Threads.cpp revision 3eaf66b860f9a0d8af0dd4d5ac6adb5b67d7b73a
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include "AudioFlinger.h"
57#include "AudioMixer.h"
58#include "BufferProviders.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "mediautils/SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74#include "AutoPark.h"
75
76// ----------------------------------------------------------------------------
77
78// Note: the following macro is used for extremely verbose logging message.  In
79// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
80// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
81// are so verbose that we want to suppress them even when we have ALOG_ASSERT
82// turned on.  Do not uncomment the #def below unless you really know what you
83// are doing and want to see all of the extremely verbose messages.
84//#define VERY_VERY_VERBOSE_LOGGING
85#ifdef VERY_VERY_VERBOSE_LOGGING
86#define ALOGVV ALOGV
87#else
88#define ALOGVV(a...) do { } while(0)
89#endif
90
91// TODO: Move these macro/inlines to a header file.
92#define max(a, b) ((a) > (b) ? (a) : (b))
93template <typename T>
94static inline T min(const T& a, const T& b)
95{
96    return a < b ? a : b;
97}
98
99#ifndef ARRAY_SIZE
100#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
101#endif
102
103namespace android {
104
105// retry counts for buffer fill timeout
106// 50 * ~20msecs = 1 second
107static const int8_t kMaxTrackRetries = 50;
108static const int8_t kMaxTrackStartupRetries = 50;
109// allow less retry attempts on direct output thread.
110// direct outputs can be a scarce resource in audio hardware and should
111// be released as quickly as possible.
112static const int8_t kMaxTrackRetriesDirect = 2;
113// retry count before removing active track in case of underrun on offloaded thread:
114// we need to make sure that AudioTrack client has enough time to send large buffers
115//FIXME may be more appropriate if expressed in time units. Need to revise how underrun is handled
116// for offloaded tracks
117static const int8_t kMaxTrackRetriesOffload = 10;
118static const int8_t kMaxTrackStartupRetriesOffload = 100;
119
120
121// don't warn about blocked writes or record buffer overflows more often than this
122static const nsecs_t kWarningThrottleNs = seconds(5);
123
124// RecordThread loop sleep time upon application overrun or audio HAL read error
125static const int kRecordThreadSleepUs = 5000;
126
127// maximum time to wait in sendConfigEvent_l() for a status to be received
128static const nsecs_t kConfigEventTimeoutNs = seconds(2);
129
130// minimum sleep time for the mixer thread loop when tracks are active but in underrun
131static const uint32_t kMinThreadSleepTimeUs = 5000;
132// maximum divider applied to the active sleep time in the mixer thread loop
133static const uint32_t kMaxThreadSleepTimeShift = 2;
134
135// minimum normal sink buffer size, expressed in milliseconds rather than frames
136// FIXME This should be based on experimentally observed scheduling jitter
137static const uint32_t kMinNormalSinkBufferSizeMs = 20;
138// maximum normal sink buffer size
139static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
140
141// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
142// FIXME This should be based on experimentally observed scheduling jitter
143static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
144
145// Offloaded output thread standby delay: allows track transition without going to standby
146static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
147
148// Direct output thread minimum sleep time in idle or active(underrun) state
149static const nsecs_t kDirectMinSleepTimeUs = 10000;
150
151// Offloaded output bit rate in bits per second when unknown.
152// Used for sleep time calculation, so use a high default bitrate to be conservative on sleep time.
153static const uint32_t kOffloadDefaultBitRateBps = 1500000;
154
155
156// Whether to use fast mixer
157static const enum {
158    FastMixer_Never,    // never initialize or use: for debugging only
159    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
160                        // normal mixer multiplier is 1
161    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
162                        // multiplier is calculated based on min & max normal mixer buffer size
163    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
164                        // multiplier is calculated based on min & max normal mixer buffer size
165    // FIXME for FastMixer_Dynamic:
166    //  Supporting this option will require fixing HALs that can't handle large writes.
167    //  For example, one HAL implementation returns an error from a large write,
168    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
169    //  We could either fix the HAL implementations, or provide a wrapper that breaks
170    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
171} kUseFastMixer = FastMixer_Static;
172
173// Whether to use fast capture
174static const enum {
175    FastCapture_Never,  // never initialize or use: for debugging only
176    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
177    FastCapture_Static, // initialize if needed, then use all the time if initialized
178} kUseFastCapture = FastCapture_Static;
179
180// Priorities for requestPriority
181static const int kPriorityAudioApp = 2;
182static const int kPriorityFastMixer = 3;
183static const int kPriorityFastCapture = 3;
184
185// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
186// for the track.  The client then sub-divides this into smaller buffers for its use.
187// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
188// So for now we just assume that client is double-buffered for fast tracks.
189// FIXME It would be better for client to tell AudioFlinger the value of N,
190// so AudioFlinger could allocate the right amount of memory.
191// See the client's minBufCount and mNotificationFramesAct calculations for details.
192
193// This is the default value, if not specified by property.
194static const int kFastTrackMultiplier = 2;
195
196// The minimum and maximum allowed values
197static const int kFastTrackMultiplierMin = 1;
198static const int kFastTrackMultiplierMax = 2;
199
200// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
201static int sFastTrackMultiplier = kFastTrackMultiplier;
202
203// See Thread::readOnlyHeap().
204// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
205// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
206// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
207static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
208
209// ----------------------------------------------------------------------------
210
211static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
212
213static void sFastTrackMultiplierInit()
214{
215    char value[PROPERTY_VALUE_MAX];
216    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
217        char *endptr;
218        unsigned long ul = strtoul(value, &endptr, 0);
219        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
220            sFastTrackMultiplier = (int) ul;
221        }
222    }
223}
224
225// ----------------------------------------------------------------------------
226
227#ifdef ADD_BATTERY_DATA
228// To collect the amplifier usage
229static void addBatteryData(uint32_t params) {
230    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
231    if (service == NULL) {
232        // it already logged
233        return;
234    }
235
236    service->addBatteryData(params);
237}
238#endif
239
240// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
241struct {
242    // call when you acquire a partial wakelock
243    void acquire(const sp<IBinder> &wakeLockToken) {
244        pthread_mutex_lock(&mLock);
245        if (wakeLockToken.get() == nullptr) {
246            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
247        } else {
248            if (mCount == 0) {
249                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
250            }
251            ++mCount;
252        }
253        pthread_mutex_unlock(&mLock);
254    }
255
256    // call when you release a partial wakelock.
257    void release(const sp<IBinder> &wakeLockToken) {
258        if (wakeLockToken.get() == nullptr) {
259            return;
260        }
261        pthread_mutex_lock(&mLock);
262        if (--mCount < 0) {
263            ALOGE("negative wakelock count");
264            mCount = 0;
265        }
266        pthread_mutex_unlock(&mLock);
267    }
268
269    // retrieves the boottime timebase offset from monotonic.
270    int64_t getBoottimeOffset() {
271        pthread_mutex_lock(&mLock);
272        int64_t boottimeOffset = mBoottimeOffset;
273        pthread_mutex_unlock(&mLock);
274        return boottimeOffset;
275    }
276
277    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
278    // and the selected timebase.
279    // Currently only TIMEBASE_BOOTTIME is allowed.
280    //
281    // This only needs to be called upon acquiring the first partial wakelock
282    // after all other partial wakelocks are released.
283    //
284    // We do an empirical measurement of the offset rather than parsing
285    // /proc/timer_list since the latter is not a formal kernel ABI.
286    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
287        int clockbase;
288        switch (timebase) {
289        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
290            clockbase = SYSTEM_TIME_BOOTTIME;
291            break;
292        default:
293            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
294            break;
295        }
296        // try three times to get the clock offset, choose the one
297        // with the minimum gap in measurements.
298        const int tries = 3;
299        nsecs_t bestGap, measured;
300        for (int i = 0; i < tries; ++i) {
301            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
302            const nsecs_t tbase = systemTime(clockbase);
303            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
304            const nsecs_t gap = tmono2 - tmono;
305            if (i == 0 || gap < bestGap) {
306                bestGap = gap;
307                measured = tbase - ((tmono + tmono2) >> 1);
308            }
309        }
310
311        // to avoid micro-adjusting, we don't change the timebase
312        // unless it is significantly different.
313        //
314        // Assumption: It probably takes more than toleranceNs to
315        // suspend and resume the device.
316        static int64_t toleranceNs = 10000; // 10 us
317        if (llabs(*offset - measured) > toleranceNs) {
318            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
319                    (long long)*offset, (long long)measured);
320            *offset = measured;
321        }
322    }
323
324    pthread_mutex_t mLock;
325    int32_t mCount;
326    int64_t mBoottimeOffset;
327} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
328
329// ----------------------------------------------------------------------------
330//      CPU Stats
331// ----------------------------------------------------------------------------
332
333class CpuStats {
334public:
335    CpuStats();
336    void sample(const String8 &title);
337#ifdef DEBUG_CPU_USAGE
338private:
339    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
340    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
341
342    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
343
344    int mCpuNum;                        // thread's current CPU number
345    int mCpukHz;                        // frequency of thread's current CPU in kHz
346#endif
347};
348
349CpuStats::CpuStats()
350#ifdef DEBUG_CPU_USAGE
351    : mCpuNum(-1), mCpukHz(-1)
352#endif
353{
354}
355
356void CpuStats::sample(const String8 &title
357#ifndef DEBUG_CPU_USAGE
358                __unused
359#endif
360        ) {
361#ifdef DEBUG_CPU_USAGE
362    // get current thread's delta CPU time in wall clock ns
363    double wcNs;
364    bool valid = mCpuUsage.sampleAndEnable(wcNs);
365
366    // record sample for wall clock statistics
367    if (valid) {
368        mWcStats.sample(wcNs);
369    }
370
371    // get the current CPU number
372    int cpuNum = sched_getcpu();
373
374    // get the current CPU frequency in kHz
375    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
376
377    // check if either CPU number or frequency changed
378    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
379        mCpuNum = cpuNum;
380        mCpukHz = cpukHz;
381        // ignore sample for purposes of cycles
382        valid = false;
383    }
384
385    // if no change in CPU number or frequency, then record sample for cycle statistics
386    if (valid && mCpukHz > 0) {
387        double cycles = wcNs * cpukHz * 0.000001;
388        mHzStats.sample(cycles);
389    }
390
391    unsigned n = mWcStats.n();
392    // mCpuUsage.elapsed() is expensive, so don't call it every loop
393    if ((n & 127) == 1) {
394        long long elapsed = mCpuUsage.elapsed();
395        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
396            double perLoop = elapsed / (double) n;
397            double perLoop100 = perLoop * 0.01;
398            double perLoop1k = perLoop * 0.001;
399            double mean = mWcStats.mean();
400            double stddev = mWcStats.stddev();
401            double minimum = mWcStats.minimum();
402            double maximum = mWcStats.maximum();
403            double meanCycles = mHzStats.mean();
404            double stddevCycles = mHzStats.stddev();
405            double minCycles = mHzStats.minimum();
406            double maxCycles = mHzStats.maximum();
407            mCpuUsage.resetElapsed();
408            mWcStats.reset();
409            mHzStats.reset();
410            ALOGD("CPU usage for %s over past %.1f secs\n"
411                "  (%u mixer loops at %.1f mean ms per loop):\n"
412                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
413                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
414                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
415                    title.string(),
416                    elapsed * .000000001, n, perLoop * .000001,
417                    mean * .001,
418                    stddev * .001,
419                    minimum * .001,
420                    maximum * .001,
421                    mean / perLoop100,
422                    stddev / perLoop100,
423                    minimum / perLoop100,
424                    maximum / perLoop100,
425                    meanCycles / perLoop1k,
426                    stddevCycles / perLoop1k,
427                    minCycles / perLoop1k,
428                    maxCycles / perLoop1k);
429
430        }
431    }
432#endif
433};
434
435// ----------------------------------------------------------------------------
436//      ThreadBase
437// ----------------------------------------------------------------------------
438
439// static
440const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
441{
442    switch (type) {
443    case MIXER:
444        return "MIXER";
445    case DIRECT:
446        return "DIRECT";
447    case DUPLICATING:
448        return "DUPLICATING";
449    case RECORD:
450        return "RECORD";
451    case OFFLOAD:
452        return "OFFLOAD";
453    default:
454        return "unknown";
455    }
456}
457
458String8 devicesToString(audio_devices_t devices)
459{
460    static const struct mapping {
461        audio_devices_t mDevices;
462        const char *    mString;
463    } mappingsOut[] = {
464        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
465        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
466        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
467        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
468        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
469        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
470        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
471        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
472        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
473        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
474        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
475        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
476        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
477        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
478        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
479        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
480        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
481        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
482        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
483        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
484        {AUDIO_DEVICE_OUT_FM,               "FM"},
485        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
486        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
487        {AUDIO_DEVICE_OUT_IP,               "IP"},
488        {AUDIO_DEVICE_OUT_BUS,              "BUS"},
489        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
490    }, mappingsIn[] = {
491        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
492        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
493        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
494        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
495        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
496        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
497        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
498        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
499        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
500        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
501        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
502        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
503        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
504        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
505        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
506        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
507        {AUDIO_DEVICE_IN_LINE,              "LINE"},
508        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
509        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
510        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
511        {AUDIO_DEVICE_IN_IP,                "IP"},
512        {AUDIO_DEVICE_IN_BUS,               "BUS"},
513        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
514    };
515    String8 result;
516    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
517    const mapping *entry;
518    if (devices & AUDIO_DEVICE_BIT_IN) {
519        devices &= ~AUDIO_DEVICE_BIT_IN;
520        entry = mappingsIn;
521    } else {
522        entry = mappingsOut;
523    }
524    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
525        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
526        if (devices & entry->mDevices) {
527            if (!result.isEmpty()) {
528                result.append("|");
529            }
530            result.append(entry->mString);
531        }
532    }
533    if (devices & ~allDevices) {
534        if (!result.isEmpty()) {
535            result.append("|");
536        }
537        result.appendFormat("0x%X", devices & ~allDevices);
538    }
539    if (result.isEmpty()) {
540        result.append(entry->mString);
541    }
542    return result;
543}
544
545String8 inputFlagsToString(audio_input_flags_t flags)
546{
547    static const struct mapping {
548        audio_input_flags_t     mFlag;
549        const char *            mString;
550    } mappings[] = {
551        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
552        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
553        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
554        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
555        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
556    };
557    String8 result;
558    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
559    const mapping *entry;
560    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
561        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
562        if (flags & entry->mFlag) {
563            if (!result.isEmpty()) {
564                result.append("|");
565            }
566            result.append(entry->mString);
567        }
568    }
569    if (flags & ~allFlags) {
570        if (!result.isEmpty()) {
571            result.append("|");
572        }
573        result.appendFormat("0x%X", flags & ~allFlags);
574    }
575    if (result.isEmpty()) {
576        result.append(entry->mString);
577    }
578    return result;
579}
580
581String8 outputFlagsToString(audio_output_flags_t flags)
582{
583    static const struct mapping {
584        audio_output_flags_t    mFlag;
585        const char *            mString;
586    } mappings[] = {
587        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
588        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
589        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
590        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
591        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
592        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
593        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
594        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
595        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
596        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
597        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
598    };
599    String8 result;
600    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
601    const mapping *entry;
602    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
603        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
604        if (flags & entry->mFlag) {
605            if (!result.isEmpty()) {
606                result.append("|");
607            }
608            result.append(entry->mString);
609        }
610    }
611    if (flags & ~allFlags) {
612        if (!result.isEmpty()) {
613            result.append("|");
614        }
615        result.appendFormat("0x%X", flags & ~allFlags);
616    }
617    if (result.isEmpty()) {
618        result.append(entry->mString);
619    }
620    return result;
621}
622
623const char *sourceToString(audio_source_t source)
624{
625    switch (source) {
626    case AUDIO_SOURCE_DEFAULT:              return "default";
627    case AUDIO_SOURCE_MIC:                  return "mic";
628    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
629    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
630    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
631    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
632    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
633    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
634    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
635    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
636    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
637    case AUDIO_SOURCE_HOTWORD:              return "hotword";
638    default:                                return "unknown";
639    }
640}
641
642AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
643        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
644    :   Thread(false /*canCallJava*/),
645        mType(type),
646        mAudioFlinger(audioFlinger),
647        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
648        // are set by PlaybackThread::readOutputParameters_l() or
649        // RecordThread::readInputParameters_l()
650        //FIXME: mStandby should be true here. Is this some kind of hack?
651        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
652        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
653        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
654        // mName will be set by concrete (non-virtual) subclass
655        mDeathRecipient(new PMDeathRecipient(this)),
656        mSystemReady(systemReady),
657        mNotifiedBatteryStart(false)
658{
659    memset(&mPatch, 0, sizeof(struct audio_patch));
660}
661
662AudioFlinger::ThreadBase::~ThreadBase()
663{
664    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
665    mConfigEvents.clear();
666
667    // do not lock the mutex in destructor
668    releaseWakeLock_l();
669    if (mPowerManager != 0) {
670        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
671        binder->unlinkToDeath(mDeathRecipient);
672    }
673}
674
675status_t AudioFlinger::ThreadBase::readyToRun()
676{
677    status_t status = initCheck();
678    if (status == NO_ERROR) {
679        ALOGI("AudioFlinger's thread %p ready to run", this);
680    } else {
681        ALOGE("No working audio driver found.");
682    }
683    return status;
684}
685
686void AudioFlinger::ThreadBase::exit()
687{
688    ALOGV("ThreadBase::exit");
689    // do any cleanup required for exit to succeed
690    preExit();
691    {
692        // This lock prevents the following race in thread (uniprocessor for illustration):
693        //  if (!exitPending()) {
694        //      // context switch from here to exit()
695        //      // exit() calls requestExit(), what exitPending() observes
696        //      // exit() calls signal(), which is dropped since no waiters
697        //      // context switch back from exit() to here
698        //      mWaitWorkCV.wait(...);
699        //      // now thread is hung
700        //  }
701        AutoMutex lock(mLock);
702        requestExit();
703        mWaitWorkCV.broadcast();
704    }
705    // When Thread::requestExitAndWait is made virtual and this method is renamed to
706    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
707    requestExitAndWait();
708}
709
710status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
711{
712    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
713    Mutex::Autolock _l(mLock);
714
715    return sendSetParameterConfigEvent_l(keyValuePairs);
716}
717
718// sendConfigEvent_l() must be called with ThreadBase::mLock held
719// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
720status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
721{
722    status_t status = NO_ERROR;
723
724    if (event->mRequiresSystemReady && !mSystemReady) {
725        event->mWaitStatus = false;
726        mPendingConfigEvents.add(event);
727        return status;
728    }
729    mConfigEvents.add(event);
730    ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
731    mWaitWorkCV.signal();
732    mLock.unlock();
733    {
734        Mutex::Autolock _l(event->mLock);
735        while (event->mWaitStatus) {
736            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
737                event->mStatus = TIMED_OUT;
738                event->mWaitStatus = false;
739            }
740        }
741        status = event->mStatus;
742    }
743    mLock.lock();
744    return status;
745}
746
747void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
748{
749    Mutex::Autolock _l(mLock);
750    sendIoConfigEvent_l(event, pid);
751}
752
753// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
754void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
755{
756    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
757    sendConfigEvent_l(configEvent);
758}
759
760void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
761{
762    Mutex::Autolock _l(mLock);
763    sendPrioConfigEvent_l(pid, tid, prio);
764}
765
766// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
767void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
768{
769    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
770    sendConfigEvent_l(configEvent);
771}
772
773// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
774status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
775{
776    sp<ConfigEvent> configEvent;
777    AudioParameter param(keyValuePair);
778    int value;
779    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
780        setMasterMono_l(value != 0);
781        if (param.size() == 1) {
782            return NO_ERROR; // should be a solo parameter - we don't pass down
783        }
784        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
785        configEvent = new SetParameterConfigEvent(param.toString());
786    } else {
787        configEvent = new SetParameterConfigEvent(keyValuePair);
788    }
789    return sendConfigEvent_l(configEvent);
790}
791
792status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
793                                                        const struct audio_patch *patch,
794                                                        audio_patch_handle_t *handle)
795{
796    Mutex::Autolock _l(mLock);
797    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
798    status_t status = sendConfigEvent_l(configEvent);
799    if (status == NO_ERROR) {
800        CreateAudioPatchConfigEventData *data =
801                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
802        *handle = data->mHandle;
803    }
804    return status;
805}
806
807status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
808                                                                const audio_patch_handle_t handle)
809{
810    Mutex::Autolock _l(mLock);
811    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
812    return sendConfigEvent_l(configEvent);
813}
814
815
816// post condition: mConfigEvents.isEmpty()
817void AudioFlinger::ThreadBase::processConfigEvents_l()
818{
819    bool configChanged = false;
820
821    while (!mConfigEvents.isEmpty()) {
822        ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
823        sp<ConfigEvent> event = mConfigEvents[0];
824        mConfigEvents.removeAt(0);
825        switch (event->mType) {
826        case CFG_EVENT_PRIO: {
827            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
828            // FIXME Need to understand why this has to be done asynchronously
829            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
830                    true /*asynchronous*/);
831            if (err != 0) {
832                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
833                      data->mPrio, data->mPid, data->mTid, err);
834            }
835        } break;
836        case CFG_EVENT_IO: {
837            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
838            ioConfigChanged(data->mEvent, data->mPid);
839        } break;
840        case CFG_EVENT_SET_PARAMETER: {
841            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
842            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
843                configChanged = true;
844            }
845        } break;
846        case CFG_EVENT_CREATE_AUDIO_PATCH: {
847            CreateAudioPatchConfigEventData *data =
848                                            (CreateAudioPatchConfigEventData *)event->mData.get();
849            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
850        } break;
851        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
852            ReleaseAudioPatchConfigEventData *data =
853                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
854            event->mStatus = releaseAudioPatch_l(data->mHandle);
855        } break;
856        default:
857            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
858            break;
859        }
860        {
861            Mutex::Autolock _l(event->mLock);
862            if (event->mWaitStatus) {
863                event->mWaitStatus = false;
864                event->mCond.signal();
865            }
866        }
867        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
868    }
869
870    if (configChanged) {
871        cacheParameters_l();
872    }
873}
874
875String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
876    String8 s;
877    const audio_channel_representation_t representation =
878            audio_channel_mask_get_representation(mask);
879
880    switch (representation) {
881    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
882        if (output) {
883            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
884            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
885            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
886            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
887            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
888            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
889            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
890            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
891            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
892            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
893            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
894            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
895            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
896            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
897            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
898            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
899            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
900            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
901            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
902        } else {
903            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
904            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
905            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
906            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
907            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
908            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
909            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
910            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
911            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
912            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
913            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
914            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
915            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
916            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
917            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
918        }
919        const int len = s.length();
920        if (len > 2) {
921            (void) s.lockBuffer(len);      // needed?
922            s.unlockBuffer(len - 2);       // remove trailing ", "
923        }
924        return s;
925    }
926    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
927        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
928        return s;
929    default:
930        s.appendFormat("unknown mask, representation:%d  bits:%#x",
931                representation, audio_channel_mask_get_bits(mask));
932        return s;
933    }
934}
935
936void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
937{
938    const size_t SIZE = 256;
939    char buffer[SIZE];
940    String8 result;
941
942    bool locked = AudioFlinger::dumpTryLock(mLock);
943    if (!locked) {
944        dprintf(fd, "thread %p may be deadlocked\n", this);
945    }
946
947    dprintf(fd, "  Thread name: %s\n", mThreadName);
948    dprintf(fd, "  I/O handle: %d\n", mId);
949    dprintf(fd, "  TID: %d\n", getTid());
950    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
951    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
952    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
953    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
954    dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
955    dprintf(fd, "  Channel count: %u\n", mChannelCount);
956    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
957            channelMaskToString(mChannelMask, mType != RECORD).string());
958    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
959    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
960    dprintf(fd, "  Pending config events:");
961    size_t numConfig = mConfigEvents.size();
962    if (numConfig) {
963        for (size_t i = 0; i < numConfig; i++) {
964            mConfigEvents[i]->dump(buffer, SIZE);
965            dprintf(fd, "\n    %s", buffer);
966        }
967        dprintf(fd, "\n");
968    } else {
969        dprintf(fd, " none\n");
970    }
971    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
972    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
973    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
974
975    if (locked) {
976        mLock.unlock();
977    }
978}
979
980void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
981{
982    const size_t SIZE = 256;
983    char buffer[SIZE];
984    String8 result;
985
986    size_t numEffectChains = mEffectChains.size();
987    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
988    write(fd, buffer, strlen(buffer));
989
990    for (size_t i = 0; i < numEffectChains; ++i) {
991        sp<EffectChain> chain = mEffectChains[i];
992        if (chain != 0) {
993            chain->dump(fd, args);
994        }
995    }
996}
997
998void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
999{
1000    Mutex::Autolock _l(mLock);
1001    acquireWakeLock_l(uid);
1002}
1003
1004String16 AudioFlinger::ThreadBase::getWakeLockTag()
1005{
1006    switch (mType) {
1007    case MIXER:
1008        return String16("AudioMix");
1009    case DIRECT:
1010        return String16("AudioDirectOut");
1011    case DUPLICATING:
1012        return String16("AudioDup");
1013    case RECORD:
1014        return String16("AudioIn");
1015    case OFFLOAD:
1016        return String16("AudioOffload");
1017    default:
1018        ALOG_ASSERT(false);
1019        return String16("AudioUnknown");
1020    }
1021}
1022
1023void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1024{
1025    getPowerManager_l();
1026    if (mPowerManager != 0) {
1027        sp<IBinder> binder = new BBinder();
1028        status_t status;
1029        if (uid >= 0) {
1030            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1031                    binder,
1032                    getWakeLockTag(),
1033                    String16("audioserver"),
1034                    uid,
1035                    true /* FIXME force oneway contrary to .aidl */);
1036        } else {
1037            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1038                    binder,
1039                    getWakeLockTag(),
1040                    String16("audioserver"),
1041                    true /* FIXME force oneway contrary to .aidl */);
1042        }
1043        if (status == NO_ERROR) {
1044            mWakeLockToken = binder;
1045        }
1046        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1047    }
1048
1049    if (!mNotifiedBatteryStart) {
1050        BatteryNotifier::getInstance().noteStartAudio();
1051        mNotifiedBatteryStart = true;
1052    }
1053    gBoottime.acquire(mWakeLockToken);
1054    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1055            gBoottime.getBoottimeOffset();
1056}
1057
1058void AudioFlinger::ThreadBase::releaseWakeLock()
1059{
1060    Mutex::Autolock _l(mLock);
1061    releaseWakeLock_l();
1062}
1063
1064void AudioFlinger::ThreadBase::releaseWakeLock_l()
1065{
1066    gBoottime.release(mWakeLockToken);
1067    if (mWakeLockToken != 0) {
1068        ALOGV("releaseWakeLock_l() %s", mThreadName);
1069        if (mPowerManager != 0) {
1070            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1071                    true /* FIXME force oneway contrary to .aidl */);
1072        }
1073        mWakeLockToken.clear();
1074    }
1075
1076    if (mNotifiedBatteryStart) {
1077        BatteryNotifier::getInstance().noteStopAudio();
1078        mNotifiedBatteryStart = false;
1079    }
1080}
1081
1082void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1083    Mutex::Autolock _l(mLock);
1084    updateWakeLockUids_l(uids);
1085}
1086
1087void AudioFlinger::ThreadBase::getPowerManager_l() {
1088    if (mSystemReady && mPowerManager == 0) {
1089        // use checkService() to avoid blocking if power service is not up yet
1090        sp<IBinder> binder =
1091            defaultServiceManager()->checkService(String16("power"));
1092        if (binder == 0) {
1093            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1094        } else {
1095            mPowerManager = interface_cast<IPowerManager>(binder);
1096            binder->linkToDeath(mDeathRecipient);
1097        }
1098    }
1099}
1100
1101void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1102    getPowerManager_l();
1103    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1104        if (mSystemReady) {
1105            ALOGE("no wake lock to update, but system ready!");
1106        } else {
1107            ALOGW("no wake lock to update, system not ready yet");
1108        }
1109        return;
1110    }
1111    if (mPowerManager != 0) {
1112        sp<IBinder> binder = new BBinder();
1113        status_t status;
1114        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1115                    true /* FIXME force oneway contrary to .aidl */);
1116        ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1117    }
1118}
1119
1120void AudioFlinger::ThreadBase::clearPowerManager()
1121{
1122    Mutex::Autolock _l(mLock);
1123    releaseWakeLock_l();
1124    mPowerManager.clear();
1125}
1126
1127void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1128{
1129    sp<ThreadBase> thread = mThread.promote();
1130    if (thread != 0) {
1131        thread->clearPowerManager();
1132    }
1133    ALOGW("power manager service died !!!");
1134}
1135
1136void AudioFlinger::ThreadBase::setEffectSuspended(
1137        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1138{
1139    Mutex::Autolock _l(mLock);
1140    setEffectSuspended_l(type, suspend, sessionId);
1141}
1142
1143void AudioFlinger::ThreadBase::setEffectSuspended_l(
1144        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1145{
1146    sp<EffectChain> chain = getEffectChain_l(sessionId);
1147    if (chain != 0) {
1148        if (type != NULL) {
1149            chain->setEffectSuspended_l(type, suspend);
1150        } else {
1151            chain->setEffectSuspendedAll_l(suspend);
1152        }
1153    }
1154
1155    updateSuspendedSessions_l(type, suspend, sessionId);
1156}
1157
1158void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1159{
1160    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1161    if (index < 0) {
1162        return;
1163    }
1164
1165    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1166            mSuspendedSessions.valueAt(index);
1167
1168    for (size_t i = 0; i < sessionEffects.size(); i++) {
1169        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1170        for (int j = 0; j < desc->mRefCount; j++) {
1171            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1172                chain->setEffectSuspendedAll_l(true);
1173            } else {
1174                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1175                    desc->mType.timeLow);
1176                chain->setEffectSuspended_l(&desc->mType, true);
1177            }
1178        }
1179    }
1180}
1181
1182void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1183                                                         bool suspend,
1184                                                         audio_session_t sessionId)
1185{
1186    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1187
1188    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1189
1190    if (suspend) {
1191        if (index >= 0) {
1192            sessionEffects = mSuspendedSessions.valueAt(index);
1193        } else {
1194            mSuspendedSessions.add(sessionId, sessionEffects);
1195        }
1196    } else {
1197        if (index < 0) {
1198            return;
1199        }
1200        sessionEffects = mSuspendedSessions.valueAt(index);
1201    }
1202
1203
1204    int key = EffectChain::kKeyForSuspendAll;
1205    if (type != NULL) {
1206        key = type->timeLow;
1207    }
1208    index = sessionEffects.indexOfKey(key);
1209
1210    sp<SuspendedSessionDesc> desc;
1211    if (suspend) {
1212        if (index >= 0) {
1213            desc = sessionEffects.valueAt(index);
1214        } else {
1215            desc = new SuspendedSessionDesc();
1216            if (type != NULL) {
1217                desc->mType = *type;
1218            }
1219            sessionEffects.add(key, desc);
1220            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1221        }
1222        desc->mRefCount++;
1223    } else {
1224        if (index < 0) {
1225            return;
1226        }
1227        desc = sessionEffects.valueAt(index);
1228        if (--desc->mRefCount == 0) {
1229            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1230            sessionEffects.removeItemsAt(index);
1231            if (sessionEffects.isEmpty()) {
1232                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1233                                 sessionId);
1234                mSuspendedSessions.removeItem(sessionId);
1235            }
1236        }
1237    }
1238    if (!sessionEffects.isEmpty()) {
1239        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1240    }
1241}
1242
1243void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1244                                                            bool enabled,
1245                                                            audio_session_t sessionId)
1246{
1247    Mutex::Autolock _l(mLock);
1248    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1249}
1250
1251void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1252                                                            bool enabled,
1253                                                            audio_session_t sessionId)
1254{
1255    if (mType != RECORD) {
1256        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1257        // another session. This gives the priority to well behaved effect control panels
1258        // and applications not using global effects.
1259        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1260        // global effects
1261        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1262            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1263        }
1264    }
1265
1266    sp<EffectChain> chain = getEffectChain_l(sessionId);
1267    if (chain != 0) {
1268        chain->checkSuspendOnEffectEnabled(effect, enabled);
1269    }
1270}
1271
1272// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1273sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1274        const sp<AudioFlinger::Client>& client,
1275        const sp<IEffectClient>& effectClient,
1276        int32_t priority,
1277        audio_session_t sessionId,
1278        effect_descriptor_t *desc,
1279        int *enabled,
1280        status_t *status)
1281{
1282    sp<EffectModule> effect;
1283    sp<EffectHandle> handle;
1284    status_t lStatus;
1285    sp<EffectChain> chain;
1286    bool chainCreated = false;
1287    bool effectCreated = false;
1288    bool effectRegistered = false;
1289
1290    lStatus = initCheck();
1291    if (lStatus != NO_ERROR) {
1292        ALOGW("createEffect_l() Audio driver not initialized.");
1293        goto Exit;
1294    }
1295
1296    // Reject any effect on Direct output threads for now, since the format of
1297    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1298    if (mType == DIRECT) {
1299        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1300                desc->name, mThreadName);
1301        lStatus = BAD_VALUE;
1302        goto Exit;
1303    }
1304
1305    // Reject any effect on mixer or duplicating multichannel sinks.
1306    // TODO: fix both format and multichannel issues with effects.
1307    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1308        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1309                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1310        lStatus = BAD_VALUE;
1311        goto Exit;
1312    }
1313
1314    // Allow global effects only on offloaded and mixer threads
1315    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1316        switch (mType) {
1317        case MIXER:
1318        case OFFLOAD:
1319            break;
1320        case DIRECT:
1321        case DUPLICATING:
1322        case RECORD:
1323        default:
1324            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1325                    desc->name, mThreadName);
1326            lStatus = BAD_VALUE;
1327            goto Exit;
1328        }
1329    }
1330
1331    // Only Pre processor effects are allowed on input threads and only on input threads
1332    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1333        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1334                desc->name, desc->flags, mType);
1335        lStatus = BAD_VALUE;
1336        goto Exit;
1337    }
1338
1339    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1340
1341    { // scope for mLock
1342        Mutex::Autolock _l(mLock);
1343
1344        // check for existing effect chain with the requested audio session
1345        chain = getEffectChain_l(sessionId);
1346        if (chain == 0) {
1347            // create a new chain for this session
1348            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1349            chain = new EffectChain(this, sessionId);
1350            addEffectChain_l(chain);
1351            chain->setStrategy(getStrategyForSession_l(sessionId));
1352            chainCreated = true;
1353        } else {
1354            effect = chain->getEffectFromDesc_l(desc);
1355        }
1356
1357        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1358
1359        if (effect == 0) {
1360            audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1361            // Check CPU and memory usage
1362            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1363            if (lStatus != NO_ERROR) {
1364                goto Exit;
1365            }
1366            effectRegistered = true;
1367            // create a new effect module if none present in the chain
1368            effect = new EffectModule(this, chain, desc, id, sessionId);
1369            lStatus = effect->status();
1370            if (lStatus != NO_ERROR) {
1371                goto Exit;
1372            }
1373            effect->setOffloaded(mType == OFFLOAD, mId);
1374
1375            lStatus = chain->addEffect_l(effect);
1376            if (lStatus != NO_ERROR) {
1377                goto Exit;
1378            }
1379            effectCreated = true;
1380
1381            effect->setDevice(mOutDevice);
1382            effect->setDevice(mInDevice);
1383            effect->setMode(mAudioFlinger->getMode());
1384            effect->setAudioSource(mAudioSource);
1385        }
1386        // create effect handle and connect it to effect module
1387        handle = new EffectHandle(effect, client, effectClient, priority);
1388        lStatus = handle->initCheck();
1389        if (lStatus == OK) {
1390            lStatus = effect->addHandle(handle.get());
1391        }
1392        if (enabled != NULL) {
1393            *enabled = (int)effect->isEnabled();
1394        }
1395    }
1396
1397Exit:
1398    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1399        Mutex::Autolock _l(mLock);
1400        if (effectCreated) {
1401            chain->removeEffect_l(effect);
1402        }
1403        if (effectRegistered) {
1404            AudioSystem::unregisterEffect(effect->id());
1405        }
1406        if (chainCreated) {
1407            removeEffectChain_l(chain);
1408        }
1409        handle.clear();
1410    }
1411
1412    *status = lStatus;
1413    return handle;
1414}
1415
1416sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1417        int effectId)
1418{
1419    Mutex::Autolock _l(mLock);
1420    return getEffect_l(sessionId, effectId);
1421}
1422
1423sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1424        int effectId)
1425{
1426    sp<EffectChain> chain = getEffectChain_l(sessionId);
1427    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1428}
1429
1430// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1431// PlaybackThread::mLock held
1432status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1433{
1434    // check for existing effect chain with the requested audio session
1435    audio_session_t sessionId = effect->sessionId();
1436    sp<EffectChain> chain = getEffectChain_l(sessionId);
1437    bool chainCreated = false;
1438
1439    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1440             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1441                    this, effect->desc().name, effect->desc().flags);
1442
1443    if (chain == 0) {
1444        // create a new chain for this session
1445        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1446        chain = new EffectChain(this, sessionId);
1447        addEffectChain_l(chain);
1448        chain->setStrategy(getStrategyForSession_l(sessionId));
1449        chainCreated = true;
1450    }
1451    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1452
1453    if (chain->getEffectFromId_l(effect->id()) != 0) {
1454        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1455                this, effect->desc().name, chain.get());
1456        return BAD_VALUE;
1457    }
1458
1459    effect->setOffloaded(mType == OFFLOAD, mId);
1460
1461    status_t status = chain->addEffect_l(effect);
1462    if (status != NO_ERROR) {
1463        if (chainCreated) {
1464            removeEffectChain_l(chain);
1465        }
1466        return status;
1467    }
1468
1469    effect->setDevice(mOutDevice);
1470    effect->setDevice(mInDevice);
1471    effect->setMode(mAudioFlinger->getMode());
1472    effect->setAudioSource(mAudioSource);
1473    return NO_ERROR;
1474}
1475
1476void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1477
1478    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1479    effect_descriptor_t desc = effect->desc();
1480    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1481        detachAuxEffect_l(effect->id());
1482    }
1483
1484    sp<EffectChain> chain = effect->chain().promote();
1485    if (chain != 0) {
1486        // remove effect chain if removing last effect
1487        if (chain->removeEffect_l(effect) == 0) {
1488            removeEffectChain_l(chain);
1489        }
1490    } else {
1491        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1492    }
1493}
1494
1495void AudioFlinger::ThreadBase::lockEffectChains_l(
1496        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1497{
1498    effectChains = mEffectChains;
1499    for (size_t i = 0; i < mEffectChains.size(); i++) {
1500        mEffectChains[i]->lock();
1501    }
1502}
1503
1504void AudioFlinger::ThreadBase::unlockEffectChains(
1505        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1506{
1507    for (size_t i = 0; i < effectChains.size(); i++) {
1508        effectChains[i]->unlock();
1509    }
1510}
1511
1512sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1513{
1514    Mutex::Autolock _l(mLock);
1515    return getEffectChain_l(sessionId);
1516}
1517
1518sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1519        const
1520{
1521    size_t size = mEffectChains.size();
1522    for (size_t i = 0; i < size; i++) {
1523        if (mEffectChains[i]->sessionId() == sessionId) {
1524            return mEffectChains[i];
1525        }
1526    }
1527    return 0;
1528}
1529
1530void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1531{
1532    Mutex::Autolock _l(mLock);
1533    size_t size = mEffectChains.size();
1534    for (size_t i = 0; i < size; i++) {
1535        mEffectChains[i]->setMode_l(mode);
1536    }
1537}
1538
1539void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1540{
1541    config->type = AUDIO_PORT_TYPE_MIX;
1542    config->ext.mix.handle = mId;
1543    config->sample_rate = mSampleRate;
1544    config->format = mFormat;
1545    config->channel_mask = mChannelMask;
1546    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1547                            AUDIO_PORT_CONFIG_FORMAT;
1548}
1549
1550void AudioFlinger::ThreadBase::systemReady()
1551{
1552    Mutex::Autolock _l(mLock);
1553    if (mSystemReady) {
1554        return;
1555    }
1556    mSystemReady = true;
1557
1558    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1559        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1560    }
1561    mPendingConfigEvents.clear();
1562}
1563
1564
1565// ----------------------------------------------------------------------------
1566//      Playback
1567// ----------------------------------------------------------------------------
1568
1569AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1570                                             AudioStreamOut* output,
1571                                             audio_io_handle_t id,
1572                                             audio_devices_t device,
1573                                             type_t type,
1574                                             bool systemReady,
1575                                             uint32_t bitRate)
1576    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1577        mNormalFrameCount(0), mSinkBuffer(NULL),
1578        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1579        mMixerBuffer(NULL),
1580        mMixerBufferSize(0),
1581        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1582        mMixerBufferValid(false),
1583        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1584        mEffectBuffer(NULL),
1585        mEffectBufferSize(0),
1586        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1587        mEffectBufferValid(false),
1588        mSuspended(0), mBytesWritten(0),
1589        mFramesWritten(0),
1590        mActiveTracksGeneration(0),
1591        // mStreamTypes[] initialized in constructor body
1592        mOutput(output),
1593        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1594        mMixerStatus(MIXER_IDLE),
1595        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1596        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1597        mBytesRemaining(0),
1598        mCurrentWriteLength(0),
1599        mUseAsyncWrite(false),
1600        mWriteAckSequence(0),
1601        mDrainSequence(0),
1602        mSignalPending(false),
1603        mScreenState(AudioFlinger::mScreenState),
1604        // index 0 is reserved for normal mixer's submix
1605        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1606        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1607{
1608    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1609    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1610
1611    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1612    // it would be safer to explicitly pass initial masterVolume/masterMute as
1613    // parameter.
1614    //
1615    // If the HAL we are using has support for master volume or master mute,
1616    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1617    // and the mute set to false).
1618    mMasterVolume = audioFlinger->masterVolume_l();
1619    mMasterMute = audioFlinger->masterMute_l();
1620    if (mOutput && mOutput->audioHwDev) {
1621        if (mOutput->audioHwDev->canSetMasterVolume()) {
1622            mMasterVolume = 1.0;
1623        }
1624
1625        if (mOutput->audioHwDev->canSetMasterMute()) {
1626            mMasterMute = false;
1627        }
1628    }
1629
1630    readOutputParameters_l();
1631
1632    // ++ operator does not compile
1633    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1634            stream = (audio_stream_type_t) (stream + 1)) {
1635        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1636        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1637    }
1638
1639    if (audio_has_proportional_frames(mFormat)) {
1640        mBufferDurationUs = (uint32_t)((mNormalFrameCount * 1000000LL) / mSampleRate);
1641    } else {
1642        bitRate = bitRate != 0 ? bitRate : kOffloadDefaultBitRateBps;
1643        mBufferDurationUs = (uint32_t)((mBufferSize * 8 * 1000000LL) / bitRate);
1644    }
1645}
1646
1647AudioFlinger::PlaybackThread::~PlaybackThread()
1648{
1649    mAudioFlinger->unregisterWriter(mNBLogWriter);
1650    free(mSinkBuffer);
1651    free(mMixerBuffer);
1652    free(mEffectBuffer);
1653}
1654
1655void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1656{
1657    dumpInternals(fd, args);
1658    dumpTracks(fd, args);
1659    dumpEffectChains(fd, args);
1660}
1661
1662void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1663{
1664    const size_t SIZE = 256;
1665    char buffer[SIZE];
1666    String8 result;
1667
1668    result.appendFormat("  Stream volumes in dB: ");
1669    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1670        const stream_type_t *st = &mStreamTypes[i];
1671        if (i > 0) {
1672            result.appendFormat(", ");
1673        }
1674        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1675        if (st->mute) {
1676            result.append("M");
1677        }
1678    }
1679    result.append("\n");
1680    write(fd, result.string(), result.length());
1681    result.clear();
1682
1683    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1684    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1685    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1686            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1687
1688    size_t numtracks = mTracks.size();
1689    size_t numactive = mActiveTracks.size();
1690    dprintf(fd, "  %zu Tracks", numtracks);
1691    size_t numactiveseen = 0;
1692    if (numtracks) {
1693        dprintf(fd, " of which %zu are active\n", numactive);
1694        Track::appendDumpHeader(result);
1695        for (size_t i = 0; i < numtracks; ++i) {
1696            sp<Track> track = mTracks[i];
1697            if (track != 0) {
1698                bool active = mActiveTracks.indexOf(track) >= 0;
1699                if (active) {
1700                    numactiveseen++;
1701                }
1702                track->dump(buffer, SIZE, active);
1703                result.append(buffer);
1704            }
1705        }
1706    } else {
1707        result.append("\n");
1708    }
1709    if (numactiveseen != numactive) {
1710        // some tracks in the active list were not in the tracks list
1711        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1712                " not in the track list\n");
1713        result.append(buffer);
1714        Track::appendDumpHeader(result);
1715        for (size_t i = 0; i < numactive; ++i) {
1716            sp<Track> track = mActiveTracks[i].promote();
1717            if (track != 0 && mTracks.indexOf(track) < 0) {
1718                track->dump(buffer, SIZE, true);
1719                result.append(buffer);
1720            }
1721        }
1722    }
1723
1724    write(fd, result.string(), result.size());
1725}
1726
1727void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1728{
1729    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1730
1731    dumpBase(fd, args);
1732
1733    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1734    dprintf(fd, "  Last write occurred (msecs): %llu\n",
1735            (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1736    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1737    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1738    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1739    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1740    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1741    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1742    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1743    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1744    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1745    AudioStreamOut *output = mOutput;
1746    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1747    String8 flagsAsString = outputFlagsToString(flags);
1748    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1749}
1750
1751// Thread virtuals
1752
1753void AudioFlinger::PlaybackThread::onFirstRef()
1754{
1755    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1756}
1757
1758// ThreadBase virtuals
1759void AudioFlinger::PlaybackThread::preExit()
1760{
1761    ALOGV("  preExit()");
1762    // FIXME this is using hard-coded strings but in the future, this functionality will be
1763    //       converted to use audio HAL extensions required to support tunneling
1764    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1765}
1766
1767// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1768sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1769        const sp<AudioFlinger::Client>& client,
1770        audio_stream_type_t streamType,
1771        uint32_t sampleRate,
1772        audio_format_t format,
1773        audio_channel_mask_t channelMask,
1774        size_t *pFrameCount,
1775        const sp<IMemory>& sharedBuffer,
1776        audio_session_t sessionId,
1777        IAudioFlinger::track_flags_t *flags,
1778        pid_t tid,
1779        int uid,
1780        status_t *status)
1781{
1782    size_t frameCount = *pFrameCount;
1783    sp<Track> track;
1784    status_t lStatus;
1785
1786    // client expresses a preference for FAST, but we get the final say
1787    if (*flags & IAudioFlinger::TRACK_FAST) {
1788      if (
1789            // PCM data
1790            audio_is_linear_pcm(format) &&
1791            // TODO: extract as a data library function that checks that a computationally
1792            // expensive downmixer is not required: isFastOutputChannelConversion()
1793            (channelMask == mChannelMask ||
1794                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1795                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1796                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1797            // hardware sample rate
1798            (sampleRate == mSampleRate) &&
1799            // normal mixer has an associated fast mixer
1800            hasFastMixer() &&
1801            // there are sufficient fast track slots available
1802            (mFastTrackAvailMask != 0)
1803            // FIXME test that MixerThread for this fast track has a capable output HAL
1804            // FIXME add a permission test also?
1805        ) {
1806        // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1807        if (sharedBuffer == 0) {
1808            // read the fast track multiplier property the first time it is needed
1809            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1810            if (ok != 0) {
1811                ALOGE("%s pthread_once failed: %d", __func__, ok);
1812            }
1813            frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1814        }
1815        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1816                frameCount, mFrameCount);
1817      } else {
1818        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1819                "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1820                "sampleRate=%u mSampleRate=%u "
1821                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1822                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1823                audio_is_linear_pcm(format),
1824                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1825        *flags &= ~IAudioFlinger::TRACK_FAST;
1826      }
1827    }
1828    // For normal PCM streaming tracks, update minimum frame count.
1829    // For compatibility with AudioTrack calculation, buffer depth is forced
1830    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1831    // This is probably too conservative, but legacy application code may depend on it.
1832    // If you change this calculation, also review the start threshold which is related.
1833    if (!(*flags & IAudioFlinger::TRACK_FAST)
1834            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1835        // this must match AudioTrack.cpp calculateMinFrameCount().
1836        // TODO: Move to a common library
1837        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1838        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1839        if (minBufCount < 2) {
1840            minBufCount = 2;
1841        }
1842        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1843        // or the client should compute and pass in a larger buffer request.
1844        size_t minFrameCount =
1845                minBufCount * sourceFramesNeededWithTimestretch(
1846                        sampleRate, mNormalFrameCount,
1847                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1848        if (frameCount < minFrameCount) { // including frameCount == 0
1849            frameCount = minFrameCount;
1850        }
1851    }
1852    *pFrameCount = frameCount;
1853
1854    switch (mType) {
1855
1856    case DIRECT:
1857        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1858            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1859                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1860                        "for output %p with format %#x",
1861                        sampleRate, format, channelMask, mOutput, mFormat);
1862                lStatus = BAD_VALUE;
1863                goto Exit;
1864            }
1865        }
1866        break;
1867
1868    case OFFLOAD:
1869        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1870            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1871                    "for output %p with format %#x",
1872                    sampleRate, format, channelMask, mOutput, mFormat);
1873            lStatus = BAD_VALUE;
1874            goto Exit;
1875        }
1876        break;
1877
1878    default:
1879        if (!audio_is_linear_pcm(format)) {
1880                ALOGE("createTrack_l() Bad parameter: format %#x \""
1881                        "for output %p with format %#x",
1882                        format, mOutput, mFormat);
1883                lStatus = BAD_VALUE;
1884                goto Exit;
1885        }
1886        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1887            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1888            lStatus = BAD_VALUE;
1889            goto Exit;
1890        }
1891        break;
1892
1893    }
1894
1895    lStatus = initCheck();
1896    if (lStatus != NO_ERROR) {
1897        ALOGE("createTrack_l() audio driver not initialized");
1898        goto Exit;
1899    }
1900
1901    { // scope for mLock
1902        Mutex::Autolock _l(mLock);
1903
1904        // all tracks in same audio session must share the same routing strategy otherwise
1905        // conflicts will happen when tracks are moved from one output to another by audio policy
1906        // manager
1907        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1908        for (size_t i = 0; i < mTracks.size(); ++i) {
1909            sp<Track> t = mTracks[i];
1910            if (t != 0 && t->isExternalTrack()) {
1911                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1912                if (sessionId == t->sessionId() && strategy != actual) {
1913                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1914                            strategy, actual);
1915                    lStatus = BAD_VALUE;
1916                    goto Exit;
1917                }
1918            }
1919        }
1920
1921        track = new Track(this, client, streamType, sampleRate, format,
1922                          channelMask, frameCount, NULL, sharedBuffer,
1923                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1924
1925        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1926        if (lStatus != NO_ERROR) {
1927            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1928            // track must be cleared from the caller as the caller has the AF lock
1929            goto Exit;
1930        }
1931        mTracks.add(track);
1932
1933        sp<EffectChain> chain = getEffectChain_l(sessionId);
1934        if (chain != 0) {
1935            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1936            track->setMainBuffer(chain->inBuffer());
1937            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1938            chain->incTrackCnt();
1939        }
1940
1941        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1942            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1943            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1944            // so ask activity manager to do this on our behalf
1945            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1946        }
1947    }
1948
1949    lStatus = NO_ERROR;
1950
1951Exit:
1952    *status = lStatus;
1953    return track;
1954}
1955
1956uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1957{
1958    return latency;
1959}
1960
1961uint32_t AudioFlinger::PlaybackThread::latency() const
1962{
1963    Mutex::Autolock _l(mLock);
1964    return latency_l();
1965}
1966uint32_t AudioFlinger::PlaybackThread::latency_l() const
1967{
1968    if (initCheck() == NO_ERROR) {
1969        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1970    } else {
1971        return 0;
1972    }
1973}
1974
1975void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1976{
1977    Mutex::Autolock _l(mLock);
1978    // Don't apply master volume in SW if our HAL can do it for us.
1979    if (mOutput && mOutput->audioHwDev &&
1980        mOutput->audioHwDev->canSetMasterVolume()) {
1981        mMasterVolume = 1.0;
1982    } else {
1983        mMasterVolume = value;
1984    }
1985}
1986
1987void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1988{
1989    Mutex::Autolock _l(mLock);
1990    // Don't apply master mute in SW if our HAL can do it for us.
1991    if (mOutput && mOutput->audioHwDev &&
1992        mOutput->audioHwDev->canSetMasterMute()) {
1993        mMasterMute = false;
1994    } else {
1995        mMasterMute = muted;
1996    }
1997}
1998
1999void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2000{
2001    Mutex::Autolock _l(mLock);
2002    mStreamTypes[stream].volume = value;
2003    broadcast_l();
2004}
2005
2006void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2007{
2008    Mutex::Autolock _l(mLock);
2009    mStreamTypes[stream].mute = muted;
2010    broadcast_l();
2011}
2012
2013float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2014{
2015    Mutex::Autolock _l(mLock);
2016    return mStreamTypes[stream].volume;
2017}
2018
2019// addTrack_l() must be called with ThreadBase::mLock held
2020status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2021{
2022    status_t status = ALREADY_EXISTS;
2023
2024    if (mActiveTracks.indexOf(track) < 0) {
2025        // the track is newly added, make sure it fills up all its
2026        // buffers before playing. This is to ensure the client will
2027        // effectively get the latency it requested.
2028        if (track->isExternalTrack()) {
2029            TrackBase::track_state state = track->mState;
2030            mLock.unlock();
2031            status = AudioSystem::startOutput(mId, track->streamType(),
2032                                              track->sessionId());
2033            mLock.lock();
2034            // abort track was stopped/paused while we released the lock
2035            if (state != track->mState) {
2036                if (status == NO_ERROR) {
2037                    mLock.unlock();
2038                    AudioSystem::stopOutput(mId, track->streamType(),
2039                                            track->sessionId());
2040                    mLock.lock();
2041                }
2042                return INVALID_OPERATION;
2043            }
2044            // abort if start is rejected by audio policy manager
2045            if (status != NO_ERROR) {
2046                return PERMISSION_DENIED;
2047            }
2048#ifdef ADD_BATTERY_DATA
2049            // to track the speaker usage
2050            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2051#endif
2052        }
2053
2054        // set retry count for buffer fill
2055        if (track->isOffloaded()) {
2056            track->mRetryCount = kMaxTrackStartupRetriesOffload;
2057        } else {
2058            track->mRetryCount = kMaxTrackStartupRetries;
2059        }
2060
2061        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2062        track->mResetDone = false;
2063        track->mPresentationCompleteFrames = 0;
2064        mActiveTracks.add(track);
2065        mWakeLockUids.add(track->uid());
2066        mActiveTracksGeneration++;
2067        mLatestActiveTrack = track;
2068        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2069        if (chain != 0) {
2070            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2071                    track->sessionId());
2072            chain->incActiveTrackCnt();
2073        }
2074
2075        status = NO_ERROR;
2076    }
2077
2078    onAddNewTrack_l();
2079    return status;
2080}
2081
2082bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2083{
2084    track->terminate();
2085    // active tracks are removed by threadLoop()
2086    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2087    track->mState = TrackBase::STOPPED;
2088    if (!trackActive) {
2089        removeTrack_l(track);
2090    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2091        track->mState = TrackBase::STOPPING_1;
2092    }
2093
2094    return trackActive;
2095}
2096
2097void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2098{
2099    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2100    mTracks.remove(track);
2101    deleteTrackName_l(track->name());
2102    // redundant as track is about to be destroyed, for dumpsys only
2103    track->mName = -1;
2104    if (track->isFastTrack()) {
2105        int index = track->mFastIndex;
2106        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
2107        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2108        mFastTrackAvailMask |= 1 << index;
2109        // redundant as track is about to be destroyed, for dumpsys only
2110        track->mFastIndex = -1;
2111    }
2112    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2113    if (chain != 0) {
2114        chain->decTrackCnt();
2115    }
2116}
2117
2118void AudioFlinger::PlaybackThread::broadcast_l()
2119{
2120    // Thread could be blocked waiting for async
2121    // so signal it to handle state changes immediately
2122    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2123    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2124    mSignalPending = true;
2125    mWaitWorkCV.broadcast();
2126}
2127
2128String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2129{
2130    Mutex::Autolock _l(mLock);
2131    if (initCheck() != NO_ERROR) {
2132        return String8();
2133    }
2134
2135    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2136    const String8 out_s8(s);
2137    free(s);
2138    return out_s8;
2139}
2140
2141void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2142    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2143    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2144
2145    desc->mIoHandle = mId;
2146
2147    switch (event) {
2148    case AUDIO_OUTPUT_OPENED:
2149    case AUDIO_OUTPUT_CONFIG_CHANGED:
2150        desc->mPatch = mPatch;
2151        desc->mChannelMask = mChannelMask;
2152        desc->mSamplingRate = mSampleRate;
2153        desc->mFormat = mFormat;
2154        desc->mFrameCount = mNormalFrameCount; // FIXME see
2155                                             // AudioFlinger::frameCount(audio_io_handle_t)
2156        desc->mLatency = latency_l();
2157        break;
2158
2159    case AUDIO_OUTPUT_CLOSED:
2160    default:
2161        break;
2162    }
2163    mAudioFlinger->ioConfigChanged(event, desc, pid);
2164}
2165
2166void AudioFlinger::PlaybackThread::writeCallback()
2167{
2168    ALOG_ASSERT(mCallbackThread != 0);
2169    mCallbackThread->resetWriteBlocked();
2170}
2171
2172void AudioFlinger::PlaybackThread::drainCallback()
2173{
2174    ALOG_ASSERT(mCallbackThread != 0);
2175    mCallbackThread->resetDraining();
2176}
2177
2178void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2179{
2180    Mutex::Autolock _l(mLock);
2181    // reject out of sequence requests
2182    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2183        mWriteAckSequence &= ~1;
2184        mWaitWorkCV.signal();
2185    }
2186}
2187
2188void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2189{
2190    Mutex::Autolock _l(mLock);
2191    // reject out of sequence requests
2192    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2193        mDrainSequence &= ~1;
2194        mWaitWorkCV.signal();
2195    }
2196}
2197
2198// static
2199int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2200                                                void *param __unused,
2201                                                void *cookie)
2202{
2203    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2204    ALOGV("asyncCallback() event %d", event);
2205    switch (event) {
2206    case STREAM_CBK_EVENT_WRITE_READY:
2207        me->writeCallback();
2208        break;
2209    case STREAM_CBK_EVENT_DRAIN_READY:
2210        me->drainCallback();
2211        break;
2212    default:
2213        ALOGW("asyncCallback() unknown event %d", event);
2214        break;
2215    }
2216    return 0;
2217}
2218
2219void AudioFlinger::PlaybackThread::readOutputParameters_l()
2220{
2221    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2222    mSampleRate = mOutput->getSampleRate();
2223    mChannelMask = mOutput->getChannelMask();
2224    if (!audio_is_output_channel(mChannelMask)) {
2225        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2226    }
2227    if ((mType == MIXER || mType == DUPLICATING)
2228            && !isValidPcmSinkChannelMask(mChannelMask)) {
2229        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2230                mChannelMask);
2231    }
2232    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2233
2234    // Get actual HAL format.
2235    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2236    // Get format from the shim, which will be different than the HAL format
2237    // if playing compressed audio over HDMI passthrough.
2238    mFormat = mOutput->getFormat();
2239    if (!audio_is_valid_format(mFormat)) {
2240        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2241    }
2242    if ((mType == MIXER || mType == DUPLICATING)
2243            && !isValidPcmSinkFormat(mFormat)) {
2244        LOG_FATAL("HAL format %#x not supported for mixed output",
2245                mFormat);
2246    }
2247    mFrameSize = mOutput->getFrameSize();
2248    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2249    mFrameCount = mBufferSize / mFrameSize;
2250    if (mFrameCount & 15) {
2251        ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2252                mFrameCount);
2253    }
2254
2255    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2256            (mOutput->stream->set_callback != NULL)) {
2257        if (mOutput->stream->set_callback(mOutput->stream,
2258                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2259            mUseAsyncWrite = true;
2260            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2261        }
2262    }
2263
2264    mHwSupportsPause = false;
2265    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2266        if (mOutput->stream->pause != NULL) {
2267            if (mOutput->stream->resume != NULL) {
2268                mHwSupportsPause = true;
2269            } else {
2270                ALOGW("direct output implements pause but not resume");
2271            }
2272        } else if (mOutput->stream->resume != NULL) {
2273            ALOGW("direct output implements resume but not pause");
2274        }
2275    }
2276    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2277        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2278    }
2279
2280    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2281        // For best precision, we use float instead of the associated output
2282        // device format (typically PCM 16 bit).
2283
2284        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2285        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2286        mBufferSize = mFrameSize * mFrameCount;
2287
2288        // TODO: We currently use the associated output device channel mask and sample rate.
2289        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2290        // (if a valid mask) to avoid premature downmix.
2291        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2292        // instead of the output device sample rate to avoid loss of high frequency information.
2293        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2294    }
2295
2296    // Calculate size of normal sink buffer relative to the HAL output buffer size
2297    double multiplier = 1.0;
2298    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2299            kUseFastMixer == FastMixer_Dynamic)) {
2300        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2301        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2302        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2303        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2304        maxNormalFrameCount = maxNormalFrameCount & ~15;
2305        if (maxNormalFrameCount < minNormalFrameCount) {
2306            maxNormalFrameCount = minNormalFrameCount;
2307        }
2308        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2309        if (multiplier <= 1.0) {
2310            multiplier = 1.0;
2311        } else if (multiplier <= 2.0) {
2312            if (2 * mFrameCount <= maxNormalFrameCount) {
2313                multiplier = 2.0;
2314            } else {
2315                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2316            }
2317        } else {
2318            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2319            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2320            // track, but we sometimes have to do this to satisfy the maximum frame count
2321            // constraint)
2322            // FIXME this rounding up should not be done if no HAL SRC
2323            uint32_t truncMult = (uint32_t) multiplier;
2324            if ((truncMult & 1)) {
2325                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2326                    ++truncMult;
2327                }
2328            }
2329            multiplier = (double) truncMult;
2330        }
2331    }
2332    mNormalFrameCount = multiplier * mFrameCount;
2333    // round up to nearest 16 frames to satisfy AudioMixer
2334    if (mType == MIXER || mType == DUPLICATING) {
2335        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2336    }
2337    ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2338            mNormalFrameCount);
2339
2340    // Check if we want to throttle the processing to no more than 2x normal rate
2341    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2342    mThreadThrottleTimeMs = 0;
2343    mThreadThrottleEndMs = 0;
2344    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2345
2346    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2347    // Originally this was int16_t[] array, need to remove legacy implications.
2348    free(mSinkBuffer);
2349    mSinkBuffer = NULL;
2350    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2351    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2352    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2353    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2354
2355    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2356    // drives the output.
2357    free(mMixerBuffer);
2358    mMixerBuffer = NULL;
2359    if (mMixerBufferEnabled) {
2360        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2361        mMixerBufferSize = mNormalFrameCount * mChannelCount
2362                * audio_bytes_per_sample(mMixerBufferFormat);
2363        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2364    }
2365    free(mEffectBuffer);
2366    mEffectBuffer = NULL;
2367    if (mEffectBufferEnabled) {
2368        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2369        mEffectBufferSize = mNormalFrameCount * mChannelCount
2370                * audio_bytes_per_sample(mEffectBufferFormat);
2371        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2372    }
2373
2374    // force reconfiguration of effect chains and engines to take new buffer size and audio
2375    // parameters into account
2376    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2377    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2378    // matter.
2379    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2380    Vector< sp<EffectChain> > effectChains = mEffectChains;
2381    for (size_t i = 0; i < effectChains.size(); i ++) {
2382        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2383    }
2384}
2385
2386
2387status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2388{
2389    if (halFrames == NULL || dspFrames == NULL) {
2390        return BAD_VALUE;
2391    }
2392    Mutex::Autolock _l(mLock);
2393    if (initCheck() != NO_ERROR) {
2394        return INVALID_OPERATION;
2395    }
2396    int64_t framesWritten = mBytesWritten / mFrameSize;
2397    *halFrames = framesWritten;
2398
2399    if (isSuspended()) {
2400        // return an estimation of rendered frames when the output is suspended
2401        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2402        *dspFrames = (uint32_t)
2403                (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2404        return NO_ERROR;
2405    } else {
2406        status_t status;
2407        uint32_t frames;
2408        status = mOutput->getRenderPosition(&frames);
2409        *dspFrames = (size_t)frames;
2410        return status;
2411    }
2412}
2413
2414uint32_t AudioFlinger::PlaybackThread::hasAudioSession(audio_session_t sessionId) const
2415{
2416    Mutex::Autolock _l(mLock);
2417    uint32_t result = 0;
2418    if (getEffectChain_l(sessionId) != 0) {
2419        result = EFFECT_SESSION;
2420    }
2421
2422    for (size_t i = 0; i < mTracks.size(); ++i) {
2423        sp<Track> track = mTracks[i];
2424        if (sessionId == track->sessionId() && !track->isInvalid()) {
2425            result |= TRACK_SESSION;
2426            break;
2427        }
2428    }
2429
2430    return result;
2431}
2432
2433uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2434{
2435    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2436    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2437    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2438        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2439    }
2440    for (size_t i = 0; i < mTracks.size(); i++) {
2441        sp<Track> track = mTracks[i];
2442        if (sessionId == track->sessionId() && !track->isInvalid()) {
2443            return AudioSystem::getStrategyForStream(track->streamType());
2444        }
2445    }
2446    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2447}
2448
2449
2450AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2451{
2452    Mutex::Autolock _l(mLock);
2453    return mOutput;
2454}
2455
2456AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2457{
2458    Mutex::Autolock _l(mLock);
2459    AudioStreamOut *output = mOutput;
2460    mOutput = NULL;
2461    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2462    //       must push a NULL and wait for ack
2463    mOutputSink.clear();
2464    mPipeSink.clear();
2465    mNormalSink.clear();
2466    return output;
2467}
2468
2469// this method must always be called either with ThreadBase mLock held or inside the thread loop
2470audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2471{
2472    if (mOutput == NULL) {
2473        return NULL;
2474    }
2475    return &mOutput->stream->common;
2476}
2477
2478uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2479{
2480    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2481}
2482
2483status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2484{
2485    if (!isValidSyncEvent(event)) {
2486        return BAD_VALUE;
2487    }
2488
2489    Mutex::Autolock _l(mLock);
2490
2491    for (size_t i = 0; i < mTracks.size(); ++i) {
2492        sp<Track> track = mTracks[i];
2493        if (event->triggerSession() == track->sessionId()) {
2494            (void) track->setSyncEvent(event);
2495            return NO_ERROR;
2496        }
2497    }
2498
2499    return NAME_NOT_FOUND;
2500}
2501
2502bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2503{
2504    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2505}
2506
2507void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2508        const Vector< sp<Track> >& tracksToRemove)
2509{
2510    size_t count = tracksToRemove.size();
2511    if (count > 0) {
2512        for (size_t i = 0 ; i < count ; i++) {
2513            const sp<Track>& track = tracksToRemove.itemAt(i);
2514            if (track->isExternalTrack()) {
2515                AudioSystem::stopOutput(mId, track->streamType(),
2516                                        track->sessionId());
2517#ifdef ADD_BATTERY_DATA
2518                // to track the speaker usage
2519                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2520#endif
2521                if (track->isTerminated()) {
2522                    AudioSystem::releaseOutput(mId, track->streamType(),
2523                                               track->sessionId());
2524                }
2525            }
2526        }
2527    }
2528}
2529
2530void AudioFlinger::PlaybackThread::checkSilentMode_l()
2531{
2532    if (!mMasterMute) {
2533        char value[PROPERTY_VALUE_MAX];
2534        if (property_get("ro.audio.silent", value, "0") > 0) {
2535            char *endptr;
2536            unsigned long ul = strtoul(value, &endptr, 0);
2537            if (*endptr == '\0' && ul != 0) {
2538                ALOGD("Silence is golden");
2539                // The setprop command will not allow a property to be changed after
2540                // the first time it is set, so we don't have to worry about un-muting.
2541                setMasterMute_l(true);
2542            }
2543        }
2544    }
2545}
2546
2547// shared by MIXER and DIRECT, overridden by DUPLICATING
2548ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2549{
2550    // FIXME rewrite to reduce number of system calls
2551    mLastWriteTime = systemTime();
2552    mInWrite = true;
2553    ssize_t bytesWritten;
2554    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2555
2556    // If an NBAIO sink is present, use it to write the normal mixer's submix
2557    if (mNormalSink != 0) {
2558
2559        const size_t count = mBytesRemaining / mFrameSize;
2560
2561        ATRACE_BEGIN("write");
2562        // update the setpoint when AudioFlinger::mScreenState changes
2563        uint32_t screenState = AudioFlinger::mScreenState;
2564        if (screenState != mScreenState) {
2565            mScreenState = screenState;
2566            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2567            if (pipe != NULL) {
2568                pipe->setAvgFrames((mScreenState & 1) ?
2569                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2570            }
2571        }
2572        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2573        ATRACE_END();
2574        if (framesWritten > 0) {
2575            bytesWritten = framesWritten * mFrameSize;
2576        } else {
2577            bytesWritten = framesWritten;
2578        }
2579    // otherwise use the HAL / AudioStreamOut directly
2580    } else {
2581        // Direct output and offload threads
2582
2583        if (mUseAsyncWrite) {
2584            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2585            mWriteAckSequence += 2;
2586            mWriteAckSequence |= 1;
2587            ALOG_ASSERT(mCallbackThread != 0);
2588            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2589        }
2590        // FIXME We should have an implementation of timestamps for direct output threads.
2591        // They are used e.g for multichannel PCM playback over HDMI.
2592        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2593
2594        if (mUseAsyncWrite &&
2595                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2596            // do not wait for async callback in case of error of full write
2597            mWriteAckSequence &= ~1;
2598            ALOG_ASSERT(mCallbackThread != 0);
2599            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2600        }
2601    }
2602
2603    mNumWrites++;
2604    mInWrite = false;
2605    mStandby = false;
2606    return bytesWritten;
2607}
2608
2609void AudioFlinger::PlaybackThread::threadLoop_drain()
2610{
2611    if (mOutput->stream->drain) {
2612        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2613        if (mUseAsyncWrite) {
2614            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2615            mDrainSequence |= 1;
2616            ALOG_ASSERT(mCallbackThread != 0);
2617            mCallbackThread->setDraining(mDrainSequence);
2618        }
2619        mOutput->stream->drain(mOutput->stream,
2620            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2621                                                : AUDIO_DRAIN_ALL);
2622    }
2623}
2624
2625void AudioFlinger::PlaybackThread::threadLoop_exit()
2626{
2627    {
2628        Mutex::Autolock _l(mLock);
2629        for (size_t i = 0; i < mTracks.size(); i++) {
2630            sp<Track> track = mTracks[i];
2631            track->invalidate();
2632        }
2633    }
2634}
2635
2636/*
2637The derived values that are cached:
2638 - mSinkBufferSize from frame count * frame size
2639 - mActiveSleepTimeUs from activeSleepTimeUs()
2640 - mIdleSleepTimeUs from idleSleepTimeUs()
2641 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2642   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2643 - maxPeriod from frame count and sample rate (MIXER only)
2644
2645The parameters that affect these derived values are:
2646 - frame count
2647 - frame size
2648 - sample rate
2649 - device type: A2DP or not
2650 - device latency
2651 - format: PCM or not
2652 - active sleep time
2653 - idle sleep time
2654*/
2655
2656void AudioFlinger::PlaybackThread::cacheParameters_l()
2657{
2658    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2659    mActiveSleepTimeUs = activeSleepTimeUs();
2660    mIdleSleepTimeUs = idleSleepTimeUs();
2661
2662    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2663    // truncating audio when going to standby.
2664    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2665    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2666        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2667            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2668        }
2669    }
2670}
2671
2672void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2673{
2674    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2675            this,  streamType, mTracks.size());
2676    Mutex::Autolock _l(mLock);
2677
2678    size_t size = mTracks.size();
2679    for (size_t i = 0; i < size; i++) {
2680        sp<Track> t = mTracks[i];
2681        if (t->streamType() == streamType && t->isExternalTrack()) {
2682            t->invalidate();
2683        }
2684    }
2685}
2686
2687status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2688{
2689    audio_session_t session = chain->sessionId();
2690    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2691            ? mEffectBuffer : mSinkBuffer);
2692    bool ownsBuffer = false;
2693
2694    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2695    if (session > AUDIO_SESSION_OUTPUT_MIX) {
2696        // Only one effect chain can be present in direct output thread and it uses
2697        // the sink buffer as input
2698        if (mType != DIRECT) {
2699            size_t numSamples = mNormalFrameCount * mChannelCount;
2700            buffer = new int16_t[numSamples];
2701            memset(buffer, 0, numSamples * sizeof(int16_t));
2702            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2703            ownsBuffer = true;
2704        }
2705
2706        // Attach all tracks with same session ID to this chain.
2707        for (size_t i = 0; i < mTracks.size(); ++i) {
2708            sp<Track> track = mTracks[i];
2709            if (session == track->sessionId()) {
2710                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2711                        buffer);
2712                track->setMainBuffer(buffer);
2713                chain->incTrackCnt();
2714            }
2715        }
2716
2717        // indicate all active tracks in the chain
2718        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2719            sp<Track> track = mActiveTracks[i].promote();
2720            if (track == 0) {
2721                continue;
2722            }
2723            if (session == track->sessionId()) {
2724                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2725                chain->incActiveTrackCnt();
2726            }
2727        }
2728    }
2729    chain->setThread(this);
2730    chain->setInBuffer(buffer, ownsBuffer);
2731    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2732            ? mEffectBuffer : mSinkBuffer));
2733    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2734    // chains list in order to be processed last as it contains output stage effects.
2735    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2736    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2737    // after track specific effects and before output stage.
2738    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2739    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2740    // Effect chain for other sessions are inserted at beginning of effect
2741    // chains list to be processed before output mix effects. Relative order between other
2742    // sessions is not important.
2743    static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2744            AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2745            "audio_session_t constants misdefined");
2746    size_t size = mEffectChains.size();
2747    size_t i = 0;
2748    for (i = 0; i < size; i++) {
2749        if (mEffectChains[i]->sessionId() < session) {
2750            break;
2751        }
2752    }
2753    mEffectChains.insertAt(chain, i);
2754    checkSuspendOnAddEffectChain_l(chain);
2755
2756    return NO_ERROR;
2757}
2758
2759size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2760{
2761    audio_session_t session = chain->sessionId();
2762
2763    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2764
2765    for (size_t i = 0; i < mEffectChains.size(); i++) {
2766        if (chain == mEffectChains[i]) {
2767            mEffectChains.removeAt(i);
2768            // detach all active tracks from the chain
2769            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2770                sp<Track> track = mActiveTracks[i].promote();
2771                if (track == 0) {
2772                    continue;
2773                }
2774                if (session == track->sessionId()) {
2775                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2776                            chain.get(), session);
2777                    chain->decActiveTrackCnt();
2778                }
2779            }
2780
2781            // detach all tracks with same session ID from this chain
2782            for (size_t i = 0; i < mTracks.size(); ++i) {
2783                sp<Track> track = mTracks[i];
2784                if (session == track->sessionId()) {
2785                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2786                    chain->decTrackCnt();
2787                }
2788            }
2789            break;
2790        }
2791    }
2792    return mEffectChains.size();
2793}
2794
2795status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2796        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2797{
2798    Mutex::Autolock _l(mLock);
2799    return attachAuxEffect_l(track, EffectId);
2800}
2801
2802status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2803        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2804{
2805    status_t status = NO_ERROR;
2806
2807    if (EffectId == 0) {
2808        track->setAuxBuffer(0, NULL);
2809    } else {
2810        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2811        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2812        if (effect != 0) {
2813            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2814                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2815            } else {
2816                status = INVALID_OPERATION;
2817            }
2818        } else {
2819            status = BAD_VALUE;
2820        }
2821    }
2822    return status;
2823}
2824
2825void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2826{
2827    for (size_t i = 0; i < mTracks.size(); ++i) {
2828        sp<Track> track = mTracks[i];
2829        if (track->auxEffectId() == effectId) {
2830            attachAuxEffect_l(track, 0);
2831        }
2832    }
2833}
2834
2835bool AudioFlinger::PlaybackThread::threadLoop()
2836{
2837    Vector< sp<Track> > tracksToRemove;
2838
2839    mStandbyTimeNs = systemTime();
2840
2841    // MIXER
2842    nsecs_t lastWarning = 0;
2843
2844    // DUPLICATING
2845    // FIXME could this be made local to while loop?
2846    writeFrames = 0;
2847
2848    int lastGeneration = 0;
2849
2850    cacheParameters_l();
2851    mSleepTimeUs = mIdleSleepTimeUs;
2852
2853    if (mType == MIXER) {
2854        sleepTimeShift = 0;
2855    }
2856
2857    CpuStats cpuStats;
2858    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2859
2860    acquireWakeLock();
2861
2862    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2863    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2864    // and then that string will be logged at the next convenient opportunity.
2865    const char *logString = NULL;
2866
2867    checkSilentMode_l();
2868
2869    while (!exitPending())
2870    {
2871        cpuStats.sample(myName);
2872
2873        Vector< sp<EffectChain> > effectChains;
2874
2875        { // scope for mLock
2876
2877            Mutex::Autolock _l(mLock);
2878
2879            processConfigEvents_l();
2880
2881            if (logString != NULL) {
2882                mNBLogWriter->logTimestamp();
2883                mNBLogWriter->log(logString);
2884                logString = NULL;
2885            }
2886
2887            // Gather the framesReleased counters for all active tracks,
2888            // and associate with the sink frames written out.  We need
2889            // this to convert the sink timestamp to the track timestamp.
2890            if (mNormalSink != 0) {
2891                // Note: The DuplicatingThread may not have a mNormalSink.
2892                // We always fetch the timestamp here because often the downstream
2893                // sink will block whie writing.
2894                ExtendedTimestamp timestamp; // use private copy to fetch
2895                (void) mNormalSink->getTimestamp(timestamp);
2896                // copy over kernel info
2897                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
2898                        timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
2899                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
2900                        timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
2901            }
2902            // mFramesWritten for non-offloaded tracks are contiguous
2903            // even after standby() is called. This is useful for the track frame
2904            // to sink frame mapping.
2905            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
2906            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
2907            const size_t size = mActiveTracks.size();
2908            for (size_t i = 0; i < size; ++i) {
2909                sp<Track> t = mActiveTracks[i].promote();
2910                if (t != 0 && !t->isFastTrack()) {
2911                    t->updateTrackFrameInfo(
2912                            t->mAudioTrackServerProxy->framesReleased(),
2913                            mFramesWritten,
2914                            mTimestamp);
2915                }
2916            }
2917
2918            saveOutputTracks();
2919            if (mSignalPending) {
2920                // A signal was raised while we were unlocked
2921                mSignalPending = false;
2922            } else if (waitingAsyncCallback_l()) {
2923                if (exitPending()) {
2924                    break;
2925                }
2926                bool released = false;
2927                // The following works around a bug in the offload driver. Ideally we would release
2928                // the wake lock every time, but that causes the last offload buffer(s) to be
2929                // dropped while the device is on battery, so we need to hold a wake lock during
2930                // the drain phase.
2931                if (mBytesRemaining && !(mDrainSequence & 1)) {
2932                    releaseWakeLock_l();
2933                    released = true;
2934                }
2935                mWakeLockUids.clear();
2936                mActiveTracksGeneration++;
2937                ALOGV("wait async completion");
2938                mWaitWorkCV.wait(mLock);
2939                ALOGV("async completion/wake");
2940                if (released) {
2941                    acquireWakeLock_l();
2942                }
2943                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2944                mSleepTimeUs = 0;
2945
2946                continue;
2947            }
2948            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2949                                   isSuspended()) {
2950                // put audio hardware into standby after short delay
2951                if (shouldStandby_l()) {
2952
2953                    threadLoop_standby();
2954
2955                    mStandby = true;
2956                }
2957
2958                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2959                    // we're about to wait, flush the binder command buffer
2960                    IPCThreadState::self()->flushCommands();
2961
2962                    clearOutputTracks();
2963
2964                    if (exitPending()) {
2965                        break;
2966                    }
2967
2968                    releaseWakeLock_l();
2969                    mWakeLockUids.clear();
2970                    mActiveTracksGeneration++;
2971                    // wait until we have something to do...
2972                    ALOGV("%s going to sleep", myName.string());
2973                    mWaitWorkCV.wait(mLock);
2974                    ALOGV("%s waking up", myName.string());
2975                    acquireWakeLock_l();
2976
2977                    mMixerStatus = MIXER_IDLE;
2978                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2979                    mBytesWritten = 0;
2980                    mBytesRemaining = 0;
2981                    checkSilentMode_l();
2982
2983                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2984                    mSleepTimeUs = mIdleSleepTimeUs;
2985                    if (mType == MIXER) {
2986                        sleepTimeShift = 0;
2987                    }
2988
2989                    continue;
2990                }
2991            }
2992            // mMixerStatusIgnoringFastTracks is also updated internally
2993            mMixerStatus = prepareTracks_l(&tracksToRemove);
2994
2995            // compare with previously applied list
2996            if (lastGeneration != mActiveTracksGeneration) {
2997                // update wakelock
2998                updateWakeLockUids_l(mWakeLockUids);
2999                lastGeneration = mActiveTracksGeneration;
3000            }
3001
3002            // prevent any changes in effect chain list and in each effect chain
3003            // during mixing and effect process as the audio buffers could be deleted
3004            // or modified if an effect is created or deleted
3005            lockEffectChains_l(effectChains);
3006        } // mLock scope ends
3007
3008        if (mBytesRemaining == 0) {
3009            mCurrentWriteLength = 0;
3010            if (mMixerStatus == MIXER_TRACKS_READY) {
3011                // threadLoop_mix() sets mCurrentWriteLength
3012                threadLoop_mix();
3013            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3014                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
3015                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3016                // must be written to HAL
3017                threadLoop_sleepTime();
3018                if (mSleepTimeUs == 0) {
3019                    mCurrentWriteLength = mSinkBufferSize;
3020                }
3021            }
3022            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3023            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3024            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3025            // or mSinkBuffer (if there are no effects).
3026            //
3027            // This is done pre-effects computation; if effects change to
3028            // support higher precision, this needs to move.
3029            //
3030            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3031            // TODO use mSleepTimeUs == 0 as an additional condition.
3032            if (mMixerBufferValid) {
3033                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3034                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3035
3036                // mono blend occurs for mixer threads only (not direct or offloaded)
3037                // and is handled here if we're going directly to the sink.
3038                if (requireMonoBlend() && !mEffectBufferValid) {
3039                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3040                               true /*limit*/);
3041                }
3042
3043                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3044                        mNormalFrameCount * mChannelCount);
3045            }
3046
3047            mBytesRemaining = mCurrentWriteLength;
3048            if (isSuspended()) {
3049                mSleepTimeUs = suspendSleepTimeUs();
3050                // simulate write to HAL when suspended
3051                mBytesWritten += mSinkBufferSize;
3052                mFramesWritten += mSinkBufferSize / mFrameSize;
3053                mBytesRemaining = 0;
3054            }
3055
3056            // only process effects if we're going to write
3057            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3058                for (size_t i = 0; i < effectChains.size(); i ++) {
3059                    effectChains[i]->process_l();
3060                }
3061            }
3062        }
3063        // Process effect chains for offloaded thread even if no audio
3064        // was read from audio track: process only updates effect state
3065        // and thus does have to be synchronized with audio writes but may have
3066        // to be called while waiting for async write callback
3067        if (mType == OFFLOAD) {
3068            for (size_t i = 0; i < effectChains.size(); i ++) {
3069                effectChains[i]->process_l();
3070            }
3071        }
3072
3073        // Only if the Effects buffer is enabled and there is data in the
3074        // Effects buffer (buffer valid), we need to
3075        // copy into the sink buffer.
3076        // TODO use mSleepTimeUs == 0 as an additional condition.
3077        if (mEffectBufferValid) {
3078            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3079
3080            if (requireMonoBlend()) {
3081                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3082                           true /*limit*/);
3083            }
3084
3085            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3086                    mNormalFrameCount * mChannelCount);
3087        }
3088
3089        // enable changes in effect chain
3090        unlockEffectChains(effectChains);
3091
3092        if (!waitingAsyncCallback()) {
3093            // mSleepTimeUs == 0 means we must write to audio hardware
3094            if (mSleepTimeUs == 0) {
3095                ssize_t ret = 0;
3096                if (mBytesRemaining) {
3097                    ret = threadLoop_write();
3098                    if (ret < 0) {
3099                        mBytesRemaining = 0;
3100                    } else {
3101                        mBytesWritten += ret;
3102                        mBytesRemaining -= ret;
3103                        mFramesWritten += ret / mFrameSize;
3104                    }
3105                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3106                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3107                    threadLoop_drain();
3108                }
3109                if (mType == MIXER && !mStandby) {
3110                    // write blocked detection
3111                    nsecs_t now = systemTime();
3112                    nsecs_t delta = now - mLastWriteTime;
3113                    if (delta > maxPeriod) {
3114                        mNumDelayedWrites++;
3115                        if ((now - lastWarning) > kWarningThrottleNs) {
3116                            ATRACE_NAME("underrun");
3117                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3118                                    (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3119                            lastWarning = now;
3120                        }
3121                    }
3122
3123                    if (mThreadThrottle
3124                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3125                            && ret > 0) {                         // we wrote something
3126                        // Limit MixerThread data processing to no more than twice the
3127                        // expected processing rate.
3128                        //
3129                        // This helps prevent underruns with NuPlayer and other applications
3130                        // which may set up buffers that are close to the minimum size, or use
3131                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3132                        //
3133                        // The throttle smooths out sudden large data drains from the device,
3134                        // e.g. when it comes out of standby, which often causes problems with
3135                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3136                        // (2) minimum buffer sized tracks (even if the track is full,
3137                        //     the app won't fill fast enough to handle the sudden draw).
3138
3139                        const int32_t deltaMs = delta / 1000000;
3140                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3141                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3142                            usleep(throttleMs * 1000);
3143                            // notify of throttle start on verbose log
3144                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3145                                    "mixer(%p) throttle begin:"
3146                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3147                                    this, ret, deltaMs, throttleMs);
3148                            mThreadThrottleTimeMs += throttleMs;
3149                        } else {
3150                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3151                            if (diff > 0) {
3152                                // notify of throttle end on debug log
3153                                ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
3154                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3155                            }
3156                        }
3157                    }
3158                }
3159
3160            } else {
3161                ATRACE_BEGIN("sleep");
3162                if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
3163                    Mutex::Autolock _l(mLock);
3164                    if (!mSignalPending && !exitPending()) {
3165                        // If more than one buffer has been written to the audio HAL since exiting
3166                        // standby or last flush, do not sleep more than one buffer duration
3167                        // since last write and not less than kDirectMinSleepTimeUs.
3168                        // Wake up if a command is received
3169                        uint32_t timeoutUs = mSleepTimeUs;
3170                        if (mBytesWritten >= (int64_t) mBufferSize) {
3171                            nsecs_t now = systemTime();
3172                            uint32_t deltaUs = (uint32_t)((now - mLastWriteTime) / 1000);
3173                            if (timeoutUs + deltaUs > mBufferDurationUs) {
3174                                if (mBufferDurationUs > deltaUs) {
3175                                    timeoutUs = mBufferDurationUs - deltaUs;
3176                                    if (timeoutUs < kDirectMinSleepTimeUs) {
3177                                        timeoutUs = kDirectMinSleepTimeUs;
3178                                    }
3179                                } else {
3180                                    timeoutUs = kDirectMinSleepTimeUs;
3181                                }
3182                            }
3183                        }
3184                        mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)timeoutUs));
3185                    }
3186                } else {
3187                    usleep(mSleepTimeUs);
3188                }
3189                ATRACE_END();
3190            }
3191        }
3192
3193        // Finally let go of removed track(s), without the lock held
3194        // since we can't guarantee the destructors won't acquire that
3195        // same lock.  This will also mutate and push a new fast mixer state.
3196        threadLoop_removeTracks(tracksToRemove);
3197        tracksToRemove.clear();
3198
3199        // FIXME I don't understand the need for this here;
3200        //       it was in the original code but maybe the
3201        //       assignment in saveOutputTracks() makes this unnecessary?
3202        clearOutputTracks();
3203
3204        // Effect chains will be actually deleted here if they were removed from
3205        // mEffectChains list during mixing or effects processing
3206        effectChains.clear();
3207
3208        // FIXME Note that the above .clear() is no longer necessary since effectChains
3209        // is now local to this block, but will keep it for now (at least until merge done).
3210    }
3211
3212    threadLoop_exit();
3213
3214    if (!mStandby) {
3215        threadLoop_standby();
3216        mStandby = true;
3217    }
3218
3219    releaseWakeLock();
3220    mWakeLockUids.clear();
3221    mActiveTracksGeneration++;
3222
3223    ALOGV("Thread %p type %d exiting", this, mType);
3224    return false;
3225}
3226
3227// removeTracks_l() must be called with ThreadBase::mLock held
3228void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3229{
3230    size_t count = tracksToRemove.size();
3231    if (count > 0) {
3232        for (size_t i=0 ; i<count ; i++) {
3233            const sp<Track>& track = tracksToRemove.itemAt(i);
3234            mActiveTracks.remove(track);
3235            mWakeLockUids.remove(track->uid());
3236            mActiveTracksGeneration++;
3237            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3238            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3239            if (chain != 0) {
3240                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3241                        track->sessionId());
3242                chain->decActiveTrackCnt();
3243            }
3244            if (track->isTerminated()) {
3245                removeTrack_l(track);
3246            }
3247        }
3248    }
3249
3250}
3251
3252status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3253{
3254    if (mNormalSink != 0) {
3255        ExtendedTimestamp ets;
3256        status_t status = mNormalSink->getTimestamp(ets);
3257        if (status == NO_ERROR) {
3258            status = ets.getBestTimestamp(&timestamp);
3259        }
3260        return status;
3261    }
3262    if ((mType == OFFLOAD || mType == DIRECT)
3263            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3264        uint64_t position64;
3265        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3266        if (ret == 0) {
3267            timestamp.mPosition = (uint32_t)position64;
3268            return NO_ERROR;
3269        }
3270    }
3271    return INVALID_OPERATION;
3272}
3273
3274status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3275                                                          audio_patch_handle_t *handle)
3276{
3277    AutoPark<FastMixer> park(mFastMixer);
3278
3279    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3280
3281    return status;
3282}
3283
3284status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3285                                                          audio_patch_handle_t *handle)
3286{
3287    status_t status = NO_ERROR;
3288
3289    // store new device and send to effects
3290    audio_devices_t type = AUDIO_DEVICE_NONE;
3291    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3292        type |= patch->sinks[i].ext.device.type;
3293    }
3294
3295#ifdef ADD_BATTERY_DATA
3296    // when changing the audio output device, call addBatteryData to notify
3297    // the change
3298    if (mOutDevice != type) {
3299        uint32_t params = 0;
3300        // check whether speaker is on
3301        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3302            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3303        }
3304
3305        audio_devices_t deviceWithoutSpeaker
3306            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3307        // check if any other device (except speaker) is on
3308        if (type & deviceWithoutSpeaker) {
3309            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3310        }
3311
3312        if (params != 0) {
3313            addBatteryData(params);
3314        }
3315    }
3316#endif
3317
3318    for (size_t i = 0; i < mEffectChains.size(); i++) {
3319        mEffectChains[i]->setDevice_l(type);
3320    }
3321
3322    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3323    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3324    bool configChanged = mPrevOutDevice != type;
3325    mOutDevice = type;
3326    mPatch = *patch;
3327
3328    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3329        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3330        status = hwDevice->create_audio_patch(hwDevice,
3331                                               patch->num_sources,
3332                                               patch->sources,
3333                                               patch->num_sinks,
3334                                               patch->sinks,
3335                                               handle);
3336    } else {
3337        char *address;
3338        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3339            //FIXME: we only support address on first sink with HAL version < 3.0
3340            address = audio_device_address_to_parameter(
3341                                                        patch->sinks[0].ext.device.type,
3342                                                        patch->sinks[0].ext.device.address);
3343        } else {
3344            address = (char *)calloc(1, 1);
3345        }
3346        AudioParameter param = AudioParameter(String8(address));
3347        free(address);
3348        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3349        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3350                param.toString().string());
3351        *handle = AUDIO_PATCH_HANDLE_NONE;
3352    }
3353    if (configChanged) {
3354        mPrevOutDevice = type;
3355        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3356    }
3357    return status;
3358}
3359
3360status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3361{
3362    AutoPark<FastMixer> park(mFastMixer);
3363
3364    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3365
3366    return status;
3367}
3368
3369status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3370{
3371    status_t status = NO_ERROR;
3372
3373    mOutDevice = AUDIO_DEVICE_NONE;
3374
3375    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3376        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3377        status = hwDevice->release_audio_patch(hwDevice, handle);
3378    } else {
3379        AudioParameter param;
3380        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3381        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3382                param.toString().string());
3383    }
3384    return status;
3385}
3386
3387void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3388{
3389    Mutex::Autolock _l(mLock);
3390    mTracks.add(track);
3391}
3392
3393void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3394{
3395    Mutex::Autolock _l(mLock);
3396    destroyTrack_l(track);
3397}
3398
3399void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3400{
3401    ThreadBase::getAudioPortConfig(config);
3402    config->role = AUDIO_PORT_ROLE_SOURCE;
3403    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3404    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3405}
3406
3407// ----------------------------------------------------------------------------
3408
3409AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3410        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3411    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3412        // mAudioMixer below
3413        // mFastMixer below
3414        mFastMixerFutex(0),
3415        mMasterMono(false)
3416        // mOutputSink below
3417        // mPipeSink below
3418        // mNormalSink below
3419{
3420    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3421    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3422            "mFrameCount=%zu, mNormalFrameCount=%zu",
3423            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3424            mNormalFrameCount);
3425    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3426
3427    if (type == DUPLICATING) {
3428        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3429        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3430        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3431        return;
3432    }
3433    // create an NBAIO sink for the HAL output stream, and negotiate
3434    mOutputSink = new AudioStreamOutSink(output->stream);
3435    size_t numCounterOffers = 0;
3436    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3437#if !LOG_NDEBUG
3438    ssize_t index =
3439#else
3440    (void)
3441#endif
3442            mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3443    ALOG_ASSERT(index == 0);
3444
3445    // initialize fast mixer depending on configuration
3446    bool initFastMixer;
3447    switch (kUseFastMixer) {
3448    case FastMixer_Never:
3449        initFastMixer = false;
3450        break;
3451    case FastMixer_Always:
3452        initFastMixer = true;
3453        break;
3454    case FastMixer_Static:
3455    case FastMixer_Dynamic:
3456        initFastMixer = mFrameCount < mNormalFrameCount;
3457        break;
3458    }
3459    if (initFastMixer) {
3460        audio_format_t fastMixerFormat;
3461        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3462            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3463        } else {
3464            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3465        }
3466        if (mFormat != fastMixerFormat) {
3467            // change our Sink format to accept our intermediate precision
3468            mFormat = fastMixerFormat;
3469            free(mSinkBuffer);
3470            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3471            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3472            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3473        }
3474
3475        // create a MonoPipe to connect our submix to FastMixer
3476        NBAIO_Format format = mOutputSink->format();
3477#ifdef TEE_SINK
3478        NBAIO_Format origformat = format;
3479#endif
3480        // adjust format to match that of the Fast Mixer
3481        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3482        format.mFormat = fastMixerFormat;
3483        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3484
3485        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3486        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3487        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3488        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3489        const NBAIO_Format offers[1] = {format};
3490        size_t numCounterOffers = 0;
3491#if !LOG_NDEBUG
3492        ssize_t index =
3493#else
3494        (void)
3495#endif
3496                monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3497        ALOG_ASSERT(index == 0);
3498        monoPipe->setAvgFrames((mScreenState & 1) ?
3499                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3500        mPipeSink = monoPipe;
3501
3502#ifdef TEE_SINK
3503        if (mTeeSinkOutputEnabled) {
3504            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3505            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3506            const NBAIO_Format offers2[1] = {origformat};
3507            numCounterOffers = 0;
3508            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3509            ALOG_ASSERT(index == 0);
3510            mTeeSink = teeSink;
3511            PipeReader *teeSource = new PipeReader(*teeSink);
3512            numCounterOffers = 0;
3513            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3514            ALOG_ASSERT(index == 0);
3515            mTeeSource = teeSource;
3516        }
3517#endif
3518
3519        // create fast mixer and configure it initially with just one fast track for our submix
3520        mFastMixer = new FastMixer();
3521        FastMixerStateQueue *sq = mFastMixer->sq();
3522#ifdef STATE_QUEUE_DUMP
3523        sq->setObserverDump(&mStateQueueObserverDump);
3524        sq->setMutatorDump(&mStateQueueMutatorDump);
3525#endif
3526        FastMixerState *state = sq->begin();
3527        FastTrack *fastTrack = &state->mFastTracks[0];
3528        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3529        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3530        fastTrack->mVolumeProvider = NULL;
3531        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3532        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3533        fastTrack->mGeneration++;
3534        state->mFastTracksGen++;
3535        state->mTrackMask = 1;
3536        // fast mixer will use the HAL output sink
3537        state->mOutputSink = mOutputSink.get();
3538        state->mOutputSinkGen++;
3539        state->mFrameCount = mFrameCount;
3540        state->mCommand = FastMixerState::COLD_IDLE;
3541        // already done in constructor initialization list
3542        //mFastMixerFutex = 0;
3543        state->mColdFutexAddr = &mFastMixerFutex;
3544        state->mColdGen++;
3545        state->mDumpState = &mFastMixerDumpState;
3546#ifdef TEE_SINK
3547        state->mTeeSink = mTeeSink.get();
3548#endif
3549        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3550        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3551        sq->end();
3552        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3553
3554        // start the fast mixer
3555        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3556        pid_t tid = mFastMixer->getTid();
3557        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3558
3559#ifdef AUDIO_WATCHDOG
3560        // create and start the watchdog
3561        mAudioWatchdog = new AudioWatchdog();
3562        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3563        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3564        tid = mAudioWatchdog->getTid();
3565        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3566#endif
3567
3568    }
3569
3570    switch (kUseFastMixer) {
3571    case FastMixer_Never:
3572    case FastMixer_Dynamic:
3573        mNormalSink = mOutputSink;
3574        break;
3575    case FastMixer_Always:
3576        mNormalSink = mPipeSink;
3577        break;
3578    case FastMixer_Static:
3579        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3580        break;
3581    }
3582}
3583
3584AudioFlinger::MixerThread::~MixerThread()
3585{
3586    if (mFastMixer != 0) {
3587        FastMixerStateQueue *sq = mFastMixer->sq();
3588        FastMixerState *state = sq->begin();
3589        if (state->mCommand == FastMixerState::COLD_IDLE) {
3590            int32_t old = android_atomic_inc(&mFastMixerFutex);
3591            if (old == -1) {
3592                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3593            }
3594        }
3595        state->mCommand = FastMixerState::EXIT;
3596        sq->end();
3597        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3598        mFastMixer->join();
3599        // Though the fast mixer thread has exited, it's state queue is still valid.
3600        // We'll use that extract the final state which contains one remaining fast track
3601        // corresponding to our sub-mix.
3602        state = sq->begin();
3603        ALOG_ASSERT(state->mTrackMask == 1);
3604        FastTrack *fastTrack = &state->mFastTracks[0];
3605        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3606        delete fastTrack->mBufferProvider;
3607        sq->end(false /*didModify*/);
3608        mFastMixer.clear();
3609#ifdef AUDIO_WATCHDOG
3610        if (mAudioWatchdog != 0) {
3611            mAudioWatchdog->requestExit();
3612            mAudioWatchdog->requestExitAndWait();
3613            mAudioWatchdog.clear();
3614        }
3615#endif
3616    }
3617    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3618    delete mAudioMixer;
3619}
3620
3621
3622uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3623{
3624    if (mFastMixer != 0) {
3625        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3626        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3627    }
3628    return latency;
3629}
3630
3631
3632void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3633{
3634    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3635}
3636
3637ssize_t AudioFlinger::MixerThread::threadLoop_write()
3638{
3639    // FIXME we should only do one push per cycle; confirm this is true
3640    // Start the fast mixer if it's not already running
3641    if (mFastMixer != 0) {
3642        FastMixerStateQueue *sq = mFastMixer->sq();
3643        FastMixerState *state = sq->begin();
3644        if (state->mCommand != FastMixerState::MIX_WRITE &&
3645                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3646            if (state->mCommand == FastMixerState::COLD_IDLE) {
3647
3648                // FIXME workaround for first HAL write being CPU bound on some devices
3649                ATRACE_BEGIN("write");
3650                mOutput->write((char *)mSinkBuffer, 0);
3651                ATRACE_END();
3652
3653                int32_t old = android_atomic_inc(&mFastMixerFutex);
3654                if (old == -1) {
3655                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3656                }
3657#ifdef AUDIO_WATCHDOG
3658                if (mAudioWatchdog != 0) {
3659                    mAudioWatchdog->resume();
3660                }
3661#endif
3662            }
3663            state->mCommand = FastMixerState::MIX_WRITE;
3664#ifdef FAST_THREAD_STATISTICS
3665            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3666                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3667#endif
3668            sq->end();
3669            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3670            if (kUseFastMixer == FastMixer_Dynamic) {
3671                mNormalSink = mPipeSink;
3672            }
3673        } else {
3674            sq->end(false /*didModify*/);
3675        }
3676    }
3677    return PlaybackThread::threadLoop_write();
3678}
3679
3680void AudioFlinger::MixerThread::threadLoop_standby()
3681{
3682    // Idle the fast mixer if it's currently running
3683    if (mFastMixer != 0) {
3684        FastMixerStateQueue *sq = mFastMixer->sq();
3685        FastMixerState *state = sq->begin();
3686        if (!(state->mCommand & FastMixerState::IDLE)) {
3687            state->mCommand = FastMixerState::COLD_IDLE;
3688            state->mColdFutexAddr = &mFastMixerFutex;
3689            state->mColdGen++;
3690            mFastMixerFutex = 0;
3691            sq->end();
3692            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3693            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3694            if (kUseFastMixer == FastMixer_Dynamic) {
3695                mNormalSink = mOutputSink;
3696            }
3697#ifdef AUDIO_WATCHDOG
3698            if (mAudioWatchdog != 0) {
3699                mAudioWatchdog->pause();
3700            }
3701#endif
3702        } else {
3703            sq->end(false /*didModify*/);
3704        }
3705    }
3706    PlaybackThread::threadLoop_standby();
3707}
3708
3709bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3710{
3711    return false;
3712}
3713
3714bool AudioFlinger::PlaybackThread::shouldStandby_l()
3715{
3716    return !mStandby;
3717}
3718
3719bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3720{
3721    Mutex::Autolock _l(mLock);
3722    return waitingAsyncCallback_l();
3723}
3724
3725// shared by MIXER and DIRECT, overridden by DUPLICATING
3726void AudioFlinger::PlaybackThread::threadLoop_standby()
3727{
3728    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3729    mOutput->standby();
3730    if (mUseAsyncWrite != 0) {
3731        // discard any pending drain or write ack by incrementing sequence
3732        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3733        mDrainSequence = (mDrainSequence + 2) & ~1;
3734        ALOG_ASSERT(mCallbackThread != 0);
3735        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3736        mCallbackThread->setDraining(mDrainSequence);
3737    }
3738    mHwPaused = false;
3739}
3740
3741void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3742{
3743    ALOGV("signal playback thread");
3744    broadcast_l();
3745}
3746
3747void AudioFlinger::MixerThread::threadLoop_mix()
3748{
3749    // mix buffers...
3750    mAudioMixer->process();
3751    mCurrentWriteLength = mSinkBufferSize;
3752    // increase sleep time progressively when application underrun condition clears.
3753    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3754    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3755    // such that we would underrun the audio HAL.
3756    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3757        sleepTimeShift--;
3758    }
3759    mSleepTimeUs = 0;
3760    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3761    //TODO: delay standby when effects have a tail
3762
3763}
3764
3765void AudioFlinger::MixerThread::threadLoop_sleepTime()
3766{
3767    // If no tracks are ready, sleep once for the duration of an output
3768    // buffer size, then write 0s to the output
3769    if (mSleepTimeUs == 0) {
3770        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3771            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3772            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3773                mSleepTimeUs = kMinThreadSleepTimeUs;
3774            }
3775            // reduce sleep time in case of consecutive application underruns to avoid
3776            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3777            // duration we would end up writing less data than needed by the audio HAL if
3778            // the condition persists.
3779            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3780                sleepTimeShift++;
3781            }
3782        } else {
3783            mSleepTimeUs = mIdleSleepTimeUs;
3784        }
3785    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3786        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3787        // before effects processing or output.
3788        if (mMixerBufferValid) {
3789            memset(mMixerBuffer, 0, mMixerBufferSize);
3790        } else {
3791            memset(mSinkBuffer, 0, mSinkBufferSize);
3792        }
3793        mSleepTimeUs = 0;
3794        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3795                "anticipated start");
3796    }
3797    // TODO add standby time extension fct of effect tail
3798}
3799
3800// prepareTracks_l() must be called with ThreadBase::mLock held
3801AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3802        Vector< sp<Track> > *tracksToRemove)
3803{
3804
3805    mixer_state mixerStatus = MIXER_IDLE;
3806    // find out which tracks need to be processed
3807    size_t count = mActiveTracks.size();
3808    size_t mixedTracks = 0;
3809    size_t tracksWithEffect = 0;
3810    // counts only _active_ fast tracks
3811    size_t fastTracks = 0;
3812    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3813
3814    float masterVolume = mMasterVolume;
3815    bool masterMute = mMasterMute;
3816
3817    if (masterMute) {
3818        masterVolume = 0;
3819    }
3820    // Delegate master volume control to effect in output mix effect chain if needed
3821    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3822    if (chain != 0) {
3823        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3824        chain->setVolume_l(&v, &v);
3825        masterVolume = (float)((v + (1 << 23)) >> 24);
3826        chain.clear();
3827    }
3828
3829    // prepare a new state to push
3830    FastMixerStateQueue *sq = NULL;
3831    FastMixerState *state = NULL;
3832    bool didModify = false;
3833    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3834    if (mFastMixer != 0) {
3835        sq = mFastMixer->sq();
3836        state = sq->begin();
3837    }
3838
3839    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3840    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3841
3842    for (size_t i=0 ; i<count ; i++) {
3843        const sp<Track> t = mActiveTracks[i].promote();
3844        if (t == 0) {
3845            continue;
3846        }
3847
3848        // this const just means the local variable doesn't change
3849        Track* const track = t.get();
3850
3851        // process fast tracks
3852        if (track->isFastTrack()) {
3853
3854            // It's theoretically possible (though unlikely) for a fast track to be created
3855            // and then removed within the same normal mix cycle.  This is not a problem, as
3856            // the track never becomes active so it's fast mixer slot is never touched.
3857            // The converse, of removing an (active) track and then creating a new track
3858            // at the identical fast mixer slot within the same normal mix cycle,
3859            // is impossible because the slot isn't marked available until the end of each cycle.
3860            int j = track->mFastIndex;
3861            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3862            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3863            FastTrack *fastTrack = &state->mFastTracks[j];
3864
3865            // Determine whether the track is currently in underrun condition,
3866            // and whether it had a recent underrun.
3867            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3868            FastTrackUnderruns underruns = ftDump->mUnderruns;
3869            uint32_t recentFull = (underruns.mBitFields.mFull -
3870                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3871            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3872                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3873            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3874                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3875            uint32_t recentUnderruns = recentPartial + recentEmpty;
3876            track->mObservedUnderruns = underruns;
3877            // don't count underruns that occur while stopping or pausing
3878            // or stopped which can occur when flush() is called while active
3879            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3880                    recentUnderruns > 0) {
3881                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3882                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3883            } else {
3884                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
3885            }
3886
3887            // This is similar to the state machine for normal tracks,
3888            // with a few modifications for fast tracks.
3889            bool isActive = true;
3890            switch (track->mState) {
3891            case TrackBase::STOPPING_1:
3892                // track stays active in STOPPING_1 state until first underrun
3893                if (recentUnderruns > 0 || track->isTerminated()) {
3894                    track->mState = TrackBase::STOPPING_2;
3895                }
3896                break;
3897            case TrackBase::PAUSING:
3898                // ramp down is not yet implemented
3899                track->setPaused();
3900                break;
3901            case TrackBase::RESUMING:
3902                // ramp up is not yet implemented
3903                track->mState = TrackBase::ACTIVE;
3904                break;
3905            case TrackBase::ACTIVE:
3906                if (recentFull > 0 || recentPartial > 0) {
3907                    // track has provided at least some frames recently: reset retry count
3908                    track->mRetryCount = kMaxTrackRetries;
3909                }
3910                if (recentUnderruns == 0) {
3911                    // no recent underruns: stay active
3912                    break;
3913                }
3914                // there has recently been an underrun of some kind
3915                if (track->sharedBuffer() == 0) {
3916                    // were any of the recent underruns "empty" (no frames available)?
3917                    if (recentEmpty == 0) {
3918                        // no, then ignore the partial underruns as they are allowed indefinitely
3919                        break;
3920                    }
3921                    // there has recently been an "empty" underrun: decrement the retry counter
3922                    if (--(track->mRetryCount) > 0) {
3923                        break;
3924                    }
3925                    // indicate to client process that the track was disabled because of underrun;
3926                    // it will then automatically call start() when data is available
3927                    track->disable();
3928                    // remove from active list, but state remains ACTIVE [confusing but true]
3929                    isActive = false;
3930                    break;
3931                }
3932                // fall through
3933            case TrackBase::STOPPING_2:
3934            case TrackBase::PAUSED:
3935            case TrackBase::STOPPED:
3936            case TrackBase::FLUSHED:   // flush() while active
3937                // Check for presentation complete if track is inactive
3938                // We have consumed all the buffers of this track.
3939                // This would be incomplete if we auto-paused on underrun
3940                {
3941                    size_t audioHALFrames =
3942                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3943                    int64_t framesWritten = mBytesWritten / mFrameSize;
3944                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3945                        // track stays in active list until presentation is complete
3946                        break;
3947                    }
3948                }
3949                if (track->isStopping_2()) {
3950                    track->mState = TrackBase::STOPPED;
3951                }
3952                if (track->isStopped()) {
3953                    // Can't reset directly, as fast mixer is still polling this track
3954                    //   track->reset();
3955                    // So instead mark this track as needing to be reset after push with ack
3956                    resetMask |= 1 << i;
3957                }
3958                isActive = false;
3959                break;
3960            case TrackBase::IDLE:
3961            default:
3962                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3963            }
3964
3965            if (isActive) {
3966                // was it previously inactive?
3967                if (!(state->mTrackMask & (1 << j))) {
3968                    ExtendedAudioBufferProvider *eabp = track;
3969                    VolumeProvider *vp = track;
3970                    fastTrack->mBufferProvider = eabp;
3971                    fastTrack->mVolumeProvider = vp;
3972                    fastTrack->mChannelMask = track->mChannelMask;
3973                    fastTrack->mFormat = track->mFormat;
3974                    fastTrack->mGeneration++;
3975                    state->mTrackMask |= 1 << j;
3976                    didModify = true;
3977                    // no acknowledgement required for newly active tracks
3978                }
3979                // cache the combined master volume and stream type volume for fast mixer; this
3980                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3981                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3982                ++fastTracks;
3983            } else {
3984                // was it previously active?
3985                if (state->mTrackMask & (1 << j)) {
3986                    fastTrack->mBufferProvider = NULL;
3987                    fastTrack->mGeneration++;
3988                    state->mTrackMask &= ~(1 << j);
3989                    didModify = true;
3990                    // If any fast tracks were removed, we must wait for acknowledgement
3991                    // because we're about to decrement the last sp<> on those tracks.
3992                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3993                } else {
3994                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
3995                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
3996                            j, track->mState, state->mTrackMask, recentUnderruns,
3997                            track->sharedBuffer() != 0);
3998                }
3999                tracksToRemove->add(track);
4000                // Avoids a misleading display in dumpsys
4001                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4002            }
4003            continue;
4004        }
4005
4006        {   // local variable scope to avoid goto warning
4007
4008        audio_track_cblk_t* cblk = track->cblk();
4009
4010        // The first time a track is added we wait
4011        // for all its buffers to be filled before processing it
4012        int name = track->name();
4013        // make sure that we have enough frames to mix one full buffer.
4014        // enforce this condition only once to enable draining the buffer in case the client
4015        // app does not call stop() and relies on underrun to stop:
4016        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4017        // during last round
4018        size_t desiredFrames;
4019        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4020        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4021
4022        desiredFrames = sourceFramesNeededWithTimestretch(
4023                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4024        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4025        // add frames already consumed but not yet released by the resampler
4026        // because mAudioTrackServerProxy->framesReady() will include these frames
4027        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4028
4029        uint32_t minFrames = 1;
4030        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4031                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4032            minFrames = desiredFrames;
4033        }
4034
4035        size_t framesReady = track->framesReady();
4036        if (ATRACE_ENABLED()) {
4037            // I wish we had formatted trace names
4038            char traceName[16];
4039            strcpy(traceName, "nRdy");
4040            int name = track->name();
4041            if (AudioMixer::TRACK0 <= name &&
4042                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4043                name -= AudioMixer::TRACK0;
4044                traceName[4] = (name / 10) + '0';
4045                traceName[5] = (name % 10) + '0';
4046            } else {
4047                traceName[4] = '?';
4048                traceName[5] = '?';
4049            }
4050            traceName[6] = '\0';
4051            ATRACE_INT(traceName, framesReady);
4052        }
4053        if ((framesReady >= minFrames) && track->isReady() &&
4054                !track->isPaused() && !track->isTerminated())
4055        {
4056            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4057
4058            mixedTracks++;
4059
4060            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4061            // there is an effect chain connected to the track
4062            chain.clear();
4063            if (track->mainBuffer() != mSinkBuffer &&
4064                    track->mainBuffer() != mMixerBuffer) {
4065                if (mEffectBufferEnabled) {
4066                    mEffectBufferValid = true; // Later can set directly.
4067                }
4068                chain = getEffectChain_l(track->sessionId());
4069                // Delegate volume control to effect in track effect chain if needed
4070                if (chain != 0) {
4071                    tracksWithEffect++;
4072                } else {
4073                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4074                            "session %d",
4075                            name, track->sessionId());
4076                }
4077            }
4078
4079
4080            int param = AudioMixer::VOLUME;
4081            if (track->mFillingUpStatus == Track::FS_FILLED) {
4082                // no ramp for the first volume setting
4083                track->mFillingUpStatus = Track::FS_ACTIVE;
4084                if (track->mState == TrackBase::RESUMING) {
4085                    track->mState = TrackBase::ACTIVE;
4086                    param = AudioMixer::RAMP_VOLUME;
4087                }
4088                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4089            // FIXME should not make a decision based on mServer
4090            } else if (cblk->mServer != 0) {
4091                // If the track is stopped before the first frame was mixed,
4092                // do not apply ramp
4093                param = AudioMixer::RAMP_VOLUME;
4094            }
4095
4096            // compute volume for this track
4097            uint32_t vl, vr;       // in U8.24 integer format
4098            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4099            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4100                vl = vr = 0;
4101                vlf = vrf = vaf = 0.;
4102                if (track->isPausing()) {
4103                    track->setPaused();
4104                }
4105            } else {
4106
4107                // read original volumes with volume control
4108                float typeVolume = mStreamTypes[track->streamType()].volume;
4109                float v = masterVolume * typeVolume;
4110                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4111                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4112                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4113                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4114                // track volumes come from shared memory, so can't be trusted and must be clamped
4115                if (vlf > GAIN_FLOAT_UNITY) {
4116                    ALOGV("Track left volume out of range: %.3g", vlf);
4117                    vlf = GAIN_FLOAT_UNITY;
4118                }
4119                if (vrf > GAIN_FLOAT_UNITY) {
4120                    ALOGV("Track right volume out of range: %.3g", vrf);
4121                    vrf = GAIN_FLOAT_UNITY;
4122                }
4123                // now apply the master volume and stream type volume
4124                vlf *= v;
4125                vrf *= v;
4126                // assuming master volume and stream type volume each go up to 1.0,
4127                // then derive vl and vr as U8.24 versions for the effect chain
4128                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4129                vl = (uint32_t) (scaleto8_24 * vlf);
4130                vr = (uint32_t) (scaleto8_24 * vrf);
4131                // vl and vr are now in U8.24 format
4132                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4133                // send level comes from shared memory and so may be corrupt
4134                if (sendLevel > MAX_GAIN_INT) {
4135                    ALOGV("Track send level out of range: %04X", sendLevel);
4136                    sendLevel = MAX_GAIN_INT;
4137                }
4138                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4139                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4140            }
4141
4142            // Delegate volume control to effect in track effect chain if needed
4143            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4144                // Do not ramp volume if volume is controlled by effect
4145                param = AudioMixer::VOLUME;
4146                // Update remaining floating point volume levels
4147                vlf = (float)vl / (1 << 24);
4148                vrf = (float)vr / (1 << 24);
4149                track->mHasVolumeController = true;
4150            } else {
4151                // force no volume ramp when volume controller was just disabled or removed
4152                // from effect chain to avoid volume spike
4153                if (track->mHasVolumeController) {
4154                    param = AudioMixer::VOLUME;
4155                }
4156                track->mHasVolumeController = false;
4157            }
4158
4159            // XXX: these things DON'T need to be done each time
4160            mAudioMixer->setBufferProvider(name, track);
4161            mAudioMixer->enable(name);
4162
4163            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4164            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4165            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4166            mAudioMixer->setParameter(
4167                name,
4168                AudioMixer::TRACK,
4169                AudioMixer::FORMAT, (void *)track->format());
4170            mAudioMixer->setParameter(
4171                name,
4172                AudioMixer::TRACK,
4173                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4174            mAudioMixer->setParameter(
4175                name,
4176                AudioMixer::TRACK,
4177                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4178            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4179            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4180            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4181            if (reqSampleRate == 0) {
4182                reqSampleRate = mSampleRate;
4183            } else if (reqSampleRate > maxSampleRate) {
4184                reqSampleRate = maxSampleRate;
4185            }
4186            mAudioMixer->setParameter(
4187                name,
4188                AudioMixer::RESAMPLE,
4189                AudioMixer::SAMPLE_RATE,
4190                (void *)(uintptr_t)reqSampleRate);
4191
4192            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4193            mAudioMixer->setParameter(
4194                name,
4195                AudioMixer::TIMESTRETCH,
4196                AudioMixer::PLAYBACK_RATE,
4197                &playbackRate);
4198
4199            /*
4200             * Select the appropriate output buffer for the track.
4201             *
4202             * Tracks with effects go into their own effects chain buffer
4203             * and from there into either mEffectBuffer or mSinkBuffer.
4204             *
4205             * Other tracks can use mMixerBuffer for higher precision
4206             * channel accumulation.  If this buffer is enabled
4207             * (mMixerBufferEnabled true), then selected tracks will accumulate
4208             * into it.
4209             *
4210             */
4211            if (mMixerBufferEnabled
4212                    && (track->mainBuffer() == mSinkBuffer
4213                            || track->mainBuffer() == mMixerBuffer)) {
4214                mAudioMixer->setParameter(
4215                        name,
4216                        AudioMixer::TRACK,
4217                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4218                mAudioMixer->setParameter(
4219                        name,
4220                        AudioMixer::TRACK,
4221                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4222                // TODO: override track->mainBuffer()?
4223                mMixerBufferValid = true;
4224            } else {
4225                mAudioMixer->setParameter(
4226                        name,
4227                        AudioMixer::TRACK,
4228                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4229                mAudioMixer->setParameter(
4230                        name,
4231                        AudioMixer::TRACK,
4232                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4233            }
4234            mAudioMixer->setParameter(
4235                name,
4236                AudioMixer::TRACK,
4237                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4238
4239            // reset retry count
4240            track->mRetryCount = kMaxTrackRetries;
4241
4242            // If one track is ready, set the mixer ready if:
4243            //  - the mixer was not ready during previous round OR
4244            //  - no other track is not ready
4245            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4246                    mixerStatus != MIXER_TRACKS_ENABLED) {
4247                mixerStatus = MIXER_TRACKS_READY;
4248            }
4249        } else {
4250            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4251                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4252                        track, framesReady, desiredFrames);
4253                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4254            } else {
4255                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4256            }
4257
4258            // clear effect chain input buffer if an active track underruns to avoid sending
4259            // previous audio buffer again to effects
4260            chain = getEffectChain_l(track->sessionId());
4261            if (chain != 0) {
4262                chain->clearInputBuffer();
4263            }
4264
4265            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4266            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4267                    track->isStopped() || track->isPaused()) {
4268                // We have consumed all the buffers of this track.
4269                // Remove it from the list of active tracks.
4270                // TODO: use actual buffer filling status instead of latency when available from
4271                // audio HAL
4272                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4273                int64_t framesWritten = mBytesWritten / mFrameSize;
4274                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4275                    if (track->isStopped()) {
4276                        track->reset();
4277                    }
4278                    tracksToRemove->add(track);
4279                }
4280            } else {
4281                // No buffers for this track. Give it a few chances to
4282                // fill a buffer, then remove it from active list.
4283                if (--(track->mRetryCount) <= 0) {
4284                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4285                    tracksToRemove->add(track);
4286                    // indicate to client process that the track was disabled because of underrun;
4287                    // it will then automatically call start() when data is available
4288                    track->disable();
4289                // If one track is not ready, mark the mixer also not ready if:
4290                //  - the mixer was ready during previous round OR
4291                //  - no other track is ready
4292                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4293                                mixerStatus != MIXER_TRACKS_READY) {
4294                    mixerStatus = MIXER_TRACKS_ENABLED;
4295                }
4296            }
4297            mAudioMixer->disable(name);
4298        }
4299
4300        }   // local variable scope to avoid goto warning
4301
4302    }
4303
4304    // Push the new FastMixer state if necessary
4305    bool pauseAudioWatchdog = false;
4306    if (didModify) {
4307        state->mFastTracksGen++;
4308        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4309        if (kUseFastMixer == FastMixer_Dynamic &&
4310                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4311            state->mCommand = FastMixerState::COLD_IDLE;
4312            state->mColdFutexAddr = &mFastMixerFutex;
4313            state->mColdGen++;
4314            mFastMixerFutex = 0;
4315            if (kUseFastMixer == FastMixer_Dynamic) {
4316                mNormalSink = mOutputSink;
4317            }
4318            // If we go into cold idle, need to wait for acknowledgement
4319            // so that fast mixer stops doing I/O.
4320            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4321            pauseAudioWatchdog = true;
4322        }
4323    }
4324    if (sq != NULL) {
4325        sq->end(didModify);
4326        sq->push(block);
4327    }
4328#ifdef AUDIO_WATCHDOG
4329    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4330        mAudioWatchdog->pause();
4331    }
4332#endif
4333
4334    // Now perform the deferred reset on fast tracks that have stopped
4335    while (resetMask != 0) {
4336        size_t i = __builtin_ctz(resetMask);
4337        ALOG_ASSERT(i < count);
4338        resetMask &= ~(1 << i);
4339        sp<Track> t = mActiveTracks[i].promote();
4340        if (t == 0) {
4341            continue;
4342        }
4343        Track* track = t.get();
4344        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4345        track->reset();
4346    }
4347
4348    // remove all the tracks that need to be...
4349    removeTracks_l(*tracksToRemove);
4350
4351    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4352        mEffectBufferValid = true;
4353    }
4354
4355    if (mEffectBufferValid) {
4356        // as long as there are effects we should clear the effects buffer, to avoid
4357        // passing a non-clean buffer to the effect chain
4358        memset(mEffectBuffer, 0, mEffectBufferSize);
4359    }
4360    // sink or mix buffer must be cleared if all tracks are connected to an
4361    // effect chain as in this case the mixer will not write to the sink or mix buffer
4362    // and track effects will accumulate into it
4363    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4364            (mixedTracks == 0 && fastTracks > 0))) {
4365        // FIXME as a performance optimization, should remember previous zero status
4366        if (mMixerBufferValid) {
4367            memset(mMixerBuffer, 0, mMixerBufferSize);
4368            // TODO: In testing, mSinkBuffer below need not be cleared because
4369            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4370            // after mixing.
4371            //
4372            // To enforce this guarantee:
4373            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4374            // (mixedTracks == 0 && fastTracks > 0))
4375            // must imply MIXER_TRACKS_READY.
4376            // Later, we may clear buffers regardless, and skip much of this logic.
4377        }
4378        // FIXME as a performance optimization, should remember previous zero status
4379        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4380    }
4381
4382    // if any fast tracks, then status is ready
4383    mMixerStatusIgnoringFastTracks = mixerStatus;
4384    if (fastTracks > 0) {
4385        mixerStatus = MIXER_TRACKS_READY;
4386    }
4387    return mixerStatus;
4388}
4389
4390// getTrackName_l() must be called with ThreadBase::mLock held
4391int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4392        audio_format_t format, audio_session_t sessionId)
4393{
4394    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4395}
4396
4397// deleteTrackName_l() must be called with ThreadBase::mLock held
4398void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4399{
4400    ALOGV("remove track (%d) and delete from mixer", name);
4401    mAudioMixer->deleteTrackName(name);
4402}
4403
4404// checkForNewParameter_l() must be called with ThreadBase::mLock held
4405bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4406                                                       status_t& status)
4407{
4408    bool reconfig = false;
4409    bool a2dpDeviceChanged = false;
4410
4411    status = NO_ERROR;
4412
4413    AutoPark<FastMixer> park(mFastMixer);
4414
4415    AudioParameter param = AudioParameter(keyValuePair);
4416    int value;
4417    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4418        reconfig = true;
4419    }
4420    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4421        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4422            status = BAD_VALUE;
4423        } else {
4424            // no need to save value, since it's constant
4425            reconfig = true;
4426        }
4427    }
4428    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4429        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4430            status = BAD_VALUE;
4431        } else {
4432            // no need to save value, since it's constant
4433            reconfig = true;
4434        }
4435    }
4436    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4437        // do not accept frame count changes if tracks are open as the track buffer
4438        // size depends on frame count and correct behavior would not be guaranteed
4439        // if frame count is changed after track creation
4440        if (!mTracks.isEmpty()) {
4441            status = INVALID_OPERATION;
4442        } else {
4443            reconfig = true;
4444        }
4445    }
4446    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4447#ifdef ADD_BATTERY_DATA
4448        // when changing the audio output device, call addBatteryData to notify
4449        // the change
4450        if (mOutDevice != value) {
4451            uint32_t params = 0;
4452            // check whether speaker is on
4453            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4454                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4455            }
4456
4457            audio_devices_t deviceWithoutSpeaker
4458                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4459            // check if any other device (except speaker) is on
4460            if (value & deviceWithoutSpeaker) {
4461                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4462            }
4463
4464            if (params != 0) {
4465                addBatteryData(params);
4466            }
4467        }
4468#endif
4469
4470        // forward device change to effects that have requested to be
4471        // aware of attached audio device.
4472        if (value != AUDIO_DEVICE_NONE) {
4473            a2dpDeviceChanged =
4474                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4475            mOutDevice = value;
4476            for (size_t i = 0; i < mEffectChains.size(); i++) {
4477                mEffectChains[i]->setDevice_l(mOutDevice);
4478            }
4479        }
4480    }
4481
4482    if (status == NO_ERROR) {
4483        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4484                                                keyValuePair.string());
4485        if (!mStandby && status == INVALID_OPERATION) {
4486            mOutput->standby();
4487            mStandby = true;
4488            mBytesWritten = 0;
4489            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4490                                                   keyValuePair.string());
4491        }
4492        if (status == NO_ERROR && reconfig) {
4493            readOutputParameters_l();
4494            delete mAudioMixer;
4495            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4496            for (size_t i = 0; i < mTracks.size() ; i++) {
4497                int name = getTrackName_l(mTracks[i]->mChannelMask,
4498                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4499                if (name < 0) {
4500                    break;
4501                }
4502                mTracks[i]->mName = name;
4503            }
4504            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4505        }
4506    }
4507
4508    return reconfig || a2dpDeviceChanged;
4509}
4510
4511
4512void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4513{
4514    PlaybackThread::dumpInternals(fd, args);
4515    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4516    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4517    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4518
4519    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4520    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4521    // This is a large object so we place it on the heap.
4522    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4523    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4524    copy->dump(fd);
4525    delete copy;
4526
4527#ifdef STATE_QUEUE_DUMP
4528    // Similar for state queue
4529    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4530    observerCopy.dump(fd);
4531    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4532    mutatorCopy.dump(fd);
4533#endif
4534
4535#ifdef TEE_SINK
4536    // Write the tee output to a .wav file
4537    dumpTee(fd, mTeeSource, mId);
4538#endif
4539
4540#ifdef AUDIO_WATCHDOG
4541    if (mAudioWatchdog != 0) {
4542        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4543        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4544        wdCopy.dump(fd);
4545    }
4546#endif
4547}
4548
4549uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4550{
4551    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4552}
4553
4554uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4555{
4556    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4557}
4558
4559void AudioFlinger::MixerThread::cacheParameters_l()
4560{
4561    PlaybackThread::cacheParameters_l();
4562
4563    // FIXME: Relaxed timing because of a certain device that can't meet latency
4564    // Should be reduced to 2x after the vendor fixes the driver issue
4565    // increase threshold again due to low power audio mode. The way this warning
4566    // threshold is calculated and its usefulness should be reconsidered anyway.
4567    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4568}
4569
4570// ----------------------------------------------------------------------------
4571
4572AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4573        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady,
4574        uint32_t bitRate)
4575    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady, bitRate)
4576        // mLeftVolFloat, mRightVolFloat
4577{
4578}
4579
4580AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4581        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4582        ThreadBase::type_t type, bool systemReady, uint32_t bitRate)
4583    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady, bitRate)
4584        // mLeftVolFloat, mRightVolFloat
4585{
4586}
4587
4588AudioFlinger::DirectOutputThread::~DirectOutputThread()
4589{
4590}
4591
4592void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4593{
4594    float left, right;
4595
4596    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4597        left = right = 0;
4598    } else {
4599        float typeVolume = mStreamTypes[track->streamType()].volume;
4600        float v = mMasterVolume * typeVolume;
4601        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4602        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4603        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4604        if (left > GAIN_FLOAT_UNITY) {
4605            left = GAIN_FLOAT_UNITY;
4606        }
4607        left *= v;
4608        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4609        if (right > GAIN_FLOAT_UNITY) {
4610            right = GAIN_FLOAT_UNITY;
4611        }
4612        right *= v;
4613    }
4614
4615    if (lastTrack) {
4616        if (left != mLeftVolFloat || right != mRightVolFloat) {
4617            mLeftVolFloat = left;
4618            mRightVolFloat = right;
4619
4620            // Convert volumes from float to 8.24
4621            uint32_t vl = (uint32_t)(left * (1 << 24));
4622            uint32_t vr = (uint32_t)(right * (1 << 24));
4623
4624            // Delegate volume control to effect in track effect chain if needed
4625            // only one effect chain can be present on DirectOutputThread, so if
4626            // there is one, the track is connected to it
4627            if (!mEffectChains.isEmpty()) {
4628                mEffectChains[0]->setVolume_l(&vl, &vr);
4629                left = (float)vl / (1 << 24);
4630                right = (float)vr / (1 << 24);
4631            }
4632            if (mOutput->stream->set_volume) {
4633                mOutput->stream->set_volume(mOutput->stream, left, right);
4634            }
4635        }
4636    }
4637}
4638
4639void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4640{
4641    sp<Track> previousTrack = mPreviousTrack.promote();
4642    sp<Track> latestTrack = mLatestActiveTrack.promote();
4643
4644    if (previousTrack != 0 && latestTrack != 0) {
4645        if (mType == DIRECT) {
4646            if (previousTrack.get() != latestTrack.get()) {
4647                mFlushPending = true;
4648            }
4649        } else /* mType == OFFLOAD */ {
4650            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4651                mFlushPending = true;
4652            }
4653        }
4654    }
4655    PlaybackThread::onAddNewTrack_l();
4656}
4657
4658AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4659    Vector< sp<Track> > *tracksToRemove
4660)
4661{
4662    size_t count = mActiveTracks.size();
4663    mixer_state mixerStatus = MIXER_IDLE;
4664    bool doHwPause = false;
4665    bool doHwResume = false;
4666
4667    // find out which tracks need to be processed
4668    for (size_t i = 0; i < count; i++) {
4669        sp<Track> t = mActiveTracks[i].promote();
4670        // The track died recently
4671        if (t == 0) {
4672            continue;
4673        }
4674
4675        if (t->isInvalid()) {
4676            ALOGW("An invalidated track shouldn't be in active list");
4677            tracksToRemove->add(t);
4678            continue;
4679        }
4680
4681        Track* const track = t.get();
4682#ifdef VERY_VERY_VERBOSE_LOGGING
4683        audio_track_cblk_t* cblk = track->cblk();
4684#endif
4685        // Only consider last track started for volume and mixer state control.
4686        // In theory an older track could underrun and restart after the new one starts
4687        // but as we only care about the transition phase between two tracks on a
4688        // direct output, it is not a problem to ignore the underrun case.
4689        sp<Track> l = mLatestActiveTrack.promote();
4690        bool last = l.get() == track;
4691
4692        if (track->isPausing()) {
4693            track->setPaused();
4694            if (mHwSupportsPause && last && !mHwPaused) {
4695                doHwPause = true;
4696                mHwPaused = true;
4697            }
4698            tracksToRemove->add(track);
4699        } else if (track->isFlushPending()) {
4700            track->flushAck();
4701            if (last) {
4702                mFlushPending = true;
4703            }
4704        } else if (track->isResumePending()) {
4705            track->resumeAck();
4706            if (last && mHwPaused) {
4707                doHwResume = true;
4708                mHwPaused = false;
4709            }
4710        }
4711
4712        // The first time a track is added we wait
4713        // for all its buffers to be filled before processing it.
4714        // Allow draining the buffer in case the client
4715        // app does not call stop() and relies on underrun to stop:
4716        // hence the test on (track->mRetryCount > 1).
4717        // If retryCount<=1 then track is about to underrun and be removed.
4718        // Do not use a high threshold for compressed audio.
4719        uint32_t minFrames;
4720        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4721            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4722            minFrames = mNormalFrameCount;
4723        } else {
4724            minFrames = 1;
4725        }
4726
4727        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4728                !track->isStopping_2() && !track->isStopped())
4729        {
4730            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4731
4732            if (track->mFillingUpStatus == Track::FS_FILLED) {
4733                track->mFillingUpStatus = Track::FS_ACTIVE;
4734                // make sure processVolume_l() will apply new volume even if 0
4735                mLeftVolFloat = mRightVolFloat = -1.0;
4736                if (!mHwSupportsPause) {
4737                    track->resumeAck();
4738                }
4739            }
4740
4741            // compute volume for this track
4742            processVolume_l(track, last);
4743            if (last) {
4744                sp<Track> previousTrack = mPreviousTrack.promote();
4745                if (previousTrack != 0) {
4746                    if (track != previousTrack.get()) {
4747                        // Flush any data still being written from last track
4748                        mBytesRemaining = 0;
4749                        // Invalidate previous track to force a seek when resuming.
4750                        previousTrack->invalidate();
4751                    }
4752                }
4753                mPreviousTrack = track;
4754
4755                // reset retry count
4756                track->mRetryCount = kMaxTrackRetriesDirect;
4757                mActiveTrack = t;
4758                mixerStatus = MIXER_TRACKS_READY;
4759                if (mHwPaused) {
4760                    doHwResume = true;
4761                    mHwPaused = false;
4762                }
4763            }
4764        } else {
4765            // clear effect chain input buffer if the last active track started underruns
4766            // to avoid sending previous audio buffer again to effects
4767            if (!mEffectChains.isEmpty() && last) {
4768                mEffectChains[0]->clearInputBuffer();
4769            }
4770            if (track->isStopping_1()) {
4771                track->mState = TrackBase::STOPPING_2;
4772                if (last && mHwPaused) {
4773                     doHwResume = true;
4774                     mHwPaused = false;
4775                 }
4776            }
4777            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4778                    track->isStopping_2() || track->isPaused()) {
4779                // We have consumed all the buffers of this track.
4780                // Remove it from the list of active tracks.
4781                size_t audioHALFrames;
4782                if (audio_has_proportional_frames(mFormat)) {
4783                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4784                } else {
4785                    audioHALFrames = 0;
4786                }
4787
4788                int64_t framesWritten = mBytesWritten / mFrameSize;
4789                if (mStandby || !last ||
4790                        track->presentationComplete(framesWritten, audioHALFrames)) {
4791                    if (track->isStopping_2()) {
4792                        track->mState = TrackBase::STOPPED;
4793                    }
4794                    if (track->isStopped()) {
4795                        track->reset();
4796                    }
4797                    tracksToRemove->add(track);
4798                }
4799            } else {
4800                // No buffers for this track. Give it a few chances to
4801                // fill a buffer, then remove it from active list.
4802                // Only consider last track started for mixer state control
4803                if (--(track->mRetryCount) <= 0) {
4804                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4805                    tracksToRemove->add(track);
4806                    // indicate to client process that the track was disabled because of underrun;
4807                    // it will then automatically call start() when data is available
4808                    track->disable();
4809                } else if (last) {
4810                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4811                            "minFrames = %u, mFormat = %#x",
4812                            track->framesReady(), minFrames, mFormat);
4813                    mixerStatus = MIXER_TRACKS_ENABLED;
4814                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4815                        doHwPause = true;
4816                        mHwPaused = true;
4817                    }
4818                }
4819            }
4820        }
4821    }
4822
4823    // if an active track did not command a flush, check for pending flush on stopped tracks
4824    if (!mFlushPending) {
4825        for (size_t i = 0; i < mTracks.size(); i++) {
4826            if (mTracks[i]->isFlushPending()) {
4827                mTracks[i]->flushAck();
4828                mFlushPending = true;
4829            }
4830        }
4831    }
4832
4833    // make sure the pause/flush/resume sequence is executed in the right order.
4834    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4835    // before flush and then resume HW. This can happen in case of pause/flush/resume
4836    // if resume is received before pause is executed.
4837    if (mHwSupportsPause && !mStandby &&
4838            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4839        mOutput->stream->pause(mOutput->stream);
4840    }
4841    if (mFlushPending) {
4842        flushHw_l();
4843    }
4844    if (mHwSupportsPause && !mStandby && doHwResume) {
4845        mOutput->stream->resume(mOutput->stream);
4846    }
4847    // remove all the tracks that need to be...
4848    removeTracks_l(*tracksToRemove);
4849
4850    return mixerStatus;
4851}
4852
4853void AudioFlinger::DirectOutputThread::threadLoop_mix()
4854{
4855    size_t frameCount = mFrameCount;
4856    int8_t *curBuf = (int8_t *)mSinkBuffer;
4857    // output audio to hardware
4858    while (frameCount) {
4859        AudioBufferProvider::Buffer buffer;
4860        buffer.frameCount = frameCount;
4861        status_t status = mActiveTrack->getNextBuffer(&buffer);
4862        if (status != NO_ERROR || buffer.raw == NULL) {
4863            // no need to pad with 0 for compressed audio
4864            if (audio_has_proportional_frames(mFormat)) {
4865                memset(curBuf, 0, frameCount * mFrameSize);
4866            }
4867            break;
4868        }
4869        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4870        frameCount -= buffer.frameCount;
4871        curBuf += buffer.frameCount * mFrameSize;
4872        mActiveTrack->releaseBuffer(&buffer);
4873    }
4874    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4875    mSleepTimeUs = 0;
4876    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4877    mActiveTrack.clear();
4878}
4879
4880void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4881{
4882    // do not write to HAL when paused
4883    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4884        mSleepTimeUs = mIdleSleepTimeUs;
4885        return;
4886    }
4887    if (mSleepTimeUs == 0) {
4888        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4889            // For compressed offload, use faster sleep time when underruning until more than an
4890            // entire buffer was written to the audio HAL
4891            if (!audio_has_proportional_frames(mFormat) &&
4892                    (mType == OFFLOAD) && (mBytesWritten < (int64_t) mBufferSize)) {
4893                mSleepTimeUs = kDirectMinSleepTimeUs;
4894            } else {
4895                mSleepTimeUs = mActiveSleepTimeUs;
4896            }
4897        } else {
4898            mSleepTimeUs = mIdleSleepTimeUs;
4899        }
4900    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
4901        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4902        mSleepTimeUs = 0;
4903    }
4904}
4905
4906void AudioFlinger::DirectOutputThread::threadLoop_exit()
4907{
4908    {
4909        Mutex::Autolock _l(mLock);
4910        for (size_t i = 0; i < mTracks.size(); i++) {
4911            if (mTracks[i]->isFlushPending()) {
4912                mTracks[i]->flushAck();
4913                mFlushPending = true;
4914            }
4915        }
4916        if (mFlushPending) {
4917            flushHw_l();
4918        }
4919    }
4920    PlaybackThread::threadLoop_exit();
4921}
4922
4923// must be called with thread mutex locked
4924bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4925{
4926    bool trackPaused = false;
4927    bool trackStopped = false;
4928
4929    if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
4930        return !mStandby;
4931    }
4932
4933    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4934    // after a timeout and we will enter standby then.
4935    if (mTracks.size() > 0) {
4936        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4937        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4938                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4939    }
4940
4941    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
4942}
4943
4944// getTrackName_l() must be called with ThreadBase::mLock held
4945int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4946        audio_format_t format __unused, audio_session_t sessionId __unused)
4947{
4948    return 0;
4949}
4950
4951// deleteTrackName_l() must be called with ThreadBase::mLock held
4952void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4953{
4954}
4955
4956// checkForNewParameter_l() must be called with ThreadBase::mLock held
4957bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4958                                                              status_t& status)
4959{
4960    bool reconfig = false;
4961    bool a2dpDeviceChanged = false;
4962
4963    status = NO_ERROR;
4964
4965    AudioParameter param = AudioParameter(keyValuePair);
4966    int value;
4967    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4968        // forward device change to effects that have requested to be
4969        // aware of attached audio device.
4970        if (value != AUDIO_DEVICE_NONE) {
4971            a2dpDeviceChanged =
4972                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4973            mOutDevice = value;
4974            for (size_t i = 0; i < mEffectChains.size(); i++) {
4975                mEffectChains[i]->setDevice_l(mOutDevice);
4976            }
4977        }
4978    }
4979    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4980        // do not accept frame count changes if tracks are open as the track buffer
4981        // size depends on frame count and correct behavior would not be garantied
4982        // if frame count is changed after track creation
4983        if (!mTracks.isEmpty()) {
4984            status = INVALID_OPERATION;
4985        } else {
4986            reconfig = true;
4987        }
4988    }
4989    if (status == NO_ERROR) {
4990        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4991                                                keyValuePair.string());
4992        if (!mStandby && status == INVALID_OPERATION) {
4993            mOutput->standby();
4994            mStandby = true;
4995            mBytesWritten = 0;
4996            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4997                                                   keyValuePair.string());
4998        }
4999        if (status == NO_ERROR && reconfig) {
5000            readOutputParameters_l();
5001            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5002        }
5003    }
5004
5005    return reconfig || a2dpDeviceChanged;
5006}
5007
5008uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5009{
5010    uint32_t time;
5011    if (audio_has_proportional_frames(mFormat)) {
5012        time = PlaybackThread::activeSleepTimeUs();
5013    } else {
5014        time = kDirectMinSleepTimeUs;
5015    }
5016    return time;
5017}
5018
5019uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5020{
5021    uint32_t time;
5022    if (audio_has_proportional_frames(mFormat)) {
5023        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5024    } else {
5025        time = kDirectMinSleepTimeUs;
5026    }
5027    return time;
5028}
5029
5030uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5031{
5032    uint32_t time;
5033    if (audio_has_proportional_frames(mFormat)) {
5034        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5035    } else {
5036        time = kDirectMinSleepTimeUs;
5037    }
5038    return time;
5039}
5040
5041void AudioFlinger::DirectOutputThread::cacheParameters_l()
5042{
5043    PlaybackThread::cacheParameters_l();
5044
5045    // use shorter standby delay as on normal output to release
5046    // hardware resources as soon as possible
5047    // no delay on outputs with HW A/V sync
5048    if (usesHwAvSync()) {
5049        mStandbyDelayNs = 0;
5050    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5051        mStandbyDelayNs = kOffloadStandbyDelayNs;
5052    } else {
5053        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5054    }
5055}
5056
5057void AudioFlinger::DirectOutputThread::flushHw_l()
5058{
5059    mOutput->flush();
5060    mHwPaused = false;
5061    mFlushPending = false;
5062}
5063
5064// ----------------------------------------------------------------------------
5065
5066AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5067        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5068    :   Thread(false /*canCallJava*/),
5069        mPlaybackThread(playbackThread),
5070        mWriteAckSequence(0),
5071        mDrainSequence(0)
5072{
5073}
5074
5075AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5076{
5077}
5078
5079void AudioFlinger::AsyncCallbackThread::onFirstRef()
5080{
5081    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5082}
5083
5084bool AudioFlinger::AsyncCallbackThread::threadLoop()
5085{
5086    while (!exitPending()) {
5087        uint32_t writeAckSequence;
5088        uint32_t drainSequence;
5089
5090        {
5091            Mutex::Autolock _l(mLock);
5092            while (!((mWriteAckSequence & 1) ||
5093                     (mDrainSequence & 1) ||
5094                     exitPending())) {
5095                mWaitWorkCV.wait(mLock);
5096            }
5097
5098            if (exitPending()) {
5099                break;
5100            }
5101            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5102                  mWriteAckSequence, mDrainSequence);
5103            writeAckSequence = mWriteAckSequence;
5104            mWriteAckSequence &= ~1;
5105            drainSequence = mDrainSequence;
5106            mDrainSequence &= ~1;
5107        }
5108        {
5109            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5110            if (playbackThread != 0) {
5111                if (writeAckSequence & 1) {
5112                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5113                }
5114                if (drainSequence & 1) {
5115                    playbackThread->resetDraining(drainSequence >> 1);
5116                }
5117            }
5118        }
5119    }
5120    return false;
5121}
5122
5123void AudioFlinger::AsyncCallbackThread::exit()
5124{
5125    ALOGV("AsyncCallbackThread::exit");
5126    Mutex::Autolock _l(mLock);
5127    requestExit();
5128    mWaitWorkCV.broadcast();
5129}
5130
5131void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5132{
5133    Mutex::Autolock _l(mLock);
5134    // bit 0 is cleared
5135    mWriteAckSequence = sequence << 1;
5136}
5137
5138void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5139{
5140    Mutex::Autolock _l(mLock);
5141    // ignore unexpected callbacks
5142    if (mWriteAckSequence & 2) {
5143        mWriteAckSequence |= 1;
5144        mWaitWorkCV.signal();
5145    }
5146}
5147
5148void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5149{
5150    Mutex::Autolock _l(mLock);
5151    // bit 0 is cleared
5152    mDrainSequence = sequence << 1;
5153}
5154
5155void AudioFlinger::AsyncCallbackThread::resetDraining()
5156{
5157    Mutex::Autolock _l(mLock);
5158    // ignore unexpected callbacks
5159    if (mDrainSequence & 2) {
5160        mDrainSequence |= 1;
5161        mWaitWorkCV.signal();
5162    }
5163}
5164
5165
5166// ----------------------------------------------------------------------------
5167AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5168        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady,
5169        uint32_t bitRate)
5170    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady, bitRate),
5171        mPausedBytesRemaining(0)
5172{
5173    //FIXME: mStandby should be set to true by ThreadBase constructor
5174    mStandby = true;
5175}
5176
5177void AudioFlinger::OffloadThread::threadLoop_exit()
5178{
5179    if (mFlushPending || mHwPaused) {
5180        // If a flush is pending or track was paused, just discard buffered data
5181        flushHw_l();
5182    } else {
5183        mMixerStatus = MIXER_DRAIN_ALL;
5184        threadLoop_drain();
5185    }
5186    if (mUseAsyncWrite) {
5187        ALOG_ASSERT(mCallbackThread != 0);
5188        mCallbackThread->exit();
5189    }
5190    PlaybackThread::threadLoop_exit();
5191}
5192
5193AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5194    Vector< sp<Track> > *tracksToRemove
5195)
5196{
5197    size_t count = mActiveTracks.size();
5198
5199    mixer_state mixerStatus = MIXER_IDLE;
5200    bool doHwPause = false;
5201    bool doHwResume = false;
5202
5203    ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5204
5205    // find out which tracks need to be processed
5206    for (size_t i = 0; i < count; i++) {
5207        sp<Track> t = mActiveTracks[i].promote();
5208        // The track died recently
5209        if (t == 0) {
5210            continue;
5211        }
5212        Track* const track = t.get();
5213#ifdef VERY_VERY_VERBOSE_LOGGING
5214        audio_track_cblk_t* cblk = track->cblk();
5215#endif
5216        // Only consider last track started for volume and mixer state control.
5217        // In theory an older track could underrun and restart after the new one starts
5218        // but as we only care about the transition phase between two tracks on a
5219        // direct output, it is not a problem to ignore the underrun case.
5220        sp<Track> l = mLatestActiveTrack.promote();
5221        bool last = l.get() == track;
5222
5223        if (track->isInvalid()) {
5224            ALOGW("An invalidated track shouldn't be in active list");
5225            tracksToRemove->add(track);
5226            continue;
5227        }
5228
5229        if (track->mState == TrackBase::IDLE) {
5230            ALOGW("An idle track shouldn't be in active list");
5231            continue;
5232        }
5233
5234        if (track->isPausing()) {
5235            track->setPaused();
5236            if (last) {
5237                if (mHwSupportsPause && !mHwPaused) {
5238                    doHwPause = true;
5239                    mHwPaused = true;
5240                }
5241                // If we were part way through writing the mixbuffer to
5242                // the HAL we must save this until we resume
5243                // BUG - this will be wrong if a different track is made active,
5244                // in that case we want to discard the pending data in the
5245                // mixbuffer and tell the client to present it again when the
5246                // track is resumed
5247                mPausedWriteLength = mCurrentWriteLength;
5248                mPausedBytesRemaining = mBytesRemaining;
5249                mBytesRemaining = 0;    // stop writing
5250            }
5251            tracksToRemove->add(track);
5252        } else if (track->isFlushPending()) {
5253            track->mRetryCount = kMaxTrackRetriesOffload;
5254            track->flushAck();
5255            if (last) {
5256                mFlushPending = true;
5257            }
5258        } else if (track->isResumePending()){
5259            track->resumeAck();
5260            if (last) {
5261                if (mPausedBytesRemaining) {
5262                    // Need to continue write that was interrupted
5263                    mCurrentWriteLength = mPausedWriteLength;
5264                    mBytesRemaining = mPausedBytesRemaining;
5265                    mPausedBytesRemaining = 0;
5266                }
5267                if (mHwPaused) {
5268                    doHwResume = true;
5269                    mHwPaused = false;
5270                    // threadLoop_mix() will handle the case that we need to
5271                    // resume an interrupted write
5272                }
5273                // enable write to audio HAL
5274                mSleepTimeUs = 0;
5275
5276                // Do not handle new data in this iteration even if track->framesReady()
5277                mixerStatus = MIXER_TRACKS_ENABLED;
5278            }
5279        }  else if (track->framesReady() && track->isReady() &&
5280                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5281            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5282            if (track->mFillingUpStatus == Track::FS_FILLED) {
5283                track->mFillingUpStatus = Track::FS_ACTIVE;
5284                // make sure processVolume_l() will apply new volume even if 0
5285                mLeftVolFloat = mRightVolFloat = -1.0;
5286            }
5287
5288            if (last) {
5289                sp<Track> previousTrack = mPreviousTrack.promote();
5290                if (previousTrack != 0) {
5291                    if (track != previousTrack.get()) {
5292                        // Flush any data still being written from last track
5293                        mBytesRemaining = 0;
5294                        if (mPausedBytesRemaining) {
5295                            // Last track was paused so we also need to flush saved
5296                            // mixbuffer state and invalidate track so that it will
5297                            // re-submit that unwritten data when it is next resumed
5298                            mPausedBytesRemaining = 0;
5299                            // Invalidate is a bit drastic - would be more efficient
5300                            // to have a flag to tell client that some of the
5301                            // previously written data was lost
5302                            previousTrack->invalidate();
5303                        }
5304                        // flush data already sent to the DSP if changing audio session as audio
5305                        // comes from a different source. Also invalidate previous track to force a
5306                        // seek when resuming.
5307                        if (previousTrack->sessionId() != track->sessionId()) {
5308                            previousTrack->invalidate();
5309                        }
5310                    }
5311                }
5312                mPreviousTrack = track;
5313                // reset retry count
5314                track->mRetryCount = kMaxTrackRetriesOffload;
5315                mActiveTrack = t;
5316                mixerStatus = MIXER_TRACKS_READY;
5317            }
5318        } else {
5319            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5320            if (track->isStopping_1()) {
5321                // Hardware buffer can hold a large amount of audio so we must
5322                // wait for all current track's data to drain before we say
5323                // that the track is stopped.
5324                if (mBytesRemaining == 0) {
5325                    // Only start draining when all data in mixbuffer
5326                    // has been written
5327                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5328                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5329                    // do not drain if no data was ever sent to HAL (mStandby == true)
5330                    if (last && !mStandby) {
5331                        // do not modify drain sequence if we are already draining. This happens
5332                        // when resuming from pause after drain.
5333                        if ((mDrainSequence & 1) == 0) {
5334                            mSleepTimeUs = 0;
5335                            mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5336                            mixerStatus = MIXER_DRAIN_TRACK;
5337                            mDrainSequence += 2;
5338                        }
5339                        if (mHwPaused) {
5340                            // It is possible to move from PAUSED to STOPPING_1 without
5341                            // a resume so we must ensure hardware is running
5342                            doHwResume = true;
5343                            mHwPaused = false;
5344                        }
5345                    }
5346                }
5347            } else if (track->isStopping_2()) {
5348                // Drain has completed or we are in standby, signal presentation complete
5349                if (!(mDrainSequence & 1) || !last || mStandby) {
5350                    track->mState = TrackBase::STOPPED;
5351                    size_t audioHALFrames =
5352                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5353                    int64_t framesWritten =
5354                            mBytesWritten / mOutput->getFrameSize();
5355                    track->presentationComplete(framesWritten, audioHALFrames);
5356                    track->reset();
5357                    tracksToRemove->add(track);
5358                }
5359            } else {
5360                // No buffers for this track. Give it a few chances to
5361                // fill a buffer, then remove it from active list.
5362                if (--(track->mRetryCount) <= 0) {
5363                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5364                          track->name());
5365                    tracksToRemove->add(track);
5366                    // indicate to client process that the track was disabled because of underrun;
5367                    // it will then automatically call start() when data is available
5368                    track->disable();
5369                } else if (last){
5370                    mixerStatus = MIXER_TRACKS_ENABLED;
5371                }
5372            }
5373        }
5374        // compute volume for this track
5375        processVolume_l(track, last);
5376    }
5377
5378    // make sure the pause/flush/resume sequence is executed in the right order.
5379    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5380    // before flush and then resume HW. This can happen in case of pause/flush/resume
5381    // if resume is received before pause is executed.
5382    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5383        mOutput->stream->pause(mOutput->stream);
5384    }
5385    if (mFlushPending) {
5386        flushHw_l();
5387    }
5388    if (!mStandby && doHwResume) {
5389        mOutput->stream->resume(mOutput->stream);
5390    }
5391
5392    // remove all the tracks that need to be...
5393    removeTracks_l(*tracksToRemove);
5394
5395    return mixerStatus;
5396}
5397
5398// must be called with thread mutex locked
5399bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5400{
5401    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5402          mWriteAckSequence, mDrainSequence);
5403    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5404        return true;
5405    }
5406    return false;
5407}
5408
5409bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5410{
5411    Mutex::Autolock _l(mLock);
5412    return waitingAsyncCallback_l();
5413}
5414
5415void AudioFlinger::OffloadThread::flushHw_l()
5416{
5417    DirectOutputThread::flushHw_l();
5418    // Flush anything still waiting in the mixbuffer
5419    mCurrentWriteLength = 0;
5420    mBytesRemaining = 0;
5421    mPausedWriteLength = 0;
5422    mPausedBytesRemaining = 0;
5423    // reset bytes written count to reflect that DSP buffers are empty after flush.
5424    mBytesWritten = 0;
5425
5426    if (mUseAsyncWrite) {
5427        // discard any pending drain or write ack by incrementing sequence
5428        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5429        mDrainSequence = (mDrainSequence + 2) & ~1;
5430        ALOG_ASSERT(mCallbackThread != 0);
5431        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5432        mCallbackThread->setDraining(mDrainSequence);
5433    }
5434}
5435
5436uint32_t AudioFlinger::OffloadThread::activeSleepTimeUs() const
5437{
5438    uint32_t time;
5439    if (audio_has_proportional_frames(mFormat)) {
5440        time = PlaybackThread::activeSleepTimeUs();
5441    } else {
5442        // sleep time is half the duration of an audio HAL buffer.
5443        // Note: This can be problematic in case of underrun with variable bit rate and
5444        // current rate is much less than initial rate.
5445        time = (uint32_t)max(kDirectMinSleepTimeUs, mBufferDurationUs / 2);
5446    }
5447    return time;
5448}
5449
5450// ----------------------------------------------------------------------------
5451
5452AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5453        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5454    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5455                    systemReady, DUPLICATING),
5456        mWaitTimeMs(UINT_MAX)
5457{
5458    addOutputTrack(mainThread);
5459}
5460
5461AudioFlinger::DuplicatingThread::~DuplicatingThread()
5462{
5463    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5464        mOutputTracks[i]->destroy();
5465    }
5466}
5467
5468void AudioFlinger::DuplicatingThread::threadLoop_mix()
5469{
5470    // mix buffers...
5471    if (outputsReady(outputTracks)) {
5472        mAudioMixer->process();
5473    } else {
5474        if (mMixerBufferValid) {
5475            memset(mMixerBuffer, 0, mMixerBufferSize);
5476        } else {
5477            memset(mSinkBuffer, 0, mSinkBufferSize);
5478        }
5479    }
5480    mSleepTimeUs = 0;
5481    writeFrames = mNormalFrameCount;
5482    mCurrentWriteLength = mSinkBufferSize;
5483    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5484}
5485
5486void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5487{
5488    if (mSleepTimeUs == 0) {
5489        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5490            mSleepTimeUs = mActiveSleepTimeUs;
5491        } else {
5492            mSleepTimeUs = mIdleSleepTimeUs;
5493        }
5494    } else if (mBytesWritten != 0) {
5495        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5496            writeFrames = mNormalFrameCount;
5497            memset(mSinkBuffer, 0, mSinkBufferSize);
5498        } else {
5499            // flush remaining overflow buffers in output tracks
5500            writeFrames = 0;
5501        }
5502        mSleepTimeUs = 0;
5503    }
5504}
5505
5506ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5507{
5508    for (size_t i = 0; i < outputTracks.size(); i++) {
5509        outputTracks[i]->write(mSinkBuffer, writeFrames);
5510    }
5511    mStandby = false;
5512    return (ssize_t)mSinkBufferSize;
5513}
5514
5515void AudioFlinger::DuplicatingThread::threadLoop_standby()
5516{
5517    // DuplicatingThread implements standby by stopping all tracks
5518    for (size_t i = 0; i < outputTracks.size(); i++) {
5519        outputTracks[i]->stop();
5520    }
5521}
5522
5523void AudioFlinger::DuplicatingThread::saveOutputTracks()
5524{
5525    outputTracks = mOutputTracks;
5526}
5527
5528void AudioFlinger::DuplicatingThread::clearOutputTracks()
5529{
5530    outputTracks.clear();
5531}
5532
5533void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5534{
5535    Mutex::Autolock _l(mLock);
5536    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5537    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5538    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5539    const size_t frameCount =
5540            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5541    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5542    // from different OutputTracks and their associated MixerThreads (e.g. one may
5543    // nearly empty and the other may be dropping data).
5544
5545    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5546                                            this,
5547                                            mSampleRate,
5548                                            mFormat,
5549                                            mChannelMask,
5550                                            frameCount,
5551                                            IPCThreadState::self()->getCallingUid());
5552    if (outputTrack->cblk() != NULL) {
5553        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5554        mOutputTracks.add(outputTrack);
5555        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5556        updateWaitTime_l();
5557    }
5558}
5559
5560void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5561{
5562    Mutex::Autolock _l(mLock);
5563    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5564        if (mOutputTracks[i]->thread() == thread) {
5565            mOutputTracks[i]->destroy();
5566            mOutputTracks.removeAt(i);
5567            updateWaitTime_l();
5568            if (thread->getOutput() == mOutput) {
5569                mOutput = NULL;
5570            }
5571            return;
5572        }
5573    }
5574    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5575}
5576
5577// caller must hold mLock
5578void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5579{
5580    mWaitTimeMs = UINT_MAX;
5581    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5582        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5583        if (strong != 0) {
5584            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5585            if (waitTimeMs < mWaitTimeMs) {
5586                mWaitTimeMs = waitTimeMs;
5587            }
5588        }
5589    }
5590}
5591
5592
5593bool AudioFlinger::DuplicatingThread::outputsReady(
5594        const SortedVector< sp<OutputTrack> > &outputTracks)
5595{
5596    for (size_t i = 0; i < outputTracks.size(); i++) {
5597        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5598        if (thread == 0) {
5599            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5600                    outputTracks[i].get());
5601            return false;
5602        }
5603        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5604        // see note at standby() declaration
5605        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5606            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5607                    thread.get());
5608            return false;
5609        }
5610    }
5611    return true;
5612}
5613
5614uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5615{
5616    return (mWaitTimeMs * 1000) / 2;
5617}
5618
5619void AudioFlinger::DuplicatingThread::cacheParameters_l()
5620{
5621    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5622    updateWaitTime_l();
5623
5624    MixerThread::cacheParameters_l();
5625}
5626
5627// ----------------------------------------------------------------------------
5628//      Record
5629// ----------------------------------------------------------------------------
5630
5631AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5632                                         AudioStreamIn *input,
5633                                         audio_io_handle_t id,
5634                                         audio_devices_t outDevice,
5635                                         audio_devices_t inDevice,
5636                                         bool systemReady
5637#ifdef TEE_SINK
5638                                         , const sp<NBAIO_Sink>& teeSink
5639#endif
5640                                         ) :
5641    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5642    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5643    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5644    mRsmpInRear(0)
5645#ifdef TEE_SINK
5646    , mTeeSink(teeSink)
5647#endif
5648    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5649            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5650    // mFastCapture below
5651    , mFastCaptureFutex(0)
5652    // mInputSource
5653    // mPipeSink
5654    // mPipeSource
5655    , mPipeFramesP2(0)
5656    // mPipeMemory
5657    // mFastCaptureNBLogWriter
5658    , mFastTrackAvail(false)
5659{
5660    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5661    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5662
5663    readInputParameters_l();
5664
5665    // create an NBAIO source for the HAL input stream, and negotiate
5666    mInputSource = new AudioStreamInSource(input->stream);
5667    size_t numCounterOffers = 0;
5668    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5669#if !LOG_NDEBUG
5670    ssize_t index =
5671#else
5672    (void)
5673#endif
5674            mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5675    ALOG_ASSERT(index == 0);
5676
5677    // initialize fast capture depending on configuration
5678    bool initFastCapture;
5679    switch (kUseFastCapture) {
5680    case FastCapture_Never:
5681        initFastCapture = false;
5682        break;
5683    case FastCapture_Always:
5684        initFastCapture = true;
5685        break;
5686    case FastCapture_Static:
5687        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5688        break;
5689    // case FastCapture_Dynamic:
5690    }
5691
5692    if (initFastCapture) {
5693        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5694        NBAIO_Format format = mInputSource->format();
5695        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5696        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5697        void *pipeBuffer;
5698        const sp<MemoryDealer> roHeap(readOnlyHeap());
5699        sp<IMemory> pipeMemory;
5700        if ((roHeap == 0) ||
5701                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5702                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5703            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5704            goto failed;
5705        }
5706        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5707        memset(pipeBuffer, 0, pipeSize);
5708        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5709        const NBAIO_Format offers[1] = {format};
5710        size_t numCounterOffers = 0;
5711        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5712        ALOG_ASSERT(index == 0);
5713        mPipeSink = pipe;
5714        PipeReader *pipeReader = new PipeReader(*pipe);
5715        numCounterOffers = 0;
5716        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5717        ALOG_ASSERT(index == 0);
5718        mPipeSource = pipeReader;
5719        mPipeFramesP2 = pipeFramesP2;
5720        mPipeMemory = pipeMemory;
5721
5722        // create fast capture
5723        mFastCapture = new FastCapture();
5724        FastCaptureStateQueue *sq = mFastCapture->sq();
5725#ifdef STATE_QUEUE_DUMP
5726        // FIXME
5727#endif
5728        FastCaptureState *state = sq->begin();
5729        state->mCblk = NULL;
5730        state->mInputSource = mInputSource.get();
5731        state->mInputSourceGen++;
5732        state->mPipeSink = pipe;
5733        state->mPipeSinkGen++;
5734        state->mFrameCount = mFrameCount;
5735        state->mCommand = FastCaptureState::COLD_IDLE;
5736        // already done in constructor initialization list
5737        //mFastCaptureFutex = 0;
5738        state->mColdFutexAddr = &mFastCaptureFutex;
5739        state->mColdGen++;
5740        state->mDumpState = &mFastCaptureDumpState;
5741#ifdef TEE_SINK
5742        // FIXME
5743#endif
5744        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5745        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5746        sq->end();
5747        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5748
5749        // start the fast capture
5750        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5751        pid_t tid = mFastCapture->getTid();
5752        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
5753#ifdef AUDIO_WATCHDOG
5754        // FIXME
5755#endif
5756
5757        mFastTrackAvail = true;
5758    }
5759failed: ;
5760
5761    // FIXME mNormalSource
5762}
5763
5764AudioFlinger::RecordThread::~RecordThread()
5765{
5766    if (mFastCapture != 0) {
5767        FastCaptureStateQueue *sq = mFastCapture->sq();
5768        FastCaptureState *state = sq->begin();
5769        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5770            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5771            if (old == -1) {
5772                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5773            }
5774        }
5775        state->mCommand = FastCaptureState::EXIT;
5776        sq->end();
5777        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5778        mFastCapture->join();
5779        mFastCapture.clear();
5780    }
5781    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5782    mAudioFlinger->unregisterWriter(mNBLogWriter);
5783    free(mRsmpInBuffer);
5784}
5785
5786void AudioFlinger::RecordThread::onFirstRef()
5787{
5788    run(mThreadName, PRIORITY_URGENT_AUDIO);
5789}
5790
5791bool AudioFlinger::RecordThread::threadLoop()
5792{
5793    nsecs_t lastWarning = 0;
5794
5795    inputStandBy();
5796
5797reacquire_wakelock:
5798    sp<RecordTrack> activeTrack;
5799    int activeTracksGen;
5800    {
5801        Mutex::Autolock _l(mLock);
5802        size_t size = mActiveTracks.size();
5803        activeTracksGen = mActiveTracksGen;
5804        if (size > 0) {
5805            // FIXME an arbitrary choice
5806            activeTrack = mActiveTracks[0];
5807            acquireWakeLock_l(activeTrack->uid());
5808            if (size > 1) {
5809                SortedVector<int> tmp;
5810                for (size_t i = 0; i < size; i++) {
5811                    tmp.add(mActiveTracks[i]->uid());
5812                }
5813                updateWakeLockUids_l(tmp);
5814            }
5815        } else {
5816            acquireWakeLock_l(-1);
5817        }
5818    }
5819
5820    // used to request a deferred sleep, to be executed later while mutex is unlocked
5821    uint32_t sleepUs = 0;
5822
5823    // loop while there is work to do
5824    for (;;) {
5825        Vector< sp<EffectChain> > effectChains;
5826
5827        // sleep with mutex unlocked
5828        if (sleepUs > 0) {
5829            ATRACE_BEGIN("sleep");
5830            usleep(sleepUs);
5831            ATRACE_END();
5832            sleepUs = 0;
5833        }
5834
5835        // activeTracks accumulates a copy of a subset of mActiveTracks
5836        Vector< sp<RecordTrack> > activeTracks;
5837
5838        // reference to the (first and only) active fast track
5839        sp<RecordTrack> fastTrack;
5840
5841        // reference to a fast track which is about to be removed
5842        sp<RecordTrack> fastTrackToRemove;
5843
5844        { // scope for mLock
5845            Mutex::Autolock _l(mLock);
5846
5847            processConfigEvents_l();
5848
5849            // check exitPending here because checkForNewParameters_l() and
5850            // checkForNewParameters_l() can temporarily release mLock
5851            if (exitPending()) {
5852                break;
5853            }
5854
5855            // if no active track(s), then standby and release wakelock
5856            size_t size = mActiveTracks.size();
5857            if (size == 0) {
5858                standbyIfNotAlreadyInStandby();
5859                // exitPending() can't become true here
5860                releaseWakeLock_l();
5861                ALOGV("RecordThread: loop stopping");
5862                // go to sleep
5863                mWaitWorkCV.wait(mLock);
5864                ALOGV("RecordThread: loop starting");
5865                goto reacquire_wakelock;
5866            }
5867
5868            if (mActiveTracksGen != activeTracksGen) {
5869                activeTracksGen = mActiveTracksGen;
5870                SortedVector<int> tmp;
5871                for (size_t i = 0; i < size; i++) {
5872                    tmp.add(mActiveTracks[i]->uid());
5873                }
5874                updateWakeLockUids_l(tmp);
5875            }
5876
5877            bool doBroadcast = false;
5878            for (size_t i = 0; i < size; ) {
5879
5880                activeTrack = mActiveTracks[i];
5881                if (activeTrack->isTerminated()) {
5882                    if (activeTrack->isFastTrack()) {
5883                        ALOG_ASSERT(fastTrackToRemove == 0);
5884                        fastTrackToRemove = activeTrack;
5885                    }
5886                    removeTrack_l(activeTrack);
5887                    mActiveTracks.remove(activeTrack);
5888                    mActiveTracksGen++;
5889                    size--;
5890                    continue;
5891                }
5892
5893                TrackBase::track_state activeTrackState = activeTrack->mState;
5894                switch (activeTrackState) {
5895
5896                case TrackBase::PAUSING:
5897                    mActiveTracks.remove(activeTrack);
5898                    mActiveTracksGen++;
5899                    doBroadcast = true;
5900                    size--;
5901                    continue;
5902
5903                case TrackBase::STARTING_1:
5904                    sleepUs = 10000;
5905                    i++;
5906                    continue;
5907
5908                case TrackBase::STARTING_2:
5909                    doBroadcast = true;
5910                    mStandby = false;
5911                    activeTrack->mState = TrackBase::ACTIVE;
5912                    break;
5913
5914                case TrackBase::ACTIVE:
5915                    break;
5916
5917                case TrackBase::IDLE:
5918                    i++;
5919                    continue;
5920
5921                default:
5922                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5923                }
5924
5925                activeTracks.add(activeTrack);
5926                i++;
5927
5928                if (activeTrack->isFastTrack()) {
5929                    ALOG_ASSERT(!mFastTrackAvail);
5930                    ALOG_ASSERT(fastTrack == 0);
5931                    fastTrack = activeTrack;
5932                }
5933            }
5934            if (doBroadcast) {
5935                mStartStopCond.broadcast();
5936            }
5937
5938            // sleep if there are no active tracks to process
5939            if (activeTracks.size() == 0) {
5940                if (sleepUs == 0) {
5941                    sleepUs = kRecordThreadSleepUs;
5942                }
5943                continue;
5944            }
5945            sleepUs = 0;
5946
5947            lockEffectChains_l(effectChains);
5948        }
5949
5950        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5951
5952        size_t size = effectChains.size();
5953        for (size_t i = 0; i < size; i++) {
5954            // thread mutex is not locked, but effect chain is locked
5955            effectChains[i]->process_l();
5956        }
5957
5958        // Push a new fast capture state if fast capture is not already running, or cblk change
5959        if (mFastCapture != 0) {
5960            FastCaptureStateQueue *sq = mFastCapture->sq();
5961            FastCaptureState *state = sq->begin();
5962            bool didModify = false;
5963            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5964            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5965                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5966                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5967                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5968                    if (old == -1) {
5969                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5970                    }
5971                }
5972                state->mCommand = FastCaptureState::READ_WRITE;
5973#if 0   // FIXME
5974                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5975                        FastThreadDumpState::kSamplingNforLowRamDevice :
5976                        FastThreadDumpState::kSamplingN);
5977#endif
5978                didModify = true;
5979            }
5980            audio_track_cblk_t *cblkOld = state->mCblk;
5981            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5982            if (cblkNew != cblkOld) {
5983                state->mCblk = cblkNew;
5984                // block until acked if removing a fast track
5985                if (cblkOld != NULL) {
5986                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5987                }
5988                didModify = true;
5989            }
5990            sq->end(didModify);
5991            if (didModify) {
5992                sq->push(block);
5993#if 0
5994                if (kUseFastCapture == FastCapture_Dynamic) {
5995                    mNormalSource = mPipeSource;
5996                }
5997#endif
5998            }
5999        }
6000
6001        // now run the fast track destructor with thread mutex unlocked
6002        fastTrackToRemove.clear();
6003
6004        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6005        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6006        // slow, then this RecordThread will overrun by not calling HAL read often enough.
6007        // If destination is non-contiguous, first read past the nominal end of buffer, then
6008        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
6009
6010        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6011        ssize_t framesRead;
6012
6013        // If an NBAIO source is present, use it to read the normal capture's data
6014        if (mPipeSource != 0) {
6015            size_t framesToRead = mBufferSize / mFrameSize;
6016            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6017                    framesToRead);
6018            if (framesRead == 0) {
6019                // since pipe is non-blocking, simulate blocking input
6020                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
6021            }
6022        // otherwise use the HAL / AudioStreamIn directly
6023        } else {
6024            ATRACE_BEGIN("read");
6025            ssize_t bytesRead = mInput->stream->read(mInput->stream,
6026                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6027            ATRACE_END();
6028            if (bytesRead < 0) {
6029                framesRead = bytesRead;
6030            } else {
6031                framesRead = bytesRead / mFrameSize;
6032            }
6033        }
6034
6035        // Update server timestamp with server stats
6036        // systemTime() is optional if the hardware supports timestamps.
6037        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6038        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6039
6040        // Update server timestamp with kernel stats
6041        if (mInput->stream->get_capture_position != nullptr) {
6042            int64_t position, time;
6043            int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6044            if (ret == NO_ERROR) {
6045                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6046                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6047                // Note: In general record buffers should tend to be empty in
6048                // a properly running pipeline.
6049                //
6050                // Also, it is not advantageous to call get_presentation_position during the read
6051                // as the read obtains a lock, preventing the timestamp call from executing.
6052            }
6053        }
6054        // Use this to track timestamp information
6055        // ALOGD("%s", mTimestamp.toString().c_str());
6056
6057        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6058            ALOGE("read failed: framesRead=%zd", framesRead);
6059            // Force input into standby so that it tries to recover at next read attempt
6060            inputStandBy();
6061            sleepUs = kRecordThreadSleepUs;
6062        }
6063        if (framesRead <= 0) {
6064            goto unlock;
6065        }
6066        ALOG_ASSERT(framesRead > 0);
6067
6068        if (mTeeSink != 0) {
6069            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6070        }
6071        // If destination is non-contiguous, we now correct for reading past end of buffer.
6072        {
6073            size_t part1 = mRsmpInFramesP2 - rear;
6074            if ((size_t) framesRead > part1) {
6075                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6076                        (framesRead - part1) * mFrameSize);
6077            }
6078        }
6079        rear = mRsmpInRear += framesRead;
6080
6081        size = activeTracks.size();
6082        // loop over each active track
6083        for (size_t i = 0; i < size; i++) {
6084            activeTrack = activeTracks[i];
6085
6086            // skip fast tracks, as those are handled directly by FastCapture
6087            if (activeTrack->isFastTrack()) {
6088                continue;
6089            }
6090
6091            // TODO: This code probably should be moved to RecordTrack.
6092            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6093
6094            enum {
6095                OVERRUN_UNKNOWN,
6096                OVERRUN_TRUE,
6097                OVERRUN_FALSE
6098            } overrun = OVERRUN_UNKNOWN;
6099
6100            // loop over getNextBuffer to handle circular sink
6101            for (;;) {
6102
6103                activeTrack->mSink.frameCount = ~0;
6104                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6105                size_t framesOut = activeTrack->mSink.frameCount;
6106                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6107
6108                // check available frames and handle overrun conditions
6109                // if the record track isn't draining fast enough.
6110                bool hasOverrun;
6111                size_t framesIn;
6112                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6113                if (hasOverrun) {
6114                    overrun = OVERRUN_TRUE;
6115                }
6116                if (framesOut == 0 || framesIn == 0) {
6117                    break;
6118                }
6119
6120                // Don't allow framesOut to be larger than what is possible with resampling
6121                // from framesIn.
6122                // This isn't strictly necessary but helps limit buffer resizing in
6123                // RecordBufferConverter.  TODO: remove when no longer needed.
6124                framesOut = min(framesOut,
6125                        destinationFramesPossible(
6126                                framesIn, mSampleRate, activeTrack->mSampleRate));
6127                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6128                framesOut = activeTrack->mRecordBufferConverter->convert(
6129                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6130
6131                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6132                    overrun = OVERRUN_FALSE;
6133                }
6134
6135                if (activeTrack->mFramesToDrop == 0) {
6136                    if (framesOut > 0) {
6137                        activeTrack->mSink.frameCount = framesOut;
6138                        activeTrack->releaseBuffer(&activeTrack->mSink);
6139                    }
6140                } else {
6141                    // FIXME could do a partial drop of framesOut
6142                    if (activeTrack->mFramesToDrop > 0) {
6143                        activeTrack->mFramesToDrop -= framesOut;
6144                        if (activeTrack->mFramesToDrop <= 0) {
6145                            activeTrack->clearSyncStartEvent();
6146                        }
6147                    } else {
6148                        activeTrack->mFramesToDrop += framesOut;
6149                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6150                                activeTrack->mSyncStartEvent->isCancelled()) {
6151                            ALOGW("Synced record %s, session %d, trigger session %d",
6152                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6153                                  activeTrack->sessionId(),
6154                                  (activeTrack->mSyncStartEvent != 0) ?
6155                                          activeTrack->mSyncStartEvent->triggerSession() :
6156                                          AUDIO_SESSION_NONE);
6157                            activeTrack->clearSyncStartEvent();
6158                        }
6159                    }
6160                }
6161
6162                if (framesOut == 0) {
6163                    break;
6164                }
6165            }
6166
6167            switch (overrun) {
6168            case OVERRUN_TRUE:
6169                // client isn't retrieving buffers fast enough
6170                if (!activeTrack->setOverflow()) {
6171                    nsecs_t now = systemTime();
6172                    // FIXME should lastWarning per track?
6173                    if ((now - lastWarning) > kWarningThrottleNs) {
6174                        ALOGW("RecordThread: buffer overflow");
6175                        lastWarning = now;
6176                    }
6177                }
6178                break;
6179            case OVERRUN_FALSE:
6180                activeTrack->clearOverflow();
6181                break;
6182            case OVERRUN_UNKNOWN:
6183                break;
6184            }
6185
6186            // update frame information and push timestamp out
6187            activeTrack->updateTrackFrameInfo(
6188                    activeTrack->mServerProxy->framesReleased(),
6189                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6190                    mSampleRate, mTimestamp);
6191        }
6192
6193unlock:
6194        // enable changes in effect chain
6195        unlockEffectChains(effectChains);
6196        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6197    }
6198
6199    standbyIfNotAlreadyInStandby();
6200
6201    {
6202        Mutex::Autolock _l(mLock);
6203        for (size_t i = 0; i < mTracks.size(); i++) {
6204            sp<RecordTrack> track = mTracks[i];
6205            track->invalidate();
6206        }
6207        mActiveTracks.clear();
6208        mActiveTracksGen++;
6209        mStartStopCond.broadcast();
6210    }
6211
6212    releaseWakeLock();
6213
6214    ALOGV("RecordThread %p exiting", this);
6215    return false;
6216}
6217
6218void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6219{
6220    if (!mStandby) {
6221        inputStandBy();
6222        mStandby = true;
6223    }
6224}
6225
6226void AudioFlinger::RecordThread::inputStandBy()
6227{
6228    // Idle the fast capture if it's currently running
6229    if (mFastCapture != 0) {
6230        FastCaptureStateQueue *sq = mFastCapture->sq();
6231        FastCaptureState *state = sq->begin();
6232        if (!(state->mCommand & FastCaptureState::IDLE)) {
6233            state->mCommand = FastCaptureState::COLD_IDLE;
6234            state->mColdFutexAddr = &mFastCaptureFutex;
6235            state->mColdGen++;
6236            mFastCaptureFutex = 0;
6237            sq->end();
6238            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6239            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6240#if 0
6241            if (kUseFastCapture == FastCapture_Dynamic) {
6242                // FIXME
6243            }
6244#endif
6245#ifdef AUDIO_WATCHDOG
6246            // FIXME
6247#endif
6248        } else {
6249            sq->end(false /*didModify*/);
6250        }
6251    }
6252    mInput->stream->common.standby(&mInput->stream->common);
6253}
6254
6255// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6256sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6257        const sp<AudioFlinger::Client>& client,
6258        uint32_t sampleRate,
6259        audio_format_t format,
6260        audio_channel_mask_t channelMask,
6261        size_t *pFrameCount,
6262        audio_session_t sessionId,
6263        size_t *notificationFrames,
6264        int uid,
6265        IAudioFlinger::track_flags_t *flags,
6266        pid_t tid,
6267        status_t *status)
6268{
6269    size_t frameCount = *pFrameCount;
6270    sp<RecordTrack> track;
6271    status_t lStatus;
6272
6273    // client expresses a preference for FAST, but we get the final say
6274    if (*flags & IAudioFlinger::TRACK_FAST) {
6275      if (
6276            // we formerly checked for a callback handler (non-0 tid),
6277            // but that is no longer required for TRANSFER_OBTAIN mode
6278            //
6279            // frame count is not specified, or is exactly the pipe depth
6280            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6281            // PCM data
6282            audio_is_linear_pcm(format) &&
6283            // hardware format
6284            (format == mFormat) &&
6285            // hardware channel mask
6286            (channelMask == mChannelMask) &&
6287            // hardware sample rate
6288            (sampleRate == mSampleRate) &&
6289            // record thread has an associated fast capture
6290            hasFastCapture() &&
6291            // there are sufficient fast track slots available
6292            mFastTrackAvail
6293        ) {
6294        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6295                frameCount, mFrameCount);
6296      } else {
6297        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6298                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6299                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6300                frameCount, mFrameCount, mPipeFramesP2,
6301                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6302                hasFastCapture(), tid, mFastTrackAvail);
6303        *flags &= ~IAudioFlinger::TRACK_FAST;
6304      }
6305    }
6306
6307    // compute track buffer size in frames, and suggest the notification frame count
6308    if (*flags & IAudioFlinger::TRACK_FAST) {
6309        // fast track: frame count is exactly the pipe depth
6310        frameCount = mPipeFramesP2;
6311        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6312        *notificationFrames = mFrameCount;
6313    } else {
6314        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6315        //                 or 20 ms if there is a fast capture
6316        // TODO This could be a roundupRatio inline, and const
6317        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6318                * sampleRate + mSampleRate - 1) / mSampleRate;
6319        // minimum number of notification periods is at least kMinNotifications,
6320        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6321        static const size_t kMinNotifications = 3;
6322        static const uint32_t kMinMs = 30;
6323        // TODO This could be a roundupRatio inline
6324        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6325        // TODO This could be a roundupRatio inline
6326        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6327                maxNotificationFrames;
6328        const size_t minFrameCount = maxNotificationFrames *
6329                max(kMinNotifications, minNotificationsByMs);
6330        frameCount = max(frameCount, minFrameCount);
6331        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6332            *notificationFrames = maxNotificationFrames;
6333        }
6334    }
6335    *pFrameCount = frameCount;
6336
6337    lStatus = initCheck();
6338    if (lStatus != NO_ERROR) {
6339        ALOGE("createRecordTrack_l() audio driver not initialized");
6340        goto Exit;
6341    }
6342
6343    { // scope for mLock
6344        Mutex::Autolock _l(mLock);
6345
6346        track = new RecordTrack(this, client, sampleRate,
6347                      format, channelMask, frameCount, NULL, sessionId, uid,
6348                      *flags, TrackBase::TYPE_DEFAULT);
6349
6350        lStatus = track->initCheck();
6351        if (lStatus != NO_ERROR) {
6352            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6353            // track must be cleared from the caller as the caller has the AF lock
6354            goto Exit;
6355        }
6356        mTracks.add(track);
6357
6358        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6359        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6360                        mAudioFlinger->btNrecIsOff();
6361        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6362        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6363
6364        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6365            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6366            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6367            // so ask activity manager to do this on our behalf
6368            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6369        }
6370    }
6371
6372    lStatus = NO_ERROR;
6373
6374Exit:
6375    *status = lStatus;
6376    return track;
6377}
6378
6379status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6380                                           AudioSystem::sync_event_t event,
6381                                           audio_session_t triggerSession)
6382{
6383    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6384    sp<ThreadBase> strongMe = this;
6385    status_t status = NO_ERROR;
6386
6387    if (event == AudioSystem::SYNC_EVENT_NONE) {
6388        recordTrack->clearSyncStartEvent();
6389    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6390        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6391                                       triggerSession,
6392                                       recordTrack->sessionId(),
6393                                       syncStartEventCallback,
6394                                       recordTrack);
6395        // Sync event can be cancelled by the trigger session if the track is not in a
6396        // compatible state in which case we start record immediately
6397        if (recordTrack->mSyncStartEvent->isCancelled()) {
6398            recordTrack->clearSyncStartEvent();
6399        } else {
6400            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6401            recordTrack->mFramesToDrop = -
6402                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6403        }
6404    }
6405
6406    {
6407        // This section is a rendezvous between binder thread executing start() and RecordThread
6408        AutoMutex lock(mLock);
6409        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6410            if (recordTrack->mState == TrackBase::PAUSING) {
6411                ALOGV("active record track PAUSING -> ACTIVE");
6412                recordTrack->mState = TrackBase::ACTIVE;
6413            } else {
6414                ALOGV("active record track state %d", recordTrack->mState);
6415            }
6416            return status;
6417        }
6418
6419        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6420        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6421        //      or using a separate command thread
6422        recordTrack->mState = TrackBase::STARTING_1;
6423        mActiveTracks.add(recordTrack);
6424        mActiveTracksGen++;
6425        status_t status = NO_ERROR;
6426        if (recordTrack->isExternalTrack()) {
6427            mLock.unlock();
6428            status = AudioSystem::startInput(mId, recordTrack->sessionId());
6429            mLock.lock();
6430            // FIXME should verify that recordTrack is still in mActiveTracks
6431            if (status != NO_ERROR) {
6432                mActiveTracks.remove(recordTrack);
6433                mActiveTracksGen++;
6434                recordTrack->clearSyncStartEvent();
6435                ALOGV("RecordThread::start error %d", status);
6436                return status;
6437            }
6438        }
6439        // Catch up with current buffer indices if thread is already running.
6440        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6441        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6442        // see previously buffered data before it called start(), but with greater risk of overrun.
6443
6444        recordTrack->mResamplerBufferProvider->reset();
6445        // clear any converter state as new data will be discontinuous
6446        recordTrack->mRecordBufferConverter->reset();
6447        recordTrack->mState = TrackBase::STARTING_2;
6448        // signal thread to start
6449        mWaitWorkCV.broadcast();
6450        if (mActiveTracks.indexOf(recordTrack) < 0) {
6451            ALOGV("Record failed to start");
6452            status = BAD_VALUE;
6453            goto startError;
6454        }
6455        return status;
6456    }
6457
6458startError:
6459    if (recordTrack->isExternalTrack()) {
6460        AudioSystem::stopInput(mId, recordTrack->sessionId());
6461    }
6462    recordTrack->clearSyncStartEvent();
6463    // FIXME I wonder why we do not reset the state here?
6464    return status;
6465}
6466
6467void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6468{
6469    sp<SyncEvent> strongEvent = event.promote();
6470
6471    if (strongEvent != 0) {
6472        sp<RefBase> ptr = strongEvent->cookie().promote();
6473        if (ptr != 0) {
6474            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6475            recordTrack->handleSyncStartEvent(strongEvent);
6476        }
6477    }
6478}
6479
6480bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6481    ALOGV("RecordThread::stop");
6482    AutoMutex _l(mLock);
6483    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6484        return false;
6485    }
6486    // note that threadLoop may still be processing the track at this point [without lock]
6487    recordTrack->mState = TrackBase::PAUSING;
6488    // do not wait for mStartStopCond if exiting
6489    if (exitPending()) {
6490        return true;
6491    }
6492    // FIXME incorrect usage of wait: no explicit predicate or loop
6493    mStartStopCond.wait(mLock);
6494    // if we have been restarted, recordTrack is in mActiveTracks here
6495    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6496        ALOGV("Record stopped OK");
6497        return true;
6498    }
6499    return false;
6500}
6501
6502bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6503{
6504    return false;
6505}
6506
6507status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6508{
6509#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6510    if (!isValidSyncEvent(event)) {
6511        return BAD_VALUE;
6512    }
6513
6514    audio_session_t eventSession = event->triggerSession();
6515    status_t ret = NAME_NOT_FOUND;
6516
6517    Mutex::Autolock _l(mLock);
6518
6519    for (size_t i = 0; i < mTracks.size(); i++) {
6520        sp<RecordTrack> track = mTracks[i];
6521        if (eventSession == track->sessionId()) {
6522            (void) track->setSyncEvent(event);
6523            ret = NO_ERROR;
6524        }
6525    }
6526    return ret;
6527#else
6528    return BAD_VALUE;
6529#endif
6530}
6531
6532// destroyTrack_l() must be called with ThreadBase::mLock held
6533void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6534{
6535    track->terminate();
6536    track->mState = TrackBase::STOPPED;
6537    // active tracks are removed by threadLoop()
6538    if (mActiveTracks.indexOf(track) < 0) {
6539        removeTrack_l(track);
6540    }
6541}
6542
6543void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6544{
6545    mTracks.remove(track);
6546    // need anything related to effects here?
6547    if (track->isFastTrack()) {
6548        ALOG_ASSERT(!mFastTrackAvail);
6549        mFastTrackAvail = true;
6550    }
6551}
6552
6553void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6554{
6555    dumpInternals(fd, args);
6556    dumpTracks(fd, args);
6557    dumpEffectChains(fd, args);
6558}
6559
6560void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6561{
6562    dprintf(fd, "\nInput thread %p:\n", this);
6563
6564    dumpBase(fd, args);
6565
6566    if (mActiveTracks.size() == 0) {
6567        dprintf(fd, "  No active record clients\n");
6568    }
6569    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6570    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6571
6572    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6573    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6574    // This is a large object so we place it on the heap.
6575    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6576    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6577    copy->dump(fd);
6578    delete copy;
6579}
6580
6581void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6582{
6583    const size_t SIZE = 256;
6584    char buffer[SIZE];
6585    String8 result;
6586
6587    size_t numtracks = mTracks.size();
6588    size_t numactive = mActiveTracks.size();
6589    size_t numactiveseen = 0;
6590    dprintf(fd, "  %zu Tracks", numtracks);
6591    if (numtracks) {
6592        dprintf(fd, " of which %zu are active\n", numactive);
6593        RecordTrack::appendDumpHeader(result);
6594        for (size_t i = 0; i < numtracks ; ++i) {
6595            sp<RecordTrack> track = mTracks[i];
6596            if (track != 0) {
6597                bool active = mActiveTracks.indexOf(track) >= 0;
6598                if (active) {
6599                    numactiveseen++;
6600                }
6601                track->dump(buffer, SIZE, active);
6602                result.append(buffer);
6603            }
6604        }
6605    } else {
6606        dprintf(fd, "\n");
6607    }
6608
6609    if (numactiveseen != numactive) {
6610        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6611                " not in the track list\n");
6612        result.append(buffer);
6613        RecordTrack::appendDumpHeader(result);
6614        for (size_t i = 0; i < numactive; ++i) {
6615            sp<RecordTrack> track = mActiveTracks[i];
6616            if (mTracks.indexOf(track) < 0) {
6617                track->dump(buffer, SIZE, true);
6618                result.append(buffer);
6619            }
6620        }
6621
6622    }
6623    write(fd, result.string(), result.size());
6624}
6625
6626
6627void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6628{
6629    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6630    RecordThread *recordThread = (RecordThread *) threadBase.get();
6631    mRsmpInFront = recordThread->mRsmpInRear;
6632    mRsmpInUnrel = 0;
6633}
6634
6635void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6636        size_t *framesAvailable, bool *hasOverrun)
6637{
6638    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6639    RecordThread *recordThread = (RecordThread *) threadBase.get();
6640    const int32_t rear = recordThread->mRsmpInRear;
6641    const int32_t front = mRsmpInFront;
6642    const ssize_t filled = rear - front;
6643
6644    size_t framesIn;
6645    bool overrun = false;
6646    if (filled < 0) {
6647        // should not happen, but treat like a massive overrun and re-sync
6648        framesIn = 0;
6649        mRsmpInFront = rear;
6650        overrun = true;
6651    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6652        framesIn = (size_t) filled;
6653    } else {
6654        // client is not keeping up with server, but give it latest data
6655        framesIn = recordThread->mRsmpInFrames;
6656        mRsmpInFront = /* front = */ rear - framesIn;
6657        overrun = true;
6658    }
6659    if (framesAvailable != NULL) {
6660        *framesAvailable = framesIn;
6661    }
6662    if (hasOverrun != NULL) {
6663        *hasOverrun = overrun;
6664    }
6665}
6666
6667// AudioBufferProvider interface
6668status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6669        AudioBufferProvider::Buffer* buffer)
6670{
6671    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6672    if (threadBase == 0) {
6673        buffer->frameCount = 0;
6674        buffer->raw = NULL;
6675        return NOT_ENOUGH_DATA;
6676    }
6677    RecordThread *recordThread = (RecordThread *) threadBase.get();
6678    int32_t rear = recordThread->mRsmpInRear;
6679    int32_t front = mRsmpInFront;
6680    ssize_t filled = rear - front;
6681    // FIXME should not be P2 (don't want to increase latency)
6682    // FIXME if client not keeping up, discard
6683    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6684    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6685    front &= recordThread->mRsmpInFramesP2 - 1;
6686    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6687    if (part1 > (size_t) filled) {
6688        part1 = filled;
6689    }
6690    size_t ask = buffer->frameCount;
6691    ALOG_ASSERT(ask > 0);
6692    if (part1 > ask) {
6693        part1 = ask;
6694    }
6695    if (part1 == 0) {
6696        // out of data is fine since the resampler will return a short-count.
6697        buffer->raw = NULL;
6698        buffer->frameCount = 0;
6699        mRsmpInUnrel = 0;
6700        return NOT_ENOUGH_DATA;
6701    }
6702
6703    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6704    buffer->frameCount = part1;
6705    mRsmpInUnrel = part1;
6706    return NO_ERROR;
6707}
6708
6709// AudioBufferProvider interface
6710void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6711        AudioBufferProvider::Buffer* buffer)
6712{
6713    size_t stepCount = buffer->frameCount;
6714    if (stepCount == 0) {
6715        return;
6716    }
6717    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6718    mRsmpInUnrel -= stepCount;
6719    mRsmpInFront += stepCount;
6720    buffer->raw = NULL;
6721    buffer->frameCount = 0;
6722}
6723
6724AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6725        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6726        uint32_t srcSampleRate,
6727        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6728        uint32_t dstSampleRate) :
6729            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6730            // mSrcFormat
6731            // mSrcSampleRate
6732            // mDstChannelMask
6733            // mDstFormat
6734            // mDstSampleRate
6735            // mSrcChannelCount
6736            // mDstChannelCount
6737            // mDstFrameSize
6738            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6739            mResampler(NULL),
6740            mIsLegacyDownmix(false),
6741            mIsLegacyUpmix(false),
6742            mRequiresFloat(false),
6743            mInputConverterProvider(NULL)
6744{
6745    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6746            dstChannelMask, dstFormat, dstSampleRate);
6747}
6748
6749AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6750    free(mBuf);
6751    delete mResampler;
6752    delete mInputConverterProvider;
6753}
6754
6755size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6756        AudioBufferProvider *provider, size_t frames)
6757{
6758    if (mInputConverterProvider != NULL) {
6759        mInputConverterProvider->setBufferProvider(provider);
6760        provider = mInputConverterProvider;
6761    }
6762
6763    if (mResampler == NULL) {
6764        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6765                mSrcSampleRate, mSrcFormat, mDstFormat);
6766
6767        AudioBufferProvider::Buffer buffer;
6768        for (size_t i = frames; i > 0; ) {
6769            buffer.frameCount = i;
6770            status_t status = provider->getNextBuffer(&buffer);
6771            if (status != OK || buffer.frameCount == 0) {
6772                frames -= i; // cannot fill request.
6773                break;
6774            }
6775            // format convert to destination buffer
6776            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6777
6778            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6779            i -= buffer.frameCount;
6780            provider->releaseBuffer(&buffer);
6781        }
6782    } else {
6783         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6784                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6785
6786         // reallocate buffer if needed
6787         if (mBufFrameSize != 0 && mBufFrames < frames) {
6788             free(mBuf);
6789             mBufFrames = frames;
6790             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6791         }
6792        // resampler accumulates, but we only have one source track
6793        memset(mBuf, 0, frames * mBufFrameSize);
6794        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6795        // format convert to destination buffer
6796        convertResampler(dst, mBuf, frames);
6797    }
6798    return frames;
6799}
6800
6801status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6802        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6803        uint32_t srcSampleRate,
6804        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6805        uint32_t dstSampleRate)
6806{
6807    // quick evaluation if there is any change.
6808    if (mSrcFormat == srcFormat
6809            && mSrcChannelMask == srcChannelMask
6810            && mSrcSampleRate == srcSampleRate
6811            && mDstFormat == dstFormat
6812            && mDstChannelMask == dstChannelMask
6813            && mDstSampleRate == dstSampleRate) {
6814        return NO_ERROR;
6815    }
6816
6817    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6818            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6819            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6820    const bool valid =
6821            audio_is_input_channel(srcChannelMask)
6822            && audio_is_input_channel(dstChannelMask)
6823            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6824            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6825            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6826            ; // no upsampling checks for now
6827    if (!valid) {
6828        return BAD_VALUE;
6829    }
6830
6831    mSrcFormat = srcFormat;
6832    mSrcChannelMask = srcChannelMask;
6833    mSrcSampleRate = srcSampleRate;
6834    mDstFormat = dstFormat;
6835    mDstChannelMask = dstChannelMask;
6836    mDstSampleRate = dstSampleRate;
6837
6838    // compute derived parameters
6839    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6840    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6841    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6842
6843    // do we need to resample?
6844    delete mResampler;
6845    mResampler = NULL;
6846    if (mSrcSampleRate != mDstSampleRate) {
6847        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6848                mSrcChannelCount, mDstSampleRate);
6849        mResampler->setSampleRate(mSrcSampleRate);
6850        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6851    }
6852
6853    // are we running legacy channel conversion modes?
6854    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6855                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6856                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6857    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6858                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6859                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6860
6861    // do we need to process in float?
6862    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6863
6864    // do we need a staging buffer to convert for destination (we can still optimize this)?
6865    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6866    if (mResampler != NULL) {
6867        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6868                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6869    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6870        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6871    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6872        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6873    } else {
6874        mBufFrameSize = 0;
6875    }
6876    mBufFrames = 0; // force the buffer to be resized.
6877
6878    // do we need an input converter buffer provider to give us float?
6879    delete mInputConverterProvider;
6880    mInputConverterProvider = NULL;
6881    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6882        mInputConverterProvider = new ReformatBufferProvider(
6883                audio_channel_count_from_in_mask(mSrcChannelMask),
6884                mSrcFormat,
6885                AUDIO_FORMAT_PCM_FLOAT,
6886                256 /* provider buffer frame count */);
6887    }
6888
6889    // do we need a remixer to do channel mask conversion
6890    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6891        (void) memcpy_by_index_array_initialization_from_channel_mask(
6892                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6893    }
6894    return NO_ERROR;
6895}
6896
6897void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6898        void *dst, const void *src, size_t frames)
6899{
6900    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6901    if (mBufFrameSize != 0 && mBufFrames < frames) {
6902        free(mBuf);
6903        mBufFrames = frames;
6904        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6905    }
6906    // do we need to do legacy upmix and downmix?
6907    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6908        void *dstBuf = mBuf != NULL ? mBuf : dst;
6909        if (mIsLegacyUpmix) {
6910            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6911                    (const float *)src, frames);
6912        } else /*mIsLegacyDownmix */ {
6913            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6914                    (const float *)src, frames);
6915        }
6916        if (mBuf != NULL) {
6917            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6918                    frames * mDstChannelCount);
6919        }
6920        return;
6921    }
6922    // do we need to do channel mask conversion?
6923    if (mSrcChannelMask != mDstChannelMask) {
6924        void *dstBuf = mBuf != NULL ? mBuf : dst;
6925        memcpy_by_index_array(dstBuf, mDstChannelCount,
6926                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6927        if (dstBuf == dst) {
6928            return; // format is the same
6929        }
6930    }
6931    // convert to destination buffer
6932    const void *convertBuf = mBuf != NULL ? mBuf : src;
6933    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6934            frames * mDstChannelCount);
6935}
6936
6937void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6938        void *dst, /*not-a-const*/ void *src, size_t frames)
6939{
6940    // src buffer format is ALWAYS float when entering this routine
6941    if (mIsLegacyUpmix) {
6942        ; // mono to stereo already handled by resampler
6943    } else if (mIsLegacyDownmix
6944            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6945        // the resampler outputs stereo for mono input channel (a feature?)
6946        // must convert to mono
6947        downmix_to_mono_float_from_stereo_float((float *)src,
6948                (const float *)src, frames);
6949    } else if (mSrcChannelMask != mDstChannelMask) {
6950        // convert to mono channel again for channel mask conversion (could be skipped
6951        // with further optimization).
6952        if (mSrcChannelCount == 1) {
6953            downmix_to_mono_float_from_stereo_float((float *)src,
6954                (const float *)src, frames);
6955        }
6956        // convert to destination format (in place, OK as float is larger than other types)
6957        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6958            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6959                    frames * mSrcChannelCount);
6960        }
6961        // channel convert and save to dst
6962        memcpy_by_index_array(dst, mDstChannelCount,
6963                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6964        return;
6965    }
6966    // convert to destination format and save to dst
6967    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6968            frames * mDstChannelCount);
6969}
6970
6971bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6972                                                        status_t& status)
6973{
6974    bool reconfig = false;
6975
6976    status = NO_ERROR;
6977
6978    audio_format_t reqFormat = mFormat;
6979    uint32_t samplingRate = mSampleRate;
6980    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
6981    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6982
6983    AudioParameter param = AudioParameter(keyValuePair);
6984    int value;
6985
6986    // scope for AutoPark extends to end of method
6987    AutoPark<FastCapture> park(mFastCapture);
6988
6989    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6990    //      channel count change can be requested. Do we mandate the first client defines the
6991    //      HAL sampling rate and channel count or do we allow changes on the fly?
6992    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6993        samplingRate = value;
6994        reconfig = true;
6995    }
6996    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6997        if (!audio_is_linear_pcm((audio_format_t) value)) {
6998            status = BAD_VALUE;
6999        } else {
7000            reqFormat = (audio_format_t) value;
7001            reconfig = true;
7002        }
7003    }
7004    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7005        audio_channel_mask_t mask = (audio_channel_mask_t) value;
7006        if (!audio_is_input_channel(mask) ||
7007                audio_channel_count_from_in_mask(mask) > FCC_8) {
7008            status = BAD_VALUE;
7009        } else {
7010            channelMask = mask;
7011            reconfig = true;
7012        }
7013    }
7014    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7015        // do not accept frame count changes if tracks are open as the track buffer
7016        // size depends on frame count and correct behavior would not be guaranteed
7017        // if frame count is changed after track creation
7018        if (mActiveTracks.size() > 0) {
7019            status = INVALID_OPERATION;
7020        } else {
7021            reconfig = true;
7022        }
7023    }
7024    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7025        // forward device change to effects that have requested to be
7026        // aware of attached audio device.
7027        for (size_t i = 0; i < mEffectChains.size(); i++) {
7028            mEffectChains[i]->setDevice_l(value);
7029        }
7030
7031        // store input device and output device but do not forward output device to audio HAL.
7032        // Note that status is ignored by the caller for output device
7033        // (see AudioFlinger::setParameters()
7034        if (audio_is_output_devices(value)) {
7035            mOutDevice = value;
7036            status = BAD_VALUE;
7037        } else {
7038            mInDevice = value;
7039            if (value != AUDIO_DEVICE_NONE) {
7040                mPrevInDevice = value;
7041            }
7042            // disable AEC and NS if the device is a BT SCO headset supporting those
7043            // pre processings
7044            if (mTracks.size() > 0) {
7045                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7046                                    mAudioFlinger->btNrecIsOff();
7047                for (size_t i = 0; i < mTracks.size(); i++) {
7048                    sp<RecordTrack> track = mTracks[i];
7049                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7050                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7051                }
7052            }
7053        }
7054    }
7055    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7056            mAudioSource != (audio_source_t)value) {
7057        // forward device change to effects that have requested to be
7058        // aware of attached audio device.
7059        for (size_t i = 0; i < mEffectChains.size(); i++) {
7060            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7061        }
7062        mAudioSource = (audio_source_t)value;
7063    }
7064
7065    if (status == NO_ERROR) {
7066        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7067                keyValuePair.string());
7068        if (status == INVALID_OPERATION) {
7069            inputStandBy();
7070            status = mInput->stream->common.set_parameters(&mInput->stream->common,
7071                    keyValuePair.string());
7072        }
7073        if (reconfig) {
7074            if (status == BAD_VALUE &&
7075                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7076                audio_is_linear_pcm(reqFormat) &&
7077                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7078                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7079                audio_channel_count_from_in_mask(
7080                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7081                status = NO_ERROR;
7082            }
7083            if (status == NO_ERROR) {
7084                readInputParameters_l();
7085                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7086            }
7087        }
7088    }
7089
7090    return reconfig;
7091}
7092
7093String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7094{
7095    Mutex::Autolock _l(mLock);
7096    if (initCheck() != NO_ERROR) {
7097        return String8();
7098    }
7099
7100    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7101    const String8 out_s8(s);
7102    free(s);
7103    return out_s8;
7104}
7105
7106void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7107    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7108
7109    desc->mIoHandle = mId;
7110
7111    switch (event) {
7112    case AUDIO_INPUT_OPENED:
7113    case AUDIO_INPUT_CONFIG_CHANGED:
7114        desc->mPatch = mPatch;
7115        desc->mChannelMask = mChannelMask;
7116        desc->mSamplingRate = mSampleRate;
7117        desc->mFormat = mFormat;
7118        desc->mFrameCount = mFrameCount;
7119        desc->mLatency = 0;
7120        break;
7121
7122    case AUDIO_INPUT_CLOSED:
7123    default:
7124        break;
7125    }
7126    mAudioFlinger->ioConfigChanged(event, desc, pid);
7127}
7128
7129void AudioFlinger::RecordThread::readInputParameters_l()
7130{
7131    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7132    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7133    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7134    if (mChannelCount > FCC_8) {
7135        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7136    }
7137    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7138    mFormat = mHALFormat;
7139    if (!audio_is_linear_pcm(mFormat)) {
7140        ALOGE("HAL format %#x is not linear pcm", mFormat);
7141    }
7142    mFrameSize = audio_stream_in_frame_size(mInput->stream);
7143    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7144    mFrameCount = mBufferSize / mFrameSize;
7145    // This is the formula for calculating the temporary buffer size.
7146    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7147    // 1 full output buffer, regardless of the alignment of the available input.
7148    // The value is somewhat arbitrary, and could probably be even larger.
7149    // A larger value should allow more old data to be read after a track calls start(),
7150    // without increasing latency.
7151    //
7152    // Note this is independent of the maximum downsampling ratio permitted for capture.
7153    mRsmpInFrames = mFrameCount * 7;
7154    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7155    free(mRsmpInBuffer);
7156    mRsmpInBuffer = NULL;
7157
7158    // TODO optimize audio capture buffer sizes ...
7159    // Here we calculate the size of the sliding buffer used as a source
7160    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7161    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7162    // be better to have it derived from the pipe depth in the long term.
7163    // The current value is higher than necessary.  However it should not add to latency.
7164
7165    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7166    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7167    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7168    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7169
7170    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7171    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7172}
7173
7174uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7175{
7176    Mutex::Autolock _l(mLock);
7177    if (initCheck() != NO_ERROR) {
7178        return 0;
7179    }
7180
7181    return mInput->stream->get_input_frames_lost(mInput->stream);
7182}
7183
7184uint32_t AudioFlinger::RecordThread::hasAudioSession(audio_session_t sessionId) const
7185{
7186    Mutex::Autolock _l(mLock);
7187    uint32_t result = 0;
7188    if (getEffectChain_l(sessionId) != 0) {
7189        result = EFFECT_SESSION;
7190    }
7191
7192    for (size_t i = 0; i < mTracks.size(); ++i) {
7193        if (sessionId == mTracks[i]->sessionId()) {
7194            result |= TRACK_SESSION;
7195            break;
7196        }
7197    }
7198
7199    return result;
7200}
7201
7202KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7203{
7204    KeyedVector<audio_session_t, bool> ids;
7205    Mutex::Autolock _l(mLock);
7206    for (size_t j = 0; j < mTracks.size(); ++j) {
7207        sp<RecordThread::RecordTrack> track = mTracks[j];
7208        audio_session_t sessionId = track->sessionId();
7209        if (ids.indexOfKey(sessionId) < 0) {
7210            ids.add(sessionId, true);
7211        }
7212    }
7213    return ids;
7214}
7215
7216AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7217{
7218    Mutex::Autolock _l(mLock);
7219    AudioStreamIn *input = mInput;
7220    mInput = NULL;
7221    return input;
7222}
7223
7224// this method must always be called either with ThreadBase mLock held or inside the thread loop
7225audio_stream_t* AudioFlinger::RecordThread::stream() const
7226{
7227    if (mInput == NULL) {
7228        return NULL;
7229    }
7230    return &mInput->stream->common;
7231}
7232
7233status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7234{
7235    // only one chain per input thread
7236    if (mEffectChains.size() != 0) {
7237        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7238        return INVALID_OPERATION;
7239    }
7240    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7241    chain->setThread(this);
7242    chain->setInBuffer(NULL);
7243    chain->setOutBuffer(NULL);
7244
7245    checkSuspendOnAddEffectChain_l(chain);
7246
7247    // make sure enabled pre processing effects state is communicated to the HAL as we
7248    // just moved them to a new input stream.
7249    chain->syncHalEffectsState();
7250
7251    mEffectChains.add(chain);
7252
7253    return NO_ERROR;
7254}
7255
7256size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7257{
7258    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7259    ALOGW_IF(mEffectChains.size() != 1,
7260            "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7261            chain.get(), mEffectChains.size(), this);
7262    if (mEffectChains.size() == 1) {
7263        mEffectChains.removeAt(0);
7264    }
7265    return 0;
7266}
7267
7268status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7269                                                          audio_patch_handle_t *handle)
7270{
7271    status_t status = NO_ERROR;
7272
7273    // store new device and send to effects
7274    mInDevice = patch->sources[0].ext.device.type;
7275    mPatch = *patch;
7276    for (size_t i = 0; i < mEffectChains.size(); i++) {
7277        mEffectChains[i]->setDevice_l(mInDevice);
7278    }
7279
7280    // disable AEC and NS if the device is a BT SCO headset supporting those
7281    // pre processings
7282    if (mTracks.size() > 0) {
7283        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7284                            mAudioFlinger->btNrecIsOff();
7285        for (size_t i = 0; i < mTracks.size(); i++) {
7286            sp<RecordTrack> track = mTracks[i];
7287            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7288            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7289        }
7290    }
7291
7292    // store new source and send to effects
7293    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7294        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7295        for (size_t i = 0; i < mEffectChains.size(); i++) {
7296            mEffectChains[i]->setAudioSource_l(mAudioSource);
7297        }
7298    }
7299
7300    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7301        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7302        status = hwDevice->create_audio_patch(hwDevice,
7303                                               patch->num_sources,
7304                                               patch->sources,
7305                                               patch->num_sinks,
7306                                               patch->sinks,
7307                                               handle);
7308    } else {
7309        char *address;
7310        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7311            address = audio_device_address_to_parameter(
7312                                                patch->sources[0].ext.device.type,
7313                                                patch->sources[0].ext.device.address);
7314        } else {
7315            address = (char *)calloc(1, 1);
7316        }
7317        AudioParameter param = AudioParameter(String8(address));
7318        free(address);
7319        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7320                     (int)patch->sources[0].ext.device.type);
7321        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7322                                         (int)patch->sinks[0].ext.mix.usecase.source);
7323        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7324                param.toString().string());
7325        *handle = AUDIO_PATCH_HANDLE_NONE;
7326    }
7327
7328    if (mInDevice != mPrevInDevice) {
7329        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7330        mPrevInDevice = mInDevice;
7331    }
7332
7333    return status;
7334}
7335
7336status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7337{
7338    status_t status = NO_ERROR;
7339
7340    mInDevice = AUDIO_DEVICE_NONE;
7341
7342    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7343        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7344        status = hwDevice->release_audio_patch(hwDevice, handle);
7345    } else {
7346        AudioParameter param;
7347        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7348        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7349                param.toString().string());
7350    }
7351    return status;
7352}
7353
7354void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7355{
7356    Mutex::Autolock _l(mLock);
7357    mTracks.add(record);
7358}
7359
7360void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7361{
7362    Mutex::Autolock _l(mLock);
7363    destroyTrack_l(record);
7364}
7365
7366void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7367{
7368    ThreadBase::getAudioPortConfig(config);
7369    config->role = AUDIO_PORT_ROLE_SINK;
7370    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7371    config->ext.mix.usecase.source = mAudioSource;
7372}
7373
7374} // namespace android
7375