Threads.cpp revision 8edb8dc44b8a2f81bdb5db645b6b708548771a31
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/primitives.h>
40#include <audio_utils/format.h>
41#include <audio_utils/minifloat.h>
42
43// NBAIO implementations
44#include <media/nbaio/AudioStreamInSource.h>
45#include <media/nbaio/AudioStreamOutSink.h>
46#include <media/nbaio/MonoPipe.h>
47#include <media/nbaio/MonoPipeReader.h>
48#include <media/nbaio/Pipe.h>
49#include <media/nbaio/PipeReader.h>
50#include <media/nbaio/SourceAudioBufferProvider.h>
51
52#include <powermanager/PowerManager.h>
53
54#include <common_time/cc_helper.h>
55#include <common_time/local_clock.h>
56
57#include "AudioFlinger.h"
58#include "AudioMixer.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74// ----------------------------------------------------------------------------
75
76// Note: the following macro is used for extremely verbose logging message.  In
77// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
78// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
79// are so verbose that we want to suppress them even when we have ALOG_ASSERT
80// turned on.  Do not uncomment the #def below unless you really know what you
81// are doing and want to see all of the extremely verbose messages.
82//#define VERY_VERY_VERBOSE_LOGGING
83#ifdef VERY_VERY_VERBOSE_LOGGING
84#define ALOGVV ALOGV
85#else
86#define ALOGVV(a...) do { } while(0)
87#endif
88
89// TODO: Move these macro/inlines to a header file.
90#define max(a, b) ((a) > (b) ? (a) : (b))
91template <typename T>
92static inline T min(const T& a, const T& b)
93{
94    return a < b ? a : b;
95}
96
97namespace android {
98
99// retry counts for buffer fill timeout
100// 50 * ~20msecs = 1 second
101static const int8_t kMaxTrackRetries = 50;
102static const int8_t kMaxTrackStartupRetries = 50;
103// allow less retry attempts on direct output thread.
104// direct outputs can be a scarce resource in audio hardware and should
105// be released as quickly as possible.
106static const int8_t kMaxTrackRetriesDirect = 2;
107
108// don't warn about blocked writes or record buffer overflows more often than this
109static const nsecs_t kWarningThrottleNs = seconds(5);
110
111// RecordThread loop sleep time upon application overrun or audio HAL read error
112static const int kRecordThreadSleepUs = 5000;
113
114// maximum time to wait in sendConfigEvent_l() for a status to be received
115static const nsecs_t kConfigEventTimeoutNs = seconds(2);
116
117// minimum sleep time for the mixer thread loop when tracks are active but in underrun
118static const uint32_t kMinThreadSleepTimeUs = 5000;
119// maximum divider applied to the active sleep time in the mixer thread loop
120static const uint32_t kMaxThreadSleepTimeShift = 2;
121
122// minimum normal sink buffer size, expressed in milliseconds rather than frames
123static const uint32_t kMinNormalSinkBufferSizeMs = 20;
124// maximum normal sink buffer size
125static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
126
127// Offloaded output thread standby delay: allows track transition without going to standby
128static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
129
130// Whether to use fast mixer
131static const enum {
132    FastMixer_Never,    // never initialize or use: for debugging only
133    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
134                        // normal mixer multiplier is 1
135    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
136                        // multiplier is calculated based on min & max normal mixer buffer size
137    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
138                        // multiplier is calculated based on min & max normal mixer buffer size
139    // FIXME for FastMixer_Dynamic:
140    //  Supporting this option will require fixing HALs that can't handle large writes.
141    //  For example, one HAL implementation returns an error from a large write,
142    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
143    //  We could either fix the HAL implementations, or provide a wrapper that breaks
144    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
145} kUseFastMixer = FastMixer_Static;
146
147// Whether to use fast capture
148static const enum {
149    FastCapture_Never,  // never initialize or use: for debugging only
150    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
151    FastCapture_Static, // initialize if needed, then use all the time if initialized
152} kUseFastCapture = FastCapture_Static;
153
154// Priorities for requestPriority
155static const int kPriorityAudioApp = 2;
156static const int kPriorityFastMixer = 3;
157static const int kPriorityFastCapture = 3;
158
159// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
160// for the track.  The client then sub-divides this into smaller buffers for its use.
161// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
162// So for now we just assume that client is double-buffered for fast tracks.
163// FIXME It would be better for client to tell AudioFlinger the value of N,
164// so AudioFlinger could allocate the right amount of memory.
165// See the client's minBufCount and mNotificationFramesAct calculations for details.
166
167// This is the default value, if not specified by property.
168static const int kFastTrackMultiplier = 2;
169
170// The minimum and maximum allowed values
171static const int kFastTrackMultiplierMin = 1;
172static const int kFastTrackMultiplierMax = 2;
173
174// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
175static int sFastTrackMultiplier = kFastTrackMultiplier;
176
177// See Thread::readOnlyHeap().
178// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
179// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
180// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
181static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
182
183// ----------------------------------------------------------------------------
184
185static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
186
187static void sFastTrackMultiplierInit()
188{
189    char value[PROPERTY_VALUE_MAX];
190    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
191        char *endptr;
192        unsigned long ul = strtoul(value, &endptr, 0);
193        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
194            sFastTrackMultiplier = (int) ul;
195        }
196    }
197}
198
199// ----------------------------------------------------------------------------
200
201#ifdef ADD_BATTERY_DATA
202// To collect the amplifier usage
203static void addBatteryData(uint32_t params) {
204    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
205    if (service == NULL) {
206        // it already logged
207        return;
208    }
209
210    service->addBatteryData(params);
211}
212#endif
213
214
215// ----------------------------------------------------------------------------
216//      CPU Stats
217// ----------------------------------------------------------------------------
218
219class CpuStats {
220public:
221    CpuStats();
222    void sample(const String8 &title);
223#ifdef DEBUG_CPU_USAGE
224private:
225    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
226    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
227
228    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
229
230    int mCpuNum;                        // thread's current CPU number
231    int mCpukHz;                        // frequency of thread's current CPU in kHz
232#endif
233};
234
235CpuStats::CpuStats()
236#ifdef DEBUG_CPU_USAGE
237    : mCpuNum(-1), mCpukHz(-1)
238#endif
239{
240}
241
242void CpuStats::sample(const String8 &title
243#ifndef DEBUG_CPU_USAGE
244                __unused
245#endif
246        ) {
247#ifdef DEBUG_CPU_USAGE
248    // get current thread's delta CPU time in wall clock ns
249    double wcNs;
250    bool valid = mCpuUsage.sampleAndEnable(wcNs);
251
252    // record sample for wall clock statistics
253    if (valid) {
254        mWcStats.sample(wcNs);
255    }
256
257    // get the current CPU number
258    int cpuNum = sched_getcpu();
259
260    // get the current CPU frequency in kHz
261    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
262
263    // check if either CPU number or frequency changed
264    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
265        mCpuNum = cpuNum;
266        mCpukHz = cpukHz;
267        // ignore sample for purposes of cycles
268        valid = false;
269    }
270
271    // if no change in CPU number or frequency, then record sample for cycle statistics
272    if (valid && mCpukHz > 0) {
273        double cycles = wcNs * cpukHz * 0.000001;
274        mHzStats.sample(cycles);
275    }
276
277    unsigned n = mWcStats.n();
278    // mCpuUsage.elapsed() is expensive, so don't call it every loop
279    if ((n & 127) == 1) {
280        long long elapsed = mCpuUsage.elapsed();
281        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
282            double perLoop = elapsed / (double) n;
283            double perLoop100 = perLoop * 0.01;
284            double perLoop1k = perLoop * 0.001;
285            double mean = mWcStats.mean();
286            double stddev = mWcStats.stddev();
287            double minimum = mWcStats.minimum();
288            double maximum = mWcStats.maximum();
289            double meanCycles = mHzStats.mean();
290            double stddevCycles = mHzStats.stddev();
291            double minCycles = mHzStats.minimum();
292            double maxCycles = mHzStats.maximum();
293            mCpuUsage.resetElapsed();
294            mWcStats.reset();
295            mHzStats.reset();
296            ALOGD("CPU usage for %s over past %.1f secs\n"
297                "  (%u mixer loops at %.1f mean ms per loop):\n"
298                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
299                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
300                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
301                    title.string(),
302                    elapsed * .000000001, n, perLoop * .000001,
303                    mean * .001,
304                    stddev * .001,
305                    minimum * .001,
306                    maximum * .001,
307                    mean / perLoop100,
308                    stddev / perLoop100,
309                    minimum / perLoop100,
310                    maximum / perLoop100,
311                    meanCycles / perLoop1k,
312                    stddevCycles / perLoop1k,
313                    minCycles / perLoop1k,
314                    maxCycles / perLoop1k);
315
316        }
317    }
318#endif
319};
320
321// ----------------------------------------------------------------------------
322//      ThreadBase
323// ----------------------------------------------------------------------------
324
325// static
326const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
327{
328    switch (type) {
329    case MIXER:
330        return "MIXER";
331    case DIRECT:
332        return "DIRECT";
333    case DUPLICATING:
334        return "DUPLICATING";
335    case RECORD:
336        return "RECORD";
337    case OFFLOAD:
338        return "OFFLOAD";
339    default:
340        return "unknown";
341    }
342}
343
344String8 devicesToString(audio_devices_t devices)
345{
346    static const struct mapping {
347        audio_devices_t mDevices;
348        const char *    mString;
349    } mappingsOut[] = {
350        AUDIO_DEVICE_OUT_EARPIECE,          "EARPIECE",
351        AUDIO_DEVICE_OUT_SPEAKER,           "SPEAKER",
352        AUDIO_DEVICE_OUT_WIRED_HEADSET,     "WIRED_HEADSET",
353        AUDIO_DEVICE_OUT_WIRED_HEADPHONE,   "WIRED_HEADPHONE",
354        AUDIO_DEVICE_OUT_TELEPHONY_TX,      "TELEPHONY_TX",
355        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
356    }, mappingsIn[] = {
357        AUDIO_DEVICE_IN_BUILTIN_MIC,        "BUILTIN_MIC",
358        AUDIO_DEVICE_IN_WIRED_HEADSET,      "WIRED_HEADSET",
359        AUDIO_DEVICE_IN_VOICE_CALL,         "VOICE_CALL",
360        AUDIO_DEVICE_IN_REMOTE_SUBMIX,      "REMOTE_SUBMIX",
361        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
362    };
363    String8 result;
364    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
365    const mapping *entry;
366    if (devices & AUDIO_DEVICE_BIT_IN) {
367        devices &= ~AUDIO_DEVICE_BIT_IN;
368        entry = mappingsIn;
369    } else {
370        entry = mappingsOut;
371    }
372    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
373        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
374        if (devices & entry->mDevices) {
375            if (!result.isEmpty()) {
376                result.append("|");
377            }
378            result.append(entry->mString);
379        }
380    }
381    if (devices & ~allDevices) {
382        if (!result.isEmpty()) {
383            result.append("|");
384        }
385        result.appendFormat("0x%X", devices & ~allDevices);
386    }
387    if (result.isEmpty()) {
388        result.append(entry->mString);
389    }
390    return result;
391}
392
393String8 inputFlagsToString(audio_input_flags_t flags)
394{
395    static const struct mapping {
396        audio_input_flags_t     mFlag;
397        const char *            mString;
398    } mappings[] = {
399        AUDIO_INPUT_FLAG_FAST,              "FAST",
400        AUDIO_INPUT_FLAG_HW_HOTWORD,        "HW_HOTWORD",
401        AUDIO_INPUT_FLAG_NONE,              "NONE",         // must be last
402    };
403    String8 result;
404    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
405    const mapping *entry;
406    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
407        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
408        if (flags & entry->mFlag) {
409            if (!result.isEmpty()) {
410                result.append("|");
411            }
412            result.append(entry->mString);
413        }
414    }
415    if (flags & ~allFlags) {
416        if (!result.isEmpty()) {
417            result.append("|");
418        }
419        result.appendFormat("0x%X", flags & ~allFlags);
420    }
421    if (result.isEmpty()) {
422        result.append(entry->mString);
423    }
424    return result;
425}
426
427String8 outputFlagsToString(audio_output_flags_t flags)
428{
429    static const struct mapping {
430        audio_output_flags_t    mFlag;
431        const char *            mString;
432    } mappings[] = {
433        AUDIO_OUTPUT_FLAG_DIRECT,           "DIRECT",
434        AUDIO_OUTPUT_FLAG_PRIMARY,          "PRIMARY",
435        AUDIO_OUTPUT_FLAG_FAST,             "FAST",
436        AUDIO_OUTPUT_FLAG_DEEP_BUFFER,      "DEEP_BUFFER",
437        AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD, "COMPRESS_OFFLOAD",
438        AUDIO_OUTPUT_FLAG_NON_BLOCKING,     "NON_BLOCKING",
439        AUDIO_OUTPUT_FLAG_HW_AV_SYNC,       "HW_AV_SYNC",
440        AUDIO_OUTPUT_FLAG_NONE,             "NONE",         // must be last
441    };
442    String8 result;
443    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
444    const mapping *entry;
445    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
446        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
447        if (flags & entry->mFlag) {
448            if (!result.isEmpty()) {
449                result.append("|");
450            }
451            result.append(entry->mString);
452        }
453    }
454    if (flags & ~allFlags) {
455        if (!result.isEmpty()) {
456            result.append("|");
457        }
458        result.appendFormat("0x%X", flags & ~allFlags);
459    }
460    if (result.isEmpty()) {
461        result.append(entry->mString);
462    }
463    return result;
464}
465
466const char *sourceToString(audio_source_t source)
467{
468    switch (source) {
469    case AUDIO_SOURCE_DEFAULT:              return "default";
470    case AUDIO_SOURCE_MIC:                  return "mic";
471    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
472    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
473    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
474    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
475    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
476    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
477    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
478    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
479    case AUDIO_SOURCE_HOTWORD:              return "hotword";
480    default:                                return "unknown";
481    }
482}
483
484AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
485        audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
486    :   Thread(false /*canCallJava*/),
487        mType(type),
488        mAudioFlinger(audioFlinger),
489        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
490        // are set by PlaybackThread::readOutputParameters_l() or
491        // RecordThread::readInputParameters_l()
492        //FIXME: mStandby should be true here. Is this some kind of hack?
493        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
494        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
495        // mName will be set by concrete (non-virtual) subclass
496        mDeathRecipient(new PMDeathRecipient(this))
497{
498}
499
500AudioFlinger::ThreadBase::~ThreadBase()
501{
502    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
503    mConfigEvents.clear();
504
505    // do not lock the mutex in destructor
506    releaseWakeLock_l();
507    if (mPowerManager != 0) {
508        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
509        binder->unlinkToDeath(mDeathRecipient);
510    }
511}
512
513status_t AudioFlinger::ThreadBase::readyToRun()
514{
515    status_t status = initCheck();
516    if (status == NO_ERROR) {
517        ALOGI("AudioFlinger's thread %p ready to run", this);
518    } else {
519        ALOGE("No working audio driver found.");
520    }
521    return status;
522}
523
524void AudioFlinger::ThreadBase::exit()
525{
526    ALOGV("ThreadBase::exit");
527    // do any cleanup required for exit to succeed
528    preExit();
529    {
530        // This lock prevents the following race in thread (uniprocessor for illustration):
531        //  if (!exitPending()) {
532        //      // context switch from here to exit()
533        //      // exit() calls requestExit(), what exitPending() observes
534        //      // exit() calls signal(), which is dropped since no waiters
535        //      // context switch back from exit() to here
536        //      mWaitWorkCV.wait(...);
537        //      // now thread is hung
538        //  }
539        AutoMutex lock(mLock);
540        requestExit();
541        mWaitWorkCV.broadcast();
542    }
543    // When Thread::requestExitAndWait is made virtual and this method is renamed to
544    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
545    requestExitAndWait();
546}
547
548status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
549{
550    status_t status;
551
552    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
553    Mutex::Autolock _l(mLock);
554
555    return sendSetParameterConfigEvent_l(keyValuePairs);
556}
557
558// sendConfigEvent_l() must be called with ThreadBase::mLock held
559// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
560status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
561{
562    status_t status = NO_ERROR;
563
564    mConfigEvents.add(event);
565    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
566    mWaitWorkCV.signal();
567    mLock.unlock();
568    {
569        Mutex::Autolock _l(event->mLock);
570        while (event->mWaitStatus) {
571            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
572                event->mStatus = TIMED_OUT;
573                event->mWaitStatus = false;
574            }
575        }
576        status = event->mStatus;
577    }
578    mLock.lock();
579    return status;
580}
581
582void AudioFlinger::ThreadBase::sendIoConfigEvent(int event, int param)
583{
584    Mutex::Autolock _l(mLock);
585    sendIoConfigEvent_l(event, param);
586}
587
588// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
589void AudioFlinger::ThreadBase::sendIoConfigEvent_l(int event, int param)
590{
591    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, param);
592    sendConfigEvent_l(configEvent);
593}
594
595// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
596void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
597{
598    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
599    sendConfigEvent_l(configEvent);
600}
601
602// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
603status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
604{
605    sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
606    return sendConfigEvent_l(configEvent);
607}
608
609status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
610                                                        const struct audio_patch *patch,
611                                                        audio_patch_handle_t *handle)
612{
613    Mutex::Autolock _l(mLock);
614    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
615    status_t status = sendConfigEvent_l(configEvent);
616    if (status == NO_ERROR) {
617        CreateAudioPatchConfigEventData *data =
618                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
619        *handle = data->mHandle;
620    }
621    return status;
622}
623
624status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
625                                                                const audio_patch_handle_t handle)
626{
627    Mutex::Autolock _l(mLock);
628    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
629    return sendConfigEvent_l(configEvent);
630}
631
632
633// post condition: mConfigEvents.isEmpty()
634void AudioFlinger::ThreadBase::processConfigEvents_l()
635{
636    bool configChanged = false;
637
638    while (!mConfigEvents.isEmpty()) {
639        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
640        sp<ConfigEvent> event = mConfigEvents[0];
641        mConfigEvents.removeAt(0);
642        switch (event->mType) {
643        case CFG_EVENT_PRIO: {
644            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
645            // FIXME Need to understand why this has to be done asynchronously
646            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
647                    true /*asynchronous*/);
648            if (err != 0) {
649                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
650                      data->mPrio, data->mPid, data->mTid, err);
651            }
652        } break;
653        case CFG_EVENT_IO: {
654            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
655            audioConfigChanged(data->mEvent, data->mParam);
656        } break;
657        case CFG_EVENT_SET_PARAMETER: {
658            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
659            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
660                configChanged = true;
661            }
662        } break;
663        case CFG_EVENT_CREATE_AUDIO_PATCH: {
664            CreateAudioPatchConfigEventData *data =
665                                            (CreateAudioPatchConfigEventData *)event->mData.get();
666            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
667        } break;
668        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
669            ReleaseAudioPatchConfigEventData *data =
670                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
671            event->mStatus = releaseAudioPatch_l(data->mHandle);
672        } break;
673        default:
674            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
675            break;
676        }
677        {
678            Mutex::Autolock _l(event->mLock);
679            if (event->mWaitStatus) {
680                event->mWaitStatus = false;
681                event->mCond.signal();
682            }
683        }
684        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
685    }
686
687    if (configChanged) {
688        cacheParameters_l();
689    }
690}
691
692String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
693    String8 s;
694    if (output) {
695        if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
696        if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
697        if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
698        if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
699        if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
700        if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
701        if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
702        if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
703        if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
704        if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
705        if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
706        if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
707        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
708        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
709        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
710        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
711        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
712        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
713        if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
714    } else {
715        if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
716        if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
717        if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
718        if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
719        if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
720        if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
721        if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
722        if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
723        if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
724        if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
725        if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
726        if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
727        if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
728        if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
729        if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
730    }
731    int len = s.length();
732    if (s.length() > 2) {
733        char *str = s.lockBuffer(len);
734        s.unlockBuffer(len - 2);
735    }
736    return s;
737}
738
739void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
740{
741    const size_t SIZE = 256;
742    char buffer[SIZE];
743    String8 result;
744
745    bool locked = AudioFlinger::dumpTryLock(mLock);
746    if (!locked) {
747        dprintf(fd, "thread %p may be deadlocked\n", this);
748    }
749
750    dprintf(fd, "  Thread name: %s\n", mThreadName);
751    dprintf(fd, "  I/O handle: %d\n", mId);
752    dprintf(fd, "  TID: %d\n", getTid());
753    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
754    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
755    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
756    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
757    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
758    dprintf(fd, "  Channel count: %u\n", mChannelCount);
759    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
760            channelMaskToString(mChannelMask, mType != RECORD).string());
761    dprintf(fd, "  Format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
762    dprintf(fd, "  Frame size: %zu bytes\n", mFrameSize);
763    dprintf(fd, "  Pending config events:");
764    size_t numConfig = mConfigEvents.size();
765    if (numConfig) {
766        for (size_t i = 0; i < numConfig; i++) {
767            mConfigEvents[i]->dump(buffer, SIZE);
768            dprintf(fd, "\n    %s", buffer);
769        }
770        dprintf(fd, "\n");
771    } else {
772        dprintf(fd, " none\n");
773    }
774    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
775    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
776    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
777
778    if (locked) {
779        mLock.unlock();
780    }
781}
782
783void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
784{
785    const size_t SIZE = 256;
786    char buffer[SIZE];
787    String8 result;
788
789    size_t numEffectChains = mEffectChains.size();
790    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
791    write(fd, buffer, strlen(buffer));
792
793    for (size_t i = 0; i < numEffectChains; ++i) {
794        sp<EffectChain> chain = mEffectChains[i];
795        if (chain != 0) {
796            chain->dump(fd, args);
797        }
798    }
799}
800
801void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
802{
803    Mutex::Autolock _l(mLock);
804    acquireWakeLock_l(uid);
805}
806
807String16 AudioFlinger::ThreadBase::getWakeLockTag()
808{
809    switch (mType) {
810    case MIXER:
811        return String16("AudioMix");
812    case DIRECT:
813        return String16("AudioDirectOut");
814    case DUPLICATING:
815        return String16("AudioDup");
816    case RECORD:
817        return String16("AudioIn");
818    case OFFLOAD:
819        return String16("AudioOffload");
820    default:
821        ALOG_ASSERT(false);
822        return String16("AudioUnknown");
823    }
824}
825
826void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
827{
828    getPowerManager_l();
829    if (mPowerManager != 0) {
830        sp<IBinder> binder = new BBinder();
831        status_t status;
832        if (uid >= 0) {
833            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
834                    binder,
835                    getWakeLockTag(),
836                    String16("media"),
837                    uid,
838                    true /* FIXME force oneway contrary to .aidl */);
839        } else {
840            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
841                    binder,
842                    getWakeLockTag(),
843                    String16("media"),
844                    true /* FIXME force oneway contrary to .aidl */);
845        }
846        if (status == NO_ERROR) {
847            mWakeLockToken = binder;
848        }
849        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
850    }
851}
852
853void AudioFlinger::ThreadBase::releaseWakeLock()
854{
855    Mutex::Autolock _l(mLock);
856    releaseWakeLock_l();
857}
858
859void AudioFlinger::ThreadBase::releaseWakeLock_l()
860{
861    if (mWakeLockToken != 0) {
862        ALOGV("releaseWakeLock_l() %s", mThreadName);
863        if (mPowerManager != 0) {
864            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
865                    true /* FIXME force oneway contrary to .aidl */);
866        }
867        mWakeLockToken.clear();
868    }
869}
870
871void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
872    Mutex::Autolock _l(mLock);
873    updateWakeLockUids_l(uids);
874}
875
876void AudioFlinger::ThreadBase::getPowerManager_l() {
877
878    if (mPowerManager == 0) {
879        // use checkService() to avoid blocking if power service is not up yet
880        sp<IBinder> binder =
881            defaultServiceManager()->checkService(String16("power"));
882        if (binder == 0) {
883            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
884        } else {
885            mPowerManager = interface_cast<IPowerManager>(binder);
886            binder->linkToDeath(mDeathRecipient);
887        }
888    }
889}
890
891void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
892
893    getPowerManager_l();
894    if (mWakeLockToken == NULL) {
895        ALOGE("no wake lock to update!");
896        return;
897    }
898    if (mPowerManager != 0) {
899        sp<IBinder> binder = new BBinder();
900        status_t status;
901        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
902                    true /* FIXME force oneway contrary to .aidl */);
903        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
904    }
905}
906
907void AudioFlinger::ThreadBase::clearPowerManager()
908{
909    Mutex::Autolock _l(mLock);
910    releaseWakeLock_l();
911    mPowerManager.clear();
912}
913
914void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
915{
916    sp<ThreadBase> thread = mThread.promote();
917    if (thread != 0) {
918        thread->clearPowerManager();
919    }
920    ALOGW("power manager service died !!!");
921}
922
923void AudioFlinger::ThreadBase::setEffectSuspended(
924        const effect_uuid_t *type, bool suspend, int sessionId)
925{
926    Mutex::Autolock _l(mLock);
927    setEffectSuspended_l(type, suspend, sessionId);
928}
929
930void AudioFlinger::ThreadBase::setEffectSuspended_l(
931        const effect_uuid_t *type, bool suspend, int sessionId)
932{
933    sp<EffectChain> chain = getEffectChain_l(sessionId);
934    if (chain != 0) {
935        if (type != NULL) {
936            chain->setEffectSuspended_l(type, suspend);
937        } else {
938            chain->setEffectSuspendedAll_l(suspend);
939        }
940    }
941
942    updateSuspendedSessions_l(type, suspend, sessionId);
943}
944
945void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
946{
947    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
948    if (index < 0) {
949        return;
950    }
951
952    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
953            mSuspendedSessions.valueAt(index);
954
955    for (size_t i = 0; i < sessionEffects.size(); i++) {
956        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
957        for (int j = 0; j < desc->mRefCount; j++) {
958            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
959                chain->setEffectSuspendedAll_l(true);
960            } else {
961                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
962                    desc->mType.timeLow);
963                chain->setEffectSuspended_l(&desc->mType, true);
964            }
965        }
966    }
967}
968
969void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
970                                                         bool suspend,
971                                                         int sessionId)
972{
973    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
974
975    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
976
977    if (suspend) {
978        if (index >= 0) {
979            sessionEffects = mSuspendedSessions.valueAt(index);
980        } else {
981            mSuspendedSessions.add(sessionId, sessionEffects);
982        }
983    } else {
984        if (index < 0) {
985            return;
986        }
987        sessionEffects = mSuspendedSessions.valueAt(index);
988    }
989
990
991    int key = EffectChain::kKeyForSuspendAll;
992    if (type != NULL) {
993        key = type->timeLow;
994    }
995    index = sessionEffects.indexOfKey(key);
996
997    sp<SuspendedSessionDesc> desc;
998    if (suspend) {
999        if (index >= 0) {
1000            desc = sessionEffects.valueAt(index);
1001        } else {
1002            desc = new SuspendedSessionDesc();
1003            if (type != NULL) {
1004                desc->mType = *type;
1005            }
1006            sessionEffects.add(key, desc);
1007            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1008        }
1009        desc->mRefCount++;
1010    } else {
1011        if (index < 0) {
1012            return;
1013        }
1014        desc = sessionEffects.valueAt(index);
1015        if (--desc->mRefCount == 0) {
1016            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1017            sessionEffects.removeItemsAt(index);
1018            if (sessionEffects.isEmpty()) {
1019                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1020                                 sessionId);
1021                mSuspendedSessions.removeItem(sessionId);
1022            }
1023        }
1024    }
1025    if (!sessionEffects.isEmpty()) {
1026        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1027    }
1028}
1029
1030void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1031                                                            bool enabled,
1032                                                            int sessionId)
1033{
1034    Mutex::Autolock _l(mLock);
1035    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1036}
1037
1038void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1039                                                            bool enabled,
1040                                                            int sessionId)
1041{
1042    if (mType != RECORD) {
1043        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1044        // another session. This gives the priority to well behaved effect control panels
1045        // and applications not using global effects.
1046        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1047        // global effects
1048        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1049            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1050        }
1051    }
1052
1053    sp<EffectChain> chain = getEffectChain_l(sessionId);
1054    if (chain != 0) {
1055        chain->checkSuspendOnEffectEnabled(effect, enabled);
1056    }
1057}
1058
1059// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1060sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1061        const sp<AudioFlinger::Client>& client,
1062        const sp<IEffectClient>& effectClient,
1063        int32_t priority,
1064        int sessionId,
1065        effect_descriptor_t *desc,
1066        int *enabled,
1067        status_t *status)
1068{
1069    sp<EffectModule> effect;
1070    sp<EffectHandle> handle;
1071    status_t lStatus;
1072    sp<EffectChain> chain;
1073    bool chainCreated = false;
1074    bool effectCreated = false;
1075    bool effectRegistered = false;
1076
1077    lStatus = initCheck();
1078    if (lStatus != NO_ERROR) {
1079        ALOGW("createEffect_l() Audio driver not initialized.");
1080        goto Exit;
1081    }
1082
1083    // Reject any effect on Direct output threads for now, since the format of
1084    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1085    if (mType == DIRECT) {
1086        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1087                desc->name, mThreadName);
1088        lStatus = BAD_VALUE;
1089        goto Exit;
1090    }
1091
1092    // Reject any effect on mixer or duplicating multichannel sinks.
1093    // TODO: fix both format and multichannel issues with effects.
1094    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1095        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1096                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1097        lStatus = BAD_VALUE;
1098        goto Exit;
1099    }
1100
1101    // Allow global effects only on offloaded and mixer threads
1102    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1103        switch (mType) {
1104        case MIXER:
1105        case OFFLOAD:
1106            break;
1107        case DIRECT:
1108        case DUPLICATING:
1109        case RECORD:
1110        default:
1111            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1112                    desc->name, mThreadName);
1113            lStatus = BAD_VALUE;
1114            goto Exit;
1115        }
1116    }
1117
1118    // Only Pre processor effects are allowed on input threads and only on input threads
1119    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1120        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1121                desc->name, desc->flags, mType);
1122        lStatus = BAD_VALUE;
1123        goto Exit;
1124    }
1125
1126    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1127
1128    { // scope for mLock
1129        Mutex::Autolock _l(mLock);
1130
1131        // check for existing effect chain with the requested audio session
1132        chain = getEffectChain_l(sessionId);
1133        if (chain == 0) {
1134            // create a new chain for this session
1135            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1136            chain = new EffectChain(this, sessionId);
1137            addEffectChain_l(chain);
1138            chain->setStrategy(getStrategyForSession_l(sessionId));
1139            chainCreated = true;
1140        } else {
1141            effect = chain->getEffectFromDesc_l(desc);
1142        }
1143
1144        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1145
1146        if (effect == 0) {
1147            int id = mAudioFlinger->nextUniqueId();
1148            // Check CPU and memory usage
1149            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1150            if (lStatus != NO_ERROR) {
1151                goto Exit;
1152            }
1153            effectRegistered = true;
1154            // create a new effect module if none present in the chain
1155            effect = new EffectModule(this, chain, desc, id, sessionId);
1156            lStatus = effect->status();
1157            if (lStatus != NO_ERROR) {
1158                goto Exit;
1159            }
1160            effect->setOffloaded(mType == OFFLOAD, mId);
1161
1162            lStatus = chain->addEffect_l(effect);
1163            if (lStatus != NO_ERROR) {
1164                goto Exit;
1165            }
1166            effectCreated = true;
1167
1168            effect->setDevice(mOutDevice);
1169            effect->setDevice(mInDevice);
1170            effect->setMode(mAudioFlinger->getMode());
1171            effect->setAudioSource(mAudioSource);
1172        }
1173        // create effect handle and connect it to effect module
1174        handle = new EffectHandle(effect, client, effectClient, priority);
1175        lStatus = handle->initCheck();
1176        if (lStatus == OK) {
1177            lStatus = effect->addHandle(handle.get());
1178        }
1179        if (enabled != NULL) {
1180            *enabled = (int)effect->isEnabled();
1181        }
1182    }
1183
1184Exit:
1185    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1186        Mutex::Autolock _l(mLock);
1187        if (effectCreated) {
1188            chain->removeEffect_l(effect);
1189        }
1190        if (effectRegistered) {
1191            AudioSystem::unregisterEffect(effect->id());
1192        }
1193        if (chainCreated) {
1194            removeEffectChain_l(chain);
1195        }
1196        handle.clear();
1197    }
1198
1199    *status = lStatus;
1200    return handle;
1201}
1202
1203sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1204{
1205    Mutex::Autolock _l(mLock);
1206    return getEffect_l(sessionId, effectId);
1207}
1208
1209sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1210{
1211    sp<EffectChain> chain = getEffectChain_l(sessionId);
1212    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1213}
1214
1215// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1216// PlaybackThread::mLock held
1217status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1218{
1219    // check for existing effect chain with the requested audio session
1220    int sessionId = effect->sessionId();
1221    sp<EffectChain> chain = getEffectChain_l(sessionId);
1222    bool chainCreated = false;
1223
1224    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1225             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1226                    this, effect->desc().name, effect->desc().flags);
1227
1228    if (chain == 0) {
1229        // create a new chain for this session
1230        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1231        chain = new EffectChain(this, sessionId);
1232        addEffectChain_l(chain);
1233        chain->setStrategy(getStrategyForSession_l(sessionId));
1234        chainCreated = true;
1235    }
1236    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1237
1238    if (chain->getEffectFromId_l(effect->id()) != 0) {
1239        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1240                this, effect->desc().name, chain.get());
1241        return BAD_VALUE;
1242    }
1243
1244    effect->setOffloaded(mType == OFFLOAD, mId);
1245
1246    status_t status = chain->addEffect_l(effect);
1247    if (status != NO_ERROR) {
1248        if (chainCreated) {
1249            removeEffectChain_l(chain);
1250        }
1251        return status;
1252    }
1253
1254    effect->setDevice(mOutDevice);
1255    effect->setDevice(mInDevice);
1256    effect->setMode(mAudioFlinger->getMode());
1257    effect->setAudioSource(mAudioSource);
1258    return NO_ERROR;
1259}
1260
1261void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1262
1263    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1264    effect_descriptor_t desc = effect->desc();
1265    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1266        detachAuxEffect_l(effect->id());
1267    }
1268
1269    sp<EffectChain> chain = effect->chain().promote();
1270    if (chain != 0) {
1271        // remove effect chain if removing last effect
1272        if (chain->removeEffect_l(effect) == 0) {
1273            removeEffectChain_l(chain);
1274        }
1275    } else {
1276        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1277    }
1278}
1279
1280void AudioFlinger::ThreadBase::lockEffectChains_l(
1281        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1282{
1283    effectChains = mEffectChains;
1284    for (size_t i = 0; i < mEffectChains.size(); i++) {
1285        mEffectChains[i]->lock();
1286    }
1287}
1288
1289void AudioFlinger::ThreadBase::unlockEffectChains(
1290        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1291{
1292    for (size_t i = 0; i < effectChains.size(); i++) {
1293        effectChains[i]->unlock();
1294    }
1295}
1296
1297sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1298{
1299    Mutex::Autolock _l(mLock);
1300    return getEffectChain_l(sessionId);
1301}
1302
1303sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1304{
1305    size_t size = mEffectChains.size();
1306    for (size_t i = 0; i < size; i++) {
1307        if (mEffectChains[i]->sessionId() == sessionId) {
1308            return mEffectChains[i];
1309        }
1310    }
1311    return 0;
1312}
1313
1314void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1315{
1316    Mutex::Autolock _l(mLock);
1317    size_t size = mEffectChains.size();
1318    for (size_t i = 0; i < size; i++) {
1319        mEffectChains[i]->setMode_l(mode);
1320    }
1321}
1322
1323void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1324{
1325    config->type = AUDIO_PORT_TYPE_MIX;
1326    config->ext.mix.handle = mId;
1327    config->sample_rate = mSampleRate;
1328    config->format = mFormat;
1329    config->channel_mask = mChannelMask;
1330    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1331                            AUDIO_PORT_CONFIG_FORMAT;
1332}
1333
1334
1335// ----------------------------------------------------------------------------
1336//      Playback
1337// ----------------------------------------------------------------------------
1338
1339AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1340                                             AudioStreamOut* output,
1341                                             audio_io_handle_t id,
1342                                             audio_devices_t device,
1343                                             type_t type)
1344    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
1345        mNormalFrameCount(0), mSinkBuffer(NULL),
1346        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1347        mMixerBuffer(NULL),
1348        mMixerBufferSize(0),
1349        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1350        mMixerBufferValid(false),
1351        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1352        mEffectBuffer(NULL),
1353        mEffectBufferSize(0),
1354        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1355        mEffectBufferValid(false),
1356        mSuspended(0), mBytesWritten(0),
1357        mActiveTracksGeneration(0),
1358        // mStreamTypes[] initialized in constructor body
1359        mOutput(output),
1360        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1361        mMixerStatus(MIXER_IDLE),
1362        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1363        standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
1364        mBytesRemaining(0),
1365        mCurrentWriteLength(0),
1366        mUseAsyncWrite(false),
1367        mWriteAckSequence(0),
1368        mDrainSequence(0),
1369        mSignalPending(false),
1370        mScreenState(AudioFlinger::mScreenState),
1371        // index 0 is reserved for normal mixer's submix
1372        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1373        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1374        // mLatchD, mLatchQ,
1375        mLatchDValid(false), mLatchQValid(false)
1376{
1377    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1378    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1379
1380    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1381    // it would be safer to explicitly pass initial masterVolume/masterMute as
1382    // parameter.
1383    //
1384    // If the HAL we are using has support for master volume or master mute,
1385    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1386    // and the mute set to false).
1387    mMasterVolume = audioFlinger->masterVolume_l();
1388    mMasterMute = audioFlinger->masterMute_l();
1389    if (mOutput && mOutput->audioHwDev) {
1390        if (mOutput->audioHwDev->canSetMasterVolume()) {
1391            mMasterVolume = 1.0;
1392        }
1393
1394        if (mOutput->audioHwDev->canSetMasterMute()) {
1395            mMasterMute = false;
1396        }
1397    }
1398
1399    readOutputParameters_l();
1400
1401    // ++ operator does not compile
1402    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1403            stream = (audio_stream_type_t) (stream + 1)) {
1404        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1405        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1406    }
1407}
1408
1409AudioFlinger::PlaybackThread::~PlaybackThread()
1410{
1411    mAudioFlinger->unregisterWriter(mNBLogWriter);
1412    free(mSinkBuffer);
1413    free(mMixerBuffer);
1414    free(mEffectBuffer);
1415}
1416
1417void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1418{
1419    dumpInternals(fd, args);
1420    dumpTracks(fd, args);
1421    dumpEffectChains(fd, args);
1422}
1423
1424void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1425{
1426    const size_t SIZE = 256;
1427    char buffer[SIZE];
1428    String8 result;
1429
1430    result.appendFormat("  Stream volumes in dB: ");
1431    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1432        const stream_type_t *st = &mStreamTypes[i];
1433        if (i > 0) {
1434            result.appendFormat(", ");
1435        }
1436        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1437        if (st->mute) {
1438            result.append("M");
1439        }
1440    }
1441    result.append("\n");
1442    write(fd, result.string(), result.length());
1443    result.clear();
1444
1445    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1446    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1447    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1448            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1449
1450    size_t numtracks = mTracks.size();
1451    size_t numactive = mActiveTracks.size();
1452    dprintf(fd, "  %d Tracks", numtracks);
1453    size_t numactiveseen = 0;
1454    if (numtracks) {
1455        dprintf(fd, " of which %d are active\n", numactive);
1456        Track::appendDumpHeader(result);
1457        for (size_t i = 0; i < numtracks; ++i) {
1458            sp<Track> track = mTracks[i];
1459            if (track != 0) {
1460                bool active = mActiveTracks.indexOf(track) >= 0;
1461                if (active) {
1462                    numactiveseen++;
1463                }
1464                track->dump(buffer, SIZE, active);
1465                result.append(buffer);
1466            }
1467        }
1468    } else {
1469        result.append("\n");
1470    }
1471    if (numactiveseen != numactive) {
1472        // some tracks in the active list were not in the tracks list
1473        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1474                " not in the track list\n");
1475        result.append(buffer);
1476        Track::appendDumpHeader(result);
1477        for (size_t i = 0; i < numactive; ++i) {
1478            sp<Track> track = mActiveTracks[i].promote();
1479            if (track != 0 && mTracks.indexOf(track) < 0) {
1480                track->dump(buffer, SIZE, true);
1481                result.append(buffer);
1482            }
1483        }
1484    }
1485
1486    write(fd, result.string(), result.size());
1487}
1488
1489void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1490{
1491    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1492
1493    dumpBase(fd, args);
1494
1495    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1496    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1497    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1498    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1499    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1500    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1501    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1502    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1503    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1504    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1505    AudioStreamOut *output = mOutput;
1506    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1507    String8 flagsAsString = outputFlagsToString(flags);
1508    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1509}
1510
1511// Thread virtuals
1512
1513void AudioFlinger::PlaybackThread::onFirstRef()
1514{
1515    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1516}
1517
1518// ThreadBase virtuals
1519void AudioFlinger::PlaybackThread::preExit()
1520{
1521    ALOGV("  preExit()");
1522    // FIXME this is using hard-coded strings but in the future, this functionality will be
1523    //       converted to use audio HAL extensions required to support tunneling
1524    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1525}
1526
1527// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1528sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1529        const sp<AudioFlinger::Client>& client,
1530        audio_stream_type_t streamType,
1531        uint32_t sampleRate,
1532        audio_format_t format,
1533        audio_channel_mask_t channelMask,
1534        size_t *pFrameCount,
1535        const sp<IMemory>& sharedBuffer,
1536        int sessionId,
1537        IAudioFlinger::track_flags_t *flags,
1538        pid_t tid,
1539        int uid,
1540        status_t *status)
1541{
1542    size_t frameCount = *pFrameCount;
1543    sp<Track> track;
1544    status_t lStatus;
1545
1546    bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1547
1548    // client expresses a preference for FAST, but we get the final say
1549    if (*flags & IAudioFlinger::TRACK_FAST) {
1550      if (
1551            // not timed
1552            (!isTimed) &&
1553            // either of these use cases:
1554            (
1555              // use case 1: shared buffer with any frame count
1556              (
1557                (sharedBuffer != 0)
1558              ) ||
1559              // use case 2: frame count is default or at least as large as HAL
1560              (
1561                // we formerly checked for a callback handler (non-0 tid),
1562                // but that is no longer required for TRANSFER_OBTAIN mode
1563                ((frameCount == 0) ||
1564                (frameCount >= mFrameCount))
1565              )
1566            ) &&
1567            // PCM data
1568            audio_is_linear_pcm(format) &&
1569            // identical channel mask to sink, or mono in and stereo sink
1570            (channelMask == mChannelMask ||
1571                    (channelMask == AUDIO_CHANNEL_OUT_MONO &&
1572                            mChannelMask == AUDIO_CHANNEL_OUT_STEREO)) &&
1573            // hardware sample rate
1574            (sampleRate == mSampleRate) &&
1575            // normal mixer has an associated fast mixer
1576            hasFastMixer() &&
1577            // there are sufficient fast track slots available
1578            (mFastTrackAvailMask != 0)
1579            // FIXME test that MixerThread for this fast track has a capable output HAL
1580            // FIXME add a permission test also?
1581        ) {
1582        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1583        if (frameCount == 0) {
1584            // read the fast track multiplier property the first time it is needed
1585            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1586            if (ok != 0) {
1587                ALOGE("%s pthread_once failed: %d", __func__, ok);
1588            }
1589            frameCount = mFrameCount * sFastTrackMultiplier;
1590        }
1591        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1592                frameCount, mFrameCount);
1593      } else {
1594        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1595                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1596                "sampleRate=%u mSampleRate=%u "
1597                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1598                isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1599                audio_is_linear_pcm(format),
1600                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1601        *flags &= ~IAudioFlinger::TRACK_FAST;
1602      }
1603    }
1604    // For normal PCM streaming tracks, update minimum frame count.
1605    // For compatibility with AudioTrack calculation, buffer depth is forced
1606    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1607    // This is probably too conservative, but legacy application code may depend on it.
1608    // If you change this calculation, also review the start threshold which is related.
1609    if (!(*flags & IAudioFlinger::TRACK_FAST)
1610            && audio_is_linear_pcm(format) && sharedBuffer == 0) {
1611        // this must match AudioTrack.cpp calculateMinFrameCount().
1612        // TODO: Move to a common library
1613        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1614        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1615        if (minBufCount < 2) {
1616            minBufCount = 2;
1617        }
1618        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1619        // or the client should compute and pass in a larger buffer request.
1620        size_t minFrameCount =
1621                minBufCount * sourceFramesNeededWithTimestretch(
1622                        sampleRate, mNormalFrameCount,
1623                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1624        if (frameCount < minFrameCount) { // including frameCount == 0
1625            frameCount = minFrameCount;
1626        }
1627    }
1628    *pFrameCount = frameCount;
1629
1630    switch (mType) {
1631
1632    case DIRECT:
1633        if (audio_is_linear_pcm(format)) {
1634            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1635                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1636                        "for output %p with format %#x",
1637                        sampleRate, format, channelMask, mOutput, mFormat);
1638                lStatus = BAD_VALUE;
1639                goto Exit;
1640            }
1641        }
1642        break;
1643
1644    case OFFLOAD:
1645        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1646            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1647                    "for output %p with format %#x",
1648                    sampleRate, format, channelMask, mOutput, mFormat);
1649            lStatus = BAD_VALUE;
1650            goto Exit;
1651        }
1652        break;
1653
1654    default:
1655        if (!audio_is_linear_pcm(format)) {
1656                ALOGE("createTrack_l() Bad parameter: format %#x \""
1657                        "for output %p with format %#x",
1658                        format, mOutput, mFormat);
1659                lStatus = BAD_VALUE;
1660                goto Exit;
1661        }
1662        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1663            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1664            lStatus = BAD_VALUE;
1665            goto Exit;
1666        }
1667        break;
1668
1669    }
1670
1671    lStatus = initCheck();
1672    if (lStatus != NO_ERROR) {
1673        ALOGE("createTrack_l() audio driver not initialized");
1674        goto Exit;
1675    }
1676
1677    { // scope for mLock
1678        Mutex::Autolock _l(mLock);
1679
1680        // all tracks in same audio session must share the same routing strategy otherwise
1681        // conflicts will happen when tracks are moved from one output to another by audio policy
1682        // manager
1683        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1684        for (size_t i = 0; i < mTracks.size(); ++i) {
1685            sp<Track> t = mTracks[i];
1686            if (t != 0 && t->isExternalTrack()) {
1687                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1688                if (sessionId == t->sessionId() && strategy != actual) {
1689                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1690                            strategy, actual);
1691                    lStatus = BAD_VALUE;
1692                    goto Exit;
1693                }
1694            }
1695        }
1696
1697        if (!isTimed) {
1698            track = new Track(this, client, streamType, sampleRate, format,
1699                              channelMask, frameCount, NULL, sharedBuffer,
1700                              sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1701        } else {
1702            track = TimedTrack::create(this, client, streamType, sampleRate, format,
1703                    channelMask, frameCount, sharedBuffer, sessionId, uid);
1704        }
1705
1706        // new Track always returns non-NULL,
1707        // but TimedTrack::create() is a factory that could fail by returning NULL
1708        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1709        if (lStatus != NO_ERROR) {
1710            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1711            // track must be cleared from the caller as the caller has the AF lock
1712            goto Exit;
1713        }
1714        mTracks.add(track);
1715
1716        sp<EffectChain> chain = getEffectChain_l(sessionId);
1717        if (chain != 0) {
1718            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1719            track->setMainBuffer(chain->inBuffer());
1720            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1721            chain->incTrackCnt();
1722        }
1723
1724        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1725            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1726            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1727            // so ask activity manager to do this on our behalf
1728            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1729        }
1730    }
1731
1732    lStatus = NO_ERROR;
1733
1734Exit:
1735    *status = lStatus;
1736    return track;
1737}
1738
1739uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1740{
1741    return latency;
1742}
1743
1744uint32_t AudioFlinger::PlaybackThread::latency() const
1745{
1746    Mutex::Autolock _l(mLock);
1747    return latency_l();
1748}
1749uint32_t AudioFlinger::PlaybackThread::latency_l() const
1750{
1751    if (initCheck() == NO_ERROR) {
1752        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1753    } else {
1754        return 0;
1755    }
1756}
1757
1758void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1759{
1760    Mutex::Autolock _l(mLock);
1761    // Don't apply master volume in SW if our HAL can do it for us.
1762    if (mOutput && mOutput->audioHwDev &&
1763        mOutput->audioHwDev->canSetMasterVolume()) {
1764        mMasterVolume = 1.0;
1765    } else {
1766        mMasterVolume = value;
1767    }
1768}
1769
1770void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1771{
1772    Mutex::Autolock _l(mLock);
1773    // Don't apply master mute in SW if our HAL can do it for us.
1774    if (mOutput && mOutput->audioHwDev &&
1775        mOutput->audioHwDev->canSetMasterMute()) {
1776        mMasterMute = false;
1777    } else {
1778        mMasterMute = muted;
1779    }
1780}
1781
1782void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1783{
1784    Mutex::Autolock _l(mLock);
1785    mStreamTypes[stream].volume = value;
1786    broadcast_l();
1787}
1788
1789void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1790{
1791    Mutex::Autolock _l(mLock);
1792    mStreamTypes[stream].mute = muted;
1793    broadcast_l();
1794}
1795
1796float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1797{
1798    Mutex::Autolock _l(mLock);
1799    return mStreamTypes[stream].volume;
1800}
1801
1802// addTrack_l() must be called with ThreadBase::mLock held
1803status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1804{
1805    status_t status = ALREADY_EXISTS;
1806
1807    // set retry count for buffer fill
1808    track->mRetryCount = kMaxTrackStartupRetries;
1809    if (mActiveTracks.indexOf(track) < 0) {
1810        // the track is newly added, make sure it fills up all its
1811        // buffers before playing. This is to ensure the client will
1812        // effectively get the latency it requested.
1813        if (track->isExternalTrack()) {
1814            TrackBase::track_state state = track->mState;
1815            mLock.unlock();
1816            status = AudioSystem::startOutput(mId, track->streamType(),
1817                                              (audio_session_t)track->sessionId());
1818            mLock.lock();
1819            // abort track was stopped/paused while we released the lock
1820            if (state != track->mState) {
1821                if (status == NO_ERROR) {
1822                    mLock.unlock();
1823                    AudioSystem::stopOutput(mId, track->streamType(),
1824                                            (audio_session_t)track->sessionId());
1825                    mLock.lock();
1826                }
1827                return INVALID_OPERATION;
1828            }
1829            // abort if start is rejected by audio policy manager
1830            if (status != NO_ERROR) {
1831                return PERMISSION_DENIED;
1832            }
1833#ifdef ADD_BATTERY_DATA
1834            // to track the speaker usage
1835            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1836#endif
1837        }
1838
1839        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1840        track->mResetDone = false;
1841        track->mPresentationCompleteFrames = 0;
1842        mActiveTracks.add(track);
1843        mWakeLockUids.add(track->uid());
1844        mActiveTracksGeneration++;
1845        mLatestActiveTrack = track;
1846        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1847        if (chain != 0) {
1848            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1849                    track->sessionId());
1850            chain->incActiveTrackCnt();
1851        }
1852
1853        status = NO_ERROR;
1854    }
1855
1856    onAddNewTrack_l();
1857    return status;
1858}
1859
1860bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1861{
1862    track->terminate();
1863    // active tracks are removed by threadLoop()
1864    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1865    track->mState = TrackBase::STOPPED;
1866    if (!trackActive) {
1867        removeTrack_l(track);
1868    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1869        track->mState = TrackBase::STOPPING_1;
1870    }
1871
1872    return trackActive;
1873}
1874
1875void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1876{
1877    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1878    mTracks.remove(track);
1879    deleteTrackName_l(track->name());
1880    // redundant as track is about to be destroyed, for dumpsys only
1881    track->mName = -1;
1882    if (track->isFastTrack()) {
1883        int index = track->mFastIndex;
1884        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1885        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1886        mFastTrackAvailMask |= 1 << index;
1887        // redundant as track is about to be destroyed, for dumpsys only
1888        track->mFastIndex = -1;
1889    }
1890    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1891    if (chain != 0) {
1892        chain->decTrackCnt();
1893    }
1894}
1895
1896void AudioFlinger::PlaybackThread::broadcast_l()
1897{
1898    // Thread could be blocked waiting for async
1899    // so signal it to handle state changes immediately
1900    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1901    // be lost so we also flag to prevent it blocking on mWaitWorkCV
1902    mSignalPending = true;
1903    mWaitWorkCV.broadcast();
1904}
1905
1906String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
1907{
1908    Mutex::Autolock _l(mLock);
1909    if (initCheck() != NO_ERROR) {
1910        return String8();
1911    }
1912
1913    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
1914    const String8 out_s8(s);
1915    free(s);
1916    return out_s8;
1917}
1918
1919void AudioFlinger::PlaybackThread::audioConfigChanged(int event, int param) {
1920    AudioSystem::OutputDescriptor desc;
1921    void *param2 = NULL;
1922
1923    ALOGV("PlaybackThread::audioConfigChanged, thread %p, event %d, param %d", this, event,
1924            param);
1925
1926    switch (event) {
1927    case AudioSystem::OUTPUT_OPENED:
1928    case AudioSystem::OUTPUT_CONFIG_CHANGED:
1929        desc.channelMask = mChannelMask;
1930        desc.samplingRate = mSampleRate;
1931        desc.format = mFormat;
1932        desc.frameCount = mNormalFrameCount; // FIXME see
1933                                             // AudioFlinger::frameCount(audio_io_handle_t)
1934        desc.latency = latency_l();
1935        param2 = &desc;
1936        break;
1937
1938    case AudioSystem::STREAM_CONFIG_CHANGED:
1939        param2 = &param;
1940    case AudioSystem::OUTPUT_CLOSED:
1941    default:
1942        break;
1943    }
1944    mAudioFlinger->audioConfigChanged(event, mId, param2);
1945}
1946
1947void AudioFlinger::PlaybackThread::writeCallback()
1948{
1949    ALOG_ASSERT(mCallbackThread != 0);
1950    mCallbackThread->resetWriteBlocked();
1951}
1952
1953void AudioFlinger::PlaybackThread::drainCallback()
1954{
1955    ALOG_ASSERT(mCallbackThread != 0);
1956    mCallbackThread->resetDraining();
1957}
1958
1959void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
1960{
1961    Mutex::Autolock _l(mLock);
1962    // reject out of sequence requests
1963    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
1964        mWriteAckSequence &= ~1;
1965        mWaitWorkCV.signal();
1966    }
1967}
1968
1969void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
1970{
1971    Mutex::Autolock _l(mLock);
1972    // reject out of sequence requests
1973    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
1974        mDrainSequence &= ~1;
1975        mWaitWorkCV.signal();
1976    }
1977}
1978
1979// static
1980int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
1981                                                void *param __unused,
1982                                                void *cookie)
1983{
1984    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
1985    ALOGV("asyncCallback() event %d", event);
1986    switch (event) {
1987    case STREAM_CBK_EVENT_WRITE_READY:
1988        me->writeCallback();
1989        break;
1990    case STREAM_CBK_EVENT_DRAIN_READY:
1991        me->drainCallback();
1992        break;
1993    default:
1994        ALOGW("asyncCallback() unknown event %d", event);
1995        break;
1996    }
1997    return 0;
1998}
1999
2000void AudioFlinger::PlaybackThread::readOutputParameters_l()
2001{
2002    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2003    mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
2004    mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
2005    if (!audio_is_output_channel(mChannelMask)) {
2006        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2007    }
2008    if ((mType == MIXER || mType == DUPLICATING)
2009            && !isValidPcmSinkChannelMask(mChannelMask)) {
2010        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2011                mChannelMask);
2012    }
2013    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2014    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2015    mFormat = mHALFormat;
2016    if (!audio_is_valid_format(mFormat)) {
2017        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2018    }
2019    if ((mType == MIXER || mType == DUPLICATING)
2020            && !isValidPcmSinkFormat(mFormat)) {
2021        LOG_FATAL("HAL format %#x not supported for mixed output",
2022                mFormat);
2023    }
2024    mFrameSize = mOutput->getFrameSize();
2025    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2026    mFrameCount = mBufferSize / mFrameSize;
2027    if (mFrameCount & 15) {
2028        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2029                mFrameCount);
2030    }
2031
2032    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2033            (mOutput->stream->set_callback != NULL)) {
2034        if (mOutput->stream->set_callback(mOutput->stream,
2035                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2036            mUseAsyncWrite = true;
2037            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2038        }
2039    }
2040
2041    mHwSupportsPause = false;
2042    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2043        if (mOutput->stream->pause != NULL) {
2044            if (mOutput->stream->resume != NULL) {
2045                mHwSupportsPause = true;
2046            } else {
2047                ALOGW("direct output implements pause but not resume");
2048            }
2049        } else if (mOutput->stream->resume != NULL) {
2050            ALOGW("direct output implements resume but not pause");
2051        }
2052    }
2053
2054    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2055        // For best precision, we use float instead of the associated output
2056        // device format (typically PCM 16 bit).
2057
2058        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2059        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2060        mBufferSize = mFrameSize * mFrameCount;
2061
2062        // TODO: We currently use the associated output device channel mask and sample rate.
2063        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2064        // (if a valid mask) to avoid premature downmix.
2065        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2066        // instead of the output device sample rate to avoid loss of high frequency information.
2067        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2068    }
2069
2070    // Calculate size of normal sink buffer relative to the HAL output buffer size
2071    double multiplier = 1.0;
2072    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2073            kUseFastMixer == FastMixer_Dynamic)) {
2074        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2075        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2076        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2077        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2078        maxNormalFrameCount = maxNormalFrameCount & ~15;
2079        if (maxNormalFrameCount < minNormalFrameCount) {
2080            maxNormalFrameCount = minNormalFrameCount;
2081        }
2082        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2083        if (multiplier <= 1.0) {
2084            multiplier = 1.0;
2085        } else if (multiplier <= 2.0) {
2086            if (2 * mFrameCount <= maxNormalFrameCount) {
2087                multiplier = 2.0;
2088            } else {
2089                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2090            }
2091        } else {
2092            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2093            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2094            // track, but we sometimes have to do this to satisfy the maximum frame count
2095            // constraint)
2096            // FIXME this rounding up should not be done if no HAL SRC
2097            uint32_t truncMult = (uint32_t) multiplier;
2098            if ((truncMult & 1)) {
2099                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2100                    ++truncMult;
2101                }
2102            }
2103            multiplier = (double) truncMult;
2104        }
2105    }
2106    mNormalFrameCount = multiplier * mFrameCount;
2107    // round up to nearest 16 frames to satisfy AudioMixer
2108    if (mType == MIXER || mType == DUPLICATING) {
2109        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2110    }
2111    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2112            mNormalFrameCount);
2113
2114    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2115    // Originally this was int16_t[] array, need to remove legacy implications.
2116    free(mSinkBuffer);
2117    mSinkBuffer = NULL;
2118    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2119    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2120    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2121    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2122
2123    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2124    // drives the output.
2125    free(mMixerBuffer);
2126    mMixerBuffer = NULL;
2127    if (mMixerBufferEnabled) {
2128        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2129        mMixerBufferSize = mNormalFrameCount * mChannelCount
2130                * audio_bytes_per_sample(mMixerBufferFormat);
2131        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2132    }
2133    free(mEffectBuffer);
2134    mEffectBuffer = NULL;
2135    if (mEffectBufferEnabled) {
2136        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2137        mEffectBufferSize = mNormalFrameCount * mChannelCount
2138                * audio_bytes_per_sample(mEffectBufferFormat);
2139        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2140    }
2141
2142    // force reconfiguration of effect chains and engines to take new buffer size and audio
2143    // parameters into account
2144    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2145    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2146    // matter.
2147    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2148    Vector< sp<EffectChain> > effectChains = mEffectChains;
2149    for (size_t i = 0; i < effectChains.size(); i ++) {
2150        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2151    }
2152}
2153
2154
2155status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2156{
2157    if (halFrames == NULL || dspFrames == NULL) {
2158        return BAD_VALUE;
2159    }
2160    Mutex::Autolock _l(mLock);
2161    if (initCheck() != NO_ERROR) {
2162        return INVALID_OPERATION;
2163    }
2164    size_t framesWritten = mBytesWritten / mFrameSize;
2165    *halFrames = framesWritten;
2166
2167    if (isSuspended()) {
2168        // return an estimation of rendered frames when the output is suspended
2169        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2170        *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2171        return NO_ERROR;
2172    } else {
2173        status_t status;
2174        uint32_t frames;
2175        status = mOutput->getRenderPosition(&frames);
2176        *dspFrames = (size_t)frames;
2177        return status;
2178    }
2179}
2180
2181uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2182{
2183    Mutex::Autolock _l(mLock);
2184    uint32_t result = 0;
2185    if (getEffectChain_l(sessionId) != 0) {
2186        result = EFFECT_SESSION;
2187    }
2188
2189    for (size_t i = 0; i < mTracks.size(); ++i) {
2190        sp<Track> track = mTracks[i];
2191        if (sessionId == track->sessionId() && !track->isInvalid()) {
2192            result |= TRACK_SESSION;
2193            break;
2194        }
2195    }
2196
2197    return result;
2198}
2199
2200uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2201{
2202    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2203    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2204    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2205        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2206    }
2207    for (size_t i = 0; i < mTracks.size(); i++) {
2208        sp<Track> track = mTracks[i];
2209        if (sessionId == track->sessionId() && !track->isInvalid()) {
2210            return AudioSystem::getStrategyForStream(track->streamType());
2211        }
2212    }
2213    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2214}
2215
2216
2217AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2218{
2219    Mutex::Autolock _l(mLock);
2220    return mOutput;
2221}
2222
2223AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2224{
2225    Mutex::Autolock _l(mLock);
2226    AudioStreamOut *output = mOutput;
2227    mOutput = NULL;
2228    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2229    //       must push a NULL and wait for ack
2230    mOutputSink.clear();
2231    mPipeSink.clear();
2232    mNormalSink.clear();
2233    return output;
2234}
2235
2236// this method must always be called either with ThreadBase mLock held or inside the thread loop
2237audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2238{
2239    if (mOutput == NULL) {
2240        return NULL;
2241    }
2242    return &mOutput->stream->common;
2243}
2244
2245uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2246{
2247    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2248}
2249
2250status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2251{
2252    if (!isValidSyncEvent(event)) {
2253        return BAD_VALUE;
2254    }
2255
2256    Mutex::Autolock _l(mLock);
2257
2258    for (size_t i = 0; i < mTracks.size(); ++i) {
2259        sp<Track> track = mTracks[i];
2260        if (event->triggerSession() == track->sessionId()) {
2261            (void) track->setSyncEvent(event);
2262            return NO_ERROR;
2263        }
2264    }
2265
2266    return NAME_NOT_FOUND;
2267}
2268
2269bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2270{
2271    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2272}
2273
2274void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2275        const Vector< sp<Track> >& tracksToRemove)
2276{
2277    size_t count = tracksToRemove.size();
2278    if (count > 0) {
2279        for (size_t i = 0 ; i < count ; i++) {
2280            const sp<Track>& track = tracksToRemove.itemAt(i);
2281            if (track->isExternalTrack()) {
2282                AudioSystem::stopOutput(mId, track->streamType(),
2283                                        (audio_session_t)track->sessionId());
2284#ifdef ADD_BATTERY_DATA
2285                // to track the speaker usage
2286                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2287#endif
2288                if (track->isTerminated()) {
2289                    AudioSystem::releaseOutput(mId, track->streamType(),
2290                                               (audio_session_t)track->sessionId());
2291                }
2292            }
2293        }
2294    }
2295}
2296
2297void AudioFlinger::PlaybackThread::checkSilentMode_l()
2298{
2299    if (!mMasterMute) {
2300        char value[PROPERTY_VALUE_MAX];
2301        if (property_get("ro.audio.silent", value, "0") > 0) {
2302            char *endptr;
2303            unsigned long ul = strtoul(value, &endptr, 0);
2304            if (*endptr == '\0' && ul != 0) {
2305                ALOGD("Silence is golden");
2306                // The setprop command will not allow a property to be changed after
2307                // the first time it is set, so we don't have to worry about un-muting.
2308                setMasterMute_l(true);
2309            }
2310        }
2311    }
2312}
2313
2314// shared by MIXER and DIRECT, overridden by DUPLICATING
2315ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2316{
2317    // FIXME rewrite to reduce number of system calls
2318    mLastWriteTime = systemTime();
2319    mInWrite = true;
2320    ssize_t bytesWritten;
2321    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2322
2323    // If an NBAIO sink is present, use it to write the normal mixer's submix
2324    if (mNormalSink != 0) {
2325
2326        const size_t count = mBytesRemaining / mFrameSize;
2327
2328        ATRACE_BEGIN("write");
2329        // update the setpoint when AudioFlinger::mScreenState changes
2330        uint32_t screenState = AudioFlinger::mScreenState;
2331        if (screenState != mScreenState) {
2332            mScreenState = screenState;
2333            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2334            if (pipe != NULL) {
2335                pipe->setAvgFrames((mScreenState & 1) ?
2336                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2337            }
2338        }
2339        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2340        ATRACE_END();
2341        if (framesWritten > 0) {
2342            bytesWritten = framesWritten * mFrameSize;
2343        } else {
2344            bytesWritten = framesWritten;
2345        }
2346        mLatchDValid = false;
2347        status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2348        if (status == NO_ERROR) {
2349            size_t totalFramesWritten = mNormalSink->framesWritten();
2350            if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2351                mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2352                // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2353                mLatchDValid = true;
2354            }
2355        }
2356    // otherwise use the HAL / AudioStreamOut directly
2357    } else {
2358        // Direct output and offload threads
2359
2360        if (mUseAsyncWrite) {
2361            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2362            mWriteAckSequence += 2;
2363            mWriteAckSequence |= 1;
2364            ALOG_ASSERT(mCallbackThread != 0);
2365            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2366        }
2367        // FIXME We should have an implementation of timestamps for direct output threads.
2368        // They are used e.g for multichannel PCM playback over HDMI.
2369        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2370        if (mUseAsyncWrite &&
2371                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2372            // do not wait for async callback in case of error of full write
2373            mWriteAckSequence &= ~1;
2374            ALOG_ASSERT(mCallbackThread != 0);
2375            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2376        }
2377    }
2378
2379    mNumWrites++;
2380    mInWrite = false;
2381    mStandby = false;
2382    return bytesWritten;
2383}
2384
2385void AudioFlinger::PlaybackThread::threadLoop_drain()
2386{
2387    if (mOutput->stream->drain) {
2388        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2389        if (mUseAsyncWrite) {
2390            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2391            mDrainSequence |= 1;
2392            ALOG_ASSERT(mCallbackThread != 0);
2393            mCallbackThread->setDraining(mDrainSequence);
2394        }
2395        mOutput->stream->drain(mOutput->stream,
2396            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2397                                                : AUDIO_DRAIN_ALL);
2398    }
2399}
2400
2401void AudioFlinger::PlaybackThread::threadLoop_exit()
2402{
2403    {
2404        Mutex::Autolock _l(mLock);
2405        for (size_t i = 0; i < mTracks.size(); i++) {
2406            sp<Track> track = mTracks[i];
2407            track->invalidate();
2408        }
2409    }
2410}
2411
2412/*
2413The derived values that are cached:
2414 - mSinkBufferSize from frame count * frame size
2415 - activeSleepTime from activeSleepTimeUs()
2416 - idleSleepTime from idleSleepTimeUs()
2417 - standbyDelay from mActiveSleepTimeUs (DIRECT only)
2418 - maxPeriod from frame count and sample rate (MIXER only)
2419
2420The parameters that affect these derived values are:
2421 - frame count
2422 - frame size
2423 - sample rate
2424 - device type: A2DP or not
2425 - device latency
2426 - format: PCM or not
2427 - active sleep time
2428 - idle sleep time
2429*/
2430
2431void AudioFlinger::PlaybackThread::cacheParameters_l()
2432{
2433    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2434    activeSleepTime = activeSleepTimeUs();
2435    idleSleepTime = idleSleepTimeUs();
2436}
2437
2438void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2439{
2440    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2441            this,  streamType, mTracks.size());
2442    Mutex::Autolock _l(mLock);
2443
2444    size_t size = mTracks.size();
2445    for (size_t i = 0; i < size; i++) {
2446        sp<Track> t = mTracks[i];
2447        if (t->streamType() == streamType) {
2448            t->invalidate();
2449        }
2450    }
2451}
2452
2453status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2454{
2455    int session = chain->sessionId();
2456    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2457            ? mEffectBuffer : mSinkBuffer);
2458    bool ownsBuffer = false;
2459
2460    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2461    if (session > 0) {
2462        // Only one effect chain can be present in direct output thread and it uses
2463        // the sink buffer as input
2464        if (mType != DIRECT) {
2465            size_t numSamples = mNormalFrameCount * mChannelCount;
2466            buffer = new int16_t[numSamples];
2467            memset(buffer, 0, numSamples * sizeof(int16_t));
2468            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2469            ownsBuffer = true;
2470        }
2471
2472        // Attach all tracks with same session ID to this chain.
2473        for (size_t i = 0; i < mTracks.size(); ++i) {
2474            sp<Track> track = mTracks[i];
2475            if (session == track->sessionId()) {
2476                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2477                        buffer);
2478                track->setMainBuffer(buffer);
2479                chain->incTrackCnt();
2480            }
2481        }
2482
2483        // indicate all active tracks in the chain
2484        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2485            sp<Track> track = mActiveTracks[i].promote();
2486            if (track == 0) {
2487                continue;
2488            }
2489            if (session == track->sessionId()) {
2490                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2491                chain->incActiveTrackCnt();
2492            }
2493        }
2494    }
2495    chain->setThread(this);
2496    chain->setInBuffer(buffer, ownsBuffer);
2497    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2498            ? mEffectBuffer : mSinkBuffer));
2499    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2500    // chains list in order to be processed last as it contains output stage effects
2501    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2502    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2503    // after track specific effects and before output stage
2504    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2505    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2506    // Effect chain for other sessions are inserted at beginning of effect
2507    // chains list to be processed before output mix effects. Relative order between other
2508    // sessions is not important
2509    size_t size = mEffectChains.size();
2510    size_t i = 0;
2511    for (i = 0; i < size; i++) {
2512        if (mEffectChains[i]->sessionId() < session) {
2513            break;
2514        }
2515    }
2516    mEffectChains.insertAt(chain, i);
2517    checkSuspendOnAddEffectChain_l(chain);
2518
2519    return NO_ERROR;
2520}
2521
2522size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2523{
2524    int session = chain->sessionId();
2525
2526    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2527
2528    for (size_t i = 0; i < mEffectChains.size(); i++) {
2529        if (chain == mEffectChains[i]) {
2530            mEffectChains.removeAt(i);
2531            // detach all active tracks from the chain
2532            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2533                sp<Track> track = mActiveTracks[i].promote();
2534                if (track == 0) {
2535                    continue;
2536                }
2537                if (session == track->sessionId()) {
2538                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2539                            chain.get(), session);
2540                    chain->decActiveTrackCnt();
2541                }
2542            }
2543
2544            // detach all tracks with same session ID from this chain
2545            for (size_t i = 0; i < mTracks.size(); ++i) {
2546                sp<Track> track = mTracks[i];
2547                if (session == track->sessionId()) {
2548                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2549                    chain->decTrackCnt();
2550                }
2551            }
2552            break;
2553        }
2554    }
2555    return mEffectChains.size();
2556}
2557
2558status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2559        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2560{
2561    Mutex::Autolock _l(mLock);
2562    return attachAuxEffect_l(track, EffectId);
2563}
2564
2565status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2566        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2567{
2568    status_t status = NO_ERROR;
2569
2570    if (EffectId == 0) {
2571        track->setAuxBuffer(0, NULL);
2572    } else {
2573        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2574        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2575        if (effect != 0) {
2576            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2577                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2578            } else {
2579                status = INVALID_OPERATION;
2580            }
2581        } else {
2582            status = BAD_VALUE;
2583        }
2584    }
2585    return status;
2586}
2587
2588void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2589{
2590    for (size_t i = 0; i < mTracks.size(); ++i) {
2591        sp<Track> track = mTracks[i];
2592        if (track->auxEffectId() == effectId) {
2593            attachAuxEffect_l(track, 0);
2594        }
2595    }
2596}
2597
2598bool AudioFlinger::PlaybackThread::threadLoop()
2599{
2600    Vector< sp<Track> > tracksToRemove;
2601
2602    standbyTime = systemTime();
2603
2604    // MIXER
2605    nsecs_t lastWarning = 0;
2606
2607    // DUPLICATING
2608    // FIXME could this be made local to while loop?
2609    writeFrames = 0;
2610
2611    int lastGeneration = 0;
2612
2613    cacheParameters_l();
2614    sleepTime = idleSleepTime;
2615
2616    if (mType == MIXER) {
2617        sleepTimeShift = 0;
2618    }
2619
2620    CpuStats cpuStats;
2621    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2622
2623    acquireWakeLock();
2624
2625    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2626    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2627    // and then that string will be logged at the next convenient opportunity.
2628    const char *logString = NULL;
2629
2630    checkSilentMode_l();
2631
2632    while (!exitPending())
2633    {
2634        cpuStats.sample(myName);
2635
2636        Vector< sp<EffectChain> > effectChains;
2637
2638        { // scope for mLock
2639
2640            Mutex::Autolock _l(mLock);
2641
2642            processConfigEvents_l();
2643
2644            if (logString != NULL) {
2645                mNBLogWriter->logTimestamp();
2646                mNBLogWriter->log(logString);
2647                logString = NULL;
2648            }
2649
2650            // Gather the framesReleased counters for all active tracks,
2651            // and latch them atomically with the timestamp.
2652            // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2653            mLatchD.mFramesReleased.clear();
2654            size_t size = mActiveTracks.size();
2655            for (size_t i = 0; i < size; i++) {
2656                sp<Track> t = mActiveTracks[i].promote();
2657                if (t != 0) {
2658                    mLatchD.mFramesReleased.add(t.get(),
2659                            t->mAudioTrackServerProxy->framesReleased());
2660                }
2661            }
2662            if (mLatchDValid) {
2663                mLatchQ = mLatchD;
2664                mLatchDValid = false;
2665                mLatchQValid = true;
2666            }
2667
2668            saveOutputTracks();
2669            if (mSignalPending) {
2670                // A signal was raised while we were unlocked
2671                mSignalPending = false;
2672            } else if (waitingAsyncCallback_l()) {
2673                if (exitPending()) {
2674                    break;
2675                }
2676                releaseWakeLock_l();
2677                mWakeLockUids.clear();
2678                mActiveTracksGeneration++;
2679                ALOGV("wait async completion");
2680                mWaitWorkCV.wait(mLock);
2681                ALOGV("async completion/wake");
2682                acquireWakeLock_l();
2683                standbyTime = systemTime() + standbyDelay;
2684                sleepTime = 0;
2685
2686                continue;
2687            }
2688            if ((!mActiveTracks.size() && systemTime() > standbyTime) ||
2689                                   isSuspended()) {
2690                // put audio hardware into standby after short delay
2691                if (shouldStandby_l()) {
2692
2693                    threadLoop_standby();
2694
2695                    mStandby = true;
2696                }
2697
2698                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2699                    // we're about to wait, flush the binder command buffer
2700                    IPCThreadState::self()->flushCommands();
2701
2702                    clearOutputTracks();
2703
2704                    if (exitPending()) {
2705                        break;
2706                    }
2707
2708                    releaseWakeLock_l();
2709                    mWakeLockUids.clear();
2710                    mActiveTracksGeneration++;
2711                    // wait until we have something to do...
2712                    ALOGV("%s going to sleep", myName.string());
2713                    mWaitWorkCV.wait(mLock);
2714                    ALOGV("%s waking up", myName.string());
2715                    acquireWakeLock_l();
2716
2717                    mMixerStatus = MIXER_IDLE;
2718                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2719                    mBytesWritten = 0;
2720                    mBytesRemaining = 0;
2721                    checkSilentMode_l();
2722
2723                    standbyTime = systemTime() + standbyDelay;
2724                    sleepTime = idleSleepTime;
2725                    if (mType == MIXER) {
2726                        sleepTimeShift = 0;
2727                    }
2728
2729                    continue;
2730                }
2731            }
2732            // mMixerStatusIgnoringFastTracks is also updated internally
2733            mMixerStatus = prepareTracks_l(&tracksToRemove);
2734
2735            // compare with previously applied list
2736            if (lastGeneration != mActiveTracksGeneration) {
2737                // update wakelock
2738                updateWakeLockUids_l(mWakeLockUids);
2739                lastGeneration = mActiveTracksGeneration;
2740            }
2741
2742            // prevent any changes in effect chain list and in each effect chain
2743            // during mixing and effect process as the audio buffers could be deleted
2744            // or modified if an effect is created or deleted
2745            lockEffectChains_l(effectChains);
2746        } // mLock scope ends
2747
2748        if (mBytesRemaining == 0) {
2749            mCurrentWriteLength = 0;
2750            if (mMixerStatus == MIXER_TRACKS_READY) {
2751                // threadLoop_mix() sets mCurrentWriteLength
2752                threadLoop_mix();
2753            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2754                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
2755                // threadLoop_sleepTime sets sleepTime to 0 if data
2756                // must be written to HAL
2757                threadLoop_sleepTime();
2758                if (sleepTime == 0) {
2759                    mCurrentWriteLength = mSinkBufferSize;
2760                }
2761            }
2762            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2763            // mMixerBuffer with data if mMixerBufferValid is true and sleepTime == 0.
2764            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2765            // or mSinkBuffer (if there are no effects).
2766            //
2767            // This is done pre-effects computation; if effects change to
2768            // support higher precision, this needs to move.
2769            //
2770            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2771            // TODO use sleepTime == 0 as an additional condition.
2772            if (mMixerBufferValid) {
2773                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2774                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2775
2776                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2777                        mNormalFrameCount * mChannelCount);
2778            }
2779
2780            mBytesRemaining = mCurrentWriteLength;
2781            if (isSuspended()) {
2782                sleepTime = suspendSleepTimeUs();
2783                // simulate write to HAL when suspended
2784                mBytesWritten += mSinkBufferSize;
2785                mBytesRemaining = 0;
2786            }
2787
2788            // only process effects if we're going to write
2789            if (sleepTime == 0 && mType != OFFLOAD) {
2790                for (size_t i = 0; i < effectChains.size(); i ++) {
2791                    effectChains[i]->process_l();
2792                }
2793            }
2794        }
2795        // Process effect chains for offloaded thread even if no audio
2796        // was read from audio track: process only updates effect state
2797        // and thus does have to be synchronized with audio writes but may have
2798        // to be called while waiting for async write callback
2799        if (mType == OFFLOAD) {
2800            for (size_t i = 0; i < effectChains.size(); i ++) {
2801                effectChains[i]->process_l();
2802            }
2803        }
2804
2805        // Only if the Effects buffer is enabled and there is data in the
2806        // Effects buffer (buffer valid), we need to
2807        // copy into the sink buffer.
2808        // TODO use sleepTime == 0 as an additional condition.
2809        if (mEffectBufferValid) {
2810            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2811            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2812                    mNormalFrameCount * mChannelCount);
2813        }
2814
2815        // enable changes in effect chain
2816        unlockEffectChains(effectChains);
2817
2818        if (!waitingAsyncCallback()) {
2819            // sleepTime == 0 means we must write to audio hardware
2820            if (sleepTime == 0) {
2821                if (mBytesRemaining) {
2822                    ssize_t ret = threadLoop_write();
2823                    if (ret < 0) {
2824                        mBytesRemaining = 0;
2825                    } else {
2826                        mBytesWritten += ret;
2827                        mBytesRemaining -= ret;
2828                    }
2829                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2830                        (mMixerStatus == MIXER_DRAIN_ALL)) {
2831                    threadLoop_drain();
2832                }
2833                if (mType == MIXER) {
2834                    // write blocked detection
2835                    nsecs_t now = systemTime();
2836                    nsecs_t delta = now - mLastWriteTime;
2837                    if (!mStandby && delta > maxPeriod) {
2838                        mNumDelayedWrites++;
2839                        if ((now - lastWarning) > kWarningThrottleNs) {
2840                            ATRACE_NAME("underrun");
2841                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2842                                    ns2ms(delta), mNumDelayedWrites, this);
2843                            lastWarning = now;
2844                        }
2845                    }
2846                }
2847
2848            } else {
2849                ATRACE_BEGIN("sleep");
2850                usleep(sleepTime);
2851                ATRACE_END();
2852            }
2853        }
2854
2855        // Finally let go of removed track(s), without the lock held
2856        // since we can't guarantee the destructors won't acquire that
2857        // same lock.  This will also mutate and push a new fast mixer state.
2858        threadLoop_removeTracks(tracksToRemove);
2859        tracksToRemove.clear();
2860
2861        // FIXME I don't understand the need for this here;
2862        //       it was in the original code but maybe the
2863        //       assignment in saveOutputTracks() makes this unnecessary?
2864        clearOutputTracks();
2865
2866        // Effect chains will be actually deleted here if they were removed from
2867        // mEffectChains list during mixing or effects processing
2868        effectChains.clear();
2869
2870        // FIXME Note that the above .clear() is no longer necessary since effectChains
2871        // is now local to this block, but will keep it for now (at least until merge done).
2872    }
2873
2874    threadLoop_exit();
2875
2876    if (!mStandby) {
2877        threadLoop_standby();
2878        mStandby = true;
2879    }
2880
2881    releaseWakeLock();
2882    mWakeLockUids.clear();
2883    mActiveTracksGeneration++;
2884
2885    ALOGV("Thread %p type %d exiting", this, mType);
2886    return false;
2887}
2888
2889// removeTracks_l() must be called with ThreadBase::mLock held
2890void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
2891{
2892    size_t count = tracksToRemove.size();
2893    if (count > 0) {
2894        for (size_t i=0 ; i<count ; i++) {
2895            const sp<Track>& track = tracksToRemove.itemAt(i);
2896            mActiveTracks.remove(track);
2897            mWakeLockUids.remove(track->uid());
2898            mActiveTracksGeneration++;
2899            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
2900            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2901            if (chain != 0) {
2902                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
2903                        track->sessionId());
2904                chain->decActiveTrackCnt();
2905            }
2906            if (track->isTerminated()) {
2907                removeTrack_l(track);
2908            }
2909        }
2910    }
2911
2912}
2913
2914status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
2915{
2916    if (mNormalSink != 0) {
2917        return mNormalSink->getTimestamp(timestamp);
2918    }
2919    if ((mType == OFFLOAD || mType == DIRECT)
2920            && mOutput != NULL && mOutput->stream->get_presentation_position) {
2921        uint64_t position64;
2922        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
2923        if (ret == 0) {
2924            timestamp.mPosition = (uint32_t)position64;
2925            return NO_ERROR;
2926        }
2927    }
2928    return INVALID_OPERATION;
2929}
2930
2931status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
2932                                                          audio_patch_handle_t *handle)
2933{
2934    status_t status = NO_ERROR;
2935    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2936        // store new device and send to effects
2937        audio_devices_t type = AUDIO_DEVICE_NONE;
2938        for (unsigned int i = 0; i < patch->num_sinks; i++) {
2939            type |= patch->sinks[i].ext.device.type;
2940        }
2941        mOutDevice = type;
2942        for (size_t i = 0; i < mEffectChains.size(); i++) {
2943            mEffectChains[i]->setDevice_l(mOutDevice);
2944        }
2945
2946        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2947        status = hwDevice->create_audio_patch(hwDevice,
2948                                               patch->num_sources,
2949                                               patch->sources,
2950                                               patch->num_sinks,
2951                                               patch->sinks,
2952                                               handle);
2953    } else {
2954        ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
2955    }
2956    return status;
2957}
2958
2959status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
2960{
2961    status_t status = NO_ERROR;
2962    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2963        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2964        status = hwDevice->release_audio_patch(hwDevice, handle);
2965    } else {
2966        ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
2967    }
2968    return status;
2969}
2970
2971void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
2972{
2973    Mutex::Autolock _l(mLock);
2974    mTracks.add(track);
2975}
2976
2977void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
2978{
2979    Mutex::Autolock _l(mLock);
2980    destroyTrack_l(track);
2981}
2982
2983void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
2984{
2985    ThreadBase::getAudioPortConfig(config);
2986    config->role = AUDIO_PORT_ROLE_SOURCE;
2987    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
2988    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
2989}
2990
2991// ----------------------------------------------------------------------------
2992
2993AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
2994        audio_io_handle_t id, audio_devices_t device, type_t type)
2995    :   PlaybackThread(audioFlinger, output, id, device, type),
2996        // mAudioMixer below
2997        // mFastMixer below
2998        mFastMixerFutex(0)
2999        // mOutputSink below
3000        // mPipeSink below
3001        // mNormalSink below
3002{
3003    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3004    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3005            "mFrameCount=%d, mNormalFrameCount=%d",
3006            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3007            mNormalFrameCount);
3008    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3009
3010    if (type == DUPLICATING) {
3011        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3012        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3013        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3014        return;
3015    }
3016    // create an NBAIO sink for the HAL output stream, and negotiate
3017    mOutputSink = new AudioStreamOutSink(output->stream);
3018    size_t numCounterOffers = 0;
3019    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3020    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3021    ALOG_ASSERT(index == 0);
3022
3023    // initialize fast mixer depending on configuration
3024    bool initFastMixer;
3025    switch (kUseFastMixer) {
3026    case FastMixer_Never:
3027        initFastMixer = false;
3028        break;
3029    case FastMixer_Always:
3030        initFastMixer = true;
3031        break;
3032    case FastMixer_Static:
3033    case FastMixer_Dynamic:
3034        initFastMixer = mFrameCount < mNormalFrameCount;
3035        break;
3036    }
3037    if (initFastMixer) {
3038        audio_format_t fastMixerFormat;
3039        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3040            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3041        } else {
3042            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3043        }
3044        if (mFormat != fastMixerFormat) {
3045            // change our Sink format to accept our intermediate precision
3046            mFormat = fastMixerFormat;
3047            free(mSinkBuffer);
3048            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3049            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3050            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3051        }
3052
3053        // create a MonoPipe to connect our submix to FastMixer
3054        NBAIO_Format format = mOutputSink->format();
3055        NBAIO_Format origformat = format;
3056        // adjust format to match that of the Fast Mixer
3057        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3058        format.mFormat = fastMixerFormat;
3059        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3060
3061        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3062        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3063        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3064        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3065        const NBAIO_Format offers[1] = {format};
3066        size_t numCounterOffers = 0;
3067        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3068        ALOG_ASSERT(index == 0);
3069        monoPipe->setAvgFrames((mScreenState & 1) ?
3070                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3071        mPipeSink = monoPipe;
3072
3073#ifdef TEE_SINK
3074        if (mTeeSinkOutputEnabled) {
3075            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3076            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3077            const NBAIO_Format offers2[1] = {origformat};
3078            numCounterOffers = 0;
3079            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3080            ALOG_ASSERT(index == 0);
3081            mTeeSink = teeSink;
3082            PipeReader *teeSource = new PipeReader(*teeSink);
3083            numCounterOffers = 0;
3084            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3085            ALOG_ASSERT(index == 0);
3086            mTeeSource = teeSource;
3087        }
3088#endif
3089
3090        // create fast mixer and configure it initially with just one fast track for our submix
3091        mFastMixer = new FastMixer();
3092        FastMixerStateQueue *sq = mFastMixer->sq();
3093#ifdef STATE_QUEUE_DUMP
3094        sq->setObserverDump(&mStateQueueObserverDump);
3095        sq->setMutatorDump(&mStateQueueMutatorDump);
3096#endif
3097        FastMixerState *state = sq->begin();
3098        FastTrack *fastTrack = &state->mFastTracks[0];
3099        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3100        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3101        fastTrack->mVolumeProvider = NULL;
3102        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3103        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3104        fastTrack->mGeneration++;
3105        state->mFastTracksGen++;
3106        state->mTrackMask = 1;
3107        // fast mixer will use the HAL output sink
3108        state->mOutputSink = mOutputSink.get();
3109        state->mOutputSinkGen++;
3110        state->mFrameCount = mFrameCount;
3111        state->mCommand = FastMixerState::COLD_IDLE;
3112        // already done in constructor initialization list
3113        //mFastMixerFutex = 0;
3114        state->mColdFutexAddr = &mFastMixerFutex;
3115        state->mColdGen++;
3116        state->mDumpState = &mFastMixerDumpState;
3117#ifdef TEE_SINK
3118        state->mTeeSink = mTeeSink.get();
3119#endif
3120        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3121        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3122        sq->end();
3123        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3124
3125        // start the fast mixer
3126        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3127        pid_t tid = mFastMixer->getTid();
3128        int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
3129        if (err != 0) {
3130            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
3131                    kPriorityFastMixer, getpid_cached, tid, err);
3132        }
3133
3134#ifdef AUDIO_WATCHDOG
3135        // create and start the watchdog
3136        mAudioWatchdog = new AudioWatchdog();
3137        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3138        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3139        tid = mAudioWatchdog->getTid();
3140        err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
3141        if (err != 0) {
3142            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
3143                    kPriorityFastMixer, getpid_cached, tid, err);
3144        }
3145#endif
3146
3147    }
3148
3149    switch (kUseFastMixer) {
3150    case FastMixer_Never:
3151    case FastMixer_Dynamic:
3152        mNormalSink = mOutputSink;
3153        break;
3154    case FastMixer_Always:
3155        mNormalSink = mPipeSink;
3156        break;
3157    case FastMixer_Static:
3158        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3159        break;
3160    }
3161}
3162
3163AudioFlinger::MixerThread::~MixerThread()
3164{
3165    if (mFastMixer != 0) {
3166        FastMixerStateQueue *sq = mFastMixer->sq();
3167        FastMixerState *state = sq->begin();
3168        if (state->mCommand == FastMixerState::COLD_IDLE) {
3169            int32_t old = android_atomic_inc(&mFastMixerFutex);
3170            if (old == -1) {
3171                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3172            }
3173        }
3174        state->mCommand = FastMixerState::EXIT;
3175        sq->end();
3176        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3177        mFastMixer->join();
3178        // Though the fast mixer thread has exited, it's state queue is still valid.
3179        // We'll use that extract the final state which contains one remaining fast track
3180        // corresponding to our sub-mix.
3181        state = sq->begin();
3182        ALOG_ASSERT(state->mTrackMask == 1);
3183        FastTrack *fastTrack = &state->mFastTracks[0];
3184        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3185        delete fastTrack->mBufferProvider;
3186        sq->end(false /*didModify*/);
3187        mFastMixer.clear();
3188#ifdef AUDIO_WATCHDOG
3189        if (mAudioWatchdog != 0) {
3190            mAudioWatchdog->requestExit();
3191            mAudioWatchdog->requestExitAndWait();
3192            mAudioWatchdog.clear();
3193        }
3194#endif
3195    }
3196    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3197    delete mAudioMixer;
3198}
3199
3200
3201uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3202{
3203    if (mFastMixer != 0) {
3204        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3205        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3206    }
3207    return latency;
3208}
3209
3210
3211void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3212{
3213    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3214}
3215
3216ssize_t AudioFlinger::MixerThread::threadLoop_write()
3217{
3218    // FIXME we should only do one push per cycle; confirm this is true
3219    // Start the fast mixer if it's not already running
3220    if (mFastMixer != 0) {
3221        FastMixerStateQueue *sq = mFastMixer->sq();
3222        FastMixerState *state = sq->begin();
3223        if (state->mCommand != FastMixerState::MIX_WRITE &&
3224                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3225            if (state->mCommand == FastMixerState::COLD_IDLE) {
3226                int32_t old = android_atomic_inc(&mFastMixerFutex);
3227                if (old == -1) {
3228                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3229                }
3230#ifdef AUDIO_WATCHDOG
3231                if (mAudioWatchdog != 0) {
3232                    mAudioWatchdog->resume();
3233                }
3234#endif
3235            }
3236            state->mCommand = FastMixerState::MIX_WRITE;
3237#ifdef FAST_THREAD_STATISTICS
3238            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3239                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3240#endif
3241            sq->end();
3242            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3243            if (kUseFastMixer == FastMixer_Dynamic) {
3244                mNormalSink = mPipeSink;
3245            }
3246        } else {
3247            sq->end(false /*didModify*/);
3248        }
3249    }
3250    return PlaybackThread::threadLoop_write();
3251}
3252
3253void AudioFlinger::MixerThread::threadLoop_standby()
3254{
3255    // Idle the fast mixer if it's currently running
3256    if (mFastMixer != 0) {
3257        FastMixerStateQueue *sq = mFastMixer->sq();
3258        FastMixerState *state = sq->begin();
3259        if (!(state->mCommand & FastMixerState::IDLE)) {
3260            state->mCommand = FastMixerState::COLD_IDLE;
3261            state->mColdFutexAddr = &mFastMixerFutex;
3262            state->mColdGen++;
3263            mFastMixerFutex = 0;
3264            sq->end();
3265            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3266            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3267            if (kUseFastMixer == FastMixer_Dynamic) {
3268                mNormalSink = mOutputSink;
3269            }
3270#ifdef AUDIO_WATCHDOG
3271            if (mAudioWatchdog != 0) {
3272                mAudioWatchdog->pause();
3273            }
3274#endif
3275        } else {
3276            sq->end(false /*didModify*/);
3277        }
3278    }
3279    PlaybackThread::threadLoop_standby();
3280}
3281
3282bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3283{
3284    return false;
3285}
3286
3287bool AudioFlinger::PlaybackThread::shouldStandby_l()
3288{
3289    return !mStandby;
3290}
3291
3292bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3293{
3294    Mutex::Autolock _l(mLock);
3295    return waitingAsyncCallback_l();
3296}
3297
3298// shared by MIXER and DIRECT, overridden by DUPLICATING
3299void AudioFlinger::PlaybackThread::threadLoop_standby()
3300{
3301    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3302    mOutput->standby();
3303    if (mUseAsyncWrite != 0) {
3304        // discard any pending drain or write ack by incrementing sequence
3305        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3306        mDrainSequence = (mDrainSequence + 2) & ~1;
3307        ALOG_ASSERT(mCallbackThread != 0);
3308        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3309        mCallbackThread->setDraining(mDrainSequence);
3310    }
3311    mHwPaused = false;
3312}
3313
3314void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3315{
3316    ALOGV("signal playback thread");
3317    broadcast_l();
3318}
3319
3320void AudioFlinger::MixerThread::threadLoop_mix()
3321{
3322    // obtain the presentation timestamp of the next output buffer
3323    int64_t pts;
3324    status_t status = INVALID_OPERATION;
3325
3326    if (mNormalSink != 0) {
3327        status = mNormalSink->getNextWriteTimestamp(&pts);
3328    } else {
3329        status = mOutputSink->getNextWriteTimestamp(&pts);
3330    }
3331
3332    if (status != NO_ERROR) {
3333        pts = AudioBufferProvider::kInvalidPTS;
3334    }
3335
3336    // mix buffers...
3337    mAudioMixer->process(pts);
3338    mCurrentWriteLength = mSinkBufferSize;
3339    // increase sleep time progressively when application underrun condition clears.
3340    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3341    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3342    // such that we would underrun the audio HAL.
3343    if ((sleepTime == 0) && (sleepTimeShift > 0)) {
3344        sleepTimeShift--;
3345    }
3346    sleepTime = 0;
3347    standbyTime = systemTime() + standbyDelay;
3348    //TODO: delay standby when effects have a tail
3349
3350}
3351
3352void AudioFlinger::MixerThread::threadLoop_sleepTime()
3353{
3354    // If no tracks are ready, sleep once for the duration of an output
3355    // buffer size, then write 0s to the output
3356    if (sleepTime == 0) {
3357        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3358            sleepTime = activeSleepTime >> sleepTimeShift;
3359            if (sleepTime < kMinThreadSleepTimeUs) {
3360                sleepTime = kMinThreadSleepTimeUs;
3361            }
3362            // reduce sleep time in case of consecutive application underruns to avoid
3363            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3364            // duration we would end up writing less data than needed by the audio HAL if
3365            // the condition persists.
3366            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3367                sleepTimeShift++;
3368            }
3369        } else {
3370            sleepTime = idleSleepTime;
3371        }
3372    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3373        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3374        // before effects processing or output.
3375        if (mMixerBufferValid) {
3376            memset(mMixerBuffer, 0, mMixerBufferSize);
3377        } else {
3378            memset(mSinkBuffer, 0, mSinkBufferSize);
3379        }
3380        sleepTime = 0;
3381        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3382                "anticipated start");
3383    }
3384    // TODO add standby time extension fct of effect tail
3385}
3386
3387// prepareTracks_l() must be called with ThreadBase::mLock held
3388AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3389        Vector< sp<Track> > *tracksToRemove)
3390{
3391
3392    mixer_state mixerStatus = MIXER_IDLE;
3393    // find out which tracks need to be processed
3394    size_t count = mActiveTracks.size();
3395    size_t mixedTracks = 0;
3396    size_t tracksWithEffect = 0;
3397    // counts only _active_ fast tracks
3398    size_t fastTracks = 0;
3399    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3400
3401    float masterVolume = mMasterVolume;
3402    bool masterMute = mMasterMute;
3403
3404    if (masterMute) {
3405        masterVolume = 0;
3406    }
3407    // Delegate master volume control to effect in output mix effect chain if needed
3408    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3409    if (chain != 0) {
3410        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3411        chain->setVolume_l(&v, &v);
3412        masterVolume = (float)((v + (1 << 23)) >> 24);
3413        chain.clear();
3414    }
3415
3416    // prepare a new state to push
3417    FastMixerStateQueue *sq = NULL;
3418    FastMixerState *state = NULL;
3419    bool didModify = false;
3420    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3421    if (mFastMixer != 0) {
3422        sq = mFastMixer->sq();
3423        state = sq->begin();
3424    }
3425
3426    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3427    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3428
3429    for (size_t i=0 ; i<count ; i++) {
3430        const sp<Track> t = mActiveTracks[i].promote();
3431        if (t == 0) {
3432            continue;
3433        }
3434
3435        // this const just means the local variable doesn't change
3436        Track* const track = t.get();
3437
3438        // process fast tracks
3439        if (track->isFastTrack()) {
3440
3441            // It's theoretically possible (though unlikely) for a fast track to be created
3442            // and then removed within the same normal mix cycle.  This is not a problem, as
3443            // the track never becomes active so it's fast mixer slot is never touched.
3444            // The converse, of removing an (active) track and then creating a new track
3445            // at the identical fast mixer slot within the same normal mix cycle,
3446            // is impossible because the slot isn't marked available until the end of each cycle.
3447            int j = track->mFastIndex;
3448            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3449            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3450            FastTrack *fastTrack = &state->mFastTracks[j];
3451
3452            // Determine whether the track is currently in underrun condition,
3453            // and whether it had a recent underrun.
3454            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3455            FastTrackUnderruns underruns = ftDump->mUnderruns;
3456            uint32_t recentFull = (underruns.mBitFields.mFull -
3457                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3458            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3459                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3460            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3461                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3462            uint32_t recentUnderruns = recentPartial + recentEmpty;
3463            track->mObservedUnderruns = underruns;
3464            // don't count underruns that occur while stopping or pausing
3465            // or stopped which can occur when flush() is called while active
3466            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3467                    recentUnderruns > 0) {
3468                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3469                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3470            }
3471
3472            // This is similar to the state machine for normal tracks,
3473            // with a few modifications for fast tracks.
3474            bool isActive = true;
3475            switch (track->mState) {
3476            case TrackBase::STOPPING_1:
3477                // track stays active in STOPPING_1 state until first underrun
3478                if (recentUnderruns > 0 || track->isTerminated()) {
3479                    track->mState = TrackBase::STOPPING_2;
3480                }
3481                break;
3482            case TrackBase::PAUSING:
3483                // ramp down is not yet implemented
3484                track->setPaused();
3485                break;
3486            case TrackBase::RESUMING:
3487                // ramp up is not yet implemented
3488                track->mState = TrackBase::ACTIVE;
3489                break;
3490            case TrackBase::ACTIVE:
3491                if (recentFull > 0 || recentPartial > 0) {
3492                    // track has provided at least some frames recently: reset retry count
3493                    track->mRetryCount = kMaxTrackRetries;
3494                }
3495                if (recentUnderruns == 0) {
3496                    // no recent underruns: stay active
3497                    break;
3498                }
3499                // there has recently been an underrun of some kind
3500                if (track->sharedBuffer() == 0) {
3501                    // were any of the recent underruns "empty" (no frames available)?
3502                    if (recentEmpty == 0) {
3503                        // no, then ignore the partial underruns as they are allowed indefinitely
3504                        break;
3505                    }
3506                    // there has recently been an "empty" underrun: decrement the retry counter
3507                    if (--(track->mRetryCount) > 0) {
3508                        break;
3509                    }
3510                    // indicate to client process that the track was disabled because of underrun;
3511                    // it will then automatically call start() when data is available
3512                    android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3513                    // remove from active list, but state remains ACTIVE [confusing but true]
3514                    isActive = false;
3515                    break;
3516                }
3517                // fall through
3518            case TrackBase::STOPPING_2:
3519            case TrackBase::PAUSED:
3520            case TrackBase::STOPPED:
3521            case TrackBase::FLUSHED:   // flush() while active
3522                // Check for presentation complete if track is inactive
3523                // We have consumed all the buffers of this track.
3524                // This would be incomplete if we auto-paused on underrun
3525                {
3526                    size_t audioHALFrames =
3527                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3528                    size_t framesWritten = mBytesWritten / mFrameSize;
3529                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3530                        // track stays in active list until presentation is complete
3531                        break;
3532                    }
3533                }
3534                if (track->isStopping_2()) {
3535                    track->mState = TrackBase::STOPPED;
3536                }
3537                if (track->isStopped()) {
3538                    // Can't reset directly, as fast mixer is still polling this track
3539                    //   track->reset();
3540                    // So instead mark this track as needing to be reset after push with ack
3541                    resetMask |= 1 << i;
3542                }
3543                isActive = false;
3544                break;
3545            case TrackBase::IDLE:
3546            default:
3547                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3548            }
3549
3550            if (isActive) {
3551                // was it previously inactive?
3552                if (!(state->mTrackMask & (1 << j))) {
3553                    ExtendedAudioBufferProvider *eabp = track;
3554                    VolumeProvider *vp = track;
3555                    fastTrack->mBufferProvider = eabp;
3556                    fastTrack->mVolumeProvider = vp;
3557                    fastTrack->mChannelMask = track->mChannelMask;
3558                    fastTrack->mFormat = track->mFormat;
3559                    fastTrack->mGeneration++;
3560                    state->mTrackMask |= 1 << j;
3561                    didModify = true;
3562                    // no acknowledgement required for newly active tracks
3563                }
3564                // cache the combined master volume and stream type volume for fast mixer; this
3565                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3566                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3567                ++fastTracks;
3568            } else {
3569                // was it previously active?
3570                if (state->mTrackMask & (1 << j)) {
3571                    fastTrack->mBufferProvider = NULL;
3572                    fastTrack->mGeneration++;
3573                    state->mTrackMask &= ~(1 << j);
3574                    didModify = true;
3575                    // If any fast tracks were removed, we must wait for acknowledgement
3576                    // because we're about to decrement the last sp<> on those tracks.
3577                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3578                } else {
3579                    LOG_ALWAYS_FATAL("fast track %d should have been active", j);
3580                }
3581                tracksToRemove->add(track);
3582                // Avoids a misleading display in dumpsys
3583                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3584            }
3585            continue;
3586        }
3587
3588        {   // local variable scope to avoid goto warning
3589
3590        audio_track_cblk_t* cblk = track->cblk();
3591
3592        // The first time a track is added we wait
3593        // for all its buffers to be filled before processing it
3594        int name = track->name();
3595        // make sure that we have enough frames to mix one full buffer.
3596        // enforce this condition only once to enable draining the buffer in case the client
3597        // app does not call stop() and relies on underrun to stop:
3598        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3599        // during last round
3600        size_t desiredFrames;
3601        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
3602        float speed, pitch;
3603        track->mAudioTrackServerProxy->getPlaybackRate(&speed, &pitch);
3604
3605        desiredFrames = sourceFramesNeededWithTimestretch(
3606                sampleRate, mNormalFrameCount, mSampleRate, speed);
3607        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
3608        // add frames already consumed but not yet released by the resampler
3609        // because mAudioTrackServerProxy->framesReady() will include these frames
3610        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3611
3612        uint32_t minFrames = 1;
3613        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3614                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3615            minFrames = desiredFrames;
3616        }
3617
3618        size_t framesReady = track->framesReady();
3619        if (ATRACE_ENABLED()) {
3620            // I wish we had formatted trace names
3621            char traceName[16];
3622            strcpy(traceName, "nRdy");
3623            int name = track->name();
3624            if (AudioMixer::TRACK0 <= name &&
3625                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
3626                name -= AudioMixer::TRACK0;
3627                traceName[4] = (name / 10) + '0';
3628                traceName[5] = (name % 10) + '0';
3629            } else {
3630                traceName[4] = '?';
3631                traceName[5] = '?';
3632            }
3633            traceName[6] = '\0';
3634            ATRACE_INT(traceName, framesReady);
3635        }
3636        if ((framesReady >= minFrames) && track->isReady() &&
3637                !track->isPaused() && !track->isTerminated())
3638        {
3639            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3640
3641            mixedTracks++;
3642
3643            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3644            // there is an effect chain connected to the track
3645            chain.clear();
3646            if (track->mainBuffer() != mSinkBuffer &&
3647                    track->mainBuffer() != mMixerBuffer) {
3648                if (mEffectBufferEnabled) {
3649                    mEffectBufferValid = true; // Later can set directly.
3650                }
3651                chain = getEffectChain_l(track->sessionId());
3652                // Delegate volume control to effect in track effect chain if needed
3653                if (chain != 0) {
3654                    tracksWithEffect++;
3655                } else {
3656                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3657                            "session %d",
3658                            name, track->sessionId());
3659                }
3660            }
3661
3662
3663            int param = AudioMixer::VOLUME;
3664            if (track->mFillingUpStatus == Track::FS_FILLED) {
3665                // no ramp for the first volume setting
3666                track->mFillingUpStatus = Track::FS_ACTIVE;
3667                if (track->mState == TrackBase::RESUMING) {
3668                    track->mState = TrackBase::ACTIVE;
3669                    param = AudioMixer::RAMP_VOLUME;
3670                }
3671                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3672            // FIXME should not make a decision based on mServer
3673            } else if (cblk->mServer != 0) {
3674                // If the track is stopped before the first frame was mixed,
3675                // do not apply ramp
3676                param = AudioMixer::RAMP_VOLUME;
3677            }
3678
3679            // compute volume for this track
3680            uint32_t vl, vr;       // in U8.24 integer format
3681            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
3682            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3683                vl = vr = 0;
3684                vlf = vrf = vaf = 0.;
3685                if (track->isPausing()) {
3686                    track->setPaused();
3687                }
3688            } else {
3689
3690                // read original volumes with volume control
3691                float typeVolume = mStreamTypes[track->streamType()].volume;
3692                float v = masterVolume * typeVolume;
3693                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3694                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3695                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3696                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3697                // track volumes come from shared memory, so can't be trusted and must be clamped
3698                if (vlf > GAIN_FLOAT_UNITY) {
3699                    ALOGV("Track left volume out of range: %.3g", vlf);
3700                    vlf = GAIN_FLOAT_UNITY;
3701                }
3702                if (vrf > GAIN_FLOAT_UNITY) {
3703                    ALOGV("Track right volume out of range: %.3g", vrf);
3704                    vrf = GAIN_FLOAT_UNITY;
3705                }
3706                // now apply the master volume and stream type volume
3707                vlf *= v;
3708                vrf *= v;
3709                // assuming master volume and stream type volume each go up to 1.0,
3710                // then derive vl and vr as U8.24 versions for the effect chain
3711                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3712                vl = (uint32_t) (scaleto8_24 * vlf);
3713                vr = (uint32_t) (scaleto8_24 * vrf);
3714                // vl and vr are now in U8.24 format
3715                uint16_t sendLevel = proxy->getSendLevel_U4_12();
3716                // send level comes from shared memory and so may be corrupt
3717                if (sendLevel > MAX_GAIN_INT) {
3718                    ALOGV("Track send level out of range: %04X", sendLevel);
3719                    sendLevel = MAX_GAIN_INT;
3720                }
3721                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
3722                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
3723            }
3724
3725            // Delegate volume control to effect in track effect chain if needed
3726            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
3727                // Do not ramp volume if volume is controlled by effect
3728                param = AudioMixer::VOLUME;
3729                // Update remaining floating point volume levels
3730                vlf = (float)vl / (1 << 24);
3731                vrf = (float)vr / (1 << 24);
3732                track->mHasVolumeController = true;
3733            } else {
3734                // force no volume ramp when volume controller was just disabled or removed
3735                // from effect chain to avoid volume spike
3736                if (track->mHasVolumeController) {
3737                    param = AudioMixer::VOLUME;
3738                }
3739                track->mHasVolumeController = false;
3740            }
3741
3742            // XXX: these things DON'T need to be done each time
3743            mAudioMixer->setBufferProvider(name, track);
3744            mAudioMixer->enable(name);
3745
3746            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
3747            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
3748            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
3749            mAudioMixer->setParameter(
3750                name,
3751                AudioMixer::TRACK,
3752                AudioMixer::FORMAT, (void *)track->format());
3753            mAudioMixer->setParameter(
3754                name,
3755                AudioMixer::TRACK,
3756                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
3757            mAudioMixer->setParameter(
3758                name,
3759                AudioMixer::TRACK,
3760                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
3761            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
3762            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
3763            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
3764            if (reqSampleRate == 0) {
3765                reqSampleRate = mSampleRate;
3766            } else if (reqSampleRate > maxSampleRate) {
3767                reqSampleRate = maxSampleRate;
3768            }
3769            mAudioMixer->setParameter(
3770                name,
3771                AudioMixer::RESAMPLE,
3772                AudioMixer::SAMPLE_RATE,
3773                (void *)(uintptr_t)reqSampleRate);
3774
3775            // set the playback rate as an float array {speed, pitch}
3776            float playbackRate[2];
3777            track->mAudioTrackServerProxy->getPlaybackRate(
3778                    &playbackRate[0] /*speed*/, &playbackRate[1] /*pitch*/);
3779            mAudioMixer->setParameter(
3780                name,
3781                AudioMixer::TIMESTRETCH,
3782                AudioMixer::PLAYBACK_RATE,
3783                playbackRate);
3784
3785            /*
3786             * Select the appropriate output buffer for the track.
3787             *
3788             * Tracks with effects go into their own effects chain buffer
3789             * and from there into either mEffectBuffer or mSinkBuffer.
3790             *
3791             * Other tracks can use mMixerBuffer for higher precision
3792             * channel accumulation.  If this buffer is enabled
3793             * (mMixerBufferEnabled true), then selected tracks will accumulate
3794             * into it.
3795             *
3796             */
3797            if (mMixerBufferEnabled
3798                    && (track->mainBuffer() == mSinkBuffer
3799                            || track->mainBuffer() == mMixerBuffer)) {
3800                mAudioMixer->setParameter(
3801                        name,
3802                        AudioMixer::TRACK,
3803                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
3804                mAudioMixer->setParameter(
3805                        name,
3806                        AudioMixer::TRACK,
3807                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
3808                // TODO: override track->mainBuffer()?
3809                mMixerBufferValid = true;
3810            } else {
3811                mAudioMixer->setParameter(
3812                        name,
3813                        AudioMixer::TRACK,
3814                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
3815                mAudioMixer->setParameter(
3816                        name,
3817                        AudioMixer::TRACK,
3818                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
3819            }
3820            mAudioMixer->setParameter(
3821                name,
3822                AudioMixer::TRACK,
3823                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
3824
3825            // reset retry count
3826            track->mRetryCount = kMaxTrackRetries;
3827
3828            // If one track is ready, set the mixer ready if:
3829            //  - the mixer was not ready during previous round OR
3830            //  - no other track is not ready
3831            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
3832                    mixerStatus != MIXER_TRACKS_ENABLED) {
3833                mixerStatus = MIXER_TRACKS_READY;
3834            }
3835        } else {
3836            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
3837                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
3838            }
3839            // clear effect chain input buffer if an active track underruns to avoid sending
3840            // previous audio buffer again to effects
3841            chain = getEffectChain_l(track->sessionId());
3842            if (chain != 0) {
3843                chain->clearInputBuffer();
3844            }
3845
3846            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
3847            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
3848                    track->isStopped() || track->isPaused()) {
3849                // We have consumed all the buffers of this track.
3850                // Remove it from the list of active tracks.
3851                // TODO: use actual buffer filling status instead of latency when available from
3852                // audio HAL
3853                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
3854                size_t framesWritten = mBytesWritten / mFrameSize;
3855                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
3856                    if (track->isStopped()) {
3857                        track->reset();
3858                    }
3859                    tracksToRemove->add(track);
3860                }
3861            } else {
3862                // No buffers for this track. Give it a few chances to
3863                // fill a buffer, then remove it from active list.
3864                if (--(track->mRetryCount) <= 0) {
3865                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
3866                    tracksToRemove->add(track);
3867                    // indicate to client process that the track was disabled because of underrun;
3868                    // it will then automatically call start() when data is available
3869                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
3870                // If one track is not ready, mark the mixer also not ready if:
3871                //  - the mixer was ready during previous round OR
3872                //  - no other track is ready
3873                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
3874                                mixerStatus != MIXER_TRACKS_READY) {
3875                    mixerStatus = MIXER_TRACKS_ENABLED;
3876                }
3877            }
3878            mAudioMixer->disable(name);
3879        }
3880
3881        }   // local variable scope to avoid goto warning
3882track_is_ready: ;
3883
3884    }
3885
3886    // Push the new FastMixer state if necessary
3887    bool pauseAudioWatchdog = false;
3888    if (didModify) {
3889        state->mFastTracksGen++;
3890        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
3891        if (kUseFastMixer == FastMixer_Dynamic &&
3892                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
3893            state->mCommand = FastMixerState::COLD_IDLE;
3894            state->mColdFutexAddr = &mFastMixerFutex;
3895            state->mColdGen++;
3896            mFastMixerFutex = 0;
3897            if (kUseFastMixer == FastMixer_Dynamic) {
3898                mNormalSink = mOutputSink;
3899            }
3900            // If we go into cold idle, need to wait for acknowledgement
3901            // so that fast mixer stops doing I/O.
3902            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3903            pauseAudioWatchdog = true;
3904        }
3905    }
3906    if (sq != NULL) {
3907        sq->end(didModify);
3908        sq->push(block);
3909    }
3910#ifdef AUDIO_WATCHDOG
3911    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
3912        mAudioWatchdog->pause();
3913    }
3914#endif
3915
3916    // Now perform the deferred reset on fast tracks that have stopped
3917    while (resetMask != 0) {
3918        size_t i = __builtin_ctz(resetMask);
3919        ALOG_ASSERT(i < count);
3920        resetMask &= ~(1 << i);
3921        sp<Track> t = mActiveTracks[i].promote();
3922        if (t == 0) {
3923            continue;
3924        }
3925        Track* track = t.get();
3926        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
3927        track->reset();
3928    }
3929
3930    // remove all the tracks that need to be...
3931    removeTracks_l(*tracksToRemove);
3932
3933    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
3934        mEffectBufferValid = true;
3935    }
3936
3937    if (mEffectBufferValid) {
3938        // as long as there are effects we should clear the effects buffer, to avoid
3939        // passing a non-clean buffer to the effect chain
3940        memset(mEffectBuffer, 0, mEffectBufferSize);
3941    }
3942    // sink or mix buffer must be cleared if all tracks are connected to an
3943    // effect chain as in this case the mixer will not write to the sink or mix buffer
3944    // and track effects will accumulate into it
3945    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3946            (mixedTracks == 0 && fastTracks > 0))) {
3947        // FIXME as a performance optimization, should remember previous zero status
3948        if (mMixerBufferValid) {
3949            memset(mMixerBuffer, 0, mMixerBufferSize);
3950            // TODO: In testing, mSinkBuffer below need not be cleared because
3951            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
3952            // after mixing.
3953            //
3954            // To enforce this guarantee:
3955            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3956            // (mixedTracks == 0 && fastTracks > 0))
3957            // must imply MIXER_TRACKS_READY.
3958            // Later, we may clear buffers regardless, and skip much of this logic.
3959        }
3960        // FIXME as a performance optimization, should remember previous zero status
3961        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
3962    }
3963
3964    // if any fast tracks, then status is ready
3965    mMixerStatusIgnoringFastTracks = mixerStatus;
3966    if (fastTracks > 0) {
3967        mixerStatus = MIXER_TRACKS_READY;
3968    }
3969    return mixerStatus;
3970}
3971
3972// getTrackName_l() must be called with ThreadBase::mLock held
3973int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
3974        audio_format_t format, int sessionId)
3975{
3976    return mAudioMixer->getTrackName(channelMask, format, sessionId);
3977}
3978
3979// deleteTrackName_l() must be called with ThreadBase::mLock held
3980void AudioFlinger::MixerThread::deleteTrackName_l(int name)
3981{
3982    ALOGV("remove track (%d) and delete from mixer", name);
3983    mAudioMixer->deleteTrackName(name);
3984}
3985
3986// checkForNewParameter_l() must be called with ThreadBase::mLock held
3987bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
3988                                                       status_t& status)
3989{
3990    bool reconfig = false;
3991
3992    status = NO_ERROR;
3993
3994    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3995    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3996    if (mFastMixer != 0) {
3997        FastMixerStateQueue *sq = mFastMixer->sq();
3998        FastMixerState *state = sq->begin();
3999        if (!(state->mCommand & FastMixerState::IDLE)) {
4000            previousCommand = state->mCommand;
4001            state->mCommand = FastMixerState::HOT_IDLE;
4002            sq->end();
4003            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4004        } else {
4005            sq->end(false /*didModify*/);
4006        }
4007    }
4008
4009    AudioParameter param = AudioParameter(keyValuePair);
4010    int value;
4011    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4012        reconfig = true;
4013    }
4014    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4015        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4016            status = BAD_VALUE;
4017        } else {
4018            // no need to save value, since it's constant
4019            reconfig = true;
4020        }
4021    }
4022    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4023        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4024            status = BAD_VALUE;
4025        } else {
4026            // no need to save value, since it's constant
4027            reconfig = true;
4028        }
4029    }
4030    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4031        // do not accept frame count changes if tracks are open as the track buffer
4032        // size depends on frame count and correct behavior would not be guaranteed
4033        // if frame count is changed after track creation
4034        if (!mTracks.isEmpty()) {
4035            status = INVALID_OPERATION;
4036        } else {
4037            reconfig = true;
4038        }
4039    }
4040    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4041#ifdef ADD_BATTERY_DATA
4042        // when changing the audio output device, call addBatteryData to notify
4043        // the change
4044        if (mOutDevice != value) {
4045            uint32_t params = 0;
4046            // check whether speaker is on
4047            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4048                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4049            }
4050
4051            audio_devices_t deviceWithoutSpeaker
4052                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4053            // check if any other device (except speaker) is on
4054            if (value & deviceWithoutSpeaker ) {
4055                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4056            }
4057
4058            if (params != 0) {
4059                addBatteryData(params);
4060            }
4061        }
4062#endif
4063
4064        // forward device change to effects that have requested to be
4065        // aware of attached audio device.
4066        if (value != AUDIO_DEVICE_NONE) {
4067            mOutDevice = value;
4068            for (size_t i = 0; i < mEffectChains.size(); i++) {
4069                mEffectChains[i]->setDevice_l(mOutDevice);
4070            }
4071        }
4072    }
4073
4074    if (status == NO_ERROR) {
4075        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4076                                                keyValuePair.string());
4077        if (!mStandby && status == INVALID_OPERATION) {
4078            mOutput->standby();
4079            mStandby = true;
4080            mBytesWritten = 0;
4081            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4082                                                   keyValuePair.string());
4083        }
4084        if (status == NO_ERROR && reconfig) {
4085            readOutputParameters_l();
4086            delete mAudioMixer;
4087            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4088            for (size_t i = 0; i < mTracks.size() ; i++) {
4089                int name = getTrackName_l(mTracks[i]->mChannelMask,
4090                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4091                if (name < 0) {
4092                    break;
4093                }
4094                mTracks[i]->mName = name;
4095            }
4096            sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
4097        }
4098    }
4099
4100    if (!(previousCommand & FastMixerState::IDLE)) {
4101        ALOG_ASSERT(mFastMixer != 0);
4102        FastMixerStateQueue *sq = mFastMixer->sq();
4103        FastMixerState *state = sq->begin();
4104        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4105        state->mCommand = previousCommand;
4106        sq->end();
4107        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4108    }
4109
4110    return reconfig;
4111}
4112
4113
4114void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4115{
4116    const size_t SIZE = 256;
4117    char buffer[SIZE];
4118    String8 result;
4119
4120    PlaybackThread::dumpInternals(fd, args);
4121
4122    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4123
4124    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4125    const FastMixerDumpState copy(mFastMixerDumpState);
4126    copy.dump(fd);
4127
4128#ifdef STATE_QUEUE_DUMP
4129    // Similar for state queue
4130    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4131    observerCopy.dump(fd);
4132    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4133    mutatorCopy.dump(fd);
4134#endif
4135
4136#ifdef TEE_SINK
4137    // Write the tee output to a .wav file
4138    dumpTee(fd, mTeeSource, mId);
4139#endif
4140
4141#ifdef AUDIO_WATCHDOG
4142    if (mAudioWatchdog != 0) {
4143        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4144        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4145        wdCopy.dump(fd);
4146    }
4147#endif
4148}
4149
4150uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4151{
4152    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4153}
4154
4155uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4156{
4157    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4158}
4159
4160void AudioFlinger::MixerThread::cacheParameters_l()
4161{
4162    PlaybackThread::cacheParameters_l();
4163
4164    // FIXME: Relaxed timing because of a certain device that can't meet latency
4165    // Should be reduced to 2x after the vendor fixes the driver issue
4166    // increase threshold again due to low power audio mode. The way this warning
4167    // threshold is calculated and its usefulness should be reconsidered anyway.
4168    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4169}
4170
4171// ----------------------------------------------------------------------------
4172
4173AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4174        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
4175    :   PlaybackThread(audioFlinger, output, id, device, DIRECT)
4176        // mLeftVolFloat, mRightVolFloat
4177{
4178}
4179
4180AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4181        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4182        ThreadBase::type_t type)
4183    :   PlaybackThread(audioFlinger, output, id, device, type)
4184        // mLeftVolFloat, mRightVolFloat
4185{
4186}
4187
4188AudioFlinger::DirectOutputThread::~DirectOutputThread()
4189{
4190}
4191
4192void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4193{
4194    audio_track_cblk_t* cblk = track->cblk();
4195    float left, right;
4196
4197    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4198        left = right = 0;
4199    } else {
4200        float typeVolume = mStreamTypes[track->streamType()].volume;
4201        float v = mMasterVolume * typeVolume;
4202        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4203        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4204        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4205        if (left > GAIN_FLOAT_UNITY) {
4206            left = GAIN_FLOAT_UNITY;
4207        }
4208        left *= v;
4209        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4210        if (right > GAIN_FLOAT_UNITY) {
4211            right = GAIN_FLOAT_UNITY;
4212        }
4213        right *= v;
4214    }
4215
4216    if (lastTrack) {
4217        if (left != mLeftVolFloat || right != mRightVolFloat) {
4218            mLeftVolFloat = left;
4219            mRightVolFloat = right;
4220
4221            // Convert volumes from float to 8.24
4222            uint32_t vl = (uint32_t)(left * (1 << 24));
4223            uint32_t vr = (uint32_t)(right * (1 << 24));
4224
4225            // Delegate volume control to effect in track effect chain if needed
4226            // only one effect chain can be present on DirectOutputThread, so if
4227            // there is one, the track is connected to it
4228            if (!mEffectChains.isEmpty()) {
4229                mEffectChains[0]->setVolume_l(&vl, &vr);
4230                left = (float)vl / (1 << 24);
4231                right = (float)vr / (1 << 24);
4232            }
4233            if (mOutput->stream->set_volume) {
4234                mOutput->stream->set_volume(mOutput->stream, left, right);
4235            }
4236        }
4237    }
4238}
4239
4240
4241AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4242    Vector< sp<Track> > *tracksToRemove
4243)
4244{
4245    size_t count = mActiveTracks.size();
4246    mixer_state mixerStatus = MIXER_IDLE;
4247    bool doHwPause = false;
4248    bool doHwResume = false;
4249    bool flushPending = false;
4250
4251    // find out which tracks need to be processed
4252    for (size_t i = 0; i < count; i++) {
4253        sp<Track> t = mActiveTracks[i].promote();
4254        // The track died recently
4255        if (t == 0) {
4256            continue;
4257        }
4258
4259        Track* const track = t.get();
4260        audio_track_cblk_t* cblk = track->cblk();
4261        // Only consider last track started for volume and mixer state control.
4262        // In theory an older track could underrun and restart after the new one starts
4263        // but as we only care about the transition phase between two tracks on a
4264        // direct output, it is not a problem to ignore the underrun case.
4265        sp<Track> l = mLatestActiveTrack.promote();
4266        bool last = l.get() == track;
4267
4268        if (mHwSupportsPause && track->isPausing()) {
4269            track->setPaused();
4270            if (last && !mHwPaused) {
4271                doHwPause = true;
4272                mHwPaused = true;
4273            }
4274            tracksToRemove->add(track);
4275        } else if (track->isFlushPending()) {
4276            track->flushAck();
4277            if (last) {
4278                flushPending = true;
4279            }
4280        } else if (mHwSupportsPause && track->isResumePending()){
4281            track->resumeAck();
4282            if (last) {
4283                if (mHwPaused) {
4284                    doHwResume = true;
4285                    mHwPaused = false;
4286                }
4287            }
4288        }
4289
4290        // The first time a track is added we wait
4291        // for all its buffers to be filled before processing it.
4292        // Allow draining the buffer in case the client
4293        // app does not call stop() and relies on underrun to stop:
4294        // hence the test on (track->mRetryCount > 1).
4295        // If retryCount<=1 then track is about to underrun and be removed.
4296        uint32_t minFrames;
4297        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4298            && (track->mRetryCount > 1)) {
4299            minFrames = mNormalFrameCount;
4300        } else {
4301            minFrames = 1;
4302        }
4303
4304        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4305                !track->isStopping_2() && !track->isStopped())
4306        {
4307            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4308
4309            if (track->mFillingUpStatus == Track::FS_FILLED) {
4310                track->mFillingUpStatus = Track::FS_ACTIVE;
4311                // make sure processVolume_l() will apply new volume even if 0
4312                mLeftVolFloat = mRightVolFloat = -1.0;
4313                if (!mHwSupportsPause) {
4314                    track->resumeAck();
4315                }
4316            }
4317
4318            // compute volume for this track
4319            processVolume_l(track, last);
4320            if (last) {
4321                // reset retry count
4322                track->mRetryCount = kMaxTrackRetriesDirect;
4323                mActiveTrack = t;
4324                mixerStatus = MIXER_TRACKS_READY;
4325                if (usesHwAvSync() && mHwPaused) {
4326                    doHwResume = true;
4327                    mHwPaused = false;
4328                }
4329            }
4330        } else {
4331            // clear effect chain input buffer if the last active track started underruns
4332            // to avoid sending previous audio buffer again to effects
4333            if (!mEffectChains.isEmpty() && last) {
4334                mEffectChains[0]->clearInputBuffer();
4335            }
4336            if (track->isStopping_1()) {
4337                track->mState = TrackBase::STOPPING_2;
4338                if (last && mHwPaused) {
4339                     doHwResume = true;
4340                     mHwPaused = false;
4341                 }
4342            }
4343            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4344                    track->isStopping_2() || track->isPaused()) {
4345                // We have consumed all the buffers of this track.
4346                // Remove it from the list of active tracks.
4347                size_t audioHALFrames;
4348                if (audio_is_linear_pcm(mFormat)) {
4349                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4350                } else {
4351                    audioHALFrames = 0;
4352                }
4353
4354                size_t framesWritten = mBytesWritten / mFrameSize;
4355                if (mStandby || !last ||
4356                        track->presentationComplete(framesWritten, audioHALFrames)) {
4357                    if (track->isStopping_2()) {
4358                        track->mState = TrackBase::STOPPED;
4359                    }
4360                    if (track->isStopped()) {
4361                        track->reset();
4362                    }
4363                    tracksToRemove->add(track);
4364                }
4365            } else {
4366                // No buffers for this track. Give it a few chances to
4367                // fill a buffer, then remove it from active list.
4368                // Only consider last track started for mixer state control
4369                if (--(track->mRetryCount) <= 0) {
4370                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4371                    tracksToRemove->add(track);
4372                    // indicate to client process that the track was disabled because of underrun;
4373                    // it will then automatically call start() when data is available
4374                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4375                } else if (last) {
4376                    mixerStatus = MIXER_TRACKS_ENABLED;
4377                    if (usesHwAvSync() && !mHwPaused && !mStandby) {
4378                        doHwPause = true;
4379                        mHwPaused = true;
4380                    }
4381                }
4382            }
4383        }
4384    }
4385
4386    // if an active track did not command a flush, check for pending flush on stopped tracks
4387    if (!flushPending) {
4388        for (size_t i = 0; i < mTracks.size(); i++) {
4389            if (mTracks[i]->isFlushPending()) {
4390                mTracks[i]->flushAck();
4391                flushPending = true;
4392            }
4393        }
4394    }
4395
4396    // make sure the pause/flush/resume sequence is executed in the right order.
4397    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4398    // before flush and then resume HW. This can happen in case of pause/flush/resume
4399    // if resume is received before pause is executed.
4400    if (mHwSupportsPause && !mStandby &&
4401            (doHwPause || (flushPending && !mHwPaused && (count != 0)))) {
4402        mOutput->stream->pause(mOutput->stream);
4403    }
4404    if (flushPending) {
4405        flushHw_l();
4406    }
4407    if (mHwSupportsPause && !mStandby && doHwResume) {
4408        mOutput->stream->resume(mOutput->stream);
4409    }
4410    // remove all the tracks that need to be...
4411    removeTracks_l(*tracksToRemove);
4412
4413    return mixerStatus;
4414}
4415
4416void AudioFlinger::DirectOutputThread::threadLoop_mix()
4417{
4418    size_t frameCount = mFrameCount;
4419    int8_t *curBuf = (int8_t *)mSinkBuffer;
4420    // output audio to hardware
4421    while (frameCount) {
4422        AudioBufferProvider::Buffer buffer;
4423        buffer.frameCount = frameCount;
4424        status_t status = mActiveTrack->getNextBuffer(&buffer);
4425        if (status != NO_ERROR || buffer.raw == NULL) {
4426            memset(curBuf, 0, frameCount * mFrameSize);
4427            break;
4428        }
4429        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4430        frameCount -= buffer.frameCount;
4431        curBuf += buffer.frameCount * mFrameSize;
4432        mActiveTrack->releaseBuffer(&buffer);
4433    }
4434    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4435    sleepTime = 0;
4436    standbyTime = systemTime() + standbyDelay;
4437    mActiveTrack.clear();
4438}
4439
4440void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4441{
4442    // do not write to HAL when paused
4443    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4444        sleepTime = idleSleepTime;
4445        return;
4446    }
4447    if (sleepTime == 0) {
4448        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4449            sleepTime = activeSleepTime;
4450        } else {
4451            sleepTime = idleSleepTime;
4452        }
4453    } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4454        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4455        sleepTime = 0;
4456    }
4457}
4458
4459void AudioFlinger::DirectOutputThread::threadLoop_exit()
4460{
4461    {
4462        Mutex::Autolock _l(mLock);
4463        bool flushPending = false;
4464        for (size_t i = 0; i < mTracks.size(); i++) {
4465            if (mTracks[i]->isFlushPending()) {
4466                mTracks[i]->flushAck();
4467                flushPending = true;
4468            }
4469        }
4470        if (flushPending) {
4471            flushHw_l();
4472        }
4473    }
4474    PlaybackThread::threadLoop_exit();
4475}
4476
4477// must be called with thread mutex locked
4478bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4479{
4480    bool trackPaused = false;
4481    bool trackStopped = false;
4482
4483    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4484    // after a timeout and we will enter standby then.
4485    if (mTracks.size() > 0) {
4486        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4487        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4488                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4489    }
4490
4491    return !mStandby && !(trackPaused || (usesHwAvSync() && mHwPaused && !trackStopped));
4492}
4493
4494// getTrackName_l() must be called with ThreadBase::mLock held
4495int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4496        audio_format_t format __unused, int sessionId __unused)
4497{
4498    return 0;
4499}
4500
4501// deleteTrackName_l() must be called with ThreadBase::mLock held
4502void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4503{
4504}
4505
4506// checkForNewParameter_l() must be called with ThreadBase::mLock held
4507bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4508                                                              status_t& status)
4509{
4510    bool reconfig = false;
4511
4512    status = NO_ERROR;
4513
4514    AudioParameter param = AudioParameter(keyValuePair);
4515    int value;
4516    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4517        // forward device change to effects that have requested to be
4518        // aware of attached audio device.
4519        if (value != AUDIO_DEVICE_NONE) {
4520            mOutDevice = value;
4521            for (size_t i = 0; i < mEffectChains.size(); i++) {
4522                mEffectChains[i]->setDevice_l(mOutDevice);
4523            }
4524        }
4525    }
4526    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4527        // do not accept frame count changes if tracks are open as the track buffer
4528        // size depends on frame count and correct behavior would not be garantied
4529        // if frame count is changed after track creation
4530        if (!mTracks.isEmpty()) {
4531            status = INVALID_OPERATION;
4532        } else {
4533            reconfig = true;
4534        }
4535    }
4536    if (status == NO_ERROR) {
4537        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4538                                                keyValuePair.string());
4539        if (!mStandby && status == INVALID_OPERATION) {
4540            mOutput->standby();
4541            mStandby = true;
4542            mBytesWritten = 0;
4543            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4544                                                   keyValuePair.string());
4545        }
4546        if (status == NO_ERROR && reconfig) {
4547            readOutputParameters_l();
4548            sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
4549        }
4550    }
4551
4552    return reconfig;
4553}
4554
4555uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4556{
4557    uint32_t time;
4558    if (audio_is_linear_pcm(mFormat)) {
4559        time = PlaybackThread::activeSleepTimeUs();
4560    } else {
4561        time = 10000;
4562    }
4563    return time;
4564}
4565
4566uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4567{
4568    uint32_t time;
4569    if (audio_is_linear_pcm(mFormat)) {
4570        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4571    } else {
4572        time = 10000;
4573    }
4574    return time;
4575}
4576
4577uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4578{
4579    uint32_t time;
4580    if (audio_is_linear_pcm(mFormat)) {
4581        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4582    } else {
4583        time = 10000;
4584    }
4585    return time;
4586}
4587
4588void AudioFlinger::DirectOutputThread::cacheParameters_l()
4589{
4590    PlaybackThread::cacheParameters_l();
4591
4592    // use shorter standby delay as on normal output to release
4593    // hardware resources as soon as possible
4594    // no delay on outputs with HW A/V sync
4595    if (usesHwAvSync()) {
4596        standbyDelay = 0;
4597    } else if (audio_is_linear_pcm(mFormat)) {
4598        standbyDelay = microseconds(activeSleepTime*2);
4599    } else {
4600        standbyDelay = kOffloadStandbyDelayNs;
4601    }
4602}
4603
4604void AudioFlinger::DirectOutputThread::flushHw_l()
4605{
4606    mOutput->flush();
4607    mHwPaused = false;
4608}
4609
4610// ----------------------------------------------------------------------------
4611
4612AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4613        const wp<AudioFlinger::PlaybackThread>& playbackThread)
4614    :   Thread(false /*canCallJava*/),
4615        mPlaybackThread(playbackThread),
4616        mWriteAckSequence(0),
4617        mDrainSequence(0)
4618{
4619}
4620
4621AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4622{
4623}
4624
4625void AudioFlinger::AsyncCallbackThread::onFirstRef()
4626{
4627    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4628}
4629
4630bool AudioFlinger::AsyncCallbackThread::threadLoop()
4631{
4632    while (!exitPending()) {
4633        uint32_t writeAckSequence;
4634        uint32_t drainSequence;
4635
4636        {
4637            Mutex::Autolock _l(mLock);
4638            while (!((mWriteAckSequence & 1) ||
4639                     (mDrainSequence & 1) ||
4640                     exitPending())) {
4641                mWaitWorkCV.wait(mLock);
4642            }
4643
4644            if (exitPending()) {
4645                break;
4646            }
4647            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4648                  mWriteAckSequence, mDrainSequence);
4649            writeAckSequence = mWriteAckSequence;
4650            mWriteAckSequence &= ~1;
4651            drainSequence = mDrainSequence;
4652            mDrainSequence &= ~1;
4653        }
4654        {
4655            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4656            if (playbackThread != 0) {
4657                if (writeAckSequence & 1) {
4658                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4659                }
4660                if (drainSequence & 1) {
4661                    playbackThread->resetDraining(drainSequence >> 1);
4662                }
4663            }
4664        }
4665    }
4666    return false;
4667}
4668
4669void AudioFlinger::AsyncCallbackThread::exit()
4670{
4671    ALOGV("AsyncCallbackThread::exit");
4672    Mutex::Autolock _l(mLock);
4673    requestExit();
4674    mWaitWorkCV.broadcast();
4675}
4676
4677void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
4678{
4679    Mutex::Autolock _l(mLock);
4680    // bit 0 is cleared
4681    mWriteAckSequence = sequence << 1;
4682}
4683
4684void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
4685{
4686    Mutex::Autolock _l(mLock);
4687    // ignore unexpected callbacks
4688    if (mWriteAckSequence & 2) {
4689        mWriteAckSequence |= 1;
4690        mWaitWorkCV.signal();
4691    }
4692}
4693
4694void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
4695{
4696    Mutex::Autolock _l(mLock);
4697    // bit 0 is cleared
4698    mDrainSequence = sequence << 1;
4699}
4700
4701void AudioFlinger::AsyncCallbackThread::resetDraining()
4702{
4703    Mutex::Autolock _l(mLock);
4704    // ignore unexpected callbacks
4705    if (mDrainSequence & 2) {
4706        mDrainSequence |= 1;
4707        mWaitWorkCV.signal();
4708    }
4709}
4710
4711
4712// ----------------------------------------------------------------------------
4713AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
4714        AudioStreamOut* output, audio_io_handle_t id, uint32_t device)
4715    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD),
4716        mPausedBytesRemaining(0)
4717{
4718    //FIXME: mStandby should be set to true by ThreadBase constructor
4719    mStandby = true;
4720}
4721
4722void AudioFlinger::OffloadThread::threadLoop_exit()
4723{
4724    if (mFlushPending || mHwPaused) {
4725        // If a flush is pending or track was paused, just discard buffered data
4726        flushHw_l();
4727    } else {
4728        mMixerStatus = MIXER_DRAIN_ALL;
4729        threadLoop_drain();
4730    }
4731    if (mUseAsyncWrite) {
4732        ALOG_ASSERT(mCallbackThread != 0);
4733        mCallbackThread->exit();
4734    }
4735    PlaybackThread::threadLoop_exit();
4736}
4737
4738AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
4739    Vector< sp<Track> > *tracksToRemove
4740)
4741{
4742    size_t count = mActiveTracks.size();
4743
4744    mixer_state mixerStatus = MIXER_IDLE;
4745    bool doHwPause = false;
4746    bool doHwResume = false;
4747
4748    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
4749
4750    // find out which tracks need to be processed
4751    for (size_t i = 0; i < count; i++) {
4752        sp<Track> t = mActiveTracks[i].promote();
4753        // The track died recently
4754        if (t == 0) {
4755            continue;
4756        }
4757        Track* const track = t.get();
4758        audio_track_cblk_t* cblk = track->cblk();
4759        // Only consider last track started for volume and mixer state control.
4760        // In theory an older track could underrun and restart after the new one starts
4761        // but as we only care about the transition phase between two tracks on a
4762        // direct output, it is not a problem to ignore the underrun case.
4763        sp<Track> l = mLatestActiveTrack.promote();
4764        bool last = l.get() == track;
4765
4766        if (track->isInvalid()) {
4767            ALOGW("An invalidated track shouldn't be in active list");
4768            tracksToRemove->add(track);
4769            continue;
4770        }
4771
4772        if (track->mState == TrackBase::IDLE) {
4773            ALOGW("An idle track shouldn't be in active list");
4774            continue;
4775        }
4776
4777        if (track->isPausing()) {
4778            track->setPaused();
4779            if (last) {
4780                if (!mHwPaused) {
4781                    doHwPause = true;
4782                    mHwPaused = true;
4783                }
4784                // If we were part way through writing the mixbuffer to
4785                // the HAL we must save this until we resume
4786                // BUG - this will be wrong if a different track is made active,
4787                // in that case we want to discard the pending data in the
4788                // mixbuffer and tell the client to present it again when the
4789                // track is resumed
4790                mPausedWriteLength = mCurrentWriteLength;
4791                mPausedBytesRemaining = mBytesRemaining;
4792                mBytesRemaining = 0;    // stop writing
4793            }
4794            tracksToRemove->add(track);
4795        } else if (track->isFlushPending()) {
4796            track->flushAck();
4797            if (last) {
4798                mFlushPending = true;
4799            }
4800        } else if (track->isResumePending()){
4801            track->resumeAck();
4802            if (last) {
4803                if (mPausedBytesRemaining) {
4804                    // Need to continue write that was interrupted
4805                    mCurrentWriteLength = mPausedWriteLength;
4806                    mBytesRemaining = mPausedBytesRemaining;
4807                    mPausedBytesRemaining = 0;
4808                }
4809                if (mHwPaused) {
4810                    doHwResume = true;
4811                    mHwPaused = false;
4812                    // threadLoop_mix() will handle the case that we need to
4813                    // resume an interrupted write
4814                }
4815                // enable write to audio HAL
4816                sleepTime = 0;
4817
4818                // Do not handle new data in this iteration even if track->framesReady()
4819                mixerStatus = MIXER_TRACKS_ENABLED;
4820            }
4821        }  else if (track->framesReady() && track->isReady() &&
4822                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
4823            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
4824            if (track->mFillingUpStatus == Track::FS_FILLED) {
4825                track->mFillingUpStatus = Track::FS_ACTIVE;
4826                // make sure processVolume_l() will apply new volume even if 0
4827                mLeftVolFloat = mRightVolFloat = -1.0;
4828            }
4829
4830            if (last) {
4831                sp<Track> previousTrack = mPreviousTrack.promote();
4832                if (previousTrack != 0) {
4833                    if (track != previousTrack.get()) {
4834                        // Flush any data still being written from last track
4835                        mBytesRemaining = 0;
4836                        if (mPausedBytesRemaining) {
4837                            // Last track was paused so we also need to flush saved
4838                            // mixbuffer state and invalidate track so that it will
4839                            // re-submit that unwritten data when it is next resumed
4840                            mPausedBytesRemaining = 0;
4841                            // Invalidate is a bit drastic - would be more efficient
4842                            // to have a flag to tell client that some of the
4843                            // previously written data was lost
4844                            previousTrack->invalidate();
4845                        }
4846                        // flush data already sent to the DSP if changing audio session as audio
4847                        // comes from a different source. Also invalidate previous track to force a
4848                        // seek when resuming.
4849                        if (previousTrack->sessionId() != track->sessionId()) {
4850                            previousTrack->invalidate();
4851                        }
4852                    }
4853                }
4854                mPreviousTrack = track;
4855                // reset retry count
4856                track->mRetryCount = kMaxTrackRetriesOffload;
4857                mActiveTrack = t;
4858                mixerStatus = MIXER_TRACKS_READY;
4859            }
4860        } else {
4861            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
4862            if (track->isStopping_1()) {
4863                // Hardware buffer can hold a large amount of audio so we must
4864                // wait for all current track's data to drain before we say
4865                // that the track is stopped.
4866                if (mBytesRemaining == 0) {
4867                    // Only start draining when all data in mixbuffer
4868                    // has been written
4869                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
4870                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
4871                    // do not drain if no data was ever sent to HAL (mStandby == true)
4872                    if (last && !mStandby) {
4873                        // do not modify drain sequence if we are already draining. This happens
4874                        // when resuming from pause after drain.
4875                        if ((mDrainSequence & 1) == 0) {
4876                            sleepTime = 0;
4877                            standbyTime = systemTime() + standbyDelay;
4878                            mixerStatus = MIXER_DRAIN_TRACK;
4879                            mDrainSequence += 2;
4880                        }
4881                        if (mHwPaused) {
4882                            // It is possible to move from PAUSED to STOPPING_1 without
4883                            // a resume so we must ensure hardware is running
4884                            doHwResume = true;
4885                            mHwPaused = false;
4886                        }
4887                    }
4888                }
4889            } else if (track->isStopping_2()) {
4890                // Drain has completed or we are in standby, signal presentation complete
4891                if (!(mDrainSequence & 1) || !last || mStandby) {
4892                    track->mState = TrackBase::STOPPED;
4893                    size_t audioHALFrames =
4894                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4895                    size_t framesWritten =
4896                            mBytesWritten / mOutput->getFrameSize();
4897                    track->presentationComplete(framesWritten, audioHALFrames);
4898                    track->reset();
4899                    tracksToRemove->add(track);
4900                }
4901            } else {
4902                // No buffers for this track. Give it a few chances to
4903                // fill a buffer, then remove it from active list.
4904                if (--(track->mRetryCount) <= 0) {
4905                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
4906                          track->name());
4907                    tracksToRemove->add(track);
4908                    // indicate to client process that the track was disabled because of underrun;
4909                    // it will then automatically call start() when data is available
4910                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4911                } else if (last){
4912                    mixerStatus = MIXER_TRACKS_ENABLED;
4913                }
4914            }
4915        }
4916        // compute volume for this track
4917        processVolume_l(track, last);
4918    }
4919
4920    // make sure the pause/flush/resume sequence is executed in the right order.
4921    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4922    // before flush and then resume HW. This can happen in case of pause/flush/resume
4923    // if resume is received before pause is executed.
4924    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4925        mOutput->stream->pause(mOutput->stream);
4926    }
4927    if (mFlushPending) {
4928        flushHw_l();
4929        mFlushPending = false;
4930    }
4931    if (!mStandby && doHwResume) {
4932        mOutput->stream->resume(mOutput->stream);
4933    }
4934
4935    // remove all the tracks that need to be...
4936    removeTracks_l(*tracksToRemove);
4937
4938    return mixerStatus;
4939}
4940
4941// must be called with thread mutex locked
4942bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
4943{
4944    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
4945          mWriteAckSequence, mDrainSequence);
4946    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
4947        return true;
4948    }
4949    return false;
4950}
4951
4952bool AudioFlinger::OffloadThread::waitingAsyncCallback()
4953{
4954    Mutex::Autolock _l(mLock);
4955    return waitingAsyncCallback_l();
4956}
4957
4958void AudioFlinger::OffloadThread::flushHw_l()
4959{
4960    DirectOutputThread::flushHw_l();
4961    // Flush anything still waiting in the mixbuffer
4962    mCurrentWriteLength = 0;
4963    mBytesRemaining = 0;
4964    mPausedWriteLength = 0;
4965    mPausedBytesRemaining = 0;
4966
4967    if (mUseAsyncWrite) {
4968        // discard any pending drain or write ack by incrementing sequence
4969        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4970        mDrainSequence = (mDrainSequence + 2) & ~1;
4971        ALOG_ASSERT(mCallbackThread != 0);
4972        mCallbackThread->setWriteBlocked(mWriteAckSequence);
4973        mCallbackThread->setDraining(mDrainSequence);
4974    }
4975}
4976
4977void AudioFlinger::OffloadThread::onAddNewTrack_l()
4978{
4979    sp<Track> previousTrack = mPreviousTrack.promote();
4980    sp<Track> latestTrack = mLatestActiveTrack.promote();
4981
4982    if (previousTrack != 0 && latestTrack != 0 &&
4983        (previousTrack->sessionId() != latestTrack->sessionId())) {
4984        mFlushPending = true;
4985    }
4986    PlaybackThread::onAddNewTrack_l();
4987}
4988
4989// ----------------------------------------------------------------------------
4990
4991AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
4992        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
4993    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
4994                DUPLICATING),
4995        mWaitTimeMs(UINT_MAX)
4996{
4997    addOutputTrack(mainThread);
4998}
4999
5000AudioFlinger::DuplicatingThread::~DuplicatingThread()
5001{
5002    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5003        mOutputTracks[i]->destroy();
5004    }
5005}
5006
5007void AudioFlinger::DuplicatingThread::threadLoop_mix()
5008{
5009    // mix buffers...
5010    if (outputsReady(outputTracks)) {
5011        mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
5012    } else {
5013        if (mMixerBufferValid) {
5014            memset(mMixerBuffer, 0, mMixerBufferSize);
5015        } else {
5016            memset(mSinkBuffer, 0, mSinkBufferSize);
5017        }
5018    }
5019    sleepTime = 0;
5020    writeFrames = mNormalFrameCount;
5021    mCurrentWriteLength = mSinkBufferSize;
5022    standbyTime = systemTime() + standbyDelay;
5023}
5024
5025void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5026{
5027    if (sleepTime == 0) {
5028        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5029            sleepTime = activeSleepTime;
5030        } else {
5031            sleepTime = idleSleepTime;
5032        }
5033    } else if (mBytesWritten != 0) {
5034        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5035            writeFrames = mNormalFrameCount;
5036            memset(mSinkBuffer, 0, mSinkBufferSize);
5037        } else {
5038            // flush remaining overflow buffers in output tracks
5039            writeFrames = 0;
5040        }
5041        sleepTime = 0;
5042    }
5043}
5044
5045ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5046{
5047    for (size_t i = 0; i < outputTracks.size(); i++) {
5048        outputTracks[i]->write(mSinkBuffer, writeFrames);
5049    }
5050    mStandby = false;
5051    return (ssize_t)mSinkBufferSize;
5052}
5053
5054void AudioFlinger::DuplicatingThread::threadLoop_standby()
5055{
5056    // DuplicatingThread implements standby by stopping all tracks
5057    for (size_t i = 0; i < outputTracks.size(); i++) {
5058        outputTracks[i]->stop();
5059    }
5060}
5061
5062void AudioFlinger::DuplicatingThread::saveOutputTracks()
5063{
5064    outputTracks = mOutputTracks;
5065}
5066
5067void AudioFlinger::DuplicatingThread::clearOutputTracks()
5068{
5069    outputTracks.clear();
5070}
5071
5072void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5073{
5074    Mutex::Autolock _l(mLock);
5075    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5076    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5077    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5078    const size_t frameCount =
5079            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5080    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5081    // from different OutputTracks and their associated MixerThreads (e.g. one may
5082    // nearly empty and the other may be dropping data).
5083
5084    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5085                                            this,
5086                                            mSampleRate,
5087                                            mFormat,
5088                                            mChannelMask,
5089                                            frameCount,
5090                                            IPCThreadState::self()->getCallingUid());
5091    if (outputTrack->cblk() != NULL) {
5092        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5093        mOutputTracks.add(outputTrack);
5094        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5095        updateWaitTime_l();
5096    }
5097}
5098
5099void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5100{
5101    Mutex::Autolock _l(mLock);
5102    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5103        if (mOutputTracks[i]->thread() == thread) {
5104            mOutputTracks[i]->destroy();
5105            mOutputTracks.removeAt(i);
5106            updateWaitTime_l();
5107            return;
5108        }
5109    }
5110    ALOGV("removeOutputTrack(): unkonwn thread: %p", thread);
5111}
5112
5113// caller must hold mLock
5114void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5115{
5116    mWaitTimeMs = UINT_MAX;
5117    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5118        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5119        if (strong != 0) {
5120            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5121            if (waitTimeMs < mWaitTimeMs) {
5122                mWaitTimeMs = waitTimeMs;
5123            }
5124        }
5125    }
5126}
5127
5128
5129bool AudioFlinger::DuplicatingThread::outputsReady(
5130        const SortedVector< sp<OutputTrack> > &outputTracks)
5131{
5132    for (size_t i = 0; i < outputTracks.size(); i++) {
5133        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5134        if (thread == 0) {
5135            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5136                    outputTracks[i].get());
5137            return false;
5138        }
5139        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5140        // see note at standby() declaration
5141        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5142            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5143                    thread.get());
5144            return false;
5145        }
5146    }
5147    return true;
5148}
5149
5150uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5151{
5152    return (mWaitTimeMs * 1000) / 2;
5153}
5154
5155void AudioFlinger::DuplicatingThread::cacheParameters_l()
5156{
5157    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5158    updateWaitTime_l();
5159
5160    MixerThread::cacheParameters_l();
5161}
5162
5163// ----------------------------------------------------------------------------
5164//      Record
5165// ----------------------------------------------------------------------------
5166
5167AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5168                                         AudioStreamIn *input,
5169                                         audio_io_handle_t id,
5170                                         audio_devices_t outDevice,
5171                                         audio_devices_t inDevice
5172#ifdef TEE_SINK
5173                                         , const sp<NBAIO_Sink>& teeSink
5174#endif
5175                                         ) :
5176    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD),
5177    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5178    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5179    mRsmpInRear(0)
5180#ifdef TEE_SINK
5181    , mTeeSink(teeSink)
5182#endif
5183    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5184            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5185    // mFastCapture below
5186    , mFastCaptureFutex(0)
5187    // mInputSource
5188    // mPipeSink
5189    // mPipeSource
5190    , mPipeFramesP2(0)
5191    // mPipeMemory
5192    // mFastCaptureNBLogWriter
5193    , mFastTrackAvail(false)
5194{
5195    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5196    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5197
5198    readInputParameters_l();
5199
5200    // create an NBAIO source for the HAL input stream, and negotiate
5201    mInputSource = new AudioStreamInSource(input->stream);
5202    size_t numCounterOffers = 0;
5203    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5204    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5205    ALOG_ASSERT(index == 0);
5206
5207    // initialize fast capture depending on configuration
5208    bool initFastCapture;
5209    switch (kUseFastCapture) {
5210    case FastCapture_Never:
5211        initFastCapture = false;
5212        break;
5213    case FastCapture_Always:
5214        initFastCapture = true;
5215        break;
5216    case FastCapture_Static:
5217        uint32_t primaryOutputSampleRate;
5218        {
5219            AutoMutex _l(audioFlinger->mHardwareLock);
5220            primaryOutputSampleRate = audioFlinger->mPrimaryOutputSampleRate;
5221        }
5222        initFastCapture =
5223                // either capture sample rate is same as (a reasonable) primary output sample rate
5224                (((primaryOutputSampleRate == 44100 || primaryOutputSampleRate == 48000) &&
5225                    (mSampleRate == primaryOutputSampleRate)) ||
5226                // or primary output sample rate is unknown, and capture sample rate is reasonable
5227                ((primaryOutputSampleRate == 0) &&
5228                    ((mSampleRate == 44100 || mSampleRate == 48000)))) &&
5229                // and the buffer size is < 12 ms
5230                (mFrameCount * 1000) / mSampleRate < 12;
5231        break;
5232    // case FastCapture_Dynamic:
5233    }
5234
5235    if (initFastCapture) {
5236        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5237        NBAIO_Format format = mInputSource->format();
5238        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5239        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5240        void *pipeBuffer;
5241        const sp<MemoryDealer> roHeap(readOnlyHeap());
5242        sp<IMemory> pipeMemory;
5243        if ((roHeap == 0) ||
5244                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5245                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5246            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5247            goto failed;
5248        }
5249        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5250        memset(pipeBuffer, 0, pipeSize);
5251        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5252        const NBAIO_Format offers[1] = {format};
5253        size_t numCounterOffers = 0;
5254        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5255        ALOG_ASSERT(index == 0);
5256        mPipeSink = pipe;
5257        PipeReader *pipeReader = new PipeReader(*pipe);
5258        numCounterOffers = 0;
5259        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5260        ALOG_ASSERT(index == 0);
5261        mPipeSource = pipeReader;
5262        mPipeFramesP2 = pipeFramesP2;
5263        mPipeMemory = pipeMemory;
5264
5265        // create fast capture
5266        mFastCapture = new FastCapture();
5267        FastCaptureStateQueue *sq = mFastCapture->sq();
5268#ifdef STATE_QUEUE_DUMP
5269        // FIXME
5270#endif
5271        FastCaptureState *state = sq->begin();
5272        state->mCblk = NULL;
5273        state->mInputSource = mInputSource.get();
5274        state->mInputSourceGen++;
5275        state->mPipeSink = pipe;
5276        state->mPipeSinkGen++;
5277        state->mFrameCount = mFrameCount;
5278        state->mCommand = FastCaptureState::COLD_IDLE;
5279        // already done in constructor initialization list
5280        //mFastCaptureFutex = 0;
5281        state->mColdFutexAddr = &mFastCaptureFutex;
5282        state->mColdGen++;
5283        state->mDumpState = &mFastCaptureDumpState;
5284#ifdef TEE_SINK
5285        // FIXME
5286#endif
5287        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5288        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5289        sq->end();
5290        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5291
5292        // start the fast capture
5293        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5294        pid_t tid = mFastCapture->getTid();
5295        int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
5296        if (err != 0) {
5297            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
5298                    kPriorityFastCapture, getpid_cached, tid, err);
5299        }
5300
5301#ifdef AUDIO_WATCHDOG
5302        // FIXME
5303#endif
5304
5305        mFastTrackAvail = true;
5306    }
5307failed: ;
5308
5309    // FIXME mNormalSource
5310}
5311
5312AudioFlinger::RecordThread::~RecordThread()
5313{
5314    if (mFastCapture != 0) {
5315        FastCaptureStateQueue *sq = mFastCapture->sq();
5316        FastCaptureState *state = sq->begin();
5317        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5318            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5319            if (old == -1) {
5320                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5321            }
5322        }
5323        state->mCommand = FastCaptureState::EXIT;
5324        sq->end();
5325        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5326        mFastCapture->join();
5327        mFastCapture.clear();
5328    }
5329    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5330    mAudioFlinger->unregisterWriter(mNBLogWriter);
5331    delete[] mRsmpInBuffer;
5332}
5333
5334void AudioFlinger::RecordThread::onFirstRef()
5335{
5336    run(mThreadName, PRIORITY_URGENT_AUDIO);
5337}
5338
5339bool AudioFlinger::RecordThread::threadLoop()
5340{
5341    nsecs_t lastWarning = 0;
5342
5343    inputStandBy();
5344
5345reacquire_wakelock:
5346    sp<RecordTrack> activeTrack;
5347    int activeTracksGen;
5348    {
5349        Mutex::Autolock _l(mLock);
5350        size_t size = mActiveTracks.size();
5351        activeTracksGen = mActiveTracksGen;
5352        if (size > 0) {
5353            // FIXME an arbitrary choice
5354            activeTrack = mActiveTracks[0];
5355            acquireWakeLock_l(activeTrack->uid());
5356            if (size > 1) {
5357                SortedVector<int> tmp;
5358                for (size_t i = 0; i < size; i++) {
5359                    tmp.add(mActiveTracks[i]->uid());
5360                }
5361                updateWakeLockUids_l(tmp);
5362            }
5363        } else {
5364            acquireWakeLock_l(-1);
5365        }
5366    }
5367
5368    // used to request a deferred sleep, to be executed later while mutex is unlocked
5369    uint32_t sleepUs = 0;
5370
5371    // loop while there is work to do
5372    for (;;) {
5373        Vector< sp<EffectChain> > effectChains;
5374
5375        // sleep with mutex unlocked
5376        if (sleepUs > 0) {
5377            ATRACE_BEGIN("sleep");
5378            usleep(sleepUs);
5379            ATRACE_END();
5380            sleepUs = 0;
5381        }
5382
5383        // activeTracks accumulates a copy of a subset of mActiveTracks
5384        Vector< sp<RecordTrack> > activeTracks;
5385
5386        // reference to the (first and only) active fast track
5387        sp<RecordTrack> fastTrack;
5388
5389        // reference to a fast track which is about to be removed
5390        sp<RecordTrack> fastTrackToRemove;
5391
5392        { // scope for mLock
5393            Mutex::Autolock _l(mLock);
5394
5395            processConfigEvents_l();
5396
5397            // check exitPending here because checkForNewParameters_l() and
5398            // checkForNewParameters_l() can temporarily release mLock
5399            if (exitPending()) {
5400                break;
5401            }
5402
5403            // if no active track(s), then standby and release wakelock
5404            size_t size = mActiveTracks.size();
5405            if (size == 0) {
5406                standbyIfNotAlreadyInStandby();
5407                // exitPending() can't become true here
5408                releaseWakeLock_l();
5409                ALOGV("RecordThread: loop stopping");
5410                // go to sleep
5411                mWaitWorkCV.wait(mLock);
5412                ALOGV("RecordThread: loop starting");
5413                goto reacquire_wakelock;
5414            }
5415
5416            if (mActiveTracksGen != activeTracksGen) {
5417                activeTracksGen = mActiveTracksGen;
5418                SortedVector<int> tmp;
5419                for (size_t i = 0; i < size; i++) {
5420                    tmp.add(mActiveTracks[i]->uid());
5421                }
5422                updateWakeLockUids_l(tmp);
5423            }
5424
5425            bool doBroadcast = false;
5426            for (size_t i = 0; i < size; ) {
5427
5428                activeTrack = mActiveTracks[i];
5429                if (activeTrack->isTerminated()) {
5430                    if (activeTrack->isFastTrack()) {
5431                        ALOG_ASSERT(fastTrackToRemove == 0);
5432                        fastTrackToRemove = activeTrack;
5433                    }
5434                    removeTrack_l(activeTrack);
5435                    mActiveTracks.remove(activeTrack);
5436                    mActiveTracksGen++;
5437                    size--;
5438                    continue;
5439                }
5440
5441                TrackBase::track_state activeTrackState = activeTrack->mState;
5442                switch (activeTrackState) {
5443
5444                case TrackBase::PAUSING:
5445                    mActiveTracks.remove(activeTrack);
5446                    mActiveTracksGen++;
5447                    doBroadcast = true;
5448                    size--;
5449                    continue;
5450
5451                case TrackBase::STARTING_1:
5452                    sleepUs = 10000;
5453                    i++;
5454                    continue;
5455
5456                case TrackBase::STARTING_2:
5457                    doBroadcast = true;
5458                    mStandby = false;
5459                    activeTrack->mState = TrackBase::ACTIVE;
5460                    break;
5461
5462                case TrackBase::ACTIVE:
5463                    break;
5464
5465                case TrackBase::IDLE:
5466                    i++;
5467                    continue;
5468
5469                default:
5470                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5471                }
5472
5473                activeTracks.add(activeTrack);
5474                i++;
5475
5476                if (activeTrack->isFastTrack()) {
5477                    ALOG_ASSERT(!mFastTrackAvail);
5478                    ALOG_ASSERT(fastTrack == 0);
5479                    fastTrack = activeTrack;
5480                }
5481            }
5482            if (doBroadcast) {
5483                mStartStopCond.broadcast();
5484            }
5485
5486            // sleep if there are no active tracks to process
5487            if (activeTracks.size() == 0) {
5488                if (sleepUs == 0) {
5489                    sleepUs = kRecordThreadSleepUs;
5490                }
5491                continue;
5492            }
5493            sleepUs = 0;
5494
5495            lockEffectChains_l(effectChains);
5496        }
5497
5498        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5499
5500        size_t size = effectChains.size();
5501        for (size_t i = 0; i < size; i++) {
5502            // thread mutex is not locked, but effect chain is locked
5503            effectChains[i]->process_l();
5504        }
5505
5506        // Push a new fast capture state if fast capture is not already running, or cblk change
5507        if (mFastCapture != 0) {
5508            FastCaptureStateQueue *sq = mFastCapture->sq();
5509            FastCaptureState *state = sq->begin();
5510            bool didModify = false;
5511            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5512            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5513                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5514                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5515                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5516                    if (old == -1) {
5517                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5518                    }
5519                }
5520                state->mCommand = FastCaptureState::READ_WRITE;
5521#if 0   // FIXME
5522                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5523                        FastThreadDumpState::kSamplingNforLowRamDevice :
5524                        FastThreadDumpState::kSamplingN);
5525#endif
5526                didModify = true;
5527            }
5528            audio_track_cblk_t *cblkOld = state->mCblk;
5529            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5530            if (cblkNew != cblkOld) {
5531                state->mCblk = cblkNew;
5532                // block until acked if removing a fast track
5533                if (cblkOld != NULL) {
5534                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5535                }
5536                didModify = true;
5537            }
5538            sq->end(didModify);
5539            if (didModify) {
5540                sq->push(block);
5541#if 0
5542                if (kUseFastCapture == FastCapture_Dynamic) {
5543                    mNormalSource = mPipeSource;
5544                }
5545#endif
5546            }
5547        }
5548
5549        // now run the fast track destructor with thread mutex unlocked
5550        fastTrackToRemove.clear();
5551
5552        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5553        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5554        // slow, then this RecordThread will overrun by not calling HAL read often enough.
5555        // If destination is non-contiguous, first read past the nominal end of buffer, then
5556        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5557
5558        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5559        ssize_t framesRead;
5560
5561        // If an NBAIO source is present, use it to read the normal capture's data
5562        if (mPipeSource != 0) {
5563            size_t framesToRead = mBufferSize / mFrameSize;
5564            framesRead = mPipeSource->read(&mRsmpInBuffer[rear * mChannelCount],
5565                    framesToRead, AudioBufferProvider::kInvalidPTS);
5566            if (framesRead == 0) {
5567                // since pipe is non-blocking, simulate blocking input
5568                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5569            }
5570        // otherwise use the HAL / AudioStreamIn directly
5571        } else {
5572            ssize_t bytesRead = mInput->stream->read(mInput->stream,
5573                    &mRsmpInBuffer[rear * mChannelCount], mBufferSize);
5574            if (bytesRead < 0) {
5575                framesRead = bytesRead;
5576            } else {
5577                framesRead = bytesRead / mFrameSize;
5578            }
5579        }
5580
5581        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5582            ALOGE("read failed: framesRead=%d", framesRead);
5583            // Force input into standby so that it tries to recover at next read attempt
5584            inputStandBy();
5585            sleepUs = kRecordThreadSleepUs;
5586        }
5587        if (framesRead <= 0) {
5588            goto unlock;
5589        }
5590        ALOG_ASSERT(framesRead > 0);
5591
5592        if (mTeeSink != 0) {
5593            (void) mTeeSink->write(&mRsmpInBuffer[rear * mChannelCount], framesRead);
5594        }
5595        // If destination is non-contiguous, we now correct for reading past end of buffer.
5596        {
5597            size_t part1 = mRsmpInFramesP2 - rear;
5598            if ((size_t) framesRead > part1) {
5599                memcpy(mRsmpInBuffer, &mRsmpInBuffer[mRsmpInFramesP2 * mChannelCount],
5600                        (framesRead - part1) * mFrameSize);
5601            }
5602        }
5603        rear = mRsmpInRear += framesRead;
5604
5605        size = activeTracks.size();
5606        // loop over each active track
5607        for (size_t i = 0; i < size; i++) {
5608            activeTrack = activeTracks[i];
5609
5610            // skip fast tracks, as those are handled directly by FastCapture
5611            if (activeTrack->isFastTrack()) {
5612                continue;
5613            }
5614
5615            // TODO: This code probably should be moved to RecordTrack.
5616            // TODO: Update the activeTrack buffer converter in case of reconfigure.
5617
5618            enum {
5619                OVERRUN_UNKNOWN,
5620                OVERRUN_TRUE,
5621                OVERRUN_FALSE
5622            } overrun = OVERRUN_UNKNOWN;
5623
5624            // loop over getNextBuffer to handle circular sink
5625            for (;;) {
5626
5627                activeTrack->mSink.frameCount = ~0;
5628                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5629                size_t framesOut = activeTrack->mSink.frameCount;
5630                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5631
5632                // check available frames and handle overrun conditions
5633                // if the record track isn't draining fast enough.
5634                bool hasOverrun;
5635                size_t framesIn;
5636                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
5637                if (hasOverrun) {
5638                    overrun = OVERRUN_TRUE;
5639                }
5640                if (framesOut == 0 || framesIn == 0) {
5641                    break;
5642                }
5643
5644                // Don't allow framesOut to be larger than what is possible with resampling
5645                // from framesIn.
5646                // This isn't strictly necessary but helps limit buffer resizing in
5647                // RecordBufferConverter.  TODO: remove when no longer needed.
5648                framesOut = min(framesOut,
5649                        destinationFramesPossible(
5650                                framesIn, mSampleRate, activeTrack->mSampleRate));
5651                // process frames from the RecordThread buffer provider to the RecordTrack buffer
5652                framesOut = activeTrack->mRecordBufferConverter->convert(
5653                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
5654
5655                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5656                    overrun = OVERRUN_FALSE;
5657                }
5658
5659                if (activeTrack->mFramesToDrop == 0) {
5660                    if (framesOut > 0) {
5661                        activeTrack->mSink.frameCount = framesOut;
5662                        activeTrack->releaseBuffer(&activeTrack->mSink);
5663                    }
5664                } else {
5665                    // FIXME could do a partial drop of framesOut
5666                    if (activeTrack->mFramesToDrop > 0) {
5667                        activeTrack->mFramesToDrop -= framesOut;
5668                        if (activeTrack->mFramesToDrop <= 0) {
5669                            activeTrack->clearSyncStartEvent();
5670                        }
5671                    } else {
5672                        activeTrack->mFramesToDrop += framesOut;
5673                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5674                                activeTrack->mSyncStartEvent->isCancelled()) {
5675                            ALOGW("Synced record %s, session %d, trigger session %d",
5676                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5677                                  activeTrack->sessionId(),
5678                                  (activeTrack->mSyncStartEvent != 0) ?
5679                                          activeTrack->mSyncStartEvent->triggerSession() : 0);
5680                            activeTrack->clearSyncStartEvent();
5681                        }
5682                    }
5683                }
5684
5685                if (framesOut == 0) {
5686                    break;
5687                }
5688            }
5689
5690            switch (overrun) {
5691            case OVERRUN_TRUE:
5692                // client isn't retrieving buffers fast enough
5693                if (!activeTrack->setOverflow()) {
5694                    nsecs_t now = systemTime();
5695                    // FIXME should lastWarning per track?
5696                    if ((now - lastWarning) > kWarningThrottleNs) {
5697                        ALOGW("RecordThread: buffer overflow");
5698                        lastWarning = now;
5699                    }
5700                }
5701                break;
5702            case OVERRUN_FALSE:
5703                activeTrack->clearOverflow();
5704                break;
5705            case OVERRUN_UNKNOWN:
5706                break;
5707            }
5708
5709        }
5710
5711unlock:
5712        // enable changes in effect chain
5713        unlockEffectChains(effectChains);
5714        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
5715    }
5716
5717    standbyIfNotAlreadyInStandby();
5718
5719    {
5720        Mutex::Autolock _l(mLock);
5721        for (size_t i = 0; i < mTracks.size(); i++) {
5722            sp<RecordTrack> track = mTracks[i];
5723            track->invalidate();
5724        }
5725        mActiveTracks.clear();
5726        mActiveTracksGen++;
5727        mStartStopCond.broadcast();
5728    }
5729
5730    releaseWakeLock();
5731
5732    ALOGV("RecordThread %p exiting", this);
5733    return false;
5734}
5735
5736void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
5737{
5738    if (!mStandby) {
5739        inputStandBy();
5740        mStandby = true;
5741    }
5742}
5743
5744void AudioFlinger::RecordThread::inputStandBy()
5745{
5746    // Idle the fast capture if it's currently running
5747    if (mFastCapture != 0) {
5748        FastCaptureStateQueue *sq = mFastCapture->sq();
5749        FastCaptureState *state = sq->begin();
5750        if (!(state->mCommand & FastCaptureState::IDLE)) {
5751            state->mCommand = FastCaptureState::COLD_IDLE;
5752            state->mColdFutexAddr = &mFastCaptureFutex;
5753            state->mColdGen++;
5754            mFastCaptureFutex = 0;
5755            sq->end();
5756            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
5757            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
5758#if 0
5759            if (kUseFastCapture == FastCapture_Dynamic) {
5760                // FIXME
5761            }
5762#endif
5763#ifdef AUDIO_WATCHDOG
5764            // FIXME
5765#endif
5766        } else {
5767            sq->end(false /*didModify*/);
5768        }
5769    }
5770    mInput->stream->common.standby(&mInput->stream->common);
5771}
5772
5773// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
5774sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
5775        const sp<AudioFlinger::Client>& client,
5776        uint32_t sampleRate,
5777        audio_format_t format,
5778        audio_channel_mask_t channelMask,
5779        size_t *pFrameCount,
5780        int sessionId,
5781        size_t *notificationFrames,
5782        int uid,
5783        IAudioFlinger::track_flags_t *flags,
5784        pid_t tid,
5785        status_t *status)
5786{
5787    size_t frameCount = *pFrameCount;
5788    sp<RecordTrack> track;
5789    status_t lStatus;
5790
5791    // client expresses a preference for FAST, but we get the final say
5792    if (*flags & IAudioFlinger::TRACK_FAST) {
5793      if (
5794            // we formerly checked for a callback handler (non-0 tid),
5795            // but that is no longer required for TRANSFER_OBTAIN mode
5796            //
5797            // frame count is not specified, or is exactly the pipe depth
5798            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
5799            // PCM data
5800            audio_is_linear_pcm(format) &&
5801            // native format
5802            (format == mFormat) &&
5803            // native channel mask
5804            (channelMask == mChannelMask) &&
5805            // native hardware sample rate
5806            (sampleRate == mSampleRate) &&
5807            // record thread has an associated fast capture
5808            hasFastCapture() &&
5809            // there are sufficient fast track slots available
5810            mFastTrackAvail
5811        ) {
5812        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
5813                frameCount, mFrameCount);
5814      } else {
5815        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
5816                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
5817                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
5818                frameCount, mFrameCount, mPipeFramesP2,
5819                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
5820                hasFastCapture(), tid, mFastTrackAvail);
5821        *flags &= ~IAudioFlinger::TRACK_FAST;
5822      }
5823    }
5824
5825    // compute track buffer size in frames, and suggest the notification frame count
5826    if (*flags & IAudioFlinger::TRACK_FAST) {
5827        // fast track: frame count is exactly the pipe depth
5828        frameCount = mPipeFramesP2;
5829        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
5830        *notificationFrames = mFrameCount;
5831    } else {
5832        // not fast track: max notification period is resampled equivalent of one HAL buffer time
5833        //                 or 20 ms if there is a fast capture
5834        // TODO This could be a roundupRatio inline, and const
5835        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
5836                * sampleRate + mSampleRate - 1) / mSampleRate;
5837        // minimum number of notification periods is at least kMinNotifications,
5838        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
5839        static const size_t kMinNotifications = 3;
5840        static const uint32_t kMinMs = 30;
5841        // TODO This could be a roundupRatio inline
5842        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
5843        // TODO This could be a roundupRatio inline
5844        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
5845                maxNotificationFrames;
5846        const size_t minFrameCount = maxNotificationFrames *
5847                max(kMinNotifications, minNotificationsByMs);
5848        frameCount = max(frameCount, minFrameCount);
5849        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
5850            *notificationFrames = maxNotificationFrames;
5851        }
5852    }
5853    *pFrameCount = frameCount;
5854
5855    lStatus = initCheck();
5856    if (lStatus != NO_ERROR) {
5857        ALOGE("createRecordTrack_l() audio driver not initialized");
5858        goto Exit;
5859    }
5860
5861    { // scope for mLock
5862        Mutex::Autolock _l(mLock);
5863
5864        track = new RecordTrack(this, client, sampleRate,
5865                      format, channelMask, frameCount, NULL, sessionId, uid,
5866                      *flags, TrackBase::TYPE_DEFAULT);
5867
5868        lStatus = track->initCheck();
5869        if (lStatus != NO_ERROR) {
5870            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
5871            // track must be cleared from the caller as the caller has the AF lock
5872            goto Exit;
5873        }
5874        mTracks.add(track);
5875
5876        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
5877        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
5878                        mAudioFlinger->btNrecIsOff();
5879        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
5880        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
5881
5882        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
5883            pid_t callingPid = IPCThreadState::self()->getCallingPid();
5884            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
5885            // so ask activity manager to do this on our behalf
5886            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
5887        }
5888    }
5889
5890    lStatus = NO_ERROR;
5891
5892Exit:
5893    *status = lStatus;
5894    return track;
5895}
5896
5897status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
5898                                           AudioSystem::sync_event_t event,
5899                                           int triggerSession)
5900{
5901    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
5902    sp<ThreadBase> strongMe = this;
5903    status_t status = NO_ERROR;
5904
5905    if (event == AudioSystem::SYNC_EVENT_NONE) {
5906        recordTrack->clearSyncStartEvent();
5907    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
5908        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
5909                                       triggerSession,
5910                                       recordTrack->sessionId(),
5911                                       syncStartEventCallback,
5912                                       recordTrack);
5913        // Sync event can be cancelled by the trigger session if the track is not in a
5914        // compatible state in which case we start record immediately
5915        if (recordTrack->mSyncStartEvent->isCancelled()) {
5916            recordTrack->clearSyncStartEvent();
5917        } else {
5918            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
5919            recordTrack->mFramesToDrop = -
5920                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
5921        }
5922    }
5923
5924    {
5925        // This section is a rendezvous between binder thread executing start() and RecordThread
5926        AutoMutex lock(mLock);
5927        if (mActiveTracks.indexOf(recordTrack) >= 0) {
5928            if (recordTrack->mState == TrackBase::PAUSING) {
5929                ALOGV("active record track PAUSING -> ACTIVE");
5930                recordTrack->mState = TrackBase::ACTIVE;
5931            } else {
5932                ALOGV("active record track state %d", recordTrack->mState);
5933            }
5934            return status;
5935        }
5936
5937        // TODO consider other ways of handling this, such as changing the state to :STARTING and
5938        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
5939        //      or using a separate command thread
5940        recordTrack->mState = TrackBase::STARTING_1;
5941        mActiveTracks.add(recordTrack);
5942        mActiveTracksGen++;
5943        status_t status = NO_ERROR;
5944        if (recordTrack->isExternalTrack()) {
5945            mLock.unlock();
5946            status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
5947            mLock.lock();
5948            // FIXME should verify that recordTrack is still in mActiveTracks
5949            if (status != NO_ERROR) {
5950                mActiveTracks.remove(recordTrack);
5951                mActiveTracksGen++;
5952                recordTrack->clearSyncStartEvent();
5953                ALOGV("RecordThread::start error %d", status);
5954                return status;
5955            }
5956        }
5957        // Catch up with current buffer indices if thread is already running.
5958        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
5959        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
5960        // see previously buffered data before it called start(), but with greater risk of overrun.
5961
5962        recordTrack->mResamplerBufferProvider->reset();
5963        // clear any converter state as new data will be discontinuous
5964        recordTrack->mRecordBufferConverter->reset();
5965        recordTrack->mState = TrackBase::STARTING_2;
5966        // signal thread to start
5967        mWaitWorkCV.broadcast();
5968        if (mActiveTracks.indexOf(recordTrack) < 0) {
5969            ALOGV("Record failed to start");
5970            status = BAD_VALUE;
5971            goto startError;
5972        }
5973        return status;
5974    }
5975
5976startError:
5977    if (recordTrack->isExternalTrack()) {
5978        AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
5979    }
5980    recordTrack->clearSyncStartEvent();
5981    // FIXME I wonder why we do not reset the state here?
5982    return status;
5983}
5984
5985void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
5986{
5987    sp<SyncEvent> strongEvent = event.promote();
5988
5989    if (strongEvent != 0) {
5990        sp<RefBase> ptr = strongEvent->cookie().promote();
5991        if (ptr != 0) {
5992            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
5993            recordTrack->handleSyncStartEvent(strongEvent);
5994        }
5995    }
5996}
5997
5998bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
5999    ALOGV("RecordThread::stop");
6000    AutoMutex _l(mLock);
6001    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6002        return false;
6003    }
6004    // note that threadLoop may still be processing the track at this point [without lock]
6005    recordTrack->mState = TrackBase::PAUSING;
6006    // do not wait for mStartStopCond if exiting
6007    if (exitPending()) {
6008        return true;
6009    }
6010    // FIXME incorrect usage of wait: no explicit predicate or loop
6011    mStartStopCond.wait(mLock);
6012    // if we have been restarted, recordTrack is in mActiveTracks here
6013    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6014        ALOGV("Record stopped OK");
6015        return true;
6016    }
6017    return false;
6018}
6019
6020bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6021{
6022    return false;
6023}
6024
6025status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6026{
6027#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6028    if (!isValidSyncEvent(event)) {
6029        return BAD_VALUE;
6030    }
6031
6032    int eventSession = event->triggerSession();
6033    status_t ret = NAME_NOT_FOUND;
6034
6035    Mutex::Autolock _l(mLock);
6036
6037    for (size_t i = 0; i < mTracks.size(); i++) {
6038        sp<RecordTrack> track = mTracks[i];
6039        if (eventSession == track->sessionId()) {
6040            (void) track->setSyncEvent(event);
6041            ret = NO_ERROR;
6042        }
6043    }
6044    return ret;
6045#else
6046    return BAD_VALUE;
6047#endif
6048}
6049
6050// destroyTrack_l() must be called with ThreadBase::mLock held
6051void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6052{
6053    track->terminate();
6054    track->mState = TrackBase::STOPPED;
6055    // active tracks are removed by threadLoop()
6056    if (mActiveTracks.indexOf(track) < 0) {
6057        removeTrack_l(track);
6058    }
6059}
6060
6061void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6062{
6063    mTracks.remove(track);
6064    // need anything related to effects here?
6065    if (track->isFastTrack()) {
6066        ALOG_ASSERT(!mFastTrackAvail);
6067        mFastTrackAvail = true;
6068    }
6069}
6070
6071void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6072{
6073    dumpInternals(fd, args);
6074    dumpTracks(fd, args);
6075    dumpEffectChains(fd, args);
6076}
6077
6078void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6079{
6080    dprintf(fd, "\nInput thread %p:\n", this);
6081
6082    dumpBase(fd, args);
6083
6084    if (mActiveTracks.size() == 0) {
6085        dprintf(fd, "  No active record clients\n");
6086    }
6087    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6088    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6089
6090    //  Make a non-atomic copy of fast capture dump state so it won't change underneath us
6091    const FastCaptureDumpState copy(mFastCaptureDumpState);
6092    copy.dump(fd);
6093}
6094
6095void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6096{
6097    const size_t SIZE = 256;
6098    char buffer[SIZE];
6099    String8 result;
6100
6101    size_t numtracks = mTracks.size();
6102    size_t numactive = mActiveTracks.size();
6103    size_t numactiveseen = 0;
6104    dprintf(fd, "  %d Tracks", numtracks);
6105    if (numtracks) {
6106        dprintf(fd, " of which %d are active\n", numactive);
6107        RecordTrack::appendDumpHeader(result);
6108        for (size_t i = 0; i < numtracks ; ++i) {
6109            sp<RecordTrack> track = mTracks[i];
6110            if (track != 0) {
6111                bool active = mActiveTracks.indexOf(track) >= 0;
6112                if (active) {
6113                    numactiveseen++;
6114                }
6115                track->dump(buffer, SIZE, active);
6116                result.append(buffer);
6117            }
6118        }
6119    } else {
6120        dprintf(fd, "\n");
6121    }
6122
6123    if (numactiveseen != numactive) {
6124        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6125                " not in the track list\n");
6126        result.append(buffer);
6127        RecordTrack::appendDumpHeader(result);
6128        for (size_t i = 0; i < numactive; ++i) {
6129            sp<RecordTrack> track = mActiveTracks[i];
6130            if (mTracks.indexOf(track) < 0) {
6131                track->dump(buffer, SIZE, true);
6132                result.append(buffer);
6133            }
6134        }
6135
6136    }
6137    write(fd, result.string(), result.size());
6138}
6139
6140
6141void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6142{
6143    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6144    RecordThread *recordThread = (RecordThread *) threadBase.get();
6145    mRsmpInFront = recordThread->mRsmpInRear;
6146    mRsmpInUnrel = 0;
6147}
6148
6149void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6150        size_t *framesAvailable, bool *hasOverrun)
6151{
6152    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6153    RecordThread *recordThread = (RecordThread *) threadBase.get();
6154    const int32_t rear = recordThread->mRsmpInRear;
6155    const int32_t front = mRsmpInFront;
6156    const ssize_t filled = rear - front;
6157
6158    size_t framesIn;
6159    bool overrun = false;
6160    if (filled < 0) {
6161        // should not happen, but treat like a massive overrun and re-sync
6162        framesIn = 0;
6163        mRsmpInFront = rear;
6164        overrun = true;
6165    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6166        framesIn = (size_t) filled;
6167    } else {
6168        // client is not keeping up with server, but give it latest data
6169        framesIn = recordThread->mRsmpInFrames;
6170        mRsmpInFront = /* front = */ rear - framesIn;
6171        overrun = true;
6172    }
6173    if (framesAvailable != NULL) {
6174        *framesAvailable = framesIn;
6175    }
6176    if (hasOverrun != NULL) {
6177        *hasOverrun = overrun;
6178    }
6179}
6180
6181// AudioBufferProvider interface
6182status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6183        AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6184{
6185    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6186    if (threadBase == 0) {
6187        buffer->frameCount = 0;
6188        buffer->raw = NULL;
6189        return NOT_ENOUGH_DATA;
6190    }
6191    RecordThread *recordThread = (RecordThread *) threadBase.get();
6192    int32_t rear = recordThread->mRsmpInRear;
6193    int32_t front = mRsmpInFront;
6194    ssize_t filled = rear - front;
6195    // FIXME should not be P2 (don't want to increase latency)
6196    // FIXME if client not keeping up, discard
6197    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6198    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6199    front &= recordThread->mRsmpInFramesP2 - 1;
6200    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6201    if (part1 > (size_t) filled) {
6202        part1 = filled;
6203    }
6204    size_t ask = buffer->frameCount;
6205    ALOG_ASSERT(ask > 0);
6206    if (part1 > ask) {
6207        part1 = ask;
6208    }
6209    if (part1 == 0) {
6210        // out of data is fine since the resampler will return a short-count.
6211        buffer->raw = NULL;
6212        buffer->frameCount = 0;
6213        mRsmpInUnrel = 0;
6214        return NOT_ENOUGH_DATA;
6215    }
6216
6217    buffer->raw = recordThread->mRsmpInBuffer + front * recordThread->mChannelCount;
6218    buffer->frameCount = part1;
6219    mRsmpInUnrel = part1;
6220    return NO_ERROR;
6221}
6222
6223// AudioBufferProvider interface
6224void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6225        AudioBufferProvider::Buffer* buffer)
6226{
6227    size_t stepCount = buffer->frameCount;
6228    if (stepCount == 0) {
6229        return;
6230    }
6231    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6232    mRsmpInUnrel -= stepCount;
6233    mRsmpInFront += stepCount;
6234    buffer->raw = NULL;
6235    buffer->frameCount = 0;
6236}
6237
6238AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6239        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6240        uint32_t srcSampleRate,
6241        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6242        uint32_t dstSampleRate) :
6243            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6244            // mSrcFormat
6245            // mSrcSampleRate
6246            // mDstChannelMask
6247            // mDstFormat
6248            // mDstSampleRate
6249            // mSrcChannelCount
6250            // mDstChannelCount
6251            // mDstFrameSize
6252            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6253            mResampler(NULL), mRsmpOutBuffer(NULL), mRsmpOutFrameCount(0)
6254{
6255    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6256            dstChannelMask, dstFormat, dstSampleRate);
6257}
6258
6259AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6260    free(mBuf);
6261    delete mResampler;
6262    free(mRsmpOutBuffer);
6263}
6264
6265size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6266        AudioBufferProvider *provider, size_t frames)
6267{
6268    if (mSrcSampleRate == mDstSampleRate) {
6269        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6270                mSrcSampleRate, mSrcFormat, mDstFormat);
6271
6272        AudioBufferProvider::Buffer buffer;
6273        for (size_t i = frames; i > 0; ) {
6274            buffer.frameCount = i;
6275            status_t status = provider->getNextBuffer(&buffer, 0);
6276            if (status != OK || buffer.frameCount == 0) {
6277                frames -= i; // cannot fill request.
6278                break;
6279            }
6280            // convert to destination buffer
6281            convert(dst, buffer.raw, buffer.frameCount);
6282
6283            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6284            i -= buffer.frameCount;
6285            provider->releaseBuffer(&buffer);
6286        }
6287    } else {
6288         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6289                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6290
6291        // reallocate mRsmpOutBuffer as needed; we will grow but never shrink
6292        if (mRsmpOutFrameCount < frames) {
6293            // FIXME why does each track need it's own mRsmpOutBuffer? can't they share?
6294            free(mRsmpOutBuffer);
6295            // resampler always outputs stereo (FOR NOW)
6296            (void)posix_memalign(&mRsmpOutBuffer, 32, frames * FCC_2 * sizeof(int32_t) /*Q4.27*/);
6297            mRsmpOutFrameCount = frames;
6298        }
6299        // resampler accumulates, but we only have one source track
6300        memset(mRsmpOutBuffer, 0, frames * FCC_2 * sizeof(int32_t));
6301        frames = mResampler->resample((int32_t*)mRsmpOutBuffer, frames, provider);
6302
6303        // convert to destination buffer
6304        convert(dst, mRsmpOutBuffer, frames);
6305    }
6306    return frames;
6307}
6308
6309status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6310        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6311        uint32_t srcSampleRate,
6312        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6313        uint32_t dstSampleRate)
6314{
6315    // quick evaluation if there is any change.
6316    if (mSrcFormat == srcFormat
6317            && mSrcChannelMask == srcChannelMask
6318            && mSrcSampleRate == srcSampleRate
6319            && mDstFormat == dstFormat
6320            && mDstChannelMask == dstChannelMask
6321            && mDstSampleRate == dstSampleRate) {
6322        return NO_ERROR;
6323    }
6324
6325    const bool valid =
6326            audio_is_input_channel(srcChannelMask)
6327            && audio_is_input_channel(dstChannelMask)
6328            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6329            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6330            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6331            ; // no upsampling checks for now
6332    if (!valid) {
6333        return BAD_VALUE;
6334    }
6335
6336    mSrcFormat = srcFormat;
6337    mSrcChannelMask = srcChannelMask;
6338    mSrcSampleRate = srcSampleRate;
6339    mDstFormat = dstFormat;
6340    mDstChannelMask = dstChannelMask;
6341    mDstSampleRate = dstSampleRate;
6342
6343    // compute derived parameters
6344    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6345    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6346    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6347
6348    // do we need a format buffer?
6349    if (mSrcFormat != mDstFormat && mDstChannelCount != mSrcChannelCount) {
6350        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6351    } else {
6352        mBufFrameSize = 0;
6353    }
6354    mBufFrames = 0; // force the buffer to be resized.
6355
6356    // do we need to resample?
6357    if (mSrcSampleRate != mDstSampleRate) {
6358        if (mResampler != NULL) {
6359            delete mResampler;
6360        }
6361        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_16_BIT,
6362                mSrcChannelCount, mDstSampleRate); // may seem confusing...
6363        mResampler->setSampleRate(mSrcSampleRate);
6364        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6365    }
6366    return NO_ERROR;
6367}
6368
6369void AudioFlinger::RecordThread::RecordBufferConverter::convert(
6370        void *dst, /*const*/ void *src, size_t frames)
6371{
6372    // check if a memcpy will do
6373    if (mResampler == NULL
6374            && mSrcChannelCount == mDstChannelCount
6375            && mSrcFormat == mDstFormat) {
6376        memcpy(dst, src,
6377                frames * mDstChannelCount * audio_bytes_per_sample(mDstFormat));
6378        return;
6379    }
6380    // reallocate buffer if needed
6381    if (mBufFrameSize != 0 && mBufFrames < frames) {
6382        free(mBuf);
6383        mBufFrames = frames;
6384        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6385    }
6386    // do processing
6387    if (mResampler != NULL) {
6388        // src channel count is always >= 2.
6389        void *dstBuf = mBuf != NULL ? mBuf : dst;
6390        // ditherAndClamp() works as long as all buffers returned by
6391        // activeTrack->getNextBuffer() are 32 bit aligned which should be always true.
6392        if (mDstChannelCount == 1) {
6393            // the resampler always outputs stereo samples.
6394            // FIXME: this rewrites back into src
6395            ditherAndClamp((int32_t *)src, (const int32_t *)src, frames);
6396            downmix_to_mono_i16_from_stereo_i16((int16_t *)dstBuf,
6397                    (const int16_t *)src, frames);
6398        } else {
6399            ditherAndClamp((int32_t *)dstBuf, (const int32_t *)src, frames);
6400        }
6401    } else if (mSrcChannelCount != mDstChannelCount) {
6402        void *dstBuf = mBuf != NULL ? mBuf : dst;
6403        if (mSrcChannelCount == 1) {
6404            upmix_to_stereo_i16_from_mono_i16((int16_t *)dstBuf, (const int16_t *)src,
6405                    frames);
6406        } else {
6407            downmix_to_mono_i16_from_stereo_i16((int16_t *)dstBuf,
6408                    (const int16_t *)src, frames);
6409        }
6410    }
6411    if (mSrcFormat != mDstFormat) {
6412        void *srcBuf = mBuf != NULL ? mBuf : src;
6413        memcpy_by_audio_format(dst, mDstFormat, srcBuf, mSrcFormat,
6414                frames * mDstChannelCount);
6415    }
6416}
6417
6418bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6419                                                        status_t& status)
6420{
6421    bool reconfig = false;
6422
6423    status = NO_ERROR;
6424
6425    audio_format_t reqFormat = mFormat;
6426    uint32_t samplingRate = mSampleRate;
6427    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6428
6429    AudioParameter param = AudioParameter(keyValuePair);
6430    int value;
6431    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6432    //      channel count change can be requested. Do we mandate the first client defines the
6433    //      HAL sampling rate and channel count or do we allow changes on the fly?
6434    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6435        samplingRate = value;
6436        reconfig = true;
6437    }
6438    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6439        if (!audio_is_linear_pcm((audio_format_t) value)) {
6440            status = BAD_VALUE;
6441        } else {
6442            reqFormat = (audio_format_t) value;
6443            reconfig = true;
6444        }
6445    }
6446    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6447        audio_channel_mask_t mask = (audio_channel_mask_t) value;
6448        if (mask != AUDIO_CHANNEL_IN_MONO && mask != AUDIO_CHANNEL_IN_STEREO) {
6449            status = BAD_VALUE;
6450        } else {
6451            channelMask = mask;
6452            reconfig = true;
6453        }
6454    }
6455    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6456        // do not accept frame count changes if tracks are open as the track buffer
6457        // size depends on frame count and correct behavior would not be guaranteed
6458        // if frame count is changed after track creation
6459        if (mActiveTracks.size() > 0) {
6460            status = INVALID_OPERATION;
6461        } else {
6462            reconfig = true;
6463        }
6464    }
6465    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6466        // forward device change to effects that have requested to be
6467        // aware of attached audio device.
6468        for (size_t i = 0; i < mEffectChains.size(); i++) {
6469            mEffectChains[i]->setDevice_l(value);
6470        }
6471
6472        // store input device and output device but do not forward output device to audio HAL.
6473        // Note that status is ignored by the caller for output device
6474        // (see AudioFlinger::setParameters()
6475        if (audio_is_output_devices(value)) {
6476            mOutDevice = value;
6477            status = BAD_VALUE;
6478        } else {
6479            mInDevice = value;
6480            // disable AEC and NS if the device is a BT SCO headset supporting those
6481            // pre processings
6482            if (mTracks.size() > 0) {
6483                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6484                                    mAudioFlinger->btNrecIsOff();
6485                for (size_t i = 0; i < mTracks.size(); i++) {
6486                    sp<RecordTrack> track = mTracks[i];
6487                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6488                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6489                }
6490            }
6491        }
6492    }
6493    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6494            mAudioSource != (audio_source_t)value) {
6495        // forward device change to effects that have requested to be
6496        // aware of attached audio device.
6497        for (size_t i = 0; i < mEffectChains.size(); i++) {
6498            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6499        }
6500        mAudioSource = (audio_source_t)value;
6501    }
6502
6503    if (status == NO_ERROR) {
6504        status = mInput->stream->common.set_parameters(&mInput->stream->common,
6505                keyValuePair.string());
6506        if (status == INVALID_OPERATION) {
6507            inputStandBy();
6508            status = mInput->stream->common.set_parameters(&mInput->stream->common,
6509                    keyValuePair.string());
6510        }
6511        if (reconfig) {
6512            if (status == BAD_VALUE &&
6513                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
6514                audio_is_linear_pcm(reqFormat) &&
6515                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6516                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
6517                audio_channel_count_from_in_mask(
6518                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_2 &&
6519                (channelMask == AUDIO_CHANNEL_IN_MONO ||
6520                        channelMask == AUDIO_CHANNEL_IN_STEREO)) {
6521                status = NO_ERROR;
6522            }
6523            if (status == NO_ERROR) {
6524                readInputParameters_l();
6525                sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
6526            }
6527        }
6528    }
6529
6530    return reconfig;
6531}
6532
6533String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6534{
6535    Mutex::Autolock _l(mLock);
6536    if (initCheck() != NO_ERROR) {
6537        return String8();
6538    }
6539
6540    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6541    const String8 out_s8(s);
6542    free(s);
6543    return out_s8;
6544}
6545
6546void AudioFlinger::RecordThread::audioConfigChanged(int event, int param __unused) {
6547    AudioSystem::OutputDescriptor desc;
6548    const void *param2 = NULL;
6549
6550    switch (event) {
6551    case AudioSystem::INPUT_OPENED:
6552    case AudioSystem::INPUT_CONFIG_CHANGED:
6553        desc.channelMask = mChannelMask;
6554        desc.samplingRate = mSampleRate;
6555        desc.format = mFormat;
6556        desc.frameCount = mFrameCount;
6557        desc.latency = 0;
6558        param2 = &desc;
6559        break;
6560
6561    case AudioSystem::INPUT_CLOSED:
6562    default:
6563        break;
6564    }
6565    mAudioFlinger->audioConfigChanged(event, mId, param2);
6566}
6567
6568void AudioFlinger::RecordThread::readInputParameters_l()
6569{
6570    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6571    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6572    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6573    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6574    mFormat = mHALFormat;
6575    if (mFormat != AUDIO_FORMAT_PCM_16_BIT) {
6576        ALOGE("HAL format %#x not supported; must be AUDIO_FORMAT_PCM_16_BIT", mFormat);
6577    }
6578    mFrameSize = audio_stream_in_frame_size(mInput->stream);
6579    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6580    mFrameCount = mBufferSize / mFrameSize;
6581    // This is the formula for calculating the temporary buffer size.
6582    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6583    // 1 full output buffer, regardless of the alignment of the available input.
6584    // The value is somewhat arbitrary, and could probably be even larger.
6585    // A larger value should allow more old data to be read after a track calls start(),
6586    // without increasing latency.
6587    //
6588    // Note this is independent of the maximum downsampling ratio permitted for capture.
6589    mRsmpInFrames = mFrameCount * 7;
6590    mRsmpInFramesP2 = roundup(mRsmpInFrames);
6591    delete[] mRsmpInBuffer;
6592
6593    // TODO optimize audio capture buffer sizes ...
6594    // Here we calculate the size of the sliding buffer used as a source
6595    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6596    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
6597    // be better to have it derived from the pipe depth in the long term.
6598    // The current value is higher than necessary.  However it should not add to latency.
6599
6600    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6601    mRsmpInBuffer = new int16_t[(mRsmpInFramesP2 + mFrameCount - 1) * mChannelCount];
6602
6603    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6604    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6605}
6606
6607uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6608{
6609    Mutex::Autolock _l(mLock);
6610    if (initCheck() != NO_ERROR) {
6611        return 0;
6612    }
6613
6614    return mInput->stream->get_input_frames_lost(mInput->stream);
6615}
6616
6617uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6618{
6619    Mutex::Autolock _l(mLock);
6620    uint32_t result = 0;
6621    if (getEffectChain_l(sessionId) != 0) {
6622        result = EFFECT_SESSION;
6623    }
6624
6625    for (size_t i = 0; i < mTracks.size(); ++i) {
6626        if (sessionId == mTracks[i]->sessionId()) {
6627            result |= TRACK_SESSION;
6628            break;
6629        }
6630    }
6631
6632    return result;
6633}
6634
6635KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
6636{
6637    KeyedVector<int, bool> ids;
6638    Mutex::Autolock _l(mLock);
6639    for (size_t j = 0; j < mTracks.size(); ++j) {
6640        sp<RecordThread::RecordTrack> track = mTracks[j];
6641        int sessionId = track->sessionId();
6642        if (ids.indexOfKey(sessionId) < 0) {
6643            ids.add(sessionId, true);
6644        }
6645    }
6646    return ids;
6647}
6648
6649AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
6650{
6651    Mutex::Autolock _l(mLock);
6652    AudioStreamIn *input = mInput;
6653    mInput = NULL;
6654    return input;
6655}
6656
6657// this method must always be called either with ThreadBase mLock held or inside the thread loop
6658audio_stream_t* AudioFlinger::RecordThread::stream() const
6659{
6660    if (mInput == NULL) {
6661        return NULL;
6662    }
6663    return &mInput->stream->common;
6664}
6665
6666status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
6667{
6668    // only one chain per input thread
6669    if (mEffectChains.size() != 0) {
6670        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
6671        return INVALID_OPERATION;
6672    }
6673    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
6674    chain->setThread(this);
6675    chain->setInBuffer(NULL);
6676    chain->setOutBuffer(NULL);
6677
6678    checkSuspendOnAddEffectChain_l(chain);
6679
6680    // make sure enabled pre processing effects state is communicated to the HAL as we
6681    // just moved them to a new input stream.
6682    chain->syncHalEffectsState();
6683
6684    mEffectChains.add(chain);
6685
6686    return NO_ERROR;
6687}
6688
6689size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
6690{
6691    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
6692    ALOGW_IF(mEffectChains.size() != 1,
6693            "removeEffectChain_l() %p invalid chain size %d on thread %p",
6694            chain.get(), mEffectChains.size(), this);
6695    if (mEffectChains.size() == 1) {
6696        mEffectChains.removeAt(0);
6697    }
6698    return 0;
6699}
6700
6701status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
6702                                                          audio_patch_handle_t *handle)
6703{
6704    status_t status = NO_ERROR;
6705    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6706        // store new device and send to effects
6707        mInDevice = patch->sources[0].ext.device.type;
6708        for (size_t i = 0; i < mEffectChains.size(); i++) {
6709            mEffectChains[i]->setDevice_l(mInDevice);
6710        }
6711
6712        // disable AEC and NS if the device is a BT SCO headset supporting those
6713        // pre processings
6714        if (mTracks.size() > 0) {
6715            bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6716                                mAudioFlinger->btNrecIsOff();
6717            for (size_t i = 0; i < mTracks.size(); i++) {
6718                sp<RecordTrack> track = mTracks[i];
6719                setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6720                setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6721            }
6722        }
6723
6724        // store new source and send to effects
6725        if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
6726            mAudioSource = patch->sinks[0].ext.mix.usecase.source;
6727            for (size_t i = 0; i < mEffectChains.size(); i++) {
6728                mEffectChains[i]->setAudioSource_l(mAudioSource);
6729            }
6730        }
6731
6732        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6733        status = hwDevice->create_audio_patch(hwDevice,
6734                                               patch->num_sources,
6735                                               patch->sources,
6736                                               patch->num_sinks,
6737                                               patch->sinks,
6738                                               handle);
6739    } else {
6740        ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
6741    }
6742    return status;
6743}
6744
6745status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
6746{
6747    status_t status = NO_ERROR;
6748    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6749        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6750        status = hwDevice->release_audio_patch(hwDevice, handle);
6751    } else {
6752        ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
6753    }
6754    return status;
6755}
6756
6757void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
6758{
6759    Mutex::Autolock _l(mLock);
6760    mTracks.add(record);
6761}
6762
6763void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
6764{
6765    Mutex::Autolock _l(mLock);
6766    destroyTrack_l(record);
6767}
6768
6769void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
6770{
6771    ThreadBase::getAudioPortConfig(config);
6772    config->role = AUDIO_PORT_ROLE_SINK;
6773    config->ext.mix.hw_module = mInput->audioHwDev->handle();
6774    config->ext.mix.usecase.source = mAudioSource;
6775}
6776
6777} // namespace android
6778