticalSectionScoped lock(crit_sect_.get());
360  assert(vad_.get());
361  vad_->Disable();
362}
363
364bool NetEqImpl::GetPlayoutTimestamp(uint32_t* timestamp) {
365  CriticalSectionScoped lock(crit_sect_.get());
366  if (first_packet_) {
367    // We don't have a valid RTP timestamp until we have decoded our first
368    // RTP packet.
369    return false;
370  }
371  *timestamp = timestamp_scaler_->ToExternal(playout_timestamp_);
372  return true;
373}
374
375int NetEqImpl::last_output_sample_rate_hz() const {
376  CriticalSectionScoped lock(crit_sect_.get());
377  return last_output_sample_rate_hz_;
378}
379
380int NetEqImpl::SetTargetNumberOfChannels() {
381  return kNotImplemented;
382}
383
384int NetEqImpl::SetTargetSampleRate() {
385  return kNotImplemented;
386}
387
388int NetEqImpl::LastError() const {
389  CriticalSectionScoped lock(crit_sect_.get());
390  return error_code_;
391}
392
393int NetEqImpl::LastDecoderError() {
394  CriticalSectionScoped lock(crit_sect_.get());
395  return decoder_error_code_;
396}
397
398void NetEqImpl::FlushBuffers() {
399  CriticalSectionScoped lock(crit_sect_.get());
400  LOG(LS_VERBOSE) << "FlushBuffers";
401  packet_buffer_->Flush();
402  assert(sync_buffer_.get());
403  assert(expand_.get());
404  sync_buffer_->Flush();
405  sync_buffer_->set_next_index(sync_buffer_->next_index() -
406                               expand_->overlap_length());
407  // Set to wait for new codec.
408  first_packet_ = true;
409}
410
411void NetEqImpl::PacketBufferStatistics(int* current_num_packets,
412                                       int* max_num_packets) const {
413  CriticalSectionScoped lock(crit_sect_.get());
414  packet_buffer_->BufferStat(current_num_packets, max_num_packets);
415}
416
417void NetEqImpl::EnableNack(size_t max_nack_list_size) {
418  CriticalSectionScoped lock(crit_sect_.get());
419  if (!nack_enabled_) {
420    const int kNackThresholdPackets = 2;
421    nack_.reset(Nack::Create(kNackThresholdPackets));
422    nack_enabled_ = true;
423    nack_->UpdateSampleRate(fs_hz_);
424  }
425  nack_->SetMaxNackListSize(max_nack_list_size);
426}
427
428void NetEqImpl::DisableNack() {
429  CriticalSectionScoped lock(crit_sect_.get());
430  nack_.reset();
431  nack_enabled_ = false;
432}
433
434std::vector<uint16_t> NetEqImpl::GetNackList(int64_t round_trip_time_ms) const {
435  CriticalSectionScoped lock(crit_sect_.get());
436  if (!nack_enabled_) {
437    return std::vector<uint16_t>();
438  }
439  RTC_DCHECK(nack_.get());
440  return nack_->GetNackList(round_trip_time_ms);
441}
442
443const SyncBuffer* NetEqImpl::sync_buffer_for_test() const {
444  CriticalSectionScoped lock(crit_sect_.get());
445  return sync_buffer_.get();
446}
447
448// Methods below this line are private.
449
450int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
451                                    rtc::ArrayView<const uint8_t> payload,
452                                    uint32_t receive_timestamp,
453                                    bool is_sync_packet) {
454  if (payload.empty()) {
455    LOG_F(LS_ERROR) << "payload is empty";
456    return kInvalidPointer;
457  }
458  // Sanity checks for sync-packets.
459  if (is_sync_packet) {
460    if (decoder_database_->IsDtmf(rtp_header.header.payloadType) ||
461        decoder_database_->IsRed(rtp_header.header.payloadType) ||
462        decoder_database_->IsComfortNoise(rtp_header.header.payloadType)) {
463      LOG_F(LS_ERROR) << "Sync-packet with an unacceptable payload type "
464                      << static_cast<int>(rtp_header.header.payloadType);
465      return kSyncPacketNotAccepted;
466    }
467    if (first_packet_ ||
468        rtp_header.header.payloadType != current_rtp_payload_type_ ||
469        rtp_header.header.ssrc != ssrc_) {
470      // Even if |current_rtp_payload_type_| is 0xFF, sync-packet isn't
471      // accepted.
472      LOG_F(LS_ERROR)
473          << "Changing codec, SSRC or first packet with sync-packet.";
474      return kSyncPacketNotAccepted;
475    }
476  }
477  PacketList packet_list;
478  RTPHeader main_header;
479  {
480    // Convert to Packet.
481    // Create |packet| within this separate scope, since it should not be used
482    // directly once it's been inserted in the packet list. This way, |packet|
483    // is not defined outside of this block.
484    Packet* packet = new Packet;
485    packet->header.markerBit = false;
486    packet->header.payloadType = rtp_header.header.payloadType;
487    packet->header.sequenceNumber = rtp_header.header.sequenceNumber;
488    packet->header.timestamp = rtp_header.header.timestamp;
489    packet->header.ssrc = rtp_header.header.ssrc;
490    packet->header.numCSRCs = 0;
491    packet->payload_length = payload.size();
492    packet->primary = true;
493    packet->waiting_time = 0;
494    packet->payload = new uint8_t[packet->payload_length];
495    packet->sync_packet = is_sync_packet;
496    if (!packet->payload) {
497      LOG_F(LS_ERROR) << "Payload pointer is NULL.";
498    }
499    assert(!payload.empty());  // Already checked above.
500    memcpy(packet->payload, payload.data(), packet->payload_length);
501    // Insert packet in a packet list.
502    packet_list.push_back(packet);
503    // Save main payloads header for later.
504    memcpy(&main_header, &packet->header, sizeof(main_header));
505  }
506
507  bool update_sample_rate_and_channels = false;
508  // Reinitialize NetEq if it's needed (changed SSRC or first call).
509  if ((main_header.ssrc != ssrc_) || first_packet_) {
510    // Note: |first_packet_| will be cleared further down in this method, once
511    // the packet has been successfully inserted into the packet buffer.
512
513    rtcp_.Init(main_header.sequenceNumber);
514
515    // Flush the packet buffer and DTMF buffer.
516    packet_buffer_->Flush();
517    dtmf_buffer_->Flush();
518
519    // Store new SSRC.
520    ssrc_ = main_header.ssrc;
521
522    // Update audio buffer timestamp.
523    sync_buffer_->IncreaseEndTimestamp(main_header.timestamp - timestamp_);
524
525    // Update codecs.
526    timestamp_ = main_header.timestamp;
527    current_rtp_payload_type_ = main_header.payloadType;
528
529    // Reset timestamp scaling.
530    timestamp_scaler_->Reset();
531
532    // Trigger an update of sampling rate and the number of channels.
533    update_sample_rate_and_channels = true;
534  }
535
536  // Update RTCP statistics, only for regular packets.
537  if (!is_sync_packet)
538    rtcp_.Update(main_header, receive_timestamp);
539
540  // Check for RED payload type, and separate payloads into several packets.
541  if (decoder_database_->IsRed(main_header.payloadType)) {
542    assert(!is_sync_packet);  // We had a sanity check for this.
543    if (payload_splitter_->SplitRed(&packet_list) != PayloadSplitter::kOK) {
544      PacketBuffer::DeleteAllPackets(&packet_list);
545      return kRedundancySplitError;
546    }
547    // Only accept a few RED payloads of the same type as the main data,
548    // DTMF events and CNG.
549    payload_splitter_->CheckRedPayloads(&packet_list, *decoder_database_);
550    // Update the stored main payload header since the main payload has now
551    // changed.
552    memcpy(&main_header, &packet_list.front()->header, sizeof(main_header));
553  }
554
555  // Check payload types.
556  if (decoder_database_->CheckPayloadTypes(packet_list) ==
557      DecoderDatabase::kDecoderNotFound) {
558    PacketBuffer::DeleteAllPackets(&packet_list);
559    return kUnknownRtpPayloadType;
560  }
561
562  // Scale timestamp to internal domain (only for some codecs).
563  timestamp_scaler_->ToInternal(&packet_list);
564
565  // Process DTMF payloads. Cycle through the list of packets, and pick out any
566  // DTMF payloads found.
567  PacketList::iterator it = packet_list.begin();
568  while (it != packet_list.end()) {
569    Packet* current_packet = (*it);
570    assert(current_packet);
571    assert(current_packet->payload);
572    if (decoder_database_->IsDtmf(current_packet->header.payloadType)) {
573      assert(!current_packet->sync_packet);  // We had a sanity check for this.
574      DtmfEvent event;
575      int ret = DtmfBuffer::ParseEvent(
576          current_packet->header.timestamp,
577          current_packet->payload,
578          current_packet->payload_length,
579          &event);
580      if (ret != DtmfBuffer::kOK) {
581        PacketBuffer::DeleteAllPackets(&packet_list);
582        return kDtmfParsingError;
583      }
584      if (dtmf_buffer_->InsertEvent(event) != DtmfBuffer::kOK) {
585        PacketBuffer::DeleteAllPackets(&packet_list);
586        return kDtmfInsertError;
587      }
588      // TODO(hlundin): Let the destructor of Packet handle the payload.
589      delete [] current_packet->payload;
590      delete current_packet;
591      it = packet_list.erase(it);
592    } else {
593      ++it;
594    }
595  }
596
597  // Check for FEC in packets, and separate payloads into several packets.
598  int ret = payload_splitter_->SplitFec(&packet_list, decoder_database_.get());
599  if (ret != PayloadSplitter::kOK) {
600    PacketBuffer::DeleteAllPackets(&packet_list);
601    switch (ret) {
602      case PayloadSplitter::kUnknownPayloadType:
603        return kUnknownRtpPayloadType;
604      default:
605        return kOtherError;
606    }
607  }
608
609  // Split payloads into smaller chunks. This also verifies that all payloads
610  // are of a known payload type. SplitAudio() method is protected against
611  // sync-packets.
612  ret = payload_splitter_->SplitAudio(&packet_list, *decoder_database_);
613  if (ret != PayloadSplitter::kOK) {
614    PacketBuffer::DeleteAllPackets(&packet_list);
615    switch (ret) {
616      case PayloadSplitter::kUnknownPayloadType:
617        return kUnknownRtpPayloadType;
618      case PayloadSplitter::kFrameSplitError:
619        return kFrameSplitError;
620      default:
621        return kOtherError;
622    }
623  }
624
625  // Update bandwidth estimate, if the packet is not sync-packet.
626  if (!packet_list.empty() && !packet_list.front()->sync_packet) {
627    // The list can be empty here if we got nothing but DTMF payloads.
628    AudioDecoder* decoder =
629        decoder_database_->GetDecoder(main_header.payloadType);
630    assert(decoder);  // Should always get a valid object, since we have
631                      // already checked that the payload types are known.
632    decoder->IncomingPacket(packet_list.front()->payload,
633                            packet_list.front()->payload_length,
634                            packet_list.front()->header.sequenceNumber,
635                            packet_list.front()->header.timestamp,
636                            receive_timestamp);
637  }
638
639  if (nack_enabled_) {
640    RTC_DCHECK(nack_);
641    if (update_sample_rate_and_channels) {
642      nack_->Reset();
643    }
644    nack_->UpdateLastReceivedPacket(packet_list.front()->header.sequenceNumber,
645                                    packet_list.front()->header.timestamp);
646  }
647
648  // Insert packets in buffer.
649  const size_t buffer_length_before_insert =
650      packet_buffer_->NumPacketsInBuffer();
651  ret = packet_buffer_->InsertPacketList(
652      &packet_list,
653      *decoder_database_,
654      &current_rtp_payload_type_,
655      &current_cng_rtp_payload_type_);
656  if (ret == PacketBuffer::kFlushed) {
657    // Reset DSP timestamp etc. if packet buffer flushed.
658    new_codec_ = true;
659    update_sample_rate_and_channels = true;
660  } else if (ret != PacketBuffer::kOK) {
661    PacketBuffer::DeleteAllPackets(&packet_list);
662    return kOtherError;
663  }
664
665  if (first_packet_) {
666    first_packet_ = false;
667    // Update the codec on the next GetAudio call.
668    new_codec_ = true;
669  }
670
671  if (current_rtp_payload_type_ != 0xFF) {
672    const DecoderDatabase::DecoderInfo* dec_info =
673        decoder_database_->GetDecoderInfo(current_rtp_payload_type_);
674    if (!dec_info) {
675      assert(false);  // Already checked that the payload type is known.
676    }
677  }
678
679  if (update_sample_rate_and_channels && !packet_buffer_->Empty()) {
680    // We do not use |current_rtp_payload_type_| to |set payload_type|, but
681    // get the next RTP header from |packet_buffer_| to obtain the payload type.
682    // The reason for it is the following corner case. If NetEq receives a
683    // CNG packet with a sample rate different than the current CNG then it
684    // flushes its buffer, assuming send codec must have been changed. However,
685    // payload type of the hypothetically new send codec is not known.
686    const RTPHeader* rtp_header = packet_buffer_->NextRtpHeader();
687    assert(rtp_header);
688    int payload_type = rtp_header->payloadType;
689    AudioDecoder* decoder = decoder_database_->GetDecoder(payload_type);
690    assert(decoder);  // Payloads are already checked to be valid.
691    const DecoderDatabase::DecoderInfo* decoder_info =
692        decoder_database_->GetDecoderInfo(payload_type);
693    assert(decoder_info);
694    if (decoder_info->fs_hz != fs_hz_ ||
695        decoder->Channels() != algorithm_buffer_->Channels()) {
696      SetSampleRateAndChannels(decoder_info->fs_hz, decoder->Channels());
697    }
698    if (nack_enabled_) {
699      RTC_DCHECK(nack_);
700      // Update the sample rate even if the rate is not new, because of Reset().
701      nack_->UpdateSampleRate(fs_hz_);
702    }
703  }
704
705  // TODO(hlundin): Move this code to DelayManager class.
706  const DecoderDatabase::DecoderInfo* dec_info =
707          decoder_database_->GetDecoderInfo(main_header.payloadType);
708  assert(dec_info);  // Already checked that the payload type is known.
709  delay_manager_->LastDecoderType(dec_info->codec_type);
710  if (delay_manager_->last_pack_cng_or_dtmf() == 0) {
711    // Calculate the total speech length carried in each packet.
712    const size_t buffer_length_after_insert =
713        packet_buffer_->NumPacketsInBuffer();
714
715    if (buffer_length_after_insert > buffer_length_before_insert) {
716      const size_t packet_length_samples =
717          (buffer_length_after_insert - buffer_length_before_insert) *
718          decoder_frame_length_;
719      if (packet_length_samples != decision_logic_->packet_length_samples()) {
720        decision_logic_->set_packet_length_samples(packet_length_samples);
721        delay_manager_->SetPacketAudioLength(
722            rtc::checked_cast<int>((1000 * packet_length_samples) / fs_hz_));
723      }
724    }
725
726    // Update statistics.
727    if ((int32_t) (main_header.timestamp - timestamp_) >= 0 &&
728        !new_codec_) {
729      // Only update statistics if incoming packet is not older than last played
730      // out packet, and if new codec flag is not set.
731      delay_manager_->Update(main_header.sequenceNumber, main_header.timestamp,
732                             fs_hz_);
733    }
734  } else if (delay_manager_->last_pack_cng_or_dtmf() == -1) {
735    // This is first "normal" packet after CNG or DTMF.
736    // Reset packet time counter and measure time until next packet,
737    // but don't update statistics.
738    delay_manager_->set_last_pack_cng_or_dtmf(0);
739    delay_manager_->ResetPacketIatCount();
740  }
741  return 0;
742}
743
744int NetEqImpl::GetAudioInternal(size_t max_length,
745                                int16_t* output,
746                                size_t* samples_per_channel,
747                                size_t* num_channels) {
748  PacketList packet_list;
749  DtmfEvent dtmf_event;
750  Operations operation;
751  bool play_dtmf;
752  int return_value = GetDecision(&operation, &packet_list, &dtmf_event,
753                                 &play_dtmf);
754  if (return_value != 0) {
755    last_mode_ = kModeError;
756    return return_value;
757  }
758
759  AudioDecoder::SpeechType speech_type;
760  int length = 0;
761  int decode_return_value = Decode(&packet_list, &operation,
762                                   &length, &speech_type);
763
764  assert(vad_.get());
765  bool sid_frame_available =
766      (operation == kRfc3389Cng && !packet_list.empty());
767  vad_->Update(decoded_buffer_.get(), static_cast<size_t>(length), speech_type,
768               sid_frame_available, fs_hz_);
769
770  algorithm_buffer_->Clear();
771  switch (operation) {
772    case kNormal: {
773      DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf);
774      break;
775    }
776    case kMerge: {
777      DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf);
778      break;
779    }
780    case kExpand: {
781      return_value = DoExpand(play_dtmf);
782      break;
783    }
784    case kAccelerate:
785    case kFastAccelerate: {
786      const bool fast_accelerate =
787          enable_fast_accelerate_ && (operation == kFastAccelerate);
788      return_value = DoAccelerate(decoded_buffer_.get(), length, speech_type,
789                                  play_dtmf, fast_accelerate);
790      break;
791    }
792    case kPreemptiveExpand: {
793      return_value = DoPreemptiveExpand(decoded_buffer_.get(), length,
794                                        speech_type, play_dtmf);
795      break;
796    }
797    case kRfc3389Cng:
798    case kRfc3389CngNoPacket: {
799      return_value = DoRfc3389Cng(&packet_list, play_dtmf);
800      break;
801    }
802    case kCodecInternalCng: {
803      // This handles the case when there is no transmission and the decoder
804      // should produce internal comfort noise.
805      // TODO(hlundin): Write test for codec-internal CNG.
806      DoCodecInternalCng(decoded_buffer_.get(), length);
807      break;
808    }
809    case kDtmf: {
810      // TODO(hlundin): Write test for this.
811      return_value = DoDtmf(dtmf_event, &play_dtmf);
812      break;
813    }
814    case kAlternativePlc: {
815      // TODO(hlundin): Write test for this.
816      DoAlternativePlc(false);
817      break;
818    }
819    case kAlternativePlcIncreaseTimestamp: {
820      // TODO(hlundin): Write test for this.
821      DoAlternativePlc(true);
822      break;
823    }
824    case kAudioRepetitionIncreaseTimestamp: {
825      // TODO(hlundin): Write test for this.
826      sync_buffer_->IncreaseEndTimestamp(
827          static_cast<uint32_t>(output_size_samples_));
828      // Skipping break on purpose. Execution should move on into the
829      // next case.
830      FALLTHROUGH();
831    }
832    case kAudioRepetition: {
833      // TODO(hlundin): Write test for this.
834      // Copy last |output_size_samples_| from |sync_buffer_| to
835      // |algorithm_buffer|.
836      algorithm_buffer_->PushBackFromIndex(
837          *sync_buffer_, sync_buffer_->Size() - output_size_samples_);
838      expand_->Reset();
839      break;
840    }
841    case kUndefined: {
842      LOG(LS_ERROR) << "Invalid operation kUndefined.";
843      assert(false);  // This should not happen.
844      last_mode_ = kModeError;
845      return kInvalidOperation;
846    }
847  }  // End of switch.
848  if (return_value < 0) {
849    return return_value;
850  }
851
852  if (last_mode_ != kModeRfc3389Cng) {
853    comfort_noise_->Reset();
854  }
855
856  // Copy from |algorithm_buffer| to |sync_buffer_|.
857  sync_buffer_->PushBack(*algorithm_buffer_);
858
859  // Extract data from |sync_buffer_| to |output|.
860  size_t num_output_samples_per_channel = output_size_samples_;
861  size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels();
862  if (num_output_samples > max_length) {
863    LOG(LS_WARNING) << "Output array is too short. " << max_length << " < " <<
864        output_size_samples_ << " * " << sync_buffer_->Channels();
865    num_output_samples = max_length;
866    num_output_samples_per_channel = max_length / sync_buffer_->Channels();
867  }
868  const size_t samples_from_sync =
869      sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel,
870                                            output);
871  *num_channels = sync_buffer_->Channels();
872  if (sync_buffer_->FutureLength() < expand_->overlap_length()) {
873    // The sync buffer should always contain |overlap_length| samples, but now
874    // too many samples have been extracted. Reinstall the |overlap_length|
875    // lookahead by moving the index.
876    const size_t missing_lookahead_samples =
877        expand_->overlap_length() - sync_buffer_->FutureLength();
878    RTC_DCHECK_GE(sync_buffer_->next_index(), missing_lookahead_samples);
879    sync_buffer_->set_next_index(sync_buffer_->next_index() -
880                                 missing_lookahead_samples);
881  }
882  if (samples_from_sync != output_size_samples_) {
883    LOG(LS_ERROR) << "samples_from_sync (" << samples_from_sync
884                  << ") != output_size_samples_ (" << output_size_samples_
885                  << ")";
886    // TODO(minyue): treatment of under-run, filling zeros
887    memset(output, 0, num_output_samples * sizeof(int16_t));
888    *samples_per_channel = output_size_samples_;
889    return kSampleUnderrun;
890  }
891  *samples_per_channel = output_size_samples_;
892
893  // Should always have overlap samples left in the |sync_buffer_|.
894  RTC_DCHECK_GE(sync_buffer_->FutureLength(), expand_->overlap_length());
895
896  if (play_dtmf) {
897    return_value = DtmfOverdub(dtmf_event, sync_buffer_->Channels(), output);
898  }
899
900  // Update the background noise parameters if last operation wrote data
901  // straight from the decoder to the |sync_buffer_|. That is, none of the
902  // operations that modify the signal can be followed by a parameter update.
903  if ((last_mode_ == kModeNormal) ||
904      (last_mode_ == kModeAccelerateFail) ||
905      (last_mode_ == kModePreemptiveExpandFail) ||
906      (last_mode_ == kModeRfc3389Cng) ||
907      (last_mode_ == kModeCodecInternalCng)) {
908    background_noise_->Update(*sync_buffer_, *vad_.get());
909  }
910
911  if (operation == kDtmf) {
912    // DTMF data was written the end of |sync_buffer_|.
913    // Update index to end of DTMF data in |sync_buffer_|.
914    sync_buffer_->set_dtmf_index(sync_buffer_->Size());
915  }
916
917  if (last_mode_ != kModeExpand) {
918    // If last operation was not expand, calculate the |playout_timestamp_| from
919    // the |sync_buffer_|. However, do not update the |playout_timestamp_| if it
920    // would be moved "backwards".
921    uint32_t temp_timestamp = sync_buffer_->end_timestamp() -
922        static_cast<uint32_t>(sync_buffer_->FutureLength());
923    if (static_cast<int32_t>(temp_timestamp - playout_timestamp_) > 0) {
924      playout_timestamp_ = temp_timestamp;
925    }
926  } else {
927    // Use dead reckoning to estimate the |playout_timestamp_|.
928    playout_timestamp_ += static_cast<uint32_t>(output_size_samples_);
929  }
930
931  if (decode_return_value) return decode_return_value;
932  return return_value;
933}
934
935int NetEqImpl::GetDecision(Operations* operation,
936                           PacketList* packet_list,
937                           DtmfEvent* dtmf_event,
938                           bool* play_dtmf) {
939  // Initialize output variables.
940  *play_dtmf = false;
941  *operation = kUndefined;
942
943  // Increment time counters.
944  packet_buffer_->IncrementWaitingTimes();
945  stats_.IncreaseCounter(output_size_samples_, fs_hz_);
946
947  assert(sync_buffer_.get());
948  uint32_t end_timestamp = sync_buffer_->end_timestamp();
949  if (!new_codec_) {
950    const uint32_t five_seconds_samples = 5 * fs_hz_;
951    packet_buffer_->DiscardOldPackets(end_timestamp, five_seconds_samples);
952  }
953  const RTPHeader* header = packet_buffer_->NextRtpHeader();
954
955  if (decision_logic_->CngRfc3389On() || last_mode_ == kModeRfc3389Cng) {
956    // Because of timestamp peculiarities, we have to "manually" disallow using
957    // a CNG packet with the same timestamp as the one that was last played.
958    // This can happen when using redundancy and will cause the timing to shift.
959    while (header && decoder_database_->IsComfortNoise(header->payloadType) &&
960           (end_timestamp >= header->timestamp ||
961            end_timestamp + decision_logic_->generated_noise_samples() >
962                header->timestamp)) {
963      // Don't use this packet, discard it.
964      if (packet_buffer_->DiscardNextPacket() != PacketBuffer::kOK) {
965        assert(false);  // Must be ok by design.
966      }
967      // Check buffer again.
968      if (!new_codec_) {
969        packet_buffer_->DiscardOldPackets(end_timestamp, 5 * fs_hz_);
970      }
971      header = packet_buffer_->NextRtpHeader();
972    }
973  }
974
975  assert(expand_.get());
976  const int samples_left = static_cast<int>(sync_buffer_->FutureLength() -
977      expand_->overlap_length());
978  if (last_mode_ == kModeAccelerateSuccess ||
979      last_mode_ == kModeAccelerateLowEnergy ||
980      last_mode_ == kModePreemptiveExpandSuccess ||
981      last_mode_ == kModePreemptiveExpandLowEnergy) {
982    // Subtract (samples_left + output_size_samples_) from sampleMemory.
983    decision_logic_->AddSampleMemory(
984        -(samples_left + rtc::checked_cast<int>(output_size_samples_)));
985  }
986
987  // Check if it is time to play a DTMF event.
988  if (dtmf_buffer_->GetEvent(
989      static_cast<uint32_t>(
990          end_timestamp + decision_logic_->generated_noise_samples()),
991      dtmf_event)) {
992    *play_dtmf = true;
993  }
994
995  // Get instruction.
996  assert(sync_buffer_.get());
997  assert(expand_.get());
998  *operation = decision_logic_->GetDecision(*sync_buffer_,
999                                            *expand_,
1000                                            decoder_frame_length_,
1001                                            header,
1002                                            last_mode_,
1003                                            *play_dtmf,
1004                                            &reset_decoder_);
1005
1006  // Check if we already have enough samples in the |sync_buffer_|. If so,
1007  // change decision to normal, unless the decision was merge, accelerate, or
1008  // preemptive expand.
1009  if (samples_left >= rtc::checked_cast<int>(output_size_samples_) &&
1010      *operation != kMerge &&
1011      *operation != kAccelerate &&
1012      *operation != kFastAccelerate &&
1013      *operation != kPreemptiveExpand) {
1014    *operation = kNormal;
1015    return 0;
1016  }
1017
1018  decision_logic_->ExpandDecision(*operation);
1019
1020  // Check conditions for reset.
1021  if (new_codec_ || *operation == kUndefined) {
1022    // The only valid reason to get kUndefined is that new_codec_ is set.
1023    assert(new_codec_);
1024    if (*play_dtmf && !header) {
1025      timestamp_ = dtmf_event->timestamp;
1026    } else {
1027      if (!header) {
1028        LOG(LS_ERROR) << "Packet missing where it shouldn't.";
1029        return -1;
1030      }
1031      timestamp_ = header->timestamp;
1032      if (*operation == kRfc3389CngNoPacket
1033#ifndef LEGACY_BITEXACT
1034          // Without this check, it can happen that a non-CNG packet is sent to
1035          // the CNG decoder as if it was a SID frame. This is clearly a bug,
1036          // but is kept for now to maintain bit-exactness with the test
1037          // vectors.
1038          && decoder_database_->IsComfortNoise(header->payloadType)
1039#endif
1040      ) {
1041        // Change decision to CNG packet, since we do have a CNG packet, but it
1042        // was considered too early to use. Now, use it anyway.
1043        *operation = kRfc3389Cng;
1044      } else if (*operation != kRfc3389Cng) {
1045        *operation = kNormal;
1046      }
1047    }
1048    // Adjust |sync_buffer_| timestamp before setting |end_timestamp| to the
1049    // new value.
1050    sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp);
1051    end_timestamp = timestamp_;
1052    new_codec_ = false;
1053    decision_logic_->SoftReset();
1054    buffer_level_filter_->Reset();
1055    delay_manager_->Reset();
1056    stats_.ResetMcu();
1057  }
1058
1059  size_t required_samples = output_size_samples_;
1060  const size_t samples_10_ms = static_cast<size_t>(80 * fs_mult_);
1061  const size_t samples_20_ms = 2 * samples_10_ms;
1062  const size_t samples_30_ms = 3 * samples_10_ms;
1063
1064  switch (*operation) {
1065    case kExpand: {
1066      timestamp_ = end_timestamp;
1067      return 0;
1068    }
1069    case kRfc3389CngNoPacket:
1070    case kCodecInternalCng: {
1071      return 0;
1072    }
1073    case kDtmf: {
1074      // TODO(hlundin): Write test for this.
1075      // Update timestamp.
1076      timestamp_ = end_timestamp;
1077      if (decision_logic_->generated_noise_samples() > 0 &&
1078          last_mode_ != kModeDtmf) {
1079        // Make a jump in timestamp due to the recently played comfort noise.
1080        uint32_t timestamp_jump =
1081            static_cast<uint32_t>(decision_logic_->generated_noise_samples());
1082        sync_buffer_->IncreaseEndTimestamp(timestamp_jump);
1083        timestamp_ += timestamp_jump;
1084      }
1085      decision_logic_->set_generated_noise_samples(0);
1086      return 0;
1087    }
1088    case kAccelerate:
1089    case kFastAccelerate: {
1090      // In order to do an accelerate we need at least 30 ms of audio data.
1091      if (samples_left >= static_cast<int>(samples_30_ms)) {
1092        // Already have enough data, so we do not need to extract any more.
1093        decision_logic_->set_sample_memory(samples_left);
1094        decision_logic_->set_prev_time_scale(true);
1095        return 0;
1096      } else if (samples_left >= static_cast<int>(samples_10_ms) &&
1097          decoder_frame_length_ >= samples_30_ms) {
1098        // Avoid decoding more data as it might overflow the playout buffer.
1099        *operation = kNormal;
1100        return 0;
1101      } else if (samples_left < static_cast<int>(samples_20_ms) &&
1102          decoder_frame_length_ < samples_30_ms) {
1103        // Build up decoded data by decoding at least 20 ms of audio data. Do
1104        // not perform accelerate yet, but wait until we only need to do one
1105        // decoding.
1106        required_samples = 2 * output_size_samples_;
1107        *operation = kNormal;
1108      }
1109      // If none of the above is true, we have one of two possible situations:
1110      // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or
1111      // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms.
1112      // In either case, we move on with the accelerate decision, and decode one
1113      // frame now.
1114      break;
1115    }
1116    case kPreemptiveExpand: {
1117      // In order to do a preemptive expand we need at least 30 ms of decoded
1118      // audio data.
1119      if ((samples_left >= static_cast<int>(samples_30_ms)) ||
1120          (samples_left >= static_cast<int>(samples_10_ms) &&
1121              decoder_frame_length_ >= samples_30_ms)) {
1122        // Already have enough data, so we do not need to extract any more.
1123        // Or, avoid decoding more data as it might overflow the playout buffer.
1124        // Still try preemptive expand, though.
1125        decision_logic_->set_sample_memory(samples_left);
1126        decision_logic_->set_prev_time_scale(true);
1127        return 0;
1128      }
1129      if (samples_left < static_cast<int>(samples_20_ms) &&
1130          decoder_frame_length_ < samples_30_ms) {
1131        // Build up decoded data by decoding at least 20 ms of audio data.
1132        // Still try to perform preemptive expand.
1133        required_samples = 2 * output_size_samples_;
1134      }
1135      // Move on with the preemptive expand decision.
1136      break;
1137    }
1138    case kMerge: {
1139      required_samples =
1140          std::max(merge_->RequiredFutureSamples(), required_samples);
1141      break;
1142    }
1143    default: {
1144      // Do nothing.
1145    }
1146  }
1147
1148  // Get packets from buffer.
1149  int extracted_samples = 0;
1150  if (header &&
1151      *operation != kAlternativePlc &&
1152      *operation != kAlternativePlcIncreaseTimestamp &&
1153      *operation != kAudioRepetition &&
1154      *operation != kAudioRepetitionIncreaseTimestamp) {
1155    sync_buffer_->IncreaseEndTimestamp(header->timestamp - end_timestamp);
1156    if (decision_logic_->CngOff()) {
1157      // Adjustment of timestamp only corresponds to an actual packet loss
1158      // if comfort noise is not played. If comfort noise was just played,
1159      // this adjustment of timestamp is only done to get back in sync with the
1160      // stream timestamp; no loss to report.
1161      stats_.LostSamples(header->timestamp - end_timestamp);
1162    }
1163
1164    if (*operation != kRfc3389Cng) {
1165      // We are about to decode and use a non-CNG packet.
1166      decision_logic_->SetCngOff();
1167    }
1168    // Reset CNG timestamp as a new packet will be delivered.
1169    // (Also if this is a CNG packet, since playedOutTS is updated.)
1170    decision_logic_->set_generated_noise_samples(0);
1171
1172    extracted_samples = ExtractPackets(required_samples, packet_list);
1173    if (extracted_samples < 0) {
1174      return kPacketBufferCorruption;
1175    }
1176  }
1177
1178  if (*operation == kAccelerate || *operation == kFastAccelerate ||
1179      *operation == kPreemptiveExpand) {
1180    decision_logic_->set_sample_memory(samples_left + extracted_samples);
1181    decision_logic_->set_prev_time_scale(true);
1182  }
1183
1184  if (*operation == kAccelerate || *operation == kFastAccelerate) {
1185    // Check that we have enough data (30ms) to do accelerate.
1186    if (extracted_samples + samples_left < static_cast<int>(samples_30_ms)) {
1187      // TODO(hlundin): Write test for this.
1188      // Not enough, do normal operation instead.
1189      *operation = kNormal;
1190    }
1191  }
1192
1193  timestamp_ = end_timestamp;
1194  return 0;
1195}
1196
1197int NetEqImpl::Decode(PacketList* packet_list, Operations* operation,
1198                      int* decoded_length,
1199                      AudioDecoder::SpeechType* speech_type) {
1200  *speech_type = AudioDecoder::kSpeech;
1201
1202  // When packet_list is empty, we may be in kCodecInternalCng mode, and for
1203  // that we use current active decoder.
1204  AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1205
1206  if (!packet_list->empty()) {
1207    const Packet* packet = packet_list->front();
1208    uint8_t payload_type = packet->header.payloadType;
1209    if (!decoder_database_->IsComfortNoise(payload_type)) {
1210      decoder = decoder_database_->GetDecoder(payload_type);
1211      assert(decoder);
1212      if (!decoder) {
1213        LOG(LS_WARNING) << "Unknown payload type "
1214                        << static_cast<int>(payload_type);
1215        PacketBuffer::DeleteAllPackets(packet_list);
1216        return kDecoderNotFound;
1217      }
1218      bool decoder_changed;
1219      decoder_database_->SetActiveDecoder(payload_type, &decoder_changed);
1220      if (decoder_changed) {
1221        // We have a new decoder. Re-init some values.
1222        const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_
1223            ->GetDecoderInfo(payload_type);
1224        assert(decoder_info);
1225        if (!decoder_info) {
1226          LOG(LS_WARNING) << "Unknown payload type "
1227                          << static_cast<int>(payload_type);
1228          PacketBuffer::DeleteAllPackets(packet_list);
1229          return kDecoderNotFound;
1230        }
1231        // If sampling rate or number of channels has changed, we need to make
1232        // a reset.
1233        if (decoder_info->fs_hz != fs_hz_ ||
1234            decoder->Channels() != algorithm_buffer_->Channels()) {
1235          // TODO(tlegrand): Add unittest to cover this event.
1236          SetSampleRateAndChannels(decoder_info->fs_hz, decoder->Channels());
1237        }
1238        sync_buffer_->set_end_timestamp(timestamp_);
1239        playout_timestamp_ = timestamp_;
1240      }
1241    }
1242  }
1243
1244  if (reset_decoder_) {
1245    // TODO(hlundin): Write test for this.
1246    if (decoder)
1247      decoder->Reset();
1248
1249    // Reset comfort noise decoder.
1250    AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1251    if (cng_decoder)
1252      cng_decoder->Reset();
1253
1254    reset_decoder_ = false;
1255  }
1256
1257#ifdef LEGACY_BITEXACT
1258  // Due to a bug in old SignalMCU, it could happen that CNG operation was
1259  // decided, but a speech packet was provided. The speech packet will be used
1260  // to update the comfort noise decoder, as if it was a SID frame, which is
1261  // clearly wrong.
1262  if (*operation == kRfc3389Cng) {
1263    return 0;
1264  }
1265#endif
1266
1267  *decoded_length = 0;
1268  // Update codec-internal PLC state.
1269  if ((*operation == kMerge) && decoder && decoder->HasDecodePlc()) {
1270    decoder->DecodePlc(1, &decoded_buffer_[*decoded_length]);
1271  }
1272
1273  int return_value;
1274  if (*operation == kCodecInternalCng) {
1275    RTC_DCHECK(packet_list->empty());
1276    return_value = DecodeCng(decoder, decoded_length, speech_type);
1277  } else {
1278    return_value = DecodeLoop(packet_list, *operation, decoder,
1279                              decoded_length, speech_type);
1280  }
1281
1282  if (*decoded_length < 0) {
1283    // Error returned from the decoder.
1284    *decoded_length = 0;
1285    sync_buffer_->IncreaseEndTimestamp(
1286        static_cast<uint32_t>(decoder_frame_length_));
1287    int error_code = 0;
1288    if (decoder)
1289      error_code = decoder->ErrorCode();
1290    if (error_code != 0) {
1291      // Got some error code from the decoder.
1292      decoder_error_code_ = error_code;
1293      return_value = kDecoderErrorCode;
1294      LOG(LS_WARNING) << "Decoder returned error code: " << error_code;
1295    } else {
1296      // Decoder does not implement error codes. Return generic error.
1297      return_value = kOtherDecoderError;
1298      LOG(LS_WARNING) << "Decoder error (no error code)";
1299    }
1300    *operation = kExpand;  // Do expansion to get data instead.
1301  }
1302  if (*speech_type != AudioDecoder::kComfortNoise) {
1303    // Don't increment timestamp if codec returned CNG speech type
1304    // since in this case, the we will increment the CNGplayedTS counter.
1305    // Increase with number of samples per channel.
1306    assert(*decoded_length == 0 ||
1307           (decoder && decoder->Channels() == sync_buffer_->Channels()));
1308    sync_buffer_->IncreaseEndTimestamp(
1309        *decoded_length / static_cast<int>(sync_buffer_->Channels()));
1310  }
1311  return return_value;
1312}
1313
1314int NetEqImpl::DecodeCng(AudioDecoder* decoder, int* decoded_length,
1315                         AudioDecoder::SpeechType* speech_type) {
1316  if (!decoder) {
1317    // This happens when active decoder is not defined.
1318    *decoded_length = -1;
1319    return 0;
1320  }
1321
1322  while (*decoded_length < rtc::checked_cast<int>(output_size_samples_)) {
1323    const int length = decoder->Decode(
1324            nullptr, 0, fs_hz_,
1325            (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
1326            &decoded_buffer_[*decoded_length], speech_type);
1327    if (length > 0) {
1328      *decoded_length += length;
1329    } else {
1330      // Error.
1331      LOG(LS_WARNING) << "Failed to decode CNG";
1332      *decoded_length = -1;
1333      break;
1334    }
1335    if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
1336      // Guard against overflow.
1337      LOG(LS_WARNING) << "Decoded too much CNG.";
1338      return kDecodedTooMuch;
1339    }
1340  }
1341  return 0;
1342}
1343
1344int NetEqImpl::DecodeLoop(PacketList* packet_list, const Operations& operation,
1345                          AudioDecoder* decoder, int* decoded_length,
1346                          AudioDecoder::SpeechType* speech_type) {
1347  Packet* packet = NULL;
1348  if (!packet_list->empty()) {
1349    packet = packet_list->front();
1350  }
1351
1352  // Do decoding.
1353  while (packet &&
1354      !decoder_database_->IsComfortNoise(packet->header.payloadType)) {
1355    assert(decoder);  // At this point, we must have a decoder object.
1356    // The number of channels in the |sync_buffer_| should be the same as the
1357    // number decoder channels.
1358    assert(sync_buffer_->Channels() == decoder->Channels());
1359    assert(decoded_buffer_length_ >= kMaxFrameSize * decoder->Channels());
1360    assert(operation == kNormal || operation == kAccelerate ||
1361           operation == kFastAccelerate || operation == kMerge ||
1362           operation == kPreemptiveExpand);
1363    packet_list->pop_front();
1364    size_t payload_length = packet->payload_length;
1365    int decode_length;
1366    if (packet->sync_packet) {
1367      // Decode to silence with the same frame size as the last decode.
1368      memset(&decoded_buffer_[*decoded_length], 0,
1369             decoder_frame_length_ * decoder->Channels() *
1370                 sizeof(decoded_buffer_[0]));
1371      decode_length = rtc::checked_cast<int>(decoder_frame_length_);
1372    } else if (!packet->primary) {
1373      // This is a redundant payload; call the special decoder method.
1374      decode_length = decoder->DecodeRedundant(
1375          packet->payload, packet->payload_length, fs_hz_,
1376          (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
1377          &decoded_buffer_[*decoded_length], speech_type);
1378    } else {
1379      decode_length =
1380          decoder->Decode(
1381              packet->payload, packet->payload_length, fs_hz_,
1382              (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
1383              &decoded_buffer_[*decoded_length], speech_type);
1384    }
1385
1386    delete[] packet->payload;
1387    delete packet;
1388    packet = NULL;
1389    if (decode_length > 0) {
1390      *decoded_length += decode_length;
1391      // Update |decoder_frame_length_| with number of samples per channel.
1392      decoder_frame_length_ =
1393          static_cast<size_t>(decode_length) / decoder->Channels();
1394    } else if (decode_length < 0) {
1395      // Error.
1396      LOG(LS_WARNING) << "Decode " << decode_length << " " << payload_length;
1397      *decoded_length = -1;
1398      PacketBuffer::DeleteAllPackets(packet_list);
1399      break;
1400    }
1401    if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
1402      // Guard against overflow.
1403      LOG(LS_WARNING) << "Decoded too much.";
1404      PacketBuffer::DeleteAllPackets(packet_list);
1405      return kDecodedTooMuch;
1406    }
1407    if (!packet_list->empty()) {
1408      packet = packet_list->front();
1409    } else {
1410      packet = NULL;
1411    }
1412  }  // End of decode loop.
1413
1414  // If the list is not empty at this point, either a decoding error terminated
1415  // the while-loop, or list must hold exactly one CNG packet.
1416  assert(packet_list->empty() || *decoded_length < 0 ||
1417         (packet_list->size() == 1 && packet &&
1418             decoder_database_->IsComfortNoise(packet->header.payloadType)));
1419  return 0;
1420}
1421
1422void NetEqImpl::DoNormal(const int16_t* decoded_buffer, size_t decoded_length,
1423                         AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1424  assert(normal_.get());
1425  assert(mute_factor_array_.get());
1426  normal_->Process(decoded_buffer, decoded_length, last_mode_,
1427                   mute_factor_array_.get(), algorithm_buffer_.get());
1428  if (decoded_length != 0) {
1429    last_mode_ = kModeNormal;
1430  }
1431
1432  // If last packet was decoded as an inband CNG, set mode to CNG instead.
1433  if ((speech_type == AudioDecoder::kComfortNoise)
1434      || ((last_mode_ == kModeCodecInternalCng)
1435          && (decoded_length == 0))) {
1436    // TODO(hlundin): Remove second part of || statement above.
1437    last_mode_ = kModeCodecInternalCng;
1438  }
1439
1440  if (!play_dtmf) {
1441    dtmf_tone_generator_->Reset();
1442  }
1443}
1444
1445void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length,
1446                        AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1447  assert(mute_factor_array_.get());
1448  assert(merge_.get());
1449  size_t new_length = merge_->Process(decoded_buffer, decoded_length,
1450                                      mute_factor_array_.get(),
1451                                      algorithm_buffer_.get());
1452  size_t expand_length_correction = new_length -
1453      decoded_length / algorithm_buffer_->Channels();
1454
1455  // Update in-call and post-call statistics.
1456  if (expand_->MuteFactor(0) == 0) {
1457    // Expand generates only noise.
1458    stats_.ExpandedNoiseSamples(expand_length_correction);
1459  } else {
1460    // Expansion generates more than only noise.
1461    stats_.ExpandedVoiceSamples(expand_length_correction);
1462  }
1463
1464  last_mode_ = kModeMerge;
1465  // If last packet was decoded as an inband CNG, set mode to CNG instead.
1466  if (speech_type == AudioDecoder::kComfortNoise) {
1467    last_mode_ = kModeCodecInternalCng;
1468  }
1469  expand_->Reset();
1470  if (!play_dtmf) {
1471    dtmf_tone_generator_->Reset();
1472  }
1473}
1474
1475int NetEqImpl::DoExpand(bool play_dtmf) {
1476  while ((sync_buffer_->FutureLength() - expand_->overlap_length()) <
1477      output_size_samples_) {
1478    algorithm_buffer_->Clear();
1479    int return_value = expand_->Process(algorithm_buffer_.get());
1480    size_t length = algorithm_buffer_->Size();
1481
1482    // Update in-call and post-call statistics.
1483    if (expand_->MuteFactor(0) == 0) {
1484      // Expand operation generates only noise.
1485      stats_.ExpandedNoiseSamples(length);
1486    } else {
1487      // Expand operation generates more than only noise.
1488      stats_.ExpandedVoiceSamples(length);
1489    }
1490
1491    last_mode_ = kModeExpand;
1492
1493    if (return_value < 0) {
1494      return return_value;
1495    }
1496
1497    sync_buffer_->PushBack(*algorithm_buffer_);
1498    algorithm_buffer_->Clear();
1499  }
1500  if (!play_dtmf) {
1501    dtmf_tone_generator_->Reset();
1502  }
1503  return 0;
1504}
1505
1506int NetEqImpl::DoAccelerate(int16_t* decoded_buffer,
1507                            size_t decoded_length,
1508                            AudioDecoder::SpeechType speech_type,
1509                            bool play_dtmf,
1510                            bool fast_accelerate) {
1511  const size_t required_samples =
1512      static_cast<size_t>(240 * fs_mult_);  // Must have 30 ms.
1513  size_t borrowed_samples_per_channel = 0;
1514  size_t num_channels = algorithm_buffer_->Channels();
1515  size_t decoded_length_per_channel = decoded_length / num_channels;
1516  if (decoded_length_per_channel < required_samples) {
1517    // Must move data from the |sync_buffer_| in order to get 30 ms.
1518    borrowed_samples_per_channel = static_cast<int>(required_samples -
1519        decoded_length_per_channel);
1520    memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1521            decoded_buffer,
1522            sizeof(int16_t) * decoded_length);
1523    sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1524                                         decoded_buffer);
1525    decoded_length = required_samples * num_channels;
1526  }
1527
1528  size_t samples_removed;
1529  Accelerate::ReturnCodes return_code =
1530      accelerate_->Process(decoded_buffer, decoded_length, fast_accelerate,
1531                           algorithm_buffer_.get(), &samples_removed);
1532  stats_.AcceleratedSamples(samples_removed);
1533  switch (return_code) {
1534    case Accelerate::kSuccess:
1535      last_mode_ = kModeAccelerateSuccess;
1536      break;
1537    case Accelerate::kSuccessLowEnergy:
1538      last_mode_ = kModeAccelerateLowEnergy;
1539      break;
1540    case Accelerate::kNoStretch:
1541      last_mode_ = kModeAccelerateFail;
1542      break;
1543    case Accelerate::kError:
1544      // TODO(hlundin): Map to kModeError instead?
1545      last_mode_ = kModeAccelerateFail;
1546      return kAccelerateError;
1547  }
1548
1549  if (borrowed_samples_per_channel > 0) {
1550    // Copy borrowed samples back to the |sync_buffer_|.
1551    size_t length = algorithm_buffer_->Size();
1552    if (length < borrowed_samples_per_channel) {
1553      // This destroys the beginning of the buffer, but will not cause any
1554      // problems.
1555      sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
1556                                   sync_buffer_->Size() -
1557                                   borrowed_samples_per_channel);
1558      sync_buffer_->PushFrontZeros(borrowed_samples_per_channel - length);
1559      algorithm_buffer_->PopFront(length);
1560      assert(algorithm_buffer_->Empty());
1561    } else {
1562      sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
1563                                   borrowed_samples_per_channel,
1564                                   sync_buffer_->Size() -
1565                                   borrowed_samples_per_channel);
1566      algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1567    }
1568  }
1569
1570  // If last packet was decoded as an inband CNG, set mode to CNG instead.
1571  if (speech_type == AudioDecoder::kComfortNoise) {
1572    last_mode_ = kModeCodecInternalCng;
1573  }
1574  if (!play_dtmf) {
1575    dtmf_tone_generator_->Reset();
1576  }
1577  expand_->Reset();
1578  return 0;
1579}
1580
1581int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer,
1582                                  size_t decoded_length,
1583                                  AudioDecoder::SpeechType speech_type,
1584                                  bool play_dtmf) {
1585  const size_t required_samples =
1586      static_cast<size_t>(240 * fs_mult_);  // Must have 30 ms.
1587  size_t num_channels = algorithm_buffer_->Channels();
1588  size_t borrowed_samples_per_channel = 0;
1589  size_t old_borrowed_samples_per_channel = 0;
1590  size_t decoded_length_per_channel = decoded_length / num_channels;
1591  if (decoded_length_per_channel < required_samples) {
1592    // Must move data from the |sync_buffer_| in order to get 30 ms.
1593    borrowed_samples_per_channel =
1594        required_samples - decoded_length_per_channel;
1595    // Calculate how many of these were already played out.
1596    old_borrowed_samples_per_channel =
1597        (borrowed_samples_per_channel > sync_buffer_->FutureLength()) ?
1598        (borrowed_samples_per_channel - sync_buffer_->FutureLength()) : 0;
1599    memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1600            decoded_buffer,
1601            sizeof(int16_t) * decoded_length);
1602    sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1603                                         decoded_buffer);
1604    decoded_length = required_samples * num_channels;
1605  }
1606
1607  size_t samples_added;
1608  PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process(
1609      decoded_buffer, decoded_length,
1610      old_borrowed_samples_per_channel,
1611      algorithm_buffer_.get(), &samples_added);
1612  stats_.PreemptiveExpandedSamples(samples_added);
1613  switch (return_code) {
1614    case PreemptiveExpand::kSuccess:
1615      last_mode_ = kModePreemptiveExpandSuccess;
1616      break;
1617    case PreemptiveExpand::kSuccessLowEnergy:
1618      last_mode_ = kModePreemptiveExpandLowEnergy;
1619      break;
1620    case PreemptiveExpand::kNoStretch:
1621      last_mode_ = kModePreemptiveExpandFail;
1622      break;
1623    case PreemptiveExpand::kError:
1624      // TODO(hlundin): Map to kModeError instead?
1625      last_mode_ = kModePreemptiveExpandFail;
1626      return kPreemptiveExpandError;
1627  }
1628
1629  if (borrowed_samples_per_channel > 0) {
1630    // Copy borrowed samples back to the |sync_buffer_|.
1631    sync_buffer_->ReplaceAtIndex(
1632        *algorithm_buffer_, borrowed_samples_per_channel,
1633        sync_buffer_->Size() - borrowed_samples_per_channel);
1634    algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1635  }
1636
1637  // If last packet was decoded as an inband CNG, set mode to CNG instead.
1638  if (speech_type == AudioDecoder::kComfortNoise) {
1639    last_mode_ = kModeCodecInternalCng;
1640  }
1641  if (!play_dtmf) {
1642    dtmf_tone_generator_->Reset();
1643  }
1644  expand_->Reset();
1645  return 0;
1646}
1647
1648int NetEqImpl::DoRfc3389Cng(PacketList* packet_list, bool play_dtmf) {
1649  if (!packet_list->empty()) {
1650    // Must have exactly one SID frame at this point.
1651    assert(packet_list->size() == 1);
1652    Packet* packet = packet_list->front();
1653    packet_list->pop_front();
1654    if (!decoder_database_->IsComfortNoise(packet->header.payloadType)) {
1655#ifdef LEGACY_BITEXACT
1656      // This can happen due to a bug in GetDecision. Change the payload type
1657      // to a CNG type, and move on. Note that this means that we are in fact
1658      // sending a non-CNG payload to the comfort noise decoder for decoding.
1659      // Clearly wrong, but will maintain bit-exactness with legacy.
1660      if (fs_hz_ == 8000) {
1661        packet->header.payloadType =
1662            decoder_database_->GetRtpPayloadType(NetEqDecoder::kDecoderCNGnb);
1663      } else if (fs_hz_ == 16000) {
1664        packet->header.payloadType =
1665            decoder_database_->GetRtpPayloadType(NetEqDecoder::kDecoderCNGwb);
1666      } else if (fs_hz_ == 32000) {
1667        packet->header.payloadType = decoder_database_->GetRtpPayloadType(
1668            NetEqDecoder::kDecoderCNGswb32kHz);
1669      } else if (fs_hz_ == 48000) {
1670        packet->header.payloadType = decoder_database_->GetRtpPayloadType(
1671            NetEqDecoder::kDecoderCNGswb48kHz);
1672      }
1673      assert(decoder_database_->IsComfortNoise(packet->header.payloadType));
1674#else
1675      LOG(LS_ERROR) << "Trying to decode non-CNG payload as CNG.";
1676      return kOtherError;
1677#endif
1678    }
1679    // UpdateParameters() deletes |packet|.
1680    if (comfort_noise_->UpdateParameters(packet) ==
1681        ComfortNoise::kInternalError) {
1682      algorithm_buffer_->Zeros(output_size_samples_);
1683      return -comfort_noise_->internal_error_code();
1684    }
1685  }
1686  int cn_return = comfort_noise_->Generate(output_size_samples_,
1687                                           algorithm_buffer_.get());
1688  expand_->Reset();
1689  last_mode_ = kModeRfc3389Cng;
1690  if (!play_dtmf) {
1691    dtmf_tone_generator_->Reset();
1692  }
1693  if (cn_return == ComfortNoise::kInternalError) {
1694    decoder_error_code_ = comfort_noise_->internal_error_code();
1695    return kComfortNoiseErrorCode;
1696  } else if (cn_return == ComfortNoise::kUnknownPayloadType) {
1697    return kUnknownRtpPayloadType;
1698  }
1699  return 0;
1700}
1701
1702void NetEqImpl::DoCodecInternalCng(const int16_t* decoded_buffer,
1703                                   size_t decoded_length) {
1704  RTC_DCHECK(normal_.get());
1705  RTC_DCHECK(mute_factor_array_.get());
1706  normal_->Process(decoded_buffer, decoded_length, last_mode_,
1707                   mute_factor_array_.get(), algorithm_buffer_.get());
1708  last_mode_ = kModeCodecInternalCng;
1709  expand_->Reset();
1710}
1711
1712int NetEqImpl::DoDtmf(const DtmfEvent& dtmf_event, bool* play_dtmf) {
1713  // This block of the code and the block further down, handling |dtmf_switch|
1714  // are commented out. Otherwise playing out-of-band DTMF would fail in VoE
1715  // test, DtmfTest.ManualSuccessfullySendsOutOfBandTelephoneEvents. This is
1716  // equivalent to |dtmf_switch| always be false.
1717  //
1718  // See http://webrtc-codereview.appspot.com/1195004/ for discussion
1719  // On this issue. This change might cause some glitches at the point of
1720  // switch from audio to DTMF. Issue 1545 is filed to track this.
1721  //
1722  //  bool dtmf_switch = false;
1723  //  if ((last_mode_ != kModeDtmf) && dtmf_tone_generator_->initialized()) {
1724  //    // Special case; see below.
1725  //    // We must catch this before calling Generate, since |initialized| is
1726  //    // modified in that call.
1727  //    dtmf_switch = true;
1728  //  }
1729
1730  int dtmf_return_value = 0;
1731  if (!dtmf_tone_generator_->initialized()) {
1732    // Initialize if not already done.
1733    dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1734                                                   dtmf_event.volume);
1735  }
1736
1737  if (dtmf_return_value == 0) {
1738    // Generate DTMF signal.
1739    dtmf_return_value = dtmf_tone_generator_->Generate(output_size_samples_,
1740                                                       algorithm_buffer_.get());
1741  }
1742
1743  if (dtmf_return_value < 0) {
1744    algorithm_buffer_->Zeros(output_size_samples_);
1745    return dtmf_return_value;
1746  }
1747
1748  //  if (dtmf_switch) {
1749  //    // This is the special case where the previous operation was DTMF
1750  //    // overdub, but the current instruction is "regular" DTMF. We must make
1751  //    // sure that the DTMF does not have any discontinuities. The first DTMF
1752  //    // sample that we generate now must be played out immediately, therefore
1753  //    // it must be copied to the speech buffer.
1754  //    // TODO(hlundin): This code seems incorrect. (Legacy.) Write test and
1755  //    // verify correct operation.
1756  //    assert(false);
1757  //    // Must generate enough data to replace all of the |sync_buffer_|
1758  //    // "future".
1759  //    int required_length = sync_buffer_->FutureLength();
1760  //    assert(dtmf_tone_generator_->initialized());
1761  //    dtmf_return_value = dtmf_tone_generator_->Generate(required_length,
1762  //                                                       algorithm_buffer_);
1763  //    assert((size_t) required_length == algorithm_buffer_->Size());
1764  //    if (dtmf_return_value < 0) {
1765  //      algorithm_buffer_->Zeros(output_size_samples_);
1766  //      return dtmf_return_value;
1767  //    }
1768  //
1769  //    // Overwrite the "future" part of the speech buffer with the new DTMF
1770  //    // data.
1771  //    // TODO(hlundin): It seems that this overwriting has gone lost.
1772  //    // Not adapted for multi-channel yet.
1773  //    assert(algorithm_buffer_->Channels() == 1);
1774  //    if (algorithm_buffer_->Channels() != 1) {
1775  //      LOG(LS_WARNING) << "DTMF not supported for more than one channel";
1776  //      return kStereoNotSupported;
1777  //    }
1778  //    // Shuffle the remaining data to the beginning of algorithm buffer.
1779  //    algorithm_buffer_->PopFront(sync_buffer_->FutureLength());
1780  //  }
1781
1782  sync_buffer_->IncreaseEndTimestamp(
1783      static_cast<uint32_t>(output_size_samples_));
1784  expand_->Reset();
1785  last_mode_ = kModeDtmf;
1786
1787  // Set to false because the DTMF is already in the algorithm buffer.
1788  *play_dtmf = false;
1789  return 0;
1790}
1791
1792void NetEqImpl::DoAlternativePlc(bool increase_timestamp) {
1793  AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1794  size_t length;
1795  if (decoder && decoder->HasDecodePlc()) {
1796    // Use the decoder's packet-loss concealment.
1797    // TODO(hlundin): Will probably need a longer buffer for multi-channel.
1798    int16_t decoded_buffer[kMaxFrameSize];
1799    length = decoder->DecodePlc(1, decoded_buffer);
1800    if (length > 0)
1801      algorithm_buffer_->PushBackInterleaved(decoded_buffer, length);
1802  } else {
1803    // Do simple zero-stuffing.
1804    length = output_size_samples_;
1805    algorithm_buffer_->Zeros(length);
1806    // By not advancing the timestamp, NetEq inserts samples.
1807    stats_.AddZeros(length);
1808  }
1809  if (increase_timestamp) {
1810    sync_buffer_->IncreaseEndTimestamp(static_cast<uint32_t>(length));
1811  }
1812  expand_->Reset();
1813}
1814
1815int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels,
1816                           int16_t* output) const {
1817  size_t out_index = 0;
1818  size_t overdub_length = output_size_samples_;  // Default value.
1819
1820  if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) {
1821    // Special operation for transition from "DTMF only" to "DTMF overdub".
1822    out_index = std::min(
1823        sync_buffer_->dtmf_index() - sync_buffer_->next_index(),
1824        output_size_samples_);
1825    overdub_length = output_size_samples_ - out_index;
1826  }
1827
1828  AudioMultiVector dtmf_output(num_channels);
1829  int dtmf_return_value = 0;
1830  if (!dtmf_tone_generator_->initialized()) {
1831    dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1832                                                   dtmf_event.volume);
1833  }
1834  if (dtmf_return_value == 0) {
1835    dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length,
1836                                                       &dtmf_output);
1837    assert(overdub_length == dtmf_output.Size());
1838  }
1839  dtmf_output.ReadInterleaved(overdub_length, &output[out_index]);
1840  return dtmf_return_value < 0 ? dtmf_return_value : 0;
1841}
1842
1843int NetEqImpl::ExtractPackets(size_t required_samples,
1844                              PacketList* packet_list) {
1845  bool first_packet = true;
1846  uint8_t prev_payload_type = 0;
1847  uint32_t prev_timestamp = 0;
1848  uint16_t prev_sequence_number = 0;
1849  bool next_packet_available = false;
1850
1851  const RTPHeader* header = packet_buffer_->NextRtpHeader();
1852  assert(header);
1853  if (!header) {
1854    LOG(LS_ERROR) << "Packet buffer unexpectedly empty.";
1855    return -1;
1856  }
1857  uint32_t first_timestamp = header->timestamp;
1858  int extracted_samples = 0;
1859
1860  // Packet extraction loop.
1861  do {
1862    timestamp_ = header->timestamp;
1863    size_t discard_count = 0;
1864    Packet* packet = packet_buffer_->GetNextPacket(&discard_count);
1865    // |header| may be invalid after the |packet_buffer_| operation.
1866    header = NULL;
1867    if (!packet) {
1868      LOG(LS_ERROR) << "Should always be able to extract a packet here";
1869      assert(false);  // Should always be able to extract a packet here.
1870      return -1;
1871    }
1872    stats_.PacketsDiscarded(discard_count);
1873    // Store waiting time in ms; packets->waiting_time is in "output blocks".
1874    stats_.StoreWaitingTime(packet->waiting_time * kOutputSizeMs);
1875    assert(packet->payload_length > 0);
1876    packet_list->push_back(packet);  // Store packet in list.
1877
1878    if (first_packet) {
1879      first_packet = false;
1880      if (nack_enabled_) {
1881        RTC_DCHECK(nack_);
1882        // TODO(henrik.lundin): Should we update this for all decoded packets?
1883        nack_->UpdateLastDecodedPacket(packet->header.sequenceNumber,
1884                                       packet->header.timestamp);
1885      }
1886      prev_sequence_number = packet->header.sequenceNumber;
1887      prev_timestamp = packet->header.timestamp;
1888      prev_payload_type = packet->header.payloadType;
1889    }
1890
1891    // Store number of extracted samples.
1892    int packet_duration = 0;
1893    AudioDecoder* decoder = decoder_database_->GetDecoder(
1894        packet->header.payloadType);
1895    if (decoder) {
1896      if (packet->sync_packet) {
1897        packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
1898      } else {
1899        if (packet->primary) {
1900          packet_duration = decoder->PacketDuration(packet->payload,
1901                                                    packet->payload_length);
1902        } else {
1903          packet_duration = decoder->
1904              PacketDurationRedundant(packet->payload, packet->payload_length);
1905          stats_.SecondaryDecodedSamples(packet_duration);
1906        }
1907      }
1908    } else {
1909      LOG(LS_WARNING) << "Unknown payload type "
1910                      << static_cast<int>(packet->header.payloadType);
1911      assert(false);
1912    }
1913    if (packet_duration <= 0) {
1914      // Decoder did not return a packet duration. Assume that the packet
1915      // contains the same number of samples as the previous one.
1916      packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
1917    }
1918    extracted_samples = packet->header.timestamp - first_timestamp +
1919        packet_duration;
1920
1921    // Check what packet is available next.
1922    header = packet_buffer_->NextRtpHeader();
1923    next_packet_available = false;
1924    if (header && prev_payload_type == header->payloadType) {
1925      int16_t seq_no_diff = header->sequenceNumber - prev_sequence_number;
1926      size_t ts_diff = header->timestamp - prev_timestamp;
1927      if (seq_no_diff == 1 ||
1928          (seq_no_diff == 0 && ts_diff == decoder_frame_length_)) {
1929        // The next sequence number is available, or the next part of a packet
1930        // that was split into pieces upon insertion.
1931        next_packet_available = true;
1932      }
1933      prev_sequence_number = header->sequenceNumber;
1934    }
1935  } while (extracted_samples < rtc::checked_cast<int>(required_samples) &&
1936           next_packet_available);
1937
1938  if (extracted_samples > 0) {
1939    // Delete old packets only when we are going to decode something. Otherwise,
1940    // we could end up in the situation where we never decode anything, since
1941    // all incoming packets are considered too old but the buffer will also
1942    // never be flooded and flushed.
1943    packet_buffer_->DiscardAllOldPackets(timestamp_);
1944  }
1945
1946  return extracted_samples;
1947}
1948
1949void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) {
1950  // Delete objects and create new ones.
1951  expand_.reset(expand_factory_->Create(background_noise_.get(),
1952                                        sync_buffer_.get(), &random_vector_,
1953                                        &stats_, fs_hz, channels));
1954  merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get()));
1955}
1956
1957void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) {
1958  LOG(LS_VERBOSE) << "SetSampleRateAndChannels " << fs_hz << " " << channels;
1959  // TODO(hlundin): Change to an enumerator and skip assert.
1960  assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz ==  32000 || fs_hz == 48000);
1961  assert(channels > 0);
1962
1963  fs_hz_ = fs_hz;
1964  fs_mult_ = fs_hz / 8000;
1965  output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
1966  decoder_frame_length_ = 3 * output_size_samples_;  // Initialize to 30ms.
1967
1968  last_mode_ = kModeNormal;
1969
1970  // Create a new array of mute factors and set all to 1.
1971  mute_factor_array_.reset(new int16_t[channels]);
1972  for (size_t i = 0; i < channels; ++i) {
1973    mute_factor_array_[i] = 16384;  // 1.0 in Q14.
1974  }
1975
1976  AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1977  if (cng_decoder)
1978    cng_decoder->Reset();
1979
1980  // Reinit post-decode VAD with new sample rate.
1981  assert(vad_.get());  // Cannot be NULL here.
1982  vad_->Init();
1983
1984  // Delete algorithm buffer and create a new one.
1985  algorithm_buffer_.reset(new AudioMultiVector(channels));
1986
1987  // Delete sync buffer and create a new one.
1988  sync_buffer_.reset(new SyncBuffer(channels, kSyncBufferSize * fs_mult_));
1989
1990  // Delete BackgroundNoise object and create a new one.
1991  background_noise_.reset(new BackgroundNoise(channels));
1992  background_noise_->set_mode(background_noise_mode_);
1993
1994  // Reset random vector.
1995  random_vector_.Reset();
1996
1997  UpdatePlcComponents(fs_hz, channels);
1998
1999  // Move index so that we create a small set of future samples (all 0).
2000  sync_buffer_->set_next_index(sync_buffer_->next_index() -
2001      expand_->overlap_length());
2002
2003  normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_,
2004                           expand_.get()));
2005  accelerate_.reset(
2006      accelerate_factory_->Create(fs_hz, channels, *background_noise_));
2007  preemptive_expand_.reset(preemptive_expand_factory_->Create(
2008      fs_hz, channels, *background_noise_, expand_->overlap_length()));
2009
2010  // Delete ComfortNoise object and create a new one.
2011  comfort_noise_.reset(new ComfortNoise(fs_hz, decoder_database_.get(),
2012                                        sync_buffer_.get()));
2013
2014  // Verify that |decoded_buffer_| is long enough.
2015  if (decoded_buffer_length_ < kMaxFrameSize * channels) {
2016    // Reallocate to larger size.
2017    decoded_buffer_length_ = kMaxFrameSize * channels;
2018    decoded_buffer_.reset(new int16_t[decoded_buffer_length_]);
2019  }
2020
2021  // Create DecisionLogic if it is not created yet, then communicate new sample
2022  // rate and output size to DecisionLogic object.
2023  if (!decision_logic_.get()) {
2024    CreateDecisionLogic();
2025  }
2026  decision_logic_->SetSampleRate(fs_hz_, output_size_samples_);
2027}
2028
2029NetEqOutputType NetEqImpl::LastOutputType() {
2030  assert(vad_.get());
2031  assert(expand_.get());
2032  if (last_mode_ == kModeCodecInternalCng || last_mode_ == kModeRfc3389Cng) {
2033    return kOutputCNG;
2034  } else if (last_mode_ == kModeExpand && expand_->MuteFactor(0) == 0) {
2035    // Expand mode has faded down to background noise only (very long expand).
2036    return kOutputPLCtoCNG;
2037  } else if (last_mode_ == kModeExpand) {
2038    return kOutputPLC;
2039  } else if (vad_->running() && !vad_->active_speech()) {
2040    return kOutputVADPassive;
2041  } else {
2042    return kOutputNormal;
2043  }
2044}
2045
2046void NetEqImpl::CreateDecisionLogic() {
2047  decision_logic_.reset(DecisionLogic::Create(fs_hz_, output_size_samples_,
2048                                              playout_mode_,
2049                                              decoder_database_.get(),
2050                                              *packet_buffer_.get(),
2051                                              delay_manager_.get(),
2052                                              buffer_level_filter_.get()));
2053}
2054}  // namespace webrtc
2055