dtx.c revision 5d5c3a132bb446ac78a37dfaac24a46cacf0dd73
1/*
2 ** Copyright 2003-2010, VisualOn, Inc.
3 **
4 ** Licensed under the Apache License, Version 2.0 (the "License");
5 ** you may not use this file except in compliance with the License.
6 ** You may obtain a copy of the License at
7 **
8 **     http://www.apache.org/licenses/LICENSE-2.0
9 **
10 ** Unless required by applicable law or agreed to in writing, software
11 ** distributed under the License is distributed on an "AS IS" BASIS,
12 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 ** See the License for the specific language governing permissions and
14 ** limitations under the License.
15 */
16
17/***********************************************************************
18*       File: dtx.c                                                    *
19*                                                                      *
20*       Description:DTX functions                                  *
21*                                                                      *
22************************************************************************/
23
24#include <stdio.h>
25#include <stdlib.h>
26#include "typedef.h"
27#include "basic_op.h"
28#include "oper_32b.h"
29#include "math_op.h"
30#include "cnst.h"
31#include "acelp.h"                         /* prototype of functions    */
32#include "bits.h"
33#include "dtx.h"
34#include "log2.h"
35#include "mem_align.h"
36
37static void aver_isf_history(
38        Word16 isf_old[],
39        Word16 indices[],
40        Word32 isf_aver[]
41        );
42
43static void find_frame_indices(
44        Word16 isf_old_tx[],
45        Word16 indices[],
46        dtx_encState * st
47        );
48
49static Word16 dithering_control(
50        dtx_encState * st
51        );
52
53/* excitation energy adjustment depending on speech coder mode used, Q7 */
54static Word16 en_adjust[9] =
55{
56    230,                                   /* mode0 = 7k  :  -5.4dB  */
57    179,                                   /* mode1 = 9k  :  -4.2dB  */
58    141,                                   /* mode2 = 12k :  -3.3dB  */
59    128,                                   /* mode3 = 14k :  -3.0dB  */
60    122,                                   /* mode4 = 16k :  -2.85dB */
61    115,                                   /* mode5 = 18k :  -2.7dB  */
62    115,                                   /* mode6 = 20k :  -2.7dB  */
63    115,                                   /* mode7 = 23k :  -2.7dB  */
64    115                                    /* mode8 = 24k :  -2.7dB  */
65};
66
67/**************************************************************************
68*
69* Function    : dtx_enc_init
70*
71**************************************************************************/
72Word16 dtx_enc_init(dtx_encState ** st, Word16 isf_init[], VO_MEM_OPERATOR *pMemOP)
73{
74    dtx_encState *s;
75
76    if (st == (dtx_encState **) NULL)
77    {
78        fprintf(stderr, "dtx_enc_init: invalid parameter\n");
79        return -1;
80    }
81    *st = NULL;
82
83    /* allocate memory */
84    if ((s = (dtx_encState *)mem_malloc(pMemOP, sizeof(dtx_encState), 32, VO_INDEX_ENC_AMRWB)) == NULL)
85    {
86        fprintf(stderr, "dtx_enc_init: can not malloc state structure\n");
87        return -1;
88    }
89    dtx_enc_reset(s, isf_init);
90    *st = s;
91    return 0;
92}
93
94/**************************************************************************
95*
96* Function    : dtx_enc_reset
97*
98**************************************************************************/
99Word16 dtx_enc_reset(dtx_encState * st, Word16 isf_init[])
100{
101    Word32 i;
102
103    if (st == (dtx_encState *) NULL)
104    {
105        fprintf(stderr, "dtx_enc_reset: invalid parameter\n");
106        return -1;
107    }
108    st->hist_ptr = 0;
109    st->log_en_index = 0;
110
111    /* Init isf_hist[] */
112    for (i = 0; i < DTX_HIST_SIZE; i++)
113    {
114        Copy(isf_init, &st->isf_hist[i * M], M);
115    }
116    st->cng_seed = RANDOM_INITSEED;
117
118    /* Reset energy history */
119    Set_zero(st->log_en_hist, DTX_HIST_SIZE);
120
121    st->dtxHangoverCount = DTX_HANG_CONST;
122    st->decAnaElapsedCount = 32767;
123
124    for (i = 0; i < 28; i++)
125    {
126        st->D[i] = 0;
127    }
128
129    for (i = 0; i < DTX_HIST_SIZE - 1; i++)
130    {
131        st->sumD[i] = 0;
132    }
133
134    return 1;
135}
136
137/**************************************************************************
138*
139* Function    : dtx_enc_exit
140*
141**************************************************************************/
142void dtx_enc_exit(dtx_encState ** st, VO_MEM_OPERATOR *pMemOP)
143{
144    if (st == NULL || *st == NULL)
145        return;
146    /* deallocate memory */
147    mem_free(pMemOP, *st, VO_INDEX_ENC_AMRWB);
148    *st = NULL;
149    return;
150}
151
152
153/**************************************************************************
154*
155* Function    : dtx_enc
156*
157**************************************************************************/
158Word16 dtx_enc(
159        dtx_encState * st,                    /* i/o : State struct                                         */
160        Word16 isf[M],                        /* o   : CN ISF vector                                        */
161        Word16 * exc2,                        /* o   : CN excitation                                        */
162        Word16 ** prms
163          )
164{
165    Word32 i, j;
166    Word16 indice[7];
167    Word16 log_en, gain, level, exp, exp0, tmp;
168    Word16 log_en_int_e, log_en_int_m;
169    Word32 L_isf[M], ener32, level32;
170    Word16 isf_order[3];
171    Word16 CN_dith;
172
173    /* VOX mode computation of SID parameters */
174    log_en = 0;
175    for (i = 0; i < M; i++)
176    {
177        L_isf[i] = 0;
178    }
179    /* average energy and isf */
180    for (i = 0; i < DTX_HIST_SIZE; i++)
181    {
182        /* Division by DTX_HIST_SIZE = 8 has been done in dtx_buffer. log_en is in Q10 */
183        log_en = add(log_en, st->log_en_hist[i]);
184
185    }
186    find_frame_indices(st->isf_hist, isf_order, st);
187    aver_isf_history(st->isf_hist, isf_order, L_isf);
188
189    for (j = 0; j < M; j++)
190    {
191        isf[j] = (Word16)(L_isf[j] >> 3);  /* divide by 8 */
192    }
193
194    /* quantize logarithmic energy to 6 bits (-6 : 66 dB) which corresponds to -2:22 in log2(E).  */
195    /* st->log_en_index = (short)( (log_en + 2.0) * 2.625 ); */
196
197    /* increase dynamics to 7 bits (Q8) */
198    log_en = (log_en >> 2);
199
200    /* Add 2 in Q8 = 512 to get log2(E) between 0:24 */
201    log_en = add(log_en, 512);
202
203    /* Multiply by 2.625 to get full 6 bit range. 2.625 = 21504 in Q13. The result is in Q6 */
204    log_en = mult(log_en, 21504);
205
206    /* Quantize Energy */
207    st->log_en_index = shr(log_en, 6);
208
209    if(st->log_en_index > 63)
210    {
211        st->log_en_index = 63;
212    }
213    if (st->log_en_index < 0)
214    {
215        st->log_en_index = 0;
216    }
217    /* Quantize ISFs */
218    Qisf_ns(isf, isf, indice);
219
220
221    Parm_serial(indice[0], 6, prms);
222    Parm_serial(indice[1], 6, prms);
223    Parm_serial(indice[2], 6, prms);
224    Parm_serial(indice[3], 5, prms);
225    Parm_serial(indice[4], 5, prms);
226
227    Parm_serial((st->log_en_index), 6, prms);
228
229    CN_dith = dithering_control(st);
230    Parm_serial(CN_dith, 1, prms);
231
232    /* level = (float)( pow( 2.0f, (float)st->log_en_index / 2.625 - 2.0 ) );    */
233    /* log2(E) in Q9 (log2(E) lies in between -2:22) */
234    log_en = shl(st->log_en_index, 15 - 6);
235
236    /* Divide by 2.625; log_en will be between 0:24  */
237    log_en = mult(log_en, 12483);
238    /* the result corresponds to log2(gain) in Q10 */
239
240    /* Find integer part  */
241    log_en_int_e = (log_en >> 10);
242
243    /* Find fractional part */
244    log_en_int_m = (Word16) (log_en & 0x3ff);
245    log_en_int_m = shl(log_en_int_m, 5);
246
247    /* Subtract 2 from log_en in Q9, i.e divide the gain by 2 (energy by 4) */
248    /* Add 16 in order to have the result of pow2 in Q16 */
249    log_en_int_e = add(log_en_int_e, 16 - 1);
250
251    level32 = Pow2(log_en_int_e, log_en_int_m); /* Q16 */
252    exp0 = norm_l(level32);
253    level32 = (level32 << exp0);        /* level in Q31 */
254    exp0 = (15 - exp0);
255    level = extract_h(level32);            /* level in Q15 */
256
257    /* generate white noise vector */
258    for (i = 0; i < L_FRAME; i++)
259    {
260        exc2[i] = (Random(&(st->cng_seed)) >> 4);
261    }
262
263    /* gain = level / sqrt(ener) * sqrt(L_FRAME) */
264
265    /* energy of generated excitation */
266    ener32 = Dot_product12(exc2, exc2, L_FRAME, &exp);
267
268    Isqrt_n(&ener32, &exp);
269
270    gain = extract_h(ener32);
271
272    gain = mult(level, gain);              /* gain in Q15 */
273
274    exp = add(exp0, exp);
275
276    /* Multiply by sqrt(L_FRAME)=16, i.e. shift left by 4 */
277    exp += 4;
278
279    for (i = 0; i < L_FRAME; i++)
280    {
281        tmp = mult(exc2[i], gain);         /* Q0 * Q15 */
282        exc2[i] = shl(tmp, exp);
283    }
284
285    return 0;
286}
287
288/**************************************************************************
289*
290* Function    : dtx_buffer Purpose     : handles the DTX buffer
291*
292**************************************************************************/
293Word16 dtx_buffer(
294        dtx_encState * st,                    /* i/o : State struct                    */
295        Word16 isf_new[],                     /* i   : isf vector                      */
296        Word32 enr,                           /* i   : residual energy (in L_FRAME)    */
297        Word16 codec_mode
298        )
299{
300    Word16 log_en;
301
302    Word16 log_en_e;
303    Word16 log_en_m;
304    st->hist_ptr = add(st->hist_ptr, 1);
305    if(st->hist_ptr == DTX_HIST_SIZE)
306    {
307        st->hist_ptr = 0;
308    }
309    /* copy lsp vector into buffer */
310    Copy(isf_new, &st->isf_hist[st->hist_ptr * M], M);
311
312    /* log_en = (float)log10(enr*0.0059322)/(float)log10(2.0f);  */
313    Log2(enr, &log_en_e, &log_en_m);
314
315    /* convert exponent and mantissa to Word16 Q7. Q7 is used to simplify averaging in dtx_enc */
316    log_en = shl(log_en_e, 7);             /* Q7 */
317    log_en = add(log_en, shr(log_en_m, 15 - 7));
318
319    /* Find energy per sample by multiplying with 0.0059322, i.e subtract log2(1/0.0059322) = 7.39722 The
320     * constant 0.0059322 takes into account windowings and analysis length from autocorrelation
321     * computations; 7.39722 in Q7 = 947  */
322    /* Subtract 3 dB = 0.99658 in log2(E) = 127 in Q7. */
323    /* log_en = sub( log_en, 947 + en_adjust[codec_mode] ); */
324
325    /* Find energy per sample (divide by L_FRAME=256), i.e subtract log2(256) = 8.0  (1024 in Q7) */
326    /* Subtract 3 dB = 0.99658 in log2(E) = 127 in Q7. */
327
328    log_en = sub(log_en, add(1024, en_adjust[codec_mode]));
329
330    /* Insert into the buffer */
331    st->log_en_hist[st->hist_ptr] = log_en;
332    return 0;
333}
334
335/**************************************************************************
336*
337* Function    : tx_dtx_handler Purpose     : adds extra speech hangover
338*                                            to analyze speech on
339*                                            the decoding side.
340**************************************************************************/
341void tx_dtx_handler(dtx_encState * st,     /* i/o : State struct           */
342        Word16 vad_flag,                      /* i   : vad decision           */
343        Word16 * usedMode                     /* i/o : mode changed or not    */
344        )
345{
346
347    /* this state machine is in synch with the GSMEFR txDtx machine      */
348    st->decAnaElapsedCount = add(st->decAnaElapsedCount, 1);
349
350    if (vad_flag != 0)
351    {
352        st->dtxHangoverCount = DTX_HANG_CONST;
353    } else
354    {                                      /* non-speech */
355        if (st->dtxHangoverCount == 0)
356        {                                  /* out of decoder analysis hangover  */
357            st->decAnaElapsedCount = 0;
358            *usedMode = MRDTX;
359        } else
360        {                                  /* in possible analysis hangover */
361            st->dtxHangoverCount = sub(st->dtxHangoverCount, 1);
362
363            /* decAnaElapsedCount + dtxHangoverCount < DTX_ELAPSED_FRAMES_THRESH */
364            if (sub(add(st->decAnaElapsedCount, st->dtxHangoverCount),
365                        DTX_ELAPSED_FRAMES_THRESH) < 0)
366            {
367                *usedMode = MRDTX;
368                /* if short time since decoder update, do not add extra HO */
369            }
370            /* else override VAD and stay in speech mode *usedMode and add extra hangover */
371        }
372    }
373
374    return;
375}
376
377
378
379static void aver_isf_history(
380        Word16 isf_old[],
381        Word16 indices[],
382        Word32 isf_aver[]
383        )
384{
385    Word32 i, j, k;
386    Word16 isf_tmp[2 * M];
387    Word32 L_tmp;
388
389    /* Memorize in isf_tmp[][] the ISF vectors to be replaced by */
390    /* the median ISF vector prior to the averaging               */
391    for (k = 0; k < 2; k++)
392    {
393        if ((indices[k] + 1) != 0)
394        {
395            for (i = 0; i < M; i++)
396            {
397                isf_tmp[k * M + i] = isf_old[indices[k] * M + i];
398                isf_old[indices[k] * M + i] = isf_old[indices[2] * M + i];
399            }
400        }
401    }
402
403    /* Perform the ISF averaging */
404    for (j = 0; j < M; j++)
405    {
406        L_tmp = 0;
407
408        for (i = 0; i < DTX_HIST_SIZE; i++)
409        {
410            L_tmp = L_add(L_tmp, L_deposit_l(isf_old[i * M + j]));
411        }
412        isf_aver[j] = L_tmp;
413    }
414
415    /* Retrieve from isf_tmp[][] the ISF vectors saved prior to averaging */
416    for (k = 0; k < 2; k++)
417    {
418        if ((indices[k] + 1) != 0)
419        {
420            for (i = 0; i < M; i++)
421            {
422                isf_old[indices[k] * M + i] = isf_tmp[k * M + i];
423            }
424        }
425    }
426
427    return;
428}
429
430static void find_frame_indices(
431        Word16 isf_old_tx[],
432        Word16 indices[],
433        dtx_encState * st
434        )
435{
436    Word32 L_tmp, summin, summax, summax2nd;
437    Word16 i, j, tmp;
438    Word16 ptr;
439
440    /* Remove the effect of the oldest frame from the column */
441    /* sum sumD[0..DTX_HIST_SIZE-1]. sumD[DTX_HIST_SIZE] is    */
442    /* not updated since it will be removed later.           */
443
444    tmp = DTX_HIST_SIZE_MIN_ONE;
445    j = -1;
446    for (i = 0; i < DTX_HIST_SIZE_MIN_ONE; i++)
447    {
448        j = add(j, tmp);
449        st->sumD[i] = L_sub(st->sumD[i], st->D[j]);
450        tmp = sub(tmp, 1);
451    }
452
453    /* Shift the column sum sumD. The element sumD[DTX_HIST_SIZE-1]    */
454    /* corresponding to the oldest frame is removed. The sum of     */
455    /* the distances between the latest isf and other isfs, */
456    /* i.e. the element sumD[0], will be computed during this call. */
457    /* Hence this element is initialized to zero.                   */
458
459    for (i = DTX_HIST_SIZE_MIN_ONE; i > 0; i--)
460    {
461        st->sumD[i] = st->sumD[i - 1];
462    }
463    st->sumD[0] = 0;
464
465    /* Remove the oldest frame from the distance matrix.           */
466    /* Note that the distance matrix is replaced by a one-         */
467    /* dimensional array to save static memory.                    */
468
469    tmp = 0;
470    for (i = 27; i >= 12; i = (Word16) (i - tmp))
471    {
472        tmp = add(tmp, 1);
473        for (j = tmp; j > 0; j--)
474        {
475            st->D[i - j + 1] = st->D[i - j - tmp];
476        }
477    }
478
479    /* Compute the first column of the distance matrix D            */
480    /* (squared Euclidean distances from isf1[] to isf_old_tx[][]). */
481
482    ptr = st->hist_ptr;
483    for (i = 1; i < DTX_HIST_SIZE; i++)
484    {
485        /* Compute the distance between the latest isf and the other isfs. */
486        ptr = sub(ptr, 1);
487        if (ptr < 0)
488        {
489            ptr = DTX_HIST_SIZE_MIN_ONE;
490        }
491        L_tmp = 0;
492        for (j = 0; j < M; j++)
493        {
494            tmp = sub(isf_old_tx[st->hist_ptr * M + j], isf_old_tx[ptr * M + j]);
495            L_tmp = L_mac(L_tmp, tmp, tmp);
496        }
497        st->D[i - 1] = L_tmp;
498
499        /* Update also the column sums. */
500        st->sumD[0] = L_add(st->sumD[0], st->D[i - 1]);
501        st->sumD[i] = L_add(st->sumD[i], st->D[i - 1]);
502    }
503
504    /* Find the minimum and maximum distances */
505    summax = st->sumD[0];
506    summin = st->sumD[0];
507    indices[0] = 0;
508    indices[2] = 0;
509    for (i = 1; i < DTX_HIST_SIZE; i++)
510    {
511        if (L_sub(st->sumD[i], summax) > 0)
512        {
513            indices[0] = i;
514            summax = st->sumD[i];
515        }
516        if (L_sub(st->sumD[i], summin) < 0)
517        {
518            indices[2] = i;
519            summin = st->sumD[i];
520        }
521    }
522
523    /* Find the second largest distance */
524    summax2nd = -2147483647L;
525    indices[1] = -1;
526    for (i = 0; i < DTX_HIST_SIZE; i++)
527    {
528        if ((L_sub(st->sumD[i], summax2nd) > 0) && (sub(i, indices[0]) != 0))
529        {
530            indices[1] = i;
531            summax2nd = st->sumD[i];
532        }
533    }
534
535    for (i = 0; i < 3; i++)
536    {
537        indices[i] = sub(st->hist_ptr, indices[i]);
538        if (indices[i] < 0)
539        {
540            indices[i] = add(indices[i], DTX_HIST_SIZE);
541        }
542    }
543
544    /* If maximum distance/MED_THRESH is smaller than minimum distance */
545    /* then the median ISF vector replacement is not performed         */
546    tmp = norm_l(summax);
547    summax = (summax << tmp);
548    summin = (summin << tmp);
549    L_tmp = L_mult(voround(summax), INV_MED_THRESH);
550    if(L_tmp <= summin)
551    {
552        indices[0] = -1;
553    }
554    /* If second largest distance/MED_THRESH is smaller than     */
555    /* minimum distance then the median ISF vector replacement is    */
556    /* not performed                                                 */
557    summax2nd = L_shl(summax2nd, tmp);
558    L_tmp = L_mult(voround(summax2nd), INV_MED_THRESH);
559    if(L_tmp <= summin)
560    {
561        indices[1] = -1;
562    }
563    return;
564}
565
566static Word16 dithering_control(
567        dtx_encState * st
568        )
569{
570    Word16 tmp, mean, CN_dith, gain_diff;
571    Word32 i, ISF_diff;
572
573    /* determine how stationary the spectrum of background noise is */
574    ISF_diff = 0;
575    for (i = 0; i < 8; i++)
576    {
577        ISF_diff = L_add(ISF_diff, st->sumD[i]);
578    }
579    if ((ISF_diff >> 26) > 0)
580    {
581        CN_dith = 1;
582    } else
583    {
584        CN_dith = 0;
585    }
586
587    /* determine how stationary the energy of background noise is */
588    mean = 0;
589    for (i = 0; i < DTX_HIST_SIZE; i++)
590    {
591        mean = add(mean, st->log_en_hist[i]);
592    }
593    mean = (mean >> 3);
594    gain_diff = 0;
595    for (i = 0; i < DTX_HIST_SIZE; i++)
596    {
597        tmp = abs_s(sub(st->log_en_hist[i], mean));
598        gain_diff = add(gain_diff, tmp);
599    }
600    if (gain_diff > GAIN_THR)
601    {
602        CN_dith = 1;
603    }
604    return CN_dith;
605}
606