Threads.cpp revision 5a23aa949188fafe1d8d35966ff5a73974294dfd
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/primitives.h>
40#include <audio_utils/format.h>
41#include <audio_utils/minifloat.h>
42
43// NBAIO implementations
44#include <media/nbaio/AudioStreamInSource.h>
45#include <media/nbaio/AudioStreamOutSink.h>
46#include <media/nbaio/MonoPipe.h>
47#include <media/nbaio/MonoPipeReader.h>
48#include <media/nbaio/Pipe.h>
49#include <media/nbaio/PipeReader.h>
50#include <media/nbaio/SourceAudioBufferProvider.h>
51
52#include <powermanager/PowerManager.h>
53
54#include <common_time/cc_helper.h>
55#include <common_time/local_clock.h>
56
57#include "AudioFlinger.h"
58#include "AudioMixer.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74// ----------------------------------------------------------------------------
75
76// Note: the following macro is used for extremely verbose logging message.  In
77// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
78// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
79// are so verbose that we want to suppress them even when we have ALOG_ASSERT
80// turned on.  Do not uncomment the #def below unless you really know what you
81// are doing and want to see all of the extremely verbose messages.
82//#define VERY_VERY_VERBOSE_LOGGING
83#ifdef VERY_VERY_VERBOSE_LOGGING
84#define ALOGVV ALOGV
85#else
86#define ALOGVV(a...) do { } while(0)
87#endif
88
89#define max(a, b) ((a) > (b) ? (a) : (b))
90
91namespace android {
92
93// retry counts for buffer fill timeout
94// 50 * ~20msecs = 1 second
95static const int8_t kMaxTrackRetries = 50;
96static const int8_t kMaxTrackStartupRetries = 50;
97// allow less retry attempts on direct output thread.
98// direct outputs can be a scarce resource in audio hardware and should
99// be released as quickly as possible.
100static const int8_t kMaxTrackRetriesDirect = 2;
101
102// don't warn about blocked writes or record buffer overflows more often than this
103static const nsecs_t kWarningThrottleNs = seconds(5);
104
105// RecordThread loop sleep time upon application overrun or audio HAL read error
106static const int kRecordThreadSleepUs = 5000;
107
108// maximum time to wait in sendConfigEvent_l() for a status to be received
109static const nsecs_t kConfigEventTimeoutNs = seconds(2);
110
111// minimum sleep time for the mixer thread loop when tracks are active but in underrun
112static const uint32_t kMinThreadSleepTimeUs = 5000;
113// maximum divider applied to the active sleep time in the mixer thread loop
114static const uint32_t kMaxThreadSleepTimeShift = 2;
115
116// minimum normal sink buffer size, expressed in milliseconds rather than frames
117static const uint32_t kMinNormalSinkBufferSizeMs = 20;
118// maximum normal sink buffer size
119static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
120
121// Offloaded output thread standby delay: allows track transition without going to standby
122static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
123
124// Whether to use fast mixer
125static const enum {
126    FastMixer_Never,    // never initialize or use: for debugging only
127    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
128                        // normal mixer multiplier is 1
129    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
130                        // multiplier is calculated based on min & max normal mixer buffer size
131    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
132                        // multiplier is calculated based on min & max normal mixer buffer size
133    // FIXME for FastMixer_Dynamic:
134    //  Supporting this option will require fixing HALs that can't handle large writes.
135    //  For example, one HAL implementation returns an error from a large write,
136    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
137    //  We could either fix the HAL implementations, or provide a wrapper that breaks
138    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
139} kUseFastMixer = FastMixer_Static;
140
141// Whether to use fast capture
142static const enum {
143    FastCapture_Never,  // never initialize or use: for debugging only
144    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
145    FastCapture_Static, // initialize if needed, then use all the time if initialized
146} kUseFastCapture = FastCapture_Static;
147
148// Priorities for requestPriority
149static const int kPriorityAudioApp = 2;
150static const int kPriorityFastMixer = 3;
151static const int kPriorityFastCapture = 3;
152
153// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
154// for the track.  The client then sub-divides this into smaller buffers for its use.
155// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
156// So for now we just assume that client is double-buffered for fast tracks.
157// FIXME It would be better for client to tell AudioFlinger the value of N,
158// so AudioFlinger could allocate the right amount of memory.
159// See the client's minBufCount and mNotificationFramesAct calculations for details.
160
161// This is the default value, if not specified by property.
162static const int kFastTrackMultiplier = 2;
163
164// The minimum and maximum allowed values
165static const int kFastTrackMultiplierMin = 1;
166static const int kFastTrackMultiplierMax = 2;
167
168// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
169static int sFastTrackMultiplier = kFastTrackMultiplier;
170
171// See Thread::readOnlyHeap().
172// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
173// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
174// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
175static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
176
177// ----------------------------------------------------------------------------
178
179static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
180
181static void sFastTrackMultiplierInit()
182{
183    char value[PROPERTY_VALUE_MAX];
184    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
185        char *endptr;
186        unsigned long ul = strtoul(value, &endptr, 0);
187        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
188            sFastTrackMultiplier = (int) ul;
189        }
190    }
191}
192
193// ----------------------------------------------------------------------------
194
195#ifdef ADD_BATTERY_DATA
196// To collect the amplifier usage
197static void addBatteryData(uint32_t params) {
198    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
199    if (service == NULL) {
200        // it already logged
201        return;
202    }
203
204    service->addBatteryData(params);
205}
206#endif
207
208
209// ----------------------------------------------------------------------------
210//      CPU Stats
211// ----------------------------------------------------------------------------
212
213class CpuStats {
214public:
215    CpuStats();
216    void sample(const String8 &title);
217#ifdef DEBUG_CPU_USAGE
218private:
219    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
220    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
221
222    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
223
224    int mCpuNum;                        // thread's current CPU number
225    int mCpukHz;                        // frequency of thread's current CPU in kHz
226#endif
227};
228
229CpuStats::CpuStats()
230#ifdef DEBUG_CPU_USAGE
231    : mCpuNum(-1), mCpukHz(-1)
232#endif
233{
234}
235
236void CpuStats::sample(const String8 &title
237#ifndef DEBUG_CPU_USAGE
238                __unused
239#endif
240        ) {
241#ifdef DEBUG_CPU_USAGE
242    // get current thread's delta CPU time in wall clock ns
243    double wcNs;
244    bool valid = mCpuUsage.sampleAndEnable(wcNs);
245
246    // record sample for wall clock statistics
247    if (valid) {
248        mWcStats.sample(wcNs);
249    }
250
251    // get the current CPU number
252    int cpuNum = sched_getcpu();
253
254    // get the current CPU frequency in kHz
255    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
256
257    // check if either CPU number or frequency changed
258    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
259        mCpuNum = cpuNum;
260        mCpukHz = cpukHz;
261        // ignore sample for purposes of cycles
262        valid = false;
263    }
264
265    // if no change in CPU number or frequency, then record sample for cycle statistics
266    if (valid && mCpukHz > 0) {
267        double cycles = wcNs * cpukHz * 0.000001;
268        mHzStats.sample(cycles);
269    }
270
271    unsigned n = mWcStats.n();
272    // mCpuUsage.elapsed() is expensive, so don't call it every loop
273    if ((n & 127) == 1) {
274        long long elapsed = mCpuUsage.elapsed();
275        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
276            double perLoop = elapsed / (double) n;
277            double perLoop100 = perLoop * 0.01;
278            double perLoop1k = perLoop * 0.001;
279            double mean = mWcStats.mean();
280            double stddev = mWcStats.stddev();
281            double minimum = mWcStats.minimum();
282            double maximum = mWcStats.maximum();
283            double meanCycles = mHzStats.mean();
284            double stddevCycles = mHzStats.stddev();
285            double minCycles = mHzStats.minimum();
286            double maxCycles = mHzStats.maximum();
287            mCpuUsage.resetElapsed();
288            mWcStats.reset();
289            mHzStats.reset();
290            ALOGD("CPU usage for %s over past %.1f secs\n"
291                "  (%u mixer loops at %.1f mean ms per loop):\n"
292                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
293                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
294                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
295                    title.string(),
296                    elapsed * .000000001, n, perLoop * .000001,
297                    mean * .001,
298                    stddev * .001,
299                    minimum * .001,
300                    maximum * .001,
301                    mean / perLoop100,
302                    stddev / perLoop100,
303                    minimum / perLoop100,
304                    maximum / perLoop100,
305                    meanCycles / perLoop1k,
306                    stddevCycles / perLoop1k,
307                    minCycles / perLoop1k,
308                    maxCycles / perLoop1k);
309
310        }
311    }
312#endif
313};
314
315// ----------------------------------------------------------------------------
316//      ThreadBase
317// ----------------------------------------------------------------------------
318
319// static
320const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
321{
322    switch (type) {
323    case MIXER:
324        return "MIXER";
325    case DIRECT:
326        return "DIRECT";
327    case DUPLICATING:
328        return "DUPLICATING";
329    case RECORD:
330        return "RECORD";
331    case OFFLOAD:
332        return "OFFLOAD";
333    default:
334        return "unknown";
335    }
336}
337
338String8 devicesToString(audio_devices_t devices)
339{
340    static const struct mapping {
341        audio_devices_t mDevices;
342        const char *    mString;
343    } mappingsOut[] = {
344        AUDIO_DEVICE_OUT_EARPIECE,          "EARPIECE",
345        AUDIO_DEVICE_OUT_SPEAKER,           "SPEAKER",
346        AUDIO_DEVICE_OUT_WIRED_HEADSET,     "WIRED_HEADSET",
347        AUDIO_DEVICE_OUT_WIRED_HEADPHONE,   "WIRED_HEADPHONE",
348        AUDIO_DEVICE_OUT_TELEPHONY_TX,      "TELEPHONY_TX",
349        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
350    }, mappingsIn[] = {
351        AUDIO_DEVICE_IN_BUILTIN_MIC,        "BUILTIN_MIC",
352        AUDIO_DEVICE_IN_WIRED_HEADSET,      "WIRED_HEADSET",
353        AUDIO_DEVICE_IN_VOICE_CALL,         "VOICE_CALL",
354        AUDIO_DEVICE_IN_REMOTE_SUBMIX,      "REMOTE_SUBMIX",
355        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
356    };
357    String8 result;
358    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
359    const mapping *entry;
360    if (devices & AUDIO_DEVICE_BIT_IN) {
361        devices &= ~AUDIO_DEVICE_BIT_IN;
362        entry = mappingsIn;
363    } else {
364        entry = mappingsOut;
365    }
366    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
367        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
368        if (devices & entry->mDevices) {
369            if (!result.isEmpty()) {
370                result.append("|");
371            }
372            result.append(entry->mString);
373        }
374    }
375    if (devices & ~allDevices) {
376        if (!result.isEmpty()) {
377            result.append("|");
378        }
379        result.appendFormat("0x%X", devices & ~allDevices);
380    }
381    if (result.isEmpty()) {
382        result.append(entry->mString);
383    }
384    return result;
385}
386
387String8 inputFlagsToString(audio_input_flags_t flags)
388{
389    static const struct mapping {
390        audio_input_flags_t     mFlag;
391        const char *            mString;
392    } mappings[] = {
393        AUDIO_INPUT_FLAG_FAST,              "FAST",
394        AUDIO_INPUT_FLAG_HW_HOTWORD,        "HW_HOTWORD",
395        AUDIO_INPUT_FLAG_NONE,              "NONE",         // must be last
396    };
397    String8 result;
398    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
399    const mapping *entry;
400    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
401        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
402        if (flags & entry->mFlag) {
403            if (!result.isEmpty()) {
404                result.append("|");
405            }
406            result.append(entry->mString);
407        }
408    }
409    if (flags & ~allFlags) {
410        if (!result.isEmpty()) {
411            result.append("|");
412        }
413        result.appendFormat("0x%X", flags & ~allFlags);
414    }
415    if (result.isEmpty()) {
416        result.append(entry->mString);
417    }
418    return result;
419}
420
421String8 outputFlagsToString(audio_output_flags_t flags)
422{
423    static const struct mapping {
424        audio_output_flags_t    mFlag;
425        const char *            mString;
426    } mappings[] = {
427        AUDIO_OUTPUT_FLAG_DIRECT,           "DIRECT",
428        AUDIO_OUTPUT_FLAG_PRIMARY,          "PRIMARY",
429        AUDIO_OUTPUT_FLAG_FAST,             "FAST",
430        AUDIO_OUTPUT_FLAG_DEEP_BUFFER,      "DEEP_BUFFER",
431        AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD, "COMPRESS_OFFLOAD",
432        AUDIO_OUTPUT_FLAG_NON_BLOCKING,     "NON_BLOCKING",
433        AUDIO_OUTPUT_FLAG_HW_AV_SYNC,       "HW_AV_SYNC",
434        AUDIO_OUTPUT_FLAG_NONE,             "NONE",         // must be last
435    };
436    String8 result;
437    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
438    const mapping *entry;
439    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
440        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
441        if (flags & entry->mFlag) {
442            if (!result.isEmpty()) {
443                result.append("|");
444            }
445            result.append(entry->mString);
446        }
447    }
448    if (flags & ~allFlags) {
449        if (!result.isEmpty()) {
450            result.append("|");
451        }
452        result.appendFormat("0x%X", flags & ~allFlags);
453    }
454    if (result.isEmpty()) {
455        result.append(entry->mString);
456    }
457    return result;
458}
459
460const char *sourceToString(audio_source_t source)
461{
462    switch (source) {
463    case AUDIO_SOURCE_DEFAULT:              return "default";
464    case AUDIO_SOURCE_MIC:                  return "mic";
465    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
466    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
467    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
468    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
469    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
470    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
471    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
472    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
473    case AUDIO_SOURCE_HOTWORD:              return "hotword";
474    default:                                return "unknown";
475    }
476}
477
478AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
479        audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
480    :   Thread(false /*canCallJava*/),
481        mType(type),
482        mAudioFlinger(audioFlinger),
483        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
484        // are set by PlaybackThread::readOutputParameters_l() or
485        // RecordThread::readInputParameters_l()
486        //FIXME: mStandby should be true here. Is this some kind of hack?
487        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
488        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
489        // mName will be set by concrete (non-virtual) subclass
490        mDeathRecipient(new PMDeathRecipient(this))
491{
492}
493
494AudioFlinger::ThreadBase::~ThreadBase()
495{
496    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
497    mConfigEvents.clear();
498
499    // do not lock the mutex in destructor
500    releaseWakeLock_l();
501    if (mPowerManager != 0) {
502        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
503        binder->unlinkToDeath(mDeathRecipient);
504    }
505}
506
507status_t AudioFlinger::ThreadBase::readyToRun()
508{
509    status_t status = initCheck();
510    if (status == NO_ERROR) {
511        ALOGI("AudioFlinger's thread %p ready to run", this);
512    } else {
513        ALOGE("No working audio driver found.");
514    }
515    return status;
516}
517
518void AudioFlinger::ThreadBase::exit()
519{
520    ALOGV("ThreadBase::exit");
521    // do any cleanup required for exit to succeed
522    preExit();
523    {
524        // This lock prevents the following race in thread (uniprocessor for illustration):
525        //  if (!exitPending()) {
526        //      // context switch from here to exit()
527        //      // exit() calls requestExit(), what exitPending() observes
528        //      // exit() calls signal(), which is dropped since no waiters
529        //      // context switch back from exit() to here
530        //      mWaitWorkCV.wait(...);
531        //      // now thread is hung
532        //  }
533        AutoMutex lock(mLock);
534        requestExit();
535        mWaitWorkCV.broadcast();
536    }
537    // When Thread::requestExitAndWait is made virtual and this method is renamed to
538    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
539    requestExitAndWait();
540}
541
542status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
543{
544    status_t status;
545
546    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
547    Mutex::Autolock _l(mLock);
548
549    return sendSetParameterConfigEvent_l(keyValuePairs);
550}
551
552// sendConfigEvent_l() must be called with ThreadBase::mLock held
553// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
554status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
555{
556    status_t status = NO_ERROR;
557
558    mConfigEvents.add(event);
559    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
560    mWaitWorkCV.signal();
561    mLock.unlock();
562    {
563        Mutex::Autolock _l(event->mLock);
564        while (event->mWaitStatus) {
565            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
566                event->mStatus = TIMED_OUT;
567                event->mWaitStatus = false;
568            }
569        }
570        status = event->mStatus;
571    }
572    mLock.lock();
573    return status;
574}
575
576void AudioFlinger::ThreadBase::sendIoConfigEvent(int event, int param)
577{
578    Mutex::Autolock _l(mLock);
579    sendIoConfigEvent_l(event, param);
580}
581
582// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
583void AudioFlinger::ThreadBase::sendIoConfigEvent_l(int event, int param)
584{
585    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, param);
586    sendConfigEvent_l(configEvent);
587}
588
589// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
590void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
591{
592    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
593    sendConfigEvent_l(configEvent);
594}
595
596// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
597status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
598{
599    sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
600    return sendConfigEvent_l(configEvent);
601}
602
603status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
604                                                        const struct audio_patch *patch,
605                                                        audio_patch_handle_t *handle)
606{
607    Mutex::Autolock _l(mLock);
608    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
609    status_t status = sendConfigEvent_l(configEvent);
610    if (status == NO_ERROR) {
611        CreateAudioPatchConfigEventData *data =
612                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
613        *handle = data->mHandle;
614    }
615    return status;
616}
617
618status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
619                                                                const audio_patch_handle_t handle)
620{
621    Mutex::Autolock _l(mLock);
622    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
623    return sendConfigEvent_l(configEvent);
624}
625
626
627// post condition: mConfigEvents.isEmpty()
628void AudioFlinger::ThreadBase::processConfigEvents_l()
629{
630    bool configChanged = false;
631
632    while (!mConfigEvents.isEmpty()) {
633        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
634        sp<ConfigEvent> event = mConfigEvents[0];
635        mConfigEvents.removeAt(0);
636        switch (event->mType) {
637        case CFG_EVENT_PRIO: {
638            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
639            // FIXME Need to understand why this has to be done asynchronously
640            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
641                    true /*asynchronous*/);
642            if (err != 0) {
643                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
644                      data->mPrio, data->mPid, data->mTid, err);
645            }
646        } break;
647        case CFG_EVENT_IO: {
648            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
649            audioConfigChanged(data->mEvent, data->mParam);
650        } break;
651        case CFG_EVENT_SET_PARAMETER: {
652            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
653            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
654                configChanged = true;
655            }
656        } break;
657        case CFG_EVENT_CREATE_AUDIO_PATCH: {
658            CreateAudioPatchConfigEventData *data =
659                                            (CreateAudioPatchConfigEventData *)event->mData.get();
660            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
661        } break;
662        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
663            ReleaseAudioPatchConfigEventData *data =
664                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
665            event->mStatus = releaseAudioPatch_l(data->mHandle);
666        } break;
667        default:
668            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
669            break;
670        }
671        {
672            Mutex::Autolock _l(event->mLock);
673            if (event->mWaitStatus) {
674                event->mWaitStatus = false;
675                event->mCond.signal();
676            }
677        }
678        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
679    }
680
681    if (configChanged) {
682        cacheParameters_l();
683    }
684}
685
686String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
687    String8 s;
688    if (output) {
689        if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
690        if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
691        if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
692        if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
693        if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
694        if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
695        if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
696        if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
697        if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
698        if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
699        if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
700        if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
701        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
702        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
703        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
704        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
705        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
706        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
707        if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
708    } else {
709        if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
710        if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
711        if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
712        if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
713        if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
714        if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
715        if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
716        if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
717        if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
718        if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
719        if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
720        if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
721        if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
722        if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
723        if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
724    }
725    int len = s.length();
726    if (s.length() > 2) {
727        char *str = s.lockBuffer(len);
728        s.unlockBuffer(len - 2);
729    }
730    return s;
731}
732
733void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
734{
735    const size_t SIZE = 256;
736    char buffer[SIZE];
737    String8 result;
738
739    bool locked = AudioFlinger::dumpTryLock(mLock);
740    if (!locked) {
741        dprintf(fd, "thread %p may be deadlocked\n", this);
742    }
743
744    dprintf(fd, "  Thread name: %s\n", mThreadName);
745    dprintf(fd, "  I/O handle: %d\n", mId);
746    dprintf(fd, "  TID: %d\n", getTid());
747    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
748    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
749    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
750    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
751    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
752    dprintf(fd, "  Channel count: %u\n", mChannelCount);
753    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
754            channelMaskToString(mChannelMask, mType != RECORD).string());
755    dprintf(fd, "  Format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
756    dprintf(fd, "  Frame size: %zu bytes\n", mFrameSize);
757    dprintf(fd, "  Pending config events:");
758    size_t numConfig = mConfigEvents.size();
759    if (numConfig) {
760        for (size_t i = 0; i < numConfig; i++) {
761            mConfigEvents[i]->dump(buffer, SIZE);
762            dprintf(fd, "\n    %s", buffer);
763        }
764        dprintf(fd, "\n");
765    } else {
766        dprintf(fd, " none\n");
767    }
768    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
769    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
770    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
771
772    if (locked) {
773        mLock.unlock();
774    }
775}
776
777void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
778{
779    const size_t SIZE = 256;
780    char buffer[SIZE];
781    String8 result;
782
783    size_t numEffectChains = mEffectChains.size();
784    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
785    write(fd, buffer, strlen(buffer));
786
787    for (size_t i = 0; i < numEffectChains; ++i) {
788        sp<EffectChain> chain = mEffectChains[i];
789        if (chain != 0) {
790            chain->dump(fd, args);
791        }
792    }
793}
794
795void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
796{
797    Mutex::Autolock _l(mLock);
798    acquireWakeLock_l(uid);
799}
800
801String16 AudioFlinger::ThreadBase::getWakeLockTag()
802{
803    switch (mType) {
804    case MIXER:
805        return String16("AudioMix");
806    case DIRECT:
807        return String16("AudioDirectOut");
808    case DUPLICATING:
809        return String16("AudioDup");
810    case RECORD:
811        return String16("AudioIn");
812    case OFFLOAD:
813        return String16("AudioOffload");
814    default:
815        ALOG_ASSERT(false);
816        return String16("AudioUnknown");
817    }
818}
819
820void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
821{
822    getPowerManager_l();
823    if (mPowerManager != 0) {
824        sp<IBinder> binder = new BBinder();
825        status_t status;
826        if (uid >= 0) {
827            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
828                    binder,
829                    getWakeLockTag(),
830                    String16("media"),
831                    uid,
832                    true /* FIXME force oneway contrary to .aidl */);
833        } else {
834            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
835                    binder,
836                    getWakeLockTag(),
837                    String16("media"),
838                    true /* FIXME force oneway contrary to .aidl */);
839        }
840        if (status == NO_ERROR) {
841            mWakeLockToken = binder;
842        }
843        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
844    }
845}
846
847void AudioFlinger::ThreadBase::releaseWakeLock()
848{
849    Mutex::Autolock _l(mLock);
850    releaseWakeLock_l();
851}
852
853void AudioFlinger::ThreadBase::releaseWakeLock_l()
854{
855    if (mWakeLockToken != 0) {
856        ALOGV("releaseWakeLock_l() %s", mThreadName);
857        if (mPowerManager != 0) {
858            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
859                    true /* FIXME force oneway contrary to .aidl */);
860        }
861        mWakeLockToken.clear();
862    }
863}
864
865void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
866    Mutex::Autolock _l(mLock);
867    updateWakeLockUids_l(uids);
868}
869
870void AudioFlinger::ThreadBase::getPowerManager_l() {
871
872    if (mPowerManager == 0) {
873        // use checkService() to avoid blocking if power service is not up yet
874        sp<IBinder> binder =
875            defaultServiceManager()->checkService(String16("power"));
876        if (binder == 0) {
877            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
878        } else {
879            mPowerManager = interface_cast<IPowerManager>(binder);
880            binder->linkToDeath(mDeathRecipient);
881        }
882    }
883}
884
885void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
886
887    getPowerManager_l();
888    if (mWakeLockToken == NULL) {
889        ALOGE("no wake lock to update!");
890        return;
891    }
892    if (mPowerManager != 0) {
893        sp<IBinder> binder = new BBinder();
894        status_t status;
895        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
896                    true /* FIXME force oneway contrary to .aidl */);
897        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
898    }
899}
900
901void AudioFlinger::ThreadBase::clearPowerManager()
902{
903    Mutex::Autolock _l(mLock);
904    releaseWakeLock_l();
905    mPowerManager.clear();
906}
907
908void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
909{
910    sp<ThreadBase> thread = mThread.promote();
911    if (thread != 0) {
912        thread->clearPowerManager();
913    }
914    ALOGW("power manager service died !!!");
915}
916
917void AudioFlinger::ThreadBase::setEffectSuspended(
918        const effect_uuid_t *type, bool suspend, int sessionId)
919{
920    Mutex::Autolock _l(mLock);
921    setEffectSuspended_l(type, suspend, sessionId);
922}
923
924void AudioFlinger::ThreadBase::setEffectSuspended_l(
925        const effect_uuid_t *type, bool suspend, int sessionId)
926{
927    sp<EffectChain> chain = getEffectChain_l(sessionId);
928    if (chain != 0) {
929        if (type != NULL) {
930            chain->setEffectSuspended_l(type, suspend);
931        } else {
932            chain->setEffectSuspendedAll_l(suspend);
933        }
934    }
935
936    updateSuspendedSessions_l(type, suspend, sessionId);
937}
938
939void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
940{
941    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
942    if (index < 0) {
943        return;
944    }
945
946    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
947            mSuspendedSessions.valueAt(index);
948
949    for (size_t i = 0; i < sessionEffects.size(); i++) {
950        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
951        for (int j = 0; j < desc->mRefCount; j++) {
952            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
953                chain->setEffectSuspendedAll_l(true);
954            } else {
955                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
956                    desc->mType.timeLow);
957                chain->setEffectSuspended_l(&desc->mType, true);
958            }
959        }
960    }
961}
962
963void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
964                                                         bool suspend,
965                                                         int sessionId)
966{
967    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
968
969    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
970
971    if (suspend) {
972        if (index >= 0) {
973            sessionEffects = mSuspendedSessions.valueAt(index);
974        } else {
975            mSuspendedSessions.add(sessionId, sessionEffects);
976        }
977    } else {
978        if (index < 0) {
979            return;
980        }
981        sessionEffects = mSuspendedSessions.valueAt(index);
982    }
983
984
985    int key = EffectChain::kKeyForSuspendAll;
986    if (type != NULL) {
987        key = type->timeLow;
988    }
989    index = sessionEffects.indexOfKey(key);
990
991    sp<SuspendedSessionDesc> desc;
992    if (suspend) {
993        if (index >= 0) {
994            desc = sessionEffects.valueAt(index);
995        } else {
996            desc = new SuspendedSessionDesc();
997            if (type != NULL) {
998                desc->mType = *type;
999            }
1000            sessionEffects.add(key, desc);
1001            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1002        }
1003        desc->mRefCount++;
1004    } else {
1005        if (index < 0) {
1006            return;
1007        }
1008        desc = sessionEffects.valueAt(index);
1009        if (--desc->mRefCount == 0) {
1010            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1011            sessionEffects.removeItemsAt(index);
1012            if (sessionEffects.isEmpty()) {
1013                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1014                                 sessionId);
1015                mSuspendedSessions.removeItem(sessionId);
1016            }
1017        }
1018    }
1019    if (!sessionEffects.isEmpty()) {
1020        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1021    }
1022}
1023
1024void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1025                                                            bool enabled,
1026                                                            int sessionId)
1027{
1028    Mutex::Autolock _l(mLock);
1029    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1030}
1031
1032void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1033                                                            bool enabled,
1034                                                            int sessionId)
1035{
1036    if (mType != RECORD) {
1037        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1038        // another session. This gives the priority to well behaved effect control panels
1039        // and applications not using global effects.
1040        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1041        // global effects
1042        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1043            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1044        }
1045    }
1046
1047    sp<EffectChain> chain = getEffectChain_l(sessionId);
1048    if (chain != 0) {
1049        chain->checkSuspendOnEffectEnabled(effect, enabled);
1050    }
1051}
1052
1053// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1054sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1055        const sp<AudioFlinger::Client>& client,
1056        const sp<IEffectClient>& effectClient,
1057        int32_t priority,
1058        int sessionId,
1059        effect_descriptor_t *desc,
1060        int *enabled,
1061        status_t *status)
1062{
1063    sp<EffectModule> effect;
1064    sp<EffectHandle> handle;
1065    status_t lStatus;
1066    sp<EffectChain> chain;
1067    bool chainCreated = false;
1068    bool effectCreated = false;
1069    bool effectRegistered = false;
1070
1071    lStatus = initCheck();
1072    if (lStatus != NO_ERROR) {
1073        ALOGW("createEffect_l() Audio driver not initialized.");
1074        goto Exit;
1075    }
1076
1077    // Reject any effect on Direct output threads for now, since the format of
1078    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1079    if (mType == DIRECT) {
1080        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1081                desc->name, mThreadName);
1082        lStatus = BAD_VALUE;
1083        goto Exit;
1084    }
1085
1086    // Reject any effect on mixer or duplicating multichannel sinks.
1087    // TODO: fix both format and multichannel issues with effects.
1088    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1089        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1090                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1091        lStatus = BAD_VALUE;
1092        goto Exit;
1093    }
1094
1095    // Allow global effects only on offloaded and mixer threads
1096    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1097        switch (mType) {
1098        case MIXER:
1099        case OFFLOAD:
1100            break;
1101        case DIRECT:
1102        case DUPLICATING:
1103        case RECORD:
1104        default:
1105            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1106                    desc->name, mThreadName);
1107            lStatus = BAD_VALUE;
1108            goto Exit;
1109        }
1110    }
1111
1112    // Only Pre processor effects are allowed on input threads and only on input threads
1113    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1114        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1115                desc->name, desc->flags, mType);
1116        lStatus = BAD_VALUE;
1117        goto Exit;
1118    }
1119
1120    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1121
1122    { // scope for mLock
1123        Mutex::Autolock _l(mLock);
1124
1125        // check for existing effect chain with the requested audio session
1126        chain = getEffectChain_l(sessionId);
1127        if (chain == 0) {
1128            // create a new chain for this session
1129            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1130            chain = new EffectChain(this, sessionId);
1131            addEffectChain_l(chain);
1132            chain->setStrategy(getStrategyForSession_l(sessionId));
1133            chainCreated = true;
1134        } else {
1135            effect = chain->getEffectFromDesc_l(desc);
1136        }
1137
1138        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1139
1140        if (effect == 0) {
1141            int id = mAudioFlinger->nextUniqueId();
1142            // Check CPU and memory usage
1143            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1144            if (lStatus != NO_ERROR) {
1145                goto Exit;
1146            }
1147            effectRegistered = true;
1148            // create a new effect module if none present in the chain
1149            effect = new EffectModule(this, chain, desc, id, sessionId);
1150            lStatus = effect->status();
1151            if (lStatus != NO_ERROR) {
1152                goto Exit;
1153            }
1154            effect->setOffloaded(mType == OFFLOAD, mId);
1155
1156            lStatus = chain->addEffect_l(effect);
1157            if (lStatus != NO_ERROR) {
1158                goto Exit;
1159            }
1160            effectCreated = true;
1161
1162            effect->setDevice(mOutDevice);
1163            effect->setDevice(mInDevice);
1164            effect->setMode(mAudioFlinger->getMode());
1165            effect->setAudioSource(mAudioSource);
1166        }
1167        // create effect handle and connect it to effect module
1168        handle = new EffectHandle(effect, client, effectClient, priority);
1169        lStatus = handle->initCheck();
1170        if (lStatus == OK) {
1171            lStatus = effect->addHandle(handle.get());
1172        }
1173        if (enabled != NULL) {
1174            *enabled = (int)effect->isEnabled();
1175        }
1176    }
1177
1178Exit:
1179    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1180        Mutex::Autolock _l(mLock);
1181        if (effectCreated) {
1182            chain->removeEffect_l(effect);
1183        }
1184        if (effectRegistered) {
1185            AudioSystem::unregisterEffect(effect->id());
1186        }
1187        if (chainCreated) {
1188            removeEffectChain_l(chain);
1189        }
1190        handle.clear();
1191    }
1192
1193    *status = lStatus;
1194    return handle;
1195}
1196
1197sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1198{
1199    Mutex::Autolock _l(mLock);
1200    return getEffect_l(sessionId, effectId);
1201}
1202
1203sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1204{
1205    sp<EffectChain> chain = getEffectChain_l(sessionId);
1206    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1207}
1208
1209// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1210// PlaybackThread::mLock held
1211status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1212{
1213    // check for existing effect chain with the requested audio session
1214    int sessionId = effect->sessionId();
1215    sp<EffectChain> chain = getEffectChain_l(sessionId);
1216    bool chainCreated = false;
1217
1218    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1219             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1220                    this, effect->desc().name, effect->desc().flags);
1221
1222    if (chain == 0) {
1223        // create a new chain for this session
1224        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1225        chain = new EffectChain(this, sessionId);
1226        addEffectChain_l(chain);
1227        chain->setStrategy(getStrategyForSession_l(sessionId));
1228        chainCreated = true;
1229    }
1230    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1231
1232    if (chain->getEffectFromId_l(effect->id()) != 0) {
1233        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1234                this, effect->desc().name, chain.get());
1235        return BAD_VALUE;
1236    }
1237
1238    effect->setOffloaded(mType == OFFLOAD, mId);
1239
1240    status_t status = chain->addEffect_l(effect);
1241    if (status != NO_ERROR) {
1242        if (chainCreated) {
1243            removeEffectChain_l(chain);
1244        }
1245        return status;
1246    }
1247
1248    effect->setDevice(mOutDevice);
1249    effect->setDevice(mInDevice);
1250    effect->setMode(mAudioFlinger->getMode());
1251    effect->setAudioSource(mAudioSource);
1252    return NO_ERROR;
1253}
1254
1255void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1256
1257    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1258    effect_descriptor_t desc = effect->desc();
1259    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1260        detachAuxEffect_l(effect->id());
1261    }
1262
1263    sp<EffectChain> chain = effect->chain().promote();
1264    if (chain != 0) {
1265        // remove effect chain if removing last effect
1266        if (chain->removeEffect_l(effect) == 0) {
1267            removeEffectChain_l(chain);
1268        }
1269    } else {
1270        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1271    }
1272}
1273
1274void AudioFlinger::ThreadBase::lockEffectChains_l(
1275        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1276{
1277    effectChains = mEffectChains;
1278    for (size_t i = 0; i < mEffectChains.size(); i++) {
1279        mEffectChains[i]->lock();
1280    }
1281}
1282
1283void AudioFlinger::ThreadBase::unlockEffectChains(
1284        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1285{
1286    for (size_t i = 0; i < effectChains.size(); i++) {
1287        effectChains[i]->unlock();
1288    }
1289}
1290
1291sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1292{
1293    Mutex::Autolock _l(mLock);
1294    return getEffectChain_l(sessionId);
1295}
1296
1297sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1298{
1299    size_t size = mEffectChains.size();
1300    for (size_t i = 0; i < size; i++) {
1301        if (mEffectChains[i]->sessionId() == sessionId) {
1302            return mEffectChains[i];
1303        }
1304    }
1305    return 0;
1306}
1307
1308void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1309{
1310    Mutex::Autolock _l(mLock);
1311    size_t size = mEffectChains.size();
1312    for (size_t i = 0; i < size; i++) {
1313        mEffectChains[i]->setMode_l(mode);
1314    }
1315}
1316
1317void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1318{
1319    config->type = AUDIO_PORT_TYPE_MIX;
1320    config->ext.mix.handle = mId;
1321    config->sample_rate = mSampleRate;
1322    config->format = mFormat;
1323    config->channel_mask = mChannelMask;
1324    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1325                            AUDIO_PORT_CONFIG_FORMAT;
1326}
1327
1328
1329// ----------------------------------------------------------------------------
1330//      Playback
1331// ----------------------------------------------------------------------------
1332
1333AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1334                                             AudioStreamOut* output,
1335                                             audio_io_handle_t id,
1336                                             audio_devices_t device,
1337                                             type_t type)
1338    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
1339        mNormalFrameCount(0), mSinkBuffer(NULL),
1340        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1341        mMixerBuffer(NULL),
1342        mMixerBufferSize(0),
1343        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1344        mMixerBufferValid(false),
1345        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1346        mEffectBuffer(NULL),
1347        mEffectBufferSize(0),
1348        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1349        mEffectBufferValid(false),
1350        mSuspended(0), mBytesWritten(0),
1351        mActiveTracksGeneration(0),
1352        // mStreamTypes[] initialized in constructor body
1353        mOutput(output),
1354        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1355        mMixerStatus(MIXER_IDLE),
1356        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1357        standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
1358        mBytesRemaining(0),
1359        mCurrentWriteLength(0),
1360        mUseAsyncWrite(false),
1361        mWriteAckSequence(0),
1362        mDrainSequence(0),
1363        mSignalPending(false),
1364        mScreenState(AudioFlinger::mScreenState),
1365        // index 0 is reserved for normal mixer's submix
1366        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1367        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1368        // mLatchD, mLatchQ,
1369        mLatchDValid(false), mLatchQValid(false)
1370{
1371    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1372    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1373
1374    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1375    // it would be safer to explicitly pass initial masterVolume/masterMute as
1376    // parameter.
1377    //
1378    // If the HAL we are using has support for master volume or master mute,
1379    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1380    // and the mute set to false).
1381    mMasterVolume = audioFlinger->masterVolume_l();
1382    mMasterMute = audioFlinger->masterMute_l();
1383    if (mOutput && mOutput->audioHwDev) {
1384        if (mOutput->audioHwDev->canSetMasterVolume()) {
1385            mMasterVolume = 1.0;
1386        }
1387
1388        if (mOutput->audioHwDev->canSetMasterMute()) {
1389            mMasterMute = false;
1390        }
1391    }
1392
1393    readOutputParameters_l();
1394
1395    // ++ operator does not compile
1396    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1397            stream = (audio_stream_type_t) (stream + 1)) {
1398        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1399        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1400    }
1401}
1402
1403AudioFlinger::PlaybackThread::~PlaybackThread()
1404{
1405    mAudioFlinger->unregisterWriter(mNBLogWriter);
1406    free(mSinkBuffer);
1407    free(mMixerBuffer);
1408    free(mEffectBuffer);
1409}
1410
1411void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1412{
1413    dumpInternals(fd, args);
1414    dumpTracks(fd, args);
1415    dumpEffectChains(fd, args);
1416}
1417
1418void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1419{
1420    const size_t SIZE = 256;
1421    char buffer[SIZE];
1422    String8 result;
1423
1424    result.appendFormat("  Stream volumes in dB: ");
1425    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1426        const stream_type_t *st = &mStreamTypes[i];
1427        if (i > 0) {
1428            result.appendFormat(", ");
1429        }
1430        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1431        if (st->mute) {
1432            result.append("M");
1433        }
1434    }
1435    result.append("\n");
1436    write(fd, result.string(), result.length());
1437    result.clear();
1438
1439    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1440    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1441    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1442            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1443
1444    size_t numtracks = mTracks.size();
1445    size_t numactive = mActiveTracks.size();
1446    dprintf(fd, "  %d Tracks", numtracks);
1447    size_t numactiveseen = 0;
1448    if (numtracks) {
1449        dprintf(fd, " of which %d are active\n", numactive);
1450        Track::appendDumpHeader(result);
1451        for (size_t i = 0; i < numtracks; ++i) {
1452            sp<Track> track = mTracks[i];
1453            if (track != 0) {
1454                bool active = mActiveTracks.indexOf(track) >= 0;
1455                if (active) {
1456                    numactiveseen++;
1457                }
1458                track->dump(buffer, SIZE, active);
1459                result.append(buffer);
1460            }
1461        }
1462    } else {
1463        result.append("\n");
1464    }
1465    if (numactiveseen != numactive) {
1466        // some tracks in the active list were not in the tracks list
1467        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1468                " not in the track list\n");
1469        result.append(buffer);
1470        Track::appendDumpHeader(result);
1471        for (size_t i = 0; i < numactive; ++i) {
1472            sp<Track> track = mActiveTracks[i].promote();
1473            if (track != 0 && mTracks.indexOf(track) < 0) {
1474                track->dump(buffer, SIZE, true);
1475                result.append(buffer);
1476            }
1477        }
1478    }
1479
1480    write(fd, result.string(), result.size());
1481}
1482
1483void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1484{
1485    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1486
1487    dumpBase(fd, args);
1488
1489    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1490    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1491    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1492    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1493    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1494    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1495    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1496    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1497    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1498    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1499    AudioStreamOut *output = mOutput;
1500    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1501    String8 flagsAsString = outputFlagsToString(flags);
1502    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1503}
1504
1505// Thread virtuals
1506
1507void AudioFlinger::PlaybackThread::onFirstRef()
1508{
1509    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1510}
1511
1512// ThreadBase virtuals
1513void AudioFlinger::PlaybackThread::preExit()
1514{
1515    ALOGV("  preExit()");
1516    // FIXME this is using hard-coded strings but in the future, this functionality will be
1517    //       converted to use audio HAL extensions required to support tunneling
1518    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1519}
1520
1521// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1522sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1523        const sp<AudioFlinger::Client>& client,
1524        audio_stream_type_t streamType,
1525        uint32_t sampleRate,
1526        audio_format_t format,
1527        audio_channel_mask_t channelMask,
1528        size_t *pFrameCount,
1529        const sp<IMemory>& sharedBuffer,
1530        int sessionId,
1531        IAudioFlinger::track_flags_t *flags,
1532        pid_t tid,
1533        int uid,
1534        status_t *status)
1535{
1536    size_t frameCount = *pFrameCount;
1537    sp<Track> track;
1538    status_t lStatus;
1539
1540    bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1541
1542    // client expresses a preference for FAST, but we get the final say
1543    if (*flags & IAudioFlinger::TRACK_FAST) {
1544      if (
1545            // not timed
1546            (!isTimed) &&
1547            // either of these use cases:
1548            (
1549              // use case 1: shared buffer with any frame count
1550              (
1551                (sharedBuffer != 0)
1552              ) ||
1553              // use case 2: frame count is default or at least as large as HAL
1554              (
1555                // we formerly checked for a callback handler (non-0 tid),
1556                // but that is no longer required for TRANSFER_OBTAIN mode
1557                ((frameCount == 0) ||
1558                (frameCount >= mFrameCount))
1559              )
1560            ) &&
1561            // PCM data
1562            audio_is_linear_pcm(format) &&
1563            // identical channel mask to sink, or mono in and stereo sink
1564            (channelMask == mChannelMask ||
1565                    (channelMask == AUDIO_CHANNEL_OUT_MONO &&
1566                            mChannelMask == AUDIO_CHANNEL_OUT_STEREO)) &&
1567            // hardware sample rate
1568            (sampleRate == mSampleRate) &&
1569            // normal mixer has an associated fast mixer
1570            hasFastMixer() &&
1571            // there are sufficient fast track slots available
1572            (mFastTrackAvailMask != 0)
1573            // FIXME test that MixerThread for this fast track has a capable output HAL
1574            // FIXME add a permission test also?
1575        ) {
1576        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1577        if (frameCount == 0) {
1578            // read the fast track multiplier property the first time it is needed
1579            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1580            if (ok != 0) {
1581                ALOGE("%s pthread_once failed: %d", __func__, ok);
1582            }
1583            frameCount = mFrameCount * sFastTrackMultiplier;
1584        }
1585        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1586                frameCount, mFrameCount);
1587      } else {
1588        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1589                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1590                "sampleRate=%u mSampleRate=%u "
1591                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1592                isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1593                audio_is_linear_pcm(format),
1594                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1595        *flags &= ~IAudioFlinger::TRACK_FAST;
1596      }
1597    }
1598    // For normal PCM streaming tracks, update minimum frame count.
1599    // For compatibility with AudioTrack calculation, buffer depth is forced
1600    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1601    // This is probably too conservative, but legacy application code may depend on it.
1602    // If you change this calculation, also review the start threshold which is related.
1603    if (!(*flags & IAudioFlinger::TRACK_FAST)
1604            && audio_is_linear_pcm(format) && sharedBuffer == 0) {
1605        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1606        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1607        if (minBufCount < 2) {
1608            minBufCount = 2;
1609        }
1610        size_t minFrameCount =
1611                minBufCount * sourceFramesNeeded(sampleRate, mNormalFrameCount, mSampleRate);
1612        if (frameCount < minFrameCount) { // including frameCount == 0
1613            frameCount = minFrameCount;
1614        }
1615    }
1616    *pFrameCount = frameCount;
1617
1618    switch (mType) {
1619
1620    case DIRECT:
1621        if (audio_is_linear_pcm(format)) {
1622            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1623                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1624                        "for output %p with format %#x",
1625                        sampleRate, format, channelMask, mOutput, mFormat);
1626                lStatus = BAD_VALUE;
1627                goto Exit;
1628            }
1629        }
1630        break;
1631
1632    case OFFLOAD:
1633        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1634            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1635                    "for output %p with format %#x",
1636                    sampleRate, format, channelMask, mOutput, mFormat);
1637            lStatus = BAD_VALUE;
1638            goto Exit;
1639        }
1640        break;
1641
1642    default:
1643        if (!audio_is_linear_pcm(format)) {
1644                ALOGE("createTrack_l() Bad parameter: format %#x \""
1645                        "for output %p with format %#x",
1646                        format, mOutput, mFormat);
1647                lStatus = BAD_VALUE;
1648                goto Exit;
1649        }
1650        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1651            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1652            lStatus = BAD_VALUE;
1653            goto Exit;
1654        }
1655        break;
1656
1657    }
1658
1659    lStatus = initCheck();
1660    if (lStatus != NO_ERROR) {
1661        ALOGE("createTrack_l() audio driver not initialized");
1662        goto Exit;
1663    }
1664
1665    { // scope for mLock
1666        Mutex::Autolock _l(mLock);
1667
1668        // all tracks in same audio session must share the same routing strategy otherwise
1669        // conflicts will happen when tracks are moved from one output to another by audio policy
1670        // manager
1671        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1672        for (size_t i = 0; i < mTracks.size(); ++i) {
1673            sp<Track> t = mTracks[i];
1674            if (t != 0 && t->isExternalTrack()) {
1675                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1676                if (sessionId == t->sessionId() && strategy != actual) {
1677                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1678                            strategy, actual);
1679                    lStatus = BAD_VALUE;
1680                    goto Exit;
1681                }
1682            }
1683        }
1684
1685        if (!isTimed) {
1686            track = new Track(this, client, streamType, sampleRate, format,
1687                              channelMask, frameCount, NULL, sharedBuffer,
1688                              sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1689        } else {
1690            track = TimedTrack::create(this, client, streamType, sampleRate, format,
1691                    channelMask, frameCount, sharedBuffer, sessionId, uid);
1692        }
1693
1694        // new Track always returns non-NULL,
1695        // but TimedTrack::create() is a factory that could fail by returning NULL
1696        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1697        if (lStatus != NO_ERROR) {
1698            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1699            // track must be cleared from the caller as the caller has the AF lock
1700            goto Exit;
1701        }
1702        mTracks.add(track);
1703
1704        sp<EffectChain> chain = getEffectChain_l(sessionId);
1705        if (chain != 0) {
1706            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1707            track->setMainBuffer(chain->inBuffer());
1708            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1709            chain->incTrackCnt();
1710        }
1711
1712        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1713            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1714            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1715            // so ask activity manager to do this on our behalf
1716            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1717        }
1718    }
1719
1720    lStatus = NO_ERROR;
1721
1722Exit:
1723    *status = lStatus;
1724    return track;
1725}
1726
1727uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1728{
1729    return latency;
1730}
1731
1732uint32_t AudioFlinger::PlaybackThread::latency() const
1733{
1734    Mutex::Autolock _l(mLock);
1735    return latency_l();
1736}
1737uint32_t AudioFlinger::PlaybackThread::latency_l() const
1738{
1739    if (initCheck() == NO_ERROR) {
1740        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1741    } else {
1742        return 0;
1743    }
1744}
1745
1746void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1747{
1748    Mutex::Autolock _l(mLock);
1749    // Don't apply master volume in SW if our HAL can do it for us.
1750    if (mOutput && mOutput->audioHwDev &&
1751        mOutput->audioHwDev->canSetMasterVolume()) {
1752        mMasterVolume = 1.0;
1753    } else {
1754        mMasterVolume = value;
1755    }
1756}
1757
1758void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1759{
1760    Mutex::Autolock _l(mLock);
1761    // Don't apply master mute in SW if our HAL can do it for us.
1762    if (mOutput && mOutput->audioHwDev &&
1763        mOutput->audioHwDev->canSetMasterMute()) {
1764        mMasterMute = false;
1765    } else {
1766        mMasterMute = muted;
1767    }
1768}
1769
1770void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1771{
1772    Mutex::Autolock _l(mLock);
1773    mStreamTypes[stream].volume = value;
1774    broadcast_l();
1775}
1776
1777void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1778{
1779    Mutex::Autolock _l(mLock);
1780    mStreamTypes[stream].mute = muted;
1781    broadcast_l();
1782}
1783
1784float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1785{
1786    Mutex::Autolock _l(mLock);
1787    return mStreamTypes[stream].volume;
1788}
1789
1790// addTrack_l() must be called with ThreadBase::mLock held
1791status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1792{
1793    status_t status = ALREADY_EXISTS;
1794
1795    // set retry count for buffer fill
1796    track->mRetryCount = kMaxTrackStartupRetries;
1797    if (mActiveTracks.indexOf(track) < 0) {
1798        // the track is newly added, make sure it fills up all its
1799        // buffers before playing. This is to ensure the client will
1800        // effectively get the latency it requested.
1801        if (track->isExternalTrack()) {
1802            TrackBase::track_state state = track->mState;
1803            mLock.unlock();
1804            status = AudioSystem::startOutput(mId, track->streamType(),
1805                                              (audio_session_t)track->sessionId());
1806            mLock.lock();
1807            // abort track was stopped/paused while we released the lock
1808            if (state != track->mState) {
1809                if (status == NO_ERROR) {
1810                    mLock.unlock();
1811                    AudioSystem::stopOutput(mId, track->streamType(),
1812                                            (audio_session_t)track->sessionId());
1813                    mLock.lock();
1814                }
1815                return INVALID_OPERATION;
1816            }
1817            // abort if start is rejected by audio policy manager
1818            if (status != NO_ERROR) {
1819                return PERMISSION_DENIED;
1820            }
1821#ifdef ADD_BATTERY_DATA
1822            // to track the speaker usage
1823            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1824#endif
1825        }
1826
1827        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1828        track->mResetDone = false;
1829        track->mPresentationCompleteFrames = 0;
1830        mActiveTracks.add(track);
1831        mWakeLockUids.add(track->uid());
1832        mActiveTracksGeneration++;
1833        mLatestActiveTrack = track;
1834        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1835        if (chain != 0) {
1836            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1837                    track->sessionId());
1838            chain->incActiveTrackCnt();
1839        }
1840
1841        status = NO_ERROR;
1842    }
1843
1844    onAddNewTrack_l();
1845    return status;
1846}
1847
1848bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1849{
1850    track->terminate();
1851    // active tracks are removed by threadLoop()
1852    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1853    track->mState = TrackBase::STOPPED;
1854    if (!trackActive) {
1855        removeTrack_l(track);
1856    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1857        track->mState = TrackBase::STOPPING_1;
1858    }
1859
1860    return trackActive;
1861}
1862
1863void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1864{
1865    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1866    mTracks.remove(track);
1867    deleteTrackName_l(track->name());
1868    // redundant as track is about to be destroyed, for dumpsys only
1869    track->mName = -1;
1870    if (track->isFastTrack()) {
1871        int index = track->mFastIndex;
1872        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1873        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1874        mFastTrackAvailMask |= 1 << index;
1875        // redundant as track is about to be destroyed, for dumpsys only
1876        track->mFastIndex = -1;
1877    }
1878    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1879    if (chain != 0) {
1880        chain->decTrackCnt();
1881    }
1882}
1883
1884void AudioFlinger::PlaybackThread::broadcast_l()
1885{
1886    // Thread could be blocked waiting for async
1887    // so signal it to handle state changes immediately
1888    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1889    // be lost so we also flag to prevent it blocking on mWaitWorkCV
1890    mSignalPending = true;
1891    mWaitWorkCV.broadcast();
1892}
1893
1894String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
1895{
1896    Mutex::Autolock _l(mLock);
1897    if (initCheck() != NO_ERROR) {
1898        return String8();
1899    }
1900
1901    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
1902    const String8 out_s8(s);
1903    free(s);
1904    return out_s8;
1905}
1906
1907void AudioFlinger::PlaybackThread::audioConfigChanged(int event, int param) {
1908    AudioSystem::OutputDescriptor desc;
1909    void *param2 = NULL;
1910
1911    ALOGV("PlaybackThread::audioConfigChanged, thread %p, event %d, param %d", this, event,
1912            param);
1913
1914    switch (event) {
1915    case AudioSystem::OUTPUT_OPENED:
1916    case AudioSystem::OUTPUT_CONFIG_CHANGED:
1917        desc.channelMask = mChannelMask;
1918        desc.samplingRate = mSampleRate;
1919        desc.format = mFormat;
1920        desc.frameCount = mNormalFrameCount; // FIXME see
1921                                             // AudioFlinger::frameCount(audio_io_handle_t)
1922        desc.latency = latency_l();
1923        param2 = &desc;
1924        break;
1925
1926    case AudioSystem::STREAM_CONFIG_CHANGED:
1927        param2 = &param;
1928    case AudioSystem::OUTPUT_CLOSED:
1929    default:
1930        break;
1931    }
1932    mAudioFlinger->audioConfigChanged(event, mId, param2);
1933}
1934
1935void AudioFlinger::PlaybackThread::writeCallback()
1936{
1937    ALOG_ASSERT(mCallbackThread != 0);
1938    mCallbackThread->resetWriteBlocked();
1939}
1940
1941void AudioFlinger::PlaybackThread::drainCallback()
1942{
1943    ALOG_ASSERT(mCallbackThread != 0);
1944    mCallbackThread->resetDraining();
1945}
1946
1947void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
1948{
1949    Mutex::Autolock _l(mLock);
1950    // reject out of sequence requests
1951    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
1952        mWriteAckSequence &= ~1;
1953        mWaitWorkCV.signal();
1954    }
1955}
1956
1957void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
1958{
1959    Mutex::Autolock _l(mLock);
1960    // reject out of sequence requests
1961    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
1962        mDrainSequence &= ~1;
1963        mWaitWorkCV.signal();
1964    }
1965}
1966
1967// static
1968int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
1969                                                void *param __unused,
1970                                                void *cookie)
1971{
1972    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
1973    ALOGV("asyncCallback() event %d", event);
1974    switch (event) {
1975    case STREAM_CBK_EVENT_WRITE_READY:
1976        me->writeCallback();
1977        break;
1978    case STREAM_CBK_EVENT_DRAIN_READY:
1979        me->drainCallback();
1980        break;
1981    default:
1982        ALOGW("asyncCallback() unknown event %d", event);
1983        break;
1984    }
1985    return 0;
1986}
1987
1988void AudioFlinger::PlaybackThread::readOutputParameters_l()
1989{
1990    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
1991    mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
1992    mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
1993    if (!audio_is_output_channel(mChannelMask)) {
1994        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
1995    }
1996    if ((mType == MIXER || mType == DUPLICATING)
1997            && !isValidPcmSinkChannelMask(mChannelMask)) {
1998        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
1999                mChannelMask);
2000    }
2001    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2002    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2003    mFormat = mHALFormat;
2004    if (!audio_is_valid_format(mFormat)) {
2005        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2006    }
2007    if ((mType == MIXER || mType == DUPLICATING)
2008            && !isValidPcmSinkFormat(mFormat)) {
2009        LOG_FATAL("HAL format %#x not supported for mixed output",
2010                mFormat);
2011    }
2012    mFrameSize = audio_stream_out_frame_size(mOutput->stream);
2013    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2014    mFrameCount = mBufferSize / mFrameSize;
2015    if (mFrameCount & 15) {
2016        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2017                mFrameCount);
2018    }
2019
2020    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2021            (mOutput->stream->set_callback != NULL)) {
2022        if (mOutput->stream->set_callback(mOutput->stream,
2023                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2024            mUseAsyncWrite = true;
2025            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2026        }
2027    }
2028
2029    mHwSupportsPause = false;
2030    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2031        if (mOutput->stream->pause != NULL) {
2032            if (mOutput->stream->resume != NULL) {
2033                mHwSupportsPause = true;
2034            } else {
2035                ALOGW("direct output implements pause but not resume");
2036            }
2037        } else if (mOutput->stream->resume != NULL) {
2038            ALOGW("direct output implements resume but not pause");
2039        }
2040    }
2041
2042    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2043        // For best precision, we use float instead of the associated output
2044        // device format (typically PCM 16 bit).
2045
2046        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2047        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2048        mBufferSize = mFrameSize * mFrameCount;
2049
2050        // TODO: We currently use the associated output device channel mask and sample rate.
2051        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2052        // (if a valid mask) to avoid premature downmix.
2053        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2054        // instead of the output device sample rate to avoid loss of high frequency information.
2055        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2056    }
2057
2058    // Calculate size of normal sink buffer relative to the HAL output buffer size
2059    double multiplier = 1.0;
2060    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2061            kUseFastMixer == FastMixer_Dynamic)) {
2062        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2063        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2064        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2065        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2066        maxNormalFrameCount = maxNormalFrameCount & ~15;
2067        if (maxNormalFrameCount < minNormalFrameCount) {
2068            maxNormalFrameCount = minNormalFrameCount;
2069        }
2070        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2071        if (multiplier <= 1.0) {
2072            multiplier = 1.0;
2073        } else if (multiplier <= 2.0) {
2074            if (2 * mFrameCount <= maxNormalFrameCount) {
2075                multiplier = 2.0;
2076            } else {
2077                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2078            }
2079        } else {
2080            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2081            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2082            // track, but we sometimes have to do this to satisfy the maximum frame count
2083            // constraint)
2084            // FIXME this rounding up should not be done if no HAL SRC
2085            uint32_t truncMult = (uint32_t) multiplier;
2086            if ((truncMult & 1)) {
2087                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2088                    ++truncMult;
2089                }
2090            }
2091            multiplier = (double) truncMult;
2092        }
2093    }
2094    mNormalFrameCount = multiplier * mFrameCount;
2095    // round up to nearest 16 frames to satisfy AudioMixer
2096    if (mType == MIXER || mType == DUPLICATING) {
2097        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2098    }
2099    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2100            mNormalFrameCount);
2101
2102    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2103    // Originally this was int16_t[] array, need to remove legacy implications.
2104    free(mSinkBuffer);
2105    mSinkBuffer = NULL;
2106    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2107    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2108    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2109    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2110
2111    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2112    // drives the output.
2113    free(mMixerBuffer);
2114    mMixerBuffer = NULL;
2115    if (mMixerBufferEnabled) {
2116        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2117        mMixerBufferSize = mNormalFrameCount * mChannelCount
2118                * audio_bytes_per_sample(mMixerBufferFormat);
2119        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2120    }
2121    free(mEffectBuffer);
2122    mEffectBuffer = NULL;
2123    if (mEffectBufferEnabled) {
2124        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2125        mEffectBufferSize = mNormalFrameCount * mChannelCount
2126                * audio_bytes_per_sample(mEffectBufferFormat);
2127        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2128    }
2129
2130    // force reconfiguration of effect chains and engines to take new buffer size and audio
2131    // parameters into account
2132    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2133    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2134    // matter.
2135    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2136    Vector< sp<EffectChain> > effectChains = mEffectChains;
2137    for (size_t i = 0; i < effectChains.size(); i ++) {
2138        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2139    }
2140}
2141
2142
2143status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2144{
2145    if (halFrames == NULL || dspFrames == NULL) {
2146        return BAD_VALUE;
2147    }
2148    Mutex::Autolock _l(mLock);
2149    if (initCheck() != NO_ERROR) {
2150        return INVALID_OPERATION;
2151    }
2152    size_t framesWritten = mBytesWritten / mFrameSize;
2153    *halFrames = framesWritten;
2154
2155    if (isSuspended()) {
2156        // return an estimation of rendered frames when the output is suspended
2157        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2158        *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2159        return NO_ERROR;
2160    } else {
2161        status_t status;
2162        uint32_t frames;
2163        status = mOutput->stream->get_render_position(mOutput->stream, &frames);
2164        *dspFrames = (size_t)frames;
2165        return status;
2166    }
2167}
2168
2169uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2170{
2171    Mutex::Autolock _l(mLock);
2172    uint32_t result = 0;
2173    if (getEffectChain_l(sessionId) != 0) {
2174        result = EFFECT_SESSION;
2175    }
2176
2177    for (size_t i = 0; i < mTracks.size(); ++i) {
2178        sp<Track> track = mTracks[i];
2179        if (sessionId == track->sessionId() && !track->isInvalid()) {
2180            result |= TRACK_SESSION;
2181            break;
2182        }
2183    }
2184
2185    return result;
2186}
2187
2188uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2189{
2190    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2191    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2192    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2193        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2194    }
2195    for (size_t i = 0; i < mTracks.size(); i++) {
2196        sp<Track> track = mTracks[i];
2197        if (sessionId == track->sessionId() && !track->isInvalid()) {
2198            return AudioSystem::getStrategyForStream(track->streamType());
2199        }
2200    }
2201    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2202}
2203
2204
2205AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2206{
2207    Mutex::Autolock _l(mLock);
2208    return mOutput;
2209}
2210
2211AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2212{
2213    Mutex::Autolock _l(mLock);
2214    AudioStreamOut *output = mOutput;
2215    mOutput = NULL;
2216    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2217    //       must push a NULL and wait for ack
2218    mOutputSink.clear();
2219    mPipeSink.clear();
2220    mNormalSink.clear();
2221    return output;
2222}
2223
2224// this method must always be called either with ThreadBase mLock held or inside the thread loop
2225audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2226{
2227    if (mOutput == NULL) {
2228        return NULL;
2229    }
2230    return &mOutput->stream->common;
2231}
2232
2233uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2234{
2235    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2236}
2237
2238status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2239{
2240    if (!isValidSyncEvent(event)) {
2241        return BAD_VALUE;
2242    }
2243
2244    Mutex::Autolock _l(mLock);
2245
2246    for (size_t i = 0; i < mTracks.size(); ++i) {
2247        sp<Track> track = mTracks[i];
2248        if (event->triggerSession() == track->sessionId()) {
2249            (void) track->setSyncEvent(event);
2250            return NO_ERROR;
2251        }
2252    }
2253
2254    return NAME_NOT_FOUND;
2255}
2256
2257bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2258{
2259    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2260}
2261
2262void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2263        const Vector< sp<Track> >& tracksToRemove)
2264{
2265    size_t count = tracksToRemove.size();
2266    if (count > 0) {
2267        for (size_t i = 0 ; i < count ; i++) {
2268            const sp<Track>& track = tracksToRemove.itemAt(i);
2269            if (track->isExternalTrack()) {
2270                AudioSystem::stopOutput(mId, track->streamType(),
2271                                        (audio_session_t)track->sessionId());
2272#ifdef ADD_BATTERY_DATA
2273                // to track the speaker usage
2274                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2275#endif
2276                if (track->isTerminated()) {
2277                    AudioSystem::releaseOutput(mId, track->streamType(),
2278                                               (audio_session_t)track->sessionId());
2279                }
2280            }
2281        }
2282    }
2283}
2284
2285void AudioFlinger::PlaybackThread::checkSilentMode_l()
2286{
2287    if (!mMasterMute) {
2288        char value[PROPERTY_VALUE_MAX];
2289        if (property_get("ro.audio.silent", value, "0") > 0) {
2290            char *endptr;
2291            unsigned long ul = strtoul(value, &endptr, 0);
2292            if (*endptr == '\0' && ul != 0) {
2293                ALOGD("Silence is golden");
2294                // The setprop command will not allow a property to be changed after
2295                // the first time it is set, so we don't have to worry about un-muting.
2296                setMasterMute_l(true);
2297            }
2298        }
2299    }
2300}
2301
2302// shared by MIXER and DIRECT, overridden by DUPLICATING
2303ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2304{
2305    // FIXME rewrite to reduce number of system calls
2306    mLastWriteTime = systemTime();
2307    mInWrite = true;
2308    ssize_t bytesWritten;
2309    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2310
2311    // If an NBAIO sink is present, use it to write the normal mixer's submix
2312    if (mNormalSink != 0) {
2313
2314        const size_t count = mBytesRemaining / mFrameSize;
2315
2316        ATRACE_BEGIN("write");
2317        // update the setpoint when AudioFlinger::mScreenState changes
2318        uint32_t screenState = AudioFlinger::mScreenState;
2319        if (screenState != mScreenState) {
2320            mScreenState = screenState;
2321            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2322            if (pipe != NULL) {
2323                pipe->setAvgFrames((mScreenState & 1) ?
2324                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2325            }
2326        }
2327        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2328        ATRACE_END();
2329        if (framesWritten > 0) {
2330            bytesWritten = framesWritten * mFrameSize;
2331        } else {
2332            bytesWritten = framesWritten;
2333        }
2334        mLatchDValid = false;
2335        status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2336        if (status == NO_ERROR) {
2337            size_t totalFramesWritten = mNormalSink->framesWritten();
2338            if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2339                mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2340                // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2341                mLatchDValid = true;
2342            }
2343        }
2344    // otherwise use the HAL / AudioStreamOut directly
2345    } else {
2346        // Direct output and offload threads
2347
2348        if (mUseAsyncWrite) {
2349            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2350            mWriteAckSequence += 2;
2351            mWriteAckSequence |= 1;
2352            ALOG_ASSERT(mCallbackThread != 0);
2353            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2354        }
2355        // FIXME We should have an implementation of timestamps for direct output threads.
2356        // They are used e.g for multichannel PCM playback over HDMI.
2357        bytesWritten = mOutput->stream->write(mOutput->stream,
2358                                                   (char *)mSinkBuffer + offset, mBytesRemaining);
2359        if (mUseAsyncWrite &&
2360                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2361            // do not wait for async callback in case of error of full write
2362            mWriteAckSequence &= ~1;
2363            ALOG_ASSERT(mCallbackThread != 0);
2364            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2365        }
2366    }
2367
2368    mNumWrites++;
2369    mInWrite = false;
2370    mStandby = false;
2371    return bytesWritten;
2372}
2373
2374void AudioFlinger::PlaybackThread::threadLoop_drain()
2375{
2376    if (mOutput->stream->drain) {
2377        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2378        if (mUseAsyncWrite) {
2379            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2380            mDrainSequence |= 1;
2381            ALOG_ASSERT(mCallbackThread != 0);
2382            mCallbackThread->setDraining(mDrainSequence);
2383        }
2384        mOutput->stream->drain(mOutput->stream,
2385            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2386                                                : AUDIO_DRAIN_ALL);
2387    }
2388}
2389
2390void AudioFlinger::PlaybackThread::threadLoop_exit()
2391{
2392    {
2393        Mutex::Autolock _l(mLock);
2394        for (size_t i = 0; i < mTracks.size(); i++) {
2395            sp<Track> track = mTracks[i];
2396            track->invalidate();
2397        }
2398    }
2399}
2400
2401/*
2402The derived values that are cached:
2403 - mSinkBufferSize from frame count * frame size
2404 - activeSleepTime from activeSleepTimeUs()
2405 - idleSleepTime from idleSleepTimeUs()
2406 - standbyDelay from mActiveSleepTimeUs (DIRECT only)
2407 - maxPeriod from frame count and sample rate (MIXER only)
2408
2409The parameters that affect these derived values are:
2410 - frame count
2411 - frame size
2412 - sample rate
2413 - device type: A2DP or not
2414 - device latency
2415 - format: PCM or not
2416 - active sleep time
2417 - idle sleep time
2418*/
2419
2420void AudioFlinger::PlaybackThread::cacheParameters_l()
2421{
2422    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2423    activeSleepTime = activeSleepTimeUs();
2424    idleSleepTime = idleSleepTimeUs();
2425}
2426
2427void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2428{
2429    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2430            this,  streamType, mTracks.size());
2431    Mutex::Autolock _l(mLock);
2432
2433    size_t size = mTracks.size();
2434    for (size_t i = 0; i < size; i++) {
2435        sp<Track> t = mTracks[i];
2436        if (t->streamType() == streamType) {
2437            t->invalidate();
2438        }
2439    }
2440}
2441
2442status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2443{
2444    int session = chain->sessionId();
2445    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2446            ? mEffectBuffer : mSinkBuffer);
2447    bool ownsBuffer = false;
2448
2449    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2450    if (session > 0) {
2451        // Only one effect chain can be present in direct output thread and it uses
2452        // the sink buffer as input
2453        if (mType != DIRECT) {
2454            size_t numSamples = mNormalFrameCount * mChannelCount;
2455            buffer = new int16_t[numSamples];
2456            memset(buffer, 0, numSamples * sizeof(int16_t));
2457            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2458            ownsBuffer = true;
2459        }
2460
2461        // Attach all tracks with same session ID to this chain.
2462        for (size_t i = 0; i < mTracks.size(); ++i) {
2463            sp<Track> track = mTracks[i];
2464            if (session == track->sessionId()) {
2465                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2466                        buffer);
2467                track->setMainBuffer(buffer);
2468                chain->incTrackCnt();
2469            }
2470        }
2471
2472        // indicate all active tracks in the chain
2473        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2474            sp<Track> track = mActiveTracks[i].promote();
2475            if (track == 0) {
2476                continue;
2477            }
2478            if (session == track->sessionId()) {
2479                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2480                chain->incActiveTrackCnt();
2481            }
2482        }
2483    }
2484    chain->setThread(this);
2485    chain->setInBuffer(buffer, ownsBuffer);
2486    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2487            ? mEffectBuffer : mSinkBuffer));
2488    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2489    // chains list in order to be processed last as it contains output stage effects
2490    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2491    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2492    // after track specific effects and before output stage
2493    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2494    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2495    // Effect chain for other sessions are inserted at beginning of effect
2496    // chains list to be processed before output mix effects. Relative order between other
2497    // sessions is not important
2498    size_t size = mEffectChains.size();
2499    size_t i = 0;
2500    for (i = 0; i < size; i++) {
2501        if (mEffectChains[i]->sessionId() < session) {
2502            break;
2503        }
2504    }
2505    mEffectChains.insertAt(chain, i);
2506    checkSuspendOnAddEffectChain_l(chain);
2507
2508    return NO_ERROR;
2509}
2510
2511size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2512{
2513    int session = chain->sessionId();
2514
2515    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2516
2517    for (size_t i = 0; i < mEffectChains.size(); i++) {
2518        if (chain == mEffectChains[i]) {
2519            mEffectChains.removeAt(i);
2520            // detach all active tracks from the chain
2521            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2522                sp<Track> track = mActiveTracks[i].promote();
2523                if (track == 0) {
2524                    continue;
2525                }
2526                if (session == track->sessionId()) {
2527                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2528                            chain.get(), session);
2529                    chain->decActiveTrackCnt();
2530                }
2531            }
2532
2533            // detach all tracks with same session ID from this chain
2534            for (size_t i = 0; i < mTracks.size(); ++i) {
2535                sp<Track> track = mTracks[i];
2536                if (session == track->sessionId()) {
2537                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2538                    chain->decTrackCnt();
2539                }
2540            }
2541            break;
2542        }
2543    }
2544    return mEffectChains.size();
2545}
2546
2547status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2548        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2549{
2550    Mutex::Autolock _l(mLock);
2551    return attachAuxEffect_l(track, EffectId);
2552}
2553
2554status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2555        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2556{
2557    status_t status = NO_ERROR;
2558
2559    if (EffectId == 0) {
2560        track->setAuxBuffer(0, NULL);
2561    } else {
2562        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2563        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2564        if (effect != 0) {
2565            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2566                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2567            } else {
2568                status = INVALID_OPERATION;
2569            }
2570        } else {
2571            status = BAD_VALUE;
2572        }
2573    }
2574    return status;
2575}
2576
2577void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2578{
2579    for (size_t i = 0; i < mTracks.size(); ++i) {
2580        sp<Track> track = mTracks[i];
2581        if (track->auxEffectId() == effectId) {
2582            attachAuxEffect_l(track, 0);
2583        }
2584    }
2585}
2586
2587bool AudioFlinger::PlaybackThread::threadLoop()
2588{
2589    Vector< sp<Track> > tracksToRemove;
2590
2591    standbyTime = systemTime();
2592
2593    // MIXER
2594    nsecs_t lastWarning = 0;
2595
2596    // DUPLICATING
2597    // FIXME could this be made local to while loop?
2598    writeFrames = 0;
2599
2600    int lastGeneration = 0;
2601
2602    cacheParameters_l();
2603    sleepTime = idleSleepTime;
2604
2605    if (mType == MIXER) {
2606        sleepTimeShift = 0;
2607    }
2608
2609    CpuStats cpuStats;
2610    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2611
2612    acquireWakeLock();
2613
2614    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2615    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2616    // and then that string will be logged at the next convenient opportunity.
2617    const char *logString = NULL;
2618
2619    checkSilentMode_l();
2620
2621    while (!exitPending())
2622    {
2623        cpuStats.sample(myName);
2624
2625        Vector< sp<EffectChain> > effectChains;
2626
2627        { // scope for mLock
2628
2629            Mutex::Autolock _l(mLock);
2630
2631            processConfigEvents_l();
2632
2633            if (logString != NULL) {
2634                mNBLogWriter->logTimestamp();
2635                mNBLogWriter->log(logString);
2636                logString = NULL;
2637            }
2638
2639            // Gather the framesReleased counters for all active tracks,
2640            // and latch them atomically with the timestamp.
2641            // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2642            mLatchD.mFramesReleased.clear();
2643            size_t size = mActiveTracks.size();
2644            for (size_t i = 0; i < size; i++) {
2645                sp<Track> t = mActiveTracks[i].promote();
2646                if (t != 0) {
2647                    mLatchD.mFramesReleased.add(t.get(),
2648                            t->mAudioTrackServerProxy->framesReleased());
2649                }
2650            }
2651            if (mLatchDValid) {
2652                mLatchQ = mLatchD;
2653                mLatchDValid = false;
2654                mLatchQValid = true;
2655            }
2656
2657            saveOutputTracks();
2658            if (mSignalPending) {
2659                // A signal was raised while we were unlocked
2660                mSignalPending = false;
2661            } else if (waitingAsyncCallback_l()) {
2662                if (exitPending()) {
2663                    break;
2664                }
2665                releaseWakeLock_l();
2666                mWakeLockUids.clear();
2667                mActiveTracksGeneration++;
2668                ALOGV("wait async completion");
2669                mWaitWorkCV.wait(mLock);
2670                ALOGV("async completion/wake");
2671                acquireWakeLock_l();
2672                standbyTime = systemTime() + standbyDelay;
2673                sleepTime = 0;
2674
2675                continue;
2676            }
2677            if ((!mActiveTracks.size() && systemTime() > standbyTime) ||
2678                                   isSuspended()) {
2679                // put audio hardware into standby after short delay
2680                if (shouldStandby_l()) {
2681
2682                    threadLoop_standby();
2683
2684                    mStandby = true;
2685                }
2686
2687                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2688                    // we're about to wait, flush the binder command buffer
2689                    IPCThreadState::self()->flushCommands();
2690
2691                    clearOutputTracks();
2692
2693                    if (exitPending()) {
2694                        break;
2695                    }
2696
2697                    releaseWakeLock_l();
2698                    mWakeLockUids.clear();
2699                    mActiveTracksGeneration++;
2700                    // wait until we have something to do...
2701                    ALOGV("%s going to sleep", myName.string());
2702                    mWaitWorkCV.wait(mLock);
2703                    ALOGV("%s waking up", myName.string());
2704                    acquireWakeLock_l();
2705
2706                    mMixerStatus = MIXER_IDLE;
2707                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2708                    mBytesWritten = 0;
2709                    mBytesRemaining = 0;
2710                    checkSilentMode_l();
2711
2712                    standbyTime = systemTime() + standbyDelay;
2713                    sleepTime = idleSleepTime;
2714                    if (mType == MIXER) {
2715                        sleepTimeShift = 0;
2716                    }
2717
2718                    continue;
2719                }
2720            }
2721            // mMixerStatusIgnoringFastTracks is also updated internally
2722            mMixerStatus = prepareTracks_l(&tracksToRemove);
2723
2724            // compare with previously applied list
2725            if (lastGeneration != mActiveTracksGeneration) {
2726                // update wakelock
2727                updateWakeLockUids_l(mWakeLockUids);
2728                lastGeneration = mActiveTracksGeneration;
2729            }
2730
2731            // prevent any changes in effect chain list and in each effect chain
2732            // during mixing and effect process as the audio buffers could be deleted
2733            // or modified if an effect is created or deleted
2734            lockEffectChains_l(effectChains);
2735        } // mLock scope ends
2736
2737        if (mBytesRemaining == 0) {
2738            mCurrentWriteLength = 0;
2739            if (mMixerStatus == MIXER_TRACKS_READY) {
2740                // threadLoop_mix() sets mCurrentWriteLength
2741                threadLoop_mix();
2742            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2743                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
2744                // threadLoop_sleepTime sets sleepTime to 0 if data
2745                // must be written to HAL
2746                threadLoop_sleepTime();
2747                if (sleepTime == 0) {
2748                    mCurrentWriteLength = mSinkBufferSize;
2749                }
2750            }
2751            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2752            // mMixerBuffer with data if mMixerBufferValid is true and sleepTime == 0.
2753            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2754            // or mSinkBuffer (if there are no effects).
2755            //
2756            // This is done pre-effects computation; if effects change to
2757            // support higher precision, this needs to move.
2758            //
2759            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2760            // TODO use sleepTime == 0 as an additional condition.
2761            if (mMixerBufferValid) {
2762                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2763                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2764
2765                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2766                        mNormalFrameCount * mChannelCount);
2767            }
2768
2769            mBytesRemaining = mCurrentWriteLength;
2770            if (isSuspended()) {
2771                sleepTime = suspendSleepTimeUs();
2772                // simulate write to HAL when suspended
2773                mBytesWritten += mSinkBufferSize;
2774                mBytesRemaining = 0;
2775            }
2776
2777            // only process effects if we're going to write
2778            if (sleepTime == 0 && mType != OFFLOAD) {
2779                for (size_t i = 0; i < effectChains.size(); i ++) {
2780                    effectChains[i]->process_l();
2781                }
2782            }
2783        }
2784        // Process effect chains for offloaded thread even if no audio
2785        // was read from audio track: process only updates effect state
2786        // and thus does have to be synchronized with audio writes but may have
2787        // to be called while waiting for async write callback
2788        if (mType == OFFLOAD) {
2789            for (size_t i = 0; i < effectChains.size(); i ++) {
2790                effectChains[i]->process_l();
2791            }
2792        }
2793
2794        // Only if the Effects buffer is enabled and there is data in the
2795        // Effects buffer (buffer valid), we need to
2796        // copy into the sink buffer.
2797        // TODO use sleepTime == 0 as an additional condition.
2798        if (mEffectBufferValid) {
2799            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2800            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2801                    mNormalFrameCount * mChannelCount);
2802        }
2803
2804        // enable changes in effect chain
2805        unlockEffectChains(effectChains);
2806
2807        if (!waitingAsyncCallback()) {
2808            // sleepTime == 0 means we must write to audio hardware
2809            if (sleepTime == 0) {
2810                if (mBytesRemaining) {
2811                    ssize_t ret = threadLoop_write();
2812                    if (ret < 0) {
2813                        mBytesRemaining = 0;
2814                    } else {
2815                        mBytesWritten += ret;
2816                        mBytesRemaining -= ret;
2817                    }
2818                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2819                        (mMixerStatus == MIXER_DRAIN_ALL)) {
2820                    threadLoop_drain();
2821                }
2822                if (mType == MIXER) {
2823                    // write blocked detection
2824                    nsecs_t now = systemTime();
2825                    nsecs_t delta = now - mLastWriteTime;
2826                    if (!mStandby && delta > maxPeriod) {
2827                        mNumDelayedWrites++;
2828                        if ((now - lastWarning) > kWarningThrottleNs) {
2829                            ATRACE_NAME("underrun");
2830                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2831                                    ns2ms(delta), mNumDelayedWrites, this);
2832                            lastWarning = now;
2833                        }
2834                    }
2835                }
2836
2837            } else {
2838                ATRACE_BEGIN("sleep");
2839                usleep(sleepTime);
2840                ATRACE_END();
2841            }
2842        }
2843
2844        // Finally let go of removed track(s), without the lock held
2845        // since we can't guarantee the destructors won't acquire that
2846        // same lock.  This will also mutate and push a new fast mixer state.
2847        threadLoop_removeTracks(tracksToRemove);
2848        tracksToRemove.clear();
2849
2850        // FIXME I don't understand the need for this here;
2851        //       it was in the original code but maybe the
2852        //       assignment in saveOutputTracks() makes this unnecessary?
2853        clearOutputTracks();
2854
2855        // Effect chains will be actually deleted here if they were removed from
2856        // mEffectChains list during mixing or effects processing
2857        effectChains.clear();
2858
2859        // FIXME Note that the above .clear() is no longer necessary since effectChains
2860        // is now local to this block, but will keep it for now (at least until merge done).
2861    }
2862
2863    threadLoop_exit();
2864
2865    if (!mStandby) {
2866        threadLoop_standby();
2867        mStandby = true;
2868    }
2869
2870    releaseWakeLock();
2871    mWakeLockUids.clear();
2872    mActiveTracksGeneration++;
2873
2874    ALOGV("Thread %p type %d exiting", this, mType);
2875    return false;
2876}
2877
2878// removeTracks_l() must be called with ThreadBase::mLock held
2879void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
2880{
2881    size_t count = tracksToRemove.size();
2882    if (count > 0) {
2883        for (size_t i=0 ; i<count ; i++) {
2884            const sp<Track>& track = tracksToRemove.itemAt(i);
2885            mActiveTracks.remove(track);
2886            mWakeLockUids.remove(track->uid());
2887            mActiveTracksGeneration++;
2888            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
2889            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2890            if (chain != 0) {
2891                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
2892                        track->sessionId());
2893                chain->decActiveTrackCnt();
2894            }
2895            if (track->isTerminated()) {
2896                removeTrack_l(track);
2897            }
2898        }
2899    }
2900
2901}
2902
2903status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
2904{
2905    if (mNormalSink != 0) {
2906        return mNormalSink->getTimestamp(timestamp);
2907    }
2908    if ((mType == OFFLOAD || mType == DIRECT)
2909            && mOutput != NULL && mOutput->stream->get_presentation_position) {
2910        uint64_t position64;
2911        int ret = mOutput->stream->get_presentation_position(
2912                                                mOutput->stream, &position64, &timestamp.mTime);
2913        if (ret == 0) {
2914            timestamp.mPosition = (uint32_t)position64;
2915            return NO_ERROR;
2916        }
2917    }
2918    return INVALID_OPERATION;
2919}
2920
2921status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
2922                                                          audio_patch_handle_t *handle)
2923{
2924    status_t status = NO_ERROR;
2925    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2926        // store new device and send to effects
2927        audio_devices_t type = AUDIO_DEVICE_NONE;
2928        for (unsigned int i = 0; i < patch->num_sinks; i++) {
2929            type |= patch->sinks[i].ext.device.type;
2930        }
2931        mOutDevice = type;
2932        for (size_t i = 0; i < mEffectChains.size(); i++) {
2933            mEffectChains[i]->setDevice_l(mOutDevice);
2934        }
2935
2936        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2937        status = hwDevice->create_audio_patch(hwDevice,
2938                                               patch->num_sources,
2939                                               patch->sources,
2940                                               patch->num_sinks,
2941                                               patch->sinks,
2942                                               handle);
2943    } else {
2944        ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
2945    }
2946    return status;
2947}
2948
2949status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
2950{
2951    status_t status = NO_ERROR;
2952    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2953        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2954        status = hwDevice->release_audio_patch(hwDevice, handle);
2955    } else {
2956        ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
2957    }
2958    return status;
2959}
2960
2961void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
2962{
2963    Mutex::Autolock _l(mLock);
2964    mTracks.add(track);
2965}
2966
2967void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
2968{
2969    Mutex::Autolock _l(mLock);
2970    destroyTrack_l(track);
2971}
2972
2973void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
2974{
2975    ThreadBase::getAudioPortConfig(config);
2976    config->role = AUDIO_PORT_ROLE_SOURCE;
2977    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
2978    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
2979}
2980
2981// ----------------------------------------------------------------------------
2982
2983AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
2984        audio_io_handle_t id, audio_devices_t device, type_t type)
2985    :   PlaybackThread(audioFlinger, output, id, device, type),
2986        // mAudioMixer below
2987        // mFastMixer below
2988        mFastMixerFutex(0)
2989        // mOutputSink below
2990        // mPipeSink below
2991        // mNormalSink below
2992{
2993    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
2994    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
2995            "mFrameCount=%d, mNormalFrameCount=%d",
2996            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
2997            mNormalFrameCount);
2998    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
2999
3000    if (type == DUPLICATING) {
3001        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3002        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3003        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3004        return;
3005    }
3006    // create an NBAIO sink for the HAL output stream, and negotiate
3007    mOutputSink = new AudioStreamOutSink(output->stream);
3008    size_t numCounterOffers = 0;
3009    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3010    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3011    ALOG_ASSERT(index == 0);
3012
3013    // initialize fast mixer depending on configuration
3014    bool initFastMixer;
3015    switch (kUseFastMixer) {
3016    case FastMixer_Never:
3017        initFastMixer = false;
3018        break;
3019    case FastMixer_Always:
3020        initFastMixer = true;
3021        break;
3022    case FastMixer_Static:
3023    case FastMixer_Dynamic:
3024        initFastMixer = mFrameCount < mNormalFrameCount;
3025        break;
3026    }
3027    if (initFastMixer) {
3028        audio_format_t fastMixerFormat;
3029        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3030            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3031        } else {
3032            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3033        }
3034        if (mFormat != fastMixerFormat) {
3035            // change our Sink format to accept our intermediate precision
3036            mFormat = fastMixerFormat;
3037            free(mSinkBuffer);
3038            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3039            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3040            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3041        }
3042
3043        // create a MonoPipe to connect our submix to FastMixer
3044        NBAIO_Format format = mOutputSink->format();
3045        NBAIO_Format origformat = format;
3046        // adjust format to match that of the Fast Mixer
3047        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3048        format.mFormat = fastMixerFormat;
3049        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3050
3051        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3052        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3053        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3054        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3055        const NBAIO_Format offers[1] = {format};
3056        size_t numCounterOffers = 0;
3057        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3058        ALOG_ASSERT(index == 0);
3059        monoPipe->setAvgFrames((mScreenState & 1) ?
3060                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3061        mPipeSink = monoPipe;
3062
3063#ifdef TEE_SINK
3064        if (mTeeSinkOutputEnabled) {
3065            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3066            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3067            const NBAIO_Format offers2[1] = {origformat};
3068            numCounterOffers = 0;
3069            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3070            ALOG_ASSERT(index == 0);
3071            mTeeSink = teeSink;
3072            PipeReader *teeSource = new PipeReader(*teeSink);
3073            numCounterOffers = 0;
3074            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3075            ALOG_ASSERT(index == 0);
3076            mTeeSource = teeSource;
3077        }
3078#endif
3079
3080        // create fast mixer and configure it initially with just one fast track for our submix
3081        mFastMixer = new FastMixer();
3082        FastMixerStateQueue *sq = mFastMixer->sq();
3083#ifdef STATE_QUEUE_DUMP
3084        sq->setObserverDump(&mStateQueueObserverDump);
3085        sq->setMutatorDump(&mStateQueueMutatorDump);
3086#endif
3087        FastMixerState *state = sq->begin();
3088        FastTrack *fastTrack = &state->mFastTracks[0];
3089        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3090        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3091        fastTrack->mVolumeProvider = NULL;
3092        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3093        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3094        fastTrack->mGeneration++;
3095        state->mFastTracksGen++;
3096        state->mTrackMask = 1;
3097        // fast mixer will use the HAL output sink
3098        state->mOutputSink = mOutputSink.get();
3099        state->mOutputSinkGen++;
3100        state->mFrameCount = mFrameCount;
3101        state->mCommand = FastMixerState::COLD_IDLE;
3102        // already done in constructor initialization list
3103        //mFastMixerFutex = 0;
3104        state->mColdFutexAddr = &mFastMixerFutex;
3105        state->mColdGen++;
3106        state->mDumpState = &mFastMixerDumpState;
3107#ifdef TEE_SINK
3108        state->mTeeSink = mTeeSink.get();
3109#endif
3110        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3111        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3112        sq->end();
3113        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3114
3115        // start the fast mixer
3116        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3117        pid_t tid = mFastMixer->getTid();
3118        int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
3119        if (err != 0) {
3120            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
3121                    kPriorityFastMixer, getpid_cached, tid, err);
3122        }
3123
3124#ifdef AUDIO_WATCHDOG
3125        // create and start the watchdog
3126        mAudioWatchdog = new AudioWatchdog();
3127        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3128        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3129        tid = mAudioWatchdog->getTid();
3130        err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
3131        if (err != 0) {
3132            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
3133                    kPriorityFastMixer, getpid_cached, tid, err);
3134        }
3135#endif
3136
3137    }
3138
3139    switch (kUseFastMixer) {
3140    case FastMixer_Never:
3141    case FastMixer_Dynamic:
3142        mNormalSink = mOutputSink;
3143        break;
3144    case FastMixer_Always:
3145        mNormalSink = mPipeSink;
3146        break;
3147    case FastMixer_Static:
3148        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3149        break;
3150    }
3151}
3152
3153AudioFlinger::MixerThread::~MixerThread()
3154{
3155    if (mFastMixer != 0) {
3156        FastMixerStateQueue *sq = mFastMixer->sq();
3157        FastMixerState *state = sq->begin();
3158        if (state->mCommand == FastMixerState::COLD_IDLE) {
3159            int32_t old = android_atomic_inc(&mFastMixerFutex);
3160            if (old == -1) {
3161                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3162            }
3163        }
3164        state->mCommand = FastMixerState::EXIT;
3165        sq->end();
3166        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3167        mFastMixer->join();
3168        // Though the fast mixer thread has exited, it's state queue is still valid.
3169        // We'll use that extract the final state which contains one remaining fast track
3170        // corresponding to our sub-mix.
3171        state = sq->begin();
3172        ALOG_ASSERT(state->mTrackMask == 1);
3173        FastTrack *fastTrack = &state->mFastTracks[0];
3174        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3175        delete fastTrack->mBufferProvider;
3176        sq->end(false /*didModify*/);
3177        mFastMixer.clear();
3178#ifdef AUDIO_WATCHDOG
3179        if (mAudioWatchdog != 0) {
3180            mAudioWatchdog->requestExit();
3181            mAudioWatchdog->requestExitAndWait();
3182            mAudioWatchdog.clear();
3183        }
3184#endif
3185    }
3186    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3187    delete mAudioMixer;
3188}
3189
3190
3191uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3192{
3193    if (mFastMixer != 0) {
3194        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3195        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3196    }
3197    return latency;
3198}
3199
3200
3201void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3202{
3203    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3204}
3205
3206ssize_t AudioFlinger::MixerThread::threadLoop_write()
3207{
3208    // FIXME we should only do one push per cycle; confirm this is true
3209    // Start the fast mixer if it's not already running
3210    if (mFastMixer != 0) {
3211        FastMixerStateQueue *sq = mFastMixer->sq();
3212        FastMixerState *state = sq->begin();
3213        if (state->mCommand != FastMixerState::MIX_WRITE &&
3214                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3215            if (state->mCommand == FastMixerState::COLD_IDLE) {
3216                int32_t old = android_atomic_inc(&mFastMixerFutex);
3217                if (old == -1) {
3218                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3219                }
3220#ifdef AUDIO_WATCHDOG
3221                if (mAudioWatchdog != 0) {
3222                    mAudioWatchdog->resume();
3223                }
3224#endif
3225            }
3226            state->mCommand = FastMixerState::MIX_WRITE;
3227#ifdef FAST_THREAD_STATISTICS
3228            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3229                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3230#endif
3231            sq->end();
3232            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3233            if (kUseFastMixer == FastMixer_Dynamic) {
3234                mNormalSink = mPipeSink;
3235            }
3236        } else {
3237            sq->end(false /*didModify*/);
3238        }
3239    }
3240    return PlaybackThread::threadLoop_write();
3241}
3242
3243void AudioFlinger::MixerThread::threadLoop_standby()
3244{
3245    // Idle the fast mixer if it's currently running
3246    if (mFastMixer != 0) {
3247        FastMixerStateQueue *sq = mFastMixer->sq();
3248        FastMixerState *state = sq->begin();
3249        if (!(state->mCommand & FastMixerState::IDLE)) {
3250            state->mCommand = FastMixerState::COLD_IDLE;
3251            state->mColdFutexAddr = &mFastMixerFutex;
3252            state->mColdGen++;
3253            mFastMixerFutex = 0;
3254            sq->end();
3255            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3256            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3257            if (kUseFastMixer == FastMixer_Dynamic) {
3258                mNormalSink = mOutputSink;
3259            }
3260#ifdef AUDIO_WATCHDOG
3261            if (mAudioWatchdog != 0) {
3262                mAudioWatchdog->pause();
3263            }
3264#endif
3265        } else {
3266            sq->end(false /*didModify*/);
3267        }
3268    }
3269    PlaybackThread::threadLoop_standby();
3270}
3271
3272bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3273{
3274    return false;
3275}
3276
3277bool AudioFlinger::PlaybackThread::shouldStandby_l()
3278{
3279    return !mStandby;
3280}
3281
3282bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3283{
3284    Mutex::Autolock _l(mLock);
3285    return waitingAsyncCallback_l();
3286}
3287
3288// shared by MIXER and DIRECT, overridden by DUPLICATING
3289void AudioFlinger::PlaybackThread::threadLoop_standby()
3290{
3291    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3292    mOutput->stream->common.standby(&mOutput->stream->common);
3293    if (mUseAsyncWrite != 0) {
3294        // discard any pending drain or write ack by incrementing sequence
3295        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3296        mDrainSequence = (mDrainSequence + 2) & ~1;
3297        ALOG_ASSERT(mCallbackThread != 0);
3298        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3299        mCallbackThread->setDraining(mDrainSequence);
3300    }
3301    mHwPaused = false;
3302}
3303
3304void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3305{
3306    ALOGV("signal playback thread");
3307    broadcast_l();
3308}
3309
3310void AudioFlinger::MixerThread::threadLoop_mix()
3311{
3312    // obtain the presentation timestamp of the next output buffer
3313    int64_t pts;
3314    status_t status = INVALID_OPERATION;
3315
3316    if (mNormalSink != 0) {
3317        status = mNormalSink->getNextWriteTimestamp(&pts);
3318    } else {
3319        status = mOutputSink->getNextWriteTimestamp(&pts);
3320    }
3321
3322    if (status != NO_ERROR) {
3323        pts = AudioBufferProvider::kInvalidPTS;
3324    }
3325
3326    // mix buffers...
3327    mAudioMixer->process(pts);
3328    mCurrentWriteLength = mSinkBufferSize;
3329    // increase sleep time progressively when application underrun condition clears.
3330    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3331    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3332    // such that we would underrun the audio HAL.
3333    if ((sleepTime == 0) && (sleepTimeShift > 0)) {
3334        sleepTimeShift--;
3335    }
3336    sleepTime = 0;
3337    standbyTime = systemTime() + standbyDelay;
3338    //TODO: delay standby when effects have a tail
3339
3340}
3341
3342void AudioFlinger::MixerThread::threadLoop_sleepTime()
3343{
3344    // If no tracks are ready, sleep once for the duration of an output
3345    // buffer size, then write 0s to the output
3346    if (sleepTime == 0) {
3347        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3348            sleepTime = activeSleepTime >> sleepTimeShift;
3349            if (sleepTime < kMinThreadSleepTimeUs) {
3350                sleepTime = kMinThreadSleepTimeUs;
3351            }
3352            // reduce sleep time in case of consecutive application underruns to avoid
3353            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3354            // duration we would end up writing less data than needed by the audio HAL if
3355            // the condition persists.
3356            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3357                sleepTimeShift++;
3358            }
3359        } else {
3360            sleepTime = idleSleepTime;
3361        }
3362    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3363        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3364        // before effects processing or output.
3365        if (mMixerBufferValid) {
3366            memset(mMixerBuffer, 0, mMixerBufferSize);
3367        } else {
3368            memset(mSinkBuffer, 0, mSinkBufferSize);
3369        }
3370        sleepTime = 0;
3371        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3372                "anticipated start");
3373    }
3374    // TODO add standby time extension fct of effect tail
3375}
3376
3377// prepareTracks_l() must be called with ThreadBase::mLock held
3378AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3379        Vector< sp<Track> > *tracksToRemove)
3380{
3381
3382    mixer_state mixerStatus = MIXER_IDLE;
3383    // find out which tracks need to be processed
3384    size_t count = mActiveTracks.size();
3385    size_t mixedTracks = 0;
3386    size_t tracksWithEffect = 0;
3387    // counts only _active_ fast tracks
3388    size_t fastTracks = 0;
3389    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3390
3391    float masterVolume = mMasterVolume;
3392    bool masterMute = mMasterMute;
3393
3394    if (masterMute) {
3395        masterVolume = 0;
3396    }
3397    // Delegate master volume control to effect in output mix effect chain if needed
3398    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3399    if (chain != 0) {
3400        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3401        chain->setVolume_l(&v, &v);
3402        masterVolume = (float)((v + (1 << 23)) >> 24);
3403        chain.clear();
3404    }
3405
3406    // prepare a new state to push
3407    FastMixerStateQueue *sq = NULL;
3408    FastMixerState *state = NULL;
3409    bool didModify = false;
3410    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3411    if (mFastMixer != 0) {
3412        sq = mFastMixer->sq();
3413        state = sq->begin();
3414    }
3415
3416    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3417    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3418
3419    for (size_t i=0 ; i<count ; i++) {
3420        const sp<Track> t = mActiveTracks[i].promote();
3421        if (t == 0) {
3422            continue;
3423        }
3424
3425        // this const just means the local variable doesn't change
3426        Track* const track = t.get();
3427
3428        // process fast tracks
3429        if (track->isFastTrack()) {
3430
3431            // It's theoretically possible (though unlikely) for a fast track to be created
3432            // and then removed within the same normal mix cycle.  This is not a problem, as
3433            // the track never becomes active so it's fast mixer slot is never touched.
3434            // The converse, of removing an (active) track and then creating a new track
3435            // at the identical fast mixer slot within the same normal mix cycle,
3436            // is impossible because the slot isn't marked available until the end of each cycle.
3437            int j = track->mFastIndex;
3438            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3439            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3440            FastTrack *fastTrack = &state->mFastTracks[j];
3441
3442            // Determine whether the track is currently in underrun condition,
3443            // and whether it had a recent underrun.
3444            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3445            FastTrackUnderruns underruns = ftDump->mUnderruns;
3446            uint32_t recentFull = (underruns.mBitFields.mFull -
3447                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3448            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3449                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3450            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3451                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3452            uint32_t recentUnderruns = recentPartial + recentEmpty;
3453            track->mObservedUnderruns = underruns;
3454            // don't count underruns that occur while stopping or pausing
3455            // or stopped which can occur when flush() is called while active
3456            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3457                    recentUnderruns > 0) {
3458                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3459                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3460            }
3461
3462            // This is similar to the state machine for normal tracks,
3463            // with a few modifications for fast tracks.
3464            bool isActive = true;
3465            switch (track->mState) {
3466            case TrackBase::STOPPING_1:
3467                // track stays active in STOPPING_1 state until first underrun
3468                if (recentUnderruns > 0 || track->isTerminated()) {
3469                    track->mState = TrackBase::STOPPING_2;
3470                }
3471                break;
3472            case TrackBase::PAUSING:
3473                // ramp down is not yet implemented
3474                track->setPaused();
3475                break;
3476            case TrackBase::RESUMING:
3477                // ramp up is not yet implemented
3478                track->mState = TrackBase::ACTIVE;
3479                break;
3480            case TrackBase::ACTIVE:
3481                if (recentFull > 0 || recentPartial > 0) {
3482                    // track has provided at least some frames recently: reset retry count
3483                    track->mRetryCount = kMaxTrackRetries;
3484                }
3485                if (recentUnderruns == 0) {
3486                    // no recent underruns: stay active
3487                    break;
3488                }
3489                // there has recently been an underrun of some kind
3490                if (track->sharedBuffer() == 0) {
3491                    // were any of the recent underruns "empty" (no frames available)?
3492                    if (recentEmpty == 0) {
3493                        // no, then ignore the partial underruns as they are allowed indefinitely
3494                        break;
3495                    }
3496                    // there has recently been an "empty" underrun: decrement the retry counter
3497                    if (--(track->mRetryCount) > 0) {
3498                        break;
3499                    }
3500                    // indicate to client process that the track was disabled because of underrun;
3501                    // it will then automatically call start() when data is available
3502                    android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3503                    // remove from active list, but state remains ACTIVE [confusing but true]
3504                    isActive = false;
3505                    break;
3506                }
3507                // fall through
3508            case TrackBase::STOPPING_2:
3509            case TrackBase::PAUSED:
3510            case TrackBase::STOPPED:
3511            case TrackBase::FLUSHED:   // flush() while active
3512                // Check for presentation complete if track is inactive
3513                // We have consumed all the buffers of this track.
3514                // This would be incomplete if we auto-paused on underrun
3515                {
3516                    size_t audioHALFrames =
3517                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3518                    size_t framesWritten = mBytesWritten / mFrameSize;
3519                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3520                        // track stays in active list until presentation is complete
3521                        break;
3522                    }
3523                }
3524                if (track->isStopping_2()) {
3525                    track->mState = TrackBase::STOPPED;
3526                }
3527                if (track->isStopped()) {
3528                    // Can't reset directly, as fast mixer is still polling this track
3529                    //   track->reset();
3530                    // So instead mark this track as needing to be reset after push with ack
3531                    resetMask |= 1 << i;
3532                }
3533                isActive = false;
3534                break;
3535            case TrackBase::IDLE:
3536            default:
3537                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3538            }
3539
3540            if (isActive) {
3541                // was it previously inactive?
3542                if (!(state->mTrackMask & (1 << j))) {
3543                    ExtendedAudioBufferProvider *eabp = track;
3544                    VolumeProvider *vp = track;
3545                    fastTrack->mBufferProvider = eabp;
3546                    fastTrack->mVolumeProvider = vp;
3547                    fastTrack->mChannelMask = track->mChannelMask;
3548                    fastTrack->mFormat = track->mFormat;
3549                    fastTrack->mGeneration++;
3550                    state->mTrackMask |= 1 << j;
3551                    didModify = true;
3552                    // no acknowledgement required for newly active tracks
3553                }
3554                // cache the combined master volume and stream type volume for fast mixer; this
3555                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3556                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3557                ++fastTracks;
3558            } else {
3559                // was it previously active?
3560                if (state->mTrackMask & (1 << j)) {
3561                    fastTrack->mBufferProvider = NULL;
3562                    fastTrack->mGeneration++;
3563                    state->mTrackMask &= ~(1 << j);
3564                    didModify = true;
3565                    // If any fast tracks were removed, we must wait for acknowledgement
3566                    // because we're about to decrement the last sp<> on those tracks.
3567                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3568                } else {
3569                    LOG_ALWAYS_FATAL("fast track %d should have been active", j);
3570                }
3571                tracksToRemove->add(track);
3572                // Avoids a misleading display in dumpsys
3573                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3574            }
3575            continue;
3576        }
3577
3578        {   // local variable scope to avoid goto warning
3579
3580        audio_track_cblk_t* cblk = track->cblk();
3581
3582        // The first time a track is added we wait
3583        // for all its buffers to be filled before processing it
3584        int name = track->name();
3585        // make sure that we have enough frames to mix one full buffer.
3586        // enforce this condition only once to enable draining the buffer in case the client
3587        // app does not call stop() and relies on underrun to stop:
3588        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3589        // during last round
3590        size_t desiredFrames;
3591        uint32_t sr = track->sampleRate();
3592        if (sr == mSampleRate) {
3593            desiredFrames = mNormalFrameCount;
3594        } else {
3595            desiredFrames = sourceFramesNeeded(sr, mNormalFrameCount, mSampleRate);
3596            // add frames already consumed but not yet released by the resampler
3597            // because mAudioTrackServerProxy->framesReady() will include these frames
3598            desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3599#if 0
3600            // the minimum track buffer size is normally twice the number of frames necessary
3601            // to fill one buffer and the resampler should not leave more than one buffer worth
3602            // of unreleased frames after each pass, but just in case...
3603            ALOG_ASSERT(desiredFrames <= cblk->frameCount_);
3604#endif
3605        }
3606        uint32_t minFrames = 1;
3607        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3608                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3609            minFrames = desiredFrames;
3610        }
3611
3612        size_t framesReady = track->framesReady();
3613        if (ATRACE_ENABLED()) {
3614            // I wish we had formatted trace names
3615            char traceName[16];
3616            strcpy(traceName, "nRdy");
3617            int name = track->name();
3618            if (AudioMixer::TRACK0 <= name &&
3619                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
3620                name -= AudioMixer::TRACK0;
3621                traceName[4] = (name / 10) + '0';
3622                traceName[5] = (name % 10) + '0';
3623            } else {
3624                traceName[4] = '?';
3625                traceName[5] = '?';
3626            }
3627            traceName[6] = '\0';
3628            ATRACE_INT(traceName, framesReady);
3629        }
3630        if ((framesReady >= minFrames) && track->isReady() &&
3631                !track->isPaused() && !track->isTerminated())
3632        {
3633            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3634
3635            mixedTracks++;
3636
3637            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3638            // there is an effect chain connected to the track
3639            chain.clear();
3640            if (track->mainBuffer() != mSinkBuffer &&
3641                    track->mainBuffer() != mMixerBuffer) {
3642                if (mEffectBufferEnabled) {
3643                    mEffectBufferValid = true; // Later can set directly.
3644                }
3645                chain = getEffectChain_l(track->sessionId());
3646                // Delegate volume control to effect in track effect chain if needed
3647                if (chain != 0) {
3648                    tracksWithEffect++;
3649                } else {
3650                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3651                            "session %d",
3652                            name, track->sessionId());
3653                }
3654            }
3655
3656
3657            int param = AudioMixer::VOLUME;
3658            if (track->mFillingUpStatus == Track::FS_FILLED) {
3659                // no ramp for the first volume setting
3660                track->mFillingUpStatus = Track::FS_ACTIVE;
3661                if (track->mState == TrackBase::RESUMING) {
3662                    track->mState = TrackBase::ACTIVE;
3663                    param = AudioMixer::RAMP_VOLUME;
3664                }
3665                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3666            // FIXME should not make a decision based on mServer
3667            } else if (cblk->mServer != 0) {
3668                // If the track is stopped before the first frame was mixed,
3669                // do not apply ramp
3670                param = AudioMixer::RAMP_VOLUME;
3671            }
3672
3673            // compute volume for this track
3674            uint32_t vl, vr;       // in U8.24 integer format
3675            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
3676            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3677                vl = vr = 0;
3678                vlf = vrf = vaf = 0.;
3679                if (track->isPausing()) {
3680                    track->setPaused();
3681                }
3682            } else {
3683
3684                // read original volumes with volume control
3685                float typeVolume = mStreamTypes[track->streamType()].volume;
3686                float v = masterVolume * typeVolume;
3687                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3688                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3689                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3690                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3691                // track volumes come from shared memory, so can't be trusted and must be clamped
3692                if (vlf > GAIN_FLOAT_UNITY) {
3693                    ALOGV("Track left volume out of range: %.3g", vlf);
3694                    vlf = GAIN_FLOAT_UNITY;
3695                }
3696                if (vrf > GAIN_FLOAT_UNITY) {
3697                    ALOGV("Track right volume out of range: %.3g", vrf);
3698                    vrf = GAIN_FLOAT_UNITY;
3699                }
3700                // now apply the master volume and stream type volume
3701                vlf *= v;
3702                vrf *= v;
3703                // assuming master volume and stream type volume each go up to 1.0,
3704                // then derive vl and vr as U8.24 versions for the effect chain
3705                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3706                vl = (uint32_t) (scaleto8_24 * vlf);
3707                vr = (uint32_t) (scaleto8_24 * vrf);
3708                // vl and vr are now in U8.24 format
3709                uint16_t sendLevel = proxy->getSendLevel_U4_12();
3710                // send level comes from shared memory and so may be corrupt
3711                if (sendLevel > MAX_GAIN_INT) {
3712                    ALOGV("Track send level out of range: %04X", sendLevel);
3713                    sendLevel = MAX_GAIN_INT;
3714                }
3715                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
3716                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
3717            }
3718
3719            // Delegate volume control to effect in track effect chain if needed
3720            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
3721                // Do not ramp volume if volume is controlled by effect
3722                param = AudioMixer::VOLUME;
3723                // Update remaining floating point volume levels
3724                vlf = (float)vl / (1 << 24);
3725                vrf = (float)vr / (1 << 24);
3726                track->mHasVolumeController = true;
3727            } else {
3728                // force no volume ramp when volume controller was just disabled or removed
3729                // from effect chain to avoid volume spike
3730                if (track->mHasVolumeController) {
3731                    param = AudioMixer::VOLUME;
3732                }
3733                track->mHasVolumeController = false;
3734            }
3735
3736            // XXX: these things DON'T need to be done each time
3737            mAudioMixer->setBufferProvider(name, track);
3738            mAudioMixer->enable(name);
3739
3740            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
3741            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
3742            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
3743            mAudioMixer->setParameter(
3744                name,
3745                AudioMixer::TRACK,
3746                AudioMixer::FORMAT, (void *)track->format());
3747            mAudioMixer->setParameter(
3748                name,
3749                AudioMixer::TRACK,
3750                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
3751            mAudioMixer->setParameter(
3752                name,
3753                AudioMixer::TRACK,
3754                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
3755            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
3756            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
3757            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
3758            if (reqSampleRate == 0) {
3759                reqSampleRate = mSampleRate;
3760            } else if (reqSampleRate > maxSampleRate) {
3761                reqSampleRate = maxSampleRate;
3762            }
3763            mAudioMixer->setParameter(
3764                name,
3765                AudioMixer::RESAMPLE,
3766                AudioMixer::SAMPLE_RATE,
3767                (void *)(uintptr_t)reqSampleRate);
3768            /*
3769             * Select the appropriate output buffer for the track.
3770             *
3771             * Tracks with effects go into their own effects chain buffer
3772             * and from there into either mEffectBuffer or mSinkBuffer.
3773             *
3774             * Other tracks can use mMixerBuffer for higher precision
3775             * channel accumulation.  If this buffer is enabled
3776             * (mMixerBufferEnabled true), then selected tracks will accumulate
3777             * into it.
3778             *
3779             */
3780            if (mMixerBufferEnabled
3781                    && (track->mainBuffer() == mSinkBuffer
3782                            || track->mainBuffer() == mMixerBuffer)) {
3783                mAudioMixer->setParameter(
3784                        name,
3785                        AudioMixer::TRACK,
3786                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
3787                mAudioMixer->setParameter(
3788                        name,
3789                        AudioMixer::TRACK,
3790                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
3791                // TODO: override track->mainBuffer()?
3792                mMixerBufferValid = true;
3793            } else {
3794                mAudioMixer->setParameter(
3795                        name,
3796                        AudioMixer::TRACK,
3797                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
3798                mAudioMixer->setParameter(
3799                        name,
3800                        AudioMixer::TRACK,
3801                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
3802            }
3803            mAudioMixer->setParameter(
3804                name,
3805                AudioMixer::TRACK,
3806                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
3807
3808            // reset retry count
3809            track->mRetryCount = kMaxTrackRetries;
3810
3811            // If one track is ready, set the mixer ready if:
3812            //  - the mixer was not ready during previous round OR
3813            //  - no other track is not ready
3814            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
3815                    mixerStatus != MIXER_TRACKS_ENABLED) {
3816                mixerStatus = MIXER_TRACKS_READY;
3817            }
3818        } else {
3819            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
3820                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
3821            }
3822            // clear effect chain input buffer if an active track underruns to avoid sending
3823            // previous audio buffer again to effects
3824            chain = getEffectChain_l(track->sessionId());
3825            if (chain != 0) {
3826                chain->clearInputBuffer();
3827            }
3828
3829            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
3830            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
3831                    track->isStopped() || track->isPaused()) {
3832                // We have consumed all the buffers of this track.
3833                // Remove it from the list of active tracks.
3834                // TODO: use actual buffer filling status instead of latency when available from
3835                // audio HAL
3836                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
3837                size_t framesWritten = mBytesWritten / mFrameSize;
3838                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
3839                    if (track->isStopped()) {
3840                        track->reset();
3841                    }
3842                    tracksToRemove->add(track);
3843                }
3844            } else {
3845                // No buffers for this track. Give it a few chances to
3846                // fill a buffer, then remove it from active list.
3847                if (--(track->mRetryCount) <= 0) {
3848                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
3849                    tracksToRemove->add(track);
3850                    // indicate to client process that the track was disabled because of underrun;
3851                    // it will then automatically call start() when data is available
3852                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
3853                // If one track is not ready, mark the mixer also not ready if:
3854                //  - the mixer was ready during previous round OR
3855                //  - no other track is ready
3856                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
3857                                mixerStatus != MIXER_TRACKS_READY) {
3858                    mixerStatus = MIXER_TRACKS_ENABLED;
3859                }
3860            }
3861            mAudioMixer->disable(name);
3862        }
3863
3864        }   // local variable scope to avoid goto warning
3865track_is_ready: ;
3866
3867    }
3868
3869    // Push the new FastMixer state if necessary
3870    bool pauseAudioWatchdog = false;
3871    if (didModify) {
3872        state->mFastTracksGen++;
3873        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
3874        if (kUseFastMixer == FastMixer_Dynamic &&
3875                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
3876            state->mCommand = FastMixerState::COLD_IDLE;
3877            state->mColdFutexAddr = &mFastMixerFutex;
3878            state->mColdGen++;
3879            mFastMixerFutex = 0;
3880            if (kUseFastMixer == FastMixer_Dynamic) {
3881                mNormalSink = mOutputSink;
3882            }
3883            // If we go into cold idle, need to wait for acknowledgement
3884            // so that fast mixer stops doing I/O.
3885            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3886            pauseAudioWatchdog = true;
3887        }
3888    }
3889    if (sq != NULL) {
3890        sq->end(didModify);
3891        sq->push(block);
3892    }
3893#ifdef AUDIO_WATCHDOG
3894    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
3895        mAudioWatchdog->pause();
3896    }
3897#endif
3898
3899    // Now perform the deferred reset on fast tracks that have stopped
3900    while (resetMask != 0) {
3901        size_t i = __builtin_ctz(resetMask);
3902        ALOG_ASSERT(i < count);
3903        resetMask &= ~(1 << i);
3904        sp<Track> t = mActiveTracks[i].promote();
3905        if (t == 0) {
3906            continue;
3907        }
3908        Track* track = t.get();
3909        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
3910        track->reset();
3911    }
3912
3913    // remove all the tracks that need to be...
3914    removeTracks_l(*tracksToRemove);
3915
3916    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
3917        mEffectBufferValid = true;
3918    }
3919
3920    if (mEffectBufferValid) {
3921        // as long as there are effects we should clear the effects buffer, to avoid
3922        // passing a non-clean buffer to the effect chain
3923        memset(mEffectBuffer, 0, mEffectBufferSize);
3924    }
3925    // sink or mix buffer must be cleared if all tracks are connected to an
3926    // effect chain as in this case the mixer will not write to the sink or mix buffer
3927    // and track effects will accumulate into it
3928    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3929            (mixedTracks == 0 && fastTracks > 0))) {
3930        // FIXME as a performance optimization, should remember previous zero status
3931        if (mMixerBufferValid) {
3932            memset(mMixerBuffer, 0, mMixerBufferSize);
3933            // TODO: In testing, mSinkBuffer below need not be cleared because
3934            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
3935            // after mixing.
3936            //
3937            // To enforce this guarantee:
3938            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3939            // (mixedTracks == 0 && fastTracks > 0))
3940            // must imply MIXER_TRACKS_READY.
3941            // Later, we may clear buffers regardless, and skip much of this logic.
3942        }
3943        // FIXME as a performance optimization, should remember previous zero status
3944        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
3945    }
3946
3947    // if any fast tracks, then status is ready
3948    mMixerStatusIgnoringFastTracks = mixerStatus;
3949    if (fastTracks > 0) {
3950        mixerStatus = MIXER_TRACKS_READY;
3951    }
3952    return mixerStatus;
3953}
3954
3955// getTrackName_l() must be called with ThreadBase::mLock held
3956int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
3957        audio_format_t format, int sessionId)
3958{
3959    return mAudioMixer->getTrackName(channelMask, format, sessionId);
3960}
3961
3962// deleteTrackName_l() must be called with ThreadBase::mLock held
3963void AudioFlinger::MixerThread::deleteTrackName_l(int name)
3964{
3965    ALOGV("remove track (%d) and delete from mixer", name);
3966    mAudioMixer->deleteTrackName(name);
3967}
3968
3969// checkForNewParameter_l() must be called with ThreadBase::mLock held
3970bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
3971                                                       status_t& status)
3972{
3973    bool reconfig = false;
3974
3975    status = NO_ERROR;
3976
3977    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3978    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3979    if (mFastMixer != 0) {
3980        FastMixerStateQueue *sq = mFastMixer->sq();
3981        FastMixerState *state = sq->begin();
3982        if (!(state->mCommand & FastMixerState::IDLE)) {
3983            previousCommand = state->mCommand;
3984            state->mCommand = FastMixerState::HOT_IDLE;
3985            sq->end();
3986            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3987        } else {
3988            sq->end(false /*didModify*/);
3989        }
3990    }
3991
3992    AudioParameter param = AudioParameter(keyValuePair);
3993    int value;
3994    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
3995        reconfig = true;
3996    }
3997    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
3998        if (!isValidPcmSinkFormat((audio_format_t) value)) {
3999            status = BAD_VALUE;
4000        } else {
4001            // no need to save value, since it's constant
4002            reconfig = true;
4003        }
4004    }
4005    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4006        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4007            status = BAD_VALUE;
4008        } else {
4009            // no need to save value, since it's constant
4010            reconfig = true;
4011        }
4012    }
4013    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4014        // do not accept frame count changes if tracks are open as the track buffer
4015        // size depends on frame count and correct behavior would not be guaranteed
4016        // if frame count is changed after track creation
4017        if (!mTracks.isEmpty()) {
4018            status = INVALID_OPERATION;
4019        } else {
4020            reconfig = true;
4021        }
4022    }
4023    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4024#ifdef ADD_BATTERY_DATA
4025        // when changing the audio output device, call addBatteryData to notify
4026        // the change
4027        if (mOutDevice != value) {
4028            uint32_t params = 0;
4029            // check whether speaker is on
4030            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4031                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4032            }
4033
4034            audio_devices_t deviceWithoutSpeaker
4035                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4036            // check if any other device (except speaker) is on
4037            if (value & deviceWithoutSpeaker ) {
4038                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4039            }
4040
4041            if (params != 0) {
4042                addBatteryData(params);
4043            }
4044        }
4045#endif
4046
4047        // forward device change to effects that have requested to be
4048        // aware of attached audio device.
4049        if (value != AUDIO_DEVICE_NONE) {
4050            mOutDevice = value;
4051            for (size_t i = 0; i < mEffectChains.size(); i++) {
4052                mEffectChains[i]->setDevice_l(mOutDevice);
4053            }
4054        }
4055    }
4056
4057    if (status == NO_ERROR) {
4058        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4059                                                keyValuePair.string());
4060        if (!mStandby && status == INVALID_OPERATION) {
4061            mOutput->stream->common.standby(&mOutput->stream->common);
4062            mStandby = true;
4063            mBytesWritten = 0;
4064            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4065                                                   keyValuePair.string());
4066        }
4067        if (status == NO_ERROR && reconfig) {
4068            readOutputParameters_l();
4069            delete mAudioMixer;
4070            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4071            for (size_t i = 0; i < mTracks.size() ; i++) {
4072                int name = getTrackName_l(mTracks[i]->mChannelMask,
4073                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4074                if (name < 0) {
4075                    break;
4076                }
4077                mTracks[i]->mName = name;
4078            }
4079            sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
4080        }
4081    }
4082
4083    if (!(previousCommand & FastMixerState::IDLE)) {
4084        ALOG_ASSERT(mFastMixer != 0);
4085        FastMixerStateQueue *sq = mFastMixer->sq();
4086        FastMixerState *state = sq->begin();
4087        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4088        state->mCommand = previousCommand;
4089        sq->end();
4090        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4091    }
4092
4093    return reconfig;
4094}
4095
4096
4097void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4098{
4099    const size_t SIZE = 256;
4100    char buffer[SIZE];
4101    String8 result;
4102
4103    PlaybackThread::dumpInternals(fd, args);
4104
4105    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4106
4107    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4108    const FastMixerDumpState copy(mFastMixerDumpState);
4109    copy.dump(fd);
4110
4111#ifdef STATE_QUEUE_DUMP
4112    // Similar for state queue
4113    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4114    observerCopy.dump(fd);
4115    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4116    mutatorCopy.dump(fd);
4117#endif
4118
4119#ifdef TEE_SINK
4120    // Write the tee output to a .wav file
4121    dumpTee(fd, mTeeSource, mId);
4122#endif
4123
4124#ifdef AUDIO_WATCHDOG
4125    if (mAudioWatchdog != 0) {
4126        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4127        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4128        wdCopy.dump(fd);
4129    }
4130#endif
4131}
4132
4133uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4134{
4135    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4136}
4137
4138uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4139{
4140    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4141}
4142
4143void AudioFlinger::MixerThread::cacheParameters_l()
4144{
4145    PlaybackThread::cacheParameters_l();
4146
4147    // FIXME: Relaxed timing because of a certain device that can't meet latency
4148    // Should be reduced to 2x after the vendor fixes the driver issue
4149    // increase threshold again due to low power audio mode. The way this warning
4150    // threshold is calculated and its usefulness should be reconsidered anyway.
4151    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4152}
4153
4154// ----------------------------------------------------------------------------
4155
4156AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4157        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
4158    :   PlaybackThread(audioFlinger, output, id, device, DIRECT)
4159        // mLeftVolFloat, mRightVolFloat
4160{
4161}
4162
4163AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4164        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4165        ThreadBase::type_t type)
4166    :   PlaybackThread(audioFlinger, output, id, device, type)
4167        // mLeftVolFloat, mRightVolFloat
4168{
4169}
4170
4171AudioFlinger::DirectOutputThread::~DirectOutputThread()
4172{
4173}
4174
4175void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4176{
4177    audio_track_cblk_t* cblk = track->cblk();
4178    float left, right;
4179
4180    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4181        left = right = 0;
4182    } else {
4183        float typeVolume = mStreamTypes[track->streamType()].volume;
4184        float v = mMasterVolume * typeVolume;
4185        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4186        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4187        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4188        if (left > GAIN_FLOAT_UNITY) {
4189            left = GAIN_FLOAT_UNITY;
4190        }
4191        left *= v;
4192        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4193        if (right > GAIN_FLOAT_UNITY) {
4194            right = GAIN_FLOAT_UNITY;
4195        }
4196        right *= v;
4197    }
4198
4199    if (lastTrack) {
4200        if (left != mLeftVolFloat || right != mRightVolFloat) {
4201            mLeftVolFloat = left;
4202            mRightVolFloat = right;
4203
4204            // Convert volumes from float to 8.24
4205            uint32_t vl = (uint32_t)(left * (1 << 24));
4206            uint32_t vr = (uint32_t)(right * (1 << 24));
4207
4208            // Delegate volume control to effect in track effect chain if needed
4209            // only one effect chain can be present on DirectOutputThread, so if
4210            // there is one, the track is connected to it
4211            if (!mEffectChains.isEmpty()) {
4212                mEffectChains[0]->setVolume_l(&vl, &vr);
4213                left = (float)vl / (1 << 24);
4214                right = (float)vr / (1 << 24);
4215            }
4216            if (mOutput->stream->set_volume) {
4217                mOutput->stream->set_volume(mOutput->stream, left, right);
4218            }
4219        }
4220    }
4221}
4222
4223
4224AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4225    Vector< sp<Track> > *tracksToRemove
4226)
4227{
4228    size_t count = mActiveTracks.size();
4229    mixer_state mixerStatus = MIXER_IDLE;
4230    bool doHwPause = false;
4231    bool doHwResume = false;
4232    bool flushPending = false;
4233
4234    // find out which tracks need to be processed
4235    for (size_t i = 0; i < count; i++) {
4236        sp<Track> t = mActiveTracks[i].promote();
4237        // The track died recently
4238        if (t == 0) {
4239            continue;
4240        }
4241
4242        Track* const track = t.get();
4243        audio_track_cblk_t* cblk = track->cblk();
4244        // Only consider last track started for volume and mixer state control.
4245        // In theory an older track could underrun and restart after the new one starts
4246        // but as we only care about the transition phase between two tracks on a
4247        // direct output, it is not a problem to ignore the underrun case.
4248        sp<Track> l = mLatestActiveTrack.promote();
4249        bool last = l.get() == track;
4250
4251        if (mHwSupportsPause && track->isPausing()) {
4252            track->setPaused();
4253            if (last && !mHwPaused) {
4254                doHwPause = true;
4255                mHwPaused = true;
4256            }
4257            tracksToRemove->add(track);
4258        } else if (track->isFlushPending()) {
4259            track->flushAck();
4260            if (last) {
4261                flushPending = true;
4262            }
4263        } else if (mHwSupportsPause && track->isResumePending()){
4264            track->resumeAck();
4265            if (last) {
4266                if (mHwPaused) {
4267                    doHwResume = true;
4268                    mHwPaused = false;
4269                }
4270            }
4271        }
4272
4273        // The first time a track is added we wait
4274        // for all its buffers to be filled before processing it.
4275        // Allow draining the buffer in case the client
4276        // app does not call stop() and relies on underrun to stop:
4277        // hence the test on (track->mRetryCount > 1).
4278        // If retryCount<=1 then track is about to underrun and be removed.
4279        uint32_t minFrames;
4280        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4281            && (track->mRetryCount > 1)) {
4282            minFrames = mNormalFrameCount;
4283        } else {
4284            minFrames = 1;
4285        }
4286
4287        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4288                !track->isStopping_2() && !track->isStopped())
4289        {
4290            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4291
4292            if (track->mFillingUpStatus == Track::FS_FILLED) {
4293                track->mFillingUpStatus = Track::FS_ACTIVE;
4294                // make sure processVolume_l() will apply new volume even if 0
4295                mLeftVolFloat = mRightVolFloat = -1.0;
4296                if (!mHwSupportsPause) {
4297                    track->resumeAck();
4298                }
4299            }
4300
4301            // compute volume for this track
4302            processVolume_l(track, last);
4303            if (last) {
4304                // reset retry count
4305                track->mRetryCount = kMaxTrackRetriesDirect;
4306                mActiveTrack = t;
4307                mixerStatus = MIXER_TRACKS_READY;
4308                if (usesHwAvSync() && mHwPaused) {
4309                    doHwResume = true;
4310                    mHwPaused = false;
4311                }
4312            }
4313        } else {
4314            // clear effect chain input buffer if the last active track started underruns
4315            // to avoid sending previous audio buffer again to effects
4316            if (!mEffectChains.isEmpty() && last) {
4317                mEffectChains[0]->clearInputBuffer();
4318            }
4319            if (track->isStopping_1()) {
4320                track->mState = TrackBase::STOPPING_2;
4321            }
4322            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4323                    track->isStopping_2() || track->isPaused()) {
4324                // We have consumed all the buffers of this track.
4325                // Remove it from the list of active tracks.
4326                size_t audioHALFrames;
4327                if (audio_is_linear_pcm(mFormat)) {
4328                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4329                } else {
4330                    audioHALFrames = 0;
4331                }
4332
4333                size_t framesWritten = mBytesWritten / mFrameSize;
4334                if (mStandby || !last ||
4335                        track->presentationComplete(framesWritten, audioHALFrames)) {
4336                    if (track->isStopping_2()) {
4337                        track->mState = TrackBase::STOPPED;
4338                    }
4339                    if (track->isStopped()) {
4340                        track->reset();
4341                    }
4342                    tracksToRemove->add(track);
4343                }
4344            } else {
4345                // No buffers for this track. Give it a few chances to
4346                // fill a buffer, then remove it from active list.
4347                // Only consider last track started for mixer state control
4348                if (--(track->mRetryCount) <= 0) {
4349                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4350                    tracksToRemove->add(track);
4351                    // indicate to client process that the track was disabled because of underrun;
4352                    // it will then automatically call start() when data is available
4353                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4354                } else if (last) {
4355                    mixerStatus = MIXER_TRACKS_ENABLED;
4356                    if (usesHwAvSync() && !mHwPaused && !mStandby) {
4357                        doHwPause = true;
4358                        mHwPaused = true;
4359                    }
4360                }
4361            }
4362        }
4363    }
4364
4365    // if an active track did not command a flush, check for pending flush on stopped tracks
4366    if (!flushPending) {
4367        for (size_t i = 0; i < mTracks.size(); i++) {
4368            if (mTracks[i]->isFlushPending()) {
4369                mTracks[i]->flushAck();
4370                flushPending = true;
4371            }
4372        }
4373    }
4374
4375    // make sure the pause/flush/resume sequence is executed in the right order.
4376    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4377    // before flush and then resume HW. This can happen in case of pause/flush/resume
4378    // if resume is received before pause is executed.
4379    if (mHwSupportsPause && !mStandby &&
4380            (doHwPause || (flushPending && !mHwPaused && (count != 0)))) {
4381        mOutput->stream->pause(mOutput->stream);
4382    }
4383    if (flushPending) {
4384        flushHw_l();
4385    }
4386    if (mHwSupportsPause && !mStandby && doHwResume) {
4387        mOutput->stream->resume(mOutput->stream);
4388    }
4389    // remove all the tracks that need to be...
4390    removeTracks_l(*tracksToRemove);
4391
4392    return mixerStatus;
4393}
4394
4395void AudioFlinger::DirectOutputThread::threadLoop_mix()
4396{
4397    size_t frameCount = mFrameCount;
4398    int8_t *curBuf = (int8_t *)mSinkBuffer;
4399    // output audio to hardware
4400    while (frameCount) {
4401        AudioBufferProvider::Buffer buffer;
4402        buffer.frameCount = frameCount;
4403        mActiveTrack->getNextBuffer(&buffer);
4404        if (buffer.raw == NULL) {
4405            memset(curBuf, 0, frameCount * mFrameSize);
4406            break;
4407        }
4408        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4409        frameCount -= buffer.frameCount;
4410        curBuf += buffer.frameCount * mFrameSize;
4411        mActiveTrack->releaseBuffer(&buffer);
4412    }
4413    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4414    sleepTime = 0;
4415    standbyTime = systemTime() + standbyDelay;
4416    mActiveTrack.clear();
4417}
4418
4419void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4420{
4421    // do not write to HAL when paused
4422    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4423        sleepTime = idleSleepTime;
4424        return;
4425    }
4426    if (sleepTime == 0) {
4427        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4428            sleepTime = activeSleepTime;
4429        } else {
4430            sleepTime = idleSleepTime;
4431        }
4432    } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4433        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4434        sleepTime = 0;
4435    }
4436}
4437
4438void AudioFlinger::DirectOutputThread::threadLoop_exit()
4439{
4440    {
4441        Mutex::Autolock _l(mLock);
4442        bool flushPending = false;
4443        for (size_t i = 0; i < mTracks.size(); i++) {
4444            if (mTracks[i]->isFlushPending()) {
4445                mTracks[i]->flushAck();
4446                flushPending = true;
4447            }
4448        }
4449        if (flushPending) {
4450            flushHw_l();
4451        }
4452    }
4453    PlaybackThread::threadLoop_exit();
4454}
4455
4456// must be called with thread mutex locked
4457bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4458{
4459    bool trackPaused = false;
4460
4461    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4462    // after a timeout and we will enter standby then.
4463    if (mTracks.size() > 0) {
4464        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4465    }
4466
4467    return !mStandby && !(trackPaused || (usesHwAvSync() && mHwPaused));
4468}
4469
4470// getTrackName_l() must be called with ThreadBase::mLock held
4471int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4472        audio_format_t format __unused, int sessionId __unused)
4473{
4474    return 0;
4475}
4476
4477// deleteTrackName_l() must be called with ThreadBase::mLock held
4478void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4479{
4480}
4481
4482// checkForNewParameter_l() must be called with ThreadBase::mLock held
4483bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4484                                                              status_t& status)
4485{
4486    bool reconfig = false;
4487
4488    status = NO_ERROR;
4489
4490    AudioParameter param = AudioParameter(keyValuePair);
4491    int value;
4492    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4493        // forward device change to effects that have requested to be
4494        // aware of attached audio device.
4495        if (value != AUDIO_DEVICE_NONE) {
4496            mOutDevice = value;
4497            for (size_t i = 0; i < mEffectChains.size(); i++) {
4498                mEffectChains[i]->setDevice_l(mOutDevice);
4499            }
4500        }
4501    }
4502    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4503        // do not accept frame count changes if tracks are open as the track buffer
4504        // size depends on frame count and correct behavior would not be garantied
4505        // if frame count is changed after track creation
4506        if (!mTracks.isEmpty()) {
4507            status = INVALID_OPERATION;
4508        } else {
4509            reconfig = true;
4510        }
4511    }
4512    if (status == NO_ERROR) {
4513        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4514                                                keyValuePair.string());
4515        if (!mStandby && status == INVALID_OPERATION) {
4516            mOutput->stream->common.standby(&mOutput->stream->common);
4517            mStandby = true;
4518            mBytesWritten = 0;
4519            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4520                                                   keyValuePair.string());
4521        }
4522        if (status == NO_ERROR && reconfig) {
4523            readOutputParameters_l();
4524            sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
4525        }
4526    }
4527
4528    return reconfig;
4529}
4530
4531uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4532{
4533    uint32_t time;
4534    if (audio_is_linear_pcm(mFormat)) {
4535        time = PlaybackThread::activeSleepTimeUs();
4536    } else {
4537        time = 10000;
4538    }
4539    return time;
4540}
4541
4542uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4543{
4544    uint32_t time;
4545    if (audio_is_linear_pcm(mFormat)) {
4546        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4547    } else {
4548        time = 10000;
4549    }
4550    return time;
4551}
4552
4553uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4554{
4555    uint32_t time;
4556    if (audio_is_linear_pcm(mFormat)) {
4557        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4558    } else {
4559        time = 10000;
4560    }
4561    return time;
4562}
4563
4564void AudioFlinger::DirectOutputThread::cacheParameters_l()
4565{
4566    PlaybackThread::cacheParameters_l();
4567
4568    // use shorter standby delay as on normal output to release
4569    // hardware resources as soon as possible
4570    if (audio_is_linear_pcm(mFormat)) {
4571        standbyDelay = microseconds(activeSleepTime*2);
4572    } else {
4573        standbyDelay = kOffloadStandbyDelayNs;
4574    }
4575}
4576
4577void AudioFlinger::DirectOutputThread::flushHw_l()
4578{
4579    if (mOutput->stream->flush != NULL) {
4580        mOutput->stream->flush(mOutput->stream);
4581    }
4582    mHwPaused = false;
4583}
4584
4585// ----------------------------------------------------------------------------
4586
4587AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4588        const wp<AudioFlinger::PlaybackThread>& playbackThread)
4589    :   Thread(false /*canCallJava*/),
4590        mPlaybackThread(playbackThread),
4591        mWriteAckSequence(0),
4592        mDrainSequence(0)
4593{
4594}
4595
4596AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4597{
4598}
4599
4600void AudioFlinger::AsyncCallbackThread::onFirstRef()
4601{
4602    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4603}
4604
4605bool AudioFlinger::AsyncCallbackThread::threadLoop()
4606{
4607    while (!exitPending()) {
4608        uint32_t writeAckSequence;
4609        uint32_t drainSequence;
4610
4611        {
4612            Mutex::Autolock _l(mLock);
4613            while (!((mWriteAckSequence & 1) ||
4614                     (mDrainSequence & 1) ||
4615                     exitPending())) {
4616                mWaitWorkCV.wait(mLock);
4617            }
4618
4619            if (exitPending()) {
4620                break;
4621            }
4622            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4623                  mWriteAckSequence, mDrainSequence);
4624            writeAckSequence = mWriteAckSequence;
4625            mWriteAckSequence &= ~1;
4626            drainSequence = mDrainSequence;
4627            mDrainSequence &= ~1;
4628        }
4629        {
4630            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4631            if (playbackThread != 0) {
4632                if (writeAckSequence & 1) {
4633                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4634                }
4635                if (drainSequence & 1) {
4636                    playbackThread->resetDraining(drainSequence >> 1);
4637                }
4638            }
4639        }
4640    }
4641    return false;
4642}
4643
4644void AudioFlinger::AsyncCallbackThread::exit()
4645{
4646    ALOGV("AsyncCallbackThread::exit");
4647    Mutex::Autolock _l(mLock);
4648    requestExit();
4649    mWaitWorkCV.broadcast();
4650}
4651
4652void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
4653{
4654    Mutex::Autolock _l(mLock);
4655    // bit 0 is cleared
4656    mWriteAckSequence = sequence << 1;
4657}
4658
4659void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
4660{
4661    Mutex::Autolock _l(mLock);
4662    // ignore unexpected callbacks
4663    if (mWriteAckSequence & 2) {
4664        mWriteAckSequence |= 1;
4665        mWaitWorkCV.signal();
4666    }
4667}
4668
4669void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
4670{
4671    Mutex::Autolock _l(mLock);
4672    // bit 0 is cleared
4673    mDrainSequence = sequence << 1;
4674}
4675
4676void AudioFlinger::AsyncCallbackThread::resetDraining()
4677{
4678    Mutex::Autolock _l(mLock);
4679    // ignore unexpected callbacks
4680    if (mDrainSequence & 2) {
4681        mDrainSequence |= 1;
4682        mWaitWorkCV.signal();
4683    }
4684}
4685
4686
4687// ----------------------------------------------------------------------------
4688AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
4689        AudioStreamOut* output, audio_io_handle_t id, uint32_t device)
4690    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD),
4691        mPausedBytesRemaining(0)
4692{
4693    //FIXME: mStandby should be set to true by ThreadBase constructor
4694    mStandby = true;
4695}
4696
4697void AudioFlinger::OffloadThread::threadLoop_exit()
4698{
4699    if (mFlushPending || mHwPaused) {
4700        // If a flush is pending or track was paused, just discard buffered data
4701        flushHw_l();
4702    } else {
4703        mMixerStatus = MIXER_DRAIN_ALL;
4704        threadLoop_drain();
4705    }
4706    if (mUseAsyncWrite) {
4707        ALOG_ASSERT(mCallbackThread != 0);
4708        mCallbackThread->exit();
4709    }
4710    PlaybackThread::threadLoop_exit();
4711}
4712
4713AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
4714    Vector< sp<Track> > *tracksToRemove
4715)
4716{
4717    size_t count = mActiveTracks.size();
4718
4719    mixer_state mixerStatus = MIXER_IDLE;
4720    bool doHwPause = false;
4721    bool doHwResume = false;
4722
4723    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
4724
4725    // find out which tracks need to be processed
4726    for (size_t i = 0; i < count; i++) {
4727        sp<Track> t = mActiveTracks[i].promote();
4728        // The track died recently
4729        if (t == 0) {
4730            continue;
4731        }
4732        Track* const track = t.get();
4733        audio_track_cblk_t* cblk = track->cblk();
4734        // Only consider last track started for volume and mixer state control.
4735        // In theory an older track could underrun and restart after the new one starts
4736        // but as we only care about the transition phase between two tracks on a
4737        // direct output, it is not a problem to ignore the underrun case.
4738        sp<Track> l = mLatestActiveTrack.promote();
4739        bool last = l.get() == track;
4740
4741        if (track->isInvalid()) {
4742            ALOGW("An invalidated track shouldn't be in active list");
4743            tracksToRemove->add(track);
4744            continue;
4745        }
4746
4747        if (track->mState == TrackBase::IDLE) {
4748            ALOGW("An idle track shouldn't be in active list");
4749            continue;
4750        }
4751
4752        if (track->isPausing()) {
4753            track->setPaused();
4754            if (last) {
4755                if (!mHwPaused) {
4756                    doHwPause = true;
4757                    mHwPaused = true;
4758                }
4759                // If we were part way through writing the mixbuffer to
4760                // the HAL we must save this until we resume
4761                // BUG - this will be wrong if a different track is made active,
4762                // in that case we want to discard the pending data in the
4763                // mixbuffer and tell the client to present it again when the
4764                // track is resumed
4765                mPausedWriteLength = mCurrentWriteLength;
4766                mPausedBytesRemaining = mBytesRemaining;
4767                mBytesRemaining = 0;    // stop writing
4768            }
4769            tracksToRemove->add(track);
4770        } else if (track->isFlushPending()) {
4771            track->flushAck();
4772            if (last) {
4773                mFlushPending = true;
4774            }
4775        } else if (track->isResumePending()){
4776            track->resumeAck();
4777            if (last) {
4778                if (mPausedBytesRemaining) {
4779                    // Need to continue write that was interrupted
4780                    mCurrentWriteLength = mPausedWriteLength;
4781                    mBytesRemaining = mPausedBytesRemaining;
4782                    mPausedBytesRemaining = 0;
4783                }
4784                if (mHwPaused) {
4785                    doHwResume = true;
4786                    mHwPaused = false;
4787                    // threadLoop_mix() will handle the case that we need to
4788                    // resume an interrupted write
4789                }
4790                // enable write to audio HAL
4791                sleepTime = 0;
4792
4793                // Do not handle new data in this iteration even if track->framesReady()
4794                mixerStatus = MIXER_TRACKS_ENABLED;
4795            }
4796        }  else if (track->framesReady() && track->isReady() &&
4797                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
4798            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
4799            if (track->mFillingUpStatus == Track::FS_FILLED) {
4800                track->mFillingUpStatus = Track::FS_ACTIVE;
4801                // make sure processVolume_l() will apply new volume even if 0
4802                mLeftVolFloat = mRightVolFloat = -1.0;
4803            }
4804
4805            if (last) {
4806                sp<Track> previousTrack = mPreviousTrack.promote();
4807                if (previousTrack != 0) {
4808                    if (track != previousTrack.get()) {
4809                        // Flush any data still being written from last track
4810                        mBytesRemaining = 0;
4811                        if (mPausedBytesRemaining) {
4812                            // Last track was paused so we also need to flush saved
4813                            // mixbuffer state and invalidate track so that it will
4814                            // re-submit that unwritten data when it is next resumed
4815                            mPausedBytesRemaining = 0;
4816                            // Invalidate is a bit drastic - would be more efficient
4817                            // to have a flag to tell client that some of the
4818                            // previously written data was lost
4819                            previousTrack->invalidate();
4820                        }
4821                        // flush data already sent to the DSP if changing audio session as audio
4822                        // comes from a different source. Also invalidate previous track to force a
4823                        // seek when resuming.
4824                        if (previousTrack->sessionId() != track->sessionId()) {
4825                            previousTrack->invalidate();
4826                        }
4827                    }
4828                }
4829                mPreviousTrack = track;
4830                // reset retry count
4831                track->mRetryCount = kMaxTrackRetriesOffload;
4832                mActiveTrack = t;
4833                mixerStatus = MIXER_TRACKS_READY;
4834            }
4835        } else {
4836            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
4837            if (track->isStopping_1()) {
4838                // Hardware buffer can hold a large amount of audio so we must
4839                // wait for all current track's data to drain before we say
4840                // that the track is stopped.
4841                if (mBytesRemaining == 0) {
4842                    // Only start draining when all data in mixbuffer
4843                    // has been written
4844                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
4845                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
4846                    // do not drain if no data was ever sent to HAL (mStandby == true)
4847                    if (last && !mStandby) {
4848                        // do not modify drain sequence if we are already draining. This happens
4849                        // when resuming from pause after drain.
4850                        if ((mDrainSequence & 1) == 0) {
4851                            sleepTime = 0;
4852                            standbyTime = systemTime() + standbyDelay;
4853                            mixerStatus = MIXER_DRAIN_TRACK;
4854                            mDrainSequence += 2;
4855                        }
4856                        if (mHwPaused) {
4857                            // It is possible to move from PAUSED to STOPPING_1 without
4858                            // a resume so we must ensure hardware is running
4859                            doHwResume = true;
4860                            mHwPaused = false;
4861                        }
4862                    }
4863                }
4864            } else if (track->isStopping_2()) {
4865                // Drain has completed or we are in standby, signal presentation complete
4866                if (!(mDrainSequence & 1) || !last || mStandby) {
4867                    track->mState = TrackBase::STOPPED;
4868                    size_t audioHALFrames =
4869                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4870                    size_t framesWritten =
4871                            mBytesWritten / audio_stream_out_frame_size(mOutput->stream);
4872                    track->presentationComplete(framesWritten, audioHALFrames);
4873                    track->reset();
4874                    tracksToRemove->add(track);
4875                }
4876            } else {
4877                // No buffers for this track. Give it a few chances to
4878                // fill a buffer, then remove it from active list.
4879                if (--(track->mRetryCount) <= 0) {
4880                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
4881                          track->name());
4882                    tracksToRemove->add(track);
4883                    // indicate to client process that the track was disabled because of underrun;
4884                    // it will then automatically call start() when data is available
4885                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4886                } else if (last){
4887                    mixerStatus = MIXER_TRACKS_ENABLED;
4888                }
4889            }
4890        }
4891        // compute volume for this track
4892        processVolume_l(track, last);
4893    }
4894
4895    // make sure the pause/flush/resume sequence is executed in the right order.
4896    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4897    // before flush and then resume HW. This can happen in case of pause/flush/resume
4898    // if resume is received before pause is executed.
4899    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4900        mOutput->stream->pause(mOutput->stream);
4901    }
4902    if (mFlushPending) {
4903        flushHw_l();
4904        mFlushPending = false;
4905    }
4906    if (!mStandby && doHwResume) {
4907        mOutput->stream->resume(mOutput->stream);
4908    }
4909
4910    // remove all the tracks that need to be...
4911    removeTracks_l(*tracksToRemove);
4912
4913    return mixerStatus;
4914}
4915
4916// must be called with thread mutex locked
4917bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
4918{
4919    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
4920          mWriteAckSequence, mDrainSequence);
4921    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
4922        return true;
4923    }
4924    return false;
4925}
4926
4927bool AudioFlinger::OffloadThread::waitingAsyncCallback()
4928{
4929    Mutex::Autolock _l(mLock);
4930    return waitingAsyncCallback_l();
4931}
4932
4933void AudioFlinger::OffloadThread::flushHw_l()
4934{
4935    DirectOutputThread::flushHw_l();
4936    // Flush anything still waiting in the mixbuffer
4937    mCurrentWriteLength = 0;
4938    mBytesRemaining = 0;
4939    mPausedWriteLength = 0;
4940    mPausedBytesRemaining = 0;
4941
4942    if (mUseAsyncWrite) {
4943        // discard any pending drain or write ack by incrementing sequence
4944        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4945        mDrainSequence = (mDrainSequence + 2) & ~1;
4946        ALOG_ASSERT(mCallbackThread != 0);
4947        mCallbackThread->setWriteBlocked(mWriteAckSequence);
4948        mCallbackThread->setDraining(mDrainSequence);
4949    }
4950}
4951
4952void AudioFlinger::OffloadThread::onAddNewTrack_l()
4953{
4954    sp<Track> previousTrack = mPreviousTrack.promote();
4955    sp<Track> latestTrack = mLatestActiveTrack.promote();
4956
4957    if (previousTrack != 0 && latestTrack != 0 &&
4958        (previousTrack->sessionId() != latestTrack->sessionId())) {
4959        mFlushPending = true;
4960    }
4961    PlaybackThread::onAddNewTrack_l();
4962}
4963
4964// ----------------------------------------------------------------------------
4965
4966AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
4967        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
4968    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
4969                DUPLICATING),
4970        mWaitTimeMs(UINT_MAX)
4971{
4972    addOutputTrack(mainThread);
4973}
4974
4975AudioFlinger::DuplicatingThread::~DuplicatingThread()
4976{
4977    for (size_t i = 0; i < mOutputTracks.size(); i++) {
4978        mOutputTracks[i]->destroy();
4979    }
4980}
4981
4982void AudioFlinger::DuplicatingThread::threadLoop_mix()
4983{
4984    // mix buffers...
4985    if (outputsReady(outputTracks)) {
4986        mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
4987    } else {
4988        if (mMixerBufferValid) {
4989            memset(mMixerBuffer, 0, mMixerBufferSize);
4990        } else {
4991            memset(mSinkBuffer, 0, mSinkBufferSize);
4992        }
4993    }
4994    sleepTime = 0;
4995    writeFrames = mNormalFrameCount;
4996    mCurrentWriteLength = mSinkBufferSize;
4997    standbyTime = systemTime() + standbyDelay;
4998}
4999
5000void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5001{
5002    if (sleepTime == 0) {
5003        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5004            sleepTime = activeSleepTime;
5005        } else {
5006            sleepTime = idleSleepTime;
5007        }
5008    } else if (mBytesWritten != 0) {
5009        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5010            writeFrames = mNormalFrameCount;
5011            memset(mSinkBuffer, 0, mSinkBufferSize);
5012        } else {
5013            // flush remaining overflow buffers in output tracks
5014            writeFrames = 0;
5015        }
5016        sleepTime = 0;
5017    }
5018}
5019
5020ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5021{
5022    for (size_t i = 0; i < outputTracks.size(); i++) {
5023        outputTracks[i]->write(mSinkBuffer, writeFrames);
5024    }
5025    mStandby = false;
5026    return (ssize_t)mSinkBufferSize;
5027}
5028
5029void AudioFlinger::DuplicatingThread::threadLoop_standby()
5030{
5031    // DuplicatingThread implements standby by stopping all tracks
5032    for (size_t i = 0; i < outputTracks.size(); i++) {
5033        outputTracks[i]->stop();
5034    }
5035}
5036
5037void AudioFlinger::DuplicatingThread::saveOutputTracks()
5038{
5039    outputTracks = mOutputTracks;
5040}
5041
5042void AudioFlinger::DuplicatingThread::clearOutputTracks()
5043{
5044    outputTracks.clear();
5045}
5046
5047void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5048{
5049    Mutex::Autolock _l(mLock);
5050    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5051    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5052    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5053    const size_t frameCount =
5054            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5055    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5056    // from different OutputTracks and their associated MixerThreads (e.g. one may
5057    // nearly empty and the other may be dropping data).
5058
5059    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5060                                            this,
5061                                            mSampleRate,
5062                                            mFormat,
5063                                            mChannelMask,
5064                                            frameCount,
5065                                            IPCThreadState::self()->getCallingUid());
5066    if (outputTrack->cblk() != NULL) {
5067        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5068        mOutputTracks.add(outputTrack);
5069        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5070        updateWaitTime_l();
5071    }
5072}
5073
5074void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5075{
5076    Mutex::Autolock _l(mLock);
5077    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5078        if (mOutputTracks[i]->thread() == thread) {
5079            mOutputTracks[i]->destroy();
5080            mOutputTracks.removeAt(i);
5081            updateWaitTime_l();
5082            return;
5083        }
5084    }
5085    ALOGV("removeOutputTrack(): unkonwn thread: %p", thread);
5086}
5087
5088// caller must hold mLock
5089void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5090{
5091    mWaitTimeMs = UINT_MAX;
5092    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5093        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5094        if (strong != 0) {
5095            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5096            if (waitTimeMs < mWaitTimeMs) {
5097                mWaitTimeMs = waitTimeMs;
5098            }
5099        }
5100    }
5101}
5102
5103
5104bool AudioFlinger::DuplicatingThread::outputsReady(
5105        const SortedVector< sp<OutputTrack> > &outputTracks)
5106{
5107    for (size_t i = 0; i < outputTracks.size(); i++) {
5108        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5109        if (thread == 0) {
5110            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5111                    outputTracks[i].get());
5112            return false;
5113        }
5114        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5115        // see note at standby() declaration
5116        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5117            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5118                    thread.get());
5119            return false;
5120        }
5121    }
5122    return true;
5123}
5124
5125uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5126{
5127    return (mWaitTimeMs * 1000) / 2;
5128}
5129
5130void AudioFlinger::DuplicatingThread::cacheParameters_l()
5131{
5132    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5133    updateWaitTime_l();
5134
5135    MixerThread::cacheParameters_l();
5136}
5137
5138// ----------------------------------------------------------------------------
5139//      Record
5140// ----------------------------------------------------------------------------
5141
5142AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5143                                         AudioStreamIn *input,
5144                                         audio_io_handle_t id,
5145                                         audio_devices_t outDevice,
5146                                         audio_devices_t inDevice
5147#ifdef TEE_SINK
5148                                         , const sp<NBAIO_Sink>& teeSink
5149#endif
5150                                         ) :
5151    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD),
5152    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5153    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5154    mRsmpInRear(0)
5155#ifdef TEE_SINK
5156    , mTeeSink(teeSink)
5157#endif
5158    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5159            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5160    // mFastCapture below
5161    , mFastCaptureFutex(0)
5162    // mInputSource
5163    // mPipeSink
5164    // mPipeSource
5165    , mPipeFramesP2(0)
5166    // mPipeMemory
5167    // mFastCaptureNBLogWriter
5168    , mFastTrackAvail(false)
5169{
5170    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5171    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5172
5173    readInputParameters_l();
5174
5175    // create an NBAIO source for the HAL input stream, and negotiate
5176    mInputSource = new AudioStreamInSource(input->stream);
5177    size_t numCounterOffers = 0;
5178    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5179    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5180    ALOG_ASSERT(index == 0);
5181
5182    // initialize fast capture depending on configuration
5183    bool initFastCapture;
5184    switch (kUseFastCapture) {
5185    case FastCapture_Never:
5186        initFastCapture = false;
5187        break;
5188    case FastCapture_Always:
5189        initFastCapture = true;
5190        break;
5191    case FastCapture_Static:
5192        uint32_t primaryOutputSampleRate;
5193        {
5194            AutoMutex _l(audioFlinger->mHardwareLock);
5195            primaryOutputSampleRate = audioFlinger->mPrimaryOutputSampleRate;
5196        }
5197        initFastCapture =
5198                // either capture sample rate is same as (a reasonable) primary output sample rate
5199                (((primaryOutputSampleRate == 44100 || primaryOutputSampleRate == 48000) &&
5200                    (mSampleRate == primaryOutputSampleRate)) ||
5201                // or primary output sample rate is unknown, and capture sample rate is reasonable
5202                ((primaryOutputSampleRate == 0) &&
5203                    ((mSampleRate == 44100 || mSampleRate == 48000)))) &&
5204                // and the buffer size is < 12 ms
5205                (mFrameCount * 1000) / mSampleRate < 12;
5206        break;
5207    // case FastCapture_Dynamic:
5208    }
5209
5210    if (initFastCapture) {
5211        // create a Pipe for FastMixer to write to, and for us and fast tracks to read from
5212        NBAIO_Format format = mInputSource->format();
5213        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5214        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5215        void *pipeBuffer;
5216        const sp<MemoryDealer> roHeap(readOnlyHeap());
5217        sp<IMemory> pipeMemory;
5218        if ((roHeap == 0) ||
5219                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5220                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5221            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5222            goto failed;
5223        }
5224        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5225        memset(pipeBuffer, 0, pipeSize);
5226        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5227        const NBAIO_Format offers[1] = {format};
5228        size_t numCounterOffers = 0;
5229        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5230        ALOG_ASSERT(index == 0);
5231        mPipeSink = pipe;
5232        PipeReader *pipeReader = new PipeReader(*pipe);
5233        numCounterOffers = 0;
5234        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5235        ALOG_ASSERT(index == 0);
5236        mPipeSource = pipeReader;
5237        mPipeFramesP2 = pipeFramesP2;
5238        mPipeMemory = pipeMemory;
5239
5240        // create fast capture
5241        mFastCapture = new FastCapture();
5242        FastCaptureStateQueue *sq = mFastCapture->sq();
5243#ifdef STATE_QUEUE_DUMP
5244        // FIXME
5245#endif
5246        FastCaptureState *state = sq->begin();
5247        state->mCblk = NULL;
5248        state->mInputSource = mInputSource.get();
5249        state->mInputSourceGen++;
5250        state->mPipeSink = pipe;
5251        state->mPipeSinkGen++;
5252        state->mFrameCount = mFrameCount;
5253        state->mCommand = FastCaptureState::COLD_IDLE;
5254        // already done in constructor initialization list
5255        //mFastCaptureFutex = 0;
5256        state->mColdFutexAddr = &mFastCaptureFutex;
5257        state->mColdGen++;
5258        state->mDumpState = &mFastCaptureDumpState;
5259#ifdef TEE_SINK
5260        // FIXME
5261#endif
5262        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5263        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5264        sq->end();
5265        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5266
5267        // start the fast capture
5268        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5269        pid_t tid = mFastCapture->getTid();
5270        int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
5271        if (err != 0) {
5272            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
5273                    kPriorityFastCapture, getpid_cached, tid, err);
5274        }
5275
5276#ifdef AUDIO_WATCHDOG
5277        // FIXME
5278#endif
5279
5280        mFastTrackAvail = true;
5281    }
5282failed: ;
5283
5284    // FIXME mNormalSource
5285}
5286
5287
5288AudioFlinger::RecordThread::~RecordThread()
5289{
5290    if (mFastCapture != 0) {
5291        FastCaptureStateQueue *sq = mFastCapture->sq();
5292        FastCaptureState *state = sq->begin();
5293        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5294            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5295            if (old == -1) {
5296                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5297            }
5298        }
5299        state->mCommand = FastCaptureState::EXIT;
5300        sq->end();
5301        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5302        mFastCapture->join();
5303        mFastCapture.clear();
5304    }
5305    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5306    mAudioFlinger->unregisterWriter(mNBLogWriter);
5307    delete[] mRsmpInBuffer;
5308}
5309
5310void AudioFlinger::RecordThread::onFirstRef()
5311{
5312    run(mThreadName, PRIORITY_URGENT_AUDIO);
5313}
5314
5315bool AudioFlinger::RecordThread::threadLoop()
5316{
5317    nsecs_t lastWarning = 0;
5318
5319    inputStandBy();
5320
5321reacquire_wakelock:
5322    sp<RecordTrack> activeTrack;
5323    int activeTracksGen;
5324    {
5325        Mutex::Autolock _l(mLock);
5326        size_t size = mActiveTracks.size();
5327        activeTracksGen = mActiveTracksGen;
5328        if (size > 0) {
5329            // FIXME an arbitrary choice
5330            activeTrack = mActiveTracks[0];
5331            acquireWakeLock_l(activeTrack->uid());
5332            if (size > 1) {
5333                SortedVector<int> tmp;
5334                for (size_t i = 0; i < size; i++) {
5335                    tmp.add(mActiveTracks[i]->uid());
5336                }
5337                updateWakeLockUids_l(tmp);
5338            }
5339        } else {
5340            acquireWakeLock_l(-1);
5341        }
5342    }
5343
5344    // used to request a deferred sleep, to be executed later while mutex is unlocked
5345    uint32_t sleepUs = 0;
5346
5347    // loop while there is work to do
5348    for (;;) {
5349        Vector< sp<EffectChain> > effectChains;
5350
5351        // sleep with mutex unlocked
5352        if (sleepUs > 0) {
5353            ATRACE_BEGIN("sleep");
5354            usleep(sleepUs);
5355            ATRACE_END();
5356            sleepUs = 0;
5357        }
5358
5359        // activeTracks accumulates a copy of a subset of mActiveTracks
5360        Vector< sp<RecordTrack> > activeTracks;
5361
5362        // reference to the (first and only) active fast track
5363        sp<RecordTrack> fastTrack;
5364
5365        // reference to a fast track which is about to be removed
5366        sp<RecordTrack> fastTrackToRemove;
5367
5368        { // scope for mLock
5369            Mutex::Autolock _l(mLock);
5370
5371            processConfigEvents_l();
5372
5373            // check exitPending here because checkForNewParameters_l() and
5374            // checkForNewParameters_l() can temporarily release mLock
5375            if (exitPending()) {
5376                break;
5377            }
5378
5379            // if no active track(s), then standby and release wakelock
5380            size_t size = mActiveTracks.size();
5381            if (size == 0) {
5382                standbyIfNotAlreadyInStandby();
5383                // exitPending() can't become true here
5384                releaseWakeLock_l();
5385                ALOGV("RecordThread: loop stopping");
5386                // go to sleep
5387                mWaitWorkCV.wait(mLock);
5388                ALOGV("RecordThread: loop starting");
5389                goto reacquire_wakelock;
5390            }
5391
5392            if (mActiveTracksGen != activeTracksGen) {
5393                activeTracksGen = mActiveTracksGen;
5394                SortedVector<int> tmp;
5395                for (size_t i = 0; i < size; i++) {
5396                    tmp.add(mActiveTracks[i]->uid());
5397                }
5398                updateWakeLockUids_l(tmp);
5399            }
5400
5401            bool doBroadcast = false;
5402            for (size_t i = 0; i < size; ) {
5403
5404                activeTrack = mActiveTracks[i];
5405                if (activeTrack->isTerminated()) {
5406                    if (activeTrack->isFastTrack()) {
5407                        ALOG_ASSERT(fastTrackToRemove == 0);
5408                        fastTrackToRemove = activeTrack;
5409                    }
5410                    removeTrack_l(activeTrack);
5411                    mActiveTracks.remove(activeTrack);
5412                    mActiveTracksGen++;
5413                    size--;
5414                    continue;
5415                }
5416
5417                TrackBase::track_state activeTrackState = activeTrack->mState;
5418                switch (activeTrackState) {
5419
5420                case TrackBase::PAUSING:
5421                    mActiveTracks.remove(activeTrack);
5422                    mActiveTracksGen++;
5423                    doBroadcast = true;
5424                    size--;
5425                    continue;
5426
5427                case TrackBase::STARTING_1:
5428                    sleepUs = 10000;
5429                    i++;
5430                    continue;
5431
5432                case TrackBase::STARTING_2:
5433                    doBroadcast = true;
5434                    mStandby = false;
5435                    activeTrack->mState = TrackBase::ACTIVE;
5436                    break;
5437
5438                case TrackBase::ACTIVE:
5439                    break;
5440
5441                case TrackBase::IDLE:
5442                    i++;
5443                    continue;
5444
5445                default:
5446                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5447                }
5448
5449                activeTracks.add(activeTrack);
5450                i++;
5451
5452                if (activeTrack->isFastTrack()) {
5453                    ALOG_ASSERT(!mFastTrackAvail);
5454                    ALOG_ASSERT(fastTrack == 0);
5455                    fastTrack = activeTrack;
5456                }
5457            }
5458            if (doBroadcast) {
5459                mStartStopCond.broadcast();
5460            }
5461
5462            // sleep if there are no active tracks to process
5463            if (activeTracks.size() == 0) {
5464                if (sleepUs == 0) {
5465                    sleepUs = kRecordThreadSleepUs;
5466                }
5467                continue;
5468            }
5469            sleepUs = 0;
5470
5471            lockEffectChains_l(effectChains);
5472        }
5473
5474        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5475
5476        size_t size = effectChains.size();
5477        for (size_t i = 0; i < size; i++) {
5478            // thread mutex is not locked, but effect chain is locked
5479            effectChains[i]->process_l();
5480        }
5481
5482        // Push a new fast capture state if fast capture is not already running, or cblk change
5483        if (mFastCapture != 0) {
5484            FastCaptureStateQueue *sq = mFastCapture->sq();
5485            FastCaptureState *state = sq->begin();
5486            bool didModify = false;
5487            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5488            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5489                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5490                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5491                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5492                    if (old == -1) {
5493                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5494                    }
5495                }
5496                state->mCommand = FastCaptureState::READ_WRITE;
5497#if 0   // FIXME
5498                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5499                        FastThreadDumpState::kSamplingNforLowRamDevice :
5500                        FastThreadDumpState::kSamplingN);
5501#endif
5502                didModify = true;
5503            }
5504            audio_track_cblk_t *cblkOld = state->mCblk;
5505            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5506            if (cblkNew != cblkOld) {
5507                state->mCblk = cblkNew;
5508                // block until acked if removing a fast track
5509                if (cblkOld != NULL) {
5510                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5511                }
5512                didModify = true;
5513            }
5514            sq->end(didModify);
5515            if (didModify) {
5516                sq->push(block);
5517#if 0
5518                if (kUseFastCapture == FastCapture_Dynamic) {
5519                    mNormalSource = mPipeSource;
5520                }
5521#endif
5522            }
5523        }
5524
5525        // now run the fast track destructor with thread mutex unlocked
5526        fastTrackToRemove.clear();
5527
5528        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5529        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5530        // slow, then this RecordThread will overrun by not calling HAL read often enough.
5531        // If destination is non-contiguous, first read past the nominal end of buffer, then
5532        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5533
5534        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5535        ssize_t framesRead;
5536
5537        // If an NBAIO source is present, use it to read the normal capture's data
5538        if (mPipeSource != 0) {
5539            size_t framesToRead = mBufferSize / mFrameSize;
5540            framesRead = mPipeSource->read(&mRsmpInBuffer[rear * mChannelCount],
5541                    framesToRead, AudioBufferProvider::kInvalidPTS);
5542            if (framesRead == 0) {
5543                // since pipe is non-blocking, simulate blocking input
5544                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5545            }
5546        // otherwise use the HAL / AudioStreamIn directly
5547        } else {
5548            ssize_t bytesRead = mInput->stream->read(mInput->stream,
5549                    &mRsmpInBuffer[rear * mChannelCount], mBufferSize);
5550            if (bytesRead < 0) {
5551                framesRead = bytesRead;
5552            } else {
5553                framesRead = bytesRead / mFrameSize;
5554            }
5555        }
5556
5557        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5558            ALOGE("read failed: framesRead=%d", framesRead);
5559            // Force input into standby so that it tries to recover at next read attempt
5560            inputStandBy();
5561            sleepUs = kRecordThreadSleepUs;
5562        }
5563        if (framesRead <= 0) {
5564            goto unlock;
5565        }
5566        ALOG_ASSERT(framesRead > 0);
5567
5568        if (mTeeSink != 0) {
5569            (void) mTeeSink->write(&mRsmpInBuffer[rear * mChannelCount], framesRead);
5570        }
5571        // If destination is non-contiguous, we now correct for reading past end of buffer.
5572        {
5573            size_t part1 = mRsmpInFramesP2 - rear;
5574            if ((size_t) framesRead > part1) {
5575                memcpy(mRsmpInBuffer, &mRsmpInBuffer[mRsmpInFramesP2 * mChannelCount],
5576                        (framesRead - part1) * mFrameSize);
5577            }
5578        }
5579        rear = mRsmpInRear += framesRead;
5580
5581        size = activeTracks.size();
5582        // loop over each active track
5583        for (size_t i = 0; i < size; i++) {
5584            activeTrack = activeTracks[i];
5585
5586            // skip fast tracks, as those are handled directly by FastCapture
5587            if (activeTrack->isFastTrack()) {
5588                continue;
5589            }
5590
5591            enum {
5592                OVERRUN_UNKNOWN,
5593                OVERRUN_TRUE,
5594                OVERRUN_FALSE
5595            } overrun = OVERRUN_UNKNOWN;
5596
5597            // loop over getNextBuffer to handle circular sink
5598            for (;;) {
5599
5600                activeTrack->mSink.frameCount = ~0;
5601                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5602                size_t framesOut = activeTrack->mSink.frameCount;
5603                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5604
5605                int32_t front = activeTrack->mRsmpInFront;
5606                ssize_t filled = rear - front;
5607                size_t framesIn;
5608
5609                if (filled < 0) {
5610                    // should not happen, but treat like a massive overrun and re-sync
5611                    framesIn = 0;
5612                    activeTrack->mRsmpInFront = rear;
5613                    overrun = OVERRUN_TRUE;
5614                } else if ((size_t) filled <= mRsmpInFrames) {
5615                    framesIn = (size_t) filled;
5616                } else {
5617                    // client is not keeping up with server, but give it latest data
5618                    framesIn = mRsmpInFrames;
5619                    activeTrack->mRsmpInFront = front = rear - framesIn;
5620                    overrun = OVERRUN_TRUE;
5621                }
5622
5623                if (framesOut == 0 || framesIn == 0) {
5624                    break;
5625                }
5626
5627                if (activeTrack->mResampler == NULL) {
5628                    // no resampling
5629                    if (framesIn > framesOut) {
5630                        framesIn = framesOut;
5631                    } else {
5632                        framesOut = framesIn;
5633                    }
5634                    int8_t *dst = activeTrack->mSink.i8;
5635                    while (framesIn > 0) {
5636                        front &= mRsmpInFramesP2 - 1;
5637                        size_t part1 = mRsmpInFramesP2 - front;
5638                        if (part1 > framesIn) {
5639                            part1 = framesIn;
5640                        }
5641                        int8_t *src = (int8_t *)mRsmpInBuffer + (front * mFrameSize);
5642                        if (mChannelCount == activeTrack->mChannelCount) {
5643                            memcpy(dst, src, part1 * mFrameSize);
5644                        } else if (mChannelCount == 1) {
5645                            upmix_to_stereo_i16_from_mono_i16((int16_t *)dst, (const int16_t *)src,
5646                                    part1);
5647                        } else {
5648                            downmix_to_mono_i16_from_stereo_i16((int16_t *)dst,
5649                                    (const int16_t *)src, part1);
5650                        }
5651                        dst += part1 * activeTrack->mFrameSize;
5652                        front += part1;
5653                        framesIn -= part1;
5654                    }
5655                    activeTrack->mRsmpInFront += framesOut;
5656
5657                } else {
5658                    // resampling
5659                    // FIXME framesInNeeded should really be part of resampler API, and should
5660                    //       depend on the SRC ratio
5661                    //       to keep mRsmpInBuffer full so resampler always has sufficient input
5662                    size_t framesInNeeded;
5663                    // FIXME only re-calculate when it changes, and optimize for common ratios
5664                    // Do not precompute in/out because floating point is not associative
5665                    // e.g. a*b/c != a*(b/c).
5666                    const double in(mSampleRate);
5667                    const double out(activeTrack->mSampleRate);
5668                    framesInNeeded = ceil(framesOut * in / out) + 1;
5669                    ALOGV("need %u frames in to produce %u out given in/out ratio of %.4g",
5670                                framesInNeeded, framesOut, in / out);
5671                    // Although we theoretically have framesIn in circular buffer, some of those are
5672                    // unreleased frames, and thus must be discounted for purpose of budgeting.
5673                    size_t unreleased = activeTrack->mRsmpInUnrel;
5674                    framesIn = framesIn > unreleased ? framesIn - unreleased : 0;
5675                    if (framesIn < framesInNeeded) {
5676                        ALOGV("not enough to resample: have %u frames in but need %u in to "
5677                                "produce %u out given in/out ratio of %.4g",
5678                                framesIn, framesInNeeded, framesOut, in / out);
5679                        size_t newFramesOut = framesIn > 0 ? floor((framesIn - 1) * out / in) : 0;
5680                        LOG_ALWAYS_FATAL_IF(newFramesOut >= framesOut);
5681                        if (newFramesOut == 0) {
5682                            break;
5683                        }
5684                        framesInNeeded = ceil(newFramesOut * in / out) + 1;
5685                        ALOGV("now need %u frames in to produce %u out given out/in ratio of %.4g",
5686                                framesInNeeded, newFramesOut, out / in);
5687                        LOG_ALWAYS_FATAL_IF(framesIn < framesInNeeded);
5688                        ALOGV("success 2: have %u frames in and need %u in to produce %u out "
5689                              "given in/out ratio of %.4g",
5690                              framesIn, framesInNeeded, newFramesOut, in / out);
5691                        framesOut = newFramesOut;
5692                    } else {
5693                        ALOGV("success 1: have %u in and need %u in to produce %u out "
5694                            "given in/out ratio of %.4g",
5695                            framesIn, framesInNeeded, framesOut, in / out);
5696                    }
5697
5698                    // reallocate mRsmpOutBuffer as needed; we will grow but never shrink
5699                    if (activeTrack->mRsmpOutFrameCount < framesOut) {
5700                        // FIXME why does each track need it's own mRsmpOutBuffer? can't they share?
5701                        delete[] activeTrack->mRsmpOutBuffer;
5702                        // resampler always outputs stereo
5703                        activeTrack->mRsmpOutBuffer = new int32_t[framesOut * FCC_2];
5704                        activeTrack->mRsmpOutFrameCount = framesOut;
5705                    }
5706
5707                    // resampler accumulates, but we only have one source track
5708                    memset(activeTrack->mRsmpOutBuffer, 0, framesOut * FCC_2 * sizeof(int32_t));
5709                    activeTrack->mResampler->resample(activeTrack->mRsmpOutBuffer, framesOut,
5710                            // FIXME how about having activeTrack implement this interface itself?
5711                            activeTrack->mResamplerBufferProvider
5712                            /*this*/ /* AudioBufferProvider* */);
5713                    // ditherAndClamp() works as long as all buffers returned by
5714                    // activeTrack->getNextBuffer() are 32 bit aligned which should be always true.
5715                    if (activeTrack->mChannelCount == 1) {
5716                        // temporarily type pun mRsmpOutBuffer from Q4.27 to int16_t
5717                        ditherAndClamp(activeTrack->mRsmpOutBuffer, activeTrack->mRsmpOutBuffer,
5718                                framesOut);
5719                        // the resampler always outputs stereo samples:
5720                        // do post stereo to mono conversion
5721                        downmix_to_mono_i16_from_stereo_i16(activeTrack->mSink.i16,
5722                                (const int16_t *)activeTrack->mRsmpOutBuffer, framesOut);
5723                    } else {
5724                        ditherAndClamp((int32_t *)activeTrack->mSink.raw,
5725                                activeTrack->mRsmpOutBuffer, framesOut);
5726                    }
5727                    // now done with mRsmpOutBuffer
5728
5729                }
5730
5731                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5732                    overrun = OVERRUN_FALSE;
5733                }
5734
5735                if (activeTrack->mFramesToDrop == 0) {
5736                    if (framesOut > 0) {
5737                        activeTrack->mSink.frameCount = framesOut;
5738                        activeTrack->releaseBuffer(&activeTrack->mSink);
5739                    }
5740                } else {
5741                    // FIXME could do a partial drop of framesOut
5742                    if (activeTrack->mFramesToDrop > 0) {
5743                        activeTrack->mFramesToDrop -= framesOut;
5744                        if (activeTrack->mFramesToDrop <= 0) {
5745                            activeTrack->clearSyncStartEvent();
5746                        }
5747                    } else {
5748                        activeTrack->mFramesToDrop += framesOut;
5749                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5750                                activeTrack->mSyncStartEvent->isCancelled()) {
5751                            ALOGW("Synced record %s, session %d, trigger session %d",
5752                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5753                                  activeTrack->sessionId(),
5754                                  (activeTrack->mSyncStartEvent != 0) ?
5755                                          activeTrack->mSyncStartEvent->triggerSession() : 0);
5756                            activeTrack->clearSyncStartEvent();
5757                        }
5758                    }
5759                }
5760
5761                if (framesOut == 0) {
5762                    break;
5763                }
5764            }
5765
5766            switch (overrun) {
5767            case OVERRUN_TRUE:
5768                // client isn't retrieving buffers fast enough
5769                if (!activeTrack->setOverflow()) {
5770                    nsecs_t now = systemTime();
5771                    // FIXME should lastWarning per track?
5772                    if ((now - lastWarning) > kWarningThrottleNs) {
5773                        ALOGW("RecordThread: buffer overflow");
5774                        lastWarning = now;
5775                    }
5776                }
5777                break;
5778            case OVERRUN_FALSE:
5779                activeTrack->clearOverflow();
5780                break;
5781            case OVERRUN_UNKNOWN:
5782                break;
5783            }
5784
5785        }
5786
5787unlock:
5788        // enable changes in effect chain
5789        unlockEffectChains(effectChains);
5790        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
5791    }
5792
5793    standbyIfNotAlreadyInStandby();
5794
5795    {
5796        Mutex::Autolock _l(mLock);
5797        for (size_t i = 0; i < mTracks.size(); i++) {
5798            sp<RecordTrack> track = mTracks[i];
5799            track->invalidate();
5800        }
5801        mActiveTracks.clear();
5802        mActiveTracksGen++;
5803        mStartStopCond.broadcast();
5804    }
5805
5806    releaseWakeLock();
5807
5808    ALOGV("RecordThread %p exiting", this);
5809    return false;
5810}
5811
5812void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
5813{
5814    if (!mStandby) {
5815        inputStandBy();
5816        mStandby = true;
5817    }
5818}
5819
5820void AudioFlinger::RecordThread::inputStandBy()
5821{
5822    // Idle the fast capture if it's currently running
5823    if (mFastCapture != 0) {
5824        FastCaptureStateQueue *sq = mFastCapture->sq();
5825        FastCaptureState *state = sq->begin();
5826        if (!(state->mCommand & FastCaptureState::IDLE)) {
5827            state->mCommand = FastCaptureState::COLD_IDLE;
5828            state->mColdFutexAddr = &mFastCaptureFutex;
5829            state->mColdGen++;
5830            mFastCaptureFutex = 0;
5831            sq->end();
5832            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
5833            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
5834#if 0
5835            if (kUseFastCapture == FastCapture_Dynamic) {
5836                // FIXME
5837            }
5838#endif
5839#ifdef AUDIO_WATCHDOG
5840            // FIXME
5841#endif
5842        } else {
5843            sq->end(false /*didModify*/);
5844        }
5845    }
5846    mInput->stream->common.standby(&mInput->stream->common);
5847}
5848
5849// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
5850sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
5851        const sp<AudioFlinger::Client>& client,
5852        uint32_t sampleRate,
5853        audio_format_t format,
5854        audio_channel_mask_t channelMask,
5855        size_t *pFrameCount,
5856        int sessionId,
5857        size_t *notificationFrames,
5858        int uid,
5859        IAudioFlinger::track_flags_t *flags,
5860        pid_t tid,
5861        status_t *status)
5862{
5863    size_t frameCount = *pFrameCount;
5864    sp<RecordTrack> track;
5865    status_t lStatus;
5866
5867    // client expresses a preference for FAST, but we get the final say
5868    if (*flags & IAudioFlinger::TRACK_FAST) {
5869      if (
5870            // use case: callback handler
5871            (tid != -1) &&
5872            // frame count is not specified, or is exactly the pipe depth
5873            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
5874            // PCM data
5875            audio_is_linear_pcm(format) &&
5876            // native format
5877            (format == mFormat) &&
5878            // native channel mask
5879            (channelMask == mChannelMask) &&
5880            // native hardware sample rate
5881            (sampleRate == mSampleRate) &&
5882            // record thread has an associated fast capture
5883            hasFastCapture() &&
5884            // there are sufficient fast track slots available
5885            mFastTrackAvail
5886        ) {
5887        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
5888                frameCount, mFrameCount);
5889      } else {
5890        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
5891                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
5892                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
5893                frameCount, mFrameCount, mPipeFramesP2,
5894                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
5895                hasFastCapture(), tid, mFastTrackAvail);
5896        *flags &= ~IAudioFlinger::TRACK_FAST;
5897      }
5898    }
5899
5900    // compute track buffer size in frames, and suggest the notification frame count
5901    if (*flags & IAudioFlinger::TRACK_FAST) {
5902        // fast track: frame count is exactly the pipe depth
5903        frameCount = mPipeFramesP2;
5904        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
5905        *notificationFrames = mFrameCount;
5906    } else {
5907        // not fast track: max notification period is resampled equivalent of one HAL buffer time
5908        //                 or 20 ms if there is a fast capture
5909        // TODO This could be a roundupRatio inline, and const
5910        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
5911                * sampleRate + mSampleRate - 1) / mSampleRate;
5912        // minimum number of notification periods is at least kMinNotifications,
5913        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
5914        static const size_t kMinNotifications = 3;
5915        static const uint32_t kMinMs = 30;
5916        // TODO This could be a roundupRatio inline
5917        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
5918        // TODO This could be a roundupRatio inline
5919        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
5920                maxNotificationFrames;
5921        const size_t minFrameCount = maxNotificationFrames *
5922                max(kMinNotifications, minNotificationsByMs);
5923        frameCount = max(frameCount, minFrameCount);
5924        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
5925            *notificationFrames = maxNotificationFrames;
5926        }
5927    }
5928    *pFrameCount = frameCount;
5929
5930    lStatus = initCheck();
5931    if (lStatus != NO_ERROR) {
5932        ALOGE("createRecordTrack_l() audio driver not initialized");
5933        goto Exit;
5934    }
5935
5936    { // scope for mLock
5937        Mutex::Autolock _l(mLock);
5938
5939        track = new RecordTrack(this, client, sampleRate,
5940                      format, channelMask, frameCount, NULL, sessionId, uid,
5941                      *flags, TrackBase::TYPE_DEFAULT);
5942
5943        lStatus = track->initCheck();
5944        if (lStatus != NO_ERROR) {
5945            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
5946            // track must be cleared from the caller as the caller has the AF lock
5947            goto Exit;
5948        }
5949        mTracks.add(track);
5950
5951        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
5952        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
5953                        mAudioFlinger->btNrecIsOff();
5954        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
5955        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
5956
5957        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
5958            pid_t callingPid = IPCThreadState::self()->getCallingPid();
5959            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
5960            // so ask activity manager to do this on our behalf
5961            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
5962        }
5963    }
5964
5965    lStatus = NO_ERROR;
5966
5967Exit:
5968    *status = lStatus;
5969    return track;
5970}
5971
5972status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
5973                                           AudioSystem::sync_event_t event,
5974                                           int triggerSession)
5975{
5976    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
5977    sp<ThreadBase> strongMe = this;
5978    status_t status = NO_ERROR;
5979
5980    if (event == AudioSystem::SYNC_EVENT_NONE) {
5981        recordTrack->clearSyncStartEvent();
5982    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
5983        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
5984                                       triggerSession,
5985                                       recordTrack->sessionId(),
5986                                       syncStartEventCallback,
5987                                       recordTrack);
5988        // Sync event can be cancelled by the trigger session if the track is not in a
5989        // compatible state in which case we start record immediately
5990        if (recordTrack->mSyncStartEvent->isCancelled()) {
5991            recordTrack->clearSyncStartEvent();
5992        } else {
5993            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
5994            recordTrack->mFramesToDrop = -
5995                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
5996        }
5997    }
5998
5999    {
6000        // This section is a rendezvous between binder thread executing start() and RecordThread
6001        AutoMutex lock(mLock);
6002        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6003            if (recordTrack->mState == TrackBase::PAUSING) {
6004                ALOGV("active record track PAUSING -> ACTIVE");
6005                recordTrack->mState = TrackBase::ACTIVE;
6006            } else {
6007                ALOGV("active record track state %d", recordTrack->mState);
6008            }
6009            return status;
6010        }
6011
6012        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6013        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6014        //      or using a separate command thread
6015        recordTrack->mState = TrackBase::STARTING_1;
6016        mActiveTracks.add(recordTrack);
6017        mActiveTracksGen++;
6018        status_t status = NO_ERROR;
6019        if (recordTrack->isExternalTrack()) {
6020            mLock.unlock();
6021            status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
6022            mLock.lock();
6023            // FIXME should verify that recordTrack is still in mActiveTracks
6024            if (status != NO_ERROR) {
6025                mActiveTracks.remove(recordTrack);
6026                mActiveTracksGen++;
6027                recordTrack->clearSyncStartEvent();
6028                ALOGV("RecordThread::start error %d", status);
6029                return status;
6030            }
6031        }
6032        // Catch up with current buffer indices if thread is already running.
6033        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6034        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6035        // see previously buffered data before it called start(), but with greater risk of overrun.
6036
6037        recordTrack->mRsmpInFront = mRsmpInRear;
6038        recordTrack->mRsmpInUnrel = 0;
6039        // FIXME why reset?
6040        if (recordTrack->mResampler != NULL) {
6041            recordTrack->mResampler->reset();
6042        }
6043        recordTrack->mState = TrackBase::STARTING_2;
6044        // signal thread to start
6045        mWaitWorkCV.broadcast();
6046        if (mActiveTracks.indexOf(recordTrack) < 0) {
6047            ALOGV("Record failed to start");
6048            status = BAD_VALUE;
6049            goto startError;
6050        }
6051        return status;
6052    }
6053
6054startError:
6055    if (recordTrack->isExternalTrack()) {
6056        AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
6057    }
6058    recordTrack->clearSyncStartEvent();
6059    // FIXME I wonder why we do not reset the state here?
6060    return status;
6061}
6062
6063void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6064{
6065    sp<SyncEvent> strongEvent = event.promote();
6066
6067    if (strongEvent != 0) {
6068        sp<RefBase> ptr = strongEvent->cookie().promote();
6069        if (ptr != 0) {
6070            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6071            recordTrack->handleSyncStartEvent(strongEvent);
6072        }
6073    }
6074}
6075
6076bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6077    ALOGV("RecordThread::stop");
6078    AutoMutex _l(mLock);
6079    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6080        return false;
6081    }
6082    // note that threadLoop may still be processing the track at this point [without lock]
6083    recordTrack->mState = TrackBase::PAUSING;
6084    // do not wait for mStartStopCond if exiting
6085    if (exitPending()) {
6086        return true;
6087    }
6088    // FIXME incorrect usage of wait: no explicit predicate or loop
6089    mStartStopCond.wait(mLock);
6090    // if we have been restarted, recordTrack is in mActiveTracks here
6091    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6092        ALOGV("Record stopped OK");
6093        return true;
6094    }
6095    return false;
6096}
6097
6098bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6099{
6100    return false;
6101}
6102
6103status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6104{
6105#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6106    if (!isValidSyncEvent(event)) {
6107        return BAD_VALUE;
6108    }
6109
6110    int eventSession = event->triggerSession();
6111    status_t ret = NAME_NOT_FOUND;
6112
6113    Mutex::Autolock _l(mLock);
6114
6115    for (size_t i = 0; i < mTracks.size(); i++) {
6116        sp<RecordTrack> track = mTracks[i];
6117        if (eventSession == track->sessionId()) {
6118            (void) track->setSyncEvent(event);
6119            ret = NO_ERROR;
6120        }
6121    }
6122    return ret;
6123#else
6124    return BAD_VALUE;
6125#endif
6126}
6127
6128// destroyTrack_l() must be called with ThreadBase::mLock held
6129void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6130{
6131    track->terminate();
6132    track->mState = TrackBase::STOPPED;
6133    // active tracks are removed by threadLoop()
6134    if (mActiveTracks.indexOf(track) < 0) {
6135        removeTrack_l(track);
6136    }
6137}
6138
6139void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6140{
6141    mTracks.remove(track);
6142    // need anything related to effects here?
6143    if (track->isFastTrack()) {
6144        ALOG_ASSERT(!mFastTrackAvail);
6145        mFastTrackAvail = true;
6146    }
6147}
6148
6149void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6150{
6151    dumpInternals(fd, args);
6152    dumpTracks(fd, args);
6153    dumpEffectChains(fd, args);
6154}
6155
6156void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6157{
6158    dprintf(fd, "\nInput thread %p:\n", this);
6159
6160    dumpBase(fd, args);
6161
6162    if (mActiveTracks.size() == 0) {
6163        dprintf(fd, "  No active record clients\n");
6164    }
6165    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6166    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6167
6168    //  Make a non-atomic copy of fast capture dump state so it won't change underneath us
6169    const FastCaptureDumpState copy(mFastCaptureDumpState);
6170    copy.dump(fd);
6171}
6172
6173void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6174{
6175    const size_t SIZE = 256;
6176    char buffer[SIZE];
6177    String8 result;
6178
6179    size_t numtracks = mTracks.size();
6180    size_t numactive = mActiveTracks.size();
6181    size_t numactiveseen = 0;
6182    dprintf(fd, "  %d Tracks", numtracks);
6183    if (numtracks) {
6184        dprintf(fd, " of which %d are active\n", numactive);
6185        RecordTrack::appendDumpHeader(result);
6186        for (size_t i = 0; i < numtracks ; ++i) {
6187            sp<RecordTrack> track = mTracks[i];
6188            if (track != 0) {
6189                bool active = mActiveTracks.indexOf(track) >= 0;
6190                if (active) {
6191                    numactiveseen++;
6192                }
6193                track->dump(buffer, SIZE, active);
6194                result.append(buffer);
6195            }
6196        }
6197    } else {
6198        dprintf(fd, "\n");
6199    }
6200
6201    if (numactiveseen != numactive) {
6202        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6203                " not in the track list\n");
6204        result.append(buffer);
6205        RecordTrack::appendDumpHeader(result);
6206        for (size_t i = 0; i < numactive; ++i) {
6207            sp<RecordTrack> track = mActiveTracks[i];
6208            if (mTracks.indexOf(track) < 0) {
6209                track->dump(buffer, SIZE, true);
6210                result.append(buffer);
6211            }
6212        }
6213
6214    }
6215    write(fd, result.string(), result.size());
6216}
6217
6218// AudioBufferProvider interface
6219status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6220        AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6221{
6222    RecordTrack *activeTrack = mRecordTrack;
6223    sp<ThreadBase> threadBase = activeTrack->mThread.promote();
6224    if (threadBase == 0) {
6225        buffer->frameCount = 0;
6226        buffer->raw = NULL;
6227        return NOT_ENOUGH_DATA;
6228    }
6229    RecordThread *recordThread = (RecordThread *) threadBase.get();
6230    int32_t rear = recordThread->mRsmpInRear;
6231    int32_t front = activeTrack->mRsmpInFront;
6232    ssize_t filled = rear - front;
6233    // FIXME should not be P2 (don't want to increase latency)
6234    // FIXME if client not keeping up, discard
6235    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6236    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6237    front &= recordThread->mRsmpInFramesP2 - 1;
6238    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6239    if (part1 > (size_t) filled) {
6240        part1 = filled;
6241    }
6242    size_t ask = buffer->frameCount;
6243    ALOG_ASSERT(ask > 0);
6244    if (part1 > ask) {
6245        part1 = ask;
6246    }
6247    if (part1 == 0) {
6248        // Higher-level should keep mRsmpInBuffer full, and not call resampler if empty
6249        LOG_ALWAYS_FATAL("RecordThread::getNextBuffer() starved");
6250        buffer->raw = NULL;
6251        buffer->frameCount = 0;
6252        activeTrack->mRsmpInUnrel = 0;
6253        return NOT_ENOUGH_DATA;
6254    }
6255
6256    buffer->raw = recordThread->mRsmpInBuffer + front * recordThread->mChannelCount;
6257    buffer->frameCount = part1;
6258    activeTrack->mRsmpInUnrel = part1;
6259    return NO_ERROR;
6260}
6261
6262// AudioBufferProvider interface
6263void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6264        AudioBufferProvider::Buffer* buffer)
6265{
6266    RecordTrack *activeTrack = mRecordTrack;
6267    size_t stepCount = buffer->frameCount;
6268    if (stepCount == 0) {
6269        return;
6270    }
6271    ALOG_ASSERT(stepCount <= activeTrack->mRsmpInUnrel);
6272    activeTrack->mRsmpInUnrel -= stepCount;
6273    activeTrack->mRsmpInFront += stepCount;
6274    buffer->raw = NULL;
6275    buffer->frameCount = 0;
6276}
6277
6278bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6279                                                        status_t& status)
6280{
6281    bool reconfig = false;
6282
6283    status = NO_ERROR;
6284
6285    audio_format_t reqFormat = mFormat;
6286    uint32_t samplingRate = mSampleRate;
6287    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6288
6289    AudioParameter param = AudioParameter(keyValuePair);
6290    int value;
6291    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6292    //      channel count change can be requested. Do we mandate the first client defines the
6293    //      HAL sampling rate and channel count or do we allow changes on the fly?
6294    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6295        samplingRate = value;
6296        reconfig = true;
6297    }
6298    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6299        if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
6300            status = BAD_VALUE;
6301        } else {
6302            reqFormat = (audio_format_t) value;
6303            reconfig = true;
6304        }
6305    }
6306    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6307        audio_channel_mask_t mask = (audio_channel_mask_t) value;
6308        if (mask != AUDIO_CHANNEL_IN_MONO && mask != AUDIO_CHANNEL_IN_STEREO) {
6309            status = BAD_VALUE;
6310        } else {
6311            channelMask = mask;
6312            reconfig = true;
6313        }
6314    }
6315    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6316        // do not accept frame count changes if tracks are open as the track buffer
6317        // size depends on frame count and correct behavior would not be guaranteed
6318        // if frame count is changed after track creation
6319        if (mActiveTracks.size() > 0) {
6320            status = INVALID_OPERATION;
6321        } else {
6322            reconfig = true;
6323        }
6324    }
6325    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6326        // forward device change to effects that have requested to be
6327        // aware of attached audio device.
6328        for (size_t i = 0; i < mEffectChains.size(); i++) {
6329            mEffectChains[i]->setDevice_l(value);
6330        }
6331
6332        // store input device and output device but do not forward output device to audio HAL.
6333        // Note that status is ignored by the caller for output device
6334        // (see AudioFlinger::setParameters()
6335        if (audio_is_output_devices(value)) {
6336            mOutDevice = value;
6337            status = BAD_VALUE;
6338        } else {
6339            mInDevice = value;
6340            // disable AEC and NS if the device is a BT SCO headset supporting those
6341            // pre processings
6342            if (mTracks.size() > 0) {
6343                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6344                                    mAudioFlinger->btNrecIsOff();
6345                for (size_t i = 0; i < mTracks.size(); i++) {
6346                    sp<RecordTrack> track = mTracks[i];
6347                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6348                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6349                }
6350            }
6351        }
6352    }
6353    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6354            mAudioSource != (audio_source_t)value) {
6355        // forward device change to effects that have requested to be
6356        // aware of attached audio device.
6357        for (size_t i = 0; i < mEffectChains.size(); i++) {
6358            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6359        }
6360        mAudioSource = (audio_source_t)value;
6361    }
6362
6363    if (status == NO_ERROR) {
6364        status = mInput->stream->common.set_parameters(&mInput->stream->common,
6365                keyValuePair.string());
6366        if (status == INVALID_OPERATION) {
6367            inputStandBy();
6368            status = mInput->stream->common.set_parameters(&mInput->stream->common,
6369                    keyValuePair.string());
6370        }
6371        if (reconfig) {
6372            if (status == BAD_VALUE &&
6373                reqFormat == mInput->stream->common.get_format(&mInput->stream->common) &&
6374                reqFormat == AUDIO_FORMAT_PCM_16_BIT &&
6375                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6376                        <= (2 * samplingRate)) &&
6377                audio_channel_count_from_in_mask(
6378                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_2 &&
6379                (channelMask == AUDIO_CHANNEL_IN_MONO ||
6380                        channelMask == AUDIO_CHANNEL_IN_STEREO)) {
6381                status = NO_ERROR;
6382            }
6383            if (status == NO_ERROR) {
6384                readInputParameters_l();
6385                sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
6386            }
6387        }
6388    }
6389
6390    return reconfig;
6391}
6392
6393String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6394{
6395    Mutex::Autolock _l(mLock);
6396    if (initCheck() != NO_ERROR) {
6397        return String8();
6398    }
6399
6400    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6401    const String8 out_s8(s);
6402    free(s);
6403    return out_s8;
6404}
6405
6406void AudioFlinger::RecordThread::audioConfigChanged(int event, int param __unused) {
6407    AudioSystem::OutputDescriptor desc;
6408    const void *param2 = NULL;
6409
6410    switch (event) {
6411    case AudioSystem::INPUT_OPENED:
6412    case AudioSystem::INPUT_CONFIG_CHANGED:
6413        desc.channelMask = mChannelMask;
6414        desc.samplingRate = mSampleRate;
6415        desc.format = mFormat;
6416        desc.frameCount = mFrameCount;
6417        desc.latency = 0;
6418        param2 = &desc;
6419        break;
6420
6421    case AudioSystem::INPUT_CLOSED:
6422    default:
6423        break;
6424    }
6425    mAudioFlinger->audioConfigChanged(event, mId, param2);
6426}
6427
6428void AudioFlinger::RecordThread::readInputParameters_l()
6429{
6430    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6431    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6432    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6433    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6434    mFormat = mHALFormat;
6435    if (mFormat != AUDIO_FORMAT_PCM_16_BIT) {
6436        ALOGE("HAL format %#x not supported; must be AUDIO_FORMAT_PCM_16_BIT", mFormat);
6437    }
6438    mFrameSize = audio_stream_in_frame_size(mInput->stream);
6439    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6440    mFrameCount = mBufferSize / mFrameSize;
6441    // This is the formula for calculating the temporary buffer size.
6442    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6443    // 1 full output buffer, regardless of the alignment of the available input.
6444    // The value is somewhat arbitrary, and could probably be even larger.
6445    // A larger value should allow more old data to be read after a track calls start(),
6446    // without increasing latency.
6447    mRsmpInFrames = mFrameCount * 7;
6448    mRsmpInFramesP2 = roundup(mRsmpInFrames);
6449    delete[] mRsmpInBuffer;
6450
6451    // TODO optimize audio capture buffer sizes ...
6452    // Here we calculate the size of the sliding buffer used as a source
6453    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6454    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
6455    // be better to have it derived from the pipe depth in the long term.
6456    // The current value is higher than necessary.  However it should not add to latency.
6457
6458    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6459    mRsmpInBuffer = new int16_t[(mRsmpInFramesP2 + mFrameCount - 1) * mChannelCount];
6460
6461    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6462    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6463}
6464
6465uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6466{
6467    Mutex::Autolock _l(mLock);
6468    if (initCheck() != NO_ERROR) {
6469        return 0;
6470    }
6471
6472    return mInput->stream->get_input_frames_lost(mInput->stream);
6473}
6474
6475uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6476{
6477    Mutex::Autolock _l(mLock);
6478    uint32_t result = 0;
6479    if (getEffectChain_l(sessionId) != 0) {
6480        result = EFFECT_SESSION;
6481    }
6482
6483    for (size_t i = 0; i < mTracks.size(); ++i) {
6484        if (sessionId == mTracks[i]->sessionId()) {
6485            result |= TRACK_SESSION;
6486            break;
6487        }
6488    }
6489
6490    return result;
6491}
6492
6493KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
6494{
6495    KeyedVector<int, bool> ids;
6496    Mutex::Autolock _l(mLock);
6497    for (size_t j = 0; j < mTracks.size(); ++j) {
6498        sp<RecordThread::RecordTrack> track = mTracks[j];
6499        int sessionId = track->sessionId();
6500        if (ids.indexOfKey(sessionId) < 0) {
6501            ids.add(sessionId, true);
6502        }
6503    }
6504    return ids;
6505}
6506
6507AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
6508{
6509    Mutex::Autolock _l(mLock);
6510    AudioStreamIn *input = mInput;
6511    mInput = NULL;
6512    return input;
6513}
6514
6515// this method must always be called either with ThreadBase mLock held or inside the thread loop
6516audio_stream_t* AudioFlinger::RecordThread::stream() const
6517{
6518    if (mInput == NULL) {
6519        return NULL;
6520    }
6521    return &mInput->stream->common;
6522}
6523
6524status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
6525{
6526    // only one chain per input thread
6527    if (mEffectChains.size() != 0) {
6528        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
6529        return INVALID_OPERATION;
6530    }
6531    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
6532    chain->setThread(this);
6533    chain->setInBuffer(NULL);
6534    chain->setOutBuffer(NULL);
6535
6536    checkSuspendOnAddEffectChain_l(chain);
6537
6538    // make sure enabled pre processing effects state is communicated to the HAL as we
6539    // just moved them to a new input stream.
6540    chain->syncHalEffectsState();
6541
6542    mEffectChains.add(chain);
6543
6544    return NO_ERROR;
6545}
6546
6547size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
6548{
6549    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
6550    ALOGW_IF(mEffectChains.size() != 1,
6551            "removeEffectChain_l() %p invalid chain size %d on thread %p",
6552            chain.get(), mEffectChains.size(), this);
6553    if (mEffectChains.size() == 1) {
6554        mEffectChains.removeAt(0);
6555    }
6556    return 0;
6557}
6558
6559status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
6560                                                          audio_patch_handle_t *handle)
6561{
6562    status_t status = NO_ERROR;
6563    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6564        // store new device and send to effects
6565        mInDevice = patch->sources[0].ext.device.type;
6566        for (size_t i = 0; i < mEffectChains.size(); i++) {
6567            mEffectChains[i]->setDevice_l(mInDevice);
6568        }
6569
6570        // disable AEC and NS if the device is a BT SCO headset supporting those
6571        // pre processings
6572        if (mTracks.size() > 0) {
6573            bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6574                                mAudioFlinger->btNrecIsOff();
6575            for (size_t i = 0; i < mTracks.size(); i++) {
6576                sp<RecordTrack> track = mTracks[i];
6577                setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6578                setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6579            }
6580        }
6581
6582        // store new source and send to effects
6583        if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
6584            mAudioSource = patch->sinks[0].ext.mix.usecase.source;
6585            for (size_t i = 0; i < mEffectChains.size(); i++) {
6586                mEffectChains[i]->setAudioSource_l(mAudioSource);
6587            }
6588        }
6589
6590        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6591        status = hwDevice->create_audio_patch(hwDevice,
6592                                               patch->num_sources,
6593                                               patch->sources,
6594                                               patch->num_sinks,
6595                                               patch->sinks,
6596                                               handle);
6597    } else {
6598        ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
6599    }
6600    return status;
6601}
6602
6603status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
6604{
6605    status_t status = NO_ERROR;
6606    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6607        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6608        status = hwDevice->release_audio_patch(hwDevice, handle);
6609    } else {
6610        ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
6611    }
6612    return status;
6613}
6614
6615void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
6616{
6617    Mutex::Autolock _l(mLock);
6618    mTracks.add(record);
6619}
6620
6621void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
6622{
6623    Mutex::Autolock _l(mLock);
6624    destroyTrack_l(record);
6625}
6626
6627void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
6628{
6629    ThreadBase::getAudioPortConfig(config);
6630    config->role = AUDIO_PORT_ROLE_SINK;
6631    config->ext.mix.hw_module = mInput->audioHwDev->handle();
6632    config->ext.mix.usecase.source = mAudioSource;
6633}
6634
6635} // namespace android
6636