EffectReverb.c revision 6035cb5a61a7606cc8e4ecddec32b2eb37a9fd56
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "EffectReverb"
18//#define LOG_NDEBUG 0
19#include <cutils/log.h>
20#include <stdlib.h>
21#include <string.h>
22#include <stdbool.h>
23#include "EffectReverb.h"
24#include "EffectsMath.h"
25
26// effect_handle_t interface implementation for reverb effect
27const struct effect_interface_s gReverbInterface = {
28        Reverb_Process,
29        Reverb_Command,
30        Reverb_GetDescriptor,
31        NULL
32};
33
34// Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
35static const effect_descriptor_t gAuxEnvReverbDescriptor = {
36        {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
37        {0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
38        EFFECT_CONTROL_API_VERSION,
39        // flags other than EFFECT_FLAG_TYPE_AUXILIARY set for test purpose
40        EFFECT_FLAG_TYPE_AUXILIARY | EFFECT_FLAG_DEVICE_IND | EFFECT_FLAG_AUDIO_MODE_IND,
41        0, // TODO
42        33,
43        "Aux Environmental Reverb",
44        "The Android Open Source Project"
45};
46
47// Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
48static const effect_descriptor_t gInsertEnvReverbDescriptor = {
49        {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
50        {0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
51        EFFECT_CONTROL_API_VERSION,
52        EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
53        0, // TODO
54        33,
55        "Insert Environmental reverb",
56        "The Android Open Source Project"
57};
58
59// Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
60static const effect_descriptor_t gAuxPresetReverbDescriptor = {
61        {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
62        {0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
63        EFFECT_CONTROL_API_VERSION,
64        EFFECT_FLAG_TYPE_AUXILIARY,
65        0, // TODO
66        33,
67        "Aux Preset Reverb",
68        "The Android Open Source Project"
69};
70
71// Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
72static const effect_descriptor_t gInsertPresetReverbDescriptor = {
73        {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
74        {0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
75        EFFECT_CONTROL_API_VERSION,
76        EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
77        0, // TODO
78        33,
79        "Insert Preset Reverb",
80        "The Android Open Source Project"
81};
82
83// gDescriptors contains pointers to all defined effect descriptor in this library
84static const effect_descriptor_t * const gDescriptors[] = {
85        &gAuxEnvReverbDescriptor,
86        &gInsertEnvReverbDescriptor,
87        &gAuxPresetReverbDescriptor,
88        &gInsertPresetReverbDescriptor
89};
90
91/*----------------------------------------------------------------------------
92 * Effect API implementation
93 *--------------------------------------------------------------------------*/
94
95/*--- Effect Library Interface Implementation ---*/
96
97int EffectCreate(const effect_uuid_t *uuid,
98        int32_t sessionId,
99        int32_t ioId,
100        effect_handle_t *pHandle) {
101    int ret;
102    int i;
103    reverb_module_t *module;
104    const effect_descriptor_t *desc;
105    int aux = 0;
106    int preset = 0;
107
108    ALOGV("EffectLibCreateEffect start");
109
110    if (pHandle == NULL || uuid == NULL) {
111        return -EINVAL;
112    }
113
114    for (i = 0; gDescriptors[i] != NULL; i++) {
115        desc = gDescriptors[i];
116        if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
117                == 0) {
118            break;
119        }
120    }
121
122    if (gDescriptors[i] == NULL) {
123        return -ENOENT;
124    }
125
126    module = malloc(sizeof(reverb_module_t));
127
128    module->itfe = &gReverbInterface;
129
130    module->context.mState = REVERB_STATE_UNINITIALIZED;
131
132    if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
133        preset = 1;
134    }
135    if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
136        aux = 1;
137    }
138    ret = Reverb_Init(module, aux, preset);
139    if (ret < 0) {
140        ALOGW("EffectLibCreateEffect() init failed");
141        free(module);
142        return ret;
143    }
144
145    *pHandle = (effect_handle_t) module;
146
147    module->context.mState = REVERB_STATE_INITIALIZED;
148
149    ALOGV("EffectLibCreateEffect %p ,size %d", module, sizeof(reverb_module_t));
150
151    return 0;
152}
153
154int EffectRelease(effect_handle_t handle) {
155    reverb_module_t *pRvbModule = (reverb_module_t *)handle;
156
157    ALOGV("EffectLibReleaseEffect %p", handle);
158    if (handle == NULL) {
159        return -EINVAL;
160    }
161
162    pRvbModule->context.mState = REVERB_STATE_UNINITIALIZED;
163
164    free(pRvbModule);
165    return 0;
166}
167
168int EffectGetDescriptor(const effect_uuid_t *uuid,
169                        effect_descriptor_t *pDescriptor) {
170    int i;
171    int length = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
172
173    if (pDescriptor == NULL || uuid == NULL){
174        ALOGV("EffectGetDescriptor() called with NULL pointer");
175        return -EINVAL;
176    }
177
178    for (i = 0; i < length; i++) {
179        if (memcmp(uuid, &gDescriptors[i]->uuid, sizeof(effect_uuid_t)) == 0) {
180            *pDescriptor = *gDescriptors[i];
181            ALOGV("EffectGetDescriptor - UUID matched Reverb type %d, UUID = %x",
182                 i, gDescriptors[i]->uuid.timeLow);
183            return 0;
184        }
185    }
186
187    return -EINVAL;
188} /* end EffectGetDescriptor */
189
190/*--- Effect Control Interface Implementation ---*/
191
192static int Reverb_Process(effect_handle_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
193    reverb_object_t *pReverb;
194    int16_t *pSrc, *pDst;
195    reverb_module_t *pRvbModule = (reverb_module_t *)self;
196
197    if (pRvbModule == NULL) {
198        return -EINVAL;
199    }
200
201    if (inBuffer == NULL || inBuffer->raw == NULL ||
202        outBuffer == NULL || outBuffer->raw == NULL ||
203        inBuffer->frameCount != outBuffer->frameCount) {
204        return -EINVAL;
205    }
206
207    pReverb = (reverb_object_t*) &pRvbModule->context;
208
209    if (pReverb->mState == REVERB_STATE_UNINITIALIZED) {
210        return -EINVAL;
211    }
212    if (pReverb->mState == REVERB_STATE_INITIALIZED) {
213        return -ENODATA;
214    }
215
216    //if bypassed or the preset forces the signal to be completely dry
217    if (pReverb->m_bBypass != 0) {
218        if (inBuffer->raw != outBuffer->raw) {
219            int16_t smp;
220            pSrc = inBuffer->s16;
221            pDst = outBuffer->s16;
222            size_t count = inBuffer->frameCount;
223            if (pRvbModule->config.inputCfg.channels == pRvbModule->config.outputCfg.channels) {
224                count *= 2;
225                while (count--) {
226                    *pDst++ = *pSrc++;
227                }
228            } else {
229                while (count--) {
230                    smp = *pSrc++;
231                    *pDst++ = smp;
232                    *pDst++ = smp;
233                }
234            }
235        }
236        return 0;
237    }
238
239    if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
240        ReverbUpdateRoom(pReverb, true);
241    }
242
243    pSrc = inBuffer->s16;
244    pDst = outBuffer->s16;
245    size_t numSamples = outBuffer->frameCount;
246    while (numSamples) {
247        uint32_t processedSamples;
248        if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
249            processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
250        } else {
251            processedSamples = numSamples;
252        }
253
254        /* increment update counter */
255        pReverb->m_nUpdateCounter += (int16_t) processedSamples;
256        /* check if update counter needs to be reset */
257        if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
258            /* update interval has elapsed, so reset counter */
259            pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
260            ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
261
262        } /* end if m_nUpdateCounter >= update interval */
263
264        Reverb(pReverb, processedSamples, pDst, pSrc);
265
266        numSamples -= processedSamples;
267        if (pReverb->m_Aux) {
268            pSrc += processedSamples;
269        } else {
270            pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
271        }
272        pDst += processedSamples * NUM_OUTPUT_CHANNELS;
273    }
274
275    return 0;
276}
277
278
279static int Reverb_Command(effect_handle_t self, uint32_t cmdCode, uint32_t cmdSize,
280        void *pCmdData, uint32_t *replySize, void *pReplyData) {
281    reverb_module_t *pRvbModule = (reverb_module_t *) self;
282    reverb_object_t *pReverb;
283    int retsize;
284
285    if (pRvbModule == NULL ||
286            pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
287        return -EINVAL;
288    }
289
290    pReverb = (reverb_object_t*) &pRvbModule->context;
291
292    ALOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
293
294    switch (cmdCode) {
295    case EFFECT_CMD_INIT:
296        if (pReplyData == NULL || *replySize != sizeof(int)) {
297            return -EINVAL;
298        }
299        *(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
300        if (*(int *) pReplyData == 0) {
301            pRvbModule->context.mState = REVERB_STATE_INITIALIZED;
302        }
303        break;
304    case EFFECT_CMD_SET_CONFIG:
305        if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
306                || pReplyData == NULL || *replySize != sizeof(int)) {
307            return -EINVAL;
308        }
309        *(int *) pReplyData = Reverb_setConfig(pRvbModule,
310                (effect_config_t *)pCmdData, false);
311        break;
312    case EFFECT_CMD_GET_CONFIG:
313        if (pReplyData == NULL || *replySize != sizeof(effect_config_t)) {
314            return -EINVAL;
315        }
316        Reverb_getConfig(pRvbModule, (effect_config_t *) pCmdData);
317        break;
318    case EFFECT_CMD_RESET:
319        Reverb_Reset(pReverb, false);
320        break;
321    case EFFECT_CMD_GET_PARAM:
322        ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
323
324        if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
325            pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
326            return -EINVAL;
327        }
328        effect_param_t *rep = (effect_param_t *) pReplyData;
329        memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
330        ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
331        rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
332                rep->data + sizeof(int32_t));
333        *replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
334        break;
335    case EFFECT_CMD_SET_PARAM:
336        ALOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
337                cmdSize, pCmdData, *replySize, pReplyData);
338        if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
339                || pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
340            return -EINVAL;
341        }
342        effect_param_t *cmd = (effect_param_t *) pCmdData;
343        *(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
344                cmd->vsize, cmd->data + sizeof(int32_t));
345        break;
346    case EFFECT_CMD_ENABLE:
347        if (pReplyData == NULL || *replySize != sizeof(int)) {
348            return -EINVAL;
349        }
350        if (pReverb->mState != REVERB_STATE_INITIALIZED) {
351            return -ENOSYS;
352        }
353        pReverb->mState = REVERB_STATE_ACTIVE;
354        ALOGV("EFFECT_CMD_ENABLE() OK");
355        *(int *)pReplyData = 0;
356        break;
357    case EFFECT_CMD_DISABLE:
358        if (pReplyData == NULL || *replySize != sizeof(int)) {
359            return -EINVAL;
360        }
361        if (pReverb->mState != REVERB_STATE_ACTIVE) {
362            return -ENOSYS;
363        }
364        pReverb->mState = REVERB_STATE_INITIALIZED;
365        ALOGV("EFFECT_CMD_DISABLE() OK");
366        *(int *)pReplyData = 0;
367        break;
368    case EFFECT_CMD_SET_DEVICE:
369        if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
370            return -EINVAL;
371        }
372        ALOGV("Reverb_Command EFFECT_CMD_SET_DEVICE: 0x%08x", *(uint32_t *)pCmdData);
373        break;
374    case EFFECT_CMD_SET_VOLUME: {
375        // audio output is always stereo => 2 channel volumes
376        if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t) * 2) {
377            return -EINVAL;
378        }
379        float left = (float)(*(uint32_t *)pCmdData) / (1 << 24);
380        float right = (float)(*((uint32_t *)pCmdData + 1)) / (1 << 24);
381        ALOGV("Reverb_Command EFFECT_CMD_SET_VOLUME: left %f, right %f ", left, right);
382        break;
383        }
384    case EFFECT_CMD_SET_AUDIO_MODE:
385        if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
386            return -EINVAL;
387        }
388        ALOGV("Reverb_Command EFFECT_CMD_SET_AUDIO_MODE: %d", *(uint32_t *)pCmdData);
389        break;
390    default:
391        ALOGW("Reverb_Command invalid command %d",cmdCode);
392        return -EINVAL;
393    }
394
395    return 0;
396}
397
398int Reverb_GetDescriptor(effect_handle_t   self,
399                                    effect_descriptor_t *pDescriptor)
400{
401    reverb_module_t *pRvbModule = (reverb_module_t *) self;
402    reverb_object_t *pReverb;
403    const effect_descriptor_t *desc;
404
405    if (pRvbModule == NULL ||
406            pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
407        return -EINVAL;
408    }
409
410    pReverb = (reverb_object_t*) &pRvbModule->context;
411
412    if (pReverb->m_Aux) {
413        if (pReverb->m_Preset) {
414            desc = &gAuxPresetReverbDescriptor;
415        } else {
416            desc = &gAuxEnvReverbDescriptor;
417        }
418    } else {
419        if (pReverb->m_Preset) {
420            desc = &gInsertPresetReverbDescriptor;
421        } else {
422            desc = &gInsertEnvReverbDescriptor;
423        }
424    }
425
426    *pDescriptor = *desc;
427
428    return 0;
429}   /* end Reverb_getDescriptor */
430
431/*----------------------------------------------------------------------------
432 * Reverb internal functions
433 *--------------------------------------------------------------------------*/
434
435/*----------------------------------------------------------------------------
436 * Reverb_Init()
437 *----------------------------------------------------------------------------
438 * Purpose:
439 * Initialize reverb context and apply default parameters
440 *
441 * Inputs:
442 *  pRvbModule    - pointer to reverb effect module
443 *  aux           - indicates if the reverb is used as auxiliary (1) or insert (0)
444 *  preset        - indicates if the reverb is used in preset (1) or environmental (0) mode
445 *
446 * Outputs:
447 *
448 * Side Effects:
449 *
450 *----------------------------------------------------------------------------
451 */
452
453int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
454    int ret;
455
456    ALOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
457
458    memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
459
460    pRvbModule->context.m_Aux = (uint16_t)aux;
461    pRvbModule->context.m_Preset = (uint16_t)preset;
462
463    pRvbModule->config.inputCfg.samplingRate = 44100;
464    if (aux) {
465        pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_MONO;
466    } else {
467        pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
468    }
469    pRvbModule->config.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
470    pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
471    pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
472    pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
473    pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
474    pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
475    pRvbModule->config.outputCfg.samplingRate = 44100;
476    pRvbModule->config.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
477    pRvbModule->config.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
478    pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
479    pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
480    pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
481    pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
482    pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
483
484    ret = Reverb_setConfig(pRvbModule, &pRvbModule->config, true);
485    if (ret < 0) {
486        ALOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
487    }
488
489    return ret;
490}
491
492/*----------------------------------------------------------------------------
493 * Reverb_setConfig()
494 *----------------------------------------------------------------------------
495 * Purpose:
496 *  Set input and output audio configuration.
497 *
498 * Inputs:
499 *  pRvbModule    - pointer to reverb effect module
500 *  pConfig       - pointer to effect_config_t structure containing input
501 *              and output audio parameters configuration
502 *  init          - true if called from init function
503 * Outputs:
504 *
505 * Side Effects:
506 *
507 *----------------------------------------------------------------------------
508 */
509
510int Reverb_setConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig,
511        bool init) {
512    reverb_object_t *pReverb = &pRvbModule->context;
513    int bufferSizeInSamples;
514    int updatePeriodInSamples;
515    int xfadePeriodInSamples;
516
517    // Check configuration compatibility with build options
518    if (pConfig->inputCfg.samplingRate
519        != pConfig->outputCfg.samplingRate
520        || pConfig->outputCfg.channels != OUTPUT_CHANNELS
521        || pConfig->inputCfg.format != AUDIO_FORMAT_PCM_16_BIT
522        || pConfig->outputCfg.format != AUDIO_FORMAT_PCM_16_BIT) {
523        ALOGV("Reverb_setConfig invalid config");
524        return -EINVAL;
525    }
526    if ((pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_MONO)) ||
527        (!pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_STEREO))) {
528        ALOGV("Reverb_setConfig invalid config");
529        return -EINVAL;
530    }
531
532    pRvbModule->config = *pConfig;
533
534    pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
535
536    switch (pReverb->m_nSamplingRate) {
537    case 8000:
538        pReverb->m_nUpdatePeriodInBits = 5;
539        bufferSizeInSamples = 4096;
540        pReverb->m_nCosWT_5KHz = -23170;
541        break;
542    case 16000:
543        pReverb->m_nUpdatePeriodInBits = 6;
544        bufferSizeInSamples = 8192;
545        pReverb->m_nCosWT_5KHz = -12540;
546        break;
547    case 22050:
548        pReverb->m_nUpdatePeriodInBits = 7;
549        bufferSizeInSamples = 8192;
550        pReverb->m_nCosWT_5KHz = 4768;
551        break;
552    case 32000:
553        pReverb->m_nUpdatePeriodInBits = 7;
554        bufferSizeInSamples = 16384;
555        pReverb->m_nCosWT_5KHz = 18205;
556        break;
557    case 44100:
558        pReverb->m_nUpdatePeriodInBits = 8;
559        bufferSizeInSamples = 16384;
560        pReverb->m_nCosWT_5KHz = 24799;
561        break;
562    case 48000:
563        pReverb->m_nUpdatePeriodInBits = 8;
564        bufferSizeInSamples = 16384;
565        pReverb->m_nCosWT_5KHz = 25997;
566        break;
567    default:
568        ALOGV("Reverb_setConfig invalid sampling rate %d", pReverb->m_nSamplingRate);
569        return -EINVAL;
570    }
571
572    // Define a mask for circular addressing, so that array index
573    // can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
574    // The buffer size MUST be a power of two
575    pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
576    /* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
577    updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
578    /*
579     calculate the update counter by bitwise ANDING with this value to
580     generate a 2^n modulo value
581     */
582    pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
583
584    xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
585            * (double) pReverb->m_nSamplingRate);
586
587    // set xfade parameters
588    pReverb->m_nPhaseIncrement
589            = (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
590                    / (int16_t) updatePeriodInSamples));
591
592    if (init) {
593        ReverbReadInPresets(pReverb);
594
595        // for debugging purposes, allow noise generator
596        pReverb->m_bUseNoise = true;
597
598        // for debugging purposes, allow bypass
599        pReverb->m_bBypass = 0;
600
601        pReverb->m_nNextRoom = 1;
602
603        pReverb->m_nNoise = (int16_t) 0xABCD;
604    }
605
606    Reverb_Reset(pReverb, init);
607
608    return 0;
609}
610
611/*----------------------------------------------------------------------------
612 * Reverb_getConfig()
613 *----------------------------------------------------------------------------
614 * Purpose:
615 *  Get input and output audio configuration.
616 *
617 * Inputs:
618 *  pRvbModule    - pointer to reverb effect module
619 *  pConfig       - pointer to effect_config_t structure containing input
620 *              and output audio parameters configuration
621 * Outputs:
622 *
623 * Side Effects:
624 *
625 *----------------------------------------------------------------------------
626 */
627
628void Reverb_getConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig)
629{
630    *pConfig = pRvbModule->config;
631}
632
633/*----------------------------------------------------------------------------
634 * Reverb_Reset()
635 *----------------------------------------------------------------------------
636 * Purpose:
637 *  Reset internal states and clear delay lines.
638 *
639 * Inputs:
640 *  pReverb    - pointer to reverb context
641 *  init       - true if called from init function
642 *
643 * Outputs:
644 *
645 * Side Effects:
646 *
647 *----------------------------------------------------------------------------
648 */
649
650void Reverb_Reset(reverb_object_t *pReverb, bool init) {
651    int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
652    int maxApSamples;
653    int maxDelaySamples;
654    int maxEarlySamples;
655    int ap1In;
656    int delay0In;
657    int delay1In;
658    int32_t i;
659    uint16_t nOffset;
660
661    maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
662    maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
663            >> 16);
664    maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
665            >> 16);
666
667    ap1In = (AP0_IN + maxApSamples + GUARD);
668    delay0In = (ap1In + maxApSamples + GUARD);
669    delay1In = (delay0In + maxDelaySamples + GUARD);
670    // Define the max offsets for the end points of each section
671    // i.e., we don't expect a given section's taps to go beyond
672    // the following limits
673
674    pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
675    pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
676
677    pReverb->m_sAp0.m_zApIn = AP0_IN;
678
679    pReverb->m_zD0In = delay0In;
680
681    pReverb->m_sAp1.m_zApIn = ap1In;
682
683    pReverb->m_zD1In = delay1In;
684
685    pReverb->m_zOutLpfL = 0;
686    pReverb->m_zOutLpfR = 0;
687
688    pReverb->m_nRevFbkR = 0;
689    pReverb->m_nRevFbkL = 0;
690
691    // set base index into circular buffer
692    pReverb->m_nBaseIndex = 0;
693
694    // clear the reverb delay line
695    for (i = 0; i < bufferSizeInSamples; i++) {
696        pReverb->m_nDelayLine[i] = 0;
697    }
698
699    ReverbUpdateRoom(pReverb, init);
700
701    pReverb->m_nUpdateCounter = 0;
702
703    pReverb->m_nPhase = -32768;
704
705    pReverb->m_nSin = 0;
706    pReverb->m_nCos = 0;
707    pReverb->m_nSinIncrement = 0;
708    pReverb->m_nCosIncrement = 0;
709
710    // set delay tap lengths
711    nOffset = ReverbCalculateNoise(pReverb);
712
713    pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
714            + nOffset;
715
716    nOffset = ReverbCalculateNoise(pReverb);
717
718    pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
719            - nOffset;
720
721    nOffset = ReverbCalculateNoise(pReverb);
722
723    pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
724            - nOffset;
725
726    nOffset = ReverbCalculateNoise(pReverb);
727
728    pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
729            + nOffset;
730}
731
732/*----------------------------------------------------------------------------
733 * Reverb_getParameter()
734 *----------------------------------------------------------------------------
735 * Purpose:
736 * Get a Reverb parameter
737 *
738 * Inputs:
739 *  pReverb       - handle to instance data
740 *  param         - parameter
741 *  pValue        - pointer to variable to hold retrieved value
742 *  pSize         - pointer to value size: maximum size as input
743 *
744 * Outputs:
745 *  *pValue updated with parameter value
746 *  *pSize updated with actual value size
747 *
748 *
749 * Side Effects:
750 *
751 *----------------------------------------------------------------------------
752 */
753int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, size_t *pSize,
754        void *pValue) {
755    int32_t *pValue32;
756    int16_t *pValue16;
757    t_reverb_settings *pProperties;
758    int32_t i;
759    int32_t temp;
760    int32_t temp2;
761    size_t size;
762
763    if (pReverb->m_Preset) {
764        if (param != REVERB_PARAM_PRESET || *pSize < sizeof(int16_t)) {
765            return -EINVAL;
766        }
767        size = sizeof(int16_t);
768        pValue16 = (int16_t *)pValue;
769        // REVERB_PRESET_NONE is mapped to bypass
770        if (pReverb->m_bBypass != 0) {
771            *pValue16 = (int16_t)REVERB_PRESET_NONE;
772        } else {
773            *pValue16 = (int16_t)(pReverb->m_nNextRoom + 1);
774        }
775        ALOGV("get REVERB_PARAM_PRESET, preset %d", *pValue16);
776    } else {
777        switch (param) {
778        case REVERB_PARAM_ROOM_LEVEL:
779        case REVERB_PARAM_ROOM_HF_LEVEL:
780        case REVERB_PARAM_DECAY_HF_RATIO:
781        case REVERB_PARAM_REFLECTIONS_LEVEL:
782        case REVERB_PARAM_REVERB_LEVEL:
783        case REVERB_PARAM_DIFFUSION:
784        case REVERB_PARAM_DENSITY:
785            size = sizeof(int16_t);
786            break;
787
788        case REVERB_PARAM_BYPASS:
789        case REVERB_PARAM_DECAY_TIME:
790        case REVERB_PARAM_REFLECTIONS_DELAY:
791        case REVERB_PARAM_REVERB_DELAY:
792            size = sizeof(int32_t);
793            break;
794
795        case REVERB_PARAM_PROPERTIES:
796            size = sizeof(t_reverb_settings);
797            break;
798
799        default:
800            return -EINVAL;
801        }
802
803        if (*pSize < size) {
804            return -EINVAL;
805        }
806
807        pValue32 = (int32_t *) pValue;
808        pValue16 = (int16_t *) pValue;
809        pProperties = (t_reverb_settings *) pValue;
810
811        switch (param) {
812        case REVERB_PARAM_BYPASS:
813            *pValue32 = (int32_t) pReverb->m_bBypass;
814            break;
815
816        case REVERB_PARAM_PROPERTIES:
817            pValue16 = &pProperties->roomLevel;
818            /* FALL THROUGH */
819
820        case REVERB_PARAM_ROOM_LEVEL:
821            // Convert m_nRoomLpfFwd to millibels
822            temp = (pReverb->m_nRoomLpfFwd << 15)
823                    / (32767 - pReverb->m_nRoomLpfFbk);
824            *pValue16 = Effects_Linear16ToMillibels(temp);
825
826            ALOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
827
828            if (param == REVERB_PARAM_ROOM_LEVEL) {
829                break;
830            }
831            pValue16 = &pProperties->roomHFLevel;
832            /* FALL THROUGH */
833
834        case REVERB_PARAM_ROOM_HF_LEVEL:
835            // The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
836            // (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
837            // - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
838            // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
839
840            temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
841            ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
842            temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
843                    << 1;
844            ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
845            temp = 32767 + temp - temp2;
846            ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
847            temp = Effects_Sqrt(temp) * 181;
848            ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
849            temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
850
851            ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
852
853            *pValue16 = Effects_Linear16ToMillibels(temp);
854
855            if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
856                break;
857            }
858            pValue32 = (int32_t *)&pProperties->decayTime;
859            /* FALL THROUGH */
860
861        case REVERB_PARAM_DECAY_TIME:
862            // Calculate reverb feedback path gain
863            temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
864            temp = Effects_Linear16ToMillibels(temp);
865
866            // Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
867            temp = (-6000 * pReverb->m_nLateDelay) / temp;
868
869            // Convert samples to ms
870            *pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
871
872            ALOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
873
874            if (param == REVERB_PARAM_DECAY_TIME) {
875                break;
876            }
877            pValue16 = &pProperties->decayHFRatio;
878            /* FALL THROUGH */
879
880        case REVERB_PARAM_DECAY_HF_RATIO:
881            // If r is the decay HF ratio  (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
882            //       DT_5000Hz = DT_0Hz * r
883            //  and  G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
884            // r = G_0Hz/G_5000Hz in millibels
885            // The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
886            // - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
887            // - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
888            // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
889            if (pReverb->m_nRvbLpfFbk == 0) {
890                *pValue16 = 1000;
891                ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
892            } else {
893                temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
894                temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
895                        << 1;
896                temp = 32767 + temp - temp2;
897                temp = Effects_Sqrt(temp) * 181;
898                temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
899                // The linear gain at 0Hz is b0 / (a1 + 1)
900                temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
901                        - pReverb->m_nRvbLpfFbk);
902
903                temp = Effects_Linear16ToMillibels(temp);
904                temp2 = Effects_Linear16ToMillibels(temp2);
905                ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
906
907                if (temp == 0)
908                    temp = 1;
909                temp = (int16_t) ((1000 * temp2) / temp);
910                if (temp > 1000)
911                    temp = 1000;
912
913                *pValue16 = temp;
914                ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
915            }
916
917            if (param == REVERB_PARAM_DECAY_HF_RATIO) {
918                break;
919            }
920            pValue16 = &pProperties->reflectionsLevel;
921            /* FALL THROUGH */
922
923        case REVERB_PARAM_REFLECTIONS_LEVEL:
924            *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
925
926            ALOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
927            if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
928                break;
929            }
930            pValue32 = (int32_t *)&pProperties->reflectionsDelay;
931            /* FALL THROUGH */
932
933        case REVERB_PARAM_REFLECTIONS_DELAY:
934            // convert samples to ms
935            *pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
936
937            ALOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
938
939            if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
940                break;
941            }
942            pValue16 = &pProperties->reverbLevel;
943            /* FALL THROUGH */
944
945        case REVERB_PARAM_REVERB_LEVEL:
946            // Convert linear gain to millibels
947            *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
948
949            ALOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
950
951            if (param == REVERB_PARAM_REVERB_LEVEL) {
952                break;
953            }
954            pValue32 = (int32_t *)&pProperties->reverbDelay;
955            /* FALL THROUGH */
956
957        case REVERB_PARAM_REVERB_DELAY:
958            // convert samples to ms
959            *pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
960
961            ALOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
962
963            if (param == REVERB_PARAM_REVERB_DELAY) {
964                break;
965            }
966            pValue16 = &pProperties->diffusion;
967            /* FALL THROUGH */
968
969        case REVERB_PARAM_DIFFUSION:
970            temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
971                    / AP0_GAIN_RANGE);
972
973            if (temp < 0)
974                temp = 0;
975            if (temp > 1000)
976                temp = 1000;
977
978            *pValue16 = temp;
979            ALOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
980
981            if (param == REVERB_PARAM_DIFFUSION) {
982                break;
983            }
984            pValue16 = &pProperties->density;
985            /* FALL THROUGH */
986
987        case REVERB_PARAM_DENSITY:
988            // Calculate AP delay in time units
989            temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
990                    / pReverb->m_nSamplingRate;
991
992            temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
993
994            if (temp < 0)
995                temp = 0;
996            if (temp > 1000)
997                temp = 1000;
998
999            *pValue16 = temp;
1000
1001            ALOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
1002            break;
1003
1004        default:
1005            break;
1006        }
1007    }
1008
1009    *pSize = size;
1010
1011    ALOGV("Reverb_getParameter, context %p, param %d, value %d",
1012            pReverb, param, *(int *)pValue);
1013
1014    return 0;
1015} /* end Reverb_getParameter */
1016
1017/*----------------------------------------------------------------------------
1018 * Reverb_setParameter()
1019 *----------------------------------------------------------------------------
1020 * Purpose:
1021 * Set a Reverb parameter
1022 *
1023 * Inputs:
1024 *  pReverb       - handle to instance data
1025 *  param         - parameter
1026 *  pValue        - pointer to parameter value
1027 *  size          - value size
1028 *
1029 * Outputs:
1030 *
1031 *
1032 * Side Effects:
1033 *
1034 *----------------------------------------------------------------------------
1035 */
1036int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, size_t size,
1037        void *pValue) {
1038    int32_t value32;
1039    int16_t value16;
1040    t_reverb_settings *pProperties;
1041    int32_t i;
1042    int32_t temp;
1043    int32_t temp2;
1044    reverb_preset_t *pPreset;
1045    int maxSamples;
1046    int32_t averageDelay;
1047    size_t paramSize;
1048
1049    ALOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
1050            pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
1051
1052    if (pReverb->m_Preset) {
1053        if (param != REVERB_PARAM_PRESET || size != sizeof(int16_t)) {
1054            return -EINVAL;
1055        }
1056        value16 = *(int16_t *)pValue;
1057        ALOGV("set REVERB_PARAM_PRESET, preset %d", value16);
1058        if (value16 < REVERB_PRESET_NONE || value16 > REVERB_PRESET_PLATE) {
1059            return -EINVAL;
1060        }
1061        // REVERB_PRESET_NONE is mapped to bypass
1062        if (value16 == REVERB_PRESET_NONE) {
1063            pReverb->m_bBypass = 1;
1064        } else {
1065            pReverb->m_bBypass = 0;
1066            pReverb->m_nNextRoom = value16 - 1;
1067        }
1068    } else {
1069        switch (param) {
1070        case REVERB_PARAM_ROOM_LEVEL:
1071        case REVERB_PARAM_ROOM_HF_LEVEL:
1072        case REVERB_PARAM_DECAY_HF_RATIO:
1073        case REVERB_PARAM_REFLECTIONS_LEVEL:
1074        case REVERB_PARAM_REVERB_LEVEL:
1075        case REVERB_PARAM_DIFFUSION:
1076        case REVERB_PARAM_DENSITY:
1077            paramSize = sizeof(int16_t);
1078            break;
1079
1080        case REVERB_PARAM_BYPASS:
1081        case REVERB_PARAM_DECAY_TIME:
1082        case REVERB_PARAM_REFLECTIONS_DELAY:
1083        case REVERB_PARAM_REVERB_DELAY:
1084            paramSize = sizeof(int32_t);
1085            break;
1086
1087        case REVERB_PARAM_PROPERTIES:
1088            paramSize = sizeof(t_reverb_settings);
1089            break;
1090
1091        default:
1092            return -EINVAL;
1093        }
1094
1095        if (size != paramSize) {
1096            return -EINVAL;
1097        }
1098
1099        if (paramSize == sizeof(int16_t)) {
1100            value16 = *(int16_t *) pValue;
1101        } else if (paramSize == sizeof(int32_t)) {
1102            value32 = *(int32_t *) pValue;
1103        } else {
1104            pProperties = (t_reverb_settings *) pValue;
1105        }
1106
1107        pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1108
1109        switch (param) {
1110        case REVERB_PARAM_BYPASS:
1111            pReverb->m_bBypass = (uint16_t)value32;
1112            break;
1113
1114        case REVERB_PARAM_PROPERTIES:
1115            value16 = pProperties->roomLevel;
1116            /* FALL THROUGH */
1117
1118        case REVERB_PARAM_ROOM_LEVEL:
1119            // Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
1120            if (value16 > 0)
1121                return -EINVAL;
1122
1123            temp = Effects_MillibelsToLinear16(value16);
1124
1125            pReverb->m_nRoomLpfFwd
1126                    = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
1127
1128            ALOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
1129            if (param == REVERB_PARAM_ROOM_LEVEL)
1130                break;
1131            value16 = pProperties->roomHFLevel;
1132            /* FALL THROUGH */
1133
1134        case REVERB_PARAM_ROOM_HF_LEVEL:
1135
1136            // Limit to 0 , -40dB range because of low pass implementation
1137            if (value16 > 0 || value16 < -4000)
1138                return -EINVAL;
1139            // Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
1140            // m_nRoomLpfFbk is -a1 where a1 is the solution of:
1141            // a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
1142            // - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
1143            // - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
1144
1145            // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1146            // while changing HF level
1147            temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
1148                    - pReverb->m_nRoomLpfFbk);
1149            if (value16 == 0) {
1150                pReverb->m_nRoomLpfFbk = 0;
1151            } else {
1152                int32_t dG2, b, delta;
1153
1154                // dG^2
1155                temp = Effects_MillibelsToLinear16(value16);
1156                ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
1157                temp = (1 << 30) / temp;
1158                ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
1159                dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1160                ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
1161                // b = 2*(C-dG^2)/(1-dG^2)
1162                b = (int32_t) ((((int64_t) 1 << (15 + 1))
1163                        * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1164                        / ((int64_t) 32767 - (int64_t) dG2));
1165
1166                // delta = b^2 - 4
1167                delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1168                        + 2)));
1169
1170                ALOGV_IF(delta > (1<<30), " delta overflow %d", delta);
1171
1172                ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
1173                // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1174                pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1175            }
1176            ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
1177                    temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
1178
1179            pReverb->m_nRoomLpfFwd
1180                    = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
1181            ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
1182
1183            if (param == REVERB_PARAM_ROOM_HF_LEVEL)
1184                break;
1185            value32 = pProperties->decayTime;
1186            /* FALL THROUGH */
1187
1188        case REVERB_PARAM_DECAY_TIME:
1189
1190            // Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
1191            // convert ms to samples
1192            value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
1193
1194            // calculate valid decay time range as a function of current reverb delay and
1195            // max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
1196            // Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
1197            // g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
1198            averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
1199            averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
1200                    + (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
1201
1202            temp = (-6000 * averageDelay) / value32;
1203            ALOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
1204            if (temp < -4000 || temp > -100)
1205                return -EINVAL;
1206
1207            // calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
1208            // xfade and sum gain (max +9dB)
1209            temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
1210            temp = Effects_MillibelsToLinear16(temp);
1211
1212            // DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
1213            pReverb->m_nRvbLpfFwd
1214                    = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
1215
1216            ALOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
1217
1218            if (param == REVERB_PARAM_DECAY_TIME)
1219                break;
1220            value16 = pProperties->decayHFRatio;
1221            /* FALL THROUGH */
1222
1223        case REVERB_PARAM_DECAY_HF_RATIO:
1224
1225            // We limit max value to 1000 because reverb filter is lowpass only
1226            if (value16 < 100 || value16 > 1000)
1227                return -EINVAL;
1228            // Convert per mille to => m_nLpfFwd, m_nLpfFbk
1229
1230            // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1231            // while changing HF level
1232            temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
1233
1234            if (value16 == 1000) {
1235                pReverb->m_nRvbLpfFbk = 0;
1236            } else {
1237                int32_t dG2, b, delta;
1238
1239                temp = Effects_Linear16ToMillibels(temp2);
1240                // G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
1241
1242                value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
1243                ALOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
1244
1245                temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
1246
1247                if (temp < -4000) {
1248                    ALOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
1249                    temp = -4000;
1250                }
1251
1252                temp = Effects_MillibelsToLinear16(temp);
1253                ALOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
1254                // dG^2
1255                temp = (temp2 << 15) / temp;
1256                dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1257
1258                // b = 2*(C-dG^2)/(1-dG^2)
1259                b = (int32_t) ((((int64_t) 1 << (15 + 1))
1260                        * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1261                        / ((int64_t) 32767 - (int64_t) dG2));
1262
1263                // delta = b^2 - 4
1264                delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1265                        + 2)));
1266
1267                // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1268                pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1269
1270                ALOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
1271
1272            }
1273
1274            ALOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
1275
1276            pReverb->m_nRvbLpfFwd
1277                    = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
1278
1279            if (param == REVERB_PARAM_DECAY_HF_RATIO)
1280                break;
1281            value16 = pProperties->reflectionsLevel;
1282            /* FALL THROUGH */
1283
1284        case REVERB_PARAM_REFLECTIONS_LEVEL:
1285            // We limit max value to 0 because gain is limited to 0dB
1286            if (value16 > 0 || value16 < -6000)
1287                return -EINVAL;
1288
1289            // Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
1290            value16 = Effects_MillibelsToLinear16(value16);
1291            for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1292                pReverb->m_sEarlyL.m_nGain[i]
1293                        = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
1294                pReverb->m_sEarlyR.m_nGain[i]
1295                        = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
1296            }
1297            pReverb->m_nEarlyGain = value16;
1298            ALOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
1299
1300            if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
1301                break;
1302            value32 = pProperties->reflectionsDelay;
1303            /* FALL THROUGH */
1304
1305        case REVERB_PARAM_REFLECTIONS_DELAY:
1306            // We limit max value MAX_EARLY_TIME
1307            // convert ms to time units
1308            temp = (value32 * 65536) / 1000;
1309            if (temp < 0 || temp > MAX_EARLY_TIME)
1310                return -EINVAL;
1311
1312            maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1313                    >> 16;
1314            temp = (temp * pReverb->m_nSamplingRate) >> 16;
1315            for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1316                temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
1317                        * pReverb->m_nSamplingRate) >> 16);
1318                if (temp2 > maxSamples)
1319                    temp2 = maxSamples;
1320                pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
1321                temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
1322                        * pReverb->m_nSamplingRate) >> 16);
1323                if (temp2 > maxSamples)
1324                    temp2 = maxSamples;
1325                pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
1326            }
1327            pReverb->m_nEarlyDelay = temp;
1328
1329            ALOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
1330
1331            // Convert milliseconds to sample count => m_nEarlyDelay
1332            if (param == REVERB_PARAM_REFLECTIONS_DELAY)
1333                break;
1334            value16 = pProperties->reverbLevel;
1335            /* FALL THROUGH */
1336
1337        case REVERB_PARAM_REVERB_LEVEL:
1338            // We limit max value to 0 because gain is limited to 0dB
1339            if (value16 > 0 || value16 < -6000)
1340                return -EINVAL;
1341            // Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
1342            pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
1343
1344            ALOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
1345
1346            if (param == REVERB_PARAM_REVERB_LEVEL)
1347                break;
1348            value32 = pProperties->reverbDelay;
1349            /* FALL THROUGH */
1350
1351        case REVERB_PARAM_REVERB_DELAY:
1352            // We limit max value to MAX_DELAY_TIME
1353            // convert ms to time units
1354            temp = (value32 * 65536) / 1000;
1355            if (temp < 0 || temp > MAX_DELAY_TIME)
1356                return -EINVAL;
1357
1358            maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1359                    >> 16;
1360            temp = (temp * pReverb->m_nSamplingRate) >> 16;
1361            if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1362                temp = maxSamples - pReverb->m_nMaxExcursion;
1363            }
1364            if (temp < pReverb->m_nMaxExcursion) {
1365                temp = pReverb->m_nMaxExcursion;
1366            }
1367
1368            temp -= pReverb->m_nLateDelay;
1369            pReverb->m_nDelay0Out += temp;
1370            pReverb->m_nDelay1Out += temp;
1371            pReverb->m_nLateDelay += temp;
1372
1373            ALOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
1374
1375            // Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
1376            if (param == REVERB_PARAM_REVERB_DELAY)
1377                break;
1378
1379            value16 = pProperties->diffusion;
1380            /* FALL THROUGH */
1381
1382        case REVERB_PARAM_DIFFUSION:
1383            if (value16 < 0 || value16 > 1000)
1384                return -EINVAL;
1385
1386            // Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
1387            pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
1388                    * AP0_GAIN_RANGE) / 1000;
1389            pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
1390                    * AP1_GAIN_RANGE) / 1000;
1391
1392            ALOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
1393
1394            if (param == REVERB_PARAM_DIFFUSION)
1395                break;
1396
1397            value16 = pProperties->density;
1398            /* FALL THROUGH */
1399
1400        case REVERB_PARAM_DENSITY:
1401            if (value16 < 0 || value16 > 1000)
1402                return -EINVAL;
1403
1404            // Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
1405            maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1406
1407            temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
1408            /*lint -e{702} shift for performance */
1409            temp = (temp * pReverb->m_nSamplingRate) >> 16;
1410            if (temp > maxSamples)
1411                temp = maxSamples;
1412            pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1413
1414            ALOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
1415
1416            temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
1417            /*lint -e{702} shift for performance */
1418            temp = (temp * pReverb->m_nSamplingRate) >> 16;
1419            if (temp > maxSamples)
1420                temp = maxSamples;
1421            pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1422
1423            ALOGV("Ap1 delay smps %d", temp);
1424
1425            break;
1426
1427        default:
1428            break;
1429        }
1430    }
1431
1432    return 0;
1433} /* end Reverb_setParameter */
1434
1435/*----------------------------------------------------------------------------
1436 * ReverbUpdateXfade
1437 *----------------------------------------------------------------------------
1438 * Purpose:
1439 * Update the xfade parameters as required
1440 *
1441 * Inputs:
1442 * nNumSamplesToAdd - number of samples to write to buffer
1443 *
1444 * Outputs:
1445 *
1446 *
1447 * Side Effects:
1448 * - xfade parameters will be changed
1449 *
1450 *----------------------------------------------------------------------------
1451 */
1452static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
1453    uint16_t nOffset;
1454    int16_t tempCos;
1455    int16_t tempSin;
1456
1457    if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
1458        /* update interval has elapsed, so reset counter */
1459        pReverb->m_nXfadeCounter = 0;
1460
1461        // Pin the sin,cos values to min / max values to ensure that the
1462        // modulated taps' coefs are zero (thus no clicks)
1463        if (pReverb->m_nPhaseIncrement > 0) {
1464            // if phase increment > 0, then sin -> 1, cos -> 0
1465            pReverb->m_nSin = 32767;
1466            pReverb->m_nCos = 0;
1467
1468            // reset the phase to match the sin, cos values
1469            pReverb->m_nPhase = 32767;
1470
1471            // modulate the cross taps because their tap coefs are zero
1472            nOffset = ReverbCalculateNoise(pReverb);
1473
1474            pReverb->m_zD1Cross = pReverb->m_nDelay1Out
1475                    - pReverb->m_nMaxExcursion + nOffset;
1476
1477            nOffset = ReverbCalculateNoise(pReverb);
1478
1479            pReverb->m_zD0Cross = pReverb->m_nDelay0Out
1480                    - pReverb->m_nMaxExcursion - nOffset;
1481        } else {
1482            // if phase increment < 0, then sin -> 0, cos -> 1
1483            pReverb->m_nSin = 0;
1484            pReverb->m_nCos = 32767;
1485
1486            // reset the phase to match the sin, cos values
1487            pReverb->m_nPhase = -32768;
1488
1489            // modulate the self taps because their tap coefs are zero
1490            nOffset = ReverbCalculateNoise(pReverb);
1491
1492            pReverb->m_zD0Self = pReverb->m_nDelay0Out
1493                    - pReverb->m_nMaxExcursion - nOffset;
1494
1495            nOffset = ReverbCalculateNoise(pReverb);
1496
1497            pReverb->m_zD1Self = pReverb->m_nDelay1Out
1498                    - pReverb->m_nMaxExcursion + nOffset;
1499
1500        } // end if-else (pReverb->m_nPhaseIncrement > 0)
1501
1502        // Reverse the direction of the sin,cos so that the
1503        // tap whose coef was previously increasing now decreases
1504        // and vice versa
1505        pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
1506
1507    } // end if counter >= update interval
1508
1509    //compute what phase will be next time
1510    pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
1511
1512    //calculate what the new sin and cos need to reach by the next update
1513    ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
1514
1515    //calculate the per-sample increment required to get there by the next update
1516    /*lint -e{702} shift for performance */
1517    pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
1518            >> pReverb->m_nUpdatePeriodInBits;
1519
1520    /*lint -e{702} shift for performance */
1521    pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
1522            >> pReverb->m_nUpdatePeriodInBits;
1523
1524    /* increment update counter */
1525    pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
1526
1527    return 0;
1528
1529} /* end ReverbUpdateXfade */
1530
1531/*----------------------------------------------------------------------------
1532 * ReverbCalculateNoise
1533 *----------------------------------------------------------------------------
1534 * Purpose:
1535 * Calculate a noise sample and limit its value
1536 *
1537 * Inputs:
1538 * nMaxExcursion - noise value is limited to this value
1539 * pnNoise - return new noise sample in this (not limited)
1540 *
1541 * Outputs:
1542 * new limited noise value
1543 *
1544 * Side Effects:
1545 * - *pnNoise noise value is updated
1546 *
1547 *----------------------------------------------------------------------------
1548 */
1549static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
1550    int16_t nNoise = pReverb->m_nNoise;
1551
1552    // calculate new noise value
1553    if (pReverb->m_bUseNoise) {
1554        nNoise = (int16_t) (nNoise * 5 + 1);
1555    } else {
1556        nNoise = 0;
1557    }
1558
1559    pReverb->m_nNoise = nNoise;
1560    // return the limited noise value
1561    return (pReverb->m_nMaxExcursion & nNoise);
1562
1563} /* end ReverbCalculateNoise */
1564
1565/*----------------------------------------------------------------------------
1566 * ReverbCalculateSinCos
1567 *----------------------------------------------------------------------------
1568 * Purpose:
1569 * Calculate a new sin and cosine value based on the given phase
1570 *
1571 * Inputs:
1572 * nPhase   - phase angle
1573 * pnSin    - input old value, output new value
1574 * pnCos    - input old value, output new value
1575 *
1576 * Outputs:
1577 *
1578 * Side Effects:
1579 * - *pnSin, *pnCos are updated
1580 *
1581 *----------------------------------------------------------------------------
1582 */
1583static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
1584    int32_t nTemp;
1585    int32_t nNetAngle;
1586
1587    //  -1 <=  nPhase  < 1
1588    // However, for the calculation, we need a value
1589    // that ranges from -1/2 to +1/2, so divide the phase by 2
1590    /*lint -e{702} shift for performance */
1591    nNetAngle = nPhase >> 1;
1592
1593    /*
1594     Implement the following
1595     sin(x) = (2-4*c)*x^2 + c + x
1596     cos(x) = (2-4*c)*x^2 + c - x
1597
1598     where  c = 1/sqrt(2)
1599     using the a0 + x*(a1 + x*a2) approach
1600     */
1601
1602    /* limit the input "angle" to be between -0.5 and +0.5 */
1603    if (nNetAngle > EG1_HALF) {
1604        nNetAngle = EG1_HALF;
1605    } else if (nNetAngle < EG1_MINUS_HALF) {
1606        nNetAngle = EG1_MINUS_HALF;
1607    }
1608
1609    /* calculate sin */
1610    nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1611    nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1612    *pnSin = (int16_t) SATURATE_EG1(nTemp);
1613
1614    /* calculate cos */
1615    nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1616    nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1617    *pnCos = (int16_t) SATURATE_EG1(nTemp);
1618
1619    return 0;
1620} /* end ReverbCalculateSinCos */
1621
1622/*----------------------------------------------------------------------------
1623 * Reverb
1624 *----------------------------------------------------------------------------
1625 * Purpose:
1626 * apply reverb to the given signal
1627 *
1628 * Inputs:
1629 * nNu
1630 * pnSin    - input old value, output new value
1631 * pnCos    - input old value, output new value
1632 *
1633 * Outputs:
1634 * number of samples actually reverberated
1635 *
1636 * Side Effects:
1637 *
1638 *----------------------------------------------------------------------------
1639 */
1640static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
1641        short *pOutputBuffer, short *pInputBuffer) {
1642    int32_t i;
1643    int32_t nDelayOut0;
1644    int32_t nDelayOut1;
1645    uint16_t nBase;
1646
1647    uint32_t nAddr;
1648    int32_t nTemp1;
1649    int32_t nTemp2;
1650    int32_t nApIn;
1651    int32_t nApOut;
1652
1653    int32_t j;
1654    int32_t nEarlyOut;
1655
1656    int32_t tempValue;
1657
1658    // get the base address
1659    nBase = pReverb->m_nBaseIndex;
1660
1661    for (i = 0; i < nNumSamplesToAdd; i++) {
1662        // ********** Left Allpass - start
1663        nApIn = *pInputBuffer;
1664        if (!pReverb->m_Aux) {
1665            pInputBuffer++;
1666        }
1667        // store to early delay line
1668        nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
1669        pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1670
1671        // left input = (left dry * m_nLateGain) + right feedback from previous period
1672
1673        nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
1674        nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1675
1676        // fetch allpass delay line out
1677        //nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
1678        nAddr
1679                = CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
1680        nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1681
1682        // calculate allpass feedforward; subtract the feedforward result
1683        nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
1684        nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
1685
1686        // calculate allpass feedback; add the feedback result
1687        nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
1688        nTemp1 = SATURATE(nApIn + nTemp1);
1689
1690        // inject into allpass delay
1691        nAddr
1692                = CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
1693        pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1694
1695        // inject allpass output into delay line
1696        nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
1697        pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1698
1699        // ********** Left Allpass - end
1700
1701        // ********** Right Allpass - start
1702        nApIn = (*pInputBuffer++);
1703        // store to early delay line
1704        nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
1705        pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1706
1707        // right input = (right dry * m_nLateGain) + left feedback from previous period
1708        /*lint -e{702} use shift for performance */
1709        nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
1710        nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1711
1712        // fetch allpass delay line out
1713        nAddr
1714                = CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
1715        nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1716
1717        // calculate allpass feedforward; subtract the feedforward result
1718        nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
1719        nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
1720
1721        // calculate allpass feedback; add the feedback result
1722        nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
1723        nTemp1 = SATURATE(nApIn + nTemp1);
1724
1725        // inject into allpass delay
1726        nAddr
1727                = CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
1728        pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1729
1730        // inject allpass output into delay line
1731        nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
1732        pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1733
1734        // ********** Right Allpass - end
1735
1736        // ********** D0 output - start
1737        // fetch delay line self out
1738        nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
1739        nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1740
1741        // calculate delay line self out
1742        nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
1743
1744        // fetch delay line cross out
1745        nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
1746        nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1747
1748        // calculate delay line self out
1749        nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
1750
1751        // calculate unfiltered delay out
1752        nDelayOut0 = SATURATE(nTemp1 + nTemp2);
1753
1754        // ********** D0 output - end
1755
1756        // ********** D1 output - start
1757        // fetch delay line self out
1758        nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
1759        nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1760
1761        // calculate delay line self out
1762        nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
1763
1764        // fetch delay line cross out
1765        nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
1766        nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1767
1768        // calculate delay line self out
1769        nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
1770
1771        // calculate unfiltered delay out
1772        nDelayOut1 = SATURATE(nTemp1 + nTemp2);
1773
1774        // ********** D1 output - end
1775
1776        // ********** mixer and feedback - start
1777        // sum is fedback to right input (R + L)
1778        nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
1779
1780        // difference is feedback to left input (R - L)
1781        /*lint -e{685} lint complains that it can't saturate negative */
1782        nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
1783
1784        // ********** mixer and feedback - end
1785
1786        // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1787        nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
1788
1789        nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
1790
1791        // calculate filtered delay out and simultaneously update LPF state variable
1792        // filtered delay output is stored in m_nRevFbkL
1793        pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
1794
1795        // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1796        nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
1797
1798        nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
1799
1800        // calculate filtered delay out and simultaneously update LPF state variable
1801        // filtered delay output is stored in m_nRevFbkR
1802        pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
1803
1804        // ********** start early reflection generator, left
1805        //psEarly = &(pReverb->m_sEarlyL);
1806
1807
1808        for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1809            // fetch delay line out
1810            //nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
1811            nAddr
1812                    = CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
1813
1814            nTemp1 = pReverb->m_nDelayLine[nAddr];
1815
1816            // calculate reflection
1817            //nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
1818            nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
1819
1820            nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
1821
1822        } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1823
1824        // apply lowpass to early reflections and reverb output
1825        //nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
1826        nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
1827
1828        //nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
1829        nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
1830
1831        // calculate filtered out and simultaneously update LPF state variable
1832        // filtered output is stored in m_zOutLpfL
1833        pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
1834
1835        //sum with output buffer
1836        tempValue = *pOutputBuffer;
1837        *pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
1838
1839        // ********** end early reflection generator, left
1840
1841        // ********** start early reflection generator, right
1842        //psEarly = &(pReverb->m_sEarlyR);
1843
1844        for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1845            // fetch delay line out
1846            nAddr
1847                    = CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
1848            nTemp1 = pReverb->m_nDelayLine[nAddr];
1849
1850            // calculate reflection
1851            nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
1852
1853            nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
1854
1855        } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1856
1857        // apply lowpass to early reflections
1858        nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
1859
1860        nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
1861
1862        // calculate filtered out and simultaneously update LPF state variable
1863        // filtered output is stored in m_zOutLpfR
1864        pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
1865
1866        //sum with output buffer
1867        tempValue = *pOutputBuffer;
1868        *pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
1869
1870        // ********** end early reflection generator, right
1871
1872        // decrement base addr for next sample period
1873        nBase--;
1874
1875        pReverb->m_nSin += pReverb->m_nSinIncrement;
1876        pReverb->m_nCos += pReverb->m_nCosIncrement;
1877
1878    } // end for (i=0; i < nNumSamplesToAdd; i++)
1879
1880    // store the most up to date version
1881    pReverb->m_nBaseIndex = nBase;
1882
1883    return 0;
1884} /* end Reverb */
1885
1886/*----------------------------------------------------------------------------
1887 * ReverbUpdateRoom
1888 *----------------------------------------------------------------------------
1889 * Purpose:
1890 * Update the room's preset parameters as required
1891 *
1892 * Inputs:
1893 *
1894 * Outputs:
1895 *
1896 *
1897 * Side Effects:
1898 * - reverb paramters (fbk, fwd, etc) will be changed
1899 * - m_nCurrentRoom := m_nNextRoom
1900 *----------------------------------------------------------------------------
1901 */
1902static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
1903    int temp;
1904    int i;
1905    int maxSamples;
1906    int earlyDelay;
1907    int earlyGain;
1908
1909    reverb_preset_t *pPreset =
1910            &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1911
1912    if (fullUpdate) {
1913        pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
1914        pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
1915
1916        pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
1917        //stored as time based, convert to sample based
1918        pReverb->m_nLateGain = pPreset->m_nLateGain;
1919        pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
1920        pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
1921
1922        // set the early reflections gains
1923        earlyGain = pPreset->m_nEarlyGain;
1924        for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1925            pReverb->m_sEarlyL.m_nGain[i]
1926                    = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
1927            pReverb->m_sEarlyR.m_nGain[i]
1928                    = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
1929        }
1930
1931        pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
1932
1933        pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
1934        pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
1935
1936        // set the early reflections delay
1937        earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
1938                >> 16;
1939        pReverb->m_nEarlyDelay = earlyDelay;
1940        maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1941                >> 16;
1942        for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1943            //stored as time based, convert to sample based
1944            temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
1945                    * pReverb->m_nSamplingRate) >> 16);
1946            if (temp > maxSamples)
1947                temp = maxSamples;
1948            pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
1949            //stored as time based, convert to sample based
1950            temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
1951                    * pReverb->m_nSamplingRate) >> 16);
1952            if (temp > maxSamples)
1953                temp = maxSamples;
1954            pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
1955        }
1956
1957        maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1958                >> 16;
1959        //stored as time based, convert to sample based
1960        /*lint -e{702} shift for performance */
1961        temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
1962        if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1963            temp = maxSamples - pReverb->m_nMaxExcursion;
1964        }
1965        temp -= pReverb->m_nLateDelay;
1966        pReverb->m_nDelay0Out += temp;
1967        pReverb->m_nDelay1Out += temp;
1968        pReverb->m_nLateDelay += temp;
1969
1970        maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1971        //stored as time based, convert to absolute sample value
1972        temp = pPreset->m_nAp0_ApOut;
1973        /*lint -e{702} shift for performance */
1974        temp = (temp * pReverb->m_nSamplingRate) >> 16;
1975        if (temp > maxSamples)
1976            temp = maxSamples;
1977        pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1978
1979        //stored as time based, convert to absolute sample value
1980        temp = pPreset->m_nAp1_ApOut;
1981        /*lint -e{702} shift for performance */
1982        temp = (temp * pReverb->m_nSamplingRate) >> 16;
1983        if (temp > maxSamples)
1984            temp = maxSamples;
1985        pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1986        //gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
1987    }
1988
1989    //stored as time based, convert to sample based
1990    temp = pPreset->m_nXfadeInterval;
1991    /*lint -e{702} shift for performance */
1992    temp = (temp * pReverb->m_nSamplingRate) >> 16;
1993    pReverb->m_nXfadeInterval = (uint16_t) temp;
1994    //gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
1995    pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
1996
1997    pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
1998
1999    return 0;
2000
2001} /* end ReverbUpdateRoom */
2002
2003/*----------------------------------------------------------------------------
2004 * ReverbReadInPresets()
2005 *----------------------------------------------------------------------------
2006 * Purpose: sets global reverb preset bank to defaults
2007 *
2008 * Inputs:
2009 *
2010 * Outputs:
2011 *
2012 *----------------------------------------------------------------------------
2013 */
2014static int ReverbReadInPresets(reverb_object_t *pReverb) {
2015
2016    int preset;
2017
2018    // this is for test only. OpenSL ES presets are mapped to 4 presets.
2019    // REVERB_PRESET_NONE is mapped to bypass
2020    for (preset = 0; preset < REVERB_NUM_PRESETS; preset++) {
2021        reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[preset];
2022        switch (preset + 1) {
2023        case REVERB_PRESET_PLATE:
2024        case REVERB_PRESET_SMALLROOM:
2025            pPreset->m_nRvbLpfFbk = 5077;
2026            pPreset->m_nRvbLpfFwd = 11076;
2027            pPreset->m_nEarlyGain = 27690;
2028            pPreset->m_nEarlyDelay = 1311;
2029            pPreset->m_nLateGain = 8191;
2030            pPreset->m_nLateDelay = 3932;
2031            pPreset->m_nRoomLpfFbk = 3692;
2032            pPreset->m_nRoomLpfFwd = 20474;
2033            pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2034            pPreset->m_sEarlyL.m_nGain[0] = 22152;
2035            pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2036            pPreset->m_sEarlyL.m_nGain[1] = 17537;
2037            pPreset->m_sEarlyL.m_zDelay[2] = 0;
2038            pPreset->m_sEarlyL.m_nGain[2] = 14768;
2039            pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2040            pPreset->m_sEarlyL.m_nGain[3] = 14307;
2041            pPreset->m_sEarlyL.m_zDelay[4] = 0;
2042            pPreset->m_sEarlyL.m_nGain[4] = 13384;
2043            pPreset->m_sEarlyR.m_zDelay[0] = 721;
2044            pPreset->m_sEarlyR.m_nGain[0] = 20306;
2045            pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2046            pPreset->m_sEarlyR.m_nGain[1] = 17537;
2047            pPreset->m_sEarlyR.m_zDelay[2] = 0;
2048            pPreset->m_sEarlyR.m_nGain[2] = 14768;
2049            pPreset->m_sEarlyR.m_zDelay[3] = 0;
2050            pPreset->m_sEarlyR.m_nGain[3] = 16153;
2051            pPreset->m_sEarlyR.m_zDelay[4] = 0;
2052            pPreset->m_sEarlyR.m_nGain[4] = 13384;
2053            pPreset->m_nMaxExcursion = 127;
2054            pPreset->m_nXfadeInterval = 6470; //6483;
2055            pPreset->m_nAp0_ApGain = 14768;
2056            pPreset->m_nAp0_ApOut = 792;
2057            pPreset->m_nAp1_ApGain = 14777;
2058            pPreset->m_nAp1_ApOut = 1191;
2059            pPreset->m_rfu4 = 0;
2060            pPreset->m_rfu5 = 0;
2061            pPreset->m_rfu6 = 0;
2062            pPreset->m_rfu7 = 0;
2063            pPreset->m_rfu8 = 0;
2064            pPreset->m_rfu9 = 0;
2065            pPreset->m_rfu10 = 0;
2066            break;
2067        case REVERB_PRESET_MEDIUMROOM:
2068        case REVERB_PRESET_LARGEROOM:
2069            pPreset->m_nRvbLpfFbk = 5077;
2070            pPreset->m_nRvbLpfFwd = 12922;
2071            pPreset->m_nEarlyGain = 27690;
2072            pPreset->m_nEarlyDelay = 1311;
2073            pPreset->m_nLateGain = 8191;
2074            pPreset->m_nLateDelay = 3932;
2075            pPreset->m_nRoomLpfFbk = 3692;
2076            pPreset->m_nRoomLpfFwd = 21703;
2077            pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2078            pPreset->m_sEarlyL.m_nGain[0] = 22152;
2079            pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2080            pPreset->m_sEarlyL.m_nGain[1] = 17537;
2081            pPreset->m_sEarlyL.m_zDelay[2] = 0;
2082            pPreset->m_sEarlyL.m_nGain[2] = 14768;
2083            pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2084            pPreset->m_sEarlyL.m_nGain[3] = 14307;
2085            pPreset->m_sEarlyL.m_zDelay[4] = 0;
2086            pPreset->m_sEarlyL.m_nGain[4] = 13384;
2087            pPreset->m_sEarlyR.m_zDelay[0] = 721;
2088            pPreset->m_sEarlyR.m_nGain[0] = 20306;
2089            pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2090            pPreset->m_sEarlyR.m_nGain[1] = 17537;
2091            pPreset->m_sEarlyR.m_zDelay[2] = 0;
2092            pPreset->m_sEarlyR.m_nGain[2] = 14768;
2093            pPreset->m_sEarlyR.m_zDelay[3] = 0;
2094            pPreset->m_sEarlyR.m_nGain[3] = 16153;
2095            pPreset->m_sEarlyR.m_zDelay[4] = 0;
2096            pPreset->m_sEarlyR.m_nGain[4] = 13384;
2097            pPreset->m_nMaxExcursion = 127;
2098            pPreset->m_nXfadeInterval = 6449;
2099            pPreset->m_nAp0_ApGain = 15691;
2100            pPreset->m_nAp0_ApOut = 774;
2101            pPreset->m_nAp1_ApGain = 16317;
2102            pPreset->m_nAp1_ApOut = 1155;
2103            pPreset->m_rfu4 = 0;
2104            pPreset->m_rfu5 = 0;
2105            pPreset->m_rfu6 = 0;
2106            pPreset->m_rfu7 = 0;
2107            pPreset->m_rfu8 = 0;
2108            pPreset->m_rfu9 = 0;
2109            pPreset->m_rfu10 = 0;
2110            break;
2111        case REVERB_PRESET_MEDIUMHALL:
2112            pPreset->m_nRvbLpfFbk = 6461;
2113            pPreset->m_nRvbLpfFwd = 14307;
2114            pPreset->m_nEarlyGain = 27690;
2115            pPreset->m_nEarlyDelay = 1311;
2116            pPreset->m_nLateGain = 8191;
2117            pPreset->m_nLateDelay = 3932;
2118            pPreset->m_nRoomLpfFbk = 3692;
2119            pPreset->m_nRoomLpfFwd = 24569;
2120            pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2121            pPreset->m_sEarlyL.m_nGain[0] = 22152;
2122            pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2123            pPreset->m_sEarlyL.m_nGain[1] = 17537;
2124            pPreset->m_sEarlyL.m_zDelay[2] = 0;
2125            pPreset->m_sEarlyL.m_nGain[2] = 14768;
2126            pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2127            pPreset->m_sEarlyL.m_nGain[3] = 14307;
2128            pPreset->m_sEarlyL.m_zDelay[4] = 0;
2129            pPreset->m_sEarlyL.m_nGain[4] = 13384;
2130            pPreset->m_sEarlyR.m_zDelay[0] = 721;
2131            pPreset->m_sEarlyR.m_nGain[0] = 20306;
2132            pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2133            pPreset->m_sEarlyR.m_nGain[1] = 17537;
2134            pPreset->m_sEarlyR.m_zDelay[2] = 0;
2135            pPreset->m_sEarlyR.m_nGain[2] = 14768;
2136            pPreset->m_sEarlyR.m_zDelay[3] = 0;
2137            pPreset->m_sEarlyR.m_nGain[3] = 16153;
2138            pPreset->m_sEarlyR.m_zDelay[4] = 0;
2139            pPreset->m_sEarlyR.m_nGain[4] = 13384;
2140            pPreset->m_nMaxExcursion = 127;
2141            pPreset->m_nXfadeInterval = 6391;
2142            pPreset->m_nAp0_ApGain = 15230;
2143            pPreset->m_nAp0_ApOut = 708;
2144            pPreset->m_nAp1_ApGain = 15547;
2145            pPreset->m_nAp1_ApOut = 1023;
2146            pPreset->m_rfu4 = 0;
2147            pPreset->m_rfu5 = 0;
2148            pPreset->m_rfu6 = 0;
2149            pPreset->m_rfu7 = 0;
2150            pPreset->m_rfu8 = 0;
2151            pPreset->m_rfu9 = 0;
2152            pPreset->m_rfu10 = 0;
2153            break;
2154        case REVERB_PRESET_LARGEHALL:
2155            pPreset->m_nRvbLpfFbk = 8307;
2156            pPreset->m_nRvbLpfFwd = 14768;
2157            pPreset->m_nEarlyGain = 27690;
2158            pPreset->m_nEarlyDelay = 1311;
2159            pPreset->m_nLateGain = 8191;
2160            pPreset->m_nLateDelay = 3932;
2161            pPreset->m_nRoomLpfFbk = 3692;
2162            pPreset->m_nRoomLpfFwd = 24569;
2163            pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2164            pPreset->m_sEarlyL.m_nGain[0] = 22152;
2165            pPreset->m_sEarlyL.m_zDelay[1] = 2163;
2166            pPreset->m_sEarlyL.m_nGain[1] = 17537;
2167            pPreset->m_sEarlyL.m_zDelay[2] = 0;
2168            pPreset->m_sEarlyL.m_nGain[2] = 14768;
2169            pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2170            pPreset->m_sEarlyL.m_nGain[3] = 14307;
2171            pPreset->m_sEarlyL.m_zDelay[4] = 0;
2172            pPreset->m_sEarlyL.m_nGain[4] = 13384;
2173            pPreset->m_sEarlyR.m_zDelay[0] = 721;
2174            pPreset->m_sEarlyR.m_nGain[0] = 20306;
2175            pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2176            pPreset->m_sEarlyR.m_nGain[1] = 17537;
2177            pPreset->m_sEarlyR.m_zDelay[2] = 0;
2178            pPreset->m_sEarlyR.m_nGain[2] = 14768;
2179            pPreset->m_sEarlyR.m_zDelay[3] = 0;
2180            pPreset->m_sEarlyR.m_nGain[3] = 16153;
2181            pPreset->m_sEarlyR.m_zDelay[4] = 0;
2182            pPreset->m_sEarlyR.m_nGain[4] = 13384;
2183            pPreset->m_nMaxExcursion = 127;
2184            pPreset->m_nXfadeInterval = 6388;
2185            pPreset->m_nAp0_ApGain = 15691;
2186            pPreset->m_nAp0_ApOut = 711;
2187            pPreset->m_nAp1_ApGain = 16317;
2188            pPreset->m_nAp1_ApOut = 1029;
2189            pPreset->m_rfu4 = 0;
2190            pPreset->m_rfu5 = 0;
2191            pPreset->m_rfu6 = 0;
2192            pPreset->m_rfu7 = 0;
2193            pPreset->m_rfu8 = 0;
2194            pPreset->m_rfu9 = 0;
2195            pPreset->m_rfu10 = 0;
2196            break;
2197        }
2198    }
2199
2200    return 0;
2201}
2202
2203audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM = {
2204    .tag = AUDIO_EFFECT_LIBRARY_TAG,
2205    .version = EFFECT_LIBRARY_API_VERSION,
2206    .name = "Test Equalizer Library",
2207    .implementor = "The Android Open Source Project",
2208    .create_effect = EffectCreate,
2209    .release_effect = EffectRelease,
2210    .get_descriptor = EffectGetDescriptor,
2211};
2212