Threads.cpp revision 0be3be0cf5530d6faf655c325ec9d94a2bd53564
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include "AudioFlinger.h"
57#include "AudioMixer.h"
58#include "BufferProviders.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "mediautils/SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74#include "AutoPark.h"
75
76// ----------------------------------------------------------------------------
77
78// Note: the following macro is used for extremely verbose logging message.  In
79// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
80// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
81// are so verbose that we want to suppress them even when we have ALOG_ASSERT
82// turned on.  Do not uncomment the #def below unless you really know what you
83// are doing and want to see all of the extremely verbose messages.
84//#define VERY_VERY_VERBOSE_LOGGING
85#ifdef VERY_VERY_VERBOSE_LOGGING
86#define ALOGVV ALOGV
87#else
88#define ALOGVV(a...) do { } while(0)
89#endif
90
91// TODO: Move these macro/inlines to a header file.
92#define max(a, b) ((a) > (b) ? (a) : (b))
93template <typename T>
94static inline T min(const T& a, const T& b)
95{
96    return a < b ? a : b;
97}
98
99#ifndef ARRAY_SIZE
100#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
101#endif
102
103namespace android {
104
105// retry counts for buffer fill timeout
106// 50 * ~20msecs = 1 second
107static const int8_t kMaxTrackRetries = 50;
108static const int8_t kMaxTrackStartupRetries = 50;
109// allow less retry attempts on direct output thread.
110// direct outputs can be a scarce resource in audio hardware and should
111// be released as quickly as possible.
112static const int8_t kMaxTrackRetriesDirect = 2;
113// retry count before removing active track in case of underrun on offloaded thread:
114// we need to make sure that AudioTrack client has enough time to send large buffers
115//FIXME may be more appropriate if expressed in time units. Need to revise how underrun is handled
116// for offloaded tracks
117static const int8_t kMaxTrackRetriesOffload = 10;
118static const int8_t kMaxTrackStartupRetriesOffload = 100;
119
120
121// don't warn about blocked writes or record buffer overflows more often than this
122static const nsecs_t kWarningThrottleNs = seconds(5);
123
124// RecordThread loop sleep time upon application overrun or audio HAL read error
125static const int kRecordThreadSleepUs = 5000;
126
127// maximum time to wait in sendConfigEvent_l() for a status to be received
128static const nsecs_t kConfigEventTimeoutNs = seconds(2);
129
130// minimum sleep time for the mixer thread loop when tracks are active but in underrun
131static const uint32_t kMinThreadSleepTimeUs = 5000;
132// maximum divider applied to the active sleep time in the mixer thread loop
133static const uint32_t kMaxThreadSleepTimeShift = 2;
134
135// minimum normal sink buffer size, expressed in milliseconds rather than frames
136// FIXME This should be based on experimentally observed scheduling jitter
137static const uint32_t kMinNormalSinkBufferSizeMs = 20;
138// maximum normal sink buffer size
139static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
140
141// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
142// FIXME This should be based on experimentally observed scheduling jitter
143static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
144
145// Offloaded output thread standby delay: allows track transition without going to standby
146static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
147
148// Direct output thread minimum sleep time in idle or active(underrun) state
149static const nsecs_t kDirectMinSleepTimeUs = 10000;
150
151// Offloaded output bit rate in bits per second when unknown.
152// Used for sleep time calculation, so use a high default bitrate to be conservative on sleep time.
153static const uint32_t kOffloadDefaultBitRateBps = 1500000;
154
155
156// Whether to use fast mixer
157static const enum {
158    FastMixer_Never,    // never initialize or use: for debugging only
159    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
160                        // normal mixer multiplier is 1
161    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
162                        // multiplier is calculated based on min & max normal mixer buffer size
163    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
164                        // multiplier is calculated based on min & max normal mixer buffer size
165    // FIXME for FastMixer_Dynamic:
166    //  Supporting this option will require fixing HALs that can't handle large writes.
167    //  For example, one HAL implementation returns an error from a large write,
168    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
169    //  We could either fix the HAL implementations, or provide a wrapper that breaks
170    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
171} kUseFastMixer = FastMixer_Static;
172
173// Whether to use fast capture
174static const enum {
175    FastCapture_Never,  // never initialize or use: for debugging only
176    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
177    FastCapture_Static, // initialize if needed, then use all the time if initialized
178} kUseFastCapture = FastCapture_Static;
179
180// Priorities for requestPriority
181static const int kPriorityAudioApp = 2;
182static const int kPriorityFastMixer = 3;
183static const int kPriorityFastCapture = 3;
184
185// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
186// for the track.  The client then sub-divides this into smaller buffers for its use.
187// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
188// So for now we just assume that client is double-buffered for fast tracks.
189// FIXME It would be better for client to tell AudioFlinger the value of N,
190// so AudioFlinger could allocate the right amount of memory.
191// See the client's minBufCount and mNotificationFramesAct calculations for details.
192
193// This is the default value, if not specified by property.
194static const int kFastTrackMultiplier = 2;
195
196// The minimum and maximum allowed values
197static const int kFastTrackMultiplierMin = 1;
198static const int kFastTrackMultiplierMax = 2;
199
200// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
201static int sFastTrackMultiplier = kFastTrackMultiplier;
202
203// See Thread::readOnlyHeap().
204// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
205// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
206// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
207static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
208
209// ----------------------------------------------------------------------------
210
211static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
212
213static void sFastTrackMultiplierInit()
214{
215    char value[PROPERTY_VALUE_MAX];
216    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
217        char *endptr;
218        unsigned long ul = strtoul(value, &endptr, 0);
219        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
220            sFastTrackMultiplier = (int) ul;
221        }
222    }
223}
224
225// ----------------------------------------------------------------------------
226
227#ifdef ADD_BATTERY_DATA
228// To collect the amplifier usage
229static void addBatteryData(uint32_t params) {
230    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
231    if (service == NULL) {
232        // it already logged
233        return;
234    }
235
236    service->addBatteryData(params);
237}
238#endif
239
240// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
241struct {
242    // call when you acquire a partial wakelock
243    void acquire(const sp<IBinder> &wakeLockToken) {
244        pthread_mutex_lock(&mLock);
245        if (wakeLockToken.get() == nullptr) {
246            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
247        } else {
248            if (mCount == 0) {
249                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
250            }
251            ++mCount;
252        }
253        pthread_mutex_unlock(&mLock);
254    }
255
256    // call when you release a partial wakelock.
257    void release(const sp<IBinder> &wakeLockToken) {
258        if (wakeLockToken.get() == nullptr) {
259            return;
260        }
261        pthread_mutex_lock(&mLock);
262        if (--mCount < 0) {
263            ALOGE("negative wakelock count");
264            mCount = 0;
265        }
266        pthread_mutex_unlock(&mLock);
267    }
268
269    // retrieves the boottime timebase offset from monotonic.
270    int64_t getBoottimeOffset() {
271        pthread_mutex_lock(&mLock);
272        int64_t boottimeOffset = mBoottimeOffset;
273        pthread_mutex_unlock(&mLock);
274        return boottimeOffset;
275    }
276
277    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
278    // and the selected timebase.
279    // Currently only TIMEBASE_BOOTTIME is allowed.
280    //
281    // This only needs to be called upon acquiring the first partial wakelock
282    // after all other partial wakelocks are released.
283    //
284    // We do an empirical measurement of the offset rather than parsing
285    // /proc/timer_list since the latter is not a formal kernel ABI.
286    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
287        int clockbase;
288        switch (timebase) {
289        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
290            clockbase = SYSTEM_TIME_BOOTTIME;
291            break;
292        default:
293            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
294            break;
295        }
296        // try three times to get the clock offset, choose the one
297        // with the minimum gap in measurements.
298        const int tries = 3;
299        nsecs_t bestGap, measured;
300        for (int i = 0; i < tries; ++i) {
301            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
302            const nsecs_t tbase = systemTime(clockbase);
303            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
304            const nsecs_t gap = tmono2 - tmono;
305            if (i == 0 || gap < bestGap) {
306                bestGap = gap;
307                measured = tbase - ((tmono + tmono2) >> 1);
308            }
309        }
310
311        // to avoid micro-adjusting, we don't change the timebase
312        // unless it is significantly different.
313        //
314        // Assumption: It probably takes more than toleranceNs to
315        // suspend and resume the device.
316        static int64_t toleranceNs = 10000; // 10 us
317        if (llabs(*offset - measured) > toleranceNs) {
318            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
319                    (long long)*offset, (long long)measured);
320            *offset = measured;
321        }
322    }
323
324    pthread_mutex_t mLock;
325    int32_t mCount;
326    int64_t mBoottimeOffset;
327} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
328
329// ----------------------------------------------------------------------------
330//      CPU Stats
331// ----------------------------------------------------------------------------
332
333class CpuStats {
334public:
335    CpuStats();
336    void sample(const String8 &title);
337#ifdef DEBUG_CPU_USAGE
338private:
339    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
340    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
341
342    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
343
344    int mCpuNum;                        // thread's current CPU number
345    int mCpukHz;                        // frequency of thread's current CPU in kHz
346#endif
347};
348
349CpuStats::CpuStats()
350#ifdef DEBUG_CPU_USAGE
351    : mCpuNum(-1), mCpukHz(-1)
352#endif
353{
354}
355
356void CpuStats::sample(const String8 &title
357#ifndef DEBUG_CPU_USAGE
358                __unused
359#endif
360        ) {
361#ifdef DEBUG_CPU_USAGE
362    // get current thread's delta CPU time in wall clock ns
363    double wcNs;
364    bool valid = mCpuUsage.sampleAndEnable(wcNs);
365
366    // record sample for wall clock statistics
367    if (valid) {
368        mWcStats.sample(wcNs);
369    }
370
371    // get the current CPU number
372    int cpuNum = sched_getcpu();
373
374    // get the current CPU frequency in kHz
375    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
376
377    // check if either CPU number or frequency changed
378    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
379        mCpuNum = cpuNum;
380        mCpukHz = cpukHz;
381        // ignore sample for purposes of cycles
382        valid = false;
383    }
384
385    // if no change in CPU number or frequency, then record sample for cycle statistics
386    if (valid && mCpukHz > 0) {
387        double cycles = wcNs * cpukHz * 0.000001;
388        mHzStats.sample(cycles);
389    }
390
391    unsigned n = mWcStats.n();
392    // mCpuUsage.elapsed() is expensive, so don't call it every loop
393    if ((n & 127) == 1) {
394        long long elapsed = mCpuUsage.elapsed();
395        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
396            double perLoop = elapsed / (double) n;
397            double perLoop100 = perLoop * 0.01;
398            double perLoop1k = perLoop * 0.001;
399            double mean = mWcStats.mean();
400            double stddev = mWcStats.stddev();
401            double minimum = mWcStats.minimum();
402            double maximum = mWcStats.maximum();
403            double meanCycles = mHzStats.mean();
404            double stddevCycles = mHzStats.stddev();
405            double minCycles = mHzStats.minimum();
406            double maxCycles = mHzStats.maximum();
407            mCpuUsage.resetElapsed();
408            mWcStats.reset();
409            mHzStats.reset();
410            ALOGD("CPU usage for %s over past %.1f secs\n"
411                "  (%u mixer loops at %.1f mean ms per loop):\n"
412                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
413                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
414                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
415                    title.string(),
416                    elapsed * .000000001, n, perLoop * .000001,
417                    mean * .001,
418                    stddev * .001,
419                    minimum * .001,
420                    maximum * .001,
421                    mean / perLoop100,
422                    stddev / perLoop100,
423                    minimum / perLoop100,
424                    maximum / perLoop100,
425                    meanCycles / perLoop1k,
426                    stddevCycles / perLoop1k,
427                    minCycles / perLoop1k,
428                    maxCycles / perLoop1k);
429
430        }
431    }
432#endif
433};
434
435// ----------------------------------------------------------------------------
436//      ThreadBase
437// ----------------------------------------------------------------------------
438
439// static
440const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
441{
442    switch (type) {
443    case MIXER:
444        return "MIXER";
445    case DIRECT:
446        return "DIRECT";
447    case DUPLICATING:
448        return "DUPLICATING";
449    case RECORD:
450        return "RECORD";
451    case OFFLOAD:
452        return "OFFLOAD";
453    default:
454        return "unknown";
455    }
456}
457
458String8 devicesToString(audio_devices_t devices)
459{
460    static const struct mapping {
461        audio_devices_t mDevices;
462        const char *    mString;
463    } mappingsOut[] = {
464        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
465        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
466        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
467        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
468        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
469        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
470        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
471        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
472        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
473        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
474        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
475        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
476        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
477        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
478        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
479        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
480        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
481        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
482        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
483        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
484        {AUDIO_DEVICE_OUT_FM,               "FM"},
485        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
486        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
487        {AUDIO_DEVICE_OUT_IP,               "IP"},
488        {AUDIO_DEVICE_OUT_BUS,              "BUS"},
489        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
490    }, mappingsIn[] = {
491        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
492        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
493        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
494        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
495        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
496        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
497        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
498        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
499        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
500        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
501        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
502        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
503        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
504        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
505        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
506        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
507        {AUDIO_DEVICE_IN_LINE,              "LINE"},
508        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
509        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
510        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
511        {AUDIO_DEVICE_IN_IP,                "IP"},
512        {AUDIO_DEVICE_IN_BUS,               "BUS"},
513        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
514    };
515    String8 result;
516    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
517    const mapping *entry;
518    if (devices & AUDIO_DEVICE_BIT_IN) {
519        devices &= ~AUDIO_DEVICE_BIT_IN;
520        entry = mappingsIn;
521    } else {
522        entry = mappingsOut;
523    }
524    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
525        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
526        if (devices & entry->mDevices) {
527            if (!result.isEmpty()) {
528                result.append("|");
529            }
530            result.append(entry->mString);
531        }
532    }
533    if (devices & ~allDevices) {
534        if (!result.isEmpty()) {
535            result.append("|");
536        }
537        result.appendFormat("0x%X", devices & ~allDevices);
538    }
539    if (result.isEmpty()) {
540        result.append(entry->mString);
541    }
542    return result;
543}
544
545String8 inputFlagsToString(audio_input_flags_t flags)
546{
547    static const struct mapping {
548        audio_input_flags_t     mFlag;
549        const char *            mString;
550    } mappings[] = {
551        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
552        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
553        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
554        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
555        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
556    };
557    String8 result;
558    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
559    const mapping *entry;
560    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
561        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
562        if (flags & entry->mFlag) {
563            if (!result.isEmpty()) {
564                result.append("|");
565            }
566            result.append(entry->mString);
567        }
568    }
569    if (flags & ~allFlags) {
570        if (!result.isEmpty()) {
571            result.append("|");
572        }
573        result.appendFormat("0x%X", flags & ~allFlags);
574    }
575    if (result.isEmpty()) {
576        result.append(entry->mString);
577    }
578    return result;
579}
580
581String8 outputFlagsToString(audio_output_flags_t flags)
582{
583    static const struct mapping {
584        audio_output_flags_t    mFlag;
585        const char *            mString;
586    } mappings[] = {
587        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
588        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
589        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
590        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
591        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
592        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
593        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
594        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
595        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
596        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
597        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
598    };
599    String8 result;
600    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
601    const mapping *entry;
602    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
603        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
604        if (flags & entry->mFlag) {
605            if (!result.isEmpty()) {
606                result.append("|");
607            }
608            result.append(entry->mString);
609        }
610    }
611    if (flags & ~allFlags) {
612        if (!result.isEmpty()) {
613            result.append("|");
614        }
615        result.appendFormat("0x%X", flags & ~allFlags);
616    }
617    if (result.isEmpty()) {
618        result.append(entry->mString);
619    }
620    return result;
621}
622
623const char *sourceToString(audio_source_t source)
624{
625    switch (source) {
626    case AUDIO_SOURCE_DEFAULT:              return "default";
627    case AUDIO_SOURCE_MIC:                  return "mic";
628    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
629    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
630    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
631    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
632    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
633    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
634    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
635    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
636    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
637    case AUDIO_SOURCE_HOTWORD:              return "hotword";
638    default:                                return "unknown";
639    }
640}
641
642AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
643        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
644    :   Thread(false /*canCallJava*/),
645        mType(type),
646        mAudioFlinger(audioFlinger),
647        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
648        // are set by PlaybackThread::readOutputParameters_l() or
649        // RecordThread::readInputParameters_l()
650        //FIXME: mStandby should be true here. Is this some kind of hack?
651        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
652        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
653        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
654        // mName will be set by concrete (non-virtual) subclass
655        mDeathRecipient(new PMDeathRecipient(this)),
656        mSystemReady(systemReady),
657        mNotifiedBatteryStart(false)
658{
659    memset(&mPatch, 0, sizeof(struct audio_patch));
660}
661
662AudioFlinger::ThreadBase::~ThreadBase()
663{
664    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
665    mConfigEvents.clear();
666
667    // do not lock the mutex in destructor
668    releaseWakeLock_l();
669    if (mPowerManager != 0) {
670        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
671        binder->unlinkToDeath(mDeathRecipient);
672    }
673}
674
675status_t AudioFlinger::ThreadBase::readyToRun()
676{
677    status_t status = initCheck();
678    if (status == NO_ERROR) {
679        ALOGI("AudioFlinger's thread %p ready to run", this);
680    } else {
681        ALOGE("No working audio driver found.");
682    }
683    return status;
684}
685
686void AudioFlinger::ThreadBase::exit()
687{
688    ALOGV("ThreadBase::exit");
689    // do any cleanup required for exit to succeed
690    preExit();
691    {
692        // This lock prevents the following race in thread (uniprocessor for illustration):
693        //  if (!exitPending()) {
694        //      // context switch from here to exit()
695        //      // exit() calls requestExit(), what exitPending() observes
696        //      // exit() calls signal(), which is dropped since no waiters
697        //      // context switch back from exit() to here
698        //      mWaitWorkCV.wait(...);
699        //      // now thread is hung
700        //  }
701        AutoMutex lock(mLock);
702        requestExit();
703        mWaitWorkCV.broadcast();
704    }
705    // When Thread::requestExitAndWait is made virtual and this method is renamed to
706    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
707    requestExitAndWait();
708}
709
710status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
711{
712    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
713    Mutex::Autolock _l(mLock);
714
715    return sendSetParameterConfigEvent_l(keyValuePairs);
716}
717
718// sendConfigEvent_l() must be called with ThreadBase::mLock held
719// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
720status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
721{
722    status_t status = NO_ERROR;
723
724    if (event->mRequiresSystemReady && !mSystemReady) {
725        event->mWaitStatus = false;
726        mPendingConfigEvents.add(event);
727        return status;
728    }
729    mConfigEvents.add(event);
730    ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
731    mWaitWorkCV.signal();
732    mLock.unlock();
733    {
734        Mutex::Autolock _l(event->mLock);
735        while (event->mWaitStatus) {
736            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
737                event->mStatus = TIMED_OUT;
738                event->mWaitStatus = false;
739            }
740        }
741        status = event->mStatus;
742    }
743    mLock.lock();
744    return status;
745}
746
747void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
748{
749    Mutex::Autolock _l(mLock);
750    sendIoConfigEvent_l(event, pid);
751}
752
753// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
754void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
755{
756    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
757    sendConfigEvent_l(configEvent);
758}
759
760void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
761{
762    Mutex::Autolock _l(mLock);
763    sendPrioConfigEvent_l(pid, tid, prio);
764}
765
766// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
767void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
768{
769    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
770    sendConfigEvent_l(configEvent);
771}
772
773// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
774status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
775{
776    sp<ConfigEvent> configEvent;
777    AudioParameter param(keyValuePair);
778    int value;
779    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
780        setMasterMono_l(value != 0);
781        if (param.size() == 1) {
782            return NO_ERROR; // should be a solo parameter - we don't pass down
783        }
784        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
785        configEvent = new SetParameterConfigEvent(param.toString());
786    } else {
787        configEvent = new SetParameterConfigEvent(keyValuePair);
788    }
789    return sendConfigEvent_l(configEvent);
790}
791
792status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
793                                                        const struct audio_patch *patch,
794                                                        audio_patch_handle_t *handle)
795{
796    Mutex::Autolock _l(mLock);
797    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
798    status_t status = sendConfigEvent_l(configEvent);
799    if (status == NO_ERROR) {
800        CreateAudioPatchConfigEventData *data =
801                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
802        *handle = data->mHandle;
803    }
804    return status;
805}
806
807status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
808                                                                const audio_patch_handle_t handle)
809{
810    Mutex::Autolock _l(mLock);
811    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
812    return sendConfigEvent_l(configEvent);
813}
814
815
816// post condition: mConfigEvents.isEmpty()
817void AudioFlinger::ThreadBase::processConfigEvents_l()
818{
819    bool configChanged = false;
820
821    while (!mConfigEvents.isEmpty()) {
822        ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
823        sp<ConfigEvent> event = mConfigEvents[0];
824        mConfigEvents.removeAt(0);
825        switch (event->mType) {
826        case CFG_EVENT_PRIO: {
827            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
828            // FIXME Need to understand why this has to be done asynchronously
829            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
830                    true /*asynchronous*/);
831            if (err != 0) {
832                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
833                      data->mPrio, data->mPid, data->mTid, err);
834            }
835        } break;
836        case CFG_EVENT_IO: {
837            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
838            ioConfigChanged(data->mEvent, data->mPid);
839        } break;
840        case CFG_EVENT_SET_PARAMETER: {
841            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
842            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
843                configChanged = true;
844            }
845        } break;
846        case CFG_EVENT_CREATE_AUDIO_PATCH: {
847            CreateAudioPatchConfigEventData *data =
848                                            (CreateAudioPatchConfigEventData *)event->mData.get();
849            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
850        } break;
851        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
852            ReleaseAudioPatchConfigEventData *data =
853                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
854            event->mStatus = releaseAudioPatch_l(data->mHandle);
855        } break;
856        default:
857            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
858            break;
859        }
860        {
861            Mutex::Autolock _l(event->mLock);
862            if (event->mWaitStatus) {
863                event->mWaitStatus = false;
864                event->mCond.signal();
865            }
866        }
867        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
868    }
869
870    if (configChanged) {
871        cacheParameters_l();
872    }
873}
874
875String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
876    String8 s;
877    const audio_channel_representation_t representation =
878            audio_channel_mask_get_representation(mask);
879
880    switch (representation) {
881    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
882        if (output) {
883            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
884            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
885            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
886            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
887            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
888            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
889            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
890            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
891            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
892            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
893            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
894            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
895            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
896            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
897            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
898            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
899            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
900            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
901            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
902        } else {
903            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
904            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
905            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
906            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
907            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
908            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
909            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
910            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
911            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
912            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
913            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
914            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
915            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
916            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
917            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
918        }
919        const int len = s.length();
920        if (len > 2) {
921            (void) s.lockBuffer(len);      // needed?
922            s.unlockBuffer(len - 2);       // remove trailing ", "
923        }
924        return s;
925    }
926    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
927        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
928        return s;
929    default:
930        s.appendFormat("unknown mask, representation:%d  bits:%#x",
931                representation, audio_channel_mask_get_bits(mask));
932        return s;
933    }
934}
935
936void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
937{
938    const size_t SIZE = 256;
939    char buffer[SIZE];
940    String8 result;
941
942    bool locked = AudioFlinger::dumpTryLock(mLock);
943    if (!locked) {
944        dprintf(fd, "thread %p may be deadlocked\n", this);
945    }
946
947    dprintf(fd, "  Thread name: %s\n", mThreadName);
948    dprintf(fd, "  I/O handle: %d\n", mId);
949    dprintf(fd, "  TID: %d\n", getTid());
950    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
951    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
952    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
953    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
954    dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
955    dprintf(fd, "  Channel count: %u\n", mChannelCount);
956    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
957            channelMaskToString(mChannelMask, mType != RECORD).string());
958    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
959    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
960    dprintf(fd, "  Pending config events:");
961    size_t numConfig = mConfigEvents.size();
962    if (numConfig) {
963        for (size_t i = 0; i < numConfig; i++) {
964            mConfigEvents[i]->dump(buffer, SIZE);
965            dprintf(fd, "\n    %s", buffer);
966        }
967        dprintf(fd, "\n");
968    } else {
969        dprintf(fd, " none\n");
970    }
971    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
972    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
973    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
974
975    if (locked) {
976        mLock.unlock();
977    }
978}
979
980void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
981{
982    const size_t SIZE = 256;
983    char buffer[SIZE];
984    String8 result;
985
986    size_t numEffectChains = mEffectChains.size();
987    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
988    write(fd, buffer, strlen(buffer));
989
990    for (size_t i = 0; i < numEffectChains; ++i) {
991        sp<EffectChain> chain = mEffectChains[i];
992        if (chain != 0) {
993            chain->dump(fd, args);
994        }
995    }
996}
997
998void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
999{
1000    Mutex::Autolock _l(mLock);
1001    acquireWakeLock_l(uid);
1002}
1003
1004String16 AudioFlinger::ThreadBase::getWakeLockTag()
1005{
1006    switch (mType) {
1007    case MIXER:
1008        return String16("AudioMix");
1009    case DIRECT:
1010        return String16("AudioDirectOut");
1011    case DUPLICATING:
1012        return String16("AudioDup");
1013    case RECORD:
1014        return String16("AudioIn");
1015    case OFFLOAD:
1016        return String16("AudioOffload");
1017    default:
1018        ALOG_ASSERT(false);
1019        return String16("AudioUnknown");
1020    }
1021}
1022
1023void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1024{
1025    getPowerManager_l();
1026    if (mPowerManager != 0) {
1027        sp<IBinder> binder = new BBinder();
1028        status_t status;
1029        if (uid >= 0) {
1030            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1031                    binder,
1032                    getWakeLockTag(),
1033                    String16("audioserver"),
1034                    uid,
1035                    true /* FIXME force oneway contrary to .aidl */);
1036        } else {
1037            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1038                    binder,
1039                    getWakeLockTag(),
1040                    String16("audioserver"),
1041                    true /* FIXME force oneway contrary to .aidl */);
1042        }
1043        if (status == NO_ERROR) {
1044            mWakeLockToken = binder;
1045        }
1046        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1047    }
1048
1049    if (!mNotifiedBatteryStart) {
1050        BatteryNotifier::getInstance().noteStartAudio();
1051        mNotifiedBatteryStart = true;
1052    }
1053    gBoottime.acquire(mWakeLockToken);
1054    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1055            gBoottime.getBoottimeOffset();
1056}
1057
1058void AudioFlinger::ThreadBase::releaseWakeLock()
1059{
1060    Mutex::Autolock _l(mLock);
1061    releaseWakeLock_l();
1062}
1063
1064void AudioFlinger::ThreadBase::releaseWakeLock_l()
1065{
1066    gBoottime.release(mWakeLockToken);
1067    if (mWakeLockToken != 0) {
1068        ALOGV("releaseWakeLock_l() %s", mThreadName);
1069        if (mPowerManager != 0) {
1070            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1071                    true /* FIXME force oneway contrary to .aidl */);
1072        }
1073        mWakeLockToken.clear();
1074    }
1075
1076    if (mNotifiedBatteryStart) {
1077        BatteryNotifier::getInstance().noteStopAudio();
1078        mNotifiedBatteryStart = false;
1079    }
1080}
1081
1082void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1083    Mutex::Autolock _l(mLock);
1084    updateWakeLockUids_l(uids);
1085}
1086
1087void AudioFlinger::ThreadBase::getPowerManager_l() {
1088    if (mSystemReady && mPowerManager == 0) {
1089        // use checkService() to avoid blocking if power service is not up yet
1090        sp<IBinder> binder =
1091            defaultServiceManager()->checkService(String16("power"));
1092        if (binder == 0) {
1093            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1094        } else {
1095            mPowerManager = interface_cast<IPowerManager>(binder);
1096            binder->linkToDeath(mDeathRecipient);
1097        }
1098    }
1099}
1100
1101void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1102    getPowerManager_l();
1103    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1104        if (mSystemReady) {
1105            ALOGE("no wake lock to update, but system ready!");
1106        } else {
1107            ALOGW("no wake lock to update, system not ready yet");
1108        }
1109        return;
1110    }
1111    if (mPowerManager != 0) {
1112        sp<IBinder> binder = new BBinder();
1113        status_t status;
1114        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1115                    true /* FIXME force oneway contrary to .aidl */);
1116        ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1117    }
1118}
1119
1120void AudioFlinger::ThreadBase::clearPowerManager()
1121{
1122    Mutex::Autolock _l(mLock);
1123    releaseWakeLock_l();
1124    mPowerManager.clear();
1125}
1126
1127void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1128{
1129    sp<ThreadBase> thread = mThread.promote();
1130    if (thread != 0) {
1131        thread->clearPowerManager();
1132    }
1133    ALOGW("power manager service died !!!");
1134}
1135
1136void AudioFlinger::ThreadBase::setEffectSuspended(
1137        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1138{
1139    Mutex::Autolock _l(mLock);
1140    setEffectSuspended_l(type, suspend, sessionId);
1141}
1142
1143void AudioFlinger::ThreadBase::setEffectSuspended_l(
1144        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1145{
1146    sp<EffectChain> chain = getEffectChain_l(sessionId);
1147    if (chain != 0) {
1148        if (type != NULL) {
1149            chain->setEffectSuspended_l(type, suspend);
1150        } else {
1151            chain->setEffectSuspendedAll_l(suspend);
1152        }
1153    }
1154
1155    updateSuspendedSessions_l(type, suspend, sessionId);
1156}
1157
1158void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1159{
1160    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1161    if (index < 0) {
1162        return;
1163    }
1164
1165    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1166            mSuspendedSessions.valueAt(index);
1167
1168    for (size_t i = 0; i < sessionEffects.size(); i++) {
1169        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1170        for (int j = 0; j < desc->mRefCount; j++) {
1171            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1172                chain->setEffectSuspendedAll_l(true);
1173            } else {
1174                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1175                    desc->mType.timeLow);
1176                chain->setEffectSuspended_l(&desc->mType, true);
1177            }
1178        }
1179    }
1180}
1181
1182void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1183                                                         bool suspend,
1184                                                         audio_session_t sessionId)
1185{
1186    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1187
1188    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1189
1190    if (suspend) {
1191        if (index >= 0) {
1192            sessionEffects = mSuspendedSessions.valueAt(index);
1193        } else {
1194            mSuspendedSessions.add(sessionId, sessionEffects);
1195        }
1196    } else {
1197        if (index < 0) {
1198            return;
1199        }
1200        sessionEffects = mSuspendedSessions.valueAt(index);
1201    }
1202
1203
1204    int key = EffectChain::kKeyForSuspendAll;
1205    if (type != NULL) {
1206        key = type->timeLow;
1207    }
1208    index = sessionEffects.indexOfKey(key);
1209
1210    sp<SuspendedSessionDesc> desc;
1211    if (suspend) {
1212        if (index >= 0) {
1213            desc = sessionEffects.valueAt(index);
1214        } else {
1215            desc = new SuspendedSessionDesc();
1216            if (type != NULL) {
1217                desc->mType = *type;
1218            }
1219            sessionEffects.add(key, desc);
1220            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1221        }
1222        desc->mRefCount++;
1223    } else {
1224        if (index < 0) {
1225            return;
1226        }
1227        desc = sessionEffects.valueAt(index);
1228        if (--desc->mRefCount == 0) {
1229            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1230            sessionEffects.removeItemsAt(index);
1231            if (sessionEffects.isEmpty()) {
1232                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1233                                 sessionId);
1234                mSuspendedSessions.removeItem(sessionId);
1235            }
1236        }
1237    }
1238    if (!sessionEffects.isEmpty()) {
1239        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1240    }
1241}
1242
1243void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1244                                                            bool enabled,
1245                                                            audio_session_t sessionId)
1246{
1247    Mutex::Autolock _l(mLock);
1248    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1249}
1250
1251void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1252                                                            bool enabled,
1253                                                            audio_session_t sessionId)
1254{
1255    if (mType != RECORD) {
1256        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1257        // another session. This gives the priority to well behaved effect control panels
1258        // and applications not using global effects.
1259        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1260        // global effects
1261        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1262            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1263        }
1264    }
1265
1266    sp<EffectChain> chain = getEffectChain_l(sessionId);
1267    if (chain != 0) {
1268        chain->checkSuspendOnEffectEnabled(effect, enabled);
1269    }
1270}
1271
1272// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1273sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1274        const sp<AudioFlinger::Client>& client,
1275        const sp<IEffectClient>& effectClient,
1276        int32_t priority,
1277        audio_session_t sessionId,
1278        effect_descriptor_t *desc,
1279        int *enabled,
1280        status_t *status)
1281{
1282    sp<EffectModule> effect;
1283    sp<EffectHandle> handle;
1284    status_t lStatus;
1285    sp<EffectChain> chain;
1286    bool chainCreated = false;
1287    bool effectCreated = false;
1288    bool effectRegistered = false;
1289
1290    lStatus = initCheck();
1291    if (lStatus != NO_ERROR) {
1292        ALOGW("createEffect_l() Audio driver not initialized.");
1293        goto Exit;
1294    }
1295
1296    // Reject any effect on Direct output threads for now, since the format of
1297    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1298    if (mType == DIRECT) {
1299        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1300                desc->name, mThreadName);
1301        lStatus = BAD_VALUE;
1302        goto Exit;
1303    }
1304
1305    // Reject any effect on mixer or duplicating multichannel sinks.
1306    // TODO: fix both format and multichannel issues with effects.
1307    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1308        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1309                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1310        lStatus = BAD_VALUE;
1311        goto Exit;
1312    }
1313
1314    // Allow global effects only on offloaded and mixer threads
1315    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1316        switch (mType) {
1317        case MIXER:
1318        case OFFLOAD:
1319            break;
1320        case DIRECT:
1321        case DUPLICATING:
1322        case RECORD:
1323        default:
1324            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1325                    desc->name, mThreadName);
1326            lStatus = BAD_VALUE;
1327            goto Exit;
1328        }
1329    }
1330
1331    // Only Pre processor effects are allowed on input threads and only on input threads
1332    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1333        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1334                desc->name, desc->flags, mType);
1335        lStatus = BAD_VALUE;
1336        goto Exit;
1337    }
1338
1339    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1340
1341    { // scope for mLock
1342        Mutex::Autolock _l(mLock);
1343
1344        // check for existing effect chain with the requested audio session
1345        chain = getEffectChain_l(sessionId);
1346        if (chain == 0) {
1347            // create a new chain for this session
1348            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1349            chain = new EffectChain(this, sessionId);
1350            addEffectChain_l(chain);
1351            chain->setStrategy(getStrategyForSession_l(sessionId));
1352            chainCreated = true;
1353        } else {
1354            effect = chain->getEffectFromDesc_l(desc);
1355        }
1356
1357        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1358
1359        if (effect == 0) {
1360            audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1361            // Check CPU and memory usage
1362            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1363            if (lStatus != NO_ERROR) {
1364                goto Exit;
1365            }
1366            effectRegistered = true;
1367            // create a new effect module if none present in the chain
1368            effect = new EffectModule(this, chain, desc, id, sessionId);
1369            lStatus = effect->status();
1370            if (lStatus != NO_ERROR) {
1371                goto Exit;
1372            }
1373            effect->setOffloaded(mType == OFFLOAD, mId);
1374
1375            lStatus = chain->addEffect_l(effect);
1376            if (lStatus != NO_ERROR) {
1377                goto Exit;
1378            }
1379            effectCreated = true;
1380
1381            effect->setDevice(mOutDevice);
1382            effect->setDevice(mInDevice);
1383            effect->setMode(mAudioFlinger->getMode());
1384            effect->setAudioSource(mAudioSource);
1385        }
1386        // create effect handle and connect it to effect module
1387        handle = new EffectHandle(effect, client, effectClient, priority);
1388        lStatus = handle->initCheck();
1389        if (lStatus == OK) {
1390            lStatus = effect->addHandle(handle.get());
1391        }
1392        if (enabled != NULL) {
1393            *enabled = (int)effect->isEnabled();
1394        }
1395    }
1396
1397Exit:
1398    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1399        Mutex::Autolock _l(mLock);
1400        if (effectCreated) {
1401            chain->removeEffect_l(effect);
1402        }
1403        if (effectRegistered) {
1404            AudioSystem::unregisterEffect(effect->id());
1405        }
1406        if (chainCreated) {
1407            removeEffectChain_l(chain);
1408        }
1409        handle.clear();
1410    }
1411
1412    *status = lStatus;
1413    return handle;
1414}
1415
1416sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1417        int effectId)
1418{
1419    Mutex::Autolock _l(mLock);
1420    return getEffect_l(sessionId, effectId);
1421}
1422
1423sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1424        int effectId)
1425{
1426    sp<EffectChain> chain = getEffectChain_l(sessionId);
1427    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1428}
1429
1430// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1431// PlaybackThread::mLock held
1432status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1433{
1434    // check for existing effect chain with the requested audio session
1435    audio_session_t sessionId = effect->sessionId();
1436    sp<EffectChain> chain = getEffectChain_l(sessionId);
1437    bool chainCreated = false;
1438
1439    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1440             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1441                    this, effect->desc().name, effect->desc().flags);
1442
1443    if (chain == 0) {
1444        // create a new chain for this session
1445        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1446        chain = new EffectChain(this, sessionId);
1447        addEffectChain_l(chain);
1448        chain->setStrategy(getStrategyForSession_l(sessionId));
1449        chainCreated = true;
1450    }
1451    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1452
1453    if (chain->getEffectFromId_l(effect->id()) != 0) {
1454        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1455                this, effect->desc().name, chain.get());
1456        return BAD_VALUE;
1457    }
1458
1459    effect->setOffloaded(mType == OFFLOAD, mId);
1460
1461    status_t status = chain->addEffect_l(effect);
1462    if (status != NO_ERROR) {
1463        if (chainCreated) {
1464            removeEffectChain_l(chain);
1465        }
1466        return status;
1467    }
1468
1469    effect->setDevice(mOutDevice);
1470    effect->setDevice(mInDevice);
1471    effect->setMode(mAudioFlinger->getMode());
1472    effect->setAudioSource(mAudioSource);
1473    return NO_ERROR;
1474}
1475
1476void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1477
1478    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1479    effect_descriptor_t desc = effect->desc();
1480    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1481        detachAuxEffect_l(effect->id());
1482    }
1483
1484    sp<EffectChain> chain = effect->chain().promote();
1485    if (chain != 0) {
1486        // remove effect chain if removing last effect
1487        if (chain->removeEffect_l(effect) == 0) {
1488            removeEffectChain_l(chain);
1489        }
1490    } else {
1491        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1492    }
1493}
1494
1495void AudioFlinger::ThreadBase::lockEffectChains_l(
1496        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1497{
1498    effectChains = mEffectChains;
1499    for (size_t i = 0; i < mEffectChains.size(); i++) {
1500        mEffectChains[i]->lock();
1501    }
1502}
1503
1504void AudioFlinger::ThreadBase::unlockEffectChains(
1505        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1506{
1507    for (size_t i = 0; i < effectChains.size(); i++) {
1508        effectChains[i]->unlock();
1509    }
1510}
1511
1512sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1513{
1514    Mutex::Autolock _l(mLock);
1515    return getEffectChain_l(sessionId);
1516}
1517
1518sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1519        const
1520{
1521    size_t size = mEffectChains.size();
1522    for (size_t i = 0; i < size; i++) {
1523        if (mEffectChains[i]->sessionId() == sessionId) {
1524            return mEffectChains[i];
1525        }
1526    }
1527    return 0;
1528}
1529
1530void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1531{
1532    Mutex::Autolock _l(mLock);
1533    size_t size = mEffectChains.size();
1534    for (size_t i = 0; i < size; i++) {
1535        mEffectChains[i]->setMode_l(mode);
1536    }
1537}
1538
1539void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1540{
1541    config->type = AUDIO_PORT_TYPE_MIX;
1542    config->ext.mix.handle = mId;
1543    config->sample_rate = mSampleRate;
1544    config->format = mFormat;
1545    config->channel_mask = mChannelMask;
1546    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1547                            AUDIO_PORT_CONFIG_FORMAT;
1548}
1549
1550void AudioFlinger::ThreadBase::systemReady()
1551{
1552    Mutex::Autolock _l(mLock);
1553    if (mSystemReady) {
1554        return;
1555    }
1556    mSystemReady = true;
1557
1558    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1559        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1560    }
1561    mPendingConfigEvents.clear();
1562}
1563
1564
1565// ----------------------------------------------------------------------------
1566//      Playback
1567// ----------------------------------------------------------------------------
1568
1569AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1570                                             AudioStreamOut* output,
1571                                             audio_io_handle_t id,
1572                                             audio_devices_t device,
1573                                             type_t type,
1574                                             bool systemReady,
1575                                             uint32_t bitRate)
1576    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1577        mNormalFrameCount(0), mSinkBuffer(NULL),
1578        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1579        mMixerBuffer(NULL),
1580        mMixerBufferSize(0),
1581        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1582        mMixerBufferValid(false),
1583        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1584        mEffectBuffer(NULL),
1585        mEffectBufferSize(0),
1586        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1587        mEffectBufferValid(false),
1588        mSuspended(0), mBytesWritten(0),
1589        mFramesWritten(0),
1590        mActiveTracksGeneration(0),
1591        // mStreamTypes[] initialized in constructor body
1592        mOutput(output),
1593        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1594        mMixerStatus(MIXER_IDLE),
1595        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1596        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1597        mBytesRemaining(0),
1598        mCurrentWriteLength(0),
1599        mUseAsyncWrite(false),
1600        mWriteAckSequence(0),
1601        mDrainSequence(0),
1602        mSignalPending(false),
1603        mScreenState(AudioFlinger::mScreenState),
1604        // index 0 is reserved for normal mixer's submix
1605        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1606        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1607{
1608    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1609    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1610
1611    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1612    // it would be safer to explicitly pass initial masterVolume/masterMute as
1613    // parameter.
1614    //
1615    // If the HAL we are using has support for master volume or master mute,
1616    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1617    // and the mute set to false).
1618    mMasterVolume = audioFlinger->masterVolume_l();
1619    mMasterMute = audioFlinger->masterMute_l();
1620    if (mOutput && mOutput->audioHwDev) {
1621        if (mOutput->audioHwDev->canSetMasterVolume()) {
1622            mMasterVolume = 1.0;
1623        }
1624
1625        if (mOutput->audioHwDev->canSetMasterMute()) {
1626            mMasterMute = false;
1627        }
1628    }
1629
1630    readOutputParameters_l();
1631
1632    // ++ operator does not compile
1633    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1634            stream = (audio_stream_type_t) (stream + 1)) {
1635        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1636        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1637    }
1638
1639    if (audio_has_proportional_frames(mFormat)) {
1640        mBufferDurationUs = (uint32_t)((mNormalFrameCount * 1000000LL) / mSampleRate);
1641    } else {
1642        bitRate = bitRate != 0 ? bitRate : kOffloadDefaultBitRateBps;
1643        mBufferDurationUs = (uint32_t)((mBufferSize * 8 * 1000000LL) / bitRate);
1644    }
1645}
1646
1647AudioFlinger::PlaybackThread::~PlaybackThread()
1648{
1649    mAudioFlinger->unregisterWriter(mNBLogWriter);
1650    free(mSinkBuffer);
1651    free(mMixerBuffer);
1652    free(mEffectBuffer);
1653}
1654
1655void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1656{
1657    dumpInternals(fd, args);
1658    dumpTracks(fd, args);
1659    dumpEffectChains(fd, args);
1660}
1661
1662void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1663{
1664    const size_t SIZE = 256;
1665    char buffer[SIZE];
1666    String8 result;
1667
1668    result.appendFormat("  Stream volumes in dB: ");
1669    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1670        const stream_type_t *st = &mStreamTypes[i];
1671        if (i > 0) {
1672            result.appendFormat(", ");
1673        }
1674        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1675        if (st->mute) {
1676            result.append("M");
1677        }
1678    }
1679    result.append("\n");
1680    write(fd, result.string(), result.length());
1681    result.clear();
1682
1683    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1684    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1685    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1686            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1687
1688    size_t numtracks = mTracks.size();
1689    size_t numactive = mActiveTracks.size();
1690    dprintf(fd, "  %zu Tracks", numtracks);
1691    size_t numactiveseen = 0;
1692    if (numtracks) {
1693        dprintf(fd, " of which %zu are active\n", numactive);
1694        Track::appendDumpHeader(result);
1695        for (size_t i = 0; i < numtracks; ++i) {
1696            sp<Track> track = mTracks[i];
1697            if (track != 0) {
1698                bool active = mActiveTracks.indexOf(track) >= 0;
1699                if (active) {
1700                    numactiveseen++;
1701                }
1702                track->dump(buffer, SIZE, active);
1703                result.append(buffer);
1704            }
1705        }
1706    } else {
1707        result.append("\n");
1708    }
1709    if (numactiveseen != numactive) {
1710        // some tracks in the active list were not in the tracks list
1711        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1712                " not in the track list\n");
1713        result.append(buffer);
1714        Track::appendDumpHeader(result);
1715        for (size_t i = 0; i < numactive; ++i) {
1716            sp<Track> track = mActiveTracks[i].promote();
1717            if (track != 0 && mTracks.indexOf(track) < 0) {
1718                track->dump(buffer, SIZE, true);
1719                result.append(buffer);
1720            }
1721        }
1722    }
1723
1724    write(fd, result.string(), result.size());
1725}
1726
1727void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1728{
1729    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1730
1731    dumpBase(fd, args);
1732
1733    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1734    dprintf(fd, "  Last write occurred (msecs): %llu\n",
1735            (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1736    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1737    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1738    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1739    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1740    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1741    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1742    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1743    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1744    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1745    AudioStreamOut *output = mOutput;
1746    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1747    String8 flagsAsString = outputFlagsToString(flags);
1748    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1749}
1750
1751// Thread virtuals
1752
1753void AudioFlinger::PlaybackThread::onFirstRef()
1754{
1755    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1756}
1757
1758// ThreadBase virtuals
1759void AudioFlinger::PlaybackThread::preExit()
1760{
1761    ALOGV("  preExit()");
1762    // FIXME this is using hard-coded strings but in the future, this functionality will be
1763    //       converted to use audio HAL extensions required to support tunneling
1764    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1765}
1766
1767// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1768sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1769        const sp<AudioFlinger::Client>& client,
1770        audio_stream_type_t streamType,
1771        uint32_t sampleRate,
1772        audio_format_t format,
1773        audio_channel_mask_t channelMask,
1774        size_t *pFrameCount,
1775        const sp<IMemory>& sharedBuffer,
1776        audio_session_t sessionId,
1777        IAudioFlinger::track_flags_t *flags,
1778        pid_t tid,
1779        int uid,
1780        status_t *status)
1781{
1782    size_t frameCount = *pFrameCount;
1783    sp<Track> track;
1784    status_t lStatus;
1785
1786    // client expresses a preference for FAST, but we get the final say
1787    if (*flags & IAudioFlinger::TRACK_FAST) {
1788      if (
1789            // PCM data
1790            audio_is_linear_pcm(format) &&
1791            // TODO: extract as a data library function that checks that a computationally
1792            // expensive downmixer is not required: isFastOutputChannelConversion()
1793            (channelMask == mChannelMask ||
1794                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1795                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1796                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1797            // hardware sample rate
1798            (sampleRate == mSampleRate) &&
1799            // normal mixer has an associated fast mixer
1800            hasFastMixer() &&
1801            // there are sufficient fast track slots available
1802            (mFastTrackAvailMask != 0)
1803            // FIXME test that MixerThread for this fast track has a capable output HAL
1804            // FIXME add a permission test also?
1805        ) {
1806        // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1807        if (sharedBuffer == 0) {
1808            // read the fast track multiplier property the first time it is needed
1809            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1810            if (ok != 0) {
1811                ALOGE("%s pthread_once failed: %d", __func__, ok);
1812            }
1813            frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1814        }
1815        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1816                frameCount, mFrameCount);
1817      } else {
1818        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1819                "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1820                "sampleRate=%u mSampleRate=%u "
1821                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1822                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1823                audio_is_linear_pcm(format),
1824                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1825        *flags &= ~IAudioFlinger::TRACK_FAST;
1826      }
1827    }
1828    // For normal PCM streaming tracks, update minimum frame count.
1829    // For compatibility with AudioTrack calculation, buffer depth is forced
1830    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1831    // This is probably too conservative, but legacy application code may depend on it.
1832    // If you change this calculation, also review the start threshold which is related.
1833    if (!(*flags & IAudioFlinger::TRACK_FAST)
1834            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1835        // this must match AudioTrack.cpp calculateMinFrameCount().
1836        // TODO: Move to a common library
1837        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1838        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1839        if (minBufCount < 2) {
1840            minBufCount = 2;
1841        }
1842        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1843        // or the client should compute and pass in a larger buffer request.
1844        size_t minFrameCount =
1845                minBufCount * sourceFramesNeededWithTimestretch(
1846                        sampleRate, mNormalFrameCount,
1847                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1848        if (frameCount < minFrameCount) { // including frameCount == 0
1849            frameCount = minFrameCount;
1850        }
1851    }
1852    *pFrameCount = frameCount;
1853
1854    switch (mType) {
1855
1856    case DIRECT:
1857        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1858            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1859                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1860                        "for output %p with format %#x",
1861                        sampleRate, format, channelMask, mOutput, mFormat);
1862                lStatus = BAD_VALUE;
1863                goto Exit;
1864            }
1865        }
1866        break;
1867
1868    case OFFLOAD:
1869        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1870            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1871                    "for output %p with format %#x",
1872                    sampleRate, format, channelMask, mOutput, mFormat);
1873            lStatus = BAD_VALUE;
1874            goto Exit;
1875        }
1876        break;
1877
1878    default:
1879        if (!audio_is_linear_pcm(format)) {
1880                ALOGE("createTrack_l() Bad parameter: format %#x \""
1881                        "for output %p with format %#x",
1882                        format, mOutput, mFormat);
1883                lStatus = BAD_VALUE;
1884                goto Exit;
1885        }
1886        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1887            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1888            lStatus = BAD_VALUE;
1889            goto Exit;
1890        }
1891        break;
1892
1893    }
1894
1895    lStatus = initCheck();
1896    if (lStatus != NO_ERROR) {
1897        ALOGE("createTrack_l() audio driver not initialized");
1898        goto Exit;
1899    }
1900
1901    { // scope for mLock
1902        Mutex::Autolock _l(mLock);
1903
1904        // all tracks in same audio session must share the same routing strategy otherwise
1905        // conflicts will happen when tracks are moved from one output to another by audio policy
1906        // manager
1907        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1908        for (size_t i = 0; i < mTracks.size(); ++i) {
1909            sp<Track> t = mTracks[i];
1910            if (t != 0 && t->isExternalTrack()) {
1911                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1912                if (sessionId == t->sessionId() && strategy != actual) {
1913                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1914                            strategy, actual);
1915                    lStatus = BAD_VALUE;
1916                    goto Exit;
1917                }
1918            }
1919        }
1920
1921        track = new Track(this, client, streamType, sampleRate, format,
1922                          channelMask, frameCount, NULL, sharedBuffer,
1923                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1924
1925        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1926        if (lStatus != NO_ERROR) {
1927            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1928            // track must be cleared from the caller as the caller has the AF lock
1929            goto Exit;
1930        }
1931        mTracks.add(track);
1932
1933        sp<EffectChain> chain = getEffectChain_l(sessionId);
1934        if (chain != 0) {
1935            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1936            track->setMainBuffer(chain->inBuffer());
1937            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1938            chain->incTrackCnt();
1939        }
1940
1941        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1942            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1943            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1944            // so ask activity manager to do this on our behalf
1945            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1946        }
1947    }
1948
1949    lStatus = NO_ERROR;
1950
1951Exit:
1952    *status = lStatus;
1953    return track;
1954}
1955
1956uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1957{
1958    return latency;
1959}
1960
1961uint32_t AudioFlinger::PlaybackThread::latency() const
1962{
1963    Mutex::Autolock _l(mLock);
1964    return latency_l();
1965}
1966uint32_t AudioFlinger::PlaybackThread::latency_l() const
1967{
1968    if (initCheck() == NO_ERROR) {
1969        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1970    } else {
1971        return 0;
1972    }
1973}
1974
1975void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1976{
1977    Mutex::Autolock _l(mLock);
1978    // Don't apply master volume in SW if our HAL can do it for us.
1979    if (mOutput && mOutput->audioHwDev &&
1980        mOutput->audioHwDev->canSetMasterVolume()) {
1981        mMasterVolume = 1.0;
1982    } else {
1983        mMasterVolume = value;
1984    }
1985}
1986
1987void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1988{
1989    Mutex::Autolock _l(mLock);
1990    // Don't apply master mute in SW if our HAL can do it for us.
1991    if (mOutput && mOutput->audioHwDev &&
1992        mOutput->audioHwDev->canSetMasterMute()) {
1993        mMasterMute = false;
1994    } else {
1995        mMasterMute = muted;
1996    }
1997}
1998
1999void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2000{
2001    Mutex::Autolock _l(mLock);
2002    mStreamTypes[stream].volume = value;
2003    broadcast_l();
2004}
2005
2006void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2007{
2008    Mutex::Autolock _l(mLock);
2009    mStreamTypes[stream].mute = muted;
2010    broadcast_l();
2011}
2012
2013float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2014{
2015    Mutex::Autolock _l(mLock);
2016    return mStreamTypes[stream].volume;
2017}
2018
2019// addTrack_l() must be called with ThreadBase::mLock held
2020status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2021{
2022    status_t status = ALREADY_EXISTS;
2023
2024    if (mActiveTracks.indexOf(track) < 0) {
2025        // the track is newly added, make sure it fills up all its
2026        // buffers before playing. This is to ensure the client will
2027        // effectively get the latency it requested.
2028        if (track->isExternalTrack()) {
2029            TrackBase::track_state state = track->mState;
2030            mLock.unlock();
2031            status = AudioSystem::startOutput(mId, track->streamType(),
2032                                              track->sessionId());
2033            mLock.lock();
2034            // abort track was stopped/paused while we released the lock
2035            if (state != track->mState) {
2036                if (status == NO_ERROR) {
2037                    mLock.unlock();
2038                    AudioSystem::stopOutput(mId, track->streamType(),
2039                                            track->sessionId());
2040                    mLock.lock();
2041                }
2042                return INVALID_OPERATION;
2043            }
2044            // abort if start is rejected by audio policy manager
2045            if (status != NO_ERROR) {
2046                return PERMISSION_DENIED;
2047            }
2048#ifdef ADD_BATTERY_DATA
2049            // to track the speaker usage
2050            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2051#endif
2052        }
2053
2054        // set retry count for buffer fill
2055        if (track->isOffloaded()) {
2056            track->mRetryCount = kMaxTrackStartupRetriesOffload;
2057        } else {
2058            track->mRetryCount = kMaxTrackStartupRetries;
2059        }
2060
2061        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2062        track->mResetDone = false;
2063        track->mPresentationCompleteFrames = 0;
2064        mActiveTracks.add(track);
2065        mWakeLockUids.add(track->uid());
2066        mActiveTracksGeneration++;
2067        mLatestActiveTrack = track;
2068        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2069        if (chain != 0) {
2070            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2071                    track->sessionId());
2072            chain->incActiveTrackCnt();
2073        }
2074
2075        status = NO_ERROR;
2076    }
2077
2078    onAddNewTrack_l();
2079    return status;
2080}
2081
2082bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2083{
2084    track->terminate();
2085    // active tracks are removed by threadLoop()
2086    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2087    track->mState = TrackBase::STOPPED;
2088    if (!trackActive) {
2089        removeTrack_l(track);
2090    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2091        track->mState = TrackBase::STOPPING_1;
2092    }
2093
2094    return trackActive;
2095}
2096
2097void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2098{
2099    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2100    mTracks.remove(track);
2101    deleteTrackName_l(track->name());
2102    // redundant as track is about to be destroyed, for dumpsys only
2103    track->mName = -1;
2104    if (track->isFastTrack()) {
2105        int index = track->mFastIndex;
2106        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
2107        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2108        mFastTrackAvailMask |= 1 << index;
2109        // redundant as track is about to be destroyed, for dumpsys only
2110        track->mFastIndex = -1;
2111    }
2112    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2113    if (chain != 0) {
2114        chain->decTrackCnt();
2115    }
2116}
2117
2118void AudioFlinger::PlaybackThread::broadcast_l()
2119{
2120    // Thread could be blocked waiting for async
2121    // so signal it to handle state changes immediately
2122    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2123    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2124    mSignalPending = true;
2125    mWaitWorkCV.broadcast();
2126}
2127
2128String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2129{
2130    Mutex::Autolock _l(mLock);
2131    if (initCheck() != NO_ERROR) {
2132        return String8();
2133    }
2134
2135    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2136    const String8 out_s8(s);
2137    free(s);
2138    return out_s8;
2139}
2140
2141void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2142    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2143    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2144
2145    desc->mIoHandle = mId;
2146
2147    switch (event) {
2148    case AUDIO_OUTPUT_OPENED:
2149    case AUDIO_OUTPUT_CONFIG_CHANGED:
2150        desc->mPatch = mPatch;
2151        desc->mChannelMask = mChannelMask;
2152        desc->mSamplingRate = mSampleRate;
2153        desc->mFormat = mFormat;
2154        desc->mFrameCount = mNormalFrameCount; // FIXME see
2155                                             // AudioFlinger::frameCount(audio_io_handle_t)
2156        desc->mLatency = latency_l();
2157        break;
2158
2159    case AUDIO_OUTPUT_CLOSED:
2160    default:
2161        break;
2162    }
2163    mAudioFlinger->ioConfigChanged(event, desc, pid);
2164}
2165
2166void AudioFlinger::PlaybackThread::writeCallback()
2167{
2168    ALOG_ASSERT(mCallbackThread != 0);
2169    mCallbackThread->resetWriteBlocked();
2170}
2171
2172void AudioFlinger::PlaybackThread::drainCallback()
2173{
2174    ALOG_ASSERT(mCallbackThread != 0);
2175    mCallbackThread->resetDraining();
2176}
2177
2178void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2179{
2180    Mutex::Autolock _l(mLock);
2181    // reject out of sequence requests
2182    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2183        mWriteAckSequence &= ~1;
2184        mWaitWorkCV.signal();
2185    }
2186}
2187
2188void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2189{
2190    Mutex::Autolock _l(mLock);
2191    // reject out of sequence requests
2192    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2193        mDrainSequence &= ~1;
2194        mWaitWorkCV.signal();
2195    }
2196}
2197
2198// static
2199int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2200                                                void *param __unused,
2201                                                void *cookie)
2202{
2203    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2204    ALOGV("asyncCallback() event %d", event);
2205    switch (event) {
2206    case STREAM_CBK_EVENT_WRITE_READY:
2207        me->writeCallback();
2208        break;
2209    case STREAM_CBK_EVENT_DRAIN_READY:
2210        me->drainCallback();
2211        break;
2212    default:
2213        ALOGW("asyncCallback() unknown event %d", event);
2214        break;
2215    }
2216    return 0;
2217}
2218
2219void AudioFlinger::PlaybackThread::readOutputParameters_l()
2220{
2221    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2222    mSampleRate = mOutput->getSampleRate();
2223    mChannelMask = mOutput->getChannelMask();
2224    if (!audio_is_output_channel(mChannelMask)) {
2225        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2226    }
2227    if ((mType == MIXER || mType == DUPLICATING)
2228            && !isValidPcmSinkChannelMask(mChannelMask)) {
2229        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2230                mChannelMask);
2231    }
2232    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2233
2234    // Get actual HAL format.
2235    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2236    // Get format from the shim, which will be different than the HAL format
2237    // if playing compressed audio over HDMI passthrough.
2238    mFormat = mOutput->getFormat();
2239    if (!audio_is_valid_format(mFormat)) {
2240        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2241    }
2242    if ((mType == MIXER || mType == DUPLICATING)
2243            && !isValidPcmSinkFormat(mFormat)) {
2244        LOG_FATAL("HAL format %#x not supported for mixed output",
2245                mFormat);
2246    }
2247    mFrameSize = mOutput->getFrameSize();
2248    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2249    mFrameCount = mBufferSize / mFrameSize;
2250    if (mFrameCount & 15) {
2251        ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2252                mFrameCount);
2253    }
2254
2255    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2256            (mOutput->stream->set_callback != NULL)) {
2257        if (mOutput->stream->set_callback(mOutput->stream,
2258                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2259            mUseAsyncWrite = true;
2260            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2261        }
2262    }
2263
2264    mHwSupportsPause = false;
2265    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2266        if (mOutput->stream->pause != NULL) {
2267            if (mOutput->stream->resume != NULL) {
2268                mHwSupportsPause = true;
2269            } else {
2270                ALOGW("direct output implements pause but not resume");
2271            }
2272        } else if (mOutput->stream->resume != NULL) {
2273            ALOGW("direct output implements resume but not pause");
2274        }
2275    }
2276    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2277        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2278    }
2279
2280    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2281        // For best precision, we use float instead of the associated output
2282        // device format (typically PCM 16 bit).
2283
2284        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2285        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2286        mBufferSize = mFrameSize * mFrameCount;
2287
2288        // TODO: We currently use the associated output device channel mask and sample rate.
2289        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2290        // (if a valid mask) to avoid premature downmix.
2291        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2292        // instead of the output device sample rate to avoid loss of high frequency information.
2293        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2294    }
2295
2296    // Calculate size of normal sink buffer relative to the HAL output buffer size
2297    double multiplier = 1.0;
2298    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2299            kUseFastMixer == FastMixer_Dynamic)) {
2300        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2301        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2302        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2303        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2304        maxNormalFrameCount = maxNormalFrameCount & ~15;
2305        if (maxNormalFrameCount < minNormalFrameCount) {
2306            maxNormalFrameCount = minNormalFrameCount;
2307        }
2308        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2309        if (multiplier <= 1.0) {
2310            multiplier = 1.0;
2311        } else if (multiplier <= 2.0) {
2312            if (2 * mFrameCount <= maxNormalFrameCount) {
2313                multiplier = 2.0;
2314            } else {
2315                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2316            }
2317        } else {
2318            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2319            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2320            // track, but we sometimes have to do this to satisfy the maximum frame count
2321            // constraint)
2322            // FIXME this rounding up should not be done if no HAL SRC
2323            uint32_t truncMult = (uint32_t) multiplier;
2324            if ((truncMult & 1)) {
2325                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2326                    ++truncMult;
2327                }
2328            }
2329            multiplier = (double) truncMult;
2330        }
2331    }
2332    mNormalFrameCount = multiplier * mFrameCount;
2333    // round up to nearest 16 frames to satisfy AudioMixer
2334    if (mType == MIXER || mType == DUPLICATING) {
2335        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2336    }
2337    ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2338            mNormalFrameCount);
2339
2340    // Check if we want to throttle the processing to no more than 2x normal rate
2341    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2342    mThreadThrottleTimeMs = 0;
2343    mThreadThrottleEndMs = 0;
2344    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2345
2346    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2347    // Originally this was int16_t[] array, need to remove legacy implications.
2348    free(mSinkBuffer);
2349    mSinkBuffer = NULL;
2350    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2351    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2352    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2353    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2354
2355    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2356    // drives the output.
2357    free(mMixerBuffer);
2358    mMixerBuffer = NULL;
2359    if (mMixerBufferEnabled) {
2360        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2361        mMixerBufferSize = mNormalFrameCount * mChannelCount
2362                * audio_bytes_per_sample(mMixerBufferFormat);
2363        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2364    }
2365    free(mEffectBuffer);
2366    mEffectBuffer = NULL;
2367    if (mEffectBufferEnabled) {
2368        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2369        mEffectBufferSize = mNormalFrameCount * mChannelCount
2370                * audio_bytes_per_sample(mEffectBufferFormat);
2371        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2372    }
2373
2374    // force reconfiguration of effect chains and engines to take new buffer size and audio
2375    // parameters into account
2376    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2377    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2378    // matter.
2379    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2380    Vector< sp<EffectChain> > effectChains = mEffectChains;
2381    for (size_t i = 0; i < effectChains.size(); i ++) {
2382        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2383    }
2384}
2385
2386
2387status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2388{
2389    if (halFrames == NULL || dspFrames == NULL) {
2390        return BAD_VALUE;
2391    }
2392    Mutex::Autolock _l(mLock);
2393    if (initCheck() != NO_ERROR) {
2394        return INVALID_OPERATION;
2395    }
2396    int64_t framesWritten = mBytesWritten / mFrameSize;
2397    *halFrames = framesWritten;
2398
2399    if (isSuspended()) {
2400        // return an estimation of rendered frames when the output is suspended
2401        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2402        *dspFrames = (uint32_t)
2403                (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2404        return NO_ERROR;
2405    } else {
2406        status_t status;
2407        uint32_t frames;
2408        status = mOutput->getRenderPosition(&frames);
2409        *dspFrames = (size_t)frames;
2410        return status;
2411    }
2412}
2413
2414uint32_t AudioFlinger::PlaybackThread::hasAudioSession(audio_session_t sessionId) const
2415{
2416    Mutex::Autolock _l(mLock);
2417    uint32_t result = 0;
2418    if (getEffectChain_l(sessionId) != 0) {
2419        result = EFFECT_SESSION;
2420    }
2421
2422    for (size_t i = 0; i < mTracks.size(); ++i) {
2423        sp<Track> track = mTracks[i];
2424        if (sessionId == track->sessionId() && !track->isInvalid()) {
2425            result |= TRACK_SESSION;
2426            break;
2427        }
2428    }
2429
2430    return result;
2431}
2432
2433uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2434{
2435    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2436    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2437    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2438        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2439    }
2440    for (size_t i = 0; i < mTracks.size(); i++) {
2441        sp<Track> track = mTracks[i];
2442        if (sessionId == track->sessionId() && !track->isInvalid()) {
2443            return AudioSystem::getStrategyForStream(track->streamType());
2444        }
2445    }
2446    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2447}
2448
2449
2450AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2451{
2452    Mutex::Autolock _l(mLock);
2453    return mOutput;
2454}
2455
2456AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2457{
2458    Mutex::Autolock _l(mLock);
2459    AudioStreamOut *output = mOutput;
2460    mOutput = NULL;
2461    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2462    //       must push a NULL and wait for ack
2463    mOutputSink.clear();
2464    mPipeSink.clear();
2465    mNormalSink.clear();
2466    return output;
2467}
2468
2469// this method must always be called either with ThreadBase mLock held or inside the thread loop
2470audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2471{
2472    if (mOutput == NULL) {
2473        return NULL;
2474    }
2475    return &mOutput->stream->common;
2476}
2477
2478uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2479{
2480    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2481}
2482
2483status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2484{
2485    if (!isValidSyncEvent(event)) {
2486        return BAD_VALUE;
2487    }
2488
2489    Mutex::Autolock _l(mLock);
2490
2491    for (size_t i = 0; i < mTracks.size(); ++i) {
2492        sp<Track> track = mTracks[i];
2493        if (event->triggerSession() == track->sessionId()) {
2494            (void) track->setSyncEvent(event);
2495            return NO_ERROR;
2496        }
2497    }
2498
2499    return NAME_NOT_FOUND;
2500}
2501
2502bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2503{
2504    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2505}
2506
2507void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2508        const Vector< sp<Track> >& tracksToRemove)
2509{
2510    size_t count = tracksToRemove.size();
2511    if (count > 0) {
2512        for (size_t i = 0 ; i < count ; i++) {
2513            const sp<Track>& track = tracksToRemove.itemAt(i);
2514            if (track->isExternalTrack()) {
2515                AudioSystem::stopOutput(mId, track->streamType(),
2516                                        track->sessionId());
2517#ifdef ADD_BATTERY_DATA
2518                // to track the speaker usage
2519                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2520#endif
2521                if (track->isTerminated()) {
2522                    AudioSystem::releaseOutput(mId, track->streamType(),
2523                                               track->sessionId());
2524                }
2525            }
2526        }
2527    }
2528}
2529
2530void AudioFlinger::PlaybackThread::checkSilentMode_l()
2531{
2532    if (!mMasterMute) {
2533        char value[PROPERTY_VALUE_MAX];
2534        if (property_get("ro.audio.silent", value, "0") > 0) {
2535            char *endptr;
2536            unsigned long ul = strtoul(value, &endptr, 0);
2537            if (*endptr == '\0' && ul != 0) {
2538                ALOGD("Silence is golden");
2539                // The setprop command will not allow a property to be changed after
2540                // the first time it is set, so we don't have to worry about un-muting.
2541                setMasterMute_l(true);
2542            }
2543        }
2544    }
2545}
2546
2547// shared by MIXER and DIRECT, overridden by DUPLICATING
2548ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2549{
2550    // FIXME rewrite to reduce number of system calls
2551    mLastWriteTime = systemTime();
2552    mInWrite = true;
2553    ssize_t bytesWritten;
2554    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2555
2556    // If an NBAIO sink is present, use it to write the normal mixer's submix
2557    if (mNormalSink != 0) {
2558
2559        const size_t count = mBytesRemaining / mFrameSize;
2560
2561        ATRACE_BEGIN("write");
2562        // update the setpoint when AudioFlinger::mScreenState changes
2563        uint32_t screenState = AudioFlinger::mScreenState;
2564        if (screenState != mScreenState) {
2565            mScreenState = screenState;
2566            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2567            if (pipe != NULL) {
2568                pipe->setAvgFrames((mScreenState & 1) ?
2569                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2570            }
2571        }
2572        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2573        ATRACE_END();
2574        if (framesWritten > 0) {
2575            bytesWritten = framesWritten * mFrameSize;
2576        } else {
2577            bytesWritten = framesWritten;
2578        }
2579    // otherwise use the HAL / AudioStreamOut directly
2580    } else {
2581        // Direct output and offload threads
2582
2583        if (mUseAsyncWrite) {
2584            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2585            mWriteAckSequence += 2;
2586            mWriteAckSequence |= 1;
2587            ALOG_ASSERT(mCallbackThread != 0);
2588            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2589        }
2590        // FIXME We should have an implementation of timestamps for direct output threads.
2591        // They are used e.g for multichannel PCM playback over HDMI.
2592        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2593
2594        if (mUseAsyncWrite &&
2595                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2596            // do not wait for async callback in case of error of full write
2597            mWriteAckSequence &= ~1;
2598            ALOG_ASSERT(mCallbackThread != 0);
2599            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2600        }
2601    }
2602
2603    mNumWrites++;
2604    mInWrite = false;
2605    mStandby = false;
2606    return bytesWritten;
2607}
2608
2609void AudioFlinger::PlaybackThread::threadLoop_drain()
2610{
2611    if (mOutput->stream->drain) {
2612        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2613        if (mUseAsyncWrite) {
2614            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2615            mDrainSequence |= 1;
2616            ALOG_ASSERT(mCallbackThread != 0);
2617            mCallbackThread->setDraining(mDrainSequence);
2618        }
2619        mOutput->stream->drain(mOutput->stream,
2620            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2621                                                : AUDIO_DRAIN_ALL);
2622    }
2623}
2624
2625void AudioFlinger::PlaybackThread::threadLoop_exit()
2626{
2627    {
2628        Mutex::Autolock _l(mLock);
2629        for (size_t i = 0; i < mTracks.size(); i++) {
2630            sp<Track> track = mTracks[i];
2631            track->invalidate();
2632        }
2633    }
2634}
2635
2636/*
2637The derived values that are cached:
2638 - mSinkBufferSize from frame count * frame size
2639 - mActiveSleepTimeUs from activeSleepTimeUs()
2640 - mIdleSleepTimeUs from idleSleepTimeUs()
2641 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2642   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2643 - maxPeriod from frame count and sample rate (MIXER only)
2644
2645The parameters that affect these derived values are:
2646 - frame count
2647 - frame size
2648 - sample rate
2649 - device type: A2DP or not
2650 - device latency
2651 - format: PCM or not
2652 - active sleep time
2653 - idle sleep time
2654*/
2655
2656void AudioFlinger::PlaybackThread::cacheParameters_l()
2657{
2658    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2659    mActiveSleepTimeUs = activeSleepTimeUs();
2660    mIdleSleepTimeUs = idleSleepTimeUs();
2661
2662    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2663    // truncating audio when going to standby.
2664    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2665    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2666        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2667            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2668        }
2669    }
2670}
2671
2672void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2673{
2674    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2675            this,  streamType, mTracks.size());
2676    Mutex::Autolock _l(mLock);
2677
2678    size_t size = mTracks.size();
2679    for (size_t i = 0; i < size; i++) {
2680        sp<Track> t = mTracks[i];
2681        if (t->streamType() == streamType && t->isExternalTrack()) {
2682            t->invalidate();
2683        }
2684    }
2685}
2686
2687status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2688{
2689    audio_session_t session = chain->sessionId();
2690    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2691            ? mEffectBuffer : mSinkBuffer);
2692    bool ownsBuffer = false;
2693
2694    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2695    if (session > AUDIO_SESSION_OUTPUT_MIX) {
2696        // Only one effect chain can be present in direct output thread and it uses
2697        // the sink buffer as input
2698        if (mType != DIRECT) {
2699            size_t numSamples = mNormalFrameCount * mChannelCount;
2700            buffer = new int16_t[numSamples];
2701            memset(buffer, 0, numSamples * sizeof(int16_t));
2702            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2703            ownsBuffer = true;
2704        }
2705
2706        // Attach all tracks with same session ID to this chain.
2707        for (size_t i = 0; i < mTracks.size(); ++i) {
2708            sp<Track> track = mTracks[i];
2709            if (session == track->sessionId()) {
2710                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2711                        buffer);
2712                track->setMainBuffer(buffer);
2713                chain->incTrackCnt();
2714            }
2715        }
2716
2717        // indicate all active tracks in the chain
2718        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2719            sp<Track> track = mActiveTracks[i].promote();
2720            if (track == 0) {
2721                continue;
2722            }
2723            if (session == track->sessionId()) {
2724                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2725                chain->incActiveTrackCnt();
2726            }
2727        }
2728    }
2729    chain->setThread(this);
2730    chain->setInBuffer(buffer, ownsBuffer);
2731    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2732            ? mEffectBuffer : mSinkBuffer));
2733    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2734    // chains list in order to be processed last as it contains output stage effects.
2735    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2736    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2737    // after track specific effects and before output stage.
2738    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2739    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2740    // Effect chain for other sessions are inserted at beginning of effect
2741    // chains list to be processed before output mix effects. Relative order between other
2742    // sessions is not important.
2743    static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2744            AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2745            "audio_session_t constants misdefined");
2746    size_t size = mEffectChains.size();
2747    size_t i = 0;
2748    for (i = 0; i < size; i++) {
2749        if (mEffectChains[i]->sessionId() < session) {
2750            break;
2751        }
2752    }
2753    mEffectChains.insertAt(chain, i);
2754    checkSuspendOnAddEffectChain_l(chain);
2755
2756    return NO_ERROR;
2757}
2758
2759size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2760{
2761    audio_session_t session = chain->sessionId();
2762
2763    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2764
2765    for (size_t i = 0; i < mEffectChains.size(); i++) {
2766        if (chain == mEffectChains[i]) {
2767            mEffectChains.removeAt(i);
2768            // detach all active tracks from the chain
2769            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2770                sp<Track> track = mActiveTracks[i].promote();
2771                if (track == 0) {
2772                    continue;
2773                }
2774                if (session == track->sessionId()) {
2775                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2776                            chain.get(), session);
2777                    chain->decActiveTrackCnt();
2778                }
2779            }
2780
2781            // detach all tracks with same session ID from this chain
2782            for (size_t i = 0; i < mTracks.size(); ++i) {
2783                sp<Track> track = mTracks[i];
2784                if (session == track->sessionId()) {
2785                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2786                    chain->decTrackCnt();
2787                }
2788            }
2789            break;
2790        }
2791    }
2792    return mEffectChains.size();
2793}
2794
2795status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2796        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2797{
2798    Mutex::Autolock _l(mLock);
2799    return attachAuxEffect_l(track, EffectId);
2800}
2801
2802status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2803        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2804{
2805    status_t status = NO_ERROR;
2806
2807    if (EffectId == 0) {
2808        track->setAuxBuffer(0, NULL);
2809    } else {
2810        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2811        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2812        if (effect != 0) {
2813            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2814                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2815            } else {
2816                status = INVALID_OPERATION;
2817            }
2818        } else {
2819            status = BAD_VALUE;
2820        }
2821    }
2822    return status;
2823}
2824
2825void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2826{
2827    for (size_t i = 0; i < mTracks.size(); ++i) {
2828        sp<Track> track = mTracks[i];
2829        if (track->auxEffectId() == effectId) {
2830            attachAuxEffect_l(track, 0);
2831        }
2832    }
2833}
2834
2835bool AudioFlinger::PlaybackThread::threadLoop()
2836{
2837    Vector< sp<Track> > tracksToRemove;
2838
2839    mStandbyTimeNs = systemTime();
2840
2841    // MIXER
2842    nsecs_t lastWarning = 0;
2843
2844    // DUPLICATING
2845    // FIXME could this be made local to while loop?
2846    writeFrames = 0;
2847
2848    int lastGeneration = 0;
2849
2850    cacheParameters_l();
2851    mSleepTimeUs = mIdleSleepTimeUs;
2852
2853    if (mType == MIXER) {
2854        sleepTimeShift = 0;
2855    }
2856
2857    CpuStats cpuStats;
2858    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2859
2860    acquireWakeLock();
2861
2862    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2863    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2864    // and then that string will be logged at the next convenient opportunity.
2865    const char *logString = NULL;
2866
2867    checkSilentMode_l();
2868
2869    while (!exitPending())
2870    {
2871        cpuStats.sample(myName);
2872
2873        Vector< sp<EffectChain> > effectChains;
2874
2875        { // scope for mLock
2876
2877            Mutex::Autolock _l(mLock);
2878
2879            processConfigEvents_l();
2880
2881            if (logString != NULL) {
2882                mNBLogWriter->logTimestamp();
2883                mNBLogWriter->log(logString);
2884                logString = NULL;
2885            }
2886
2887            // Gather the framesReleased counters for all active tracks,
2888            // and associate with the sink frames written out.  We need
2889            // this to convert the sink timestamp to the track timestamp.
2890            if (mNormalSink != 0) {
2891                // Note: The DuplicatingThread may not have a mNormalSink.
2892                // We always fetch the timestamp here because often the downstream
2893                // sink will block whie writing.
2894                ExtendedTimestamp timestamp; // use private copy to fetch
2895                (void) mNormalSink->getTimestamp(timestamp);
2896                // copy over kernel info
2897                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
2898                        timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
2899                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
2900                        timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
2901            }
2902            // mFramesWritten for non-offloaded tracks are contiguous
2903            // even after standby() is called. This is useful for the track frame
2904            // to sink frame mapping.
2905            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
2906            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
2907            const size_t size = mActiveTracks.size();
2908            for (size_t i = 0; i < size; ++i) {
2909                sp<Track> t = mActiveTracks[i].promote();
2910                if (t != 0 && !t->isFastTrack()) {
2911                    t->updateTrackFrameInfo(
2912                            t->mAudioTrackServerProxy->framesReleased(),
2913                            mFramesWritten,
2914                            mTimestamp);
2915                }
2916            }
2917
2918            saveOutputTracks();
2919            if (mSignalPending) {
2920                // A signal was raised while we were unlocked
2921                mSignalPending = false;
2922            } else if (waitingAsyncCallback_l()) {
2923                if (exitPending()) {
2924                    break;
2925                }
2926                bool released = false;
2927                // The following works around a bug in the offload driver. Ideally we would release
2928                // the wake lock every time, but that causes the last offload buffer(s) to be
2929                // dropped while the device is on battery, so we need to hold a wake lock during
2930                // the drain phase.
2931                if (mBytesRemaining && !(mDrainSequence & 1)) {
2932                    releaseWakeLock_l();
2933                    released = true;
2934                }
2935                mWakeLockUids.clear();
2936                mActiveTracksGeneration++;
2937                ALOGV("wait async completion");
2938                mWaitWorkCV.wait(mLock);
2939                ALOGV("async completion/wake");
2940                if (released) {
2941                    acquireWakeLock_l();
2942                }
2943                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2944                mSleepTimeUs = 0;
2945
2946                continue;
2947            }
2948            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2949                                   isSuspended()) {
2950                // put audio hardware into standby after short delay
2951                if (shouldStandby_l()) {
2952
2953                    threadLoop_standby();
2954
2955                    mStandby = true;
2956                }
2957
2958                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2959                    // we're about to wait, flush the binder command buffer
2960                    IPCThreadState::self()->flushCommands();
2961
2962                    clearOutputTracks();
2963
2964                    if (exitPending()) {
2965                        break;
2966                    }
2967
2968                    releaseWakeLock_l();
2969                    mWakeLockUids.clear();
2970                    mActiveTracksGeneration++;
2971                    // wait until we have something to do...
2972                    ALOGV("%s going to sleep", myName.string());
2973                    mWaitWorkCV.wait(mLock);
2974                    ALOGV("%s waking up", myName.string());
2975                    acquireWakeLock_l();
2976
2977                    mMixerStatus = MIXER_IDLE;
2978                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2979                    mBytesWritten = 0;
2980                    mBytesRemaining = 0;
2981                    checkSilentMode_l();
2982
2983                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2984                    mSleepTimeUs = mIdleSleepTimeUs;
2985                    if (mType == MIXER) {
2986                        sleepTimeShift = 0;
2987                    }
2988
2989                    continue;
2990                }
2991            }
2992            // mMixerStatusIgnoringFastTracks is also updated internally
2993            mMixerStatus = prepareTracks_l(&tracksToRemove);
2994
2995            // compare with previously applied list
2996            if (lastGeneration != mActiveTracksGeneration) {
2997                // update wakelock
2998                updateWakeLockUids_l(mWakeLockUids);
2999                lastGeneration = mActiveTracksGeneration;
3000            }
3001
3002            // prevent any changes in effect chain list and in each effect chain
3003            // during mixing and effect process as the audio buffers could be deleted
3004            // or modified if an effect is created or deleted
3005            lockEffectChains_l(effectChains);
3006        } // mLock scope ends
3007
3008        if (mBytesRemaining == 0) {
3009            mCurrentWriteLength = 0;
3010            if (mMixerStatus == MIXER_TRACKS_READY) {
3011                // threadLoop_mix() sets mCurrentWriteLength
3012                threadLoop_mix();
3013            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3014                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
3015                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3016                // must be written to HAL
3017                threadLoop_sleepTime();
3018                if (mSleepTimeUs == 0) {
3019                    mCurrentWriteLength = mSinkBufferSize;
3020                }
3021            }
3022            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3023            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3024            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3025            // or mSinkBuffer (if there are no effects).
3026            //
3027            // This is done pre-effects computation; if effects change to
3028            // support higher precision, this needs to move.
3029            //
3030            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3031            // TODO use mSleepTimeUs == 0 as an additional condition.
3032            if (mMixerBufferValid) {
3033                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3034                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3035
3036                // mono blend occurs for mixer threads only (not direct or offloaded)
3037                // and is handled here if we're going directly to the sink.
3038                if (requireMonoBlend() && !mEffectBufferValid) {
3039                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3040                               true /*limit*/);
3041                }
3042
3043                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3044                        mNormalFrameCount * mChannelCount);
3045            }
3046
3047            mBytesRemaining = mCurrentWriteLength;
3048            if (isSuspended()) {
3049                mSleepTimeUs = suspendSleepTimeUs();
3050                // simulate write to HAL when suspended
3051                mBytesWritten += mSinkBufferSize;
3052                mFramesWritten += mSinkBufferSize / mFrameSize;
3053                mBytesRemaining = 0;
3054            }
3055
3056            // only process effects if we're going to write
3057            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3058                for (size_t i = 0; i < effectChains.size(); i ++) {
3059                    effectChains[i]->process_l();
3060                }
3061            }
3062        }
3063        // Process effect chains for offloaded thread even if no audio
3064        // was read from audio track: process only updates effect state
3065        // and thus does have to be synchronized with audio writes but may have
3066        // to be called while waiting for async write callback
3067        if (mType == OFFLOAD) {
3068            for (size_t i = 0; i < effectChains.size(); i ++) {
3069                effectChains[i]->process_l();
3070            }
3071        }
3072
3073        // Only if the Effects buffer is enabled and there is data in the
3074        // Effects buffer (buffer valid), we need to
3075        // copy into the sink buffer.
3076        // TODO use mSleepTimeUs == 0 as an additional condition.
3077        if (mEffectBufferValid) {
3078            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3079
3080            if (requireMonoBlend()) {
3081                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3082                           true /*limit*/);
3083            }
3084
3085            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3086                    mNormalFrameCount * mChannelCount);
3087        }
3088
3089        // enable changes in effect chain
3090        unlockEffectChains(effectChains);
3091
3092        if (!waitingAsyncCallback()) {
3093            // mSleepTimeUs == 0 means we must write to audio hardware
3094            if (mSleepTimeUs == 0) {
3095                ssize_t ret = 0;
3096                if (mBytesRemaining) {
3097                    ret = threadLoop_write();
3098                    if (ret < 0) {
3099                        mBytesRemaining = 0;
3100                    } else {
3101                        mBytesWritten += ret;
3102                        mBytesRemaining -= ret;
3103                        mFramesWritten += ret / mFrameSize;
3104                    }
3105                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3106                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3107                    threadLoop_drain();
3108                }
3109                if (mType == MIXER && !mStandby) {
3110                    // write blocked detection
3111                    nsecs_t now = systemTime();
3112                    nsecs_t delta = now - mLastWriteTime;
3113                    if (delta > maxPeriod) {
3114                        mNumDelayedWrites++;
3115                        if ((now - lastWarning) > kWarningThrottleNs) {
3116                            ATRACE_NAME("underrun");
3117                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3118                                    (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3119                            lastWarning = now;
3120                        }
3121                    }
3122
3123                    if (mThreadThrottle
3124                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3125                            && ret > 0) {                         // we wrote something
3126                        // Limit MixerThread data processing to no more than twice the
3127                        // expected processing rate.
3128                        //
3129                        // This helps prevent underruns with NuPlayer and other applications
3130                        // which may set up buffers that are close to the minimum size, or use
3131                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3132                        //
3133                        // The throttle smooths out sudden large data drains from the device,
3134                        // e.g. when it comes out of standby, which often causes problems with
3135                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3136                        // (2) minimum buffer sized tracks (even if the track is full,
3137                        //     the app won't fill fast enough to handle the sudden draw).
3138
3139                        const int32_t deltaMs = delta / 1000000;
3140                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3141                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3142                            usleep(throttleMs * 1000);
3143                            // notify of throttle start on verbose log
3144                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3145                                    "mixer(%p) throttle begin:"
3146                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3147                                    this, ret, deltaMs, throttleMs);
3148                            mThreadThrottleTimeMs += throttleMs;
3149                        } else {
3150                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3151                            if (diff > 0) {
3152                                // notify of throttle end on debug log
3153                                ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
3154                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3155                            }
3156                        }
3157                    }
3158                }
3159
3160            } else {
3161                ATRACE_BEGIN("sleep");
3162                if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
3163                    Mutex::Autolock _l(mLock);
3164                    if (!mSignalPending && !exitPending()) {
3165                        // Do not sleep more than one buffer duration since last write and not
3166                        // less than kDirectMinSleepTimeUs
3167                        // Wake up if a command is received
3168                        nsecs_t now = systemTime();
3169                        uint32_t deltaUs = (uint32_t)((now - mLastWriteTime) / 1000);
3170                        uint32_t timeoutUs = mSleepTimeUs;
3171                        if (timeoutUs + deltaUs > mBufferDurationUs) {
3172                            if (mBufferDurationUs > deltaUs) {
3173                                timeoutUs = mBufferDurationUs - deltaUs;
3174                                if (timeoutUs < kDirectMinSleepTimeUs) {
3175                                    timeoutUs = kDirectMinSleepTimeUs;
3176                                }
3177                            } else {
3178                                timeoutUs = kDirectMinSleepTimeUs;
3179                            }
3180                        }
3181                        mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)timeoutUs));
3182                    }
3183                } else {
3184                    usleep(mSleepTimeUs);
3185                }
3186                ATRACE_END();
3187            }
3188        }
3189
3190        // Finally let go of removed track(s), without the lock held
3191        // since we can't guarantee the destructors won't acquire that
3192        // same lock.  This will also mutate and push a new fast mixer state.
3193        threadLoop_removeTracks(tracksToRemove);
3194        tracksToRemove.clear();
3195
3196        // FIXME I don't understand the need for this here;
3197        //       it was in the original code but maybe the
3198        //       assignment in saveOutputTracks() makes this unnecessary?
3199        clearOutputTracks();
3200
3201        // Effect chains will be actually deleted here if they were removed from
3202        // mEffectChains list during mixing or effects processing
3203        effectChains.clear();
3204
3205        // FIXME Note that the above .clear() is no longer necessary since effectChains
3206        // is now local to this block, but will keep it for now (at least until merge done).
3207    }
3208
3209    threadLoop_exit();
3210
3211    if (!mStandby) {
3212        threadLoop_standby();
3213        mStandby = true;
3214    }
3215
3216    releaseWakeLock();
3217    mWakeLockUids.clear();
3218    mActiveTracksGeneration++;
3219
3220    ALOGV("Thread %p type %d exiting", this, mType);
3221    return false;
3222}
3223
3224// removeTracks_l() must be called with ThreadBase::mLock held
3225void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3226{
3227    size_t count = tracksToRemove.size();
3228    if (count > 0) {
3229        for (size_t i=0 ; i<count ; i++) {
3230            const sp<Track>& track = tracksToRemove.itemAt(i);
3231            mActiveTracks.remove(track);
3232            mWakeLockUids.remove(track->uid());
3233            mActiveTracksGeneration++;
3234            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3235            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3236            if (chain != 0) {
3237                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3238                        track->sessionId());
3239                chain->decActiveTrackCnt();
3240            }
3241            if (track->isTerminated()) {
3242                removeTrack_l(track);
3243            }
3244        }
3245    }
3246
3247}
3248
3249status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3250{
3251    if (mNormalSink != 0) {
3252        ExtendedTimestamp ets;
3253        status_t status = mNormalSink->getTimestamp(ets);
3254        if (status == NO_ERROR) {
3255            status = ets.getBestTimestamp(&timestamp);
3256        }
3257        return status;
3258    }
3259    if ((mType == OFFLOAD || mType == DIRECT)
3260            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3261        uint64_t position64;
3262        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3263        if (ret == 0) {
3264            timestamp.mPosition = (uint32_t)position64;
3265            return NO_ERROR;
3266        }
3267    }
3268    return INVALID_OPERATION;
3269}
3270
3271status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3272                                                          audio_patch_handle_t *handle)
3273{
3274    AutoPark<FastMixer> park(mFastMixer);
3275
3276    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3277
3278    return status;
3279}
3280
3281status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3282                                                          audio_patch_handle_t *handle)
3283{
3284    status_t status = NO_ERROR;
3285
3286    // store new device and send to effects
3287    audio_devices_t type = AUDIO_DEVICE_NONE;
3288    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3289        type |= patch->sinks[i].ext.device.type;
3290    }
3291
3292#ifdef ADD_BATTERY_DATA
3293    // when changing the audio output device, call addBatteryData to notify
3294    // the change
3295    if (mOutDevice != type) {
3296        uint32_t params = 0;
3297        // check whether speaker is on
3298        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3299            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3300        }
3301
3302        audio_devices_t deviceWithoutSpeaker
3303            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3304        // check if any other device (except speaker) is on
3305        if (type & deviceWithoutSpeaker) {
3306            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3307        }
3308
3309        if (params != 0) {
3310            addBatteryData(params);
3311        }
3312    }
3313#endif
3314
3315    for (size_t i = 0; i < mEffectChains.size(); i++) {
3316        mEffectChains[i]->setDevice_l(type);
3317    }
3318
3319    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3320    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3321    bool configChanged = mPrevOutDevice != type;
3322    mOutDevice = type;
3323    mPatch = *patch;
3324
3325    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3326        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3327        status = hwDevice->create_audio_patch(hwDevice,
3328                                               patch->num_sources,
3329                                               patch->sources,
3330                                               patch->num_sinks,
3331                                               patch->sinks,
3332                                               handle);
3333    } else {
3334        char *address;
3335        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3336            //FIXME: we only support address on first sink with HAL version < 3.0
3337            address = audio_device_address_to_parameter(
3338                                                        patch->sinks[0].ext.device.type,
3339                                                        patch->sinks[0].ext.device.address);
3340        } else {
3341            address = (char *)calloc(1, 1);
3342        }
3343        AudioParameter param = AudioParameter(String8(address));
3344        free(address);
3345        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3346        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3347                param.toString().string());
3348        *handle = AUDIO_PATCH_HANDLE_NONE;
3349    }
3350    if (configChanged) {
3351        mPrevOutDevice = type;
3352        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3353    }
3354    return status;
3355}
3356
3357status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3358{
3359    AutoPark<FastMixer> park(mFastMixer);
3360
3361    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3362
3363    return status;
3364}
3365
3366status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3367{
3368    status_t status = NO_ERROR;
3369
3370    mOutDevice = AUDIO_DEVICE_NONE;
3371
3372    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3373        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3374        status = hwDevice->release_audio_patch(hwDevice, handle);
3375    } else {
3376        AudioParameter param;
3377        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3378        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3379                param.toString().string());
3380    }
3381    return status;
3382}
3383
3384void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3385{
3386    Mutex::Autolock _l(mLock);
3387    mTracks.add(track);
3388}
3389
3390void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3391{
3392    Mutex::Autolock _l(mLock);
3393    destroyTrack_l(track);
3394}
3395
3396void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3397{
3398    ThreadBase::getAudioPortConfig(config);
3399    config->role = AUDIO_PORT_ROLE_SOURCE;
3400    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3401    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3402}
3403
3404// ----------------------------------------------------------------------------
3405
3406AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3407        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3408    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3409        // mAudioMixer below
3410        // mFastMixer below
3411        mFastMixerFutex(0),
3412        mMasterMono(false)
3413        // mOutputSink below
3414        // mPipeSink below
3415        // mNormalSink below
3416{
3417    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3418    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3419            "mFrameCount=%zu, mNormalFrameCount=%zu",
3420            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3421            mNormalFrameCount);
3422    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3423
3424    if (type == DUPLICATING) {
3425        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3426        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3427        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3428        return;
3429    }
3430    // create an NBAIO sink for the HAL output stream, and negotiate
3431    mOutputSink = new AudioStreamOutSink(output->stream);
3432    size_t numCounterOffers = 0;
3433    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3434#if !LOG_NDEBUG
3435    ssize_t index =
3436#else
3437    (void)
3438#endif
3439            mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3440    ALOG_ASSERT(index == 0);
3441
3442    // initialize fast mixer depending on configuration
3443    bool initFastMixer;
3444    switch (kUseFastMixer) {
3445    case FastMixer_Never:
3446        initFastMixer = false;
3447        break;
3448    case FastMixer_Always:
3449        initFastMixer = true;
3450        break;
3451    case FastMixer_Static:
3452    case FastMixer_Dynamic:
3453        initFastMixer = mFrameCount < mNormalFrameCount;
3454        break;
3455    }
3456    if (initFastMixer) {
3457        audio_format_t fastMixerFormat;
3458        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3459            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3460        } else {
3461            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3462        }
3463        if (mFormat != fastMixerFormat) {
3464            // change our Sink format to accept our intermediate precision
3465            mFormat = fastMixerFormat;
3466            free(mSinkBuffer);
3467            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3468            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3469            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3470        }
3471
3472        // create a MonoPipe to connect our submix to FastMixer
3473        NBAIO_Format format = mOutputSink->format();
3474#ifdef TEE_SINK
3475        NBAIO_Format origformat = format;
3476#endif
3477        // adjust format to match that of the Fast Mixer
3478        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3479        format.mFormat = fastMixerFormat;
3480        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3481
3482        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3483        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3484        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3485        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3486        const NBAIO_Format offers[1] = {format};
3487        size_t numCounterOffers = 0;
3488#if !LOG_NDEBUG
3489        ssize_t index =
3490#else
3491        (void)
3492#endif
3493                monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3494        ALOG_ASSERT(index == 0);
3495        monoPipe->setAvgFrames((mScreenState & 1) ?
3496                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3497        mPipeSink = monoPipe;
3498
3499#ifdef TEE_SINK
3500        if (mTeeSinkOutputEnabled) {
3501            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3502            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3503            const NBAIO_Format offers2[1] = {origformat};
3504            numCounterOffers = 0;
3505            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3506            ALOG_ASSERT(index == 0);
3507            mTeeSink = teeSink;
3508            PipeReader *teeSource = new PipeReader(*teeSink);
3509            numCounterOffers = 0;
3510            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3511            ALOG_ASSERT(index == 0);
3512            mTeeSource = teeSource;
3513        }
3514#endif
3515
3516        // create fast mixer and configure it initially with just one fast track for our submix
3517        mFastMixer = new FastMixer();
3518        FastMixerStateQueue *sq = mFastMixer->sq();
3519#ifdef STATE_QUEUE_DUMP
3520        sq->setObserverDump(&mStateQueueObserverDump);
3521        sq->setMutatorDump(&mStateQueueMutatorDump);
3522#endif
3523        FastMixerState *state = sq->begin();
3524        FastTrack *fastTrack = &state->mFastTracks[0];
3525        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3526        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3527        fastTrack->mVolumeProvider = NULL;
3528        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3529        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3530        fastTrack->mGeneration++;
3531        state->mFastTracksGen++;
3532        state->mTrackMask = 1;
3533        // fast mixer will use the HAL output sink
3534        state->mOutputSink = mOutputSink.get();
3535        state->mOutputSinkGen++;
3536        state->mFrameCount = mFrameCount;
3537        state->mCommand = FastMixerState::COLD_IDLE;
3538        // already done in constructor initialization list
3539        //mFastMixerFutex = 0;
3540        state->mColdFutexAddr = &mFastMixerFutex;
3541        state->mColdGen++;
3542        state->mDumpState = &mFastMixerDumpState;
3543#ifdef TEE_SINK
3544        state->mTeeSink = mTeeSink.get();
3545#endif
3546        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3547        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3548        sq->end();
3549        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3550
3551        // start the fast mixer
3552        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3553        pid_t tid = mFastMixer->getTid();
3554        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3555
3556#ifdef AUDIO_WATCHDOG
3557        // create and start the watchdog
3558        mAudioWatchdog = new AudioWatchdog();
3559        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3560        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3561        tid = mAudioWatchdog->getTid();
3562        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3563#endif
3564
3565    }
3566
3567    switch (kUseFastMixer) {
3568    case FastMixer_Never:
3569    case FastMixer_Dynamic:
3570        mNormalSink = mOutputSink;
3571        break;
3572    case FastMixer_Always:
3573        mNormalSink = mPipeSink;
3574        break;
3575    case FastMixer_Static:
3576        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3577        break;
3578    }
3579}
3580
3581AudioFlinger::MixerThread::~MixerThread()
3582{
3583    if (mFastMixer != 0) {
3584        FastMixerStateQueue *sq = mFastMixer->sq();
3585        FastMixerState *state = sq->begin();
3586        if (state->mCommand == FastMixerState::COLD_IDLE) {
3587            int32_t old = android_atomic_inc(&mFastMixerFutex);
3588            if (old == -1) {
3589                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3590            }
3591        }
3592        state->mCommand = FastMixerState::EXIT;
3593        sq->end();
3594        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3595        mFastMixer->join();
3596        // Though the fast mixer thread has exited, it's state queue is still valid.
3597        // We'll use that extract the final state which contains one remaining fast track
3598        // corresponding to our sub-mix.
3599        state = sq->begin();
3600        ALOG_ASSERT(state->mTrackMask == 1);
3601        FastTrack *fastTrack = &state->mFastTracks[0];
3602        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3603        delete fastTrack->mBufferProvider;
3604        sq->end(false /*didModify*/);
3605        mFastMixer.clear();
3606#ifdef AUDIO_WATCHDOG
3607        if (mAudioWatchdog != 0) {
3608            mAudioWatchdog->requestExit();
3609            mAudioWatchdog->requestExitAndWait();
3610            mAudioWatchdog.clear();
3611        }
3612#endif
3613    }
3614    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3615    delete mAudioMixer;
3616}
3617
3618
3619uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3620{
3621    if (mFastMixer != 0) {
3622        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3623        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3624    }
3625    return latency;
3626}
3627
3628
3629void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3630{
3631    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3632}
3633
3634ssize_t AudioFlinger::MixerThread::threadLoop_write()
3635{
3636    // FIXME we should only do one push per cycle; confirm this is true
3637    // Start the fast mixer if it's not already running
3638    if (mFastMixer != 0) {
3639        FastMixerStateQueue *sq = mFastMixer->sq();
3640        FastMixerState *state = sq->begin();
3641        if (state->mCommand != FastMixerState::MIX_WRITE &&
3642                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3643            if (state->mCommand == FastMixerState::COLD_IDLE) {
3644
3645                // FIXME workaround for first HAL write being CPU bound on some devices
3646                ATRACE_BEGIN("write");
3647                mOutput->write((char *)mSinkBuffer, 0);
3648                ATRACE_END();
3649
3650                int32_t old = android_atomic_inc(&mFastMixerFutex);
3651                if (old == -1) {
3652                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3653                }
3654#ifdef AUDIO_WATCHDOG
3655                if (mAudioWatchdog != 0) {
3656                    mAudioWatchdog->resume();
3657                }
3658#endif
3659            }
3660            state->mCommand = FastMixerState::MIX_WRITE;
3661#ifdef FAST_THREAD_STATISTICS
3662            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3663                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3664#endif
3665            sq->end();
3666            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3667            if (kUseFastMixer == FastMixer_Dynamic) {
3668                mNormalSink = mPipeSink;
3669            }
3670        } else {
3671            sq->end(false /*didModify*/);
3672        }
3673    }
3674    return PlaybackThread::threadLoop_write();
3675}
3676
3677void AudioFlinger::MixerThread::threadLoop_standby()
3678{
3679    // Idle the fast mixer if it's currently running
3680    if (mFastMixer != 0) {
3681        FastMixerStateQueue *sq = mFastMixer->sq();
3682        FastMixerState *state = sq->begin();
3683        if (!(state->mCommand & FastMixerState::IDLE)) {
3684            state->mCommand = FastMixerState::COLD_IDLE;
3685            state->mColdFutexAddr = &mFastMixerFutex;
3686            state->mColdGen++;
3687            mFastMixerFutex = 0;
3688            sq->end();
3689            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3690            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3691            if (kUseFastMixer == FastMixer_Dynamic) {
3692                mNormalSink = mOutputSink;
3693            }
3694#ifdef AUDIO_WATCHDOG
3695            if (mAudioWatchdog != 0) {
3696                mAudioWatchdog->pause();
3697            }
3698#endif
3699        } else {
3700            sq->end(false /*didModify*/);
3701        }
3702    }
3703    PlaybackThread::threadLoop_standby();
3704}
3705
3706bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3707{
3708    return false;
3709}
3710
3711bool AudioFlinger::PlaybackThread::shouldStandby_l()
3712{
3713    return !mStandby;
3714}
3715
3716bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3717{
3718    Mutex::Autolock _l(mLock);
3719    return waitingAsyncCallback_l();
3720}
3721
3722// shared by MIXER and DIRECT, overridden by DUPLICATING
3723void AudioFlinger::PlaybackThread::threadLoop_standby()
3724{
3725    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3726    mOutput->standby();
3727    if (mUseAsyncWrite != 0) {
3728        // discard any pending drain or write ack by incrementing sequence
3729        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3730        mDrainSequence = (mDrainSequence + 2) & ~1;
3731        ALOG_ASSERT(mCallbackThread != 0);
3732        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3733        mCallbackThread->setDraining(mDrainSequence);
3734    }
3735    mHwPaused = false;
3736}
3737
3738void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3739{
3740    ALOGV("signal playback thread");
3741    broadcast_l();
3742}
3743
3744void AudioFlinger::MixerThread::threadLoop_mix()
3745{
3746    // mix buffers...
3747    mAudioMixer->process();
3748    mCurrentWriteLength = mSinkBufferSize;
3749    // increase sleep time progressively when application underrun condition clears.
3750    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3751    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3752    // such that we would underrun the audio HAL.
3753    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3754        sleepTimeShift--;
3755    }
3756    mSleepTimeUs = 0;
3757    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3758    //TODO: delay standby when effects have a tail
3759
3760}
3761
3762void AudioFlinger::MixerThread::threadLoop_sleepTime()
3763{
3764    // If no tracks are ready, sleep once for the duration of an output
3765    // buffer size, then write 0s to the output
3766    if (mSleepTimeUs == 0) {
3767        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3768            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3769            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3770                mSleepTimeUs = kMinThreadSleepTimeUs;
3771            }
3772            // reduce sleep time in case of consecutive application underruns to avoid
3773            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3774            // duration we would end up writing less data than needed by the audio HAL if
3775            // the condition persists.
3776            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3777                sleepTimeShift++;
3778            }
3779        } else {
3780            mSleepTimeUs = mIdleSleepTimeUs;
3781        }
3782    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3783        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3784        // before effects processing or output.
3785        if (mMixerBufferValid) {
3786            memset(mMixerBuffer, 0, mMixerBufferSize);
3787        } else {
3788            memset(mSinkBuffer, 0, mSinkBufferSize);
3789        }
3790        mSleepTimeUs = 0;
3791        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3792                "anticipated start");
3793    }
3794    // TODO add standby time extension fct of effect tail
3795}
3796
3797// prepareTracks_l() must be called with ThreadBase::mLock held
3798AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3799        Vector< sp<Track> > *tracksToRemove)
3800{
3801
3802    mixer_state mixerStatus = MIXER_IDLE;
3803    // find out which tracks need to be processed
3804    size_t count = mActiveTracks.size();
3805    size_t mixedTracks = 0;
3806    size_t tracksWithEffect = 0;
3807    // counts only _active_ fast tracks
3808    size_t fastTracks = 0;
3809    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3810
3811    float masterVolume = mMasterVolume;
3812    bool masterMute = mMasterMute;
3813
3814    if (masterMute) {
3815        masterVolume = 0;
3816    }
3817    // Delegate master volume control to effect in output mix effect chain if needed
3818    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3819    if (chain != 0) {
3820        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3821        chain->setVolume_l(&v, &v);
3822        masterVolume = (float)((v + (1 << 23)) >> 24);
3823        chain.clear();
3824    }
3825
3826    // prepare a new state to push
3827    FastMixerStateQueue *sq = NULL;
3828    FastMixerState *state = NULL;
3829    bool didModify = false;
3830    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3831    if (mFastMixer != 0) {
3832        sq = mFastMixer->sq();
3833        state = sq->begin();
3834    }
3835
3836    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3837    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3838
3839    for (size_t i=0 ; i<count ; i++) {
3840        const sp<Track> t = mActiveTracks[i].promote();
3841        if (t == 0) {
3842            continue;
3843        }
3844
3845        // this const just means the local variable doesn't change
3846        Track* const track = t.get();
3847
3848        // process fast tracks
3849        if (track->isFastTrack()) {
3850
3851            // It's theoretically possible (though unlikely) for a fast track to be created
3852            // and then removed within the same normal mix cycle.  This is not a problem, as
3853            // the track never becomes active so it's fast mixer slot is never touched.
3854            // The converse, of removing an (active) track and then creating a new track
3855            // at the identical fast mixer slot within the same normal mix cycle,
3856            // is impossible because the slot isn't marked available until the end of each cycle.
3857            int j = track->mFastIndex;
3858            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3859            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3860            FastTrack *fastTrack = &state->mFastTracks[j];
3861
3862            // Determine whether the track is currently in underrun condition,
3863            // and whether it had a recent underrun.
3864            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3865            FastTrackUnderruns underruns = ftDump->mUnderruns;
3866            uint32_t recentFull = (underruns.mBitFields.mFull -
3867                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3868            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3869                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3870            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3871                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3872            uint32_t recentUnderruns = recentPartial + recentEmpty;
3873            track->mObservedUnderruns = underruns;
3874            // don't count underruns that occur while stopping or pausing
3875            // or stopped which can occur when flush() is called while active
3876            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3877                    recentUnderruns > 0) {
3878                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3879                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3880            } else {
3881                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
3882            }
3883
3884            // This is similar to the state machine for normal tracks,
3885            // with a few modifications for fast tracks.
3886            bool isActive = true;
3887            switch (track->mState) {
3888            case TrackBase::STOPPING_1:
3889                // track stays active in STOPPING_1 state until first underrun
3890                if (recentUnderruns > 0 || track->isTerminated()) {
3891                    track->mState = TrackBase::STOPPING_2;
3892                }
3893                break;
3894            case TrackBase::PAUSING:
3895                // ramp down is not yet implemented
3896                track->setPaused();
3897                break;
3898            case TrackBase::RESUMING:
3899                // ramp up is not yet implemented
3900                track->mState = TrackBase::ACTIVE;
3901                break;
3902            case TrackBase::ACTIVE:
3903                if (recentFull > 0 || recentPartial > 0) {
3904                    // track has provided at least some frames recently: reset retry count
3905                    track->mRetryCount = kMaxTrackRetries;
3906                }
3907                if (recentUnderruns == 0) {
3908                    // no recent underruns: stay active
3909                    break;
3910                }
3911                // there has recently been an underrun of some kind
3912                if (track->sharedBuffer() == 0) {
3913                    // were any of the recent underruns "empty" (no frames available)?
3914                    if (recentEmpty == 0) {
3915                        // no, then ignore the partial underruns as they are allowed indefinitely
3916                        break;
3917                    }
3918                    // there has recently been an "empty" underrun: decrement the retry counter
3919                    if (--(track->mRetryCount) > 0) {
3920                        break;
3921                    }
3922                    // indicate to client process that the track was disabled because of underrun;
3923                    // it will then automatically call start() when data is available
3924                    track->disable();
3925                    // remove from active list, but state remains ACTIVE [confusing but true]
3926                    isActive = false;
3927                    break;
3928                }
3929                // fall through
3930            case TrackBase::STOPPING_2:
3931            case TrackBase::PAUSED:
3932            case TrackBase::STOPPED:
3933            case TrackBase::FLUSHED:   // flush() while active
3934                // Check for presentation complete if track is inactive
3935                // We have consumed all the buffers of this track.
3936                // This would be incomplete if we auto-paused on underrun
3937                {
3938                    size_t audioHALFrames =
3939                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3940                    int64_t framesWritten = mBytesWritten / mFrameSize;
3941                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3942                        // track stays in active list until presentation is complete
3943                        break;
3944                    }
3945                }
3946                if (track->isStopping_2()) {
3947                    track->mState = TrackBase::STOPPED;
3948                }
3949                if (track->isStopped()) {
3950                    // Can't reset directly, as fast mixer is still polling this track
3951                    //   track->reset();
3952                    // So instead mark this track as needing to be reset after push with ack
3953                    resetMask |= 1 << i;
3954                }
3955                isActive = false;
3956                break;
3957            case TrackBase::IDLE:
3958            default:
3959                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3960            }
3961
3962            if (isActive) {
3963                // was it previously inactive?
3964                if (!(state->mTrackMask & (1 << j))) {
3965                    ExtendedAudioBufferProvider *eabp = track;
3966                    VolumeProvider *vp = track;
3967                    fastTrack->mBufferProvider = eabp;
3968                    fastTrack->mVolumeProvider = vp;
3969                    fastTrack->mChannelMask = track->mChannelMask;
3970                    fastTrack->mFormat = track->mFormat;
3971                    fastTrack->mGeneration++;
3972                    state->mTrackMask |= 1 << j;
3973                    didModify = true;
3974                    // no acknowledgement required for newly active tracks
3975                }
3976                // cache the combined master volume and stream type volume for fast mixer; this
3977                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3978                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3979                ++fastTracks;
3980            } else {
3981                // was it previously active?
3982                if (state->mTrackMask & (1 << j)) {
3983                    fastTrack->mBufferProvider = NULL;
3984                    fastTrack->mGeneration++;
3985                    state->mTrackMask &= ~(1 << j);
3986                    didModify = true;
3987                    // If any fast tracks were removed, we must wait for acknowledgement
3988                    // because we're about to decrement the last sp<> on those tracks.
3989                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3990                } else {
3991                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
3992                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
3993                            j, track->mState, state->mTrackMask, recentUnderruns,
3994                            track->sharedBuffer() != 0);
3995                }
3996                tracksToRemove->add(track);
3997                // Avoids a misleading display in dumpsys
3998                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3999            }
4000            continue;
4001        }
4002
4003        {   // local variable scope to avoid goto warning
4004
4005        audio_track_cblk_t* cblk = track->cblk();
4006
4007        // The first time a track is added we wait
4008        // for all its buffers to be filled before processing it
4009        int name = track->name();
4010        // make sure that we have enough frames to mix one full buffer.
4011        // enforce this condition only once to enable draining the buffer in case the client
4012        // app does not call stop() and relies on underrun to stop:
4013        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4014        // during last round
4015        size_t desiredFrames;
4016        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4017        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4018
4019        desiredFrames = sourceFramesNeededWithTimestretch(
4020                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4021        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4022        // add frames already consumed but not yet released by the resampler
4023        // because mAudioTrackServerProxy->framesReady() will include these frames
4024        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4025
4026        uint32_t minFrames = 1;
4027        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4028                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4029            minFrames = desiredFrames;
4030        }
4031
4032        size_t framesReady = track->framesReady();
4033        if (ATRACE_ENABLED()) {
4034            // I wish we had formatted trace names
4035            char traceName[16];
4036            strcpy(traceName, "nRdy");
4037            int name = track->name();
4038            if (AudioMixer::TRACK0 <= name &&
4039                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4040                name -= AudioMixer::TRACK0;
4041                traceName[4] = (name / 10) + '0';
4042                traceName[5] = (name % 10) + '0';
4043            } else {
4044                traceName[4] = '?';
4045                traceName[5] = '?';
4046            }
4047            traceName[6] = '\0';
4048            ATRACE_INT(traceName, framesReady);
4049        }
4050        if ((framesReady >= minFrames) && track->isReady() &&
4051                !track->isPaused() && !track->isTerminated())
4052        {
4053            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4054
4055            mixedTracks++;
4056
4057            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4058            // there is an effect chain connected to the track
4059            chain.clear();
4060            if (track->mainBuffer() != mSinkBuffer &&
4061                    track->mainBuffer() != mMixerBuffer) {
4062                if (mEffectBufferEnabled) {
4063                    mEffectBufferValid = true; // Later can set directly.
4064                }
4065                chain = getEffectChain_l(track->sessionId());
4066                // Delegate volume control to effect in track effect chain if needed
4067                if (chain != 0) {
4068                    tracksWithEffect++;
4069                } else {
4070                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4071                            "session %d",
4072                            name, track->sessionId());
4073                }
4074            }
4075
4076
4077            int param = AudioMixer::VOLUME;
4078            if (track->mFillingUpStatus == Track::FS_FILLED) {
4079                // no ramp for the first volume setting
4080                track->mFillingUpStatus = Track::FS_ACTIVE;
4081                if (track->mState == TrackBase::RESUMING) {
4082                    track->mState = TrackBase::ACTIVE;
4083                    param = AudioMixer::RAMP_VOLUME;
4084                }
4085                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4086            // FIXME should not make a decision based on mServer
4087            } else if (cblk->mServer != 0) {
4088                // If the track is stopped before the first frame was mixed,
4089                // do not apply ramp
4090                param = AudioMixer::RAMP_VOLUME;
4091            }
4092
4093            // compute volume for this track
4094            uint32_t vl, vr;       // in U8.24 integer format
4095            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4096            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4097                vl = vr = 0;
4098                vlf = vrf = vaf = 0.;
4099                if (track->isPausing()) {
4100                    track->setPaused();
4101                }
4102            } else {
4103
4104                // read original volumes with volume control
4105                float typeVolume = mStreamTypes[track->streamType()].volume;
4106                float v = masterVolume * typeVolume;
4107                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4108                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4109                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4110                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4111                // track volumes come from shared memory, so can't be trusted and must be clamped
4112                if (vlf > GAIN_FLOAT_UNITY) {
4113                    ALOGV("Track left volume out of range: %.3g", vlf);
4114                    vlf = GAIN_FLOAT_UNITY;
4115                }
4116                if (vrf > GAIN_FLOAT_UNITY) {
4117                    ALOGV("Track right volume out of range: %.3g", vrf);
4118                    vrf = GAIN_FLOAT_UNITY;
4119                }
4120                // now apply the master volume and stream type volume
4121                vlf *= v;
4122                vrf *= v;
4123                // assuming master volume and stream type volume each go up to 1.0,
4124                // then derive vl and vr as U8.24 versions for the effect chain
4125                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4126                vl = (uint32_t) (scaleto8_24 * vlf);
4127                vr = (uint32_t) (scaleto8_24 * vrf);
4128                // vl and vr are now in U8.24 format
4129                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4130                // send level comes from shared memory and so may be corrupt
4131                if (sendLevel > MAX_GAIN_INT) {
4132                    ALOGV("Track send level out of range: %04X", sendLevel);
4133                    sendLevel = MAX_GAIN_INT;
4134                }
4135                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4136                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4137            }
4138
4139            // Delegate volume control to effect in track effect chain if needed
4140            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4141                // Do not ramp volume if volume is controlled by effect
4142                param = AudioMixer::VOLUME;
4143                // Update remaining floating point volume levels
4144                vlf = (float)vl / (1 << 24);
4145                vrf = (float)vr / (1 << 24);
4146                track->mHasVolumeController = true;
4147            } else {
4148                // force no volume ramp when volume controller was just disabled or removed
4149                // from effect chain to avoid volume spike
4150                if (track->mHasVolumeController) {
4151                    param = AudioMixer::VOLUME;
4152                }
4153                track->mHasVolumeController = false;
4154            }
4155
4156            // XXX: these things DON'T need to be done each time
4157            mAudioMixer->setBufferProvider(name, track);
4158            mAudioMixer->enable(name);
4159
4160            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4161            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4162            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4163            mAudioMixer->setParameter(
4164                name,
4165                AudioMixer::TRACK,
4166                AudioMixer::FORMAT, (void *)track->format());
4167            mAudioMixer->setParameter(
4168                name,
4169                AudioMixer::TRACK,
4170                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4171            mAudioMixer->setParameter(
4172                name,
4173                AudioMixer::TRACK,
4174                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4175            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4176            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4177            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4178            if (reqSampleRate == 0) {
4179                reqSampleRate = mSampleRate;
4180            } else if (reqSampleRate > maxSampleRate) {
4181                reqSampleRate = maxSampleRate;
4182            }
4183            mAudioMixer->setParameter(
4184                name,
4185                AudioMixer::RESAMPLE,
4186                AudioMixer::SAMPLE_RATE,
4187                (void *)(uintptr_t)reqSampleRate);
4188
4189            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4190            mAudioMixer->setParameter(
4191                name,
4192                AudioMixer::TIMESTRETCH,
4193                AudioMixer::PLAYBACK_RATE,
4194                &playbackRate);
4195
4196            /*
4197             * Select the appropriate output buffer for the track.
4198             *
4199             * Tracks with effects go into their own effects chain buffer
4200             * and from there into either mEffectBuffer or mSinkBuffer.
4201             *
4202             * Other tracks can use mMixerBuffer for higher precision
4203             * channel accumulation.  If this buffer is enabled
4204             * (mMixerBufferEnabled true), then selected tracks will accumulate
4205             * into it.
4206             *
4207             */
4208            if (mMixerBufferEnabled
4209                    && (track->mainBuffer() == mSinkBuffer
4210                            || track->mainBuffer() == mMixerBuffer)) {
4211                mAudioMixer->setParameter(
4212                        name,
4213                        AudioMixer::TRACK,
4214                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4215                mAudioMixer->setParameter(
4216                        name,
4217                        AudioMixer::TRACK,
4218                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4219                // TODO: override track->mainBuffer()?
4220                mMixerBufferValid = true;
4221            } else {
4222                mAudioMixer->setParameter(
4223                        name,
4224                        AudioMixer::TRACK,
4225                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4226                mAudioMixer->setParameter(
4227                        name,
4228                        AudioMixer::TRACK,
4229                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4230            }
4231            mAudioMixer->setParameter(
4232                name,
4233                AudioMixer::TRACK,
4234                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4235
4236            // reset retry count
4237            track->mRetryCount = kMaxTrackRetries;
4238
4239            // If one track is ready, set the mixer ready if:
4240            //  - the mixer was not ready during previous round OR
4241            //  - no other track is not ready
4242            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4243                    mixerStatus != MIXER_TRACKS_ENABLED) {
4244                mixerStatus = MIXER_TRACKS_READY;
4245            }
4246        } else {
4247            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4248                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4249                        track, framesReady, desiredFrames);
4250                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4251            } else {
4252                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4253            }
4254
4255            // clear effect chain input buffer if an active track underruns to avoid sending
4256            // previous audio buffer again to effects
4257            chain = getEffectChain_l(track->sessionId());
4258            if (chain != 0) {
4259                chain->clearInputBuffer();
4260            }
4261
4262            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4263            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4264                    track->isStopped() || track->isPaused()) {
4265                // We have consumed all the buffers of this track.
4266                // Remove it from the list of active tracks.
4267                // TODO: use actual buffer filling status instead of latency when available from
4268                // audio HAL
4269                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4270                int64_t framesWritten = mBytesWritten / mFrameSize;
4271                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4272                    if (track->isStopped()) {
4273                        track->reset();
4274                    }
4275                    tracksToRemove->add(track);
4276                }
4277            } else {
4278                // No buffers for this track. Give it a few chances to
4279                // fill a buffer, then remove it from active list.
4280                if (--(track->mRetryCount) <= 0) {
4281                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4282                    tracksToRemove->add(track);
4283                    // indicate to client process that the track was disabled because of underrun;
4284                    // it will then automatically call start() when data is available
4285                    track->disable();
4286                // If one track is not ready, mark the mixer also not ready if:
4287                //  - the mixer was ready during previous round OR
4288                //  - no other track is ready
4289                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4290                                mixerStatus != MIXER_TRACKS_READY) {
4291                    mixerStatus = MIXER_TRACKS_ENABLED;
4292                }
4293            }
4294            mAudioMixer->disable(name);
4295        }
4296
4297        }   // local variable scope to avoid goto warning
4298
4299    }
4300
4301    // Push the new FastMixer state if necessary
4302    bool pauseAudioWatchdog = false;
4303    if (didModify) {
4304        state->mFastTracksGen++;
4305        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4306        if (kUseFastMixer == FastMixer_Dynamic &&
4307                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4308            state->mCommand = FastMixerState::COLD_IDLE;
4309            state->mColdFutexAddr = &mFastMixerFutex;
4310            state->mColdGen++;
4311            mFastMixerFutex = 0;
4312            if (kUseFastMixer == FastMixer_Dynamic) {
4313                mNormalSink = mOutputSink;
4314            }
4315            // If we go into cold idle, need to wait for acknowledgement
4316            // so that fast mixer stops doing I/O.
4317            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4318            pauseAudioWatchdog = true;
4319        }
4320    }
4321    if (sq != NULL) {
4322        sq->end(didModify);
4323        sq->push(block);
4324    }
4325#ifdef AUDIO_WATCHDOG
4326    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4327        mAudioWatchdog->pause();
4328    }
4329#endif
4330
4331    // Now perform the deferred reset on fast tracks that have stopped
4332    while (resetMask != 0) {
4333        size_t i = __builtin_ctz(resetMask);
4334        ALOG_ASSERT(i < count);
4335        resetMask &= ~(1 << i);
4336        sp<Track> t = mActiveTracks[i].promote();
4337        if (t == 0) {
4338            continue;
4339        }
4340        Track* track = t.get();
4341        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4342        track->reset();
4343    }
4344
4345    // remove all the tracks that need to be...
4346    removeTracks_l(*tracksToRemove);
4347
4348    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4349        mEffectBufferValid = true;
4350    }
4351
4352    if (mEffectBufferValid) {
4353        // as long as there are effects we should clear the effects buffer, to avoid
4354        // passing a non-clean buffer to the effect chain
4355        memset(mEffectBuffer, 0, mEffectBufferSize);
4356    }
4357    // sink or mix buffer must be cleared if all tracks are connected to an
4358    // effect chain as in this case the mixer will not write to the sink or mix buffer
4359    // and track effects will accumulate into it
4360    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4361            (mixedTracks == 0 && fastTracks > 0))) {
4362        // FIXME as a performance optimization, should remember previous zero status
4363        if (mMixerBufferValid) {
4364            memset(mMixerBuffer, 0, mMixerBufferSize);
4365            // TODO: In testing, mSinkBuffer below need not be cleared because
4366            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4367            // after mixing.
4368            //
4369            // To enforce this guarantee:
4370            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4371            // (mixedTracks == 0 && fastTracks > 0))
4372            // must imply MIXER_TRACKS_READY.
4373            // Later, we may clear buffers regardless, and skip much of this logic.
4374        }
4375        // FIXME as a performance optimization, should remember previous zero status
4376        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4377    }
4378
4379    // if any fast tracks, then status is ready
4380    mMixerStatusIgnoringFastTracks = mixerStatus;
4381    if (fastTracks > 0) {
4382        mixerStatus = MIXER_TRACKS_READY;
4383    }
4384    return mixerStatus;
4385}
4386
4387// getTrackName_l() must be called with ThreadBase::mLock held
4388int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4389        audio_format_t format, audio_session_t sessionId)
4390{
4391    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4392}
4393
4394// deleteTrackName_l() must be called with ThreadBase::mLock held
4395void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4396{
4397    ALOGV("remove track (%d) and delete from mixer", name);
4398    mAudioMixer->deleteTrackName(name);
4399}
4400
4401// checkForNewParameter_l() must be called with ThreadBase::mLock held
4402bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4403                                                       status_t& status)
4404{
4405    bool reconfig = false;
4406    bool a2dpDeviceChanged = false;
4407
4408    status = NO_ERROR;
4409
4410    AutoPark<FastMixer> park(mFastMixer);
4411
4412    AudioParameter param = AudioParameter(keyValuePair);
4413    int value;
4414    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4415        reconfig = true;
4416    }
4417    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4418        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4419            status = BAD_VALUE;
4420        } else {
4421            // no need to save value, since it's constant
4422            reconfig = true;
4423        }
4424    }
4425    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4426        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4427            status = BAD_VALUE;
4428        } else {
4429            // no need to save value, since it's constant
4430            reconfig = true;
4431        }
4432    }
4433    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4434        // do not accept frame count changes if tracks are open as the track buffer
4435        // size depends on frame count and correct behavior would not be guaranteed
4436        // if frame count is changed after track creation
4437        if (!mTracks.isEmpty()) {
4438            status = INVALID_OPERATION;
4439        } else {
4440            reconfig = true;
4441        }
4442    }
4443    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4444#ifdef ADD_BATTERY_DATA
4445        // when changing the audio output device, call addBatteryData to notify
4446        // the change
4447        if (mOutDevice != value) {
4448            uint32_t params = 0;
4449            // check whether speaker is on
4450            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4451                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4452            }
4453
4454            audio_devices_t deviceWithoutSpeaker
4455                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4456            // check if any other device (except speaker) is on
4457            if (value & deviceWithoutSpeaker) {
4458                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4459            }
4460
4461            if (params != 0) {
4462                addBatteryData(params);
4463            }
4464        }
4465#endif
4466
4467        // forward device change to effects that have requested to be
4468        // aware of attached audio device.
4469        if (value != AUDIO_DEVICE_NONE) {
4470            a2dpDeviceChanged =
4471                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4472            mOutDevice = value;
4473            for (size_t i = 0; i < mEffectChains.size(); i++) {
4474                mEffectChains[i]->setDevice_l(mOutDevice);
4475            }
4476        }
4477    }
4478
4479    if (status == NO_ERROR) {
4480        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4481                                                keyValuePair.string());
4482        if (!mStandby && status == INVALID_OPERATION) {
4483            mOutput->standby();
4484            mStandby = true;
4485            mBytesWritten = 0;
4486            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4487                                                   keyValuePair.string());
4488        }
4489        if (status == NO_ERROR && reconfig) {
4490            readOutputParameters_l();
4491            delete mAudioMixer;
4492            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4493            for (size_t i = 0; i < mTracks.size() ; i++) {
4494                int name = getTrackName_l(mTracks[i]->mChannelMask,
4495                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4496                if (name < 0) {
4497                    break;
4498                }
4499                mTracks[i]->mName = name;
4500            }
4501            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4502        }
4503    }
4504
4505    return reconfig || a2dpDeviceChanged;
4506}
4507
4508
4509void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4510{
4511    PlaybackThread::dumpInternals(fd, args);
4512    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4513    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4514    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4515
4516    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4517    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4518    // This is a large object so we place it on the heap.
4519    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4520    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4521    copy->dump(fd);
4522    delete copy;
4523
4524#ifdef STATE_QUEUE_DUMP
4525    // Similar for state queue
4526    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4527    observerCopy.dump(fd);
4528    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4529    mutatorCopy.dump(fd);
4530#endif
4531
4532#ifdef TEE_SINK
4533    // Write the tee output to a .wav file
4534    dumpTee(fd, mTeeSource, mId);
4535#endif
4536
4537#ifdef AUDIO_WATCHDOG
4538    if (mAudioWatchdog != 0) {
4539        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4540        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4541        wdCopy.dump(fd);
4542    }
4543#endif
4544}
4545
4546uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4547{
4548    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4549}
4550
4551uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4552{
4553    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4554}
4555
4556void AudioFlinger::MixerThread::cacheParameters_l()
4557{
4558    PlaybackThread::cacheParameters_l();
4559
4560    // FIXME: Relaxed timing because of a certain device that can't meet latency
4561    // Should be reduced to 2x after the vendor fixes the driver issue
4562    // increase threshold again due to low power audio mode. The way this warning
4563    // threshold is calculated and its usefulness should be reconsidered anyway.
4564    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4565}
4566
4567// ----------------------------------------------------------------------------
4568
4569AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4570        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady,
4571        uint32_t bitRate)
4572    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady, bitRate)
4573        // mLeftVolFloat, mRightVolFloat
4574{
4575}
4576
4577AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4578        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4579        ThreadBase::type_t type, bool systemReady, uint32_t bitRate)
4580    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady, bitRate)
4581        // mLeftVolFloat, mRightVolFloat
4582{
4583}
4584
4585AudioFlinger::DirectOutputThread::~DirectOutputThread()
4586{
4587}
4588
4589void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4590{
4591    float left, right;
4592
4593    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4594        left = right = 0;
4595    } else {
4596        float typeVolume = mStreamTypes[track->streamType()].volume;
4597        float v = mMasterVolume * typeVolume;
4598        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4599        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4600        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4601        if (left > GAIN_FLOAT_UNITY) {
4602            left = GAIN_FLOAT_UNITY;
4603        }
4604        left *= v;
4605        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4606        if (right > GAIN_FLOAT_UNITY) {
4607            right = GAIN_FLOAT_UNITY;
4608        }
4609        right *= v;
4610    }
4611
4612    if (lastTrack) {
4613        if (left != mLeftVolFloat || right != mRightVolFloat) {
4614            mLeftVolFloat = left;
4615            mRightVolFloat = right;
4616
4617            // Convert volumes from float to 8.24
4618            uint32_t vl = (uint32_t)(left * (1 << 24));
4619            uint32_t vr = (uint32_t)(right * (1 << 24));
4620
4621            // Delegate volume control to effect in track effect chain if needed
4622            // only one effect chain can be present on DirectOutputThread, so if
4623            // there is one, the track is connected to it
4624            if (!mEffectChains.isEmpty()) {
4625                mEffectChains[0]->setVolume_l(&vl, &vr);
4626                left = (float)vl / (1 << 24);
4627                right = (float)vr / (1 << 24);
4628            }
4629            if (mOutput->stream->set_volume) {
4630                mOutput->stream->set_volume(mOutput->stream, left, right);
4631            }
4632        }
4633    }
4634}
4635
4636void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4637{
4638    sp<Track> previousTrack = mPreviousTrack.promote();
4639    sp<Track> latestTrack = mLatestActiveTrack.promote();
4640
4641    if (previousTrack != 0 && latestTrack != 0) {
4642        if (mType == DIRECT) {
4643            if (previousTrack.get() != latestTrack.get()) {
4644                mFlushPending = true;
4645            }
4646        } else /* mType == OFFLOAD */ {
4647            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4648                mFlushPending = true;
4649            }
4650        }
4651    }
4652    PlaybackThread::onAddNewTrack_l();
4653}
4654
4655AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4656    Vector< sp<Track> > *tracksToRemove
4657)
4658{
4659    size_t count = mActiveTracks.size();
4660    mixer_state mixerStatus = MIXER_IDLE;
4661    bool doHwPause = false;
4662    bool doHwResume = false;
4663
4664    // find out which tracks need to be processed
4665    for (size_t i = 0; i < count; i++) {
4666        sp<Track> t = mActiveTracks[i].promote();
4667        // The track died recently
4668        if (t == 0) {
4669            continue;
4670        }
4671
4672        if (t->isInvalid()) {
4673            ALOGW("An invalidated track shouldn't be in active list");
4674            tracksToRemove->add(t);
4675            continue;
4676        }
4677
4678        Track* const track = t.get();
4679#ifdef VERY_VERY_VERBOSE_LOGGING
4680        audio_track_cblk_t* cblk = track->cblk();
4681#endif
4682        // Only consider last track started for volume and mixer state control.
4683        // In theory an older track could underrun and restart after the new one starts
4684        // but as we only care about the transition phase between two tracks on a
4685        // direct output, it is not a problem to ignore the underrun case.
4686        sp<Track> l = mLatestActiveTrack.promote();
4687        bool last = l.get() == track;
4688
4689        if (track->isPausing()) {
4690            track->setPaused();
4691            if (mHwSupportsPause && last && !mHwPaused) {
4692                doHwPause = true;
4693                mHwPaused = true;
4694            }
4695            tracksToRemove->add(track);
4696        } else if (track->isFlushPending()) {
4697            track->flushAck();
4698            if (last) {
4699                mFlushPending = true;
4700            }
4701        } else if (track->isResumePending()) {
4702            track->resumeAck();
4703            if (last && mHwPaused) {
4704                doHwResume = true;
4705                mHwPaused = false;
4706            }
4707        }
4708
4709        // The first time a track is added we wait
4710        // for all its buffers to be filled before processing it.
4711        // Allow draining the buffer in case the client
4712        // app does not call stop() and relies on underrun to stop:
4713        // hence the test on (track->mRetryCount > 1).
4714        // If retryCount<=1 then track is about to underrun and be removed.
4715        // Do not use a high threshold for compressed audio.
4716        uint32_t minFrames;
4717        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4718            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4719            minFrames = mNormalFrameCount;
4720        } else {
4721            minFrames = 1;
4722        }
4723
4724        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4725                !track->isStopping_2() && !track->isStopped())
4726        {
4727            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4728
4729            if (track->mFillingUpStatus == Track::FS_FILLED) {
4730                track->mFillingUpStatus = Track::FS_ACTIVE;
4731                // make sure processVolume_l() will apply new volume even if 0
4732                mLeftVolFloat = mRightVolFloat = -1.0;
4733                if (!mHwSupportsPause) {
4734                    track->resumeAck();
4735                }
4736            }
4737
4738            // compute volume for this track
4739            processVolume_l(track, last);
4740            if (last) {
4741                sp<Track> previousTrack = mPreviousTrack.promote();
4742                if (previousTrack != 0) {
4743                    if (track != previousTrack.get()) {
4744                        // Flush any data still being written from last track
4745                        mBytesRemaining = 0;
4746                        // Invalidate previous track to force a seek when resuming.
4747                        previousTrack->invalidate();
4748                    }
4749                }
4750                mPreviousTrack = track;
4751
4752                // reset retry count
4753                track->mRetryCount = kMaxTrackRetriesDirect;
4754                mActiveTrack = t;
4755                mixerStatus = MIXER_TRACKS_READY;
4756                if (mHwPaused) {
4757                    doHwResume = true;
4758                    mHwPaused = false;
4759                }
4760            }
4761        } else {
4762            // clear effect chain input buffer if the last active track started underruns
4763            // to avoid sending previous audio buffer again to effects
4764            if (!mEffectChains.isEmpty() && last) {
4765                mEffectChains[0]->clearInputBuffer();
4766            }
4767            if (track->isStopping_1()) {
4768                track->mState = TrackBase::STOPPING_2;
4769                if (last && mHwPaused) {
4770                     doHwResume = true;
4771                     mHwPaused = false;
4772                 }
4773            }
4774            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4775                    track->isStopping_2() || track->isPaused()) {
4776                // We have consumed all the buffers of this track.
4777                // Remove it from the list of active tracks.
4778                size_t audioHALFrames;
4779                if (audio_has_proportional_frames(mFormat)) {
4780                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4781                } else {
4782                    audioHALFrames = 0;
4783                }
4784
4785                int64_t framesWritten = mBytesWritten / mFrameSize;
4786                if (mStandby || !last ||
4787                        track->presentationComplete(framesWritten, audioHALFrames)) {
4788                    if (track->isStopping_2()) {
4789                        track->mState = TrackBase::STOPPED;
4790                    }
4791                    if (track->isStopped()) {
4792                        track->reset();
4793                    }
4794                    tracksToRemove->add(track);
4795                }
4796            } else {
4797                // No buffers for this track. Give it a few chances to
4798                // fill a buffer, then remove it from active list.
4799                // Only consider last track started for mixer state control
4800                if (--(track->mRetryCount) <= 0) {
4801                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4802                    tracksToRemove->add(track);
4803                    // indicate to client process that the track was disabled because of underrun;
4804                    // it will then automatically call start() when data is available
4805                    track->disable();
4806                } else if (last) {
4807                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4808                            "minFrames = %u, mFormat = %#x",
4809                            track->framesReady(), minFrames, mFormat);
4810                    mixerStatus = MIXER_TRACKS_ENABLED;
4811                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4812                        doHwPause = true;
4813                        mHwPaused = true;
4814                    }
4815                }
4816            }
4817        }
4818    }
4819
4820    // if an active track did not command a flush, check for pending flush on stopped tracks
4821    if (!mFlushPending) {
4822        for (size_t i = 0; i < mTracks.size(); i++) {
4823            if (mTracks[i]->isFlushPending()) {
4824                mTracks[i]->flushAck();
4825                mFlushPending = true;
4826            }
4827        }
4828    }
4829
4830    // make sure the pause/flush/resume sequence is executed in the right order.
4831    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4832    // before flush and then resume HW. This can happen in case of pause/flush/resume
4833    // if resume is received before pause is executed.
4834    if (mHwSupportsPause && !mStandby &&
4835            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4836        mOutput->stream->pause(mOutput->stream);
4837    }
4838    if (mFlushPending) {
4839        flushHw_l();
4840    }
4841    if (mHwSupportsPause && !mStandby && doHwResume) {
4842        mOutput->stream->resume(mOutput->stream);
4843    }
4844    // remove all the tracks that need to be...
4845    removeTracks_l(*tracksToRemove);
4846
4847    return mixerStatus;
4848}
4849
4850void AudioFlinger::DirectOutputThread::threadLoop_mix()
4851{
4852    size_t frameCount = mFrameCount;
4853    int8_t *curBuf = (int8_t *)mSinkBuffer;
4854    // output audio to hardware
4855    while (frameCount) {
4856        AudioBufferProvider::Buffer buffer;
4857        buffer.frameCount = frameCount;
4858        status_t status = mActiveTrack->getNextBuffer(&buffer);
4859        if (status != NO_ERROR || buffer.raw == NULL) {
4860            // no need to pad with 0 for compressed audio
4861            if (audio_has_proportional_frames(mFormat)) {
4862                memset(curBuf, 0, frameCount * mFrameSize);
4863            }
4864            break;
4865        }
4866        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4867        frameCount -= buffer.frameCount;
4868        curBuf += buffer.frameCount * mFrameSize;
4869        mActiveTrack->releaseBuffer(&buffer);
4870    }
4871    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4872    mSleepTimeUs = 0;
4873    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4874    mActiveTrack.clear();
4875}
4876
4877void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4878{
4879    // do not write to HAL when paused
4880    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4881        mSleepTimeUs = mIdleSleepTimeUs;
4882        return;
4883    }
4884    if (mSleepTimeUs == 0) {
4885        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4886            // For compressed offload, use faster sleep time when underruning until more than an
4887            // entire buffer was written to the audio HAL
4888            if (!audio_has_proportional_frames(mFormat) &&
4889                    (mType == OFFLOAD) && (mBytesWritten < (int64_t) mBufferSize)) {
4890                mSleepTimeUs = kDirectMinSleepTimeUs;
4891            } else {
4892                mSleepTimeUs = mActiveSleepTimeUs;
4893            }
4894        } else {
4895            mSleepTimeUs = mIdleSleepTimeUs;
4896        }
4897    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
4898        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4899        mSleepTimeUs = 0;
4900    }
4901}
4902
4903void AudioFlinger::DirectOutputThread::threadLoop_exit()
4904{
4905    {
4906        Mutex::Autolock _l(mLock);
4907        for (size_t i = 0; i < mTracks.size(); i++) {
4908            if (mTracks[i]->isFlushPending()) {
4909                mTracks[i]->flushAck();
4910                mFlushPending = true;
4911            }
4912        }
4913        if (mFlushPending) {
4914            flushHw_l();
4915        }
4916    }
4917    PlaybackThread::threadLoop_exit();
4918}
4919
4920// must be called with thread mutex locked
4921bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4922{
4923    bool trackPaused = false;
4924    bool trackStopped = false;
4925
4926    if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
4927        return !mStandby;
4928    }
4929
4930    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4931    // after a timeout and we will enter standby then.
4932    if (mTracks.size() > 0) {
4933        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4934        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4935                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4936    }
4937
4938    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
4939}
4940
4941// getTrackName_l() must be called with ThreadBase::mLock held
4942int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4943        audio_format_t format __unused, audio_session_t sessionId __unused)
4944{
4945    return 0;
4946}
4947
4948// deleteTrackName_l() must be called with ThreadBase::mLock held
4949void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4950{
4951}
4952
4953// checkForNewParameter_l() must be called with ThreadBase::mLock held
4954bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4955                                                              status_t& status)
4956{
4957    bool reconfig = false;
4958    bool a2dpDeviceChanged = false;
4959
4960    status = NO_ERROR;
4961
4962    AudioParameter param = AudioParameter(keyValuePair);
4963    int value;
4964    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4965        // forward device change to effects that have requested to be
4966        // aware of attached audio device.
4967        if (value != AUDIO_DEVICE_NONE) {
4968            a2dpDeviceChanged =
4969                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4970            mOutDevice = value;
4971            for (size_t i = 0; i < mEffectChains.size(); i++) {
4972                mEffectChains[i]->setDevice_l(mOutDevice);
4973            }
4974        }
4975    }
4976    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4977        // do not accept frame count changes if tracks are open as the track buffer
4978        // size depends on frame count and correct behavior would not be garantied
4979        // if frame count is changed after track creation
4980        if (!mTracks.isEmpty()) {
4981            status = INVALID_OPERATION;
4982        } else {
4983            reconfig = true;
4984        }
4985    }
4986    if (status == NO_ERROR) {
4987        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4988                                                keyValuePair.string());
4989        if (!mStandby && status == INVALID_OPERATION) {
4990            mOutput->standby();
4991            mStandby = true;
4992            mBytesWritten = 0;
4993            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4994                                                   keyValuePair.string());
4995        }
4996        if (status == NO_ERROR && reconfig) {
4997            readOutputParameters_l();
4998            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4999        }
5000    }
5001
5002    return reconfig || a2dpDeviceChanged;
5003}
5004
5005uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5006{
5007    uint32_t time;
5008    if (audio_has_proportional_frames(mFormat)) {
5009        time = PlaybackThread::activeSleepTimeUs();
5010    } else {
5011        time = kDirectMinSleepTimeUs;
5012    }
5013    return time;
5014}
5015
5016uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5017{
5018    uint32_t time;
5019    if (audio_has_proportional_frames(mFormat)) {
5020        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5021    } else {
5022        time = kDirectMinSleepTimeUs;
5023    }
5024    return time;
5025}
5026
5027uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5028{
5029    uint32_t time;
5030    if (audio_has_proportional_frames(mFormat)) {
5031        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5032    } else {
5033        time = kDirectMinSleepTimeUs;
5034    }
5035    return time;
5036}
5037
5038void AudioFlinger::DirectOutputThread::cacheParameters_l()
5039{
5040    PlaybackThread::cacheParameters_l();
5041
5042    // use shorter standby delay as on normal output to release
5043    // hardware resources as soon as possible
5044    // no delay on outputs with HW A/V sync
5045    if (usesHwAvSync()) {
5046        mStandbyDelayNs = 0;
5047    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5048        mStandbyDelayNs = kOffloadStandbyDelayNs;
5049    } else {
5050        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5051    }
5052}
5053
5054void AudioFlinger::DirectOutputThread::flushHw_l()
5055{
5056    mOutput->flush();
5057    mHwPaused = false;
5058    mFlushPending = false;
5059}
5060
5061// ----------------------------------------------------------------------------
5062
5063AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5064        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5065    :   Thread(false /*canCallJava*/),
5066        mPlaybackThread(playbackThread),
5067        mWriteAckSequence(0),
5068        mDrainSequence(0)
5069{
5070}
5071
5072AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5073{
5074}
5075
5076void AudioFlinger::AsyncCallbackThread::onFirstRef()
5077{
5078    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5079}
5080
5081bool AudioFlinger::AsyncCallbackThread::threadLoop()
5082{
5083    while (!exitPending()) {
5084        uint32_t writeAckSequence;
5085        uint32_t drainSequence;
5086
5087        {
5088            Mutex::Autolock _l(mLock);
5089            while (!((mWriteAckSequence & 1) ||
5090                     (mDrainSequence & 1) ||
5091                     exitPending())) {
5092                mWaitWorkCV.wait(mLock);
5093            }
5094
5095            if (exitPending()) {
5096                break;
5097            }
5098            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5099                  mWriteAckSequence, mDrainSequence);
5100            writeAckSequence = mWriteAckSequence;
5101            mWriteAckSequence &= ~1;
5102            drainSequence = mDrainSequence;
5103            mDrainSequence &= ~1;
5104        }
5105        {
5106            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5107            if (playbackThread != 0) {
5108                if (writeAckSequence & 1) {
5109                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5110                }
5111                if (drainSequence & 1) {
5112                    playbackThread->resetDraining(drainSequence >> 1);
5113                }
5114            }
5115        }
5116    }
5117    return false;
5118}
5119
5120void AudioFlinger::AsyncCallbackThread::exit()
5121{
5122    ALOGV("AsyncCallbackThread::exit");
5123    Mutex::Autolock _l(mLock);
5124    requestExit();
5125    mWaitWorkCV.broadcast();
5126}
5127
5128void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5129{
5130    Mutex::Autolock _l(mLock);
5131    // bit 0 is cleared
5132    mWriteAckSequence = sequence << 1;
5133}
5134
5135void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5136{
5137    Mutex::Autolock _l(mLock);
5138    // ignore unexpected callbacks
5139    if (mWriteAckSequence & 2) {
5140        mWriteAckSequence |= 1;
5141        mWaitWorkCV.signal();
5142    }
5143}
5144
5145void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5146{
5147    Mutex::Autolock _l(mLock);
5148    // bit 0 is cleared
5149    mDrainSequence = sequence << 1;
5150}
5151
5152void AudioFlinger::AsyncCallbackThread::resetDraining()
5153{
5154    Mutex::Autolock _l(mLock);
5155    // ignore unexpected callbacks
5156    if (mDrainSequence & 2) {
5157        mDrainSequence |= 1;
5158        mWaitWorkCV.signal();
5159    }
5160}
5161
5162
5163// ----------------------------------------------------------------------------
5164AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5165        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady,
5166        uint32_t bitRate)
5167    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady, bitRate),
5168        mPausedBytesRemaining(0)
5169{
5170    //FIXME: mStandby should be set to true by ThreadBase constructor
5171    mStandby = true;
5172}
5173
5174void AudioFlinger::OffloadThread::threadLoop_exit()
5175{
5176    if (mFlushPending || mHwPaused) {
5177        // If a flush is pending or track was paused, just discard buffered data
5178        flushHw_l();
5179    } else {
5180        mMixerStatus = MIXER_DRAIN_ALL;
5181        threadLoop_drain();
5182    }
5183    if (mUseAsyncWrite) {
5184        ALOG_ASSERT(mCallbackThread != 0);
5185        mCallbackThread->exit();
5186    }
5187    PlaybackThread::threadLoop_exit();
5188}
5189
5190AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5191    Vector< sp<Track> > *tracksToRemove
5192)
5193{
5194    size_t count = mActiveTracks.size();
5195
5196    mixer_state mixerStatus = MIXER_IDLE;
5197    bool doHwPause = false;
5198    bool doHwResume = false;
5199
5200    ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5201
5202    // find out which tracks need to be processed
5203    for (size_t i = 0; i < count; i++) {
5204        sp<Track> t = mActiveTracks[i].promote();
5205        // The track died recently
5206        if (t == 0) {
5207            continue;
5208        }
5209        Track* const track = t.get();
5210#ifdef VERY_VERY_VERBOSE_LOGGING
5211        audio_track_cblk_t* cblk = track->cblk();
5212#endif
5213        // Only consider last track started for volume and mixer state control.
5214        // In theory an older track could underrun and restart after the new one starts
5215        // but as we only care about the transition phase between two tracks on a
5216        // direct output, it is not a problem to ignore the underrun case.
5217        sp<Track> l = mLatestActiveTrack.promote();
5218        bool last = l.get() == track;
5219
5220        if (track->isInvalid()) {
5221            ALOGW("An invalidated track shouldn't be in active list");
5222            tracksToRemove->add(track);
5223            continue;
5224        }
5225
5226        if (track->mState == TrackBase::IDLE) {
5227            ALOGW("An idle track shouldn't be in active list");
5228            continue;
5229        }
5230
5231        if (track->isPausing()) {
5232            track->setPaused();
5233            if (last) {
5234                if (mHwSupportsPause && !mHwPaused) {
5235                    doHwPause = true;
5236                    mHwPaused = true;
5237                }
5238                // If we were part way through writing the mixbuffer to
5239                // the HAL we must save this until we resume
5240                // BUG - this will be wrong if a different track is made active,
5241                // in that case we want to discard the pending data in the
5242                // mixbuffer and tell the client to present it again when the
5243                // track is resumed
5244                mPausedWriteLength = mCurrentWriteLength;
5245                mPausedBytesRemaining = mBytesRemaining;
5246                mBytesRemaining = 0;    // stop writing
5247            }
5248            tracksToRemove->add(track);
5249        } else if (track->isFlushPending()) {
5250            track->mRetryCount = kMaxTrackRetriesOffload;
5251            track->flushAck();
5252            if (last) {
5253                mFlushPending = true;
5254            }
5255        } else if (track->isResumePending()){
5256            track->resumeAck();
5257            if (last) {
5258                if (mPausedBytesRemaining) {
5259                    // Need to continue write that was interrupted
5260                    mCurrentWriteLength = mPausedWriteLength;
5261                    mBytesRemaining = mPausedBytesRemaining;
5262                    mPausedBytesRemaining = 0;
5263                }
5264                if (mHwPaused) {
5265                    doHwResume = true;
5266                    mHwPaused = false;
5267                    // threadLoop_mix() will handle the case that we need to
5268                    // resume an interrupted write
5269                }
5270                // enable write to audio HAL
5271                mSleepTimeUs = 0;
5272
5273                // Do not handle new data in this iteration even if track->framesReady()
5274                mixerStatus = MIXER_TRACKS_ENABLED;
5275            }
5276        }  else if (track->framesReady() && track->isReady() &&
5277                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5278            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5279            if (track->mFillingUpStatus == Track::FS_FILLED) {
5280                track->mFillingUpStatus = Track::FS_ACTIVE;
5281                // make sure processVolume_l() will apply new volume even if 0
5282                mLeftVolFloat = mRightVolFloat = -1.0;
5283            }
5284
5285            if (last) {
5286                sp<Track> previousTrack = mPreviousTrack.promote();
5287                if (previousTrack != 0) {
5288                    if (track != previousTrack.get()) {
5289                        // Flush any data still being written from last track
5290                        mBytesRemaining = 0;
5291                        if (mPausedBytesRemaining) {
5292                            // Last track was paused so we also need to flush saved
5293                            // mixbuffer state and invalidate track so that it will
5294                            // re-submit that unwritten data when it is next resumed
5295                            mPausedBytesRemaining = 0;
5296                            // Invalidate is a bit drastic - would be more efficient
5297                            // to have a flag to tell client that some of the
5298                            // previously written data was lost
5299                            previousTrack->invalidate();
5300                        }
5301                        // flush data already sent to the DSP if changing audio session as audio
5302                        // comes from a different source. Also invalidate previous track to force a
5303                        // seek when resuming.
5304                        if (previousTrack->sessionId() != track->sessionId()) {
5305                            previousTrack->invalidate();
5306                        }
5307                    }
5308                }
5309                mPreviousTrack = track;
5310                // reset retry count
5311                track->mRetryCount = kMaxTrackRetriesOffload;
5312                mActiveTrack = t;
5313                mixerStatus = MIXER_TRACKS_READY;
5314            }
5315        } else {
5316            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5317            if (track->isStopping_1()) {
5318                // Hardware buffer can hold a large amount of audio so we must
5319                // wait for all current track's data to drain before we say
5320                // that the track is stopped.
5321                if (mBytesRemaining == 0) {
5322                    // Only start draining when all data in mixbuffer
5323                    // has been written
5324                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5325                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5326                    // do not drain if no data was ever sent to HAL (mStandby == true)
5327                    if (last && !mStandby) {
5328                        // do not modify drain sequence if we are already draining. This happens
5329                        // when resuming from pause after drain.
5330                        if ((mDrainSequence & 1) == 0) {
5331                            mSleepTimeUs = 0;
5332                            mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5333                            mixerStatus = MIXER_DRAIN_TRACK;
5334                            mDrainSequence += 2;
5335                        }
5336                        if (mHwPaused) {
5337                            // It is possible to move from PAUSED to STOPPING_1 without
5338                            // a resume so we must ensure hardware is running
5339                            doHwResume = true;
5340                            mHwPaused = false;
5341                        }
5342                    }
5343                }
5344            } else if (track->isStopping_2()) {
5345                // Drain has completed or we are in standby, signal presentation complete
5346                if (!(mDrainSequence & 1) || !last || mStandby) {
5347                    track->mState = TrackBase::STOPPED;
5348                    size_t audioHALFrames =
5349                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5350                    int64_t framesWritten =
5351                            mBytesWritten / mOutput->getFrameSize();
5352                    track->presentationComplete(framesWritten, audioHALFrames);
5353                    track->reset();
5354                    tracksToRemove->add(track);
5355                }
5356            } else {
5357                // No buffers for this track. Give it a few chances to
5358                // fill a buffer, then remove it from active list.
5359                if (--(track->mRetryCount) <= 0) {
5360                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5361                          track->name());
5362                    tracksToRemove->add(track);
5363                    // indicate to client process that the track was disabled because of underrun;
5364                    // it will then automatically call start() when data is available
5365                    track->disable();
5366                } else if (last){
5367                    mixerStatus = MIXER_TRACKS_ENABLED;
5368                }
5369            }
5370        }
5371        // compute volume for this track
5372        processVolume_l(track, last);
5373    }
5374
5375    // make sure the pause/flush/resume sequence is executed in the right order.
5376    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5377    // before flush and then resume HW. This can happen in case of pause/flush/resume
5378    // if resume is received before pause is executed.
5379    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5380        mOutput->stream->pause(mOutput->stream);
5381    }
5382    if (mFlushPending) {
5383        flushHw_l();
5384    }
5385    if (!mStandby && doHwResume) {
5386        mOutput->stream->resume(mOutput->stream);
5387    }
5388
5389    // remove all the tracks that need to be...
5390    removeTracks_l(*tracksToRemove);
5391
5392    return mixerStatus;
5393}
5394
5395// must be called with thread mutex locked
5396bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5397{
5398    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5399          mWriteAckSequence, mDrainSequence);
5400    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5401        return true;
5402    }
5403    return false;
5404}
5405
5406bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5407{
5408    Mutex::Autolock _l(mLock);
5409    return waitingAsyncCallback_l();
5410}
5411
5412void AudioFlinger::OffloadThread::flushHw_l()
5413{
5414    DirectOutputThread::flushHw_l();
5415    // Flush anything still waiting in the mixbuffer
5416    mCurrentWriteLength = 0;
5417    mBytesRemaining = 0;
5418    mPausedWriteLength = 0;
5419    mPausedBytesRemaining = 0;
5420
5421    if (mUseAsyncWrite) {
5422        // discard any pending drain or write ack by incrementing sequence
5423        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5424        mDrainSequence = (mDrainSequence + 2) & ~1;
5425        ALOG_ASSERT(mCallbackThread != 0);
5426        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5427        mCallbackThread->setDraining(mDrainSequence);
5428    }
5429}
5430
5431uint32_t AudioFlinger::OffloadThread::activeSleepTimeUs() const
5432{
5433    uint32_t time;
5434    if (audio_has_proportional_frames(mFormat)) {
5435        time = PlaybackThread::activeSleepTimeUs();
5436    } else {
5437        // sleep time is half the duration of an audio HAL buffer.
5438        // Note: This can be problematic in case of underrun with variable bit rate and
5439        // current rate is much less than initial rate.
5440        time = (uint32_t)max(kDirectMinSleepTimeUs, mBufferDurationUs / 2);
5441    }
5442    return time;
5443}
5444
5445// ----------------------------------------------------------------------------
5446
5447AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5448        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5449    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5450                    systemReady, DUPLICATING),
5451        mWaitTimeMs(UINT_MAX)
5452{
5453    addOutputTrack(mainThread);
5454}
5455
5456AudioFlinger::DuplicatingThread::~DuplicatingThread()
5457{
5458    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5459        mOutputTracks[i]->destroy();
5460    }
5461}
5462
5463void AudioFlinger::DuplicatingThread::threadLoop_mix()
5464{
5465    // mix buffers...
5466    if (outputsReady(outputTracks)) {
5467        mAudioMixer->process();
5468    } else {
5469        if (mMixerBufferValid) {
5470            memset(mMixerBuffer, 0, mMixerBufferSize);
5471        } else {
5472            memset(mSinkBuffer, 0, mSinkBufferSize);
5473        }
5474    }
5475    mSleepTimeUs = 0;
5476    writeFrames = mNormalFrameCount;
5477    mCurrentWriteLength = mSinkBufferSize;
5478    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5479}
5480
5481void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5482{
5483    if (mSleepTimeUs == 0) {
5484        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5485            mSleepTimeUs = mActiveSleepTimeUs;
5486        } else {
5487            mSleepTimeUs = mIdleSleepTimeUs;
5488        }
5489    } else if (mBytesWritten != 0) {
5490        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5491            writeFrames = mNormalFrameCount;
5492            memset(mSinkBuffer, 0, mSinkBufferSize);
5493        } else {
5494            // flush remaining overflow buffers in output tracks
5495            writeFrames = 0;
5496        }
5497        mSleepTimeUs = 0;
5498    }
5499}
5500
5501ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5502{
5503    for (size_t i = 0; i < outputTracks.size(); i++) {
5504        outputTracks[i]->write(mSinkBuffer, writeFrames);
5505    }
5506    mStandby = false;
5507    return (ssize_t)mSinkBufferSize;
5508}
5509
5510void AudioFlinger::DuplicatingThread::threadLoop_standby()
5511{
5512    // DuplicatingThread implements standby by stopping all tracks
5513    for (size_t i = 0; i < outputTracks.size(); i++) {
5514        outputTracks[i]->stop();
5515    }
5516}
5517
5518void AudioFlinger::DuplicatingThread::saveOutputTracks()
5519{
5520    outputTracks = mOutputTracks;
5521}
5522
5523void AudioFlinger::DuplicatingThread::clearOutputTracks()
5524{
5525    outputTracks.clear();
5526}
5527
5528void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5529{
5530    Mutex::Autolock _l(mLock);
5531    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5532    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5533    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5534    const size_t frameCount =
5535            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5536    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5537    // from different OutputTracks and their associated MixerThreads (e.g. one may
5538    // nearly empty and the other may be dropping data).
5539
5540    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5541                                            this,
5542                                            mSampleRate,
5543                                            mFormat,
5544                                            mChannelMask,
5545                                            frameCount,
5546                                            IPCThreadState::self()->getCallingUid());
5547    if (outputTrack->cblk() != NULL) {
5548        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5549        mOutputTracks.add(outputTrack);
5550        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5551        updateWaitTime_l();
5552    }
5553}
5554
5555void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5556{
5557    Mutex::Autolock _l(mLock);
5558    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5559        if (mOutputTracks[i]->thread() == thread) {
5560            mOutputTracks[i]->destroy();
5561            mOutputTracks.removeAt(i);
5562            updateWaitTime_l();
5563            if (thread->getOutput() == mOutput) {
5564                mOutput = NULL;
5565            }
5566            return;
5567        }
5568    }
5569    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5570}
5571
5572// caller must hold mLock
5573void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5574{
5575    mWaitTimeMs = UINT_MAX;
5576    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5577        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5578        if (strong != 0) {
5579            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5580            if (waitTimeMs < mWaitTimeMs) {
5581                mWaitTimeMs = waitTimeMs;
5582            }
5583        }
5584    }
5585}
5586
5587
5588bool AudioFlinger::DuplicatingThread::outputsReady(
5589        const SortedVector< sp<OutputTrack> > &outputTracks)
5590{
5591    for (size_t i = 0; i < outputTracks.size(); i++) {
5592        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5593        if (thread == 0) {
5594            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5595                    outputTracks[i].get());
5596            return false;
5597        }
5598        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5599        // see note at standby() declaration
5600        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5601            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5602                    thread.get());
5603            return false;
5604        }
5605    }
5606    return true;
5607}
5608
5609uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5610{
5611    return (mWaitTimeMs * 1000) / 2;
5612}
5613
5614void AudioFlinger::DuplicatingThread::cacheParameters_l()
5615{
5616    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5617    updateWaitTime_l();
5618
5619    MixerThread::cacheParameters_l();
5620}
5621
5622// ----------------------------------------------------------------------------
5623//      Record
5624// ----------------------------------------------------------------------------
5625
5626AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5627                                         AudioStreamIn *input,
5628                                         audio_io_handle_t id,
5629                                         audio_devices_t outDevice,
5630                                         audio_devices_t inDevice,
5631                                         bool systemReady
5632#ifdef TEE_SINK
5633                                         , const sp<NBAIO_Sink>& teeSink
5634#endif
5635                                         ) :
5636    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5637    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5638    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5639    mRsmpInRear(0)
5640#ifdef TEE_SINK
5641    , mTeeSink(teeSink)
5642#endif
5643    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5644            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5645    // mFastCapture below
5646    , mFastCaptureFutex(0)
5647    // mInputSource
5648    // mPipeSink
5649    // mPipeSource
5650    , mPipeFramesP2(0)
5651    // mPipeMemory
5652    // mFastCaptureNBLogWriter
5653    , mFastTrackAvail(false)
5654{
5655    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5656    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5657
5658    readInputParameters_l();
5659
5660    // create an NBAIO source for the HAL input stream, and negotiate
5661    mInputSource = new AudioStreamInSource(input->stream);
5662    size_t numCounterOffers = 0;
5663    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5664#if !LOG_NDEBUG
5665    ssize_t index =
5666#else
5667    (void)
5668#endif
5669            mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5670    ALOG_ASSERT(index == 0);
5671
5672    // initialize fast capture depending on configuration
5673    bool initFastCapture;
5674    switch (kUseFastCapture) {
5675    case FastCapture_Never:
5676        initFastCapture = false;
5677        break;
5678    case FastCapture_Always:
5679        initFastCapture = true;
5680        break;
5681    case FastCapture_Static:
5682        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5683        break;
5684    // case FastCapture_Dynamic:
5685    }
5686
5687    if (initFastCapture) {
5688        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5689        NBAIO_Format format = mInputSource->format();
5690        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5691        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5692        void *pipeBuffer;
5693        const sp<MemoryDealer> roHeap(readOnlyHeap());
5694        sp<IMemory> pipeMemory;
5695        if ((roHeap == 0) ||
5696                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5697                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5698            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5699            goto failed;
5700        }
5701        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5702        memset(pipeBuffer, 0, pipeSize);
5703        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5704        const NBAIO_Format offers[1] = {format};
5705        size_t numCounterOffers = 0;
5706        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5707        ALOG_ASSERT(index == 0);
5708        mPipeSink = pipe;
5709        PipeReader *pipeReader = new PipeReader(*pipe);
5710        numCounterOffers = 0;
5711        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5712        ALOG_ASSERT(index == 0);
5713        mPipeSource = pipeReader;
5714        mPipeFramesP2 = pipeFramesP2;
5715        mPipeMemory = pipeMemory;
5716
5717        // create fast capture
5718        mFastCapture = new FastCapture();
5719        FastCaptureStateQueue *sq = mFastCapture->sq();
5720#ifdef STATE_QUEUE_DUMP
5721        // FIXME
5722#endif
5723        FastCaptureState *state = sq->begin();
5724        state->mCblk = NULL;
5725        state->mInputSource = mInputSource.get();
5726        state->mInputSourceGen++;
5727        state->mPipeSink = pipe;
5728        state->mPipeSinkGen++;
5729        state->mFrameCount = mFrameCount;
5730        state->mCommand = FastCaptureState::COLD_IDLE;
5731        // already done in constructor initialization list
5732        //mFastCaptureFutex = 0;
5733        state->mColdFutexAddr = &mFastCaptureFutex;
5734        state->mColdGen++;
5735        state->mDumpState = &mFastCaptureDumpState;
5736#ifdef TEE_SINK
5737        // FIXME
5738#endif
5739        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5740        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5741        sq->end();
5742        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5743
5744        // start the fast capture
5745        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5746        pid_t tid = mFastCapture->getTid();
5747        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
5748#ifdef AUDIO_WATCHDOG
5749        // FIXME
5750#endif
5751
5752        mFastTrackAvail = true;
5753    }
5754failed: ;
5755
5756    // FIXME mNormalSource
5757}
5758
5759AudioFlinger::RecordThread::~RecordThread()
5760{
5761    if (mFastCapture != 0) {
5762        FastCaptureStateQueue *sq = mFastCapture->sq();
5763        FastCaptureState *state = sq->begin();
5764        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5765            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5766            if (old == -1) {
5767                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5768            }
5769        }
5770        state->mCommand = FastCaptureState::EXIT;
5771        sq->end();
5772        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5773        mFastCapture->join();
5774        mFastCapture.clear();
5775    }
5776    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5777    mAudioFlinger->unregisterWriter(mNBLogWriter);
5778    free(mRsmpInBuffer);
5779}
5780
5781void AudioFlinger::RecordThread::onFirstRef()
5782{
5783    run(mThreadName, PRIORITY_URGENT_AUDIO);
5784}
5785
5786bool AudioFlinger::RecordThread::threadLoop()
5787{
5788    nsecs_t lastWarning = 0;
5789
5790    inputStandBy();
5791
5792reacquire_wakelock:
5793    sp<RecordTrack> activeTrack;
5794    int activeTracksGen;
5795    {
5796        Mutex::Autolock _l(mLock);
5797        size_t size = mActiveTracks.size();
5798        activeTracksGen = mActiveTracksGen;
5799        if (size > 0) {
5800            // FIXME an arbitrary choice
5801            activeTrack = mActiveTracks[0];
5802            acquireWakeLock_l(activeTrack->uid());
5803            if (size > 1) {
5804                SortedVector<int> tmp;
5805                for (size_t i = 0; i < size; i++) {
5806                    tmp.add(mActiveTracks[i]->uid());
5807                }
5808                updateWakeLockUids_l(tmp);
5809            }
5810        } else {
5811            acquireWakeLock_l(-1);
5812        }
5813    }
5814
5815    // used to request a deferred sleep, to be executed later while mutex is unlocked
5816    uint32_t sleepUs = 0;
5817
5818    // loop while there is work to do
5819    for (;;) {
5820        Vector< sp<EffectChain> > effectChains;
5821
5822        // sleep with mutex unlocked
5823        if (sleepUs > 0) {
5824            ATRACE_BEGIN("sleep");
5825            usleep(sleepUs);
5826            ATRACE_END();
5827            sleepUs = 0;
5828        }
5829
5830        // activeTracks accumulates a copy of a subset of mActiveTracks
5831        Vector< sp<RecordTrack> > activeTracks;
5832
5833        // reference to the (first and only) active fast track
5834        sp<RecordTrack> fastTrack;
5835
5836        // reference to a fast track which is about to be removed
5837        sp<RecordTrack> fastTrackToRemove;
5838
5839        { // scope for mLock
5840            Mutex::Autolock _l(mLock);
5841
5842            processConfigEvents_l();
5843
5844            // check exitPending here because checkForNewParameters_l() and
5845            // checkForNewParameters_l() can temporarily release mLock
5846            if (exitPending()) {
5847                break;
5848            }
5849
5850            // if no active track(s), then standby and release wakelock
5851            size_t size = mActiveTracks.size();
5852            if (size == 0) {
5853                standbyIfNotAlreadyInStandby();
5854                // exitPending() can't become true here
5855                releaseWakeLock_l();
5856                ALOGV("RecordThread: loop stopping");
5857                // go to sleep
5858                mWaitWorkCV.wait(mLock);
5859                ALOGV("RecordThread: loop starting");
5860                goto reacquire_wakelock;
5861            }
5862
5863            if (mActiveTracksGen != activeTracksGen) {
5864                activeTracksGen = mActiveTracksGen;
5865                SortedVector<int> tmp;
5866                for (size_t i = 0; i < size; i++) {
5867                    tmp.add(mActiveTracks[i]->uid());
5868                }
5869                updateWakeLockUids_l(tmp);
5870            }
5871
5872            bool doBroadcast = false;
5873            for (size_t i = 0; i < size; ) {
5874
5875                activeTrack = mActiveTracks[i];
5876                if (activeTrack->isTerminated()) {
5877                    if (activeTrack->isFastTrack()) {
5878                        ALOG_ASSERT(fastTrackToRemove == 0);
5879                        fastTrackToRemove = activeTrack;
5880                    }
5881                    removeTrack_l(activeTrack);
5882                    mActiveTracks.remove(activeTrack);
5883                    mActiveTracksGen++;
5884                    size--;
5885                    continue;
5886                }
5887
5888                TrackBase::track_state activeTrackState = activeTrack->mState;
5889                switch (activeTrackState) {
5890
5891                case TrackBase::PAUSING:
5892                    mActiveTracks.remove(activeTrack);
5893                    mActiveTracksGen++;
5894                    doBroadcast = true;
5895                    size--;
5896                    continue;
5897
5898                case TrackBase::STARTING_1:
5899                    sleepUs = 10000;
5900                    i++;
5901                    continue;
5902
5903                case TrackBase::STARTING_2:
5904                    doBroadcast = true;
5905                    mStandby = false;
5906                    activeTrack->mState = TrackBase::ACTIVE;
5907                    break;
5908
5909                case TrackBase::ACTIVE:
5910                    break;
5911
5912                case TrackBase::IDLE:
5913                    i++;
5914                    continue;
5915
5916                default:
5917                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5918                }
5919
5920                activeTracks.add(activeTrack);
5921                i++;
5922
5923                if (activeTrack->isFastTrack()) {
5924                    ALOG_ASSERT(!mFastTrackAvail);
5925                    ALOG_ASSERT(fastTrack == 0);
5926                    fastTrack = activeTrack;
5927                }
5928            }
5929            if (doBroadcast) {
5930                mStartStopCond.broadcast();
5931            }
5932
5933            // sleep if there are no active tracks to process
5934            if (activeTracks.size() == 0) {
5935                if (sleepUs == 0) {
5936                    sleepUs = kRecordThreadSleepUs;
5937                }
5938                continue;
5939            }
5940            sleepUs = 0;
5941
5942            lockEffectChains_l(effectChains);
5943        }
5944
5945        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5946
5947        size_t size = effectChains.size();
5948        for (size_t i = 0; i < size; i++) {
5949            // thread mutex is not locked, but effect chain is locked
5950            effectChains[i]->process_l();
5951        }
5952
5953        // Push a new fast capture state if fast capture is not already running, or cblk change
5954        if (mFastCapture != 0) {
5955            FastCaptureStateQueue *sq = mFastCapture->sq();
5956            FastCaptureState *state = sq->begin();
5957            bool didModify = false;
5958            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5959            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5960                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5961                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5962                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5963                    if (old == -1) {
5964                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5965                    }
5966                }
5967                state->mCommand = FastCaptureState::READ_WRITE;
5968#if 0   // FIXME
5969                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5970                        FastThreadDumpState::kSamplingNforLowRamDevice :
5971                        FastThreadDumpState::kSamplingN);
5972#endif
5973                didModify = true;
5974            }
5975            audio_track_cblk_t *cblkOld = state->mCblk;
5976            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5977            if (cblkNew != cblkOld) {
5978                state->mCblk = cblkNew;
5979                // block until acked if removing a fast track
5980                if (cblkOld != NULL) {
5981                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5982                }
5983                didModify = true;
5984            }
5985            sq->end(didModify);
5986            if (didModify) {
5987                sq->push(block);
5988#if 0
5989                if (kUseFastCapture == FastCapture_Dynamic) {
5990                    mNormalSource = mPipeSource;
5991                }
5992#endif
5993            }
5994        }
5995
5996        // now run the fast track destructor with thread mutex unlocked
5997        fastTrackToRemove.clear();
5998
5999        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6000        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6001        // slow, then this RecordThread will overrun by not calling HAL read often enough.
6002        // If destination is non-contiguous, first read past the nominal end of buffer, then
6003        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
6004
6005        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6006        ssize_t framesRead;
6007
6008        // If an NBAIO source is present, use it to read the normal capture's data
6009        if (mPipeSource != 0) {
6010            size_t framesToRead = mBufferSize / mFrameSize;
6011            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6012                    framesToRead);
6013            if (framesRead == 0) {
6014                // since pipe is non-blocking, simulate blocking input
6015                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
6016            }
6017        // otherwise use the HAL / AudioStreamIn directly
6018        } else {
6019            ATRACE_BEGIN("read");
6020            ssize_t bytesRead = mInput->stream->read(mInput->stream,
6021                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6022            ATRACE_END();
6023            if (bytesRead < 0) {
6024                framesRead = bytesRead;
6025            } else {
6026                framesRead = bytesRead / mFrameSize;
6027            }
6028        }
6029
6030        // Update server timestamp with server stats
6031        // systemTime() is optional if the hardware supports timestamps.
6032        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6033        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6034
6035        // Update server timestamp with kernel stats
6036        if (mInput->stream->get_capture_position != nullptr) {
6037            int64_t position, time;
6038            int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6039            if (ret == NO_ERROR) {
6040                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6041                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6042                // Note: In general record buffers should tend to be empty in
6043                // a properly running pipeline.
6044                //
6045                // Also, it is not advantageous to call get_presentation_position during the read
6046                // as the read obtains a lock, preventing the timestamp call from executing.
6047            }
6048        }
6049        // Use this to track timestamp information
6050        // ALOGD("%s", mTimestamp.toString().c_str());
6051
6052        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6053            ALOGE("read failed: framesRead=%zd", framesRead);
6054            // Force input into standby so that it tries to recover at next read attempt
6055            inputStandBy();
6056            sleepUs = kRecordThreadSleepUs;
6057        }
6058        if (framesRead <= 0) {
6059            goto unlock;
6060        }
6061        ALOG_ASSERT(framesRead > 0);
6062
6063        if (mTeeSink != 0) {
6064            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6065        }
6066        // If destination is non-contiguous, we now correct for reading past end of buffer.
6067        {
6068            size_t part1 = mRsmpInFramesP2 - rear;
6069            if ((size_t) framesRead > part1) {
6070                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6071                        (framesRead - part1) * mFrameSize);
6072            }
6073        }
6074        rear = mRsmpInRear += framesRead;
6075
6076        size = activeTracks.size();
6077        // loop over each active track
6078        for (size_t i = 0; i < size; i++) {
6079            activeTrack = activeTracks[i];
6080
6081            // skip fast tracks, as those are handled directly by FastCapture
6082            if (activeTrack->isFastTrack()) {
6083                continue;
6084            }
6085
6086            // TODO: This code probably should be moved to RecordTrack.
6087            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6088
6089            enum {
6090                OVERRUN_UNKNOWN,
6091                OVERRUN_TRUE,
6092                OVERRUN_FALSE
6093            } overrun = OVERRUN_UNKNOWN;
6094
6095            // loop over getNextBuffer to handle circular sink
6096            for (;;) {
6097
6098                activeTrack->mSink.frameCount = ~0;
6099                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6100                size_t framesOut = activeTrack->mSink.frameCount;
6101                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6102
6103                // check available frames and handle overrun conditions
6104                // if the record track isn't draining fast enough.
6105                bool hasOverrun;
6106                size_t framesIn;
6107                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6108                if (hasOverrun) {
6109                    overrun = OVERRUN_TRUE;
6110                }
6111                if (framesOut == 0 || framesIn == 0) {
6112                    break;
6113                }
6114
6115                // Don't allow framesOut to be larger than what is possible with resampling
6116                // from framesIn.
6117                // This isn't strictly necessary but helps limit buffer resizing in
6118                // RecordBufferConverter.  TODO: remove when no longer needed.
6119                framesOut = min(framesOut,
6120                        destinationFramesPossible(
6121                                framesIn, mSampleRate, activeTrack->mSampleRate));
6122                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6123                framesOut = activeTrack->mRecordBufferConverter->convert(
6124                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6125
6126                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6127                    overrun = OVERRUN_FALSE;
6128                }
6129
6130                if (activeTrack->mFramesToDrop == 0) {
6131                    if (framesOut > 0) {
6132                        activeTrack->mSink.frameCount = framesOut;
6133                        activeTrack->releaseBuffer(&activeTrack->mSink);
6134                    }
6135                } else {
6136                    // FIXME could do a partial drop of framesOut
6137                    if (activeTrack->mFramesToDrop > 0) {
6138                        activeTrack->mFramesToDrop -= framesOut;
6139                        if (activeTrack->mFramesToDrop <= 0) {
6140                            activeTrack->clearSyncStartEvent();
6141                        }
6142                    } else {
6143                        activeTrack->mFramesToDrop += framesOut;
6144                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6145                                activeTrack->mSyncStartEvent->isCancelled()) {
6146                            ALOGW("Synced record %s, session %d, trigger session %d",
6147                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6148                                  activeTrack->sessionId(),
6149                                  (activeTrack->mSyncStartEvent != 0) ?
6150                                          activeTrack->mSyncStartEvent->triggerSession() :
6151                                          AUDIO_SESSION_NONE);
6152                            activeTrack->clearSyncStartEvent();
6153                        }
6154                    }
6155                }
6156
6157                if (framesOut == 0) {
6158                    break;
6159                }
6160            }
6161
6162            switch (overrun) {
6163            case OVERRUN_TRUE:
6164                // client isn't retrieving buffers fast enough
6165                if (!activeTrack->setOverflow()) {
6166                    nsecs_t now = systemTime();
6167                    // FIXME should lastWarning per track?
6168                    if ((now - lastWarning) > kWarningThrottleNs) {
6169                        ALOGW("RecordThread: buffer overflow");
6170                        lastWarning = now;
6171                    }
6172                }
6173                break;
6174            case OVERRUN_FALSE:
6175                activeTrack->clearOverflow();
6176                break;
6177            case OVERRUN_UNKNOWN:
6178                break;
6179            }
6180
6181            // update frame information and push timestamp out
6182            activeTrack->updateTrackFrameInfo(
6183                    activeTrack->mServerProxy->framesReleased(),
6184                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6185                    mSampleRate, mTimestamp);
6186        }
6187
6188unlock:
6189        // enable changes in effect chain
6190        unlockEffectChains(effectChains);
6191        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6192    }
6193
6194    standbyIfNotAlreadyInStandby();
6195
6196    {
6197        Mutex::Autolock _l(mLock);
6198        for (size_t i = 0; i < mTracks.size(); i++) {
6199            sp<RecordTrack> track = mTracks[i];
6200            track->invalidate();
6201        }
6202        mActiveTracks.clear();
6203        mActiveTracksGen++;
6204        mStartStopCond.broadcast();
6205    }
6206
6207    releaseWakeLock();
6208
6209    ALOGV("RecordThread %p exiting", this);
6210    return false;
6211}
6212
6213void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6214{
6215    if (!mStandby) {
6216        inputStandBy();
6217        mStandby = true;
6218    }
6219}
6220
6221void AudioFlinger::RecordThread::inputStandBy()
6222{
6223    // Idle the fast capture if it's currently running
6224    if (mFastCapture != 0) {
6225        FastCaptureStateQueue *sq = mFastCapture->sq();
6226        FastCaptureState *state = sq->begin();
6227        if (!(state->mCommand & FastCaptureState::IDLE)) {
6228            state->mCommand = FastCaptureState::COLD_IDLE;
6229            state->mColdFutexAddr = &mFastCaptureFutex;
6230            state->mColdGen++;
6231            mFastCaptureFutex = 0;
6232            sq->end();
6233            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6234            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6235#if 0
6236            if (kUseFastCapture == FastCapture_Dynamic) {
6237                // FIXME
6238            }
6239#endif
6240#ifdef AUDIO_WATCHDOG
6241            // FIXME
6242#endif
6243        } else {
6244            sq->end(false /*didModify*/);
6245        }
6246    }
6247    mInput->stream->common.standby(&mInput->stream->common);
6248}
6249
6250// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6251sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6252        const sp<AudioFlinger::Client>& client,
6253        uint32_t sampleRate,
6254        audio_format_t format,
6255        audio_channel_mask_t channelMask,
6256        size_t *pFrameCount,
6257        audio_session_t sessionId,
6258        size_t *notificationFrames,
6259        int uid,
6260        IAudioFlinger::track_flags_t *flags,
6261        pid_t tid,
6262        status_t *status)
6263{
6264    size_t frameCount = *pFrameCount;
6265    sp<RecordTrack> track;
6266    status_t lStatus;
6267
6268    // client expresses a preference for FAST, but we get the final say
6269    if (*flags & IAudioFlinger::TRACK_FAST) {
6270      if (
6271            // we formerly checked for a callback handler (non-0 tid),
6272            // but that is no longer required for TRANSFER_OBTAIN mode
6273            //
6274            // frame count is not specified, or is exactly the pipe depth
6275            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6276            // PCM data
6277            audio_is_linear_pcm(format) &&
6278            // hardware format
6279            (format == mFormat) &&
6280            // hardware channel mask
6281            (channelMask == mChannelMask) &&
6282            // hardware sample rate
6283            (sampleRate == mSampleRate) &&
6284            // record thread has an associated fast capture
6285            hasFastCapture() &&
6286            // there are sufficient fast track slots available
6287            mFastTrackAvail
6288        ) {
6289        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6290                frameCount, mFrameCount);
6291      } else {
6292        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6293                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6294                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6295                frameCount, mFrameCount, mPipeFramesP2,
6296                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6297                hasFastCapture(), tid, mFastTrackAvail);
6298        *flags &= ~IAudioFlinger::TRACK_FAST;
6299      }
6300    }
6301
6302    // compute track buffer size in frames, and suggest the notification frame count
6303    if (*flags & IAudioFlinger::TRACK_FAST) {
6304        // fast track: frame count is exactly the pipe depth
6305        frameCount = mPipeFramesP2;
6306        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6307        *notificationFrames = mFrameCount;
6308    } else {
6309        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6310        //                 or 20 ms if there is a fast capture
6311        // TODO This could be a roundupRatio inline, and const
6312        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6313                * sampleRate + mSampleRate - 1) / mSampleRate;
6314        // minimum number of notification periods is at least kMinNotifications,
6315        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6316        static const size_t kMinNotifications = 3;
6317        static const uint32_t kMinMs = 30;
6318        // TODO This could be a roundupRatio inline
6319        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6320        // TODO This could be a roundupRatio inline
6321        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6322                maxNotificationFrames;
6323        const size_t minFrameCount = maxNotificationFrames *
6324                max(kMinNotifications, minNotificationsByMs);
6325        frameCount = max(frameCount, minFrameCount);
6326        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6327            *notificationFrames = maxNotificationFrames;
6328        }
6329    }
6330    *pFrameCount = frameCount;
6331
6332    lStatus = initCheck();
6333    if (lStatus != NO_ERROR) {
6334        ALOGE("createRecordTrack_l() audio driver not initialized");
6335        goto Exit;
6336    }
6337
6338    { // scope for mLock
6339        Mutex::Autolock _l(mLock);
6340
6341        track = new RecordTrack(this, client, sampleRate,
6342                      format, channelMask, frameCount, NULL, sessionId, uid,
6343                      *flags, TrackBase::TYPE_DEFAULT);
6344
6345        lStatus = track->initCheck();
6346        if (lStatus != NO_ERROR) {
6347            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6348            // track must be cleared from the caller as the caller has the AF lock
6349            goto Exit;
6350        }
6351        mTracks.add(track);
6352
6353        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6354        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6355                        mAudioFlinger->btNrecIsOff();
6356        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6357        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6358
6359        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6360            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6361            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6362            // so ask activity manager to do this on our behalf
6363            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6364        }
6365    }
6366
6367    lStatus = NO_ERROR;
6368
6369Exit:
6370    *status = lStatus;
6371    return track;
6372}
6373
6374status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6375                                           AudioSystem::sync_event_t event,
6376                                           audio_session_t triggerSession)
6377{
6378    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6379    sp<ThreadBase> strongMe = this;
6380    status_t status = NO_ERROR;
6381
6382    if (event == AudioSystem::SYNC_EVENT_NONE) {
6383        recordTrack->clearSyncStartEvent();
6384    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6385        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6386                                       triggerSession,
6387                                       recordTrack->sessionId(),
6388                                       syncStartEventCallback,
6389                                       recordTrack);
6390        // Sync event can be cancelled by the trigger session if the track is not in a
6391        // compatible state in which case we start record immediately
6392        if (recordTrack->mSyncStartEvent->isCancelled()) {
6393            recordTrack->clearSyncStartEvent();
6394        } else {
6395            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6396            recordTrack->mFramesToDrop = -
6397                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6398        }
6399    }
6400
6401    {
6402        // This section is a rendezvous between binder thread executing start() and RecordThread
6403        AutoMutex lock(mLock);
6404        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6405            if (recordTrack->mState == TrackBase::PAUSING) {
6406                ALOGV("active record track PAUSING -> ACTIVE");
6407                recordTrack->mState = TrackBase::ACTIVE;
6408            } else {
6409                ALOGV("active record track state %d", recordTrack->mState);
6410            }
6411            return status;
6412        }
6413
6414        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6415        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6416        //      or using a separate command thread
6417        recordTrack->mState = TrackBase::STARTING_1;
6418        mActiveTracks.add(recordTrack);
6419        mActiveTracksGen++;
6420        status_t status = NO_ERROR;
6421        if (recordTrack->isExternalTrack()) {
6422            mLock.unlock();
6423            status = AudioSystem::startInput(mId, recordTrack->sessionId());
6424            mLock.lock();
6425            // FIXME should verify that recordTrack is still in mActiveTracks
6426            if (status != NO_ERROR) {
6427                mActiveTracks.remove(recordTrack);
6428                mActiveTracksGen++;
6429                recordTrack->clearSyncStartEvent();
6430                ALOGV("RecordThread::start error %d", status);
6431                return status;
6432            }
6433        }
6434        // Catch up with current buffer indices if thread is already running.
6435        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6436        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6437        // see previously buffered data before it called start(), but with greater risk of overrun.
6438
6439        recordTrack->mResamplerBufferProvider->reset();
6440        // clear any converter state as new data will be discontinuous
6441        recordTrack->mRecordBufferConverter->reset();
6442        recordTrack->mState = TrackBase::STARTING_2;
6443        // signal thread to start
6444        mWaitWorkCV.broadcast();
6445        if (mActiveTracks.indexOf(recordTrack) < 0) {
6446            ALOGV("Record failed to start");
6447            status = BAD_VALUE;
6448            goto startError;
6449        }
6450        return status;
6451    }
6452
6453startError:
6454    if (recordTrack->isExternalTrack()) {
6455        AudioSystem::stopInput(mId, recordTrack->sessionId());
6456    }
6457    recordTrack->clearSyncStartEvent();
6458    // FIXME I wonder why we do not reset the state here?
6459    return status;
6460}
6461
6462void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6463{
6464    sp<SyncEvent> strongEvent = event.promote();
6465
6466    if (strongEvent != 0) {
6467        sp<RefBase> ptr = strongEvent->cookie().promote();
6468        if (ptr != 0) {
6469            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6470            recordTrack->handleSyncStartEvent(strongEvent);
6471        }
6472    }
6473}
6474
6475bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6476    ALOGV("RecordThread::stop");
6477    AutoMutex _l(mLock);
6478    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6479        return false;
6480    }
6481    // note that threadLoop may still be processing the track at this point [without lock]
6482    recordTrack->mState = TrackBase::PAUSING;
6483    // do not wait for mStartStopCond if exiting
6484    if (exitPending()) {
6485        return true;
6486    }
6487    // FIXME incorrect usage of wait: no explicit predicate or loop
6488    mStartStopCond.wait(mLock);
6489    // if we have been restarted, recordTrack is in mActiveTracks here
6490    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6491        ALOGV("Record stopped OK");
6492        return true;
6493    }
6494    return false;
6495}
6496
6497bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6498{
6499    return false;
6500}
6501
6502status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6503{
6504#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6505    if (!isValidSyncEvent(event)) {
6506        return BAD_VALUE;
6507    }
6508
6509    audio_session_t eventSession = event->triggerSession();
6510    status_t ret = NAME_NOT_FOUND;
6511
6512    Mutex::Autolock _l(mLock);
6513
6514    for (size_t i = 0; i < mTracks.size(); i++) {
6515        sp<RecordTrack> track = mTracks[i];
6516        if (eventSession == track->sessionId()) {
6517            (void) track->setSyncEvent(event);
6518            ret = NO_ERROR;
6519        }
6520    }
6521    return ret;
6522#else
6523    return BAD_VALUE;
6524#endif
6525}
6526
6527// destroyTrack_l() must be called with ThreadBase::mLock held
6528void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6529{
6530    track->terminate();
6531    track->mState = TrackBase::STOPPED;
6532    // active tracks are removed by threadLoop()
6533    if (mActiveTracks.indexOf(track) < 0) {
6534        removeTrack_l(track);
6535    }
6536}
6537
6538void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6539{
6540    mTracks.remove(track);
6541    // need anything related to effects here?
6542    if (track->isFastTrack()) {
6543        ALOG_ASSERT(!mFastTrackAvail);
6544        mFastTrackAvail = true;
6545    }
6546}
6547
6548void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6549{
6550    dumpInternals(fd, args);
6551    dumpTracks(fd, args);
6552    dumpEffectChains(fd, args);
6553}
6554
6555void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6556{
6557    dprintf(fd, "\nInput thread %p:\n", this);
6558
6559    dumpBase(fd, args);
6560
6561    if (mActiveTracks.size() == 0) {
6562        dprintf(fd, "  No active record clients\n");
6563    }
6564    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6565    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6566
6567    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6568    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6569    // This is a large object so we place it on the heap.
6570    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6571    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6572    copy->dump(fd);
6573    delete copy;
6574}
6575
6576void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6577{
6578    const size_t SIZE = 256;
6579    char buffer[SIZE];
6580    String8 result;
6581
6582    size_t numtracks = mTracks.size();
6583    size_t numactive = mActiveTracks.size();
6584    size_t numactiveseen = 0;
6585    dprintf(fd, "  %zu Tracks", numtracks);
6586    if (numtracks) {
6587        dprintf(fd, " of which %zu are active\n", numactive);
6588        RecordTrack::appendDumpHeader(result);
6589        for (size_t i = 0; i < numtracks ; ++i) {
6590            sp<RecordTrack> track = mTracks[i];
6591            if (track != 0) {
6592                bool active = mActiveTracks.indexOf(track) >= 0;
6593                if (active) {
6594                    numactiveseen++;
6595                }
6596                track->dump(buffer, SIZE, active);
6597                result.append(buffer);
6598            }
6599        }
6600    } else {
6601        dprintf(fd, "\n");
6602    }
6603
6604    if (numactiveseen != numactive) {
6605        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6606                " not in the track list\n");
6607        result.append(buffer);
6608        RecordTrack::appendDumpHeader(result);
6609        for (size_t i = 0; i < numactive; ++i) {
6610            sp<RecordTrack> track = mActiveTracks[i];
6611            if (mTracks.indexOf(track) < 0) {
6612                track->dump(buffer, SIZE, true);
6613                result.append(buffer);
6614            }
6615        }
6616
6617    }
6618    write(fd, result.string(), result.size());
6619}
6620
6621
6622void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6623{
6624    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6625    RecordThread *recordThread = (RecordThread *) threadBase.get();
6626    mRsmpInFront = recordThread->mRsmpInRear;
6627    mRsmpInUnrel = 0;
6628}
6629
6630void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6631        size_t *framesAvailable, bool *hasOverrun)
6632{
6633    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6634    RecordThread *recordThread = (RecordThread *) threadBase.get();
6635    const int32_t rear = recordThread->mRsmpInRear;
6636    const int32_t front = mRsmpInFront;
6637    const ssize_t filled = rear - front;
6638
6639    size_t framesIn;
6640    bool overrun = false;
6641    if (filled < 0) {
6642        // should not happen, but treat like a massive overrun and re-sync
6643        framesIn = 0;
6644        mRsmpInFront = rear;
6645        overrun = true;
6646    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6647        framesIn = (size_t) filled;
6648    } else {
6649        // client is not keeping up with server, but give it latest data
6650        framesIn = recordThread->mRsmpInFrames;
6651        mRsmpInFront = /* front = */ rear - framesIn;
6652        overrun = true;
6653    }
6654    if (framesAvailable != NULL) {
6655        *framesAvailable = framesIn;
6656    }
6657    if (hasOverrun != NULL) {
6658        *hasOverrun = overrun;
6659    }
6660}
6661
6662// AudioBufferProvider interface
6663status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6664        AudioBufferProvider::Buffer* buffer)
6665{
6666    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6667    if (threadBase == 0) {
6668        buffer->frameCount = 0;
6669        buffer->raw = NULL;
6670        return NOT_ENOUGH_DATA;
6671    }
6672    RecordThread *recordThread = (RecordThread *) threadBase.get();
6673    int32_t rear = recordThread->mRsmpInRear;
6674    int32_t front = mRsmpInFront;
6675    ssize_t filled = rear - front;
6676    // FIXME should not be P2 (don't want to increase latency)
6677    // FIXME if client not keeping up, discard
6678    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6679    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6680    front &= recordThread->mRsmpInFramesP2 - 1;
6681    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6682    if (part1 > (size_t) filled) {
6683        part1 = filled;
6684    }
6685    size_t ask = buffer->frameCount;
6686    ALOG_ASSERT(ask > 0);
6687    if (part1 > ask) {
6688        part1 = ask;
6689    }
6690    if (part1 == 0) {
6691        // out of data is fine since the resampler will return a short-count.
6692        buffer->raw = NULL;
6693        buffer->frameCount = 0;
6694        mRsmpInUnrel = 0;
6695        return NOT_ENOUGH_DATA;
6696    }
6697
6698    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6699    buffer->frameCount = part1;
6700    mRsmpInUnrel = part1;
6701    return NO_ERROR;
6702}
6703
6704// AudioBufferProvider interface
6705void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6706        AudioBufferProvider::Buffer* buffer)
6707{
6708    size_t stepCount = buffer->frameCount;
6709    if (stepCount == 0) {
6710        return;
6711    }
6712    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6713    mRsmpInUnrel -= stepCount;
6714    mRsmpInFront += stepCount;
6715    buffer->raw = NULL;
6716    buffer->frameCount = 0;
6717}
6718
6719AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6720        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6721        uint32_t srcSampleRate,
6722        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6723        uint32_t dstSampleRate) :
6724            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6725            // mSrcFormat
6726            // mSrcSampleRate
6727            // mDstChannelMask
6728            // mDstFormat
6729            // mDstSampleRate
6730            // mSrcChannelCount
6731            // mDstChannelCount
6732            // mDstFrameSize
6733            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6734            mResampler(NULL),
6735            mIsLegacyDownmix(false),
6736            mIsLegacyUpmix(false),
6737            mRequiresFloat(false),
6738            mInputConverterProvider(NULL)
6739{
6740    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6741            dstChannelMask, dstFormat, dstSampleRate);
6742}
6743
6744AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6745    free(mBuf);
6746    delete mResampler;
6747    delete mInputConverterProvider;
6748}
6749
6750size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6751        AudioBufferProvider *provider, size_t frames)
6752{
6753    if (mInputConverterProvider != NULL) {
6754        mInputConverterProvider->setBufferProvider(provider);
6755        provider = mInputConverterProvider;
6756    }
6757
6758    if (mResampler == NULL) {
6759        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6760                mSrcSampleRate, mSrcFormat, mDstFormat);
6761
6762        AudioBufferProvider::Buffer buffer;
6763        for (size_t i = frames; i > 0; ) {
6764            buffer.frameCount = i;
6765            status_t status = provider->getNextBuffer(&buffer);
6766            if (status != OK || buffer.frameCount == 0) {
6767                frames -= i; // cannot fill request.
6768                break;
6769            }
6770            // format convert to destination buffer
6771            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6772
6773            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6774            i -= buffer.frameCount;
6775            provider->releaseBuffer(&buffer);
6776        }
6777    } else {
6778         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6779                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6780
6781         // reallocate buffer if needed
6782         if (mBufFrameSize != 0 && mBufFrames < frames) {
6783             free(mBuf);
6784             mBufFrames = frames;
6785             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6786         }
6787        // resampler accumulates, but we only have one source track
6788        memset(mBuf, 0, frames * mBufFrameSize);
6789        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6790        // format convert to destination buffer
6791        convertResampler(dst, mBuf, frames);
6792    }
6793    return frames;
6794}
6795
6796status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6797        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6798        uint32_t srcSampleRate,
6799        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6800        uint32_t dstSampleRate)
6801{
6802    // quick evaluation if there is any change.
6803    if (mSrcFormat == srcFormat
6804            && mSrcChannelMask == srcChannelMask
6805            && mSrcSampleRate == srcSampleRate
6806            && mDstFormat == dstFormat
6807            && mDstChannelMask == dstChannelMask
6808            && mDstSampleRate == dstSampleRate) {
6809        return NO_ERROR;
6810    }
6811
6812    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6813            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6814            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6815    const bool valid =
6816            audio_is_input_channel(srcChannelMask)
6817            && audio_is_input_channel(dstChannelMask)
6818            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6819            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6820            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6821            ; // no upsampling checks for now
6822    if (!valid) {
6823        return BAD_VALUE;
6824    }
6825
6826    mSrcFormat = srcFormat;
6827    mSrcChannelMask = srcChannelMask;
6828    mSrcSampleRate = srcSampleRate;
6829    mDstFormat = dstFormat;
6830    mDstChannelMask = dstChannelMask;
6831    mDstSampleRate = dstSampleRate;
6832
6833    // compute derived parameters
6834    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6835    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6836    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6837
6838    // do we need to resample?
6839    delete mResampler;
6840    mResampler = NULL;
6841    if (mSrcSampleRate != mDstSampleRate) {
6842        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6843                mSrcChannelCount, mDstSampleRate);
6844        mResampler->setSampleRate(mSrcSampleRate);
6845        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6846    }
6847
6848    // are we running legacy channel conversion modes?
6849    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6850                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6851                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6852    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6853                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6854                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6855
6856    // do we need to process in float?
6857    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6858
6859    // do we need a staging buffer to convert for destination (we can still optimize this)?
6860    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6861    if (mResampler != NULL) {
6862        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6863                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6864    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6865        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6866    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6867        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6868    } else {
6869        mBufFrameSize = 0;
6870    }
6871    mBufFrames = 0; // force the buffer to be resized.
6872
6873    // do we need an input converter buffer provider to give us float?
6874    delete mInputConverterProvider;
6875    mInputConverterProvider = NULL;
6876    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6877        mInputConverterProvider = new ReformatBufferProvider(
6878                audio_channel_count_from_in_mask(mSrcChannelMask),
6879                mSrcFormat,
6880                AUDIO_FORMAT_PCM_FLOAT,
6881                256 /* provider buffer frame count */);
6882    }
6883
6884    // do we need a remixer to do channel mask conversion
6885    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6886        (void) memcpy_by_index_array_initialization_from_channel_mask(
6887                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6888    }
6889    return NO_ERROR;
6890}
6891
6892void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6893        void *dst, const void *src, size_t frames)
6894{
6895    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6896    if (mBufFrameSize != 0 && mBufFrames < frames) {
6897        free(mBuf);
6898        mBufFrames = frames;
6899        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6900    }
6901    // do we need to do legacy upmix and downmix?
6902    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6903        void *dstBuf = mBuf != NULL ? mBuf : dst;
6904        if (mIsLegacyUpmix) {
6905            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6906                    (const float *)src, frames);
6907        } else /*mIsLegacyDownmix */ {
6908            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6909                    (const float *)src, frames);
6910        }
6911        if (mBuf != NULL) {
6912            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6913                    frames * mDstChannelCount);
6914        }
6915        return;
6916    }
6917    // do we need to do channel mask conversion?
6918    if (mSrcChannelMask != mDstChannelMask) {
6919        void *dstBuf = mBuf != NULL ? mBuf : dst;
6920        memcpy_by_index_array(dstBuf, mDstChannelCount,
6921                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6922        if (dstBuf == dst) {
6923            return; // format is the same
6924        }
6925    }
6926    // convert to destination buffer
6927    const void *convertBuf = mBuf != NULL ? mBuf : src;
6928    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6929            frames * mDstChannelCount);
6930}
6931
6932void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6933        void *dst, /*not-a-const*/ void *src, size_t frames)
6934{
6935    // src buffer format is ALWAYS float when entering this routine
6936    if (mIsLegacyUpmix) {
6937        ; // mono to stereo already handled by resampler
6938    } else if (mIsLegacyDownmix
6939            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6940        // the resampler outputs stereo for mono input channel (a feature?)
6941        // must convert to mono
6942        downmix_to_mono_float_from_stereo_float((float *)src,
6943                (const float *)src, frames);
6944    } else if (mSrcChannelMask != mDstChannelMask) {
6945        // convert to mono channel again for channel mask conversion (could be skipped
6946        // with further optimization).
6947        if (mSrcChannelCount == 1) {
6948            downmix_to_mono_float_from_stereo_float((float *)src,
6949                (const float *)src, frames);
6950        }
6951        // convert to destination format (in place, OK as float is larger than other types)
6952        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6953            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6954                    frames * mSrcChannelCount);
6955        }
6956        // channel convert and save to dst
6957        memcpy_by_index_array(dst, mDstChannelCount,
6958                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6959        return;
6960    }
6961    // convert to destination format and save to dst
6962    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6963            frames * mDstChannelCount);
6964}
6965
6966bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6967                                                        status_t& status)
6968{
6969    bool reconfig = false;
6970
6971    status = NO_ERROR;
6972
6973    audio_format_t reqFormat = mFormat;
6974    uint32_t samplingRate = mSampleRate;
6975    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
6976    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6977
6978    AudioParameter param = AudioParameter(keyValuePair);
6979    int value;
6980
6981    // scope for AutoPark extends to end of method
6982    AutoPark<FastCapture> park(mFastCapture);
6983
6984    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6985    //      channel count change can be requested. Do we mandate the first client defines the
6986    //      HAL sampling rate and channel count or do we allow changes on the fly?
6987    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6988        samplingRate = value;
6989        reconfig = true;
6990    }
6991    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6992        if (!audio_is_linear_pcm((audio_format_t) value)) {
6993            status = BAD_VALUE;
6994        } else {
6995            reqFormat = (audio_format_t) value;
6996            reconfig = true;
6997        }
6998    }
6999    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7000        audio_channel_mask_t mask = (audio_channel_mask_t) value;
7001        if (!audio_is_input_channel(mask) ||
7002                audio_channel_count_from_in_mask(mask) > FCC_8) {
7003            status = BAD_VALUE;
7004        } else {
7005            channelMask = mask;
7006            reconfig = true;
7007        }
7008    }
7009    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7010        // do not accept frame count changes if tracks are open as the track buffer
7011        // size depends on frame count and correct behavior would not be guaranteed
7012        // if frame count is changed after track creation
7013        if (mActiveTracks.size() > 0) {
7014            status = INVALID_OPERATION;
7015        } else {
7016            reconfig = true;
7017        }
7018    }
7019    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7020        // forward device change to effects that have requested to be
7021        // aware of attached audio device.
7022        for (size_t i = 0; i < mEffectChains.size(); i++) {
7023            mEffectChains[i]->setDevice_l(value);
7024        }
7025
7026        // store input device and output device but do not forward output device to audio HAL.
7027        // Note that status is ignored by the caller for output device
7028        // (see AudioFlinger::setParameters()
7029        if (audio_is_output_devices(value)) {
7030            mOutDevice = value;
7031            status = BAD_VALUE;
7032        } else {
7033            mInDevice = value;
7034            if (value != AUDIO_DEVICE_NONE) {
7035                mPrevInDevice = value;
7036            }
7037            // disable AEC and NS if the device is a BT SCO headset supporting those
7038            // pre processings
7039            if (mTracks.size() > 0) {
7040                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7041                                    mAudioFlinger->btNrecIsOff();
7042                for (size_t i = 0; i < mTracks.size(); i++) {
7043                    sp<RecordTrack> track = mTracks[i];
7044                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7045                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7046                }
7047            }
7048        }
7049    }
7050    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7051            mAudioSource != (audio_source_t)value) {
7052        // forward device change to effects that have requested to be
7053        // aware of attached audio device.
7054        for (size_t i = 0; i < mEffectChains.size(); i++) {
7055            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7056        }
7057        mAudioSource = (audio_source_t)value;
7058    }
7059
7060    if (status == NO_ERROR) {
7061        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7062                keyValuePair.string());
7063        if (status == INVALID_OPERATION) {
7064            inputStandBy();
7065            status = mInput->stream->common.set_parameters(&mInput->stream->common,
7066                    keyValuePair.string());
7067        }
7068        if (reconfig) {
7069            if (status == BAD_VALUE &&
7070                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7071                audio_is_linear_pcm(reqFormat) &&
7072                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7073                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7074                audio_channel_count_from_in_mask(
7075                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7076                status = NO_ERROR;
7077            }
7078            if (status == NO_ERROR) {
7079                readInputParameters_l();
7080                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7081            }
7082        }
7083    }
7084
7085    return reconfig;
7086}
7087
7088String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7089{
7090    Mutex::Autolock _l(mLock);
7091    if (initCheck() != NO_ERROR) {
7092        return String8();
7093    }
7094
7095    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7096    const String8 out_s8(s);
7097    free(s);
7098    return out_s8;
7099}
7100
7101void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7102    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7103
7104    desc->mIoHandle = mId;
7105
7106    switch (event) {
7107    case AUDIO_INPUT_OPENED:
7108    case AUDIO_INPUT_CONFIG_CHANGED:
7109        desc->mPatch = mPatch;
7110        desc->mChannelMask = mChannelMask;
7111        desc->mSamplingRate = mSampleRate;
7112        desc->mFormat = mFormat;
7113        desc->mFrameCount = mFrameCount;
7114        desc->mLatency = 0;
7115        break;
7116
7117    case AUDIO_INPUT_CLOSED:
7118    default:
7119        break;
7120    }
7121    mAudioFlinger->ioConfigChanged(event, desc, pid);
7122}
7123
7124void AudioFlinger::RecordThread::readInputParameters_l()
7125{
7126    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7127    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7128    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7129    if (mChannelCount > FCC_8) {
7130        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7131    }
7132    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7133    mFormat = mHALFormat;
7134    if (!audio_is_linear_pcm(mFormat)) {
7135        ALOGE("HAL format %#x is not linear pcm", mFormat);
7136    }
7137    mFrameSize = audio_stream_in_frame_size(mInput->stream);
7138    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7139    mFrameCount = mBufferSize / mFrameSize;
7140    // This is the formula for calculating the temporary buffer size.
7141    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7142    // 1 full output buffer, regardless of the alignment of the available input.
7143    // The value is somewhat arbitrary, and could probably be even larger.
7144    // A larger value should allow more old data to be read after a track calls start(),
7145    // without increasing latency.
7146    //
7147    // Note this is independent of the maximum downsampling ratio permitted for capture.
7148    mRsmpInFrames = mFrameCount * 7;
7149    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7150    free(mRsmpInBuffer);
7151    mRsmpInBuffer = NULL;
7152
7153    // TODO optimize audio capture buffer sizes ...
7154    // Here we calculate the size of the sliding buffer used as a source
7155    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7156    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7157    // be better to have it derived from the pipe depth in the long term.
7158    // The current value is higher than necessary.  However it should not add to latency.
7159
7160    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7161    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7162    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7163    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7164
7165    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7166    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7167}
7168
7169uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7170{
7171    Mutex::Autolock _l(mLock);
7172    if (initCheck() != NO_ERROR) {
7173        return 0;
7174    }
7175
7176    return mInput->stream->get_input_frames_lost(mInput->stream);
7177}
7178
7179uint32_t AudioFlinger::RecordThread::hasAudioSession(audio_session_t sessionId) const
7180{
7181    Mutex::Autolock _l(mLock);
7182    uint32_t result = 0;
7183    if (getEffectChain_l(sessionId) != 0) {
7184        result = EFFECT_SESSION;
7185    }
7186
7187    for (size_t i = 0; i < mTracks.size(); ++i) {
7188        if (sessionId == mTracks[i]->sessionId()) {
7189            result |= TRACK_SESSION;
7190            break;
7191        }
7192    }
7193
7194    return result;
7195}
7196
7197KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7198{
7199    KeyedVector<audio_session_t, bool> ids;
7200    Mutex::Autolock _l(mLock);
7201    for (size_t j = 0; j < mTracks.size(); ++j) {
7202        sp<RecordThread::RecordTrack> track = mTracks[j];
7203        audio_session_t sessionId = track->sessionId();
7204        if (ids.indexOfKey(sessionId) < 0) {
7205            ids.add(sessionId, true);
7206        }
7207    }
7208    return ids;
7209}
7210
7211AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7212{
7213    Mutex::Autolock _l(mLock);
7214    AudioStreamIn *input = mInput;
7215    mInput = NULL;
7216    return input;
7217}
7218
7219// this method must always be called either with ThreadBase mLock held or inside the thread loop
7220audio_stream_t* AudioFlinger::RecordThread::stream() const
7221{
7222    if (mInput == NULL) {
7223        return NULL;
7224    }
7225    return &mInput->stream->common;
7226}
7227
7228status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7229{
7230    // only one chain per input thread
7231    if (mEffectChains.size() != 0) {
7232        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7233        return INVALID_OPERATION;
7234    }
7235    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7236    chain->setThread(this);
7237    chain->setInBuffer(NULL);
7238    chain->setOutBuffer(NULL);
7239
7240    checkSuspendOnAddEffectChain_l(chain);
7241
7242    // make sure enabled pre processing effects state is communicated to the HAL as we
7243    // just moved them to a new input stream.
7244    chain->syncHalEffectsState();
7245
7246    mEffectChains.add(chain);
7247
7248    return NO_ERROR;
7249}
7250
7251size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7252{
7253    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7254    ALOGW_IF(mEffectChains.size() != 1,
7255            "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7256            chain.get(), mEffectChains.size(), this);
7257    if (mEffectChains.size() == 1) {
7258        mEffectChains.removeAt(0);
7259    }
7260    return 0;
7261}
7262
7263status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7264                                                          audio_patch_handle_t *handle)
7265{
7266    status_t status = NO_ERROR;
7267
7268    // store new device and send to effects
7269    mInDevice = patch->sources[0].ext.device.type;
7270    mPatch = *patch;
7271    for (size_t i = 0; i < mEffectChains.size(); i++) {
7272        mEffectChains[i]->setDevice_l(mInDevice);
7273    }
7274
7275    // disable AEC and NS if the device is a BT SCO headset supporting those
7276    // pre processings
7277    if (mTracks.size() > 0) {
7278        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7279                            mAudioFlinger->btNrecIsOff();
7280        for (size_t i = 0; i < mTracks.size(); i++) {
7281            sp<RecordTrack> track = mTracks[i];
7282            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7283            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7284        }
7285    }
7286
7287    // store new source and send to effects
7288    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7289        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7290        for (size_t i = 0; i < mEffectChains.size(); i++) {
7291            mEffectChains[i]->setAudioSource_l(mAudioSource);
7292        }
7293    }
7294
7295    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7296        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7297        status = hwDevice->create_audio_patch(hwDevice,
7298                                               patch->num_sources,
7299                                               patch->sources,
7300                                               patch->num_sinks,
7301                                               patch->sinks,
7302                                               handle);
7303    } else {
7304        char *address;
7305        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7306            address = audio_device_address_to_parameter(
7307                                                patch->sources[0].ext.device.type,
7308                                                patch->sources[0].ext.device.address);
7309        } else {
7310            address = (char *)calloc(1, 1);
7311        }
7312        AudioParameter param = AudioParameter(String8(address));
7313        free(address);
7314        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7315                     (int)patch->sources[0].ext.device.type);
7316        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7317                                         (int)patch->sinks[0].ext.mix.usecase.source);
7318        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7319                param.toString().string());
7320        *handle = AUDIO_PATCH_HANDLE_NONE;
7321    }
7322
7323    if (mInDevice != mPrevInDevice) {
7324        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7325        mPrevInDevice = mInDevice;
7326    }
7327
7328    return status;
7329}
7330
7331status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7332{
7333    status_t status = NO_ERROR;
7334
7335    mInDevice = AUDIO_DEVICE_NONE;
7336
7337    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7338        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7339        status = hwDevice->release_audio_patch(hwDevice, handle);
7340    } else {
7341        AudioParameter param;
7342        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7343        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7344                param.toString().string());
7345    }
7346    return status;
7347}
7348
7349void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7350{
7351    Mutex::Autolock _l(mLock);
7352    mTracks.add(record);
7353}
7354
7355void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7356{
7357    Mutex::Autolock _l(mLock);
7358    destroyTrack_l(record);
7359}
7360
7361void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7362{
7363    ThreadBase::getAudioPortConfig(config);
7364    config->role = AUDIO_PORT_ROLE_SINK;
7365    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7366    config->ext.mix.usecase.source = mAudioSource;
7367}
7368
7369} // namespace android
7370