Threads.cpp revision 58545be2ce4e701c8c37401edcc126a8b683890d
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include "AudioFlinger.h"
57#include "AudioMixer.h"
58#include "BufferProviders.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "mediautils/SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74// ----------------------------------------------------------------------------
75
76// Note: the following macro is used for extremely verbose logging message.  In
77// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
78// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
79// are so verbose that we want to suppress them even when we have ALOG_ASSERT
80// turned on.  Do not uncomment the #def below unless you really know what you
81// are doing and want to see all of the extremely verbose messages.
82//#define VERY_VERY_VERBOSE_LOGGING
83#ifdef VERY_VERY_VERBOSE_LOGGING
84#define ALOGVV ALOGV
85#else
86#define ALOGVV(a...) do { } while(0)
87#endif
88
89// TODO: Move these macro/inlines to a header file.
90#define max(a, b) ((a) > (b) ? (a) : (b))
91template <typename T>
92static inline T min(const T& a, const T& b)
93{
94    return a < b ? a : b;
95}
96
97#ifndef ARRAY_SIZE
98#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
99#endif
100
101namespace android {
102
103// retry counts for buffer fill timeout
104// 50 * ~20msecs = 1 second
105static const int8_t kMaxTrackRetries = 50;
106static const int8_t kMaxTrackStartupRetries = 50;
107// allow less retry attempts on direct output thread.
108// direct outputs can be a scarce resource in audio hardware and should
109// be released as quickly as possible.
110static const int8_t kMaxTrackRetriesDirect = 2;
111
112// don't warn about blocked writes or record buffer overflows more often than this
113static const nsecs_t kWarningThrottleNs = seconds(5);
114
115// RecordThread loop sleep time upon application overrun or audio HAL read error
116static const int kRecordThreadSleepUs = 5000;
117
118// maximum time to wait in sendConfigEvent_l() for a status to be received
119static const nsecs_t kConfigEventTimeoutNs = seconds(2);
120
121// minimum sleep time for the mixer thread loop when tracks are active but in underrun
122static const uint32_t kMinThreadSleepTimeUs = 5000;
123// maximum divider applied to the active sleep time in the mixer thread loop
124static const uint32_t kMaxThreadSleepTimeShift = 2;
125
126// minimum normal sink buffer size, expressed in milliseconds rather than frames
127// FIXME This should be based on experimentally observed scheduling jitter
128static const uint32_t kMinNormalSinkBufferSizeMs = 20;
129// maximum normal sink buffer size
130static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
131
132// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
133// FIXME This should be based on experimentally observed scheduling jitter
134static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
135
136// Offloaded output thread standby delay: allows track transition without going to standby
137static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
138
139// Whether to use fast mixer
140static const enum {
141    FastMixer_Never,    // never initialize or use: for debugging only
142    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
143                        // normal mixer multiplier is 1
144    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
145                        // multiplier is calculated based on min & max normal mixer buffer size
146    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
147                        // multiplier is calculated based on min & max normal mixer buffer size
148    // FIXME for FastMixer_Dynamic:
149    //  Supporting this option will require fixing HALs that can't handle large writes.
150    //  For example, one HAL implementation returns an error from a large write,
151    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
152    //  We could either fix the HAL implementations, or provide a wrapper that breaks
153    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
154} kUseFastMixer = FastMixer_Static;
155
156// Whether to use fast capture
157static const enum {
158    FastCapture_Never,  // never initialize or use: for debugging only
159    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
160    FastCapture_Static, // initialize if needed, then use all the time if initialized
161} kUseFastCapture = FastCapture_Static;
162
163// Priorities for requestPriority
164static const int kPriorityAudioApp = 2;
165static const int kPriorityFastMixer = 3;
166static const int kPriorityFastCapture = 3;
167
168// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
169// for the track.  The client then sub-divides this into smaller buffers for its use.
170// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
171// So for now we just assume that client is double-buffered for fast tracks.
172// FIXME It would be better for client to tell AudioFlinger the value of N,
173// so AudioFlinger could allocate the right amount of memory.
174// See the client's minBufCount and mNotificationFramesAct calculations for details.
175
176// This is the default value, if not specified by property.
177static const int kFastTrackMultiplier = 2;
178
179// The minimum and maximum allowed values
180static const int kFastTrackMultiplierMin = 1;
181static const int kFastTrackMultiplierMax = 2;
182
183// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
184static int sFastTrackMultiplier = kFastTrackMultiplier;
185
186// See Thread::readOnlyHeap().
187// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
188// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
189// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
190static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
191
192// ----------------------------------------------------------------------------
193
194static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
195
196static void sFastTrackMultiplierInit()
197{
198    char value[PROPERTY_VALUE_MAX];
199    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
200        char *endptr;
201        unsigned long ul = strtoul(value, &endptr, 0);
202        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
203            sFastTrackMultiplier = (int) ul;
204        }
205    }
206}
207
208// ----------------------------------------------------------------------------
209
210#ifdef ADD_BATTERY_DATA
211// To collect the amplifier usage
212static void addBatteryData(uint32_t params) {
213    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
214    if (service == NULL) {
215        // it already logged
216        return;
217    }
218
219    service->addBatteryData(params);
220}
221#endif
222
223// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
224struct {
225    // call when you acquire a partial wakelock
226    void acquire(const sp<IBinder> &wakeLockToken) {
227        pthread_mutex_lock(&mLock);
228        if (wakeLockToken.get() == nullptr) {
229            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
230        } else {
231            if (mCount == 0) {
232                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
233            }
234            ++mCount;
235        }
236        pthread_mutex_unlock(&mLock);
237    }
238
239    // call when you release a partial wakelock.
240    void release(const sp<IBinder> &wakeLockToken) {
241        if (wakeLockToken.get() == nullptr) {
242            return;
243        }
244        pthread_mutex_lock(&mLock);
245        if (--mCount < 0) {
246            ALOGE("negative wakelock count");
247            mCount = 0;
248        }
249        pthread_mutex_unlock(&mLock);
250    }
251
252    // retrieves the boottime timebase offset from monotonic.
253    int64_t getBoottimeOffset() {
254        pthread_mutex_lock(&mLock);
255        int64_t boottimeOffset = mBoottimeOffset;
256        pthread_mutex_unlock(&mLock);
257        return boottimeOffset;
258    }
259
260    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
261    // and the selected timebase.
262    // Currently only TIMEBASE_BOOTTIME is allowed.
263    //
264    // This only needs to be called upon acquiring the first partial wakelock
265    // after all other partial wakelocks are released.
266    //
267    // We do an empirical measurement of the offset rather than parsing
268    // /proc/timer_list since the latter is not a formal kernel ABI.
269    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
270        int clockbase;
271        switch (timebase) {
272        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
273            clockbase = SYSTEM_TIME_BOOTTIME;
274            break;
275        default:
276            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
277            break;
278        }
279        // try three times to get the clock offset, choose the one
280        // with the minimum gap in measurements.
281        const int tries = 3;
282        nsecs_t bestGap, measured;
283        for (int i = 0; i < tries; ++i) {
284            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
285            const nsecs_t tbase = systemTime(clockbase);
286            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
287            const nsecs_t gap = tmono2 - tmono;
288            if (i == 0 || gap < bestGap) {
289                bestGap = gap;
290                measured = tbase - ((tmono + tmono2) >> 1);
291            }
292        }
293
294        // to avoid micro-adjusting, we don't change the timebase
295        // unless it is significantly different.
296        //
297        // Assumption: It probably takes more than toleranceNs to
298        // suspend and resume the device.
299        static int64_t toleranceNs = 10000; // 10 us
300        if (llabs(*offset - measured) > toleranceNs) {
301            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
302                    (long long)*offset, (long long)measured);
303            *offset = measured;
304        }
305    }
306
307    pthread_mutex_t mLock;
308    int32_t mCount;
309    int64_t mBoottimeOffset;
310} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
311
312// ----------------------------------------------------------------------------
313//      CPU Stats
314// ----------------------------------------------------------------------------
315
316class CpuStats {
317public:
318    CpuStats();
319    void sample(const String8 &title);
320#ifdef DEBUG_CPU_USAGE
321private:
322    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
323    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
324
325    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
326
327    int mCpuNum;                        // thread's current CPU number
328    int mCpukHz;                        // frequency of thread's current CPU in kHz
329#endif
330};
331
332CpuStats::CpuStats()
333#ifdef DEBUG_CPU_USAGE
334    : mCpuNum(-1), mCpukHz(-1)
335#endif
336{
337}
338
339void CpuStats::sample(const String8 &title
340#ifndef DEBUG_CPU_USAGE
341                __unused
342#endif
343        ) {
344#ifdef DEBUG_CPU_USAGE
345    // get current thread's delta CPU time in wall clock ns
346    double wcNs;
347    bool valid = mCpuUsage.sampleAndEnable(wcNs);
348
349    // record sample for wall clock statistics
350    if (valid) {
351        mWcStats.sample(wcNs);
352    }
353
354    // get the current CPU number
355    int cpuNum = sched_getcpu();
356
357    // get the current CPU frequency in kHz
358    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
359
360    // check if either CPU number or frequency changed
361    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
362        mCpuNum = cpuNum;
363        mCpukHz = cpukHz;
364        // ignore sample for purposes of cycles
365        valid = false;
366    }
367
368    // if no change in CPU number or frequency, then record sample for cycle statistics
369    if (valid && mCpukHz > 0) {
370        double cycles = wcNs * cpukHz * 0.000001;
371        mHzStats.sample(cycles);
372    }
373
374    unsigned n = mWcStats.n();
375    // mCpuUsage.elapsed() is expensive, so don't call it every loop
376    if ((n & 127) == 1) {
377        long long elapsed = mCpuUsage.elapsed();
378        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
379            double perLoop = elapsed / (double) n;
380            double perLoop100 = perLoop * 0.01;
381            double perLoop1k = perLoop * 0.001;
382            double mean = mWcStats.mean();
383            double stddev = mWcStats.stddev();
384            double minimum = mWcStats.minimum();
385            double maximum = mWcStats.maximum();
386            double meanCycles = mHzStats.mean();
387            double stddevCycles = mHzStats.stddev();
388            double minCycles = mHzStats.minimum();
389            double maxCycles = mHzStats.maximum();
390            mCpuUsage.resetElapsed();
391            mWcStats.reset();
392            mHzStats.reset();
393            ALOGD("CPU usage for %s over past %.1f secs\n"
394                "  (%u mixer loops at %.1f mean ms per loop):\n"
395                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
396                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
397                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
398                    title.string(),
399                    elapsed * .000000001, n, perLoop * .000001,
400                    mean * .001,
401                    stddev * .001,
402                    minimum * .001,
403                    maximum * .001,
404                    mean / perLoop100,
405                    stddev / perLoop100,
406                    minimum / perLoop100,
407                    maximum / perLoop100,
408                    meanCycles / perLoop1k,
409                    stddevCycles / perLoop1k,
410                    minCycles / perLoop1k,
411                    maxCycles / perLoop1k);
412
413        }
414    }
415#endif
416};
417
418// ----------------------------------------------------------------------------
419//      ThreadBase
420// ----------------------------------------------------------------------------
421
422// static
423const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
424{
425    switch (type) {
426    case MIXER:
427        return "MIXER";
428    case DIRECT:
429        return "DIRECT";
430    case DUPLICATING:
431        return "DUPLICATING";
432    case RECORD:
433        return "RECORD";
434    case OFFLOAD:
435        return "OFFLOAD";
436    default:
437        return "unknown";
438    }
439}
440
441String8 devicesToString(audio_devices_t devices)
442{
443    static const struct mapping {
444        audio_devices_t mDevices;
445        const char *    mString;
446    } mappingsOut[] = {
447        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
448        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
449        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
450        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
451        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
452        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
453        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
454        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
455        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
456        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
457        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
458        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
459        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
460        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
461        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
462        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
463        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
464        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
465        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
466        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
467        {AUDIO_DEVICE_OUT_FM,               "FM"},
468        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
469        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
470        {AUDIO_DEVICE_OUT_IP,               "IP"},
471        {AUDIO_DEVICE_OUT_BUS,              "BUS"},
472        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
473    }, mappingsIn[] = {
474        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
475        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
476        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
477        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
478        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
479        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
480        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
481        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
482        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
483        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
484        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
485        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
486        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
487        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
488        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
489        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
490        {AUDIO_DEVICE_IN_LINE,              "LINE"},
491        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
492        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
493        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
494        {AUDIO_DEVICE_IN_IP,                "IP"},
495        {AUDIO_DEVICE_IN_BUS,               "BUS"},
496        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
497    };
498    String8 result;
499    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
500    const mapping *entry;
501    if (devices & AUDIO_DEVICE_BIT_IN) {
502        devices &= ~AUDIO_DEVICE_BIT_IN;
503        entry = mappingsIn;
504    } else {
505        entry = mappingsOut;
506    }
507    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
508        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
509        if (devices & entry->mDevices) {
510            if (!result.isEmpty()) {
511                result.append("|");
512            }
513            result.append(entry->mString);
514        }
515    }
516    if (devices & ~allDevices) {
517        if (!result.isEmpty()) {
518            result.append("|");
519        }
520        result.appendFormat("0x%X", devices & ~allDevices);
521    }
522    if (result.isEmpty()) {
523        result.append(entry->mString);
524    }
525    return result;
526}
527
528String8 inputFlagsToString(audio_input_flags_t flags)
529{
530    static const struct mapping {
531        audio_input_flags_t     mFlag;
532        const char *            mString;
533    } mappings[] = {
534        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
535        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
536        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
537        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
538        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
539    };
540    String8 result;
541    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
542    const mapping *entry;
543    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
544        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
545        if (flags & entry->mFlag) {
546            if (!result.isEmpty()) {
547                result.append("|");
548            }
549            result.append(entry->mString);
550        }
551    }
552    if (flags & ~allFlags) {
553        if (!result.isEmpty()) {
554            result.append("|");
555        }
556        result.appendFormat("0x%X", flags & ~allFlags);
557    }
558    if (result.isEmpty()) {
559        result.append(entry->mString);
560    }
561    return result;
562}
563
564String8 outputFlagsToString(audio_output_flags_t flags)
565{
566    static const struct mapping {
567        audio_output_flags_t    mFlag;
568        const char *            mString;
569    } mappings[] = {
570        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
571        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
572        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
573        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
574        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
575        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
576        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
577        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
578        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
579        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
580        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
581    };
582    String8 result;
583    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
584    const mapping *entry;
585    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
586        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
587        if (flags & entry->mFlag) {
588            if (!result.isEmpty()) {
589                result.append("|");
590            }
591            result.append(entry->mString);
592        }
593    }
594    if (flags & ~allFlags) {
595        if (!result.isEmpty()) {
596            result.append("|");
597        }
598        result.appendFormat("0x%X", flags & ~allFlags);
599    }
600    if (result.isEmpty()) {
601        result.append(entry->mString);
602    }
603    return result;
604}
605
606const char *sourceToString(audio_source_t source)
607{
608    switch (source) {
609    case AUDIO_SOURCE_DEFAULT:              return "default";
610    case AUDIO_SOURCE_MIC:                  return "mic";
611    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
612    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
613    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
614    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
615    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
616    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
617    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
618    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
619    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
620    case AUDIO_SOURCE_HOTWORD:              return "hotword";
621    default:                                return "unknown";
622    }
623}
624
625AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
626        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
627    :   Thread(false /*canCallJava*/),
628        mType(type),
629        mAudioFlinger(audioFlinger),
630        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
631        // are set by PlaybackThread::readOutputParameters_l() or
632        // RecordThread::readInputParameters_l()
633        //FIXME: mStandby should be true here. Is this some kind of hack?
634        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
635        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
636        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
637        // mName will be set by concrete (non-virtual) subclass
638        mDeathRecipient(new PMDeathRecipient(this)),
639        mSystemReady(systemReady),
640        mNotifiedBatteryStart(false)
641{
642    memset(&mPatch, 0, sizeof(struct audio_patch));
643}
644
645AudioFlinger::ThreadBase::~ThreadBase()
646{
647    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
648    mConfigEvents.clear();
649
650    // do not lock the mutex in destructor
651    releaseWakeLock_l();
652    if (mPowerManager != 0) {
653        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
654        binder->unlinkToDeath(mDeathRecipient);
655    }
656}
657
658status_t AudioFlinger::ThreadBase::readyToRun()
659{
660    status_t status = initCheck();
661    if (status == NO_ERROR) {
662        ALOGI("AudioFlinger's thread %p ready to run", this);
663    } else {
664        ALOGE("No working audio driver found.");
665    }
666    return status;
667}
668
669void AudioFlinger::ThreadBase::exit()
670{
671    ALOGV("ThreadBase::exit");
672    // do any cleanup required for exit to succeed
673    preExit();
674    {
675        // This lock prevents the following race in thread (uniprocessor for illustration):
676        //  if (!exitPending()) {
677        //      // context switch from here to exit()
678        //      // exit() calls requestExit(), what exitPending() observes
679        //      // exit() calls signal(), which is dropped since no waiters
680        //      // context switch back from exit() to here
681        //      mWaitWorkCV.wait(...);
682        //      // now thread is hung
683        //  }
684        AutoMutex lock(mLock);
685        requestExit();
686        mWaitWorkCV.broadcast();
687    }
688    // When Thread::requestExitAndWait is made virtual and this method is renamed to
689    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
690    requestExitAndWait();
691}
692
693status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
694{
695    status_t status;
696
697    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
698    Mutex::Autolock _l(mLock);
699
700    return sendSetParameterConfigEvent_l(keyValuePairs);
701}
702
703// sendConfigEvent_l() must be called with ThreadBase::mLock held
704// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
705status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
706{
707    status_t status = NO_ERROR;
708
709    if (event->mRequiresSystemReady && !mSystemReady) {
710        event->mWaitStatus = false;
711        mPendingConfigEvents.add(event);
712        return status;
713    }
714    mConfigEvents.add(event);
715    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
716    mWaitWorkCV.signal();
717    mLock.unlock();
718    {
719        Mutex::Autolock _l(event->mLock);
720        while (event->mWaitStatus) {
721            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
722                event->mStatus = TIMED_OUT;
723                event->mWaitStatus = false;
724            }
725        }
726        status = event->mStatus;
727    }
728    mLock.lock();
729    return status;
730}
731
732void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
733{
734    Mutex::Autolock _l(mLock);
735    sendIoConfigEvent_l(event, pid);
736}
737
738// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
739void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
740{
741    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
742    sendConfigEvent_l(configEvent);
743}
744
745void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
746{
747    Mutex::Autolock _l(mLock);
748    sendPrioConfigEvent_l(pid, tid, prio);
749}
750
751// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
752void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
753{
754    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
755    sendConfigEvent_l(configEvent);
756}
757
758// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
759status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
760{
761    sp<ConfigEvent> configEvent;
762    AudioParameter param(keyValuePair);
763    int value;
764    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
765        setMasterMono_l(value != 0);
766        if (param.size() == 1) {
767            return NO_ERROR; // should be a solo parameter - we don't pass down
768        }
769        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
770        configEvent = new SetParameterConfigEvent(param.toString());
771    } else {
772        configEvent = new SetParameterConfigEvent(keyValuePair);
773    }
774    return sendConfigEvent_l(configEvent);
775}
776
777status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
778                                                        const struct audio_patch *patch,
779                                                        audio_patch_handle_t *handle)
780{
781    Mutex::Autolock _l(mLock);
782    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
783    status_t status = sendConfigEvent_l(configEvent);
784    if (status == NO_ERROR) {
785        CreateAudioPatchConfigEventData *data =
786                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
787        *handle = data->mHandle;
788    }
789    return status;
790}
791
792status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
793                                                                const audio_patch_handle_t handle)
794{
795    Mutex::Autolock _l(mLock);
796    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
797    return sendConfigEvent_l(configEvent);
798}
799
800
801// post condition: mConfigEvents.isEmpty()
802void AudioFlinger::ThreadBase::processConfigEvents_l()
803{
804    bool configChanged = false;
805
806    while (!mConfigEvents.isEmpty()) {
807        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
808        sp<ConfigEvent> event = mConfigEvents[0];
809        mConfigEvents.removeAt(0);
810        switch (event->mType) {
811        case CFG_EVENT_PRIO: {
812            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
813            // FIXME Need to understand why this has to be done asynchronously
814            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
815                    true /*asynchronous*/);
816            if (err != 0) {
817                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
818                      data->mPrio, data->mPid, data->mTid, err);
819            }
820        } break;
821        case CFG_EVENT_IO: {
822            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
823            ioConfigChanged(data->mEvent, data->mPid);
824        } break;
825        case CFG_EVENT_SET_PARAMETER: {
826            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
827            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
828                configChanged = true;
829            }
830        } break;
831        case CFG_EVENT_CREATE_AUDIO_PATCH: {
832            CreateAudioPatchConfigEventData *data =
833                                            (CreateAudioPatchConfigEventData *)event->mData.get();
834            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
835        } break;
836        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
837            ReleaseAudioPatchConfigEventData *data =
838                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
839            event->mStatus = releaseAudioPatch_l(data->mHandle);
840        } break;
841        default:
842            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
843            break;
844        }
845        {
846            Mutex::Autolock _l(event->mLock);
847            if (event->mWaitStatus) {
848                event->mWaitStatus = false;
849                event->mCond.signal();
850            }
851        }
852        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
853    }
854
855    if (configChanged) {
856        cacheParameters_l();
857    }
858}
859
860String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
861    String8 s;
862    const audio_channel_representation_t representation =
863            audio_channel_mask_get_representation(mask);
864
865    switch (representation) {
866    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
867        if (output) {
868            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
869            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
870            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
871            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
872            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
873            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
874            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
875            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
876            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
877            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
878            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
879            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
880            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
881            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
882            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
883            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
884            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
885            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
886            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
887        } else {
888            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
889            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
890            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
891            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
892            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
893            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
894            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
895            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
896            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
897            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
898            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
899            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
900            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
901            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
902            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
903        }
904        const int len = s.length();
905        if (len > 2) {
906            char *str = s.lockBuffer(len); // needed?
907            s.unlockBuffer(len - 2);       // remove trailing ", "
908        }
909        return s;
910    }
911    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
912        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
913        return s;
914    default:
915        s.appendFormat("unknown mask, representation:%d  bits:%#x",
916                representation, audio_channel_mask_get_bits(mask));
917        return s;
918    }
919}
920
921void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
922{
923    const size_t SIZE = 256;
924    char buffer[SIZE];
925    String8 result;
926
927    bool locked = AudioFlinger::dumpTryLock(mLock);
928    if (!locked) {
929        dprintf(fd, "thread %p may be deadlocked\n", this);
930    }
931
932    dprintf(fd, "  Thread name: %s\n", mThreadName);
933    dprintf(fd, "  I/O handle: %d\n", mId);
934    dprintf(fd, "  TID: %d\n", getTid());
935    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
936    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
937    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
938    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
939    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
940    dprintf(fd, "  Channel count: %u\n", mChannelCount);
941    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
942            channelMaskToString(mChannelMask, mType != RECORD).string());
943    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
944    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
945    dprintf(fd, "  Pending config events:");
946    size_t numConfig = mConfigEvents.size();
947    if (numConfig) {
948        for (size_t i = 0; i < numConfig; i++) {
949            mConfigEvents[i]->dump(buffer, SIZE);
950            dprintf(fd, "\n    %s", buffer);
951        }
952        dprintf(fd, "\n");
953    } else {
954        dprintf(fd, " none\n");
955    }
956    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
957    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
958    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
959
960    if (locked) {
961        mLock.unlock();
962    }
963}
964
965void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
966{
967    const size_t SIZE = 256;
968    char buffer[SIZE];
969    String8 result;
970
971    size_t numEffectChains = mEffectChains.size();
972    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
973    write(fd, buffer, strlen(buffer));
974
975    for (size_t i = 0; i < numEffectChains; ++i) {
976        sp<EffectChain> chain = mEffectChains[i];
977        if (chain != 0) {
978            chain->dump(fd, args);
979        }
980    }
981}
982
983void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
984{
985    Mutex::Autolock _l(mLock);
986    acquireWakeLock_l(uid);
987}
988
989String16 AudioFlinger::ThreadBase::getWakeLockTag()
990{
991    switch (mType) {
992    case MIXER:
993        return String16("AudioMix");
994    case DIRECT:
995        return String16("AudioDirectOut");
996    case DUPLICATING:
997        return String16("AudioDup");
998    case RECORD:
999        return String16("AudioIn");
1000    case OFFLOAD:
1001        return String16("AudioOffload");
1002    default:
1003        ALOG_ASSERT(false);
1004        return String16("AudioUnknown");
1005    }
1006}
1007
1008void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1009{
1010    getPowerManager_l();
1011    if (mPowerManager != 0) {
1012        sp<IBinder> binder = new BBinder();
1013        status_t status;
1014        if (uid >= 0) {
1015            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1016                    binder,
1017                    getWakeLockTag(),
1018                    String16("audioserver"),
1019                    uid,
1020                    true /* FIXME force oneway contrary to .aidl */);
1021        } else {
1022            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1023                    binder,
1024                    getWakeLockTag(),
1025                    String16("audioserver"),
1026                    true /* FIXME force oneway contrary to .aidl */);
1027        }
1028        if (status == NO_ERROR) {
1029            mWakeLockToken = binder;
1030        }
1031        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1032    }
1033
1034    if (!mNotifiedBatteryStart) {
1035        BatteryNotifier::getInstance().noteStartAudio();
1036        mNotifiedBatteryStart = true;
1037    }
1038    gBoottime.acquire(mWakeLockToken);
1039}
1040
1041void AudioFlinger::ThreadBase::releaseWakeLock()
1042{
1043    Mutex::Autolock _l(mLock);
1044    releaseWakeLock_l();
1045}
1046
1047void AudioFlinger::ThreadBase::releaseWakeLock_l()
1048{
1049    gBoottime.release(mWakeLockToken);
1050    if (mWakeLockToken != 0) {
1051        ALOGV("releaseWakeLock_l() %s", mThreadName);
1052        if (mPowerManager != 0) {
1053            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1054                    true /* FIXME force oneway contrary to .aidl */);
1055        }
1056        mWakeLockToken.clear();
1057    }
1058
1059    if (mNotifiedBatteryStart) {
1060        BatteryNotifier::getInstance().noteStopAudio();
1061        mNotifiedBatteryStart = false;
1062    }
1063}
1064
1065void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1066    Mutex::Autolock _l(mLock);
1067    updateWakeLockUids_l(uids);
1068}
1069
1070void AudioFlinger::ThreadBase::getPowerManager_l() {
1071    if (mSystemReady && mPowerManager == 0) {
1072        // use checkService() to avoid blocking if power service is not up yet
1073        sp<IBinder> binder =
1074            defaultServiceManager()->checkService(String16("power"));
1075        if (binder == 0) {
1076            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1077        } else {
1078            mPowerManager = interface_cast<IPowerManager>(binder);
1079            binder->linkToDeath(mDeathRecipient);
1080        }
1081    }
1082}
1083
1084void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1085    getPowerManager_l();
1086    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1087        if (mSystemReady) {
1088            ALOGE("no wake lock to update, but system ready!");
1089        } else {
1090            ALOGW("no wake lock to update, system not ready yet");
1091        }
1092        return;
1093    }
1094    if (mPowerManager != 0) {
1095        sp<IBinder> binder = new BBinder();
1096        status_t status;
1097        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1098                    true /* FIXME force oneway contrary to .aidl */);
1099        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1100    }
1101}
1102
1103void AudioFlinger::ThreadBase::clearPowerManager()
1104{
1105    Mutex::Autolock _l(mLock);
1106    releaseWakeLock_l();
1107    mPowerManager.clear();
1108}
1109
1110void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1111{
1112    sp<ThreadBase> thread = mThread.promote();
1113    if (thread != 0) {
1114        thread->clearPowerManager();
1115    }
1116    ALOGW("power manager service died !!!");
1117}
1118
1119void AudioFlinger::ThreadBase::setEffectSuspended(
1120        const effect_uuid_t *type, bool suspend, int sessionId)
1121{
1122    Mutex::Autolock _l(mLock);
1123    setEffectSuspended_l(type, suspend, sessionId);
1124}
1125
1126void AudioFlinger::ThreadBase::setEffectSuspended_l(
1127        const effect_uuid_t *type, bool suspend, int sessionId)
1128{
1129    sp<EffectChain> chain = getEffectChain_l(sessionId);
1130    if (chain != 0) {
1131        if (type != NULL) {
1132            chain->setEffectSuspended_l(type, suspend);
1133        } else {
1134            chain->setEffectSuspendedAll_l(suspend);
1135        }
1136    }
1137
1138    updateSuspendedSessions_l(type, suspend, sessionId);
1139}
1140
1141void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1142{
1143    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1144    if (index < 0) {
1145        return;
1146    }
1147
1148    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1149            mSuspendedSessions.valueAt(index);
1150
1151    for (size_t i = 0; i < sessionEffects.size(); i++) {
1152        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1153        for (int j = 0; j < desc->mRefCount; j++) {
1154            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1155                chain->setEffectSuspendedAll_l(true);
1156            } else {
1157                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1158                    desc->mType.timeLow);
1159                chain->setEffectSuspended_l(&desc->mType, true);
1160            }
1161        }
1162    }
1163}
1164
1165void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1166                                                         bool suspend,
1167                                                         int sessionId)
1168{
1169    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1170
1171    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1172
1173    if (suspend) {
1174        if (index >= 0) {
1175            sessionEffects = mSuspendedSessions.valueAt(index);
1176        } else {
1177            mSuspendedSessions.add(sessionId, sessionEffects);
1178        }
1179    } else {
1180        if (index < 0) {
1181            return;
1182        }
1183        sessionEffects = mSuspendedSessions.valueAt(index);
1184    }
1185
1186
1187    int key = EffectChain::kKeyForSuspendAll;
1188    if (type != NULL) {
1189        key = type->timeLow;
1190    }
1191    index = sessionEffects.indexOfKey(key);
1192
1193    sp<SuspendedSessionDesc> desc;
1194    if (suspend) {
1195        if (index >= 0) {
1196            desc = sessionEffects.valueAt(index);
1197        } else {
1198            desc = new SuspendedSessionDesc();
1199            if (type != NULL) {
1200                desc->mType = *type;
1201            }
1202            sessionEffects.add(key, desc);
1203            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1204        }
1205        desc->mRefCount++;
1206    } else {
1207        if (index < 0) {
1208            return;
1209        }
1210        desc = sessionEffects.valueAt(index);
1211        if (--desc->mRefCount == 0) {
1212            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1213            sessionEffects.removeItemsAt(index);
1214            if (sessionEffects.isEmpty()) {
1215                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1216                                 sessionId);
1217                mSuspendedSessions.removeItem(sessionId);
1218            }
1219        }
1220    }
1221    if (!sessionEffects.isEmpty()) {
1222        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1223    }
1224}
1225
1226void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1227                                                            bool enabled,
1228                                                            int sessionId)
1229{
1230    Mutex::Autolock _l(mLock);
1231    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1232}
1233
1234void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1235                                                            bool enabled,
1236                                                            int sessionId)
1237{
1238    if (mType != RECORD) {
1239        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1240        // another session. This gives the priority to well behaved effect control panels
1241        // and applications not using global effects.
1242        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1243        // global effects
1244        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1245            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1246        }
1247    }
1248
1249    sp<EffectChain> chain = getEffectChain_l(sessionId);
1250    if (chain != 0) {
1251        chain->checkSuspendOnEffectEnabled(effect, enabled);
1252    }
1253}
1254
1255// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1256sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1257        const sp<AudioFlinger::Client>& client,
1258        const sp<IEffectClient>& effectClient,
1259        int32_t priority,
1260        int sessionId,
1261        effect_descriptor_t *desc,
1262        int *enabled,
1263        status_t *status)
1264{
1265    sp<EffectModule> effect;
1266    sp<EffectHandle> handle;
1267    status_t lStatus;
1268    sp<EffectChain> chain;
1269    bool chainCreated = false;
1270    bool effectCreated = false;
1271    bool effectRegistered = false;
1272
1273    lStatus = initCheck();
1274    if (lStatus != NO_ERROR) {
1275        ALOGW("createEffect_l() Audio driver not initialized.");
1276        goto Exit;
1277    }
1278
1279    // Reject any effect on Direct output threads for now, since the format of
1280    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1281    if (mType == DIRECT) {
1282        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1283                desc->name, mThreadName);
1284        lStatus = BAD_VALUE;
1285        goto Exit;
1286    }
1287
1288    // Reject any effect on mixer or duplicating multichannel sinks.
1289    // TODO: fix both format and multichannel issues with effects.
1290    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1291        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1292                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1293        lStatus = BAD_VALUE;
1294        goto Exit;
1295    }
1296
1297    // Allow global effects only on offloaded and mixer threads
1298    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1299        switch (mType) {
1300        case MIXER:
1301        case OFFLOAD:
1302            break;
1303        case DIRECT:
1304        case DUPLICATING:
1305        case RECORD:
1306        default:
1307            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1308                    desc->name, mThreadName);
1309            lStatus = BAD_VALUE;
1310            goto Exit;
1311        }
1312    }
1313
1314    // Only Pre processor effects are allowed on input threads and only on input threads
1315    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1316        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1317                desc->name, desc->flags, mType);
1318        lStatus = BAD_VALUE;
1319        goto Exit;
1320    }
1321
1322    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1323
1324    { // scope for mLock
1325        Mutex::Autolock _l(mLock);
1326
1327        // check for existing effect chain with the requested audio session
1328        chain = getEffectChain_l(sessionId);
1329        if (chain == 0) {
1330            // create a new chain for this session
1331            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1332            chain = new EffectChain(this, sessionId);
1333            addEffectChain_l(chain);
1334            chain->setStrategy(getStrategyForSession_l(sessionId));
1335            chainCreated = true;
1336        } else {
1337            effect = chain->getEffectFromDesc_l(desc);
1338        }
1339
1340        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1341
1342        if (effect == 0) {
1343            int id = mAudioFlinger->nextUniqueId();
1344            // Check CPU and memory usage
1345            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1346            if (lStatus != NO_ERROR) {
1347                goto Exit;
1348            }
1349            effectRegistered = true;
1350            // create a new effect module if none present in the chain
1351            effect = new EffectModule(this, chain, desc, id, sessionId);
1352            lStatus = effect->status();
1353            if (lStatus != NO_ERROR) {
1354                goto Exit;
1355            }
1356            effect->setOffloaded(mType == OFFLOAD, mId);
1357
1358            lStatus = chain->addEffect_l(effect);
1359            if (lStatus != NO_ERROR) {
1360                goto Exit;
1361            }
1362            effectCreated = true;
1363
1364            effect->setDevice(mOutDevice);
1365            effect->setDevice(mInDevice);
1366            effect->setMode(mAudioFlinger->getMode());
1367            effect->setAudioSource(mAudioSource);
1368        }
1369        // create effect handle and connect it to effect module
1370        handle = new EffectHandle(effect, client, effectClient, priority);
1371        lStatus = handle->initCheck();
1372        if (lStatus == OK) {
1373            lStatus = effect->addHandle(handle.get());
1374        }
1375        if (enabled != NULL) {
1376            *enabled = (int)effect->isEnabled();
1377        }
1378    }
1379
1380Exit:
1381    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1382        Mutex::Autolock _l(mLock);
1383        if (effectCreated) {
1384            chain->removeEffect_l(effect);
1385        }
1386        if (effectRegistered) {
1387            AudioSystem::unregisterEffect(effect->id());
1388        }
1389        if (chainCreated) {
1390            removeEffectChain_l(chain);
1391        }
1392        handle.clear();
1393    }
1394
1395    *status = lStatus;
1396    return handle;
1397}
1398
1399sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1400{
1401    Mutex::Autolock _l(mLock);
1402    return getEffect_l(sessionId, effectId);
1403}
1404
1405sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1406{
1407    sp<EffectChain> chain = getEffectChain_l(sessionId);
1408    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1409}
1410
1411// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1412// PlaybackThread::mLock held
1413status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1414{
1415    // check for existing effect chain with the requested audio session
1416    int sessionId = effect->sessionId();
1417    sp<EffectChain> chain = getEffectChain_l(sessionId);
1418    bool chainCreated = false;
1419
1420    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1421             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1422                    this, effect->desc().name, effect->desc().flags);
1423
1424    if (chain == 0) {
1425        // create a new chain for this session
1426        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1427        chain = new EffectChain(this, sessionId);
1428        addEffectChain_l(chain);
1429        chain->setStrategy(getStrategyForSession_l(sessionId));
1430        chainCreated = true;
1431    }
1432    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1433
1434    if (chain->getEffectFromId_l(effect->id()) != 0) {
1435        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1436                this, effect->desc().name, chain.get());
1437        return BAD_VALUE;
1438    }
1439
1440    effect->setOffloaded(mType == OFFLOAD, mId);
1441
1442    status_t status = chain->addEffect_l(effect);
1443    if (status != NO_ERROR) {
1444        if (chainCreated) {
1445            removeEffectChain_l(chain);
1446        }
1447        return status;
1448    }
1449
1450    effect->setDevice(mOutDevice);
1451    effect->setDevice(mInDevice);
1452    effect->setMode(mAudioFlinger->getMode());
1453    effect->setAudioSource(mAudioSource);
1454    return NO_ERROR;
1455}
1456
1457void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1458
1459    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1460    effect_descriptor_t desc = effect->desc();
1461    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1462        detachAuxEffect_l(effect->id());
1463    }
1464
1465    sp<EffectChain> chain = effect->chain().promote();
1466    if (chain != 0) {
1467        // remove effect chain if removing last effect
1468        if (chain->removeEffect_l(effect) == 0) {
1469            removeEffectChain_l(chain);
1470        }
1471    } else {
1472        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1473    }
1474}
1475
1476void AudioFlinger::ThreadBase::lockEffectChains_l(
1477        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1478{
1479    effectChains = mEffectChains;
1480    for (size_t i = 0; i < mEffectChains.size(); i++) {
1481        mEffectChains[i]->lock();
1482    }
1483}
1484
1485void AudioFlinger::ThreadBase::unlockEffectChains(
1486        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1487{
1488    for (size_t i = 0; i < effectChains.size(); i++) {
1489        effectChains[i]->unlock();
1490    }
1491}
1492
1493sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1494{
1495    Mutex::Autolock _l(mLock);
1496    return getEffectChain_l(sessionId);
1497}
1498
1499sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1500{
1501    size_t size = mEffectChains.size();
1502    for (size_t i = 0; i < size; i++) {
1503        if (mEffectChains[i]->sessionId() == sessionId) {
1504            return mEffectChains[i];
1505        }
1506    }
1507    return 0;
1508}
1509
1510void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1511{
1512    Mutex::Autolock _l(mLock);
1513    size_t size = mEffectChains.size();
1514    for (size_t i = 0; i < size; i++) {
1515        mEffectChains[i]->setMode_l(mode);
1516    }
1517}
1518
1519void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1520{
1521    config->type = AUDIO_PORT_TYPE_MIX;
1522    config->ext.mix.handle = mId;
1523    config->sample_rate = mSampleRate;
1524    config->format = mFormat;
1525    config->channel_mask = mChannelMask;
1526    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1527                            AUDIO_PORT_CONFIG_FORMAT;
1528}
1529
1530void AudioFlinger::ThreadBase::systemReady()
1531{
1532    Mutex::Autolock _l(mLock);
1533    if (mSystemReady) {
1534        return;
1535    }
1536    mSystemReady = true;
1537
1538    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1539        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1540    }
1541    mPendingConfigEvents.clear();
1542}
1543
1544
1545// ----------------------------------------------------------------------------
1546//      Playback
1547// ----------------------------------------------------------------------------
1548
1549AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1550                                             AudioStreamOut* output,
1551                                             audio_io_handle_t id,
1552                                             audio_devices_t device,
1553                                             type_t type,
1554                                             bool systemReady)
1555    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1556        mNormalFrameCount(0), mSinkBuffer(NULL),
1557        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1558        mMixerBuffer(NULL),
1559        mMixerBufferSize(0),
1560        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1561        mMixerBufferValid(false),
1562        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1563        mEffectBuffer(NULL),
1564        mEffectBufferSize(0),
1565        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1566        mEffectBufferValid(false),
1567        mSuspended(0), mBytesWritten(0),
1568        mActiveTracksGeneration(0),
1569        // mStreamTypes[] initialized in constructor body
1570        mOutput(output),
1571        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1572        mMixerStatus(MIXER_IDLE),
1573        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1574        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1575        mBytesRemaining(0),
1576        mCurrentWriteLength(0),
1577        mUseAsyncWrite(false),
1578        mWriteAckSequence(0),
1579        mDrainSequence(0),
1580        mSignalPending(false),
1581        mScreenState(AudioFlinger::mScreenState),
1582        // index 0 is reserved for normal mixer's submix
1583        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1584        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1585{
1586    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1587    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1588
1589    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1590    // it would be safer to explicitly pass initial masterVolume/masterMute as
1591    // parameter.
1592    //
1593    // If the HAL we are using has support for master volume or master mute,
1594    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1595    // and the mute set to false).
1596    mMasterVolume = audioFlinger->masterVolume_l();
1597    mMasterMute = audioFlinger->masterMute_l();
1598    if (mOutput && mOutput->audioHwDev) {
1599        if (mOutput->audioHwDev->canSetMasterVolume()) {
1600            mMasterVolume = 1.0;
1601        }
1602
1603        if (mOutput->audioHwDev->canSetMasterMute()) {
1604            mMasterMute = false;
1605        }
1606    }
1607
1608    readOutputParameters_l();
1609
1610    // ++ operator does not compile
1611    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1612            stream = (audio_stream_type_t) (stream + 1)) {
1613        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1614        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1615    }
1616}
1617
1618AudioFlinger::PlaybackThread::~PlaybackThread()
1619{
1620    mAudioFlinger->unregisterWriter(mNBLogWriter);
1621    free(mSinkBuffer);
1622    free(mMixerBuffer);
1623    free(mEffectBuffer);
1624}
1625
1626void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1627{
1628    dumpInternals(fd, args);
1629    dumpTracks(fd, args);
1630    dumpEffectChains(fd, args);
1631}
1632
1633void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1634{
1635    const size_t SIZE = 256;
1636    char buffer[SIZE];
1637    String8 result;
1638
1639    result.appendFormat("  Stream volumes in dB: ");
1640    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1641        const stream_type_t *st = &mStreamTypes[i];
1642        if (i > 0) {
1643            result.appendFormat(", ");
1644        }
1645        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1646        if (st->mute) {
1647            result.append("M");
1648        }
1649    }
1650    result.append("\n");
1651    write(fd, result.string(), result.length());
1652    result.clear();
1653
1654    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1655    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1656    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1657            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1658
1659    size_t numtracks = mTracks.size();
1660    size_t numactive = mActiveTracks.size();
1661    dprintf(fd, "  %d Tracks", numtracks);
1662    size_t numactiveseen = 0;
1663    if (numtracks) {
1664        dprintf(fd, " of which %d are active\n", numactive);
1665        Track::appendDumpHeader(result);
1666        for (size_t i = 0; i < numtracks; ++i) {
1667            sp<Track> track = mTracks[i];
1668            if (track != 0) {
1669                bool active = mActiveTracks.indexOf(track) >= 0;
1670                if (active) {
1671                    numactiveseen++;
1672                }
1673                track->dump(buffer, SIZE, active);
1674                result.append(buffer);
1675            }
1676        }
1677    } else {
1678        result.append("\n");
1679    }
1680    if (numactiveseen != numactive) {
1681        // some tracks in the active list were not in the tracks list
1682        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1683                " not in the track list\n");
1684        result.append(buffer);
1685        Track::appendDumpHeader(result);
1686        for (size_t i = 0; i < numactive; ++i) {
1687            sp<Track> track = mActiveTracks[i].promote();
1688            if (track != 0 && mTracks.indexOf(track) < 0) {
1689                track->dump(buffer, SIZE, true);
1690                result.append(buffer);
1691            }
1692        }
1693    }
1694
1695    write(fd, result.string(), result.size());
1696}
1697
1698void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1699{
1700    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1701
1702    dumpBase(fd, args);
1703
1704    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1705    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1706    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1707    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1708    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1709    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1710    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1711    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1712    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1713    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1714    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1715    AudioStreamOut *output = mOutput;
1716    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1717    String8 flagsAsString = outputFlagsToString(flags);
1718    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1719}
1720
1721// Thread virtuals
1722
1723void AudioFlinger::PlaybackThread::onFirstRef()
1724{
1725    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1726}
1727
1728// ThreadBase virtuals
1729void AudioFlinger::PlaybackThread::preExit()
1730{
1731    ALOGV("  preExit()");
1732    // FIXME this is using hard-coded strings but in the future, this functionality will be
1733    //       converted to use audio HAL extensions required to support tunneling
1734    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1735}
1736
1737// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1738sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1739        const sp<AudioFlinger::Client>& client,
1740        audio_stream_type_t streamType,
1741        uint32_t sampleRate,
1742        audio_format_t format,
1743        audio_channel_mask_t channelMask,
1744        size_t *pFrameCount,
1745        const sp<IMemory>& sharedBuffer,
1746        int sessionId,
1747        IAudioFlinger::track_flags_t *flags,
1748        pid_t tid,
1749        int uid,
1750        status_t *status)
1751{
1752    size_t frameCount = *pFrameCount;
1753    sp<Track> track;
1754    status_t lStatus;
1755
1756    // client expresses a preference for FAST, but we get the final say
1757    if (*flags & IAudioFlinger::TRACK_FAST) {
1758      if (
1759            // either of these use cases:
1760            (
1761              // use case 1: shared buffer with any frame count
1762              (
1763                (sharedBuffer != 0)
1764              ) ||
1765              // use case 2: frame count is default or at least as large as HAL
1766              (
1767                // we formerly checked for a callback handler (non-0 tid),
1768                // but that is no longer required for TRANSFER_OBTAIN mode
1769                ((frameCount == 0) ||
1770                (frameCount >= mFrameCount))
1771              )
1772            ) &&
1773            // PCM data
1774            audio_is_linear_pcm(format) &&
1775            // TODO: extract as a data library function that checks that a computationally
1776            // expensive downmixer is not required: isFastOutputChannelConversion()
1777            (channelMask == mChannelMask ||
1778                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1779                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1780                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1781            // hardware sample rate
1782            (sampleRate == mSampleRate) &&
1783            // normal mixer has an associated fast mixer
1784            hasFastMixer() &&
1785            // there are sufficient fast track slots available
1786            (mFastTrackAvailMask != 0)
1787            // FIXME test that MixerThread for this fast track has a capable output HAL
1788            // FIXME add a permission test also?
1789        ) {
1790        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1791        if (frameCount == 0) {
1792            // read the fast track multiplier property the first time it is needed
1793            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1794            if (ok != 0) {
1795                ALOGE("%s pthread_once failed: %d", __func__, ok);
1796            }
1797            frameCount = mFrameCount * sFastTrackMultiplier;
1798        }
1799        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1800                frameCount, mFrameCount);
1801      } else {
1802        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%d "
1803                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1804                "sampleRate=%u mSampleRate=%u "
1805                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1806                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1807                audio_is_linear_pcm(format),
1808                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1809        *flags &= ~IAudioFlinger::TRACK_FAST;
1810      }
1811    }
1812    // For normal PCM streaming tracks, update minimum frame count.
1813    // For compatibility with AudioTrack calculation, buffer depth is forced
1814    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1815    // This is probably too conservative, but legacy application code may depend on it.
1816    // If you change this calculation, also review the start threshold which is related.
1817    if (!(*flags & IAudioFlinger::TRACK_FAST)
1818            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1819        // this must match AudioTrack.cpp calculateMinFrameCount().
1820        // TODO: Move to a common library
1821        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1822        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1823        if (minBufCount < 2) {
1824            minBufCount = 2;
1825        }
1826        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1827        // or the client should compute and pass in a larger buffer request.
1828        size_t minFrameCount =
1829                minBufCount * sourceFramesNeededWithTimestretch(
1830                        sampleRate, mNormalFrameCount,
1831                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1832        if (frameCount < minFrameCount) { // including frameCount == 0
1833            frameCount = minFrameCount;
1834        }
1835    }
1836    *pFrameCount = frameCount;
1837
1838    switch (mType) {
1839
1840    case DIRECT:
1841        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1842            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1843                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1844                        "for output %p with format %#x",
1845                        sampleRate, format, channelMask, mOutput, mFormat);
1846                lStatus = BAD_VALUE;
1847                goto Exit;
1848            }
1849        }
1850        break;
1851
1852    case OFFLOAD:
1853        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1854            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1855                    "for output %p with format %#x",
1856                    sampleRate, format, channelMask, mOutput, mFormat);
1857            lStatus = BAD_VALUE;
1858            goto Exit;
1859        }
1860        break;
1861
1862    default:
1863        if (!audio_is_linear_pcm(format)) {
1864                ALOGE("createTrack_l() Bad parameter: format %#x \""
1865                        "for output %p with format %#x",
1866                        format, mOutput, mFormat);
1867                lStatus = BAD_VALUE;
1868                goto Exit;
1869        }
1870        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1871            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1872            lStatus = BAD_VALUE;
1873            goto Exit;
1874        }
1875        break;
1876
1877    }
1878
1879    lStatus = initCheck();
1880    if (lStatus != NO_ERROR) {
1881        ALOGE("createTrack_l() audio driver not initialized");
1882        goto Exit;
1883    }
1884
1885    { // scope for mLock
1886        Mutex::Autolock _l(mLock);
1887
1888        // all tracks in same audio session must share the same routing strategy otherwise
1889        // conflicts will happen when tracks are moved from one output to another by audio policy
1890        // manager
1891        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1892        for (size_t i = 0; i < mTracks.size(); ++i) {
1893            sp<Track> t = mTracks[i];
1894            if (t != 0 && t->isExternalTrack()) {
1895                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1896                if (sessionId == t->sessionId() && strategy != actual) {
1897                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1898                            strategy, actual);
1899                    lStatus = BAD_VALUE;
1900                    goto Exit;
1901                }
1902            }
1903        }
1904
1905        track = new Track(this, client, streamType, sampleRate, format,
1906                          channelMask, frameCount, NULL, sharedBuffer,
1907                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1908
1909        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1910        if (lStatus != NO_ERROR) {
1911            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1912            // track must be cleared from the caller as the caller has the AF lock
1913            goto Exit;
1914        }
1915        mTracks.add(track);
1916
1917        sp<EffectChain> chain = getEffectChain_l(sessionId);
1918        if (chain != 0) {
1919            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1920            track->setMainBuffer(chain->inBuffer());
1921            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1922            chain->incTrackCnt();
1923        }
1924
1925        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1926            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1927            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1928            // so ask activity manager to do this on our behalf
1929            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1930        }
1931    }
1932
1933    lStatus = NO_ERROR;
1934
1935Exit:
1936    *status = lStatus;
1937    return track;
1938}
1939
1940uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1941{
1942    return latency;
1943}
1944
1945uint32_t AudioFlinger::PlaybackThread::latency() const
1946{
1947    Mutex::Autolock _l(mLock);
1948    return latency_l();
1949}
1950uint32_t AudioFlinger::PlaybackThread::latency_l() const
1951{
1952    if (initCheck() == NO_ERROR) {
1953        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1954    } else {
1955        return 0;
1956    }
1957}
1958
1959void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1960{
1961    Mutex::Autolock _l(mLock);
1962    // Don't apply master volume in SW if our HAL can do it for us.
1963    if (mOutput && mOutput->audioHwDev &&
1964        mOutput->audioHwDev->canSetMasterVolume()) {
1965        mMasterVolume = 1.0;
1966    } else {
1967        mMasterVolume = value;
1968    }
1969}
1970
1971void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1972{
1973    Mutex::Autolock _l(mLock);
1974    // Don't apply master mute in SW if our HAL can do it for us.
1975    if (mOutput && mOutput->audioHwDev &&
1976        mOutput->audioHwDev->canSetMasterMute()) {
1977        mMasterMute = false;
1978    } else {
1979        mMasterMute = muted;
1980    }
1981}
1982
1983void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1984{
1985    Mutex::Autolock _l(mLock);
1986    mStreamTypes[stream].volume = value;
1987    broadcast_l();
1988}
1989
1990void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1991{
1992    Mutex::Autolock _l(mLock);
1993    mStreamTypes[stream].mute = muted;
1994    broadcast_l();
1995}
1996
1997float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1998{
1999    Mutex::Autolock _l(mLock);
2000    return mStreamTypes[stream].volume;
2001}
2002
2003// addTrack_l() must be called with ThreadBase::mLock held
2004status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2005{
2006    status_t status = ALREADY_EXISTS;
2007
2008    // set retry count for buffer fill
2009    track->mRetryCount = kMaxTrackStartupRetries;
2010    if (mActiveTracks.indexOf(track) < 0) {
2011        // the track is newly added, make sure it fills up all its
2012        // buffers before playing. This is to ensure the client will
2013        // effectively get the latency it requested.
2014        if (track->isExternalTrack()) {
2015            TrackBase::track_state state = track->mState;
2016            mLock.unlock();
2017            status = AudioSystem::startOutput(mId, track->streamType(),
2018                                              (audio_session_t)track->sessionId());
2019            mLock.lock();
2020            // abort track was stopped/paused while we released the lock
2021            if (state != track->mState) {
2022                if (status == NO_ERROR) {
2023                    mLock.unlock();
2024                    AudioSystem::stopOutput(mId, track->streamType(),
2025                                            (audio_session_t)track->sessionId());
2026                    mLock.lock();
2027                }
2028                return INVALID_OPERATION;
2029            }
2030            // abort if start is rejected by audio policy manager
2031            if (status != NO_ERROR) {
2032                return PERMISSION_DENIED;
2033            }
2034#ifdef ADD_BATTERY_DATA
2035            // to track the speaker usage
2036            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2037#endif
2038        }
2039
2040        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2041        track->mResetDone = false;
2042        track->mPresentationCompleteFrames = 0;
2043        mActiveTracks.add(track);
2044        mWakeLockUids.add(track->uid());
2045        mActiveTracksGeneration++;
2046        mLatestActiveTrack = track;
2047        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2048        if (chain != 0) {
2049            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2050                    track->sessionId());
2051            chain->incActiveTrackCnt();
2052        }
2053
2054        status = NO_ERROR;
2055    }
2056
2057    onAddNewTrack_l();
2058    return status;
2059}
2060
2061bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2062{
2063    track->terminate();
2064    // active tracks are removed by threadLoop()
2065    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2066    track->mState = TrackBase::STOPPED;
2067    if (!trackActive) {
2068        removeTrack_l(track);
2069    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2070        track->mState = TrackBase::STOPPING_1;
2071    }
2072
2073    return trackActive;
2074}
2075
2076void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2077{
2078    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2079    mTracks.remove(track);
2080    deleteTrackName_l(track->name());
2081    // redundant as track is about to be destroyed, for dumpsys only
2082    track->mName = -1;
2083    if (track->isFastTrack()) {
2084        int index = track->mFastIndex;
2085        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
2086        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2087        mFastTrackAvailMask |= 1 << index;
2088        // redundant as track is about to be destroyed, for dumpsys only
2089        track->mFastIndex = -1;
2090    }
2091    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2092    if (chain != 0) {
2093        chain->decTrackCnt();
2094    }
2095}
2096
2097void AudioFlinger::PlaybackThread::broadcast_l()
2098{
2099    // Thread could be blocked waiting for async
2100    // so signal it to handle state changes immediately
2101    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2102    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2103    mSignalPending = true;
2104    mWaitWorkCV.broadcast();
2105}
2106
2107String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2108{
2109    Mutex::Autolock _l(mLock);
2110    if (initCheck() != NO_ERROR) {
2111        return String8();
2112    }
2113
2114    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2115    const String8 out_s8(s);
2116    free(s);
2117    return out_s8;
2118}
2119
2120void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2121    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2122    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2123
2124    desc->mIoHandle = mId;
2125
2126    switch (event) {
2127    case AUDIO_OUTPUT_OPENED:
2128    case AUDIO_OUTPUT_CONFIG_CHANGED:
2129        desc->mPatch = mPatch;
2130        desc->mChannelMask = mChannelMask;
2131        desc->mSamplingRate = mSampleRate;
2132        desc->mFormat = mFormat;
2133        desc->mFrameCount = mNormalFrameCount; // FIXME see
2134                                             // AudioFlinger::frameCount(audio_io_handle_t)
2135        desc->mLatency = latency_l();
2136        break;
2137
2138    case AUDIO_OUTPUT_CLOSED:
2139    default:
2140        break;
2141    }
2142    mAudioFlinger->ioConfigChanged(event, desc, pid);
2143}
2144
2145void AudioFlinger::PlaybackThread::writeCallback()
2146{
2147    ALOG_ASSERT(mCallbackThread != 0);
2148    mCallbackThread->resetWriteBlocked();
2149}
2150
2151void AudioFlinger::PlaybackThread::drainCallback()
2152{
2153    ALOG_ASSERT(mCallbackThread != 0);
2154    mCallbackThread->resetDraining();
2155}
2156
2157void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2158{
2159    Mutex::Autolock _l(mLock);
2160    // reject out of sequence requests
2161    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2162        mWriteAckSequence &= ~1;
2163        mWaitWorkCV.signal();
2164    }
2165}
2166
2167void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2168{
2169    Mutex::Autolock _l(mLock);
2170    // reject out of sequence requests
2171    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2172        mDrainSequence &= ~1;
2173        mWaitWorkCV.signal();
2174    }
2175}
2176
2177// static
2178int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2179                                                void *param __unused,
2180                                                void *cookie)
2181{
2182    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2183    ALOGV("asyncCallback() event %d", event);
2184    switch (event) {
2185    case STREAM_CBK_EVENT_WRITE_READY:
2186        me->writeCallback();
2187        break;
2188    case STREAM_CBK_EVENT_DRAIN_READY:
2189        me->drainCallback();
2190        break;
2191    default:
2192        ALOGW("asyncCallback() unknown event %d", event);
2193        break;
2194    }
2195    return 0;
2196}
2197
2198void AudioFlinger::PlaybackThread::readOutputParameters_l()
2199{
2200    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2201    mSampleRate = mOutput->getSampleRate();
2202    mChannelMask = mOutput->getChannelMask();
2203    if (!audio_is_output_channel(mChannelMask)) {
2204        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2205    }
2206    if ((mType == MIXER || mType == DUPLICATING)
2207            && !isValidPcmSinkChannelMask(mChannelMask)) {
2208        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2209                mChannelMask);
2210    }
2211    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2212
2213    // Get actual HAL format.
2214    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2215    // Get format from the shim, which will be different than the HAL format
2216    // if playing compressed audio over HDMI passthrough.
2217    mFormat = mOutput->getFormat();
2218    if (!audio_is_valid_format(mFormat)) {
2219        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2220    }
2221    if ((mType == MIXER || mType == DUPLICATING)
2222            && !isValidPcmSinkFormat(mFormat)) {
2223        LOG_FATAL("HAL format %#x not supported for mixed output",
2224                mFormat);
2225    }
2226    mFrameSize = mOutput->getFrameSize();
2227    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2228    mFrameCount = mBufferSize / mFrameSize;
2229    if (mFrameCount & 15) {
2230        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2231                mFrameCount);
2232    }
2233
2234    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2235            (mOutput->stream->set_callback != NULL)) {
2236        if (mOutput->stream->set_callback(mOutput->stream,
2237                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2238            mUseAsyncWrite = true;
2239            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2240        }
2241    }
2242
2243    mHwSupportsPause = false;
2244    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2245        if (mOutput->stream->pause != NULL) {
2246            if (mOutput->stream->resume != NULL) {
2247                mHwSupportsPause = true;
2248            } else {
2249                ALOGW("direct output implements pause but not resume");
2250            }
2251        } else if (mOutput->stream->resume != NULL) {
2252            ALOGW("direct output implements resume but not pause");
2253        }
2254    }
2255    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2256        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2257    }
2258
2259    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2260        // For best precision, we use float instead of the associated output
2261        // device format (typically PCM 16 bit).
2262
2263        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2264        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2265        mBufferSize = mFrameSize * mFrameCount;
2266
2267        // TODO: We currently use the associated output device channel mask and sample rate.
2268        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2269        // (if a valid mask) to avoid premature downmix.
2270        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2271        // instead of the output device sample rate to avoid loss of high frequency information.
2272        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2273    }
2274
2275    // Calculate size of normal sink buffer relative to the HAL output buffer size
2276    double multiplier = 1.0;
2277    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2278            kUseFastMixer == FastMixer_Dynamic)) {
2279        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2280        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2281        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2282        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2283        maxNormalFrameCount = maxNormalFrameCount & ~15;
2284        if (maxNormalFrameCount < minNormalFrameCount) {
2285            maxNormalFrameCount = minNormalFrameCount;
2286        }
2287        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2288        if (multiplier <= 1.0) {
2289            multiplier = 1.0;
2290        } else if (multiplier <= 2.0) {
2291            if (2 * mFrameCount <= maxNormalFrameCount) {
2292                multiplier = 2.0;
2293            } else {
2294                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2295            }
2296        } else {
2297            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2298            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2299            // track, but we sometimes have to do this to satisfy the maximum frame count
2300            // constraint)
2301            // FIXME this rounding up should not be done if no HAL SRC
2302            uint32_t truncMult = (uint32_t) multiplier;
2303            if ((truncMult & 1)) {
2304                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2305                    ++truncMult;
2306                }
2307            }
2308            multiplier = (double) truncMult;
2309        }
2310    }
2311    mNormalFrameCount = multiplier * mFrameCount;
2312    // round up to nearest 16 frames to satisfy AudioMixer
2313    if (mType == MIXER || mType == DUPLICATING) {
2314        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2315    }
2316    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2317            mNormalFrameCount);
2318
2319    // Check if we want to throttle the processing to no more than 2x normal rate
2320    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2321    mThreadThrottleTimeMs = 0;
2322    mThreadThrottleEndMs = 0;
2323    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2324
2325    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2326    // Originally this was int16_t[] array, need to remove legacy implications.
2327    free(mSinkBuffer);
2328    mSinkBuffer = NULL;
2329    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2330    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2331    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2332    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2333
2334    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2335    // drives the output.
2336    free(mMixerBuffer);
2337    mMixerBuffer = NULL;
2338    if (mMixerBufferEnabled) {
2339        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2340        mMixerBufferSize = mNormalFrameCount * mChannelCount
2341                * audio_bytes_per_sample(mMixerBufferFormat);
2342        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2343    }
2344    free(mEffectBuffer);
2345    mEffectBuffer = NULL;
2346    if (mEffectBufferEnabled) {
2347        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2348        mEffectBufferSize = mNormalFrameCount * mChannelCount
2349                * audio_bytes_per_sample(mEffectBufferFormat);
2350        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2351    }
2352
2353    // force reconfiguration of effect chains and engines to take new buffer size and audio
2354    // parameters into account
2355    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2356    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2357    // matter.
2358    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2359    Vector< sp<EffectChain> > effectChains = mEffectChains;
2360    for (size_t i = 0; i < effectChains.size(); i ++) {
2361        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2362    }
2363}
2364
2365
2366status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2367{
2368    if (halFrames == NULL || dspFrames == NULL) {
2369        return BAD_VALUE;
2370    }
2371    Mutex::Autolock _l(mLock);
2372    if (initCheck() != NO_ERROR) {
2373        return INVALID_OPERATION;
2374    }
2375    size_t framesWritten = mBytesWritten / mFrameSize;
2376    *halFrames = framesWritten;
2377
2378    if (isSuspended()) {
2379        // return an estimation of rendered frames when the output is suspended
2380        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2381        *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2382        return NO_ERROR;
2383    } else {
2384        status_t status;
2385        uint32_t frames;
2386        status = mOutput->getRenderPosition(&frames);
2387        *dspFrames = (size_t)frames;
2388        return status;
2389    }
2390}
2391
2392uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2393{
2394    Mutex::Autolock _l(mLock);
2395    uint32_t result = 0;
2396    if (getEffectChain_l(sessionId) != 0) {
2397        result = EFFECT_SESSION;
2398    }
2399
2400    for (size_t i = 0; i < mTracks.size(); ++i) {
2401        sp<Track> track = mTracks[i];
2402        if (sessionId == track->sessionId() && !track->isInvalid()) {
2403            result |= TRACK_SESSION;
2404            break;
2405        }
2406    }
2407
2408    return result;
2409}
2410
2411uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2412{
2413    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2414    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2415    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2416        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2417    }
2418    for (size_t i = 0; i < mTracks.size(); i++) {
2419        sp<Track> track = mTracks[i];
2420        if (sessionId == track->sessionId() && !track->isInvalid()) {
2421            return AudioSystem::getStrategyForStream(track->streamType());
2422        }
2423    }
2424    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2425}
2426
2427
2428AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2429{
2430    Mutex::Autolock _l(mLock);
2431    return mOutput;
2432}
2433
2434AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2435{
2436    Mutex::Autolock _l(mLock);
2437    AudioStreamOut *output = mOutput;
2438    mOutput = NULL;
2439    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2440    //       must push a NULL and wait for ack
2441    mOutputSink.clear();
2442    mPipeSink.clear();
2443    mNormalSink.clear();
2444    return output;
2445}
2446
2447// this method must always be called either with ThreadBase mLock held or inside the thread loop
2448audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2449{
2450    if (mOutput == NULL) {
2451        return NULL;
2452    }
2453    return &mOutput->stream->common;
2454}
2455
2456uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2457{
2458    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2459}
2460
2461status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2462{
2463    if (!isValidSyncEvent(event)) {
2464        return BAD_VALUE;
2465    }
2466
2467    Mutex::Autolock _l(mLock);
2468
2469    for (size_t i = 0; i < mTracks.size(); ++i) {
2470        sp<Track> track = mTracks[i];
2471        if (event->triggerSession() == track->sessionId()) {
2472            (void) track->setSyncEvent(event);
2473            return NO_ERROR;
2474        }
2475    }
2476
2477    return NAME_NOT_FOUND;
2478}
2479
2480bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2481{
2482    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2483}
2484
2485void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2486        const Vector< sp<Track> >& tracksToRemove)
2487{
2488    size_t count = tracksToRemove.size();
2489    if (count > 0) {
2490        for (size_t i = 0 ; i < count ; i++) {
2491            const sp<Track>& track = tracksToRemove.itemAt(i);
2492            if (track->isExternalTrack()) {
2493                AudioSystem::stopOutput(mId, track->streamType(),
2494                                        (audio_session_t)track->sessionId());
2495#ifdef ADD_BATTERY_DATA
2496                // to track the speaker usage
2497                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2498#endif
2499                if (track->isTerminated()) {
2500                    AudioSystem::releaseOutput(mId, track->streamType(),
2501                                               (audio_session_t)track->sessionId());
2502                }
2503            }
2504        }
2505    }
2506}
2507
2508void AudioFlinger::PlaybackThread::checkSilentMode_l()
2509{
2510    if (!mMasterMute) {
2511        char value[PROPERTY_VALUE_MAX];
2512        if (property_get("ro.audio.silent", value, "0") > 0) {
2513            char *endptr;
2514            unsigned long ul = strtoul(value, &endptr, 0);
2515            if (*endptr == '\0' && ul != 0) {
2516                ALOGD("Silence is golden");
2517                // The setprop command will not allow a property to be changed after
2518                // the first time it is set, so we don't have to worry about un-muting.
2519                setMasterMute_l(true);
2520            }
2521        }
2522    }
2523}
2524
2525// shared by MIXER and DIRECT, overridden by DUPLICATING
2526ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2527{
2528    // FIXME rewrite to reduce number of system calls
2529    mLastWriteTime = systemTime();
2530    mInWrite = true;
2531    ssize_t bytesWritten;
2532    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2533
2534    // If an NBAIO sink is present, use it to write the normal mixer's submix
2535    if (mNormalSink != 0) {
2536
2537        const size_t count = mBytesRemaining / mFrameSize;
2538
2539        ATRACE_BEGIN("write");
2540        // update the setpoint when AudioFlinger::mScreenState changes
2541        uint32_t screenState = AudioFlinger::mScreenState;
2542        if (screenState != mScreenState) {
2543            mScreenState = screenState;
2544            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2545            if (pipe != NULL) {
2546                pipe->setAvgFrames((mScreenState & 1) ?
2547                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2548            }
2549        }
2550        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2551        ATRACE_END();
2552        if (framesWritten > 0) {
2553            bytesWritten = framesWritten * mFrameSize;
2554        } else {
2555            bytesWritten = framesWritten;
2556        }
2557    // otherwise use the HAL / AudioStreamOut directly
2558    } else {
2559        // Direct output and offload threads
2560
2561        if (mUseAsyncWrite) {
2562            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2563            mWriteAckSequence += 2;
2564            mWriteAckSequence |= 1;
2565            ALOG_ASSERT(mCallbackThread != 0);
2566            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2567        }
2568        // FIXME We should have an implementation of timestamps for direct output threads.
2569        // They are used e.g for multichannel PCM playback over HDMI.
2570        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2571        if (mUseAsyncWrite &&
2572                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2573            // do not wait for async callback in case of error of full write
2574            mWriteAckSequence &= ~1;
2575            ALOG_ASSERT(mCallbackThread != 0);
2576            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2577        }
2578    }
2579
2580    mNumWrites++;
2581    mInWrite = false;
2582    mStandby = false;
2583    return bytesWritten;
2584}
2585
2586void AudioFlinger::PlaybackThread::threadLoop_drain()
2587{
2588    if (mOutput->stream->drain) {
2589        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2590        if (mUseAsyncWrite) {
2591            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2592            mDrainSequence |= 1;
2593            ALOG_ASSERT(mCallbackThread != 0);
2594            mCallbackThread->setDraining(mDrainSequence);
2595        }
2596        mOutput->stream->drain(mOutput->stream,
2597            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2598                                                : AUDIO_DRAIN_ALL);
2599    }
2600}
2601
2602void AudioFlinger::PlaybackThread::threadLoop_exit()
2603{
2604    {
2605        Mutex::Autolock _l(mLock);
2606        for (size_t i = 0; i < mTracks.size(); i++) {
2607            sp<Track> track = mTracks[i];
2608            track->invalidate();
2609        }
2610    }
2611}
2612
2613/*
2614The derived values that are cached:
2615 - mSinkBufferSize from frame count * frame size
2616 - mActiveSleepTimeUs from activeSleepTimeUs()
2617 - mIdleSleepTimeUs from idleSleepTimeUs()
2618 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2619   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2620 - maxPeriod from frame count and sample rate (MIXER only)
2621
2622The parameters that affect these derived values are:
2623 - frame count
2624 - frame size
2625 - sample rate
2626 - device type: A2DP or not
2627 - device latency
2628 - format: PCM or not
2629 - active sleep time
2630 - idle sleep time
2631*/
2632
2633void AudioFlinger::PlaybackThread::cacheParameters_l()
2634{
2635    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2636    mActiveSleepTimeUs = activeSleepTimeUs();
2637    mIdleSleepTimeUs = idleSleepTimeUs();
2638
2639    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2640    // truncating audio when going to standby.
2641    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2642    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2643        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2644            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2645        }
2646    }
2647}
2648
2649void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2650{
2651    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2652            this,  streamType, mTracks.size());
2653    Mutex::Autolock _l(mLock);
2654
2655    size_t size = mTracks.size();
2656    for (size_t i = 0; i < size; i++) {
2657        sp<Track> t = mTracks[i];
2658        if (t->streamType() == streamType && t->isExternalTrack()) {
2659            t->invalidate();
2660        }
2661    }
2662}
2663
2664status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2665{
2666    int session = chain->sessionId();
2667    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2668            ? mEffectBuffer : mSinkBuffer);
2669    bool ownsBuffer = false;
2670
2671    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2672    if (session > 0) {
2673        // Only one effect chain can be present in direct output thread and it uses
2674        // the sink buffer as input
2675        if (mType != DIRECT) {
2676            size_t numSamples = mNormalFrameCount * mChannelCount;
2677            buffer = new int16_t[numSamples];
2678            memset(buffer, 0, numSamples * sizeof(int16_t));
2679            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2680            ownsBuffer = true;
2681        }
2682
2683        // Attach all tracks with same session ID to this chain.
2684        for (size_t i = 0; i < mTracks.size(); ++i) {
2685            sp<Track> track = mTracks[i];
2686            if (session == track->sessionId()) {
2687                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2688                        buffer);
2689                track->setMainBuffer(buffer);
2690                chain->incTrackCnt();
2691            }
2692        }
2693
2694        // indicate all active tracks in the chain
2695        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2696            sp<Track> track = mActiveTracks[i].promote();
2697            if (track == 0) {
2698                continue;
2699            }
2700            if (session == track->sessionId()) {
2701                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2702                chain->incActiveTrackCnt();
2703            }
2704        }
2705    }
2706    chain->setThread(this);
2707    chain->setInBuffer(buffer, ownsBuffer);
2708    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2709            ? mEffectBuffer : mSinkBuffer));
2710    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2711    // chains list in order to be processed last as it contains output stage effects
2712    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2713    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2714    // after track specific effects and before output stage
2715    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2716    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2717    // Effect chain for other sessions are inserted at beginning of effect
2718    // chains list to be processed before output mix effects. Relative order between other
2719    // sessions is not important
2720    size_t size = mEffectChains.size();
2721    size_t i = 0;
2722    for (i = 0; i < size; i++) {
2723        if (mEffectChains[i]->sessionId() < session) {
2724            break;
2725        }
2726    }
2727    mEffectChains.insertAt(chain, i);
2728    checkSuspendOnAddEffectChain_l(chain);
2729
2730    return NO_ERROR;
2731}
2732
2733size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2734{
2735    int session = chain->sessionId();
2736
2737    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2738
2739    for (size_t i = 0; i < mEffectChains.size(); i++) {
2740        if (chain == mEffectChains[i]) {
2741            mEffectChains.removeAt(i);
2742            // detach all active tracks from the chain
2743            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2744                sp<Track> track = mActiveTracks[i].promote();
2745                if (track == 0) {
2746                    continue;
2747                }
2748                if (session == track->sessionId()) {
2749                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2750                            chain.get(), session);
2751                    chain->decActiveTrackCnt();
2752                }
2753            }
2754
2755            // detach all tracks with same session ID from this chain
2756            for (size_t i = 0; i < mTracks.size(); ++i) {
2757                sp<Track> track = mTracks[i];
2758                if (session == track->sessionId()) {
2759                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2760                    chain->decTrackCnt();
2761                }
2762            }
2763            break;
2764        }
2765    }
2766    return mEffectChains.size();
2767}
2768
2769status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2770        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2771{
2772    Mutex::Autolock _l(mLock);
2773    return attachAuxEffect_l(track, EffectId);
2774}
2775
2776status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2777        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2778{
2779    status_t status = NO_ERROR;
2780
2781    if (EffectId == 0) {
2782        track->setAuxBuffer(0, NULL);
2783    } else {
2784        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2785        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2786        if (effect != 0) {
2787            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2788                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2789            } else {
2790                status = INVALID_OPERATION;
2791            }
2792        } else {
2793            status = BAD_VALUE;
2794        }
2795    }
2796    return status;
2797}
2798
2799void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2800{
2801    for (size_t i = 0; i < mTracks.size(); ++i) {
2802        sp<Track> track = mTracks[i];
2803        if (track->auxEffectId() == effectId) {
2804            attachAuxEffect_l(track, 0);
2805        }
2806    }
2807}
2808
2809bool AudioFlinger::PlaybackThread::threadLoop()
2810{
2811    Vector< sp<Track> > tracksToRemove;
2812
2813    mStandbyTimeNs = systemTime();
2814
2815    // MIXER
2816    nsecs_t lastWarning = 0;
2817
2818    // DUPLICATING
2819    // FIXME could this be made local to while loop?
2820    writeFrames = 0;
2821
2822    int lastGeneration = 0;
2823
2824    cacheParameters_l();
2825    mSleepTimeUs = mIdleSleepTimeUs;
2826
2827    if (mType == MIXER) {
2828        sleepTimeShift = 0;
2829    }
2830
2831    CpuStats cpuStats;
2832    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2833
2834    acquireWakeLock();
2835
2836    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2837    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2838    // and then that string will be logged at the next convenient opportunity.
2839    const char *logString = NULL;
2840
2841    checkSilentMode_l();
2842
2843    while (!exitPending())
2844    {
2845        cpuStats.sample(myName);
2846
2847        Vector< sp<EffectChain> > effectChains;
2848
2849        { // scope for mLock
2850
2851            Mutex::Autolock _l(mLock);
2852
2853            processConfigEvents_l();
2854
2855            if (logString != NULL) {
2856                mNBLogWriter->logTimestamp();
2857                mNBLogWriter->log(logString);
2858                logString = NULL;
2859            }
2860
2861            // Gather the framesReleased counters for all active tracks,
2862            // and associate with the sink frames written out.  We need
2863            // this to convert the sink timestamp to the track timestamp.
2864            if (mNormalSink != 0) {
2865                bool updateTracks = true;
2866                bool cacheTimestamp = false;
2867                AudioTimestamp timeStamp;
2868                // FIXME: Use a 64 bit mNormalSink->framesWritten() counter.
2869                // At this time, we must always use cached timestamps even when
2870                // going through mPipeSink (which is non-blocking). The reason is that
2871                // the track may be removed from the active list for many hours and
2872                // the mNormalSink->framesWritten() will wrap making the linear
2873                // mapping fail.
2874                //
2875                // (Also mAudioTrackServerProxy->framesReleased() needs to be
2876                // updated to 64 bits for 64 bit frame position.)
2877                //
2878                if (true /* see comment above, should be: mNormalSink == mOutputSink */) {
2879                    // If we use a hardware device, we must cache the sink timestamp now.
2880                    // hardware devices can block timestamp access during data writes.
2881                    if (mNormalSink->getTimestamp(timeStamp) == NO_ERROR) {
2882                        cacheTimestamp = true;
2883                    } else {
2884                        updateTracks = false;
2885                    }
2886                }
2887                if (updateTracks) {
2888                    // sinkFramesWritten for non-offloaded tracks are contiguous
2889                    // even after standby() is called. This is useful for the track frame
2890                    // to sink frame mapping.
2891                    const uint32_t sinkFramesWritten = mNormalSink->framesWritten();
2892                    const size_t size = mActiveTracks.size();
2893                    for (size_t i = 0; i < size; ++i) {
2894                        sp<Track> t = mActiveTracks[i].promote();
2895                        if (t != 0 && !t->isFastTrack()) {
2896                            t->updateTrackFrameInfo(
2897                                    t->mAudioTrackServerProxy->framesReleased(),
2898                                    sinkFramesWritten,
2899                                    cacheTimestamp ? &timeStamp : NULL);
2900                        }
2901                    }
2902                }
2903            }
2904
2905            saveOutputTracks();
2906            if (mSignalPending) {
2907                // A signal was raised while we were unlocked
2908                mSignalPending = false;
2909            } else if (waitingAsyncCallback_l()) {
2910                if (exitPending()) {
2911                    break;
2912                }
2913                bool released = false;
2914                // The following works around a bug in the offload driver. Ideally we would release
2915                // the wake lock every time, but that causes the last offload buffer(s) to be
2916                // dropped while the device is on battery, so we need to hold a wake lock during
2917                // the drain phase.
2918                if (mBytesRemaining && !(mDrainSequence & 1)) {
2919                    releaseWakeLock_l();
2920                    released = true;
2921                }
2922                mWakeLockUids.clear();
2923                mActiveTracksGeneration++;
2924                ALOGV("wait async completion");
2925                mWaitWorkCV.wait(mLock);
2926                ALOGV("async completion/wake");
2927                if (released) {
2928                    acquireWakeLock_l();
2929                }
2930                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2931                mSleepTimeUs = 0;
2932
2933                continue;
2934            }
2935            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2936                                   isSuspended()) {
2937                // put audio hardware into standby after short delay
2938                if (shouldStandby_l()) {
2939
2940                    threadLoop_standby();
2941
2942                    mStandby = true;
2943                }
2944
2945                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2946                    // we're about to wait, flush the binder command buffer
2947                    IPCThreadState::self()->flushCommands();
2948
2949                    clearOutputTracks();
2950
2951                    if (exitPending()) {
2952                        break;
2953                    }
2954
2955                    releaseWakeLock_l();
2956                    mWakeLockUids.clear();
2957                    mActiveTracksGeneration++;
2958                    // wait until we have something to do...
2959                    ALOGV("%s going to sleep", myName.string());
2960                    mWaitWorkCV.wait(mLock);
2961                    ALOGV("%s waking up", myName.string());
2962                    acquireWakeLock_l();
2963
2964                    mMixerStatus = MIXER_IDLE;
2965                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2966                    mBytesWritten = 0;
2967                    mBytesRemaining = 0;
2968                    checkSilentMode_l();
2969
2970                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2971                    mSleepTimeUs = mIdleSleepTimeUs;
2972                    if (mType == MIXER) {
2973                        sleepTimeShift = 0;
2974                    }
2975
2976                    continue;
2977                }
2978            }
2979            // mMixerStatusIgnoringFastTracks is also updated internally
2980            mMixerStatus = prepareTracks_l(&tracksToRemove);
2981
2982            // compare with previously applied list
2983            if (lastGeneration != mActiveTracksGeneration) {
2984                // update wakelock
2985                updateWakeLockUids_l(mWakeLockUids);
2986                lastGeneration = mActiveTracksGeneration;
2987            }
2988
2989            // prevent any changes in effect chain list and in each effect chain
2990            // during mixing and effect process as the audio buffers could be deleted
2991            // or modified if an effect is created or deleted
2992            lockEffectChains_l(effectChains);
2993        } // mLock scope ends
2994
2995        if (mBytesRemaining == 0) {
2996            mCurrentWriteLength = 0;
2997            if (mMixerStatus == MIXER_TRACKS_READY) {
2998                // threadLoop_mix() sets mCurrentWriteLength
2999                threadLoop_mix();
3000            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3001                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
3002                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3003                // must be written to HAL
3004                threadLoop_sleepTime();
3005                if (mSleepTimeUs == 0) {
3006                    mCurrentWriteLength = mSinkBufferSize;
3007                }
3008            }
3009            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3010            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3011            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3012            // or mSinkBuffer (if there are no effects).
3013            //
3014            // This is done pre-effects computation; if effects change to
3015            // support higher precision, this needs to move.
3016            //
3017            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3018            // TODO use mSleepTimeUs == 0 as an additional condition.
3019            if (mMixerBufferValid) {
3020                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3021                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3022
3023                // mono blend occurs for mixer threads only (not direct or offloaded)
3024                // and is handled here if we're going directly to the sink.
3025                if (requireMonoBlend() && !mEffectBufferValid) {
3026                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3027                               true /*limit*/);
3028                }
3029
3030                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3031                        mNormalFrameCount * mChannelCount);
3032            }
3033
3034            mBytesRemaining = mCurrentWriteLength;
3035            if (isSuspended()) {
3036                mSleepTimeUs = suspendSleepTimeUs();
3037                // simulate write to HAL when suspended
3038                mBytesWritten += mSinkBufferSize;
3039                mBytesRemaining = 0;
3040            }
3041
3042            // only process effects if we're going to write
3043            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3044                for (size_t i = 0; i < effectChains.size(); i ++) {
3045                    effectChains[i]->process_l();
3046                }
3047            }
3048        }
3049        // Process effect chains for offloaded thread even if no audio
3050        // was read from audio track: process only updates effect state
3051        // and thus does have to be synchronized with audio writes but may have
3052        // to be called while waiting for async write callback
3053        if (mType == OFFLOAD) {
3054            for (size_t i = 0; i < effectChains.size(); i ++) {
3055                effectChains[i]->process_l();
3056            }
3057        }
3058
3059        // Only if the Effects buffer is enabled and there is data in the
3060        // Effects buffer (buffer valid), we need to
3061        // copy into the sink buffer.
3062        // TODO use mSleepTimeUs == 0 as an additional condition.
3063        if (mEffectBufferValid) {
3064            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3065
3066            if (requireMonoBlend()) {
3067                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3068                           true /*limit*/);
3069            }
3070
3071            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3072                    mNormalFrameCount * mChannelCount);
3073        }
3074
3075        // enable changes in effect chain
3076        unlockEffectChains(effectChains);
3077
3078        if (!waitingAsyncCallback()) {
3079            // mSleepTimeUs == 0 means we must write to audio hardware
3080            if (mSleepTimeUs == 0) {
3081                ssize_t ret = 0;
3082                if (mBytesRemaining) {
3083                    ret = threadLoop_write();
3084                    if (ret < 0) {
3085                        mBytesRemaining = 0;
3086                    } else {
3087                        mBytesWritten += ret;
3088                        mBytesRemaining -= ret;
3089                    }
3090                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3091                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3092                    threadLoop_drain();
3093                }
3094                if (mType == MIXER && !mStandby) {
3095                    // write blocked detection
3096                    nsecs_t now = systemTime();
3097                    nsecs_t delta = now - mLastWriteTime;
3098                    if (delta > maxPeriod) {
3099                        mNumDelayedWrites++;
3100                        if ((now - lastWarning) > kWarningThrottleNs) {
3101                            ATRACE_NAME("underrun");
3102                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3103                                    ns2ms(delta), mNumDelayedWrites, this);
3104                            lastWarning = now;
3105                        }
3106                    }
3107
3108                    if (mThreadThrottle
3109                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3110                            && ret > 0) {                         // we wrote something
3111                        // Limit MixerThread data processing to no more than twice the
3112                        // expected processing rate.
3113                        //
3114                        // This helps prevent underruns with NuPlayer and other applications
3115                        // which may set up buffers that are close to the minimum size, or use
3116                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3117                        //
3118                        // The throttle smooths out sudden large data drains from the device,
3119                        // e.g. when it comes out of standby, which often causes problems with
3120                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3121                        // (2) minimum buffer sized tracks (even if the track is full,
3122                        //     the app won't fill fast enough to handle the sudden draw).
3123
3124                        const int32_t deltaMs = delta / 1000000;
3125                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3126                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3127                            usleep(throttleMs * 1000);
3128                            // notify of throttle start on verbose log
3129                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3130                                    "mixer(%p) throttle begin:"
3131                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3132                                    this, ret, deltaMs, throttleMs);
3133                            mThreadThrottleTimeMs += throttleMs;
3134                        } else {
3135                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3136                            if (diff > 0) {
3137                                // notify of throttle end on debug log
3138                                ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
3139                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3140                            }
3141                        }
3142                    }
3143                }
3144
3145            } else {
3146                ATRACE_BEGIN("sleep");
3147                usleep(mSleepTimeUs);
3148                ATRACE_END();
3149            }
3150        }
3151
3152        // Finally let go of removed track(s), without the lock held
3153        // since we can't guarantee the destructors won't acquire that
3154        // same lock.  This will also mutate and push a new fast mixer state.
3155        threadLoop_removeTracks(tracksToRemove);
3156        tracksToRemove.clear();
3157
3158        // FIXME I don't understand the need for this here;
3159        //       it was in the original code but maybe the
3160        //       assignment in saveOutputTracks() makes this unnecessary?
3161        clearOutputTracks();
3162
3163        // Effect chains will be actually deleted here if they were removed from
3164        // mEffectChains list during mixing or effects processing
3165        effectChains.clear();
3166
3167        // FIXME Note that the above .clear() is no longer necessary since effectChains
3168        // is now local to this block, but will keep it for now (at least until merge done).
3169    }
3170
3171    threadLoop_exit();
3172
3173    if (!mStandby) {
3174        threadLoop_standby();
3175        mStandby = true;
3176    }
3177
3178    releaseWakeLock();
3179    mWakeLockUids.clear();
3180    mActiveTracksGeneration++;
3181
3182    ALOGV("Thread %p type %d exiting", this, mType);
3183    return false;
3184}
3185
3186// removeTracks_l() must be called with ThreadBase::mLock held
3187void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3188{
3189    size_t count = tracksToRemove.size();
3190    if (count > 0) {
3191        for (size_t i=0 ; i<count ; i++) {
3192            const sp<Track>& track = tracksToRemove.itemAt(i);
3193            mActiveTracks.remove(track);
3194            mWakeLockUids.remove(track->uid());
3195            mActiveTracksGeneration++;
3196            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3197            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3198            if (chain != 0) {
3199                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3200                        track->sessionId());
3201                chain->decActiveTrackCnt();
3202            }
3203            if (track->isTerminated()) {
3204                removeTrack_l(track);
3205            }
3206        }
3207    }
3208
3209}
3210
3211status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3212{
3213    if (mNormalSink != 0) {
3214        return mNormalSink->getTimestamp(timestamp);
3215    }
3216    if ((mType == OFFLOAD || mType == DIRECT)
3217            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3218        uint64_t position64;
3219        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3220        if (ret == 0) {
3221            timestamp.mPosition = (uint32_t)position64;
3222            return NO_ERROR;
3223        }
3224    }
3225    return INVALID_OPERATION;
3226}
3227
3228status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3229                                                          audio_patch_handle_t *handle)
3230{
3231    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3232    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3233    if (mFastMixer != 0) {
3234        FastMixerStateQueue *sq = mFastMixer->sq();
3235        FastMixerState *state = sq->begin();
3236        if (!(state->mCommand & FastMixerState::IDLE)) {
3237            previousCommand = state->mCommand;
3238            state->mCommand = FastMixerState::HOT_IDLE;
3239            sq->end();
3240            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3241        } else {
3242            sq->end(false /*didModify*/);
3243        }
3244    }
3245    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3246
3247    if (!(previousCommand & FastMixerState::IDLE)) {
3248        ALOG_ASSERT(mFastMixer != 0);
3249        FastMixerStateQueue *sq = mFastMixer->sq();
3250        FastMixerState *state = sq->begin();
3251        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3252        state->mCommand = previousCommand;
3253        sq->end();
3254        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3255    }
3256
3257    return status;
3258}
3259
3260status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3261                                                          audio_patch_handle_t *handle)
3262{
3263    status_t status = NO_ERROR;
3264
3265    // store new device and send to effects
3266    audio_devices_t type = AUDIO_DEVICE_NONE;
3267    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3268        type |= patch->sinks[i].ext.device.type;
3269    }
3270
3271#ifdef ADD_BATTERY_DATA
3272    // when changing the audio output device, call addBatteryData to notify
3273    // the change
3274    if (mOutDevice != type) {
3275        uint32_t params = 0;
3276        // check whether speaker is on
3277        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3278            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3279        }
3280
3281        audio_devices_t deviceWithoutSpeaker
3282            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3283        // check if any other device (except speaker) is on
3284        if (type & deviceWithoutSpeaker) {
3285            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3286        }
3287
3288        if (params != 0) {
3289            addBatteryData(params);
3290        }
3291    }
3292#endif
3293
3294    for (size_t i = 0; i < mEffectChains.size(); i++) {
3295        mEffectChains[i]->setDevice_l(type);
3296    }
3297
3298    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3299    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3300    bool configChanged = mPrevOutDevice != type;
3301    mOutDevice = type;
3302    mPatch = *patch;
3303
3304    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3305        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3306        status = hwDevice->create_audio_patch(hwDevice,
3307                                               patch->num_sources,
3308                                               patch->sources,
3309                                               patch->num_sinks,
3310                                               patch->sinks,
3311                                               handle);
3312    } else {
3313        char *address;
3314        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3315            //FIXME: we only support address on first sink with HAL version < 3.0
3316            address = audio_device_address_to_parameter(
3317                                                        patch->sinks[0].ext.device.type,
3318                                                        patch->sinks[0].ext.device.address);
3319        } else {
3320            address = (char *)calloc(1, 1);
3321        }
3322        AudioParameter param = AudioParameter(String8(address));
3323        free(address);
3324        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3325        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3326                param.toString().string());
3327        *handle = AUDIO_PATCH_HANDLE_NONE;
3328    }
3329    if (configChanged) {
3330        mPrevOutDevice = type;
3331        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3332    }
3333    return status;
3334}
3335
3336status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3337{
3338    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3339    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3340    if (mFastMixer != 0) {
3341        FastMixerStateQueue *sq = mFastMixer->sq();
3342        FastMixerState *state = sq->begin();
3343        if (!(state->mCommand & FastMixerState::IDLE)) {
3344            previousCommand = state->mCommand;
3345            state->mCommand = FastMixerState::HOT_IDLE;
3346            sq->end();
3347            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3348        } else {
3349            sq->end(false /*didModify*/);
3350        }
3351    }
3352
3353    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3354
3355    if (!(previousCommand & FastMixerState::IDLE)) {
3356        ALOG_ASSERT(mFastMixer != 0);
3357        FastMixerStateQueue *sq = mFastMixer->sq();
3358        FastMixerState *state = sq->begin();
3359        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3360        state->mCommand = previousCommand;
3361        sq->end();
3362        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3363    }
3364
3365    return status;
3366}
3367
3368status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3369{
3370    status_t status = NO_ERROR;
3371
3372    mOutDevice = AUDIO_DEVICE_NONE;
3373
3374    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3375        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3376        status = hwDevice->release_audio_patch(hwDevice, handle);
3377    } else {
3378        AudioParameter param;
3379        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3380        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3381                param.toString().string());
3382    }
3383    return status;
3384}
3385
3386void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3387{
3388    Mutex::Autolock _l(mLock);
3389    mTracks.add(track);
3390}
3391
3392void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3393{
3394    Mutex::Autolock _l(mLock);
3395    destroyTrack_l(track);
3396}
3397
3398void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3399{
3400    ThreadBase::getAudioPortConfig(config);
3401    config->role = AUDIO_PORT_ROLE_SOURCE;
3402    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3403    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3404}
3405
3406// ----------------------------------------------------------------------------
3407
3408AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3409        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3410    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3411        // mAudioMixer below
3412        // mFastMixer below
3413        mFastMixerFutex(0),
3414        mMasterMono(false)
3415        // mOutputSink below
3416        // mPipeSink below
3417        // mNormalSink below
3418{
3419    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3420    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3421            "mFrameCount=%d, mNormalFrameCount=%d",
3422            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3423            mNormalFrameCount);
3424    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3425
3426    if (type == DUPLICATING) {
3427        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3428        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3429        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3430        return;
3431    }
3432    // create an NBAIO sink for the HAL output stream, and negotiate
3433    mOutputSink = new AudioStreamOutSink(output->stream);
3434    size_t numCounterOffers = 0;
3435    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3436    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3437    ALOG_ASSERT(index == 0);
3438
3439    // initialize fast mixer depending on configuration
3440    bool initFastMixer;
3441    switch (kUseFastMixer) {
3442    case FastMixer_Never:
3443        initFastMixer = false;
3444        break;
3445    case FastMixer_Always:
3446        initFastMixer = true;
3447        break;
3448    case FastMixer_Static:
3449    case FastMixer_Dynamic:
3450        initFastMixer = mFrameCount < mNormalFrameCount;
3451        break;
3452    }
3453    if (initFastMixer) {
3454        audio_format_t fastMixerFormat;
3455        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3456            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3457        } else {
3458            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3459        }
3460        if (mFormat != fastMixerFormat) {
3461            // change our Sink format to accept our intermediate precision
3462            mFormat = fastMixerFormat;
3463            free(mSinkBuffer);
3464            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3465            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3466            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3467        }
3468
3469        // create a MonoPipe to connect our submix to FastMixer
3470        NBAIO_Format format = mOutputSink->format();
3471        NBAIO_Format origformat = format;
3472        // adjust format to match that of the Fast Mixer
3473        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3474        format.mFormat = fastMixerFormat;
3475        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3476
3477        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3478        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3479        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3480        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3481        const NBAIO_Format offers[1] = {format};
3482        size_t numCounterOffers = 0;
3483        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3484        ALOG_ASSERT(index == 0);
3485        monoPipe->setAvgFrames((mScreenState & 1) ?
3486                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3487        mPipeSink = monoPipe;
3488
3489#ifdef TEE_SINK
3490        if (mTeeSinkOutputEnabled) {
3491            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3492            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3493            const NBAIO_Format offers2[1] = {origformat};
3494            numCounterOffers = 0;
3495            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3496            ALOG_ASSERT(index == 0);
3497            mTeeSink = teeSink;
3498            PipeReader *teeSource = new PipeReader(*teeSink);
3499            numCounterOffers = 0;
3500            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3501            ALOG_ASSERT(index == 0);
3502            mTeeSource = teeSource;
3503        }
3504#endif
3505
3506        // create fast mixer and configure it initially with just one fast track for our submix
3507        mFastMixer = new FastMixer();
3508        FastMixerStateQueue *sq = mFastMixer->sq();
3509#ifdef STATE_QUEUE_DUMP
3510        sq->setObserverDump(&mStateQueueObserverDump);
3511        sq->setMutatorDump(&mStateQueueMutatorDump);
3512#endif
3513        FastMixerState *state = sq->begin();
3514        FastTrack *fastTrack = &state->mFastTracks[0];
3515        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3516        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3517        fastTrack->mVolumeProvider = NULL;
3518        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3519        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3520        fastTrack->mGeneration++;
3521        state->mFastTracksGen++;
3522        state->mTrackMask = 1;
3523        // fast mixer will use the HAL output sink
3524        state->mOutputSink = mOutputSink.get();
3525        state->mOutputSinkGen++;
3526        state->mFrameCount = mFrameCount;
3527        state->mCommand = FastMixerState::COLD_IDLE;
3528        // already done in constructor initialization list
3529        //mFastMixerFutex = 0;
3530        state->mColdFutexAddr = &mFastMixerFutex;
3531        state->mColdGen++;
3532        state->mDumpState = &mFastMixerDumpState;
3533#ifdef TEE_SINK
3534        state->mTeeSink = mTeeSink.get();
3535#endif
3536        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3537        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3538        sq->end();
3539        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3540
3541        // start the fast mixer
3542        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3543        pid_t tid = mFastMixer->getTid();
3544        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3545
3546#ifdef AUDIO_WATCHDOG
3547        // create and start the watchdog
3548        mAudioWatchdog = new AudioWatchdog();
3549        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3550        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3551        tid = mAudioWatchdog->getTid();
3552        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3553#endif
3554
3555    }
3556
3557    switch (kUseFastMixer) {
3558    case FastMixer_Never:
3559    case FastMixer_Dynamic:
3560        mNormalSink = mOutputSink;
3561        break;
3562    case FastMixer_Always:
3563        mNormalSink = mPipeSink;
3564        break;
3565    case FastMixer_Static:
3566        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3567        break;
3568    }
3569}
3570
3571AudioFlinger::MixerThread::~MixerThread()
3572{
3573    if (mFastMixer != 0) {
3574        FastMixerStateQueue *sq = mFastMixer->sq();
3575        FastMixerState *state = sq->begin();
3576        if (state->mCommand == FastMixerState::COLD_IDLE) {
3577            int32_t old = android_atomic_inc(&mFastMixerFutex);
3578            if (old == -1) {
3579                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3580            }
3581        }
3582        state->mCommand = FastMixerState::EXIT;
3583        sq->end();
3584        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3585        mFastMixer->join();
3586        // Though the fast mixer thread has exited, it's state queue is still valid.
3587        // We'll use that extract the final state which contains one remaining fast track
3588        // corresponding to our sub-mix.
3589        state = sq->begin();
3590        ALOG_ASSERT(state->mTrackMask == 1);
3591        FastTrack *fastTrack = &state->mFastTracks[0];
3592        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3593        delete fastTrack->mBufferProvider;
3594        sq->end(false /*didModify*/);
3595        mFastMixer.clear();
3596#ifdef AUDIO_WATCHDOG
3597        if (mAudioWatchdog != 0) {
3598            mAudioWatchdog->requestExit();
3599            mAudioWatchdog->requestExitAndWait();
3600            mAudioWatchdog.clear();
3601        }
3602#endif
3603    }
3604    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3605    delete mAudioMixer;
3606}
3607
3608
3609uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3610{
3611    if (mFastMixer != 0) {
3612        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3613        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3614    }
3615    return latency;
3616}
3617
3618
3619void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3620{
3621    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3622}
3623
3624ssize_t AudioFlinger::MixerThread::threadLoop_write()
3625{
3626    // FIXME we should only do one push per cycle; confirm this is true
3627    // Start the fast mixer if it's not already running
3628    if (mFastMixer != 0) {
3629        FastMixerStateQueue *sq = mFastMixer->sq();
3630        FastMixerState *state = sq->begin();
3631        if (state->mCommand != FastMixerState::MIX_WRITE &&
3632                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3633            if (state->mCommand == FastMixerState::COLD_IDLE) {
3634
3635                // FIXME workaround for first HAL write being CPU bound on some devices
3636                ATRACE_BEGIN("write");
3637                mOutput->write((char *)mSinkBuffer, 0);
3638                ATRACE_END();
3639
3640                int32_t old = android_atomic_inc(&mFastMixerFutex);
3641                if (old == -1) {
3642                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3643                }
3644#ifdef AUDIO_WATCHDOG
3645                if (mAudioWatchdog != 0) {
3646                    mAudioWatchdog->resume();
3647                }
3648#endif
3649            }
3650            state->mCommand = FastMixerState::MIX_WRITE;
3651#ifdef FAST_THREAD_STATISTICS
3652            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3653                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3654#endif
3655            sq->end();
3656            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3657            if (kUseFastMixer == FastMixer_Dynamic) {
3658                mNormalSink = mPipeSink;
3659            }
3660        } else {
3661            sq->end(false /*didModify*/);
3662        }
3663    }
3664    return PlaybackThread::threadLoop_write();
3665}
3666
3667void AudioFlinger::MixerThread::threadLoop_standby()
3668{
3669    // Idle the fast mixer if it's currently running
3670    if (mFastMixer != 0) {
3671        FastMixerStateQueue *sq = mFastMixer->sq();
3672        FastMixerState *state = sq->begin();
3673        if (!(state->mCommand & FastMixerState::IDLE)) {
3674            state->mCommand = FastMixerState::COLD_IDLE;
3675            state->mColdFutexAddr = &mFastMixerFutex;
3676            state->mColdGen++;
3677            mFastMixerFutex = 0;
3678            sq->end();
3679            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3680            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3681            if (kUseFastMixer == FastMixer_Dynamic) {
3682                mNormalSink = mOutputSink;
3683            }
3684#ifdef AUDIO_WATCHDOG
3685            if (mAudioWatchdog != 0) {
3686                mAudioWatchdog->pause();
3687            }
3688#endif
3689        } else {
3690            sq->end(false /*didModify*/);
3691        }
3692    }
3693    PlaybackThread::threadLoop_standby();
3694}
3695
3696bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3697{
3698    return false;
3699}
3700
3701bool AudioFlinger::PlaybackThread::shouldStandby_l()
3702{
3703    return !mStandby;
3704}
3705
3706bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3707{
3708    Mutex::Autolock _l(mLock);
3709    return waitingAsyncCallback_l();
3710}
3711
3712// shared by MIXER and DIRECT, overridden by DUPLICATING
3713void AudioFlinger::PlaybackThread::threadLoop_standby()
3714{
3715    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3716    mOutput->standby();
3717    if (mUseAsyncWrite != 0) {
3718        // discard any pending drain or write ack by incrementing sequence
3719        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3720        mDrainSequence = (mDrainSequence + 2) & ~1;
3721        ALOG_ASSERT(mCallbackThread != 0);
3722        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3723        mCallbackThread->setDraining(mDrainSequence);
3724    }
3725    mHwPaused = false;
3726}
3727
3728void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3729{
3730    ALOGV("signal playback thread");
3731    broadcast_l();
3732}
3733
3734void AudioFlinger::MixerThread::threadLoop_mix()
3735{
3736    // mix buffers...
3737    mAudioMixer->process();
3738    mCurrentWriteLength = mSinkBufferSize;
3739    // increase sleep time progressively when application underrun condition clears.
3740    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3741    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3742    // such that we would underrun the audio HAL.
3743    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3744        sleepTimeShift--;
3745    }
3746    mSleepTimeUs = 0;
3747    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3748    //TODO: delay standby when effects have a tail
3749
3750}
3751
3752void AudioFlinger::MixerThread::threadLoop_sleepTime()
3753{
3754    // If no tracks are ready, sleep once for the duration of an output
3755    // buffer size, then write 0s to the output
3756    if (mSleepTimeUs == 0) {
3757        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3758            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3759            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3760                mSleepTimeUs = kMinThreadSleepTimeUs;
3761            }
3762            // reduce sleep time in case of consecutive application underruns to avoid
3763            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3764            // duration we would end up writing less data than needed by the audio HAL if
3765            // the condition persists.
3766            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3767                sleepTimeShift++;
3768            }
3769        } else {
3770            mSleepTimeUs = mIdleSleepTimeUs;
3771        }
3772    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3773        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3774        // before effects processing or output.
3775        if (mMixerBufferValid) {
3776            memset(mMixerBuffer, 0, mMixerBufferSize);
3777        } else {
3778            memset(mSinkBuffer, 0, mSinkBufferSize);
3779        }
3780        mSleepTimeUs = 0;
3781        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3782                "anticipated start");
3783    }
3784    // TODO add standby time extension fct of effect tail
3785}
3786
3787// prepareTracks_l() must be called with ThreadBase::mLock held
3788AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3789        Vector< sp<Track> > *tracksToRemove)
3790{
3791
3792    mixer_state mixerStatus = MIXER_IDLE;
3793    // find out which tracks need to be processed
3794    size_t count = mActiveTracks.size();
3795    size_t mixedTracks = 0;
3796    size_t tracksWithEffect = 0;
3797    // counts only _active_ fast tracks
3798    size_t fastTracks = 0;
3799    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3800
3801    float masterVolume = mMasterVolume;
3802    bool masterMute = mMasterMute;
3803
3804    if (masterMute) {
3805        masterVolume = 0;
3806    }
3807    // Delegate master volume control to effect in output mix effect chain if needed
3808    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3809    if (chain != 0) {
3810        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3811        chain->setVolume_l(&v, &v);
3812        masterVolume = (float)((v + (1 << 23)) >> 24);
3813        chain.clear();
3814    }
3815
3816    // prepare a new state to push
3817    FastMixerStateQueue *sq = NULL;
3818    FastMixerState *state = NULL;
3819    bool didModify = false;
3820    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3821    if (mFastMixer != 0) {
3822        sq = mFastMixer->sq();
3823        state = sq->begin();
3824    }
3825
3826    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3827    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3828
3829    for (size_t i=0 ; i<count ; i++) {
3830        const sp<Track> t = mActiveTracks[i].promote();
3831        if (t == 0) {
3832            continue;
3833        }
3834
3835        // this const just means the local variable doesn't change
3836        Track* const track = t.get();
3837
3838        // process fast tracks
3839        if (track->isFastTrack()) {
3840
3841            // It's theoretically possible (though unlikely) for a fast track to be created
3842            // and then removed within the same normal mix cycle.  This is not a problem, as
3843            // the track never becomes active so it's fast mixer slot is never touched.
3844            // The converse, of removing an (active) track and then creating a new track
3845            // at the identical fast mixer slot within the same normal mix cycle,
3846            // is impossible because the slot isn't marked available until the end of each cycle.
3847            int j = track->mFastIndex;
3848            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3849            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3850            FastTrack *fastTrack = &state->mFastTracks[j];
3851
3852            // Determine whether the track is currently in underrun condition,
3853            // and whether it had a recent underrun.
3854            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3855            FastTrackUnderruns underruns = ftDump->mUnderruns;
3856            uint32_t recentFull = (underruns.mBitFields.mFull -
3857                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3858            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3859                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3860            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3861                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3862            uint32_t recentUnderruns = recentPartial + recentEmpty;
3863            track->mObservedUnderruns = underruns;
3864            // don't count underruns that occur while stopping or pausing
3865            // or stopped which can occur when flush() is called while active
3866            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3867                    recentUnderruns > 0) {
3868                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3869                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3870            } else {
3871                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
3872            }
3873
3874            // This is similar to the state machine for normal tracks,
3875            // with a few modifications for fast tracks.
3876            bool isActive = true;
3877            switch (track->mState) {
3878            case TrackBase::STOPPING_1:
3879                // track stays active in STOPPING_1 state until first underrun
3880                if (recentUnderruns > 0 || track->isTerminated()) {
3881                    track->mState = TrackBase::STOPPING_2;
3882                }
3883                break;
3884            case TrackBase::PAUSING:
3885                // ramp down is not yet implemented
3886                track->setPaused();
3887                break;
3888            case TrackBase::RESUMING:
3889                // ramp up is not yet implemented
3890                track->mState = TrackBase::ACTIVE;
3891                break;
3892            case TrackBase::ACTIVE:
3893                if (recentFull > 0 || recentPartial > 0) {
3894                    // track has provided at least some frames recently: reset retry count
3895                    track->mRetryCount = kMaxTrackRetries;
3896                }
3897                if (recentUnderruns == 0) {
3898                    // no recent underruns: stay active
3899                    break;
3900                }
3901                // there has recently been an underrun of some kind
3902                if (track->sharedBuffer() == 0) {
3903                    // were any of the recent underruns "empty" (no frames available)?
3904                    if (recentEmpty == 0) {
3905                        // no, then ignore the partial underruns as they are allowed indefinitely
3906                        break;
3907                    }
3908                    // there has recently been an "empty" underrun: decrement the retry counter
3909                    if (--(track->mRetryCount) > 0) {
3910                        break;
3911                    }
3912                    // indicate to client process that the track was disabled because of underrun;
3913                    // it will then automatically call start() when data is available
3914                    android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3915                    // remove from active list, but state remains ACTIVE [confusing but true]
3916                    isActive = false;
3917                    break;
3918                }
3919                // fall through
3920            case TrackBase::STOPPING_2:
3921            case TrackBase::PAUSED:
3922            case TrackBase::STOPPED:
3923            case TrackBase::FLUSHED:   // flush() while active
3924                // Check for presentation complete if track is inactive
3925                // We have consumed all the buffers of this track.
3926                // This would be incomplete if we auto-paused on underrun
3927                {
3928                    size_t audioHALFrames =
3929                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3930                    size_t framesWritten = mBytesWritten / mFrameSize;
3931                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3932                        // track stays in active list until presentation is complete
3933                        break;
3934                    }
3935                }
3936                if (track->isStopping_2()) {
3937                    track->mState = TrackBase::STOPPED;
3938                }
3939                if (track->isStopped()) {
3940                    // Can't reset directly, as fast mixer is still polling this track
3941                    //   track->reset();
3942                    // So instead mark this track as needing to be reset after push with ack
3943                    resetMask |= 1 << i;
3944                }
3945                isActive = false;
3946                break;
3947            case TrackBase::IDLE:
3948            default:
3949                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3950            }
3951
3952            if (isActive) {
3953                // was it previously inactive?
3954                if (!(state->mTrackMask & (1 << j))) {
3955                    ExtendedAudioBufferProvider *eabp = track;
3956                    VolumeProvider *vp = track;
3957                    fastTrack->mBufferProvider = eabp;
3958                    fastTrack->mVolumeProvider = vp;
3959                    fastTrack->mChannelMask = track->mChannelMask;
3960                    fastTrack->mFormat = track->mFormat;
3961                    fastTrack->mGeneration++;
3962                    state->mTrackMask |= 1 << j;
3963                    didModify = true;
3964                    // no acknowledgement required for newly active tracks
3965                }
3966                // cache the combined master volume and stream type volume for fast mixer; this
3967                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3968                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3969                ++fastTracks;
3970            } else {
3971                // was it previously active?
3972                if (state->mTrackMask & (1 << j)) {
3973                    fastTrack->mBufferProvider = NULL;
3974                    fastTrack->mGeneration++;
3975                    state->mTrackMask &= ~(1 << j);
3976                    didModify = true;
3977                    // If any fast tracks were removed, we must wait for acknowledgement
3978                    // because we're about to decrement the last sp<> on those tracks.
3979                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3980                } else {
3981                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
3982                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
3983                            j, track->mState, state->mTrackMask, recentUnderruns,
3984                            track->sharedBuffer() != 0);
3985                }
3986                tracksToRemove->add(track);
3987                // Avoids a misleading display in dumpsys
3988                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3989            }
3990            continue;
3991        }
3992
3993        {   // local variable scope to avoid goto warning
3994
3995        audio_track_cblk_t* cblk = track->cblk();
3996
3997        // The first time a track is added we wait
3998        // for all its buffers to be filled before processing it
3999        int name = track->name();
4000        // make sure that we have enough frames to mix one full buffer.
4001        // enforce this condition only once to enable draining the buffer in case the client
4002        // app does not call stop() and relies on underrun to stop:
4003        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4004        // during last round
4005        size_t desiredFrames;
4006        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4007        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4008
4009        desiredFrames = sourceFramesNeededWithTimestretch(
4010                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4011        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4012        // add frames already consumed but not yet released by the resampler
4013        // because mAudioTrackServerProxy->framesReady() will include these frames
4014        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4015
4016        uint32_t minFrames = 1;
4017        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4018                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4019            minFrames = desiredFrames;
4020        }
4021
4022        size_t framesReady = track->framesReady();
4023        if (ATRACE_ENABLED()) {
4024            // I wish we had formatted trace names
4025            char traceName[16];
4026            strcpy(traceName, "nRdy");
4027            int name = track->name();
4028            if (AudioMixer::TRACK0 <= name &&
4029                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4030                name -= AudioMixer::TRACK0;
4031                traceName[4] = (name / 10) + '0';
4032                traceName[5] = (name % 10) + '0';
4033            } else {
4034                traceName[4] = '?';
4035                traceName[5] = '?';
4036            }
4037            traceName[6] = '\0';
4038            ATRACE_INT(traceName, framesReady);
4039        }
4040        if ((framesReady >= minFrames) && track->isReady() &&
4041                !track->isPaused() && !track->isTerminated())
4042        {
4043            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4044
4045            mixedTracks++;
4046
4047            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4048            // there is an effect chain connected to the track
4049            chain.clear();
4050            if (track->mainBuffer() != mSinkBuffer &&
4051                    track->mainBuffer() != mMixerBuffer) {
4052                if (mEffectBufferEnabled) {
4053                    mEffectBufferValid = true; // Later can set directly.
4054                }
4055                chain = getEffectChain_l(track->sessionId());
4056                // Delegate volume control to effect in track effect chain if needed
4057                if (chain != 0) {
4058                    tracksWithEffect++;
4059                } else {
4060                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4061                            "session %d",
4062                            name, track->sessionId());
4063                }
4064            }
4065
4066
4067            int param = AudioMixer::VOLUME;
4068            if (track->mFillingUpStatus == Track::FS_FILLED) {
4069                // no ramp for the first volume setting
4070                track->mFillingUpStatus = Track::FS_ACTIVE;
4071                if (track->mState == TrackBase::RESUMING) {
4072                    track->mState = TrackBase::ACTIVE;
4073                    param = AudioMixer::RAMP_VOLUME;
4074                }
4075                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4076            // FIXME should not make a decision based on mServer
4077            } else if (cblk->mServer != 0) {
4078                // If the track is stopped before the first frame was mixed,
4079                // do not apply ramp
4080                param = AudioMixer::RAMP_VOLUME;
4081            }
4082
4083            // compute volume for this track
4084            uint32_t vl, vr;       // in U8.24 integer format
4085            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4086            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4087                vl = vr = 0;
4088                vlf = vrf = vaf = 0.;
4089                if (track->isPausing()) {
4090                    track->setPaused();
4091                }
4092            } else {
4093
4094                // read original volumes with volume control
4095                float typeVolume = mStreamTypes[track->streamType()].volume;
4096                float v = masterVolume * typeVolume;
4097                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4098                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4099                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4100                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4101                // track volumes come from shared memory, so can't be trusted and must be clamped
4102                if (vlf > GAIN_FLOAT_UNITY) {
4103                    ALOGV("Track left volume out of range: %.3g", vlf);
4104                    vlf = GAIN_FLOAT_UNITY;
4105                }
4106                if (vrf > GAIN_FLOAT_UNITY) {
4107                    ALOGV("Track right volume out of range: %.3g", vrf);
4108                    vrf = GAIN_FLOAT_UNITY;
4109                }
4110                // now apply the master volume and stream type volume
4111                vlf *= v;
4112                vrf *= v;
4113                // assuming master volume and stream type volume each go up to 1.0,
4114                // then derive vl and vr as U8.24 versions for the effect chain
4115                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4116                vl = (uint32_t) (scaleto8_24 * vlf);
4117                vr = (uint32_t) (scaleto8_24 * vrf);
4118                // vl and vr are now in U8.24 format
4119                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4120                // send level comes from shared memory and so may be corrupt
4121                if (sendLevel > MAX_GAIN_INT) {
4122                    ALOGV("Track send level out of range: %04X", sendLevel);
4123                    sendLevel = MAX_GAIN_INT;
4124                }
4125                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4126                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4127            }
4128
4129            // Delegate volume control to effect in track effect chain if needed
4130            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4131                // Do not ramp volume if volume is controlled by effect
4132                param = AudioMixer::VOLUME;
4133                // Update remaining floating point volume levels
4134                vlf = (float)vl / (1 << 24);
4135                vrf = (float)vr / (1 << 24);
4136                track->mHasVolumeController = true;
4137            } else {
4138                // force no volume ramp when volume controller was just disabled or removed
4139                // from effect chain to avoid volume spike
4140                if (track->mHasVolumeController) {
4141                    param = AudioMixer::VOLUME;
4142                }
4143                track->mHasVolumeController = false;
4144            }
4145
4146            // XXX: these things DON'T need to be done each time
4147            mAudioMixer->setBufferProvider(name, track);
4148            mAudioMixer->enable(name);
4149
4150            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4151            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4152            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4153            mAudioMixer->setParameter(
4154                name,
4155                AudioMixer::TRACK,
4156                AudioMixer::FORMAT, (void *)track->format());
4157            mAudioMixer->setParameter(
4158                name,
4159                AudioMixer::TRACK,
4160                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4161            mAudioMixer->setParameter(
4162                name,
4163                AudioMixer::TRACK,
4164                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4165            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4166            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4167            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4168            if (reqSampleRate == 0) {
4169                reqSampleRate = mSampleRate;
4170            } else if (reqSampleRate > maxSampleRate) {
4171                reqSampleRate = maxSampleRate;
4172            }
4173            mAudioMixer->setParameter(
4174                name,
4175                AudioMixer::RESAMPLE,
4176                AudioMixer::SAMPLE_RATE,
4177                (void *)(uintptr_t)reqSampleRate);
4178
4179            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4180            mAudioMixer->setParameter(
4181                name,
4182                AudioMixer::TIMESTRETCH,
4183                AudioMixer::PLAYBACK_RATE,
4184                &playbackRate);
4185
4186            /*
4187             * Select the appropriate output buffer for the track.
4188             *
4189             * Tracks with effects go into their own effects chain buffer
4190             * and from there into either mEffectBuffer or mSinkBuffer.
4191             *
4192             * Other tracks can use mMixerBuffer for higher precision
4193             * channel accumulation.  If this buffer is enabled
4194             * (mMixerBufferEnabled true), then selected tracks will accumulate
4195             * into it.
4196             *
4197             */
4198            if (mMixerBufferEnabled
4199                    && (track->mainBuffer() == mSinkBuffer
4200                            || track->mainBuffer() == mMixerBuffer)) {
4201                mAudioMixer->setParameter(
4202                        name,
4203                        AudioMixer::TRACK,
4204                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4205                mAudioMixer->setParameter(
4206                        name,
4207                        AudioMixer::TRACK,
4208                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4209                // TODO: override track->mainBuffer()?
4210                mMixerBufferValid = true;
4211            } else {
4212                mAudioMixer->setParameter(
4213                        name,
4214                        AudioMixer::TRACK,
4215                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4216                mAudioMixer->setParameter(
4217                        name,
4218                        AudioMixer::TRACK,
4219                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4220            }
4221            mAudioMixer->setParameter(
4222                name,
4223                AudioMixer::TRACK,
4224                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4225
4226            // reset retry count
4227            track->mRetryCount = kMaxTrackRetries;
4228
4229            // If one track is ready, set the mixer ready if:
4230            //  - the mixer was not ready during previous round OR
4231            //  - no other track is not ready
4232            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4233                    mixerStatus != MIXER_TRACKS_ENABLED) {
4234                mixerStatus = MIXER_TRACKS_READY;
4235            }
4236        } else {
4237            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4238                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4239                        track, framesReady, desiredFrames);
4240                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4241            } else {
4242                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4243            }
4244
4245            // clear effect chain input buffer if an active track underruns to avoid sending
4246            // previous audio buffer again to effects
4247            chain = getEffectChain_l(track->sessionId());
4248            if (chain != 0) {
4249                chain->clearInputBuffer();
4250            }
4251
4252            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4253            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4254                    track->isStopped() || track->isPaused()) {
4255                // We have consumed all the buffers of this track.
4256                // Remove it from the list of active tracks.
4257                // TODO: use actual buffer filling status instead of latency when available from
4258                // audio HAL
4259                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4260                size_t framesWritten = mBytesWritten / mFrameSize;
4261                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4262                    if (track->isStopped()) {
4263                        track->reset();
4264                    }
4265                    tracksToRemove->add(track);
4266                }
4267            } else {
4268                // No buffers for this track. Give it a few chances to
4269                // fill a buffer, then remove it from active list.
4270                if (--(track->mRetryCount) <= 0) {
4271                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4272                    tracksToRemove->add(track);
4273                    // indicate to client process that the track was disabled because of underrun;
4274                    // it will then automatically call start() when data is available
4275                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4276                // If one track is not ready, mark the mixer also not ready if:
4277                //  - the mixer was ready during previous round OR
4278                //  - no other track is ready
4279                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4280                                mixerStatus != MIXER_TRACKS_READY) {
4281                    mixerStatus = MIXER_TRACKS_ENABLED;
4282                }
4283            }
4284            mAudioMixer->disable(name);
4285        }
4286
4287        }   // local variable scope to avoid goto warning
4288track_is_ready: ;
4289
4290    }
4291
4292    // Push the new FastMixer state if necessary
4293    bool pauseAudioWatchdog = false;
4294    if (didModify) {
4295        state->mFastTracksGen++;
4296        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4297        if (kUseFastMixer == FastMixer_Dynamic &&
4298                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4299            state->mCommand = FastMixerState::COLD_IDLE;
4300            state->mColdFutexAddr = &mFastMixerFutex;
4301            state->mColdGen++;
4302            mFastMixerFutex = 0;
4303            if (kUseFastMixer == FastMixer_Dynamic) {
4304                mNormalSink = mOutputSink;
4305            }
4306            // If we go into cold idle, need to wait for acknowledgement
4307            // so that fast mixer stops doing I/O.
4308            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4309            pauseAudioWatchdog = true;
4310        }
4311    }
4312    if (sq != NULL) {
4313        sq->end(didModify);
4314        sq->push(block);
4315    }
4316#ifdef AUDIO_WATCHDOG
4317    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4318        mAudioWatchdog->pause();
4319    }
4320#endif
4321
4322    // Now perform the deferred reset on fast tracks that have stopped
4323    while (resetMask != 0) {
4324        size_t i = __builtin_ctz(resetMask);
4325        ALOG_ASSERT(i < count);
4326        resetMask &= ~(1 << i);
4327        sp<Track> t = mActiveTracks[i].promote();
4328        if (t == 0) {
4329            continue;
4330        }
4331        Track* track = t.get();
4332        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4333        track->reset();
4334    }
4335
4336    // remove all the tracks that need to be...
4337    removeTracks_l(*tracksToRemove);
4338
4339    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4340        mEffectBufferValid = true;
4341    }
4342
4343    if (mEffectBufferValid) {
4344        // as long as there are effects we should clear the effects buffer, to avoid
4345        // passing a non-clean buffer to the effect chain
4346        memset(mEffectBuffer, 0, mEffectBufferSize);
4347    }
4348    // sink or mix buffer must be cleared if all tracks are connected to an
4349    // effect chain as in this case the mixer will not write to the sink or mix buffer
4350    // and track effects will accumulate into it
4351    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4352            (mixedTracks == 0 && fastTracks > 0))) {
4353        // FIXME as a performance optimization, should remember previous zero status
4354        if (mMixerBufferValid) {
4355            memset(mMixerBuffer, 0, mMixerBufferSize);
4356            // TODO: In testing, mSinkBuffer below need not be cleared because
4357            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4358            // after mixing.
4359            //
4360            // To enforce this guarantee:
4361            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4362            // (mixedTracks == 0 && fastTracks > 0))
4363            // must imply MIXER_TRACKS_READY.
4364            // Later, we may clear buffers regardless, and skip much of this logic.
4365        }
4366        // FIXME as a performance optimization, should remember previous zero status
4367        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4368    }
4369
4370    // if any fast tracks, then status is ready
4371    mMixerStatusIgnoringFastTracks = mixerStatus;
4372    if (fastTracks > 0) {
4373        mixerStatus = MIXER_TRACKS_READY;
4374    }
4375    return mixerStatus;
4376}
4377
4378// getTrackName_l() must be called with ThreadBase::mLock held
4379int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4380        audio_format_t format, int sessionId)
4381{
4382    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4383}
4384
4385// deleteTrackName_l() must be called with ThreadBase::mLock held
4386void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4387{
4388    ALOGV("remove track (%d) and delete from mixer", name);
4389    mAudioMixer->deleteTrackName(name);
4390}
4391
4392// checkForNewParameter_l() must be called with ThreadBase::mLock held
4393bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4394                                                       status_t& status)
4395{
4396    bool reconfig = false;
4397    bool a2dpDeviceChanged = false;
4398
4399    status = NO_ERROR;
4400
4401    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
4402    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
4403    if (mFastMixer != 0) {
4404        FastMixerStateQueue *sq = mFastMixer->sq();
4405        FastMixerState *state = sq->begin();
4406        if (!(state->mCommand & FastMixerState::IDLE)) {
4407            previousCommand = state->mCommand;
4408            state->mCommand = FastMixerState::HOT_IDLE;
4409            sq->end();
4410            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4411        } else {
4412            sq->end(false /*didModify*/);
4413        }
4414    }
4415
4416    AudioParameter param = AudioParameter(keyValuePair);
4417    int value;
4418    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4419        reconfig = true;
4420    }
4421    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4422        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4423            status = BAD_VALUE;
4424        } else {
4425            // no need to save value, since it's constant
4426            reconfig = true;
4427        }
4428    }
4429    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4430        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4431            status = BAD_VALUE;
4432        } else {
4433            // no need to save value, since it's constant
4434            reconfig = true;
4435        }
4436    }
4437    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4438        // do not accept frame count changes if tracks are open as the track buffer
4439        // size depends on frame count and correct behavior would not be guaranteed
4440        // if frame count is changed after track creation
4441        if (!mTracks.isEmpty()) {
4442            status = INVALID_OPERATION;
4443        } else {
4444            reconfig = true;
4445        }
4446    }
4447    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4448#ifdef ADD_BATTERY_DATA
4449        // when changing the audio output device, call addBatteryData to notify
4450        // the change
4451        if (mOutDevice != value) {
4452            uint32_t params = 0;
4453            // check whether speaker is on
4454            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4455                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4456            }
4457
4458            audio_devices_t deviceWithoutSpeaker
4459                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4460            // check if any other device (except speaker) is on
4461            if (value & deviceWithoutSpeaker) {
4462                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4463            }
4464
4465            if (params != 0) {
4466                addBatteryData(params);
4467            }
4468        }
4469#endif
4470
4471        // forward device change to effects that have requested to be
4472        // aware of attached audio device.
4473        if (value != AUDIO_DEVICE_NONE) {
4474            a2dpDeviceChanged =
4475                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4476            mOutDevice = value;
4477            for (size_t i = 0; i < mEffectChains.size(); i++) {
4478                mEffectChains[i]->setDevice_l(mOutDevice);
4479            }
4480        }
4481    }
4482
4483    if (status == NO_ERROR) {
4484        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4485                                                keyValuePair.string());
4486        if (!mStandby && status == INVALID_OPERATION) {
4487            mOutput->standby();
4488            mStandby = true;
4489            mBytesWritten = 0;
4490            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4491                                                   keyValuePair.string());
4492        }
4493        if (status == NO_ERROR && reconfig) {
4494            readOutputParameters_l();
4495            delete mAudioMixer;
4496            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4497            for (size_t i = 0; i < mTracks.size() ; i++) {
4498                int name = getTrackName_l(mTracks[i]->mChannelMask,
4499                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4500                if (name < 0) {
4501                    break;
4502                }
4503                mTracks[i]->mName = name;
4504            }
4505            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4506        }
4507    }
4508
4509    if (!(previousCommand & FastMixerState::IDLE)) {
4510        ALOG_ASSERT(mFastMixer != 0);
4511        FastMixerStateQueue *sq = mFastMixer->sq();
4512        FastMixerState *state = sq->begin();
4513        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4514        state->mCommand = previousCommand;
4515        sq->end();
4516        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4517    }
4518
4519    return reconfig || a2dpDeviceChanged;
4520}
4521
4522
4523void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4524{
4525    const size_t SIZE = 256;
4526    char buffer[SIZE];
4527    String8 result;
4528
4529    PlaybackThread::dumpInternals(fd, args);
4530    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4531    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4532    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4533
4534    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4535    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4536    // This is a large object so we place it on the heap.
4537    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4538    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4539    copy->dump(fd);
4540    delete copy;
4541
4542#ifdef STATE_QUEUE_DUMP
4543    // Similar for state queue
4544    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4545    observerCopy.dump(fd);
4546    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4547    mutatorCopy.dump(fd);
4548#endif
4549
4550#ifdef TEE_SINK
4551    // Write the tee output to a .wav file
4552    dumpTee(fd, mTeeSource, mId);
4553#endif
4554
4555#ifdef AUDIO_WATCHDOG
4556    if (mAudioWatchdog != 0) {
4557        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4558        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4559        wdCopy.dump(fd);
4560    }
4561#endif
4562}
4563
4564uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4565{
4566    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4567}
4568
4569uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4570{
4571    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4572}
4573
4574void AudioFlinger::MixerThread::cacheParameters_l()
4575{
4576    PlaybackThread::cacheParameters_l();
4577
4578    // FIXME: Relaxed timing because of a certain device that can't meet latency
4579    // Should be reduced to 2x after the vendor fixes the driver issue
4580    // increase threshold again due to low power audio mode. The way this warning
4581    // threshold is calculated and its usefulness should be reconsidered anyway.
4582    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4583}
4584
4585// ----------------------------------------------------------------------------
4586
4587AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4588        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4589    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4590        // mLeftVolFloat, mRightVolFloat
4591{
4592}
4593
4594AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4595        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4596        ThreadBase::type_t type, bool systemReady)
4597    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4598        // mLeftVolFloat, mRightVolFloat
4599{
4600}
4601
4602AudioFlinger::DirectOutputThread::~DirectOutputThread()
4603{
4604}
4605
4606void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4607{
4608    audio_track_cblk_t* cblk = track->cblk();
4609    float left, right;
4610
4611    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4612        left = right = 0;
4613    } else {
4614        float typeVolume = mStreamTypes[track->streamType()].volume;
4615        float v = mMasterVolume * typeVolume;
4616        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4617        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4618        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4619        if (left > GAIN_FLOAT_UNITY) {
4620            left = GAIN_FLOAT_UNITY;
4621        }
4622        left *= v;
4623        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4624        if (right > GAIN_FLOAT_UNITY) {
4625            right = GAIN_FLOAT_UNITY;
4626        }
4627        right *= v;
4628    }
4629
4630    if (lastTrack) {
4631        if (left != mLeftVolFloat || right != mRightVolFloat) {
4632            mLeftVolFloat = left;
4633            mRightVolFloat = right;
4634
4635            // Convert volumes from float to 8.24
4636            uint32_t vl = (uint32_t)(left * (1 << 24));
4637            uint32_t vr = (uint32_t)(right * (1 << 24));
4638
4639            // Delegate volume control to effect in track effect chain if needed
4640            // only one effect chain can be present on DirectOutputThread, so if
4641            // there is one, the track is connected to it
4642            if (!mEffectChains.isEmpty()) {
4643                mEffectChains[0]->setVolume_l(&vl, &vr);
4644                left = (float)vl / (1 << 24);
4645                right = (float)vr / (1 << 24);
4646            }
4647            if (mOutput->stream->set_volume) {
4648                mOutput->stream->set_volume(mOutput->stream, left, right);
4649            }
4650        }
4651    }
4652}
4653
4654void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4655{
4656    sp<Track> previousTrack = mPreviousTrack.promote();
4657    sp<Track> latestTrack = mLatestActiveTrack.promote();
4658
4659    if (previousTrack != 0 && latestTrack != 0) {
4660        if (mType == DIRECT) {
4661            if (previousTrack.get() != latestTrack.get()) {
4662                mFlushPending = true;
4663            }
4664        } else /* mType == OFFLOAD */ {
4665            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4666                mFlushPending = true;
4667            }
4668        }
4669    }
4670    PlaybackThread::onAddNewTrack_l();
4671}
4672
4673AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4674    Vector< sp<Track> > *tracksToRemove
4675)
4676{
4677    size_t count = mActiveTracks.size();
4678    mixer_state mixerStatus = MIXER_IDLE;
4679    bool doHwPause = false;
4680    bool doHwResume = false;
4681
4682    // find out which tracks need to be processed
4683    for (size_t i = 0; i < count; i++) {
4684        sp<Track> t = mActiveTracks[i].promote();
4685        // The track died recently
4686        if (t == 0) {
4687            continue;
4688        }
4689
4690        if (t->isInvalid()) {
4691            ALOGW("An invalidated track shouldn't be in active list");
4692            tracksToRemove->add(t);
4693            continue;
4694        }
4695
4696        Track* const track = t.get();
4697        audio_track_cblk_t* cblk = track->cblk();
4698        // Only consider last track started for volume and mixer state control.
4699        // In theory an older track could underrun and restart after the new one starts
4700        // but as we only care about the transition phase between two tracks on a
4701        // direct output, it is not a problem to ignore the underrun case.
4702        sp<Track> l = mLatestActiveTrack.promote();
4703        bool last = l.get() == track;
4704
4705        if (track->isPausing()) {
4706            track->setPaused();
4707            if (mHwSupportsPause && last && !mHwPaused) {
4708                doHwPause = true;
4709                mHwPaused = true;
4710            }
4711            tracksToRemove->add(track);
4712        } else if (track->isFlushPending()) {
4713            track->flushAck();
4714            if (last) {
4715                mFlushPending = true;
4716            }
4717        } else if (track->isResumePending()) {
4718            track->resumeAck();
4719            if (last && mHwPaused) {
4720                doHwResume = true;
4721                mHwPaused = false;
4722            }
4723        }
4724
4725        // The first time a track is added we wait
4726        // for all its buffers to be filled before processing it.
4727        // Allow draining the buffer in case the client
4728        // app does not call stop() and relies on underrun to stop:
4729        // hence the test on (track->mRetryCount > 1).
4730        // If retryCount<=1 then track is about to underrun and be removed.
4731        // Do not use a high threshold for compressed audio.
4732        uint32_t minFrames;
4733        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4734            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4735            minFrames = mNormalFrameCount;
4736        } else {
4737            minFrames = 1;
4738        }
4739
4740        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4741                !track->isStopping_2() && !track->isStopped())
4742        {
4743            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4744
4745            if (track->mFillingUpStatus == Track::FS_FILLED) {
4746                track->mFillingUpStatus = Track::FS_ACTIVE;
4747                // make sure processVolume_l() will apply new volume even if 0
4748                mLeftVolFloat = mRightVolFloat = -1.0;
4749                if (!mHwSupportsPause) {
4750                    track->resumeAck();
4751                }
4752            }
4753
4754            // compute volume for this track
4755            processVolume_l(track, last);
4756            if (last) {
4757                sp<Track> previousTrack = mPreviousTrack.promote();
4758                if (previousTrack != 0) {
4759                    if (track != previousTrack.get()) {
4760                        // Flush any data still being written from last track
4761                        mBytesRemaining = 0;
4762                        // Invalidate previous track to force a seek when resuming.
4763                        previousTrack->invalidate();
4764                    }
4765                }
4766                mPreviousTrack = track;
4767
4768                // reset retry count
4769                track->mRetryCount = kMaxTrackRetriesDirect;
4770                mActiveTrack = t;
4771                mixerStatus = MIXER_TRACKS_READY;
4772                if (mHwPaused) {
4773                    doHwResume = true;
4774                    mHwPaused = false;
4775                }
4776            }
4777        } else {
4778            // clear effect chain input buffer if the last active track started underruns
4779            // to avoid sending previous audio buffer again to effects
4780            if (!mEffectChains.isEmpty() && last) {
4781                mEffectChains[0]->clearInputBuffer();
4782            }
4783            if (track->isStopping_1()) {
4784                track->mState = TrackBase::STOPPING_2;
4785                if (last && mHwPaused) {
4786                     doHwResume = true;
4787                     mHwPaused = false;
4788                 }
4789            }
4790            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4791                    track->isStopping_2() || track->isPaused()) {
4792                // We have consumed all the buffers of this track.
4793                // Remove it from the list of active tracks.
4794                size_t audioHALFrames;
4795                if (audio_has_proportional_frames(mFormat)) {
4796                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4797                } else {
4798                    audioHALFrames = 0;
4799                }
4800
4801                size_t framesWritten = mBytesWritten / mFrameSize;
4802                if (mStandby || !last ||
4803                        track->presentationComplete(framesWritten, audioHALFrames)) {
4804                    if (track->isStopping_2()) {
4805                        track->mState = TrackBase::STOPPED;
4806                    }
4807                    if (track->isStopped()) {
4808                        track->reset();
4809                    }
4810                    tracksToRemove->add(track);
4811                }
4812            } else {
4813                // No buffers for this track. Give it a few chances to
4814                // fill a buffer, then remove it from active list.
4815                // Only consider last track started for mixer state control
4816                if (--(track->mRetryCount) <= 0) {
4817                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4818                    tracksToRemove->add(track);
4819                    // indicate to client process that the track was disabled because of underrun;
4820                    // it will then automatically call start() when data is available
4821                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4822                } else if (last) {
4823                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4824                            "minFrames = %u, mFormat = %#x",
4825                            track->framesReady(), minFrames, mFormat);
4826                    mixerStatus = MIXER_TRACKS_ENABLED;
4827                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4828                        doHwPause = true;
4829                        mHwPaused = true;
4830                    }
4831                }
4832            }
4833        }
4834    }
4835
4836    // if an active track did not command a flush, check for pending flush on stopped tracks
4837    if (!mFlushPending) {
4838        for (size_t i = 0; i < mTracks.size(); i++) {
4839            if (mTracks[i]->isFlushPending()) {
4840                mTracks[i]->flushAck();
4841                mFlushPending = true;
4842            }
4843        }
4844    }
4845
4846    // make sure the pause/flush/resume sequence is executed in the right order.
4847    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4848    // before flush and then resume HW. This can happen in case of pause/flush/resume
4849    // if resume is received before pause is executed.
4850    if (mHwSupportsPause && !mStandby &&
4851            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4852        mOutput->stream->pause(mOutput->stream);
4853    }
4854    if (mFlushPending) {
4855        flushHw_l();
4856    }
4857    if (mHwSupportsPause && !mStandby && doHwResume) {
4858        mOutput->stream->resume(mOutput->stream);
4859    }
4860    // remove all the tracks that need to be...
4861    removeTracks_l(*tracksToRemove);
4862
4863    return mixerStatus;
4864}
4865
4866void AudioFlinger::DirectOutputThread::threadLoop_mix()
4867{
4868    size_t frameCount = mFrameCount;
4869    int8_t *curBuf = (int8_t *)mSinkBuffer;
4870    // output audio to hardware
4871    while (frameCount) {
4872        AudioBufferProvider::Buffer buffer;
4873        buffer.frameCount = frameCount;
4874        status_t status = mActiveTrack->getNextBuffer(&buffer);
4875        if (status != NO_ERROR || buffer.raw == NULL) {
4876            memset(curBuf, 0, frameCount * mFrameSize);
4877            break;
4878        }
4879        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4880        frameCount -= buffer.frameCount;
4881        curBuf += buffer.frameCount * mFrameSize;
4882        mActiveTrack->releaseBuffer(&buffer);
4883    }
4884    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4885    mSleepTimeUs = 0;
4886    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4887    mActiveTrack.clear();
4888}
4889
4890void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4891{
4892    // do not write to HAL when paused
4893    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4894        mSleepTimeUs = mIdleSleepTimeUs;
4895        return;
4896    }
4897    if (mSleepTimeUs == 0) {
4898        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4899            mSleepTimeUs = mActiveSleepTimeUs;
4900        } else {
4901            mSleepTimeUs = mIdleSleepTimeUs;
4902        }
4903    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
4904        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4905        mSleepTimeUs = 0;
4906    }
4907}
4908
4909void AudioFlinger::DirectOutputThread::threadLoop_exit()
4910{
4911    {
4912        Mutex::Autolock _l(mLock);
4913        for (size_t i = 0; i < mTracks.size(); i++) {
4914            if (mTracks[i]->isFlushPending()) {
4915                mTracks[i]->flushAck();
4916                mFlushPending = true;
4917            }
4918        }
4919        if (mFlushPending) {
4920            flushHw_l();
4921        }
4922    }
4923    PlaybackThread::threadLoop_exit();
4924}
4925
4926// must be called with thread mutex locked
4927bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4928{
4929    bool trackPaused = false;
4930    bool trackStopped = false;
4931
4932    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4933    // after a timeout and we will enter standby then.
4934    if (mTracks.size() > 0) {
4935        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4936        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4937                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4938    }
4939
4940    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
4941}
4942
4943// getTrackName_l() must be called with ThreadBase::mLock held
4944int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4945        audio_format_t format __unused, int sessionId __unused)
4946{
4947    return 0;
4948}
4949
4950// deleteTrackName_l() must be called with ThreadBase::mLock held
4951void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4952{
4953}
4954
4955// checkForNewParameter_l() must be called with ThreadBase::mLock held
4956bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4957                                                              status_t& status)
4958{
4959    bool reconfig = false;
4960    bool a2dpDeviceChanged = false;
4961
4962    status = NO_ERROR;
4963
4964    AudioParameter param = AudioParameter(keyValuePair);
4965    int value;
4966    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4967        // forward device change to effects that have requested to be
4968        // aware of attached audio device.
4969        if (value != AUDIO_DEVICE_NONE) {
4970            a2dpDeviceChanged =
4971                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4972            mOutDevice = value;
4973            for (size_t i = 0; i < mEffectChains.size(); i++) {
4974                mEffectChains[i]->setDevice_l(mOutDevice);
4975            }
4976        }
4977    }
4978    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4979        // do not accept frame count changes if tracks are open as the track buffer
4980        // size depends on frame count and correct behavior would not be garantied
4981        // if frame count is changed after track creation
4982        if (!mTracks.isEmpty()) {
4983            status = INVALID_OPERATION;
4984        } else {
4985            reconfig = true;
4986        }
4987    }
4988    if (status == NO_ERROR) {
4989        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4990                                                keyValuePair.string());
4991        if (!mStandby && status == INVALID_OPERATION) {
4992            mOutput->standby();
4993            mStandby = true;
4994            mBytesWritten = 0;
4995            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4996                                                   keyValuePair.string());
4997        }
4998        if (status == NO_ERROR && reconfig) {
4999            readOutputParameters_l();
5000            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5001        }
5002    }
5003
5004    return reconfig || a2dpDeviceChanged;
5005}
5006
5007uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5008{
5009    uint32_t time;
5010    if (audio_has_proportional_frames(mFormat)) {
5011        time = PlaybackThread::activeSleepTimeUs();
5012    } else {
5013        time = 10000;
5014    }
5015    return time;
5016}
5017
5018uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5019{
5020    uint32_t time;
5021    if (audio_has_proportional_frames(mFormat)) {
5022        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5023    } else {
5024        time = 10000;
5025    }
5026    return time;
5027}
5028
5029uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5030{
5031    uint32_t time;
5032    if (audio_has_proportional_frames(mFormat)) {
5033        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5034    } else {
5035        time = 10000;
5036    }
5037    return time;
5038}
5039
5040void AudioFlinger::DirectOutputThread::cacheParameters_l()
5041{
5042    PlaybackThread::cacheParameters_l();
5043
5044    // use shorter standby delay as on normal output to release
5045    // hardware resources as soon as possible
5046    // no delay on outputs with HW A/V sync
5047    if (usesHwAvSync()) {
5048        mStandbyDelayNs = 0;
5049    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5050        mStandbyDelayNs = kOffloadStandbyDelayNs;
5051    } else {
5052        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5053    }
5054}
5055
5056void AudioFlinger::DirectOutputThread::flushHw_l()
5057{
5058    mOutput->flush();
5059    mHwPaused = false;
5060    mFlushPending = false;
5061}
5062
5063// ----------------------------------------------------------------------------
5064
5065AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5066        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5067    :   Thread(false /*canCallJava*/),
5068        mPlaybackThread(playbackThread),
5069        mWriteAckSequence(0),
5070        mDrainSequence(0)
5071{
5072}
5073
5074AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5075{
5076}
5077
5078void AudioFlinger::AsyncCallbackThread::onFirstRef()
5079{
5080    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5081}
5082
5083bool AudioFlinger::AsyncCallbackThread::threadLoop()
5084{
5085    while (!exitPending()) {
5086        uint32_t writeAckSequence;
5087        uint32_t drainSequence;
5088
5089        {
5090            Mutex::Autolock _l(mLock);
5091            while (!((mWriteAckSequence & 1) ||
5092                     (mDrainSequence & 1) ||
5093                     exitPending())) {
5094                mWaitWorkCV.wait(mLock);
5095            }
5096
5097            if (exitPending()) {
5098                break;
5099            }
5100            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5101                  mWriteAckSequence, mDrainSequence);
5102            writeAckSequence = mWriteAckSequence;
5103            mWriteAckSequence &= ~1;
5104            drainSequence = mDrainSequence;
5105            mDrainSequence &= ~1;
5106        }
5107        {
5108            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5109            if (playbackThread != 0) {
5110                if (writeAckSequence & 1) {
5111                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5112                }
5113                if (drainSequence & 1) {
5114                    playbackThread->resetDraining(drainSequence >> 1);
5115                }
5116            }
5117        }
5118    }
5119    return false;
5120}
5121
5122void AudioFlinger::AsyncCallbackThread::exit()
5123{
5124    ALOGV("AsyncCallbackThread::exit");
5125    Mutex::Autolock _l(mLock);
5126    requestExit();
5127    mWaitWorkCV.broadcast();
5128}
5129
5130void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5131{
5132    Mutex::Autolock _l(mLock);
5133    // bit 0 is cleared
5134    mWriteAckSequence = sequence << 1;
5135}
5136
5137void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5138{
5139    Mutex::Autolock _l(mLock);
5140    // ignore unexpected callbacks
5141    if (mWriteAckSequence & 2) {
5142        mWriteAckSequence |= 1;
5143        mWaitWorkCV.signal();
5144    }
5145}
5146
5147void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5148{
5149    Mutex::Autolock _l(mLock);
5150    // bit 0 is cleared
5151    mDrainSequence = sequence << 1;
5152}
5153
5154void AudioFlinger::AsyncCallbackThread::resetDraining()
5155{
5156    Mutex::Autolock _l(mLock);
5157    // ignore unexpected callbacks
5158    if (mDrainSequence & 2) {
5159        mDrainSequence |= 1;
5160        mWaitWorkCV.signal();
5161    }
5162}
5163
5164
5165// ----------------------------------------------------------------------------
5166AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5167        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5168    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5169        mPausedBytesRemaining(0)
5170{
5171    //FIXME: mStandby should be set to true by ThreadBase constructor
5172    mStandby = true;
5173}
5174
5175void AudioFlinger::OffloadThread::threadLoop_exit()
5176{
5177    if (mFlushPending || mHwPaused) {
5178        // If a flush is pending or track was paused, just discard buffered data
5179        flushHw_l();
5180    } else {
5181        mMixerStatus = MIXER_DRAIN_ALL;
5182        threadLoop_drain();
5183    }
5184    if (mUseAsyncWrite) {
5185        ALOG_ASSERT(mCallbackThread != 0);
5186        mCallbackThread->exit();
5187    }
5188    PlaybackThread::threadLoop_exit();
5189}
5190
5191AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5192    Vector< sp<Track> > *tracksToRemove
5193)
5194{
5195    size_t count = mActiveTracks.size();
5196
5197    mixer_state mixerStatus = MIXER_IDLE;
5198    bool doHwPause = false;
5199    bool doHwResume = false;
5200
5201    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
5202
5203    // find out which tracks need to be processed
5204    for (size_t i = 0; i < count; i++) {
5205        sp<Track> t = mActiveTracks[i].promote();
5206        // The track died recently
5207        if (t == 0) {
5208            continue;
5209        }
5210        Track* const track = t.get();
5211        audio_track_cblk_t* cblk = track->cblk();
5212        // Only consider last track started for volume and mixer state control.
5213        // In theory an older track could underrun and restart after the new one starts
5214        // but as we only care about the transition phase between two tracks on a
5215        // direct output, it is not a problem to ignore the underrun case.
5216        sp<Track> l = mLatestActiveTrack.promote();
5217        bool last = l.get() == track;
5218
5219        if (track->isInvalid()) {
5220            ALOGW("An invalidated track shouldn't be in active list");
5221            tracksToRemove->add(track);
5222            continue;
5223        }
5224
5225        if (track->mState == TrackBase::IDLE) {
5226            ALOGW("An idle track shouldn't be in active list");
5227            continue;
5228        }
5229
5230        if (track->isPausing()) {
5231            track->setPaused();
5232            if (last) {
5233                if (mHwSupportsPause && !mHwPaused) {
5234                    doHwPause = true;
5235                    mHwPaused = true;
5236                }
5237                // If we were part way through writing the mixbuffer to
5238                // the HAL we must save this until we resume
5239                // BUG - this will be wrong if a different track is made active,
5240                // in that case we want to discard the pending data in the
5241                // mixbuffer and tell the client to present it again when the
5242                // track is resumed
5243                mPausedWriteLength = mCurrentWriteLength;
5244                mPausedBytesRemaining = mBytesRemaining;
5245                mBytesRemaining = 0;    // stop writing
5246            }
5247            tracksToRemove->add(track);
5248        } else if (track->isFlushPending()) {
5249            track->flushAck();
5250            if (last) {
5251                mFlushPending = true;
5252            }
5253        } else if (track->isResumePending()){
5254            track->resumeAck();
5255            if (last) {
5256                if (mPausedBytesRemaining) {
5257                    // Need to continue write that was interrupted
5258                    mCurrentWriteLength = mPausedWriteLength;
5259                    mBytesRemaining = mPausedBytesRemaining;
5260                    mPausedBytesRemaining = 0;
5261                }
5262                if (mHwPaused) {
5263                    doHwResume = true;
5264                    mHwPaused = false;
5265                    // threadLoop_mix() will handle the case that we need to
5266                    // resume an interrupted write
5267                }
5268                // enable write to audio HAL
5269                mSleepTimeUs = 0;
5270
5271                // Do not handle new data in this iteration even if track->framesReady()
5272                mixerStatus = MIXER_TRACKS_ENABLED;
5273            }
5274        }  else if (track->framesReady() && track->isReady() &&
5275                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5276            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5277            if (track->mFillingUpStatus == Track::FS_FILLED) {
5278                track->mFillingUpStatus = Track::FS_ACTIVE;
5279                // make sure processVolume_l() will apply new volume even if 0
5280                mLeftVolFloat = mRightVolFloat = -1.0;
5281            }
5282
5283            if (last) {
5284                sp<Track> previousTrack = mPreviousTrack.promote();
5285                if (previousTrack != 0) {
5286                    if (track != previousTrack.get()) {
5287                        // Flush any data still being written from last track
5288                        mBytesRemaining = 0;
5289                        if (mPausedBytesRemaining) {
5290                            // Last track was paused so we also need to flush saved
5291                            // mixbuffer state and invalidate track so that it will
5292                            // re-submit that unwritten data when it is next resumed
5293                            mPausedBytesRemaining = 0;
5294                            // Invalidate is a bit drastic - would be more efficient
5295                            // to have a flag to tell client that some of the
5296                            // previously written data was lost
5297                            previousTrack->invalidate();
5298                        }
5299                        // flush data already sent to the DSP if changing audio session as audio
5300                        // comes from a different source. Also invalidate previous track to force a
5301                        // seek when resuming.
5302                        if (previousTrack->sessionId() != track->sessionId()) {
5303                            previousTrack->invalidate();
5304                        }
5305                    }
5306                }
5307                mPreviousTrack = track;
5308                // reset retry count
5309                track->mRetryCount = kMaxTrackRetriesOffload;
5310                mActiveTrack = t;
5311                mixerStatus = MIXER_TRACKS_READY;
5312            }
5313        } else {
5314            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5315            if (track->isStopping_1()) {
5316                // Hardware buffer can hold a large amount of audio so we must
5317                // wait for all current track's data to drain before we say
5318                // that the track is stopped.
5319                if (mBytesRemaining == 0) {
5320                    // Only start draining when all data in mixbuffer
5321                    // has been written
5322                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5323                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5324                    // do not drain if no data was ever sent to HAL (mStandby == true)
5325                    if (last && !mStandby) {
5326                        // do not modify drain sequence if we are already draining. This happens
5327                        // when resuming from pause after drain.
5328                        if ((mDrainSequence & 1) == 0) {
5329                            mSleepTimeUs = 0;
5330                            mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5331                            mixerStatus = MIXER_DRAIN_TRACK;
5332                            mDrainSequence += 2;
5333                        }
5334                        if (mHwPaused) {
5335                            // It is possible to move from PAUSED to STOPPING_1 without
5336                            // a resume so we must ensure hardware is running
5337                            doHwResume = true;
5338                            mHwPaused = false;
5339                        }
5340                    }
5341                }
5342            } else if (track->isStopping_2()) {
5343                // Drain has completed or we are in standby, signal presentation complete
5344                if (!(mDrainSequence & 1) || !last || mStandby) {
5345                    track->mState = TrackBase::STOPPED;
5346                    size_t audioHALFrames =
5347                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5348                    size_t framesWritten =
5349                            mBytesWritten / mOutput->getFrameSize();
5350                    track->presentationComplete(framesWritten, audioHALFrames);
5351                    track->reset();
5352                    tracksToRemove->add(track);
5353                }
5354            } else {
5355                // No buffers for this track. Give it a few chances to
5356                // fill a buffer, then remove it from active list.
5357                if (--(track->mRetryCount) <= 0) {
5358                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5359                          track->name());
5360                    tracksToRemove->add(track);
5361                    // indicate to client process that the track was disabled because of underrun;
5362                    // it will then automatically call start() when data is available
5363                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
5364                } else if (last){
5365                    mixerStatus = MIXER_TRACKS_ENABLED;
5366                }
5367            }
5368        }
5369        // compute volume for this track
5370        processVolume_l(track, last);
5371    }
5372
5373    // make sure the pause/flush/resume sequence is executed in the right order.
5374    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5375    // before flush and then resume HW. This can happen in case of pause/flush/resume
5376    // if resume is received before pause is executed.
5377    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5378        mOutput->stream->pause(mOutput->stream);
5379    }
5380    if (mFlushPending) {
5381        flushHw_l();
5382    }
5383    if (!mStandby && doHwResume) {
5384        mOutput->stream->resume(mOutput->stream);
5385    }
5386
5387    // remove all the tracks that need to be...
5388    removeTracks_l(*tracksToRemove);
5389
5390    return mixerStatus;
5391}
5392
5393// must be called with thread mutex locked
5394bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5395{
5396    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5397          mWriteAckSequence, mDrainSequence);
5398    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5399        return true;
5400    }
5401    return false;
5402}
5403
5404bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5405{
5406    Mutex::Autolock _l(mLock);
5407    return waitingAsyncCallback_l();
5408}
5409
5410void AudioFlinger::OffloadThread::flushHw_l()
5411{
5412    DirectOutputThread::flushHw_l();
5413    // Flush anything still waiting in the mixbuffer
5414    mCurrentWriteLength = 0;
5415    mBytesRemaining = 0;
5416    mPausedWriteLength = 0;
5417    mPausedBytesRemaining = 0;
5418
5419    if (mUseAsyncWrite) {
5420        // discard any pending drain or write ack by incrementing sequence
5421        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5422        mDrainSequence = (mDrainSequence + 2) & ~1;
5423        ALOG_ASSERT(mCallbackThread != 0);
5424        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5425        mCallbackThread->setDraining(mDrainSequence);
5426    }
5427}
5428
5429// ----------------------------------------------------------------------------
5430
5431AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5432        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5433    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5434                    systemReady, DUPLICATING),
5435        mWaitTimeMs(UINT_MAX)
5436{
5437    addOutputTrack(mainThread);
5438}
5439
5440AudioFlinger::DuplicatingThread::~DuplicatingThread()
5441{
5442    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5443        mOutputTracks[i]->destroy();
5444    }
5445}
5446
5447void AudioFlinger::DuplicatingThread::threadLoop_mix()
5448{
5449    // mix buffers...
5450    if (outputsReady(outputTracks)) {
5451        mAudioMixer->process();
5452    } else {
5453        if (mMixerBufferValid) {
5454            memset(mMixerBuffer, 0, mMixerBufferSize);
5455        } else {
5456            memset(mSinkBuffer, 0, mSinkBufferSize);
5457        }
5458    }
5459    mSleepTimeUs = 0;
5460    writeFrames = mNormalFrameCount;
5461    mCurrentWriteLength = mSinkBufferSize;
5462    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5463}
5464
5465void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5466{
5467    if (mSleepTimeUs == 0) {
5468        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5469            mSleepTimeUs = mActiveSleepTimeUs;
5470        } else {
5471            mSleepTimeUs = mIdleSleepTimeUs;
5472        }
5473    } else if (mBytesWritten != 0) {
5474        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5475            writeFrames = mNormalFrameCount;
5476            memset(mSinkBuffer, 0, mSinkBufferSize);
5477        } else {
5478            // flush remaining overflow buffers in output tracks
5479            writeFrames = 0;
5480        }
5481        mSleepTimeUs = 0;
5482    }
5483}
5484
5485ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5486{
5487    for (size_t i = 0; i < outputTracks.size(); i++) {
5488        outputTracks[i]->write(mSinkBuffer, writeFrames);
5489    }
5490    mStandby = false;
5491    return (ssize_t)mSinkBufferSize;
5492}
5493
5494void AudioFlinger::DuplicatingThread::threadLoop_standby()
5495{
5496    // DuplicatingThread implements standby by stopping all tracks
5497    for (size_t i = 0; i < outputTracks.size(); i++) {
5498        outputTracks[i]->stop();
5499    }
5500}
5501
5502void AudioFlinger::DuplicatingThread::saveOutputTracks()
5503{
5504    outputTracks = mOutputTracks;
5505}
5506
5507void AudioFlinger::DuplicatingThread::clearOutputTracks()
5508{
5509    outputTracks.clear();
5510}
5511
5512void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5513{
5514    Mutex::Autolock _l(mLock);
5515    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5516    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5517    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5518    const size_t frameCount =
5519            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5520    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5521    // from different OutputTracks and their associated MixerThreads (e.g. one may
5522    // nearly empty and the other may be dropping data).
5523
5524    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5525                                            this,
5526                                            mSampleRate,
5527                                            mFormat,
5528                                            mChannelMask,
5529                                            frameCount,
5530                                            IPCThreadState::self()->getCallingUid());
5531    if (outputTrack->cblk() != NULL) {
5532        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5533        mOutputTracks.add(outputTrack);
5534        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5535        updateWaitTime_l();
5536    }
5537}
5538
5539void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5540{
5541    Mutex::Autolock _l(mLock);
5542    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5543        if (mOutputTracks[i]->thread() == thread) {
5544            mOutputTracks[i]->destroy();
5545            mOutputTracks.removeAt(i);
5546            updateWaitTime_l();
5547            if (thread->getOutput() == mOutput) {
5548                mOutput = NULL;
5549            }
5550            return;
5551        }
5552    }
5553    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5554}
5555
5556// caller must hold mLock
5557void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5558{
5559    mWaitTimeMs = UINT_MAX;
5560    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5561        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5562        if (strong != 0) {
5563            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5564            if (waitTimeMs < mWaitTimeMs) {
5565                mWaitTimeMs = waitTimeMs;
5566            }
5567        }
5568    }
5569}
5570
5571
5572bool AudioFlinger::DuplicatingThread::outputsReady(
5573        const SortedVector< sp<OutputTrack> > &outputTracks)
5574{
5575    for (size_t i = 0; i < outputTracks.size(); i++) {
5576        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5577        if (thread == 0) {
5578            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5579                    outputTracks[i].get());
5580            return false;
5581        }
5582        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5583        // see note at standby() declaration
5584        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5585            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5586                    thread.get());
5587            return false;
5588        }
5589    }
5590    return true;
5591}
5592
5593uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5594{
5595    return (mWaitTimeMs * 1000) / 2;
5596}
5597
5598void AudioFlinger::DuplicatingThread::cacheParameters_l()
5599{
5600    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5601    updateWaitTime_l();
5602
5603    MixerThread::cacheParameters_l();
5604}
5605
5606// ----------------------------------------------------------------------------
5607//      Record
5608// ----------------------------------------------------------------------------
5609
5610AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5611                                         AudioStreamIn *input,
5612                                         audio_io_handle_t id,
5613                                         audio_devices_t outDevice,
5614                                         audio_devices_t inDevice,
5615                                         bool systemReady
5616#ifdef TEE_SINK
5617                                         , const sp<NBAIO_Sink>& teeSink
5618#endif
5619                                         ) :
5620    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5621    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5622    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5623    mRsmpInRear(0)
5624#ifdef TEE_SINK
5625    , mTeeSink(teeSink)
5626#endif
5627    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5628            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5629    // mFastCapture below
5630    , mFastCaptureFutex(0)
5631    // mInputSource
5632    // mPipeSink
5633    // mPipeSource
5634    , mPipeFramesP2(0)
5635    // mPipeMemory
5636    // mFastCaptureNBLogWriter
5637    , mFastTrackAvail(false)
5638{
5639    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5640    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5641
5642    readInputParameters_l();
5643
5644    // create an NBAIO source for the HAL input stream, and negotiate
5645    mInputSource = new AudioStreamInSource(input->stream);
5646    size_t numCounterOffers = 0;
5647    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5648    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5649    ALOG_ASSERT(index == 0);
5650
5651    // initialize fast capture depending on configuration
5652    bool initFastCapture;
5653    switch (kUseFastCapture) {
5654    case FastCapture_Never:
5655        initFastCapture = false;
5656        break;
5657    case FastCapture_Always:
5658        initFastCapture = true;
5659        break;
5660    case FastCapture_Static:
5661        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5662        break;
5663    // case FastCapture_Dynamic:
5664    }
5665
5666    if (initFastCapture) {
5667        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5668        NBAIO_Format format = mInputSource->format();
5669        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5670        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5671        void *pipeBuffer;
5672        const sp<MemoryDealer> roHeap(readOnlyHeap());
5673        sp<IMemory> pipeMemory;
5674        if ((roHeap == 0) ||
5675                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5676                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5677            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5678            goto failed;
5679        }
5680        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5681        memset(pipeBuffer, 0, pipeSize);
5682        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5683        const NBAIO_Format offers[1] = {format};
5684        size_t numCounterOffers = 0;
5685        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5686        ALOG_ASSERT(index == 0);
5687        mPipeSink = pipe;
5688        PipeReader *pipeReader = new PipeReader(*pipe);
5689        numCounterOffers = 0;
5690        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5691        ALOG_ASSERT(index == 0);
5692        mPipeSource = pipeReader;
5693        mPipeFramesP2 = pipeFramesP2;
5694        mPipeMemory = pipeMemory;
5695
5696        // create fast capture
5697        mFastCapture = new FastCapture();
5698        FastCaptureStateQueue *sq = mFastCapture->sq();
5699#ifdef STATE_QUEUE_DUMP
5700        // FIXME
5701#endif
5702        FastCaptureState *state = sq->begin();
5703        state->mCblk = NULL;
5704        state->mInputSource = mInputSource.get();
5705        state->mInputSourceGen++;
5706        state->mPipeSink = pipe;
5707        state->mPipeSinkGen++;
5708        state->mFrameCount = mFrameCount;
5709        state->mCommand = FastCaptureState::COLD_IDLE;
5710        // already done in constructor initialization list
5711        //mFastCaptureFutex = 0;
5712        state->mColdFutexAddr = &mFastCaptureFutex;
5713        state->mColdGen++;
5714        state->mDumpState = &mFastCaptureDumpState;
5715#ifdef TEE_SINK
5716        // FIXME
5717#endif
5718        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5719        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5720        sq->end();
5721        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5722
5723        // start the fast capture
5724        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5725        pid_t tid = mFastCapture->getTid();
5726        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
5727#ifdef AUDIO_WATCHDOG
5728        // FIXME
5729#endif
5730
5731        mFastTrackAvail = true;
5732    }
5733failed: ;
5734
5735    // FIXME mNormalSource
5736}
5737
5738AudioFlinger::RecordThread::~RecordThread()
5739{
5740    if (mFastCapture != 0) {
5741        FastCaptureStateQueue *sq = mFastCapture->sq();
5742        FastCaptureState *state = sq->begin();
5743        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5744            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5745            if (old == -1) {
5746                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5747            }
5748        }
5749        state->mCommand = FastCaptureState::EXIT;
5750        sq->end();
5751        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5752        mFastCapture->join();
5753        mFastCapture.clear();
5754    }
5755    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5756    mAudioFlinger->unregisterWriter(mNBLogWriter);
5757    free(mRsmpInBuffer);
5758}
5759
5760void AudioFlinger::RecordThread::onFirstRef()
5761{
5762    run(mThreadName, PRIORITY_URGENT_AUDIO);
5763}
5764
5765bool AudioFlinger::RecordThread::threadLoop()
5766{
5767    nsecs_t lastWarning = 0;
5768
5769    inputStandBy();
5770
5771reacquire_wakelock:
5772    sp<RecordTrack> activeTrack;
5773    int activeTracksGen;
5774    {
5775        Mutex::Autolock _l(mLock);
5776        size_t size = mActiveTracks.size();
5777        activeTracksGen = mActiveTracksGen;
5778        if (size > 0) {
5779            // FIXME an arbitrary choice
5780            activeTrack = mActiveTracks[0];
5781            acquireWakeLock_l(activeTrack->uid());
5782            if (size > 1) {
5783                SortedVector<int> tmp;
5784                for (size_t i = 0; i < size; i++) {
5785                    tmp.add(mActiveTracks[i]->uid());
5786                }
5787                updateWakeLockUids_l(tmp);
5788            }
5789        } else {
5790            acquireWakeLock_l(-1);
5791        }
5792    }
5793
5794    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
5795            gBoottime.getBoottimeOffset();
5796
5797    // used to request a deferred sleep, to be executed later while mutex is unlocked
5798    uint32_t sleepUs = 0;
5799
5800    // loop while there is work to do
5801    for (;;) {
5802        Vector< sp<EffectChain> > effectChains;
5803
5804        // sleep with mutex unlocked
5805        if (sleepUs > 0) {
5806            ATRACE_BEGIN("sleep");
5807            usleep(sleepUs);
5808            ATRACE_END();
5809            sleepUs = 0;
5810        }
5811
5812        // activeTracks accumulates a copy of a subset of mActiveTracks
5813        Vector< sp<RecordTrack> > activeTracks;
5814
5815        // reference to the (first and only) active fast track
5816        sp<RecordTrack> fastTrack;
5817
5818        // reference to a fast track which is about to be removed
5819        sp<RecordTrack> fastTrackToRemove;
5820
5821        { // scope for mLock
5822            Mutex::Autolock _l(mLock);
5823
5824            processConfigEvents_l();
5825
5826            // check exitPending here because checkForNewParameters_l() and
5827            // checkForNewParameters_l() can temporarily release mLock
5828            if (exitPending()) {
5829                break;
5830            }
5831
5832            // if no active track(s), then standby and release wakelock
5833            size_t size = mActiveTracks.size();
5834            if (size == 0) {
5835                standbyIfNotAlreadyInStandby();
5836                // exitPending() can't become true here
5837                releaseWakeLock_l();
5838                ALOGV("RecordThread: loop stopping");
5839                // go to sleep
5840                mWaitWorkCV.wait(mLock);
5841                ALOGV("RecordThread: loop starting");
5842                goto reacquire_wakelock;
5843            }
5844
5845            if (mActiveTracksGen != activeTracksGen) {
5846                activeTracksGen = mActiveTracksGen;
5847                SortedVector<int> tmp;
5848                for (size_t i = 0; i < size; i++) {
5849                    tmp.add(mActiveTracks[i]->uid());
5850                }
5851                updateWakeLockUids_l(tmp);
5852            }
5853
5854            bool doBroadcast = false;
5855            for (size_t i = 0; i < size; ) {
5856
5857                activeTrack = mActiveTracks[i];
5858                if (activeTrack->isTerminated()) {
5859                    if (activeTrack->isFastTrack()) {
5860                        ALOG_ASSERT(fastTrackToRemove == 0);
5861                        fastTrackToRemove = activeTrack;
5862                    }
5863                    removeTrack_l(activeTrack);
5864                    mActiveTracks.remove(activeTrack);
5865                    mActiveTracksGen++;
5866                    size--;
5867                    continue;
5868                }
5869
5870                TrackBase::track_state activeTrackState = activeTrack->mState;
5871                switch (activeTrackState) {
5872
5873                case TrackBase::PAUSING:
5874                    mActiveTracks.remove(activeTrack);
5875                    mActiveTracksGen++;
5876                    doBroadcast = true;
5877                    size--;
5878                    continue;
5879
5880                case TrackBase::STARTING_1:
5881                    sleepUs = 10000;
5882                    i++;
5883                    continue;
5884
5885                case TrackBase::STARTING_2:
5886                    doBroadcast = true;
5887                    mStandby = false;
5888                    activeTrack->mState = TrackBase::ACTIVE;
5889                    break;
5890
5891                case TrackBase::ACTIVE:
5892                    break;
5893
5894                case TrackBase::IDLE:
5895                    i++;
5896                    continue;
5897
5898                default:
5899                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5900                }
5901
5902                activeTracks.add(activeTrack);
5903                i++;
5904
5905                if (activeTrack->isFastTrack()) {
5906                    ALOG_ASSERT(!mFastTrackAvail);
5907                    ALOG_ASSERT(fastTrack == 0);
5908                    fastTrack = activeTrack;
5909                }
5910            }
5911            if (doBroadcast) {
5912                mStartStopCond.broadcast();
5913            }
5914
5915            // sleep if there are no active tracks to process
5916            if (activeTracks.size() == 0) {
5917                if (sleepUs == 0) {
5918                    sleepUs = kRecordThreadSleepUs;
5919                }
5920                continue;
5921            }
5922            sleepUs = 0;
5923
5924            lockEffectChains_l(effectChains);
5925        }
5926
5927        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5928
5929        size_t size = effectChains.size();
5930        for (size_t i = 0; i < size; i++) {
5931            // thread mutex is not locked, but effect chain is locked
5932            effectChains[i]->process_l();
5933        }
5934
5935        // Push a new fast capture state if fast capture is not already running, or cblk change
5936        if (mFastCapture != 0) {
5937            FastCaptureStateQueue *sq = mFastCapture->sq();
5938            FastCaptureState *state = sq->begin();
5939            bool didModify = false;
5940            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5941            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5942                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5943                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5944                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5945                    if (old == -1) {
5946                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5947                    }
5948                }
5949                state->mCommand = FastCaptureState::READ_WRITE;
5950#if 0   // FIXME
5951                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5952                        FastThreadDumpState::kSamplingNforLowRamDevice :
5953                        FastThreadDumpState::kSamplingN);
5954#endif
5955                didModify = true;
5956            }
5957            audio_track_cblk_t *cblkOld = state->mCblk;
5958            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5959            if (cblkNew != cblkOld) {
5960                state->mCblk = cblkNew;
5961                // block until acked if removing a fast track
5962                if (cblkOld != NULL) {
5963                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5964                }
5965                didModify = true;
5966            }
5967            sq->end(didModify);
5968            if (didModify) {
5969                sq->push(block);
5970#if 0
5971                if (kUseFastCapture == FastCapture_Dynamic) {
5972                    mNormalSource = mPipeSource;
5973                }
5974#endif
5975            }
5976        }
5977
5978        // now run the fast track destructor with thread mutex unlocked
5979        fastTrackToRemove.clear();
5980
5981        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5982        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5983        // slow, then this RecordThread will overrun by not calling HAL read often enough.
5984        // If destination is non-contiguous, first read past the nominal end of buffer, then
5985        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5986
5987        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5988        ssize_t framesRead;
5989
5990        // If an NBAIO source is present, use it to read the normal capture's data
5991        if (mPipeSource != 0) {
5992            size_t framesToRead = mBufferSize / mFrameSize;
5993            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
5994                    framesToRead);
5995            if (framesRead == 0) {
5996                // since pipe is non-blocking, simulate blocking input
5997                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5998            }
5999        // otherwise use the HAL / AudioStreamIn directly
6000        } else {
6001            ssize_t bytesRead = mInput->stream->read(mInput->stream,
6002                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6003            if (bytesRead < 0) {
6004                framesRead = bytesRead;
6005            } else {
6006                framesRead = bytesRead / mFrameSize;
6007            }
6008        }
6009
6010        // Update server timestamp with server stats
6011        // systemTime() is optional if the hardware supports timestamps.
6012        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6013        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6014
6015        // Update server timestamp with kernel stats
6016        if (mInput->stream->get_capture_position != nullptr) {
6017            int64_t position, time;
6018            int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6019            if (ret == NO_ERROR) {
6020                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6021                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6022                // Note: In general record buffers should tend to be empty in
6023                // a properly running pipeline.
6024                //
6025                // Also, it is not advantageous to call get_presentation_position during the read
6026                // as the read obtains a lock, preventing the timestamp call from executing.
6027            }
6028        }
6029        // Use this to track timestamp information
6030        // ALOGD("%s", mTimestamp.toString().c_str());
6031
6032        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6033            ALOGE("read failed: framesRead=%d", framesRead);
6034            // Force input into standby so that it tries to recover at next read attempt
6035            inputStandBy();
6036            sleepUs = kRecordThreadSleepUs;
6037        }
6038        if (framesRead <= 0) {
6039            goto unlock;
6040        }
6041        ALOG_ASSERT(framesRead > 0);
6042
6043        if (mTeeSink != 0) {
6044            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6045        }
6046        // If destination is non-contiguous, we now correct for reading past end of buffer.
6047        {
6048            size_t part1 = mRsmpInFramesP2 - rear;
6049            if ((size_t) framesRead > part1) {
6050                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6051                        (framesRead - part1) * mFrameSize);
6052            }
6053        }
6054        rear = mRsmpInRear += framesRead;
6055
6056        size = activeTracks.size();
6057        // loop over each active track
6058        for (size_t i = 0; i < size; i++) {
6059            activeTrack = activeTracks[i];
6060
6061            // skip fast tracks, as those are handled directly by FastCapture
6062            if (activeTrack->isFastTrack()) {
6063                continue;
6064            }
6065
6066            // TODO: This code probably should be moved to RecordTrack.
6067            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6068
6069            enum {
6070                OVERRUN_UNKNOWN,
6071                OVERRUN_TRUE,
6072                OVERRUN_FALSE
6073            } overrun = OVERRUN_UNKNOWN;
6074
6075            // loop over getNextBuffer to handle circular sink
6076            for (;;) {
6077
6078                activeTrack->mSink.frameCount = ~0;
6079                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6080                size_t framesOut = activeTrack->mSink.frameCount;
6081                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6082
6083                // check available frames and handle overrun conditions
6084                // if the record track isn't draining fast enough.
6085                bool hasOverrun;
6086                size_t framesIn;
6087                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6088                if (hasOverrun) {
6089                    overrun = OVERRUN_TRUE;
6090                }
6091                if (framesOut == 0 || framesIn == 0) {
6092                    break;
6093                }
6094
6095                // Don't allow framesOut to be larger than what is possible with resampling
6096                // from framesIn.
6097                // This isn't strictly necessary but helps limit buffer resizing in
6098                // RecordBufferConverter.  TODO: remove when no longer needed.
6099                framesOut = min(framesOut,
6100                        destinationFramesPossible(
6101                                framesIn, mSampleRate, activeTrack->mSampleRate));
6102                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6103                framesOut = activeTrack->mRecordBufferConverter->convert(
6104                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6105
6106                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6107                    overrun = OVERRUN_FALSE;
6108                }
6109
6110                if (activeTrack->mFramesToDrop == 0) {
6111                    if (framesOut > 0) {
6112                        activeTrack->mSink.frameCount = framesOut;
6113                        activeTrack->releaseBuffer(&activeTrack->mSink);
6114                    }
6115                } else {
6116                    // FIXME could do a partial drop of framesOut
6117                    if (activeTrack->mFramesToDrop > 0) {
6118                        activeTrack->mFramesToDrop -= framesOut;
6119                        if (activeTrack->mFramesToDrop <= 0) {
6120                            activeTrack->clearSyncStartEvent();
6121                        }
6122                    } else {
6123                        activeTrack->mFramesToDrop += framesOut;
6124                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6125                                activeTrack->mSyncStartEvent->isCancelled()) {
6126                            ALOGW("Synced record %s, session %d, trigger session %d",
6127                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6128                                  activeTrack->sessionId(),
6129                                  (activeTrack->mSyncStartEvent != 0) ?
6130                                          activeTrack->mSyncStartEvent->triggerSession() : 0);
6131                            activeTrack->clearSyncStartEvent();
6132                        }
6133                    }
6134                }
6135
6136                if (framesOut == 0) {
6137                    break;
6138                }
6139            }
6140
6141            switch (overrun) {
6142            case OVERRUN_TRUE:
6143                // client isn't retrieving buffers fast enough
6144                if (!activeTrack->setOverflow()) {
6145                    nsecs_t now = systemTime();
6146                    // FIXME should lastWarning per track?
6147                    if ((now - lastWarning) > kWarningThrottleNs) {
6148                        ALOGW("RecordThread: buffer overflow");
6149                        lastWarning = now;
6150                    }
6151                }
6152                break;
6153            case OVERRUN_FALSE:
6154                activeTrack->clearOverflow();
6155                break;
6156            case OVERRUN_UNKNOWN:
6157                break;
6158            }
6159
6160            // update frame information and push timestamp out
6161            activeTrack->updateTrackFrameInfo(
6162                    activeTrack->mServerProxy->framesReleased(),
6163                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6164                    mSampleRate, mTimestamp);
6165        }
6166
6167unlock:
6168        // enable changes in effect chain
6169        unlockEffectChains(effectChains);
6170        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6171    }
6172
6173    standbyIfNotAlreadyInStandby();
6174
6175    {
6176        Mutex::Autolock _l(mLock);
6177        for (size_t i = 0; i < mTracks.size(); i++) {
6178            sp<RecordTrack> track = mTracks[i];
6179            track->invalidate();
6180        }
6181        mActiveTracks.clear();
6182        mActiveTracksGen++;
6183        mStartStopCond.broadcast();
6184    }
6185
6186    releaseWakeLock();
6187
6188    ALOGV("RecordThread %p exiting", this);
6189    return false;
6190}
6191
6192void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6193{
6194    if (!mStandby) {
6195        inputStandBy();
6196        mStandby = true;
6197    }
6198}
6199
6200void AudioFlinger::RecordThread::inputStandBy()
6201{
6202    // Idle the fast capture if it's currently running
6203    if (mFastCapture != 0) {
6204        FastCaptureStateQueue *sq = mFastCapture->sq();
6205        FastCaptureState *state = sq->begin();
6206        if (!(state->mCommand & FastCaptureState::IDLE)) {
6207            state->mCommand = FastCaptureState::COLD_IDLE;
6208            state->mColdFutexAddr = &mFastCaptureFutex;
6209            state->mColdGen++;
6210            mFastCaptureFutex = 0;
6211            sq->end();
6212            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6213            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6214#if 0
6215            if (kUseFastCapture == FastCapture_Dynamic) {
6216                // FIXME
6217            }
6218#endif
6219#ifdef AUDIO_WATCHDOG
6220            // FIXME
6221#endif
6222        } else {
6223            sq->end(false /*didModify*/);
6224        }
6225    }
6226    mInput->stream->common.standby(&mInput->stream->common);
6227}
6228
6229// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6230sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6231        const sp<AudioFlinger::Client>& client,
6232        uint32_t sampleRate,
6233        audio_format_t format,
6234        audio_channel_mask_t channelMask,
6235        size_t *pFrameCount,
6236        int sessionId,
6237        size_t *notificationFrames,
6238        int uid,
6239        IAudioFlinger::track_flags_t *flags,
6240        pid_t tid,
6241        status_t *status)
6242{
6243    size_t frameCount = *pFrameCount;
6244    sp<RecordTrack> track;
6245    status_t lStatus;
6246
6247    // client expresses a preference for FAST, but we get the final say
6248    if (*flags & IAudioFlinger::TRACK_FAST) {
6249      if (
6250            // we formerly checked for a callback handler (non-0 tid),
6251            // but that is no longer required for TRANSFER_OBTAIN mode
6252            //
6253            // frame count is not specified, or is exactly the pipe depth
6254            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6255            // PCM data
6256            audio_is_linear_pcm(format) &&
6257            // native format
6258            (format == mFormat) &&
6259            // native channel mask
6260            (channelMask == mChannelMask) &&
6261            // native hardware sample rate
6262            (sampleRate == mSampleRate) &&
6263            // record thread has an associated fast capture
6264            hasFastCapture() &&
6265            // there are sufficient fast track slots available
6266            mFastTrackAvail
6267        ) {
6268        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
6269                frameCount, mFrameCount);
6270      } else {
6271        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
6272                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6273                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6274                frameCount, mFrameCount, mPipeFramesP2,
6275                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6276                hasFastCapture(), tid, mFastTrackAvail);
6277        *flags &= ~IAudioFlinger::TRACK_FAST;
6278      }
6279    }
6280
6281    // compute track buffer size in frames, and suggest the notification frame count
6282    if (*flags & IAudioFlinger::TRACK_FAST) {
6283        // fast track: frame count is exactly the pipe depth
6284        frameCount = mPipeFramesP2;
6285        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6286        *notificationFrames = mFrameCount;
6287    } else {
6288        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6289        //                 or 20 ms if there is a fast capture
6290        // TODO This could be a roundupRatio inline, and const
6291        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6292                * sampleRate + mSampleRate - 1) / mSampleRate;
6293        // minimum number of notification periods is at least kMinNotifications,
6294        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6295        static const size_t kMinNotifications = 3;
6296        static const uint32_t kMinMs = 30;
6297        // TODO This could be a roundupRatio inline
6298        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6299        // TODO This could be a roundupRatio inline
6300        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6301                maxNotificationFrames;
6302        const size_t minFrameCount = maxNotificationFrames *
6303                max(kMinNotifications, minNotificationsByMs);
6304        frameCount = max(frameCount, minFrameCount);
6305        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6306            *notificationFrames = maxNotificationFrames;
6307        }
6308    }
6309    *pFrameCount = frameCount;
6310
6311    lStatus = initCheck();
6312    if (lStatus != NO_ERROR) {
6313        ALOGE("createRecordTrack_l() audio driver not initialized");
6314        goto Exit;
6315    }
6316
6317    { // scope for mLock
6318        Mutex::Autolock _l(mLock);
6319
6320        track = new RecordTrack(this, client, sampleRate,
6321                      format, channelMask, frameCount, NULL, sessionId, uid,
6322                      *flags, TrackBase::TYPE_DEFAULT);
6323
6324        lStatus = track->initCheck();
6325        if (lStatus != NO_ERROR) {
6326            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6327            // track must be cleared from the caller as the caller has the AF lock
6328            goto Exit;
6329        }
6330        mTracks.add(track);
6331
6332        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6333        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6334                        mAudioFlinger->btNrecIsOff();
6335        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6336        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6337
6338        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6339            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6340            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6341            // so ask activity manager to do this on our behalf
6342            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6343        }
6344    }
6345
6346    lStatus = NO_ERROR;
6347
6348Exit:
6349    *status = lStatus;
6350    return track;
6351}
6352
6353status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6354                                           AudioSystem::sync_event_t event,
6355                                           int triggerSession)
6356{
6357    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6358    sp<ThreadBase> strongMe = this;
6359    status_t status = NO_ERROR;
6360
6361    if (event == AudioSystem::SYNC_EVENT_NONE) {
6362        recordTrack->clearSyncStartEvent();
6363    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6364        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6365                                       triggerSession,
6366                                       recordTrack->sessionId(),
6367                                       syncStartEventCallback,
6368                                       recordTrack);
6369        // Sync event can be cancelled by the trigger session if the track is not in a
6370        // compatible state in which case we start record immediately
6371        if (recordTrack->mSyncStartEvent->isCancelled()) {
6372            recordTrack->clearSyncStartEvent();
6373        } else {
6374            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6375            recordTrack->mFramesToDrop = -
6376                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6377        }
6378    }
6379
6380    {
6381        // This section is a rendezvous between binder thread executing start() and RecordThread
6382        AutoMutex lock(mLock);
6383        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6384            if (recordTrack->mState == TrackBase::PAUSING) {
6385                ALOGV("active record track PAUSING -> ACTIVE");
6386                recordTrack->mState = TrackBase::ACTIVE;
6387            } else {
6388                ALOGV("active record track state %d", recordTrack->mState);
6389            }
6390            return status;
6391        }
6392
6393        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6394        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6395        //      or using a separate command thread
6396        recordTrack->mState = TrackBase::STARTING_1;
6397        mActiveTracks.add(recordTrack);
6398        mActiveTracksGen++;
6399        status_t status = NO_ERROR;
6400        if (recordTrack->isExternalTrack()) {
6401            mLock.unlock();
6402            status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
6403            mLock.lock();
6404            // FIXME should verify that recordTrack is still in mActiveTracks
6405            if (status != NO_ERROR) {
6406                mActiveTracks.remove(recordTrack);
6407                mActiveTracksGen++;
6408                recordTrack->clearSyncStartEvent();
6409                ALOGV("RecordThread::start error %d", status);
6410                return status;
6411            }
6412        }
6413        // Catch up with current buffer indices if thread is already running.
6414        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6415        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6416        // see previously buffered data before it called start(), but with greater risk of overrun.
6417
6418        recordTrack->mResamplerBufferProvider->reset();
6419        // clear any converter state as new data will be discontinuous
6420        recordTrack->mRecordBufferConverter->reset();
6421        recordTrack->mState = TrackBase::STARTING_2;
6422        // signal thread to start
6423        mWaitWorkCV.broadcast();
6424        if (mActiveTracks.indexOf(recordTrack) < 0) {
6425            ALOGV("Record failed to start");
6426            status = BAD_VALUE;
6427            goto startError;
6428        }
6429        return status;
6430    }
6431
6432startError:
6433    if (recordTrack->isExternalTrack()) {
6434        AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
6435    }
6436    recordTrack->clearSyncStartEvent();
6437    // FIXME I wonder why we do not reset the state here?
6438    return status;
6439}
6440
6441void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6442{
6443    sp<SyncEvent> strongEvent = event.promote();
6444
6445    if (strongEvent != 0) {
6446        sp<RefBase> ptr = strongEvent->cookie().promote();
6447        if (ptr != 0) {
6448            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6449            recordTrack->handleSyncStartEvent(strongEvent);
6450        }
6451    }
6452}
6453
6454bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6455    ALOGV("RecordThread::stop");
6456    AutoMutex _l(mLock);
6457    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6458        return false;
6459    }
6460    // note that threadLoop may still be processing the track at this point [without lock]
6461    recordTrack->mState = TrackBase::PAUSING;
6462    // do not wait for mStartStopCond if exiting
6463    if (exitPending()) {
6464        return true;
6465    }
6466    // FIXME incorrect usage of wait: no explicit predicate or loop
6467    mStartStopCond.wait(mLock);
6468    // if we have been restarted, recordTrack is in mActiveTracks here
6469    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6470        ALOGV("Record stopped OK");
6471        return true;
6472    }
6473    return false;
6474}
6475
6476bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6477{
6478    return false;
6479}
6480
6481status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6482{
6483#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6484    if (!isValidSyncEvent(event)) {
6485        return BAD_VALUE;
6486    }
6487
6488    int eventSession = event->triggerSession();
6489    status_t ret = NAME_NOT_FOUND;
6490
6491    Mutex::Autolock _l(mLock);
6492
6493    for (size_t i = 0; i < mTracks.size(); i++) {
6494        sp<RecordTrack> track = mTracks[i];
6495        if (eventSession == track->sessionId()) {
6496            (void) track->setSyncEvent(event);
6497            ret = NO_ERROR;
6498        }
6499    }
6500    return ret;
6501#else
6502    return BAD_VALUE;
6503#endif
6504}
6505
6506// destroyTrack_l() must be called with ThreadBase::mLock held
6507void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6508{
6509    track->terminate();
6510    track->mState = TrackBase::STOPPED;
6511    // active tracks are removed by threadLoop()
6512    if (mActiveTracks.indexOf(track) < 0) {
6513        removeTrack_l(track);
6514    }
6515}
6516
6517void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6518{
6519    mTracks.remove(track);
6520    // need anything related to effects here?
6521    if (track->isFastTrack()) {
6522        ALOG_ASSERT(!mFastTrackAvail);
6523        mFastTrackAvail = true;
6524    }
6525}
6526
6527void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6528{
6529    dumpInternals(fd, args);
6530    dumpTracks(fd, args);
6531    dumpEffectChains(fd, args);
6532}
6533
6534void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6535{
6536    dprintf(fd, "\nInput thread %p:\n", this);
6537
6538    dumpBase(fd, args);
6539
6540    if (mActiveTracks.size() == 0) {
6541        dprintf(fd, "  No active record clients\n");
6542    }
6543    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6544    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6545
6546    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6547    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6548    // This is a large object so we place it on the heap.
6549    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6550    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6551    copy->dump(fd);
6552    delete copy;
6553}
6554
6555void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6556{
6557    const size_t SIZE = 256;
6558    char buffer[SIZE];
6559    String8 result;
6560
6561    size_t numtracks = mTracks.size();
6562    size_t numactive = mActiveTracks.size();
6563    size_t numactiveseen = 0;
6564    dprintf(fd, "  %d Tracks", numtracks);
6565    if (numtracks) {
6566        dprintf(fd, " of which %d are active\n", numactive);
6567        RecordTrack::appendDumpHeader(result);
6568        for (size_t i = 0; i < numtracks ; ++i) {
6569            sp<RecordTrack> track = mTracks[i];
6570            if (track != 0) {
6571                bool active = mActiveTracks.indexOf(track) >= 0;
6572                if (active) {
6573                    numactiveseen++;
6574                }
6575                track->dump(buffer, SIZE, active);
6576                result.append(buffer);
6577            }
6578        }
6579    } else {
6580        dprintf(fd, "\n");
6581    }
6582
6583    if (numactiveseen != numactive) {
6584        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6585                " not in the track list\n");
6586        result.append(buffer);
6587        RecordTrack::appendDumpHeader(result);
6588        for (size_t i = 0; i < numactive; ++i) {
6589            sp<RecordTrack> track = mActiveTracks[i];
6590            if (mTracks.indexOf(track) < 0) {
6591                track->dump(buffer, SIZE, true);
6592                result.append(buffer);
6593            }
6594        }
6595
6596    }
6597    write(fd, result.string(), result.size());
6598}
6599
6600
6601void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6602{
6603    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6604    RecordThread *recordThread = (RecordThread *) threadBase.get();
6605    mRsmpInFront = recordThread->mRsmpInRear;
6606    mRsmpInUnrel = 0;
6607}
6608
6609void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6610        size_t *framesAvailable, bool *hasOverrun)
6611{
6612    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6613    RecordThread *recordThread = (RecordThread *) threadBase.get();
6614    const int32_t rear = recordThread->mRsmpInRear;
6615    const int32_t front = mRsmpInFront;
6616    const ssize_t filled = rear - front;
6617
6618    size_t framesIn;
6619    bool overrun = false;
6620    if (filled < 0) {
6621        // should not happen, but treat like a massive overrun and re-sync
6622        framesIn = 0;
6623        mRsmpInFront = rear;
6624        overrun = true;
6625    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6626        framesIn = (size_t) filled;
6627    } else {
6628        // client is not keeping up with server, but give it latest data
6629        framesIn = recordThread->mRsmpInFrames;
6630        mRsmpInFront = /* front = */ rear - framesIn;
6631        overrun = true;
6632    }
6633    if (framesAvailable != NULL) {
6634        *framesAvailable = framesIn;
6635    }
6636    if (hasOverrun != NULL) {
6637        *hasOverrun = overrun;
6638    }
6639}
6640
6641// AudioBufferProvider interface
6642status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6643        AudioBufferProvider::Buffer* buffer)
6644{
6645    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6646    if (threadBase == 0) {
6647        buffer->frameCount = 0;
6648        buffer->raw = NULL;
6649        return NOT_ENOUGH_DATA;
6650    }
6651    RecordThread *recordThread = (RecordThread *) threadBase.get();
6652    int32_t rear = recordThread->mRsmpInRear;
6653    int32_t front = mRsmpInFront;
6654    ssize_t filled = rear - front;
6655    // FIXME should not be P2 (don't want to increase latency)
6656    // FIXME if client not keeping up, discard
6657    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6658    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6659    front &= recordThread->mRsmpInFramesP2 - 1;
6660    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6661    if (part1 > (size_t) filled) {
6662        part1 = filled;
6663    }
6664    size_t ask = buffer->frameCount;
6665    ALOG_ASSERT(ask > 0);
6666    if (part1 > ask) {
6667        part1 = ask;
6668    }
6669    if (part1 == 0) {
6670        // out of data is fine since the resampler will return a short-count.
6671        buffer->raw = NULL;
6672        buffer->frameCount = 0;
6673        mRsmpInUnrel = 0;
6674        return NOT_ENOUGH_DATA;
6675    }
6676
6677    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6678    buffer->frameCount = part1;
6679    mRsmpInUnrel = part1;
6680    return NO_ERROR;
6681}
6682
6683// AudioBufferProvider interface
6684void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6685        AudioBufferProvider::Buffer* buffer)
6686{
6687    size_t stepCount = buffer->frameCount;
6688    if (stepCount == 0) {
6689        return;
6690    }
6691    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6692    mRsmpInUnrel -= stepCount;
6693    mRsmpInFront += stepCount;
6694    buffer->raw = NULL;
6695    buffer->frameCount = 0;
6696}
6697
6698AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6699        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6700        uint32_t srcSampleRate,
6701        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6702        uint32_t dstSampleRate) :
6703            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6704            // mSrcFormat
6705            // mSrcSampleRate
6706            // mDstChannelMask
6707            // mDstFormat
6708            // mDstSampleRate
6709            // mSrcChannelCount
6710            // mDstChannelCount
6711            // mDstFrameSize
6712            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6713            mResampler(NULL),
6714            mIsLegacyDownmix(false),
6715            mIsLegacyUpmix(false),
6716            mRequiresFloat(false),
6717            mInputConverterProvider(NULL)
6718{
6719    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6720            dstChannelMask, dstFormat, dstSampleRate);
6721}
6722
6723AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6724    free(mBuf);
6725    delete mResampler;
6726    delete mInputConverterProvider;
6727}
6728
6729size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6730        AudioBufferProvider *provider, size_t frames)
6731{
6732    if (mInputConverterProvider != NULL) {
6733        mInputConverterProvider->setBufferProvider(provider);
6734        provider = mInputConverterProvider;
6735    }
6736
6737    if (mResampler == NULL) {
6738        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6739                mSrcSampleRate, mSrcFormat, mDstFormat);
6740
6741        AudioBufferProvider::Buffer buffer;
6742        for (size_t i = frames; i > 0; ) {
6743            buffer.frameCount = i;
6744            status_t status = provider->getNextBuffer(&buffer);
6745            if (status != OK || buffer.frameCount == 0) {
6746                frames -= i; // cannot fill request.
6747                break;
6748            }
6749            // format convert to destination buffer
6750            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6751
6752            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6753            i -= buffer.frameCount;
6754            provider->releaseBuffer(&buffer);
6755        }
6756    } else {
6757         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6758                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6759
6760         // reallocate buffer if needed
6761         if (mBufFrameSize != 0 && mBufFrames < frames) {
6762             free(mBuf);
6763             mBufFrames = frames;
6764             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6765         }
6766        // resampler accumulates, but we only have one source track
6767        memset(mBuf, 0, frames * mBufFrameSize);
6768        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6769        // format convert to destination buffer
6770        convertResampler(dst, mBuf, frames);
6771    }
6772    return frames;
6773}
6774
6775status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6776        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6777        uint32_t srcSampleRate,
6778        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6779        uint32_t dstSampleRate)
6780{
6781    // quick evaluation if there is any change.
6782    if (mSrcFormat == srcFormat
6783            && mSrcChannelMask == srcChannelMask
6784            && mSrcSampleRate == srcSampleRate
6785            && mDstFormat == dstFormat
6786            && mDstChannelMask == dstChannelMask
6787            && mDstSampleRate == dstSampleRate) {
6788        return NO_ERROR;
6789    }
6790
6791    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6792            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6793            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6794    const bool valid =
6795            audio_is_input_channel(srcChannelMask)
6796            && audio_is_input_channel(dstChannelMask)
6797            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6798            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6799            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6800            ; // no upsampling checks for now
6801    if (!valid) {
6802        return BAD_VALUE;
6803    }
6804
6805    mSrcFormat = srcFormat;
6806    mSrcChannelMask = srcChannelMask;
6807    mSrcSampleRate = srcSampleRate;
6808    mDstFormat = dstFormat;
6809    mDstChannelMask = dstChannelMask;
6810    mDstSampleRate = dstSampleRate;
6811
6812    // compute derived parameters
6813    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6814    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6815    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6816
6817    // do we need to resample?
6818    delete mResampler;
6819    mResampler = NULL;
6820    if (mSrcSampleRate != mDstSampleRate) {
6821        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6822                mSrcChannelCount, mDstSampleRate);
6823        mResampler->setSampleRate(mSrcSampleRate);
6824        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6825    }
6826
6827    // are we running legacy channel conversion modes?
6828    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6829                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6830                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6831    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6832                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6833                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6834
6835    // do we need to process in float?
6836    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6837
6838    // do we need a staging buffer to convert for destination (we can still optimize this)?
6839    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6840    if (mResampler != NULL) {
6841        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6842                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6843    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6844        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6845    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6846        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6847    } else {
6848        mBufFrameSize = 0;
6849    }
6850    mBufFrames = 0; // force the buffer to be resized.
6851
6852    // do we need an input converter buffer provider to give us float?
6853    delete mInputConverterProvider;
6854    mInputConverterProvider = NULL;
6855    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6856        mInputConverterProvider = new ReformatBufferProvider(
6857                audio_channel_count_from_in_mask(mSrcChannelMask),
6858                mSrcFormat,
6859                AUDIO_FORMAT_PCM_FLOAT,
6860                256 /* provider buffer frame count */);
6861    }
6862
6863    // do we need a remixer to do channel mask conversion
6864    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6865        (void) memcpy_by_index_array_initialization_from_channel_mask(
6866                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6867    }
6868    return NO_ERROR;
6869}
6870
6871void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6872        void *dst, const void *src, size_t frames)
6873{
6874    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6875    if (mBufFrameSize != 0 && mBufFrames < frames) {
6876        free(mBuf);
6877        mBufFrames = frames;
6878        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6879    }
6880    // do we need to do legacy upmix and downmix?
6881    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6882        void *dstBuf = mBuf != NULL ? mBuf : dst;
6883        if (mIsLegacyUpmix) {
6884            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6885                    (const float *)src, frames);
6886        } else /*mIsLegacyDownmix */ {
6887            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6888                    (const float *)src, frames);
6889        }
6890        if (mBuf != NULL) {
6891            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6892                    frames * mDstChannelCount);
6893        }
6894        return;
6895    }
6896    // do we need to do channel mask conversion?
6897    if (mSrcChannelMask != mDstChannelMask) {
6898        void *dstBuf = mBuf != NULL ? mBuf : dst;
6899        memcpy_by_index_array(dstBuf, mDstChannelCount,
6900                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6901        if (dstBuf == dst) {
6902            return; // format is the same
6903        }
6904    }
6905    // convert to destination buffer
6906    const void *convertBuf = mBuf != NULL ? mBuf : src;
6907    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6908            frames * mDstChannelCount);
6909}
6910
6911void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6912        void *dst, /*not-a-const*/ void *src, size_t frames)
6913{
6914    // src buffer format is ALWAYS float when entering this routine
6915    if (mIsLegacyUpmix) {
6916        ; // mono to stereo already handled by resampler
6917    } else if (mIsLegacyDownmix
6918            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6919        // the resampler outputs stereo for mono input channel (a feature?)
6920        // must convert to mono
6921        downmix_to_mono_float_from_stereo_float((float *)src,
6922                (const float *)src, frames);
6923    } else if (mSrcChannelMask != mDstChannelMask) {
6924        // convert to mono channel again for channel mask conversion (could be skipped
6925        // with further optimization).
6926        if (mSrcChannelCount == 1) {
6927            downmix_to_mono_float_from_stereo_float((float *)src,
6928                (const float *)src, frames);
6929        }
6930        // convert to destination format (in place, OK as float is larger than other types)
6931        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6932            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6933                    frames * mSrcChannelCount);
6934        }
6935        // channel convert and save to dst
6936        memcpy_by_index_array(dst, mDstChannelCount,
6937                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6938        return;
6939    }
6940    // convert to destination format and save to dst
6941    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6942            frames * mDstChannelCount);
6943}
6944
6945bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6946                                                        status_t& status)
6947{
6948    bool reconfig = false;
6949
6950    status = NO_ERROR;
6951
6952    audio_format_t reqFormat = mFormat;
6953    uint32_t samplingRate = mSampleRate;
6954    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
6955    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6956
6957    AudioParameter param = AudioParameter(keyValuePair);
6958    int value;
6959    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6960    //      channel count change can be requested. Do we mandate the first client defines the
6961    //      HAL sampling rate and channel count or do we allow changes on the fly?
6962    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6963        samplingRate = value;
6964        reconfig = true;
6965    }
6966    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6967        if (!audio_is_linear_pcm((audio_format_t) value)) {
6968            status = BAD_VALUE;
6969        } else {
6970            reqFormat = (audio_format_t) value;
6971            reconfig = true;
6972        }
6973    }
6974    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6975        audio_channel_mask_t mask = (audio_channel_mask_t) value;
6976        if (!audio_is_input_channel(mask) ||
6977                audio_channel_count_from_in_mask(mask) > FCC_8) {
6978            status = BAD_VALUE;
6979        } else {
6980            channelMask = mask;
6981            reconfig = true;
6982        }
6983    }
6984    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6985        // do not accept frame count changes if tracks are open as the track buffer
6986        // size depends on frame count and correct behavior would not be guaranteed
6987        // if frame count is changed after track creation
6988        if (mActiveTracks.size() > 0) {
6989            status = INVALID_OPERATION;
6990        } else {
6991            reconfig = true;
6992        }
6993    }
6994    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6995        // forward device change to effects that have requested to be
6996        // aware of attached audio device.
6997        for (size_t i = 0; i < mEffectChains.size(); i++) {
6998            mEffectChains[i]->setDevice_l(value);
6999        }
7000
7001        // store input device and output device but do not forward output device to audio HAL.
7002        // Note that status is ignored by the caller for output device
7003        // (see AudioFlinger::setParameters()
7004        if (audio_is_output_devices(value)) {
7005            mOutDevice = value;
7006            status = BAD_VALUE;
7007        } else {
7008            mInDevice = value;
7009            if (value != AUDIO_DEVICE_NONE) {
7010                mPrevInDevice = value;
7011            }
7012            // disable AEC and NS if the device is a BT SCO headset supporting those
7013            // pre processings
7014            if (mTracks.size() > 0) {
7015                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7016                                    mAudioFlinger->btNrecIsOff();
7017                for (size_t i = 0; i < mTracks.size(); i++) {
7018                    sp<RecordTrack> track = mTracks[i];
7019                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7020                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7021                }
7022            }
7023        }
7024    }
7025    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7026            mAudioSource != (audio_source_t)value) {
7027        // forward device change to effects that have requested to be
7028        // aware of attached audio device.
7029        for (size_t i = 0; i < mEffectChains.size(); i++) {
7030            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7031        }
7032        mAudioSource = (audio_source_t)value;
7033    }
7034
7035    if (status == NO_ERROR) {
7036        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7037                keyValuePair.string());
7038        if (status == INVALID_OPERATION) {
7039            inputStandBy();
7040            status = mInput->stream->common.set_parameters(&mInput->stream->common,
7041                    keyValuePair.string());
7042        }
7043        if (reconfig) {
7044            if (status == BAD_VALUE &&
7045                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7046                audio_is_linear_pcm(reqFormat) &&
7047                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7048                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7049                audio_channel_count_from_in_mask(
7050                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7051                status = NO_ERROR;
7052            }
7053            if (status == NO_ERROR) {
7054                readInputParameters_l();
7055                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7056            }
7057        }
7058    }
7059
7060    return reconfig;
7061}
7062
7063String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7064{
7065    Mutex::Autolock _l(mLock);
7066    if (initCheck() != NO_ERROR) {
7067        return String8();
7068    }
7069
7070    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7071    const String8 out_s8(s);
7072    free(s);
7073    return out_s8;
7074}
7075
7076void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7077    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7078
7079    desc->mIoHandle = mId;
7080
7081    switch (event) {
7082    case AUDIO_INPUT_OPENED:
7083    case AUDIO_INPUT_CONFIG_CHANGED:
7084        desc->mPatch = mPatch;
7085        desc->mChannelMask = mChannelMask;
7086        desc->mSamplingRate = mSampleRate;
7087        desc->mFormat = mFormat;
7088        desc->mFrameCount = mFrameCount;
7089        desc->mLatency = 0;
7090        break;
7091
7092    case AUDIO_INPUT_CLOSED:
7093    default:
7094        break;
7095    }
7096    mAudioFlinger->ioConfigChanged(event, desc, pid);
7097}
7098
7099void AudioFlinger::RecordThread::readInputParameters_l()
7100{
7101    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7102    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7103    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7104    if (mChannelCount > FCC_8) {
7105        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7106    }
7107    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7108    mFormat = mHALFormat;
7109    if (!audio_is_linear_pcm(mFormat)) {
7110        ALOGE("HAL format %#x is not linear pcm", mFormat);
7111    }
7112    mFrameSize = audio_stream_in_frame_size(mInput->stream);
7113    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7114    mFrameCount = mBufferSize / mFrameSize;
7115    // This is the formula for calculating the temporary buffer size.
7116    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7117    // 1 full output buffer, regardless of the alignment of the available input.
7118    // The value is somewhat arbitrary, and could probably be even larger.
7119    // A larger value should allow more old data to be read after a track calls start(),
7120    // without increasing latency.
7121    //
7122    // Note this is independent of the maximum downsampling ratio permitted for capture.
7123    mRsmpInFrames = mFrameCount * 7;
7124    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7125    free(mRsmpInBuffer);
7126    mRsmpInBuffer = NULL;
7127
7128    // TODO optimize audio capture buffer sizes ...
7129    // Here we calculate the size of the sliding buffer used as a source
7130    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7131    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7132    // be better to have it derived from the pipe depth in the long term.
7133    // The current value is higher than necessary.  However it should not add to latency.
7134
7135    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7136    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7137    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7138    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7139
7140    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7141    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7142}
7143
7144uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7145{
7146    Mutex::Autolock _l(mLock);
7147    if (initCheck() != NO_ERROR) {
7148        return 0;
7149    }
7150
7151    return mInput->stream->get_input_frames_lost(mInput->stream);
7152}
7153
7154uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
7155{
7156    Mutex::Autolock _l(mLock);
7157    uint32_t result = 0;
7158    if (getEffectChain_l(sessionId) != 0) {
7159        result = EFFECT_SESSION;
7160    }
7161
7162    for (size_t i = 0; i < mTracks.size(); ++i) {
7163        if (sessionId == mTracks[i]->sessionId()) {
7164            result |= TRACK_SESSION;
7165            break;
7166        }
7167    }
7168
7169    return result;
7170}
7171
7172KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
7173{
7174    KeyedVector<int, bool> ids;
7175    Mutex::Autolock _l(mLock);
7176    for (size_t j = 0; j < mTracks.size(); ++j) {
7177        sp<RecordThread::RecordTrack> track = mTracks[j];
7178        int sessionId = track->sessionId();
7179        if (ids.indexOfKey(sessionId) < 0) {
7180            ids.add(sessionId, true);
7181        }
7182    }
7183    return ids;
7184}
7185
7186AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7187{
7188    Mutex::Autolock _l(mLock);
7189    AudioStreamIn *input = mInput;
7190    mInput = NULL;
7191    return input;
7192}
7193
7194// this method must always be called either with ThreadBase mLock held or inside the thread loop
7195audio_stream_t* AudioFlinger::RecordThread::stream() const
7196{
7197    if (mInput == NULL) {
7198        return NULL;
7199    }
7200    return &mInput->stream->common;
7201}
7202
7203status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7204{
7205    // only one chain per input thread
7206    if (mEffectChains.size() != 0) {
7207        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7208        return INVALID_OPERATION;
7209    }
7210    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7211    chain->setThread(this);
7212    chain->setInBuffer(NULL);
7213    chain->setOutBuffer(NULL);
7214
7215    checkSuspendOnAddEffectChain_l(chain);
7216
7217    // make sure enabled pre processing effects state is communicated to the HAL as we
7218    // just moved them to a new input stream.
7219    chain->syncHalEffectsState();
7220
7221    mEffectChains.add(chain);
7222
7223    return NO_ERROR;
7224}
7225
7226size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7227{
7228    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7229    ALOGW_IF(mEffectChains.size() != 1,
7230            "removeEffectChain_l() %p invalid chain size %d on thread %p",
7231            chain.get(), mEffectChains.size(), this);
7232    if (mEffectChains.size() == 1) {
7233        mEffectChains.removeAt(0);
7234    }
7235    return 0;
7236}
7237
7238status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7239                                                          audio_patch_handle_t *handle)
7240{
7241    status_t status = NO_ERROR;
7242
7243    // store new device and send to effects
7244    mInDevice = patch->sources[0].ext.device.type;
7245    mPatch = *patch;
7246    for (size_t i = 0; i < mEffectChains.size(); i++) {
7247        mEffectChains[i]->setDevice_l(mInDevice);
7248    }
7249
7250    // disable AEC and NS if the device is a BT SCO headset supporting those
7251    // pre processings
7252    if (mTracks.size() > 0) {
7253        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7254                            mAudioFlinger->btNrecIsOff();
7255        for (size_t i = 0; i < mTracks.size(); i++) {
7256            sp<RecordTrack> track = mTracks[i];
7257            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7258            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7259        }
7260    }
7261
7262    // store new source and send to effects
7263    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7264        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7265        for (size_t i = 0; i < mEffectChains.size(); i++) {
7266            mEffectChains[i]->setAudioSource_l(mAudioSource);
7267        }
7268    }
7269
7270    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7271        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7272        status = hwDevice->create_audio_patch(hwDevice,
7273                                               patch->num_sources,
7274                                               patch->sources,
7275                                               patch->num_sinks,
7276                                               patch->sinks,
7277                                               handle);
7278    } else {
7279        char *address;
7280        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7281            address = audio_device_address_to_parameter(
7282                                                patch->sources[0].ext.device.type,
7283                                                patch->sources[0].ext.device.address);
7284        } else {
7285            address = (char *)calloc(1, 1);
7286        }
7287        AudioParameter param = AudioParameter(String8(address));
7288        free(address);
7289        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7290                     (int)patch->sources[0].ext.device.type);
7291        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7292                                         (int)patch->sinks[0].ext.mix.usecase.source);
7293        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7294                param.toString().string());
7295        *handle = AUDIO_PATCH_HANDLE_NONE;
7296    }
7297
7298    if (mInDevice != mPrevInDevice) {
7299        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7300        mPrevInDevice = mInDevice;
7301    }
7302
7303    return status;
7304}
7305
7306status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7307{
7308    status_t status = NO_ERROR;
7309
7310    mInDevice = AUDIO_DEVICE_NONE;
7311
7312    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7313        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7314        status = hwDevice->release_audio_patch(hwDevice, handle);
7315    } else {
7316        AudioParameter param;
7317        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7318        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7319                param.toString().string());
7320    }
7321    return status;
7322}
7323
7324void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7325{
7326    Mutex::Autolock _l(mLock);
7327    mTracks.add(record);
7328}
7329
7330void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7331{
7332    Mutex::Autolock _l(mLock);
7333    destroyTrack_l(record);
7334}
7335
7336void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7337{
7338    ThreadBase::getAudioPortConfig(config);
7339    config->role = AUDIO_PORT_ROLE_SINK;
7340    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7341    config->ext.mix.usecase.source = mAudioSource;
7342}
7343
7344} // namespace android
7345