Threads.cpp revision c42e9b462661673dff480ee71757a58b0f806370
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include "AudioFlinger.h"
57#include "AudioMixer.h"
58#include "BufferProviders.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "mediautils/SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74// ----------------------------------------------------------------------------
75
76// Note: the following macro is used for extremely verbose logging message.  In
77// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
78// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
79// are so verbose that we want to suppress them even when we have ALOG_ASSERT
80// turned on.  Do not uncomment the #def below unless you really know what you
81// are doing and want to see all of the extremely verbose messages.
82//#define VERY_VERY_VERBOSE_LOGGING
83#ifdef VERY_VERY_VERBOSE_LOGGING
84#define ALOGVV ALOGV
85#else
86#define ALOGVV(a...) do { } while(0)
87#endif
88
89// TODO: Move these macro/inlines to a header file.
90#define max(a, b) ((a) > (b) ? (a) : (b))
91template <typename T>
92static inline T min(const T& a, const T& b)
93{
94    return a < b ? a : b;
95}
96
97#ifndef ARRAY_SIZE
98#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
99#endif
100
101namespace android {
102
103// retry counts for buffer fill timeout
104// 50 * ~20msecs = 1 second
105static const int8_t kMaxTrackRetries = 50;
106static const int8_t kMaxTrackStartupRetries = 50;
107// allow less retry attempts on direct output thread.
108// direct outputs can be a scarce resource in audio hardware and should
109// be released as quickly as possible.
110static const int8_t kMaxTrackRetriesDirect = 2;
111// retry count before removing active track in case of underrun on offloaded thread:
112// we need to make sure that AudioTrack client has enough time to send large buffers
113//FIXME may be more appropriate if expressed in time units. Need to revise how underrun is handled
114// for offloaded tracks
115static const int8_t kMaxTrackRetriesOffload = 10;
116static const int8_t kMaxTrackStartupRetriesOffload = 100;
117
118
119// don't warn about blocked writes or record buffer overflows more often than this
120static const nsecs_t kWarningThrottleNs = seconds(5);
121
122// RecordThread loop sleep time upon application overrun or audio HAL read error
123static const int kRecordThreadSleepUs = 5000;
124
125// maximum time to wait in sendConfigEvent_l() for a status to be received
126static const nsecs_t kConfigEventTimeoutNs = seconds(2);
127
128// minimum sleep time for the mixer thread loop when tracks are active but in underrun
129static const uint32_t kMinThreadSleepTimeUs = 5000;
130// maximum divider applied to the active sleep time in the mixer thread loop
131static const uint32_t kMaxThreadSleepTimeShift = 2;
132
133// minimum normal sink buffer size, expressed in milliseconds rather than frames
134// FIXME This should be based on experimentally observed scheduling jitter
135static const uint32_t kMinNormalSinkBufferSizeMs = 20;
136// maximum normal sink buffer size
137static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
138
139// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
140// FIXME This should be based on experimentally observed scheduling jitter
141static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
142
143// Offloaded output thread standby delay: allows track transition without going to standby
144static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
145
146// Direct output thread minimum sleep time in idle or active(underrun) state
147static const nsecs_t kDirectMinSleepTimeUs = 10000;
148
149// Offloaded output bit rate in bits per second when unknown.
150// Used for sleep time calculation, so use a high default bitrate to be conservative on sleep time.
151static const uint32_t kOffloadDefaultBitRateBps = 1500000;
152
153
154// Whether to use fast mixer
155static const enum {
156    FastMixer_Never,    // never initialize or use: for debugging only
157    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
158                        // normal mixer multiplier is 1
159    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
160                        // multiplier is calculated based on min & max normal mixer buffer size
161    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
162                        // multiplier is calculated based on min & max normal mixer buffer size
163    // FIXME for FastMixer_Dynamic:
164    //  Supporting this option will require fixing HALs that can't handle large writes.
165    //  For example, one HAL implementation returns an error from a large write,
166    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
167    //  We could either fix the HAL implementations, or provide a wrapper that breaks
168    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
169} kUseFastMixer = FastMixer_Static;
170
171// Whether to use fast capture
172static const enum {
173    FastCapture_Never,  // never initialize or use: for debugging only
174    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
175    FastCapture_Static, // initialize if needed, then use all the time if initialized
176} kUseFastCapture = FastCapture_Static;
177
178// Priorities for requestPriority
179static const int kPriorityAudioApp = 2;
180static const int kPriorityFastMixer = 3;
181static const int kPriorityFastCapture = 3;
182
183// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
184// for the track.  The client then sub-divides this into smaller buffers for its use.
185// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
186// So for now we just assume that client is double-buffered for fast tracks.
187// FIXME It would be better for client to tell AudioFlinger the value of N,
188// so AudioFlinger could allocate the right amount of memory.
189// See the client's minBufCount and mNotificationFramesAct calculations for details.
190
191// This is the default value, if not specified by property.
192static const int kFastTrackMultiplier = 2;
193
194// The minimum and maximum allowed values
195static const int kFastTrackMultiplierMin = 1;
196static const int kFastTrackMultiplierMax = 2;
197
198// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
199static int sFastTrackMultiplier = kFastTrackMultiplier;
200
201// See Thread::readOnlyHeap().
202// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
203// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
204// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
205static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
206
207// ----------------------------------------------------------------------------
208
209static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
210
211static void sFastTrackMultiplierInit()
212{
213    char value[PROPERTY_VALUE_MAX];
214    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
215        char *endptr;
216        unsigned long ul = strtoul(value, &endptr, 0);
217        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
218            sFastTrackMultiplier = (int) ul;
219        }
220    }
221}
222
223// ----------------------------------------------------------------------------
224
225#ifdef ADD_BATTERY_DATA
226// To collect the amplifier usage
227static void addBatteryData(uint32_t params) {
228    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
229    if (service == NULL) {
230        // it already logged
231        return;
232    }
233
234    service->addBatteryData(params);
235}
236#endif
237
238// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
239struct {
240    // call when you acquire a partial wakelock
241    void acquire(const sp<IBinder> &wakeLockToken) {
242        pthread_mutex_lock(&mLock);
243        if (wakeLockToken.get() == nullptr) {
244            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
245        } else {
246            if (mCount == 0) {
247                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
248            }
249            ++mCount;
250        }
251        pthread_mutex_unlock(&mLock);
252    }
253
254    // call when you release a partial wakelock.
255    void release(const sp<IBinder> &wakeLockToken) {
256        if (wakeLockToken.get() == nullptr) {
257            return;
258        }
259        pthread_mutex_lock(&mLock);
260        if (--mCount < 0) {
261            ALOGE("negative wakelock count");
262            mCount = 0;
263        }
264        pthread_mutex_unlock(&mLock);
265    }
266
267    // retrieves the boottime timebase offset from monotonic.
268    int64_t getBoottimeOffset() {
269        pthread_mutex_lock(&mLock);
270        int64_t boottimeOffset = mBoottimeOffset;
271        pthread_mutex_unlock(&mLock);
272        return boottimeOffset;
273    }
274
275    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
276    // and the selected timebase.
277    // Currently only TIMEBASE_BOOTTIME is allowed.
278    //
279    // This only needs to be called upon acquiring the first partial wakelock
280    // after all other partial wakelocks are released.
281    //
282    // We do an empirical measurement of the offset rather than parsing
283    // /proc/timer_list since the latter is not a formal kernel ABI.
284    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
285        int clockbase;
286        switch (timebase) {
287        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
288            clockbase = SYSTEM_TIME_BOOTTIME;
289            break;
290        default:
291            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
292            break;
293        }
294        // try three times to get the clock offset, choose the one
295        // with the minimum gap in measurements.
296        const int tries = 3;
297        nsecs_t bestGap, measured;
298        for (int i = 0; i < tries; ++i) {
299            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
300            const nsecs_t tbase = systemTime(clockbase);
301            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
302            const nsecs_t gap = tmono2 - tmono;
303            if (i == 0 || gap < bestGap) {
304                bestGap = gap;
305                measured = tbase - ((tmono + tmono2) >> 1);
306            }
307        }
308
309        // to avoid micro-adjusting, we don't change the timebase
310        // unless it is significantly different.
311        //
312        // Assumption: It probably takes more than toleranceNs to
313        // suspend and resume the device.
314        static int64_t toleranceNs = 10000; // 10 us
315        if (llabs(*offset - measured) > toleranceNs) {
316            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
317                    (long long)*offset, (long long)measured);
318            *offset = measured;
319        }
320    }
321
322    pthread_mutex_t mLock;
323    int32_t mCount;
324    int64_t mBoottimeOffset;
325} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
326
327// ----------------------------------------------------------------------------
328//      CPU Stats
329// ----------------------------------------------------------------------------
330
331class CpuStats {
332public:
333    CpuStats();
334    void sample(const String8 &title);
335#ifdef DEBUG_CPU_USAGE
336private:
337    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
338    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
339
340    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
341
342    int mCpuNum;                        // thread's current CPU number
343    int mCpukHz;                        // frequency of thread's current CPU in kHz
344#endif
345};
346
347CpuStats::CpuStats()
348#ifdef DEBUG_CPU_USAGE
349    : mCpuNum(-1), mCpukHz(-1)
350#endif
351{
352}
353
354void CpuStats::sample(const String8 &title
355#ifndef DEBUG_CPU_USAGE
356                __unused
357#endif
358        ) {
359#ifdef DEBUG_CPU_USAGE
360    // get current thread's delta CPU time in wall clock ns
361    double wcNs;
362    bool valid = mCpuUsage.sampleAndEnable(wcNs);
363
364    // record sample for wall clock statistics
365    if (valid) {
366        mWcStats.sample(wcNs);
367    }
368
369    // get the current CPU number
370    int cpuNum = sched_getcpu();
371
372    // get the current CPU frequency in kHz
373    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
374
375    // check if either CPU number or frequency changed
376    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
377        mCpuNum = cpuNum;
378        mCpukHz = cpukHz;
379        // ignore sample for purposes of cycles
380        valid = false;
381    }
382
383    // if no change in CPU number or frequency, then record sample for cycle statistics
384    if (valid && mCpukHz > 0) {
385        double cycles = wcNs * cpukHz * 0.000001;
386        mHzStats.sample(cycles);
387    }
388
389    unsigned n = mWcStats.n();
390    // mCpuUsage.elapsed() is expensive, so don't call it every loop
391    if ((n & 127) == 1) {
392        long long elapsed = mCpuUsage.elapsed();
393        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
394            double perLoop = elapsed / (double) n;
395            double perLoop100 = perLoop * 0.01;
396            double perLoop1k = perLoop * 0.001;
397            double mean = mWcStats.mean();
398            double stddev = mWcStats.stddev();
399            double minimum = mWcStats.minimum();
400            double maximum = mWcStats.maximum();
401            double meanCycles = mHzStats.mean();
402            double stddevCycles = mHzStats.stddev();
403            double minCycles = mHzStats.minimum();
404            double maxCycles = mHzStats.maximum();
405            mCpuUsage.resetElapsed();
406            mWcStats.reset();
407            mHzStats.reset();
408            ALOGD("CPU usage for %s over past %.1f secs\n"
409                "  (%u mixer loops at %.1f mean ms per loop):\n"
410                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
411                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
412                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
413                    title.string(),
414                    elapsed * .000000001, n, perLoop * .000001,
415                    mean * .001,
416                    stddev * .001,
417                    minimum * .001,
418                    maximum * .001,
419                    mean / perLoop100,
420                    stddev / perLoop100,
421                    minimum / perLoop100,
422                    maximum / perLoop100,
423                    meanCycles / perLoop1k,
424                    stddevCycles / perLoop1k,
425                    minCycles / perLoop1k,
426                    maxCycles / perLoop1k);
427
428        }
429    }
430#endif
431};
432
433// ----------------------------------------------------------------------------
434//      ThreadBase
435// ----------------------------------------------------------------------------
436
437// static
438const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
439{
440    switch (type) {
441    case MIXER:
442        return "MIXER";
443    case DIRECT:
444        return "DIRECT";
445    case DUPLICATING:
446        return "DUPLICATING";
447    case RECORD:
448        return "RECORD";
449    case OFFLOAD:
450        return "OFFLOAD";
451    default:
452        return "unknown";
453    }
454}
455
456String8 devicesToString(audio_devices_t devices)
457{
458    static const struct mapping {
459        audio_devices_t mDevices;
460        const char *    mString;
461    } mappingsOut[] = {
462        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
463        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
464        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
465        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
466        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
467        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
468        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
469        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
470        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
471        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
472        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
473        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
474        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
475        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
476        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
477        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
478        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
479        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
480        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
481        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
482        {AUDIO_DEVICE_OUT_FM,               "FM"},
483        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
484        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
485        {AUDIO_DEVICE_OUT_IP,               "IP"},
486        {AUDIO_DEVICE_OUT_BUS,              "BUS"},
487        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
488    }, mappingsIn[] = {
489        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
490        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
491        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
492        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
493        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
494        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
495        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
496        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
497        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
498        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
499        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
500        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
501        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
502        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
503        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
504        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
505        {AUDIO_DEVICE_IN_LINE,              "LINE"},
506        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
507        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
508        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
509        {AUDIO_DEVICE_IN_IP,                "IP"},
510        {AUDIO_DEVICE_IN_BUS,               "BUS"},
511        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
512    };
513    String8 result;
514    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
515    const mapping *entry;
516    if (devices & AUDIO_DEVICE_BIT_IN) {
517        devices &= ~AUDIO_DEVICE_BIT_IN;
518        entry = mappingsIn;
519    } else {
520        entry = mappingsOut;
521    }
522    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
523        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
524        if (devices & entry->mDevices) {
525            if (!result.isEmpty()) {
526                result.append("|");
527            }
528            result.append(entry->mString);
529        }
530    }
531    if (devices & ~allDevices) {
532        if (!result.isEmpty()) {
533            result.append("|");
534        }
535        result.appendFormat("0x%X", devices & ~allDevices);
536    }
537    if (result.isEmpty()) {
538        result.append(entry->mString);
539    }
540    return result;
541}
542
543String8 inputFlagsToString(audio_input_flags_t flags)
544{
545    static const struct mapping {
546        audio_input_flags_t     mFlag;
547        const char *            mString;
548    } mappings[] = {
549        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
550        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
551        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
552        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
553        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
554    };
555    String8 result;
556    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
557    const mapping *entry;
558    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
559        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
560        if (flags & entry->mFlag) {
561            if (!result.isEmpty()) {
562                result.append("|");
563            }
564            result.append(entry->mString);
565        }
566    }
567    if (flags & ~allFlags) {
568        if (!result.isEmpty()) {
569            result.append("|");
570        }
571        result.appendFormat("0x%X", flags & ~allFlags);
572    }
573    if (result.isEmpty()) {
574        result.append(entry->mString);
575    }
576    return result;
577}
578
579String8 outputFlagsToString(audio_output_flags_t flags)
580{
581    static const struct mapping {
582        audio_output_flags_t    mFlag;
583        const char *            mString;
584    } mappings[] = {
585        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
586        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
587        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
588        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
589        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
590        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
591        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
592        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
593        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
594        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
595        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
596    };
597    String8 result;
598    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
599    const mapping *entry;
600    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
601        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
602        if (flags & entry->mFlag) {
603            if (!result.isEmpty()) {
604                result.append("|");
605            }
606            result.append(entry->mString);
607        }
608    }
609    if (flags & ~allFlags) {
610        if (!result.isEmpty()) {
611            result.append("|");
612        }
613        result.appendFormat("0x%X", flags & ~allFlags);
614    }
615    if (result.isEmpty()) {
616        result.append(entry->mString);
617    }
618    return result;
619}
620
621const char *sourceToString(audio_source_t source)
622{
623    switch (source) {
624    case AUDIO_SOURCE_DEFAULT:              return "default";
625    case AUDIO_SOURCE_MIC:                  return "mic";
626    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
627    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
628    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
629    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
630    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
631    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
632    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
633    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
634    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
635    case AUDIO_SOURCE_HOTWORD:              return "hotword";
636    default:                                return "unknown";
637    }
638}
639
640AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
641        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
642    :   Thread(false /*canCallJava*/),
643        mType(type),
644        mAudioFlinger(audioFlinger),
645        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
646        // are set by PlaybackThread::readOutputParameters_l() or
647        // RecordThread::readInputParameters_l()
648        //FIXME: mStandby should be true here. Is this some kind of hack?
649        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
650        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
651        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
652        // mName will be set by concrete (non-virtual) subclass
653        mDeathRecipient(new PMDeathRecipient(this)),
654        mSystemReady(systemReady),
655        mNotifiedBatteryStart(false)
656{
657    memset(&mPatch, 0, sizeof(struct audio_patch));
658}
659
660AudioFlinger::ThreadBase::~ThreadBase()
661{
662    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
663    mConfigEvents.clear();
664
665    // do not lock the mutex in destructor
666    releaseWakeLock_l();
667    if (mPowerManager != 0) {
668        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
669        binder->unlinkToDeath(mDeathRecipient);
670    }
671}
672
673status_t AudioFlinger::ThreadBase::readyToRun()
674{
675    status_t status = initCheck();
676    if (status == NO_ERROR) {
677        ALOGI("AudioFlinger's thread %p ready to run", this);
678    } else {
679        ALOGE("No working audio driver found.");
680    }
681    return status;
682}
683
684void AudioFlinger::ThreadBase::exit()
685{
686    ALOGV("ThreadBase::exit");
687    // do any cleanup required for exit to succeed
688    preExit();
689    {
690        // This lock prevents the following race in thread (uniprocessor for illustration):
691        //  if (!exitPending()) {
692        //      // context switch from here to exit()
693        //      // exit() calls requestExit(), what exitPending() observes
694        //      // exit() calls signal(), which is dropped since no waiters
695        //      // context switch back from exit() to here
696        //      mWaitWorkCV.wait(...);
697        //      // now thread is hung
698        //  }
699        AutoMutex lock(mLock);
700        requestExit();
701        mWaitWorkCV.broadcast();
702    }
703    // When Thread::requestExitAndWait is made virtual and this method is renamed to
704    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
705    requestExitAndWait();
706}
707
708status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
709{
710    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
711    Mutex::Autolock _l(mLock);
712
713    return sendSetParameterConfigEvent_l(keyValuePairs);
714}
715
716// sendConfigEvent_l() must be called with ThreadBase::mLock held
717// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
718status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
719{
720    status_t status = NO_ERROR;
721
722    if (event->mRequiresSystemReady && !mSystemReady) {
723        event->mWaitStatus = false;
724        mPendingConfigEvents.add(event);
725        return status;
726    }
727    mConfigEvents.add(event);
728    ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
729    mWaitWorkCV.signal();
730    mLock.unlock();
731    {
732        Mutex::Autolock _l(event->mLock);
733        while (event->mWaitStatus) {
734            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
735                event->mStatus = TIMED_OUT;
736                event->mWaitStatus = false;
737            }
738        }
739        status = event->mStatus;
740    }
741    mLock.lock();
742    return status;
743}
744
745void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
746{
747    Mutex::Autolock _l(mLock);
748    sendIoConfigEvent_l(event, pid);
749}
750
751// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
752void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
753{
754    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
755    sendConfigEvent_l(configEvent);
756}
757
758void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
759{
760    Mutex::Autolock _l(mLock);
761    sendPrioConfigEvent_l(pid, tid, prio);
762}
763
764// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
765void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
766{
767    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
768    sendConfigEvent_l(configEvent);
769}
770
771// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
772status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
773{
774    sp<ConfigEvent> configEvent;
775    AudioParameter param(keyValuePair);
776    int value;
777    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
778        setMasterMono_l(value != 0);
779        if (param.size() == 1) {
780            return NO_ERROR; // should be a solo parameter - we don't pass down
781        }
782        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
783        configEvent = new SetParameterConfigEvent(param.toString());
784    } else {
785        configEvent = new SetParameterConfigEvent(keyValuePair);
786    }
787    return sendConfigEvent_l(configEvent);
788}
789
790status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
791                                                        const struct audio_patch *patch,
792                                                        audio_patch_handle_t *handle)
793{
794    Mutex::Autolock _l(mLock);
795    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
796    status_t status = sendConfigEvent_l(configEvent);
797    if (status == NO_ERROR) {
798        CreateAudioPatchConfigEventData *data =
799                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
800        *handle = data->mHandle;
801    }
802    return status;
803}
804
805status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
806                                                                const audio_patch_handle_t handle)
807{
808    Mutex::Autolock _l(mLock);
809    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
810    return sendConfigEvent_l(configEvent);
811}
812
813
814// post condition: mConfigEvents.isEmpty()
815void AudioFlinger::ThreadBase::processConfigEvents_l()
816{
817    bool configChanged = false;
818
819    while (!mConfigEvents.isEmpty()) {
820        ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
821        sp<ConfigEvent> event = mConfigEvents[0];
822        mConfigEvents.removeAt(0);
823        switch (event->mType) {
824        case CFG_EVENT_PRIO: {
825            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
826            // FIXME Need to understand why this has to be done asynchronously
827            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
828                    true /*asynchronous*/);
829            if (err != 0) {
830                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
831                      data->mPrio, data->mPid, data->mTid, err);
832            }
833        } break;
834        case CFG_EVENT_IO: {
835            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
836            ioConfigChanged(data->mEvent, data->mPid);
837        } break;
838        case CFG_EVENT_SET_PARAMETER: {
839            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
840            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
841                configChanged = true;
842            }
843        } break;
844        case CFG_EVENT_CREATE_AUDIO_PATCH: {
845            CreateAudioPatchConfigEventData *data =
846                                            (CreateAudioPatchConfigEventData *)event->mData.get();
847            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
848        } break;
849        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
850            ReleaseAudioPatchConfigEventData *data =
851                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
852            event->mStatus = releaseAudioPatch_l(data->mHandle);
853        } break;
854        default:
855            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
856            break;
857        }
858        {
859            Mutex::Autolock _l(event->mLock);
860            if (event->mWaitStatus) {
861                event->mWaitStatus = false;
862                event->mCond.signal();
863            }
864        }
865        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
866    }
867
868    if (configChanged) {
869        cacheParameters_l();
870    }
871}
872
873String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
874    String8 s;
875    const audio_channel_representation_t representation =
876            audio_channel_mask_get_representation(mask);
877
878    switch (representation) {
879    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
880        if (output) {
881            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
882            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
883            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
884            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
885            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
886            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
887            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
888            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
889            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
890            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
891            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
892            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
893            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
894            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
895            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
896            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
897            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
898            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
899            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
900        } else {
901            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
902            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
903            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
904            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
905            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
906            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
907            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
908            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
909            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
910            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
911            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
912            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
913            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
914            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
915            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
916        }
917        const int len = s.length();
918        if (len > 2) {
919            (void) s.lockBuffer(len);      // needed?
920            s.unlockBuffer(len - 2);       // remove trailing ", "
921        }
922        return s;
923    }
924    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
925        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
926        return s;
927    default:
928        s.appendFormat("unknown mask, representation:%d  bits:%#x",
929                representation, audio_channel_mask_get_bits(mask));
930        return s;
931    }
932}
933
934void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
935{
936    const size_t SIZE = 256;
937    char buffer[SIZE];
938    String8 result;
939
940    bool locked = AudioFlinger::dumpTryLock(mLock);
941    if (!locked) {
942        dprintf(fd, "thread %p may be deadlocked\n", this);
943    }
944
945    dprintf(fd, "  Thread name: %s\n", mThreadName);
946    dprintf(fd, "  I/O handle: %d\n", mId);
947    dprintf(fd, "  TID: %d\n", getTid());
948    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
949    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
950    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
951    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
952    dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
953    dprintf(fd, "  Channel count: %u\n", mChannelCount);
954    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
955            channelMaskToString(mChannelMask, mType != RECORD).string());
956    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
957    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
958    dprintf(fd, "  Pending config events:");
959    size_t numConfig = mConfigEvents.size();
960    if (numConfig) {
961        for (size_t i = 0; i < numConfig; i++) {
962            mConfigEvents[i]->dump(buffer, SIZE);
963            dprintf(fd, "\n    %s", buffer);
964        }
965        dprintf(fd, "\n");
966    } else {
967        dprintf(fd, " none\n");
968    }
969    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
970    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
971    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
972
973    if (locked) {
974        mLock.unlock();
975    }
976}
977
978void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
979{
980    const size_t SIZE = 256;
981    char buffer[SIZE];
982    String8 result;
983
984    size_t numEffectChains = mEffectChains.size();
985    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
986    write(fd, buffer, strlen(buffer));
987
988    for (size_t i = 0; i < numEffectChains; ++i) {
989        sp<EffectChain> chain = mEffectChains[i];
990        if (chain != 0) {
991            chain->dump(fd, args);
992        }
993    }
994}
995
996void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
997{
998    Mutex::Autolock _l(mLock);
999    acquireWakeLock_l(uid);
1000}
1001
1002String16 AudioFlinger::ThreadBase::getWakeLockTag()
1003{
1004    switch (mType) {
1005    case MIXER:
1006        return String16("AudioMix");
1007    case DIRECT:
1008        return String16("AudioDirectOut");
1009    case DUPLICATING:
1010        return String16("AudioDup");
1011    case RECORD:
1012        return String16("AudioIn");
1013    case OFFLOAD:
1014        return String16("AudioOffload");
1015    default:
1016        ALOG_ASSERT(false);
1017        return String16("AudioUnknown");
1018    }
1019}
1020
1021void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1022{
1023    getPowerManager_l();
1024    if (mPowerManager != 0) {
1025        sp<IBinder> binder = new BBinder();
1026        status_t status;
1027        if (uid >= 0) {
1028            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1029                    binder,
1030                    getWakeLockTag(),
1031                    String16("audioserver"),
1032                    uid,
1033                    true /* FIXME force oneway contrary to .aidl */);
1034        } else {
1035            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1036                    binder,
1037                    getWakeLockTag(),
1038                    String16("audioserver"),
1039                    true /* FIXME force oneway contrary to .aidl */);
1040        }
1041        if (status == NO_ERROR) {
1042            mWakeLockToken = binder;
1043        }
1044        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1045    }
1046
1047    if (!mNotifiedBatteryStart) {
1048        BatteryNotifier::getInstance().noteStartAudio();
1049        mNotifiedBatteryStart = true;
1050    }
1051    gBoottime.acquire(mWakeLockToken);
1052    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1053            gBoottime.getBoottimeOffset();
1054}
1055
1056void AudioFlinger::ThreadBase::releaseWakeLock()
1057{
1058    Mutex::Autolock _l(mLock);
1059    releaseWakeLock_l();
1060}
1061
1062void AudioFlinger::ThreadBase::releaseWakeLock_l()
1063{
1064    gBoottime.release(mWakeLockToken);
1065    if (mWakeLockToken != 0) {
1066        ALOGV("releaseWakeLock_l() %s", mThreadName);
1067        if (mPowerManager != 0) {
1068            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1069                    true /* FIXME force oneway contrary to .aidl */);
1070        }
1071        mWakeLockToken.clear();
1072    }
1073
1074    if (mNotifiedBatteryStart) {
1075        BatteryNotifier::getInstance().noteStopAudio();
1076        mNotifiedBatteryStart = false;
1077    }
1078}
1079
1080void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1081    Mutex::Autolock _l(mLock);
1082    updateWakeLockUids_l(uids);
1083}
1084
1085void AudioFlinger::ThreadBase::getPowerManager_l() {
1086    if (mSystemReady && mPowerManager == 0) {
1087        // use checkService() to avoid blocking if power service is not up yet
1088        sp<IBinder> binder =
1089            defaultServiceManager()->checkService(String16("power"));
1090        if (binder == 0) {
1091            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1092        } else {
1093            mPowerManager = interface_cast<IPowerManager>(binder);
1094            binder->linkToDeath(mDeathRecipient);
1095        }
1096    }
1097}
1098
1099void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1100    getPowerManager_l();
1101    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1102        if (mSystemReady) {
1103            ALOGE("no wake lock to update, but system ready!");
1104        } else {
1105            ALOGW("no wake lock to update, system not ready yet");
1106        }
1107        return;
1108    }
1109    if (mPowerManager != 0) {
1110        sp<IBinder> binder = new BBinder();
1111        status_t status;
1112        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1113                    true /* FIXME force oneway contrary to .aidl */);
1114        ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1115    }
1116}
1117
1118void AudioFlinger::ThreadBase::clearPowerManager()
1119{
1120    Mutex::Autolock _l(mLock);
1121    releaseWakeLock_l();
1122    mPowerManager.clear();
1123}
1124
1125void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1126{
1127    sp<ThreadBase> thread = mThread.promote();
1128    if (thread != 0) {
1129        thread->clearPowerManager();
1130    }
1131    ALOGW("power manager service died !!!");
1132}
1133
1134void AudioFlinger::ThreadBase::setEffectSuspended(
1135        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1136{
1137    Mutex::Autolock _l(mLock);
1138    setEffectSuspended_l(type, suspend, sessionId);
1139}
1140
1141void AudioFlinger::ThreadBase::setEffectSuspended_l(
1142        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1143{
1144    sp<EffectChain> chain = getEffectChain_l(sessionId);
1145    if (chain != 0) {
1146        if (type != NULL) {
1147            chain->setEffectSuspended_l(type, suspend);
1148        } else {
1149            chain->setEffectSuspendedAll_l(suspend);
1150        }
1151    }
1152
1153    updateSuspendedSessions_l(type, suspend, sessionId);
1154}
1155
1156void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1157{
1158    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1159    if (index < 0) {
1160        return;
1161    }
1162
1163    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1164            mSuspendedSessions.valueAt(index);
1165
1166    for (size_t i = 0; i < sessionEffects.size(); i++) {
1167        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1168        for (int j = 0; j < desc->mRefCount; j++) {
1169            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1170                chain->setEffectSuspendedAll_l(true);
1171            } else {
1172                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1173                    desc->mType.timeLow);
1174                chain->setEffectSuspended_l(&desc->mType, true);
1175            }
1176        }
1177    }
1178}
1179
1180void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1181                                                         bool suspend,
1182                                                         audio_session_t sessionId)
1183{
1184    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1185
1186    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1187
1188    if (suspend) {
1189        if (index >= 0) {
1190            sessionEffects = mSuspendedSessions.valueAt(index);
1191        } else {
1192            mSuspendedSessions.add(sessionId, sessionEffects);
1193        }
1194    } else {
1195        if (index < 0) {
1196            return;
1197        }
1198        sessionEffects = mSuspendedSessions.valueAt(index);
1199    }
1200
1201
1202    int key = EffectChain::kKeyForSuspendAll;
1203    if (type != NULL) {
1204        key = type->timeLow;
1205    }
1206    index = sessionEffects.indexOfKey(key);
1207
1208    sp<SuspendedSessionDesc> desc;
1209    if (suspend) {
1210        if (index >= 0) {
1211            desc = sessionEffects.valueAt(index);
1212        } else {
1213            desc = new SuspendedSessionDesc();
1214            if (type != NULL) {
1215                desc->mType = *type;
1216            }
1217            sessionEffects.add(key, desc);
1218            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1219        }
1220        desc->mRefCount++;
1221    } else {
1222        if (index < 0) {
1223            return;
1224        }
1225        desc = sessionEffects.valueAt(index);
1226        if (--desc->mRefCount == 0) {
1227            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1228            sessionEffects.removeItemsAt(index);
1229            if (sessionEffects.isEmpty()) {
1230                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1231                                 sessionId);
1232                mSuspendedSessions.removeItem(sessionId);
1233            }
1234        }
1235    }
1236    if (!sessionEffects.isEmpty()) {
1237        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1238    }
1239}
1240
1241void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1242                                                            bool enabled,
1243                                                            audio_session_t sessionId)
1244{
1245    Mutex::Autolock _l(mLock);
1246    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1247}
1248
1249void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1250                                                            bool enabled,
1251                                                            audio_session_t sessionId)
1252{
1253    if (mType != RECORD) {
1254        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1255        // another session. This gives the priority to well behaved effect control panels
1256        // and applications not using global effects.
1257        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1258        // global effects
1259        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1260            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1261        }
1262    }
1263
1264    sp<EffectChain> chain = getEffectChain_l(sessionId);
1265    if (chain != 0) {
1266        chain->checkSuspendOnEffectEnabled(effect, enabled);
1267    }
1268}
1269
1270// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1271sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1272        const sp<AudioFlinger::Client>& client,
1273        const sp<IEffectClient>& effectClient,
1274        int32_t priority,
1275        audio_session_t sessionId,
1276        effect_descriptor_t *desc,
1277        int *enabled,
1278        status_t *status)
1279{
1280    sp<EffectModule> effect;
1281    sp<EffectHandle> handle;
1282    status_t lStatus;
1283    sp<EffectChain> chain;
1284    bool chainCreated = false;
1285    bool effectCreated = false;
1286    bool effectRegistered = false;
1287
1288    lStatus = initCheck();
1289    if (lStatus != NO_ERROR) {
1290        ALOGW("createEffect_l() Audio driver not initialized.");
1291        goto Exit;
1292    }
1293
1294    // Reject any effect on Direct output threads for now, since the format of
1295    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1296    if (mType == DIRECT) {
1297        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1298                desc->name, mThreadName);
1299        lStatus = BAD_VALUE;
1300        goto Exit;
1301    }
1302
1303    // Reject any effect on mixer or duplicating multichannel sinks.
1304    // TODO: fix both format and multichannel issues with effects.
1305    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1306        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1307                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1308        lStatus = BAD_VALUE;
1309        goto Exit;
1310    }
1311
1312    // Allow global effects only on offloaded and mixer threads
1313    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1314        switch (mType) {
1315        case MIXER:
1316        case OFFLOAD:
1317            break;
1318        case DIRECT:
1319        case DUPLICATING:
1320        case RECORD:
1321        default:
1322            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1323                    desc->name, mThreadName);
1324            lStatus = BAD_VALUE;
1325            goto Exit;
1326        }
1327    }
1328
1329    // Only Pre processor effects are allowed on input threads and only on input threads
1330    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1331        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1332                desc->name, desc->flags, mType);
1333        lStatus = BAD_VALUE;
1334        goto Exit;
1335    }
1336
1337    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1338
1339    { // scope for mLock
1340        Mutex::Autolock _l(mLock);
1341
1342        // check for existing effect chain with the requested audio session
1343        chain = getEffectChain_l(sessionId);
1344        if (chain == 0) {
1345            // create a new chain for this session
1346            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1347            chain = new EffectChain(this, sessionId);
1348            addEffectChain_l(chain);
1349            chain->setStrategy(getStrategyForSession_l(sessionId));
1350            chainCreated = true;
1351        } else {
1352            effect = chain->getEffectFromDesc_l(desc);
1353        }
1354
1355        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1356
1357        if (effect == 0) {
1358            audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1359            // Check CPU and memory usage
1360            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1361            if (lStatus != NO_ERROR) {
1362                goto Exit;
1363            }
1364            effectRegistered = true;
1365            // create a new effect module if none present in the chain
1366            effect = new EffectModule(this, chain, desc, id, sessionId);
1367            lStatus = effect->status();
1368            if (lStatus != NO_ERROR) {
1369                goto Exit;
1370            }
1371            effect->setOffloaded(mType == OFFLOAD, mId);
1372
1373            lStatus = chain->addEffect_l(effect);
1374            if (lStatus != NO_ERROR) {
1375                goto Exit;
1376            }
1377            effectCreated = true;
1378
1379            effect->setDevice(mOutDevice);
1380            effect->setDevice(mInDevice);
1381            effect->setMode(mAudioFlinger->getMode());
1382            effect->setAudioSource(mAudioSource);
1383        }
1384        // create effect handle and connect it to effect module
1385        handle = new EffectHandle(effect, client, effectClient, priority);
1386        lStatus = handle->initCheck();
1387        if (lStatus == OK) {
1388            lStatus = effect->addHandle(handle.get());
1389        }
1390        if (enabled != NULL) {
1391            *enabled = (int)effect->isEnabled();
1392        }
1393    }
1394
1395Exit:
1396    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1397        Mutex::Autolock _l(mLock);
1398        if (effectCreated) {
1399            chain->removeEffect_l(effect);
1400        }
1401        if (effectRegistered) {
1402            AudioSystem::unregisterEffect(effect->id());
1403        }
1404        if (chainCreated) {
1405            removeEffectChain_l(chain);
1406        }
1407        handle.clear();
1408    }
1409
1410    *status = lStatus;
1411    return handle;
1412}
1413
1414sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1415        int effectId)
1416{
1417    Mutex::Autolock _l(mLock);
1418    return getEffect_l(sessionId, effectId);
1419}
1420
1421sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1422        int effectId)
1423{
1424    sp<EffectChain> chain = getEffectChain_l(sessionId);
1425    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1426}
1427
1428// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1429// PlaybackThread::mLock held
1430status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1431{
1432    // check for existing effect chain with the requested audio session
1433    audio_session_t sessionId = effect->sessionId();
1434    sp<EffectChain> chain = getEffectChain_l(sessionId);
1435    bool chainCreated = false;
1436
1437    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1438             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1439                    this, effect->desc().name, effect->desc().flags);
1440
1441    if (chain == 0) {
1442        // create a new chain for this session
1443        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1444        chain = new EffectChain(this, sessionId);
1445        addEffectChain_l(chain);
1446        chain->setStrategy(getStrategyForSession_l(sessionId));
1447        chainCreated = true;
1448    }
1449    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1450
1451    if (chain->getEffectFromId_l(effect->id()) != 0) {
1452        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1453                this, effect->desc().name, chain.get());
1454        return BAD_VALUE;
1455    }
1456
1457    effect->setOffloaded(mType == OFFLOAD, mId);
1458
1459    status_t status = chain->addEffect_l(effect);
1460    if (status != NO_ERROR) {
1461        if (chainCreated) {
1462            removeEffectChain_l(chain);
1463        }
1464        return status;
1465    }
1466
1467    effect->setDevice(mOutDevice);
1468    effect->setDevice(mInDevice);
1469    effect->setMode(mAudioFlinger->getMode());
1470    effect->setAudioSource(mAudioSource);
1471    return NO_ERROR;
1472}
1473
1474void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1475
1476    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1477    effect_descriptor_t desc = effect->desc();
1478    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1479        detachAuxEffect_l(effect->id());
1480    }
1481
1482    sp<EffectChain> chain = effect->chain().promote();
1483    if (chain != 0) {
1484        // remove effect chain if removing last effect
1485        if (chain->removeEffect_l(effect) == 0) {
1486            removeEffectChain_l(chain);
1487        }
1488    } else {
1489        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1490    }
1491}
1492
1493void AudioFlinger::ThreadBase::lockEffectChains_l(
1494        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1495{
1496    effectChains = mEffectChains;
1497    for (size_t i = 0; i < mEffectChains.size(); i++) {
1498        mEffectChains[i]->lock();
1499    }
1500}
1501
1502void AudioFlinger::ThreadBase::unlockEffectChains(
1503        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1504{
1505    for (size_t i = 0; i < effectChains.size(); i++) {
1506        effectChains[i]->unlock();
1507    }
1508}
1509
1510sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1511{
1512    Mutex::Autolock _l(mLock);
1513    return getEffectChain_l(sessionId);
1514}
1515
1516sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1517        const
1518{
1519    size_t size = mEffectChains.size();
1520    for (size_t i = 0; i < size; i++) {
1521        if (mEffectChains[i]->sessionId() == sessionId) {
1522            return mEffectChains[i];
1523        }
1524    }
1525    return 0;
1526}
1527
1528void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1529{
1530    Mutex::Autolock _l(mLock);
1531    size_t size = mEffectChains.size();
1532    for (size_t i = 0; i < size; i++) {
1533        mEffectChains[i]->setMode_l(mode);
1534    }
1535}
1536
1537void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1538{
1539    config->type = AUDIO_PORT_TYPE_MIX;
1540    config->ext.mix.handle = mId;
1541    config->sample_rate = mSampleRate;
1542    config->format = mFormat;
1543    config->channel_mask = mChannelMask;
1544    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1545                            AUDIO_PORT_CONFIG_FORMAT;
1546}
1547
1548void AudioFlinger::ThreadBase::systemReady()
1549{
1550    Mutex::Autolock _l(mLock);
1551    if (mSystemReady) {
1552        return;
1553    }
1554    mSystemReady = true;
1555
1556    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1557        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1558    }
1559    mPendingConfigEvents.clear();
1560}
1561
1562
1563// ----------------------------------------------------------------------------
1564//      Playback
1565// ----------------------------------------------------------------------------
1566
1567AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1568                                             AudioStreamOut* output,
1569                                             audio_io_handle_t id,
1570                                             audio_devices_t device,
1571                                             type_t type,
1572                                             bool systemReady,
1573                                             uint32_t bitRate)
1574    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1575        mNormalFrameCount(0), mSinkBuffer(NULL),
1576        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1577        mMixerBuffer(NULL),
1578        mMixerBufferSize(0),
1579        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1580        mMixerBufferValid(false),
1581        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1582        mEffectBuffer(NULL),
1583        mEffectBufferSize(0),
1584        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1585        mEffectBufferValid(false),
1586        mSuspended(0), mBytesWritten(0),
1587        mFramesWritten(0),
1588        mActiveTracksGeneration(0),
1589        // mStreamTypes[] initialized in constructor body
1590        mOutput(output),
1591        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1592        mMixerStatus(MIXER_IDLE),
1593        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1594        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1595        mBytesRemaining(0),
1596        mCurrentWriteLength(0),
1597        mUseAsyncWrite(false),
1598        mWriteAckSequence(0),
1599        mDrainSequence(0),
1600        mSignalPending(false),
1601        mScreenState(AudioFlinger::mScreenState),
1602        // index 0 is reserved for normal mixer's submix
1603        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1604        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1605{
1606    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1607    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1608
1609    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1610    // it would be safer to explicitly pass initial masterVolume/masterMute as
1611    // parameter.
1612    //
1613    // If the HAL we are using has support for master volume or master mute,
1614    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1615    // and the mute set to false).
1616    mMasterVolume = audioFlinger->masterVolume_l();
1617    mMasterMute = audioFlinger->masterMute_l();
1618    if (mOutput && mOutput->audioHwDev) {
1619        if (mOutput->audioHwDev->canSetMasterVolume()) {
1620            mMasterVolume = 1.0;
1621        }
1622
1623        if (mOutput->audioHwDev->canSetMasterMute()) {
1624            mMasterMute = false;
1625        }
1626    }
1627
1628    readOutputParameters_l();
1629
1630    // ++ operator does not compile
1631    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1632            stream = (audio_stream_type_t) (stream + 1)) {
1633        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1634        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1635    }
1636
1637    if (audio_has_proportional_frames(mFormat)) {
1638        mBufferDurationUs = (uint32_t)((mNormalFrameCount * 1000000LL) / mSampleRate);
1639    } else {
1640        bitRate = bitRate != 0 ? bitRate : kOffloadDefaultBitRateBps;
1641        mBufferDurationUs = (uint32_t)((mBufferSize * 8 * 1000000LL) / bitRate);
1642    }
1643}
1644
1645AudioFlinger::PlaybackThread::~PlaybackThread()
1646{
1647    mAudioFlinger->unregisterWriter(mNBLogWriter);
1648    free(mSinkBuffer);
1649    free(mMixerBuffer);
1650    free(mEffectBuffer);
1651}
1652
1653void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1654{
1655    dumpInternals(fd, args);
1656    dumpTracks(fd, args);
1657    dumpEffectChains(fd, args);
1658}
1659
1660void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1661{
1662    const size_t SIZE = 256;
1663    char buffer[SIZE];
1664    String8 result;
1665
1666    result.appendFormat("  Stream volumes in dB: ");
1667    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1668        const stream_type_t *st = &mStreamTypes[i];
1669        if (i > 0) {
1670            result.appendFormat(", ");
1671        }
1672        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1673        if (st->mute) {
1674            result.append("M");
1675        }
1676    }
1677    result.append("\n");
1678    write(fd, result.string(), result.length());
1679    result.clear();
1680
1681    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1682    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1683    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1684            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1685
1686    size_t numtracks = mTracks.size();
1687    size_t numactive = mActiveTracks.size();
1688    dprintf(fd, "  %zu Tracks", numtracks);
1689    size_t numactiveseen = 0;
1690    if (numtracks) {
1691        dprintf(fd, " of which %zu are active\n", numactive);
1692        Track::appendDumpHeader(result);
1693        for (size_t i = 0; i < numtracks; ++i) {
1694            sp<Track> track = mTracks[i];
1695            if (track != 0) {
1696                bool active = mActiveTracks.indexOf(track) >= 0;
1697                if (active) {
1698                    numactiveseen++;
1699                }
1700                track->dump(buffer, SIZE, active);
1701                result.append(buffer);
1702            }
1703        }
1704    } else {
1705        result.append("\n");
1706    }
1707    if (numactiveseen != numactive) {
1708        // some tracks in the active list were not in the tracks list
1709        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1710                " not in the track list\n");
1711        result.append(buffer);
1712        Track::appendDumpHeader(result);
1713        for (size_t i = 0; i < numactive; ++i) {
1714            sp<Track> track = mActiveTracks[i].promote();
1715            if (track != 0 && mTracks.indexOf(track) < 0) {
1716                track->dump(buffer, SIZE, true);
1717                result.append(buffer);
1718            }
1719        }
1720    }
1721
1722    write(fd, result.string(), result.size());
1723}
1724
1725void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1726{
1727    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1728
1729    dumpBase(fd, args);
1730
1731    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1732    dprintf(fd, "  Last write occurred (msecs): %llu\n",
1733            (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1734    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1735    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1736    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1737    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1738    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1739    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1740    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1741    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1742    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1743    AudioStreamOut *output = mOutput;
1744    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1745    String8 flagsAsString = outputFlagsToString(flags);
1746    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1747}
1748
1749// Thread virtuals
1750
1751void AudioFlinger::PlaybackThread::onFirstRef()
1752{
1753    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1754}
1755
1756// ThreadBase virtuals
1757void AudioFlinger::PlaybackThread::preExit()
1758{
1759    ALOGV("  preExit()");
1760    // FIXME this is using hard-coded strings but in the future, this functionality will be
1761    //       converted to use audio HAL extensions required to support tunneling
1762    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1763}
1764
1765// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1766sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1767        const sp<AudioFlinger::Client>& client,
1768        audio_stream_type_t streamType,
1769        uint32_t sampleRate,
1770        audio_format_t format,
1771        audio_channel_mask_t channelMask,
1772        size_t *pFrameCount,
1773        const sp<IMemory>& sharedBuffer,
1774        audio_session_t sessionId,
1775        IAudioFlinger::track_flags_t *flags,
1776        pid_t tid,
1777        int uid,
1778        status_t *status)
1779{
1780    size_t frameCount = *pFrameCount;
1781    sp<Track> track;
1782    status_t lStatus;
1783
1784    // client expresses a preference for FAST, but we get the final say
1785    if (*flags & IAudioFlinger::TRACK_FAST) {
1786      if (
1787            // either of these use cases:
1788            (
1789              // use case 1: shared buffer with any frame count
1790              (
1791                (sharedBuffer != 0)
1792              ) ||
1793              // use case 2: frame count is default or at least as large as HAL
1794              (
1795                // we formerly checked for a callback handler (non-0 tid),
1796                // but that is no longer required for TRANSFER_OBTAIN mode
1797                ((frameCount == 0) ||
1798                (frameCount >= mFrameCount))
1799              )
1800            ) &&
1801            // PCM data
1802            audio_is_linear_pcm(format) &&
1803            // TODO: extract as a data library function that checks that a computationally
1804            // expensive downmixer is not required: isFastOutputChannelConversion()
1805            (channelMask == mChannelMask ||
1806                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1807                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1808                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1809            // hardware sample rate
1810            (sampleRate == mSampleRate) &&
1811            // normal mixer has an associated fast mixer
1812            hasFastMixer() &&
1813            // there are sufficient fast track slots available
1814            (mFastTrackAvailMask != 0)
1815            // FIXME test that MixerThread for this fast track has a capable output HAL
1816            // FIXME add a permission test also?
1817        ) {
1818        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1819        if (frameCount == 0) {
1820            // read the fast track multiplier property the first time it is needed
1821            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1822            if (ok != 0) {
1823                ALOGE("%s pthread_once failed: %d", __func__, ok);
1824            }
1825            frameCount = mFrameCount * sFastTrackMultiplier;
1826        }
1827        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1828                frameCount, mFrameCount);
1829      } else {
1830        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1831                "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1832                "sampleRate=%u mSampleRate=%u "
1833                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1834                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1835                audio_is_linear_pcm(format),
1836                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1837        *flags &= ~IAudioFlinger::TRACK_FAST;
1838      }
1839    }
1840    // For normal PCM streaming tracks, update minimum frame count.
1841    // For compatibility with AudioTrack calculation, buffer depth is forced
1842    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1843    // This is probably too conservative, but legacy application code may depend on it.
1844    // If you change this calculation, also review the start threshold which is related.
1845    if (!(*flags & IAudioFlinger::TRACK_FAST)
1846            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1847        // this must match AudioTrack.cpp calculateMinFrameCount().
1848        // TODO: Move to a common library
1849        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1850        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1851        if (minBufCount < 2) {
1852            minBufCount = 2;
1853        }
1854        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1855        // or the client should compute and pass in a larger buffer request.
1856        size_t minFrameCount =
1857                minBufCount * sourceFramesNeededWithTimestretch(
1858                        sampleRate, mNormalFrameCount,
1859                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1860        if (frameCount < minFrameCount) { // including frameCount == 0
1861            frameCount = minFrameCount;
1862        }
1863    }
1864    *pFrameCount = frameCount;
1865
1866    switch (mType) {
1867
1868    case DIRECT:
1869        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1870            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1871                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1872                        "for output %p with format %#x",
1873                        sampleRate, format, channelMask, mOutput, mFormat);
1874                lStatus = BAD_VALUE;
1875                goto Exit;
1876            }
1877        }
1878        break;
1879
1880    case OFFLOAD:
1881        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1882            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1883                    "for output %p with format %#x",
1884                    sampleRate, format, channelMask, mOutput, mFormat);
1885            lStatus = BAD_VALUE;
1886            goto Exit;
1887        }
1888        break;
1889
1890    default:
1891        if (!audio_is_linear_pcm(format)) {
1892                ALOGE("createTrack_l() Bad parameter: format %#x \""
1893                        "for output %p with format %#x",
1894                        format, mOutput, mFormat);
1895                lStatus = BAD_VALUE;
1896                goto Exit;
1897        }
1898        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1899            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1900            lStatus = BAD_VALUE;
1901            goto Exit;
1902        }
1903        break;
1904
1905    }
1906
1907    lStatus = initCheck();
1908    if (lStatus != NO_ERROR) {
1909        ALOGE("createTrack_l() audio driver not initialized");
1910        goto Exit;
1911    }
1912
1913    { // scope for mLock
1914        Mutex::Autolock _l(mLock);
1915
1916        // all tracks in same audio session must share the same routing strategy otherwise
1917        // conflicts will happen when tracks are moved from one output to another by audio policy
1918        // manager
1919        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1920        for (size_t i = 0; i < mTracks.size(); ++i) {
1921            sp<Track> t = mTracks[i];
1922            if (t != 0 && t->isExternalTrack()) {
1923                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1924                if (sessionId == t->sessionId() && strategy != actual) {
1925                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1926                            strategy, actual);
1927                    lStatus = BAD_VALUE;
1928                    goto Exit;
1929                }
1930            }
1931        }
1932
1933        track = new Track(this, client, streamType, sampleRate, format,
1934                          channelMask, frameCount, NULL, sharedBuffer,
1935                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1936
1937        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1938        if (lStatus != NO_ERROR) {
1939            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1940            // track must be cleared from the caller as the caller has the AF lock
1941            goto Exit;
1942        }
1943        mTracks.add(track);
1944
1945        sp<EffectChain> chain = getEffectChain_l(sessionId);
1946        if (chain != 0) {
1947            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1948            track->setMainBuffer(chain->inBuffer());
1949            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1950            chain->incTrackCnt();
1951        }
1952
1953        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1954            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1955            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1956            // so ask activity manager to do this on our behalf
1957            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1958        }
1959    }
1960
1961    lStatus = NO_ERROR;
1962
1963Exit:
1964    *status = lStatus;
1965    return track;
1966}
1967
1968uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1969{
1970    return latency;
1971}
1972
1973uint32_t AudioFlinger::PlaybackThread::latency() const
1974{
1975    Mutex::Autolock _l(mLock);
1976    return latency_l();
1977}
1978uint32_t AudioFlinger::PlaybackThread::latency_l() const
1979{
1980    if (initCheck() == NO_ERROR) {
1981        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1982    } else {
1983        return 0;
1984    }
1985}
1986
1987void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1988{
1989    Mutex::Autolock _l(mLock);
1990    // Don't apply master volume in SW if our HAL can do it for us.
1991    if (mOutput && mOutput->audioHwDev &&
1992        mOutput->audioHwDev->canSetMasterVolume()) {
1993        mMasterVolume = 1.0;
1994    } else {
1995        mMasterVolume = value;
1996    }
1997}
1998
1999void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2000{
2001    Mutex::Autolock _l(mLock);
2002    // Don't apply master mute in SW if our HAL can do it for us.
2003    if (mOutput && mOutput->audioHwDev &&
2004        mOutput->audioHwDev->canSetMasterMute()) {
2005        mMasterMute = false;
2006    } else {
2007        mMasterMute = muted;
2008    }
2009}
2010
2011void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2012{
2013    Mutex::Autolock _l(mLock);
2014    mStreamTypes[stream].volume = value;
2015    broadcast_l();
2016}
2017
2018void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2019{
2020    Mutex::Autolock _l(mLock);
2021    mStreamTypes[stream].mute = muted;
2022    broadcast_l();
2023}
2024
2025float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2026{
2027    Mutex::Autolock _l(mLock);
2028    return mStreamTypes[stream].volume;
2029}
2030
2031// addTrack_l() must be called with ThreadBase::mLock held
2032status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2033{
2034    status_t status = ALREADY_EXISTS;
2035
2036    if (mActiveTracks.indexOf(track) < 0) {
2037        // the track is newly added, make sure it fills up all its
2038        // buffers before playing. This is to ensure the client will
2039        // effectively get the latency it requested.
2040        if (track->isExternalTrack()) {
2041            TrackBase::track_state state = track->mState;
2042            mLock.unlock();
2043            status = AudioSystem::startOutput(mId, track->streamType(),
2044                                              track->sessionId());
2045            mLock.lock();
2046            // abort track was stopped/paused while we released the lock
2047            if (state != track->mState) {
2048                if (status == NO_ERROR) {
2049                    mLock.unlock();
2050                    AudioSystem::stopOutput(mId, track->streamType(),
2051                                            track->sessionId());
2052                    mLock.lock();
2053                }
2054                return INVALID_OPERATION;
2055            }
2056            // abort if start is rejected by audio policy manager
2057            if (status != NO_ERROR) {
2058                return PERMISSION_DENIED;
2059            }
2060#ifdef ADD_BATTERY_DATA
2061            // to track the speaker usage
2062            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2063#endif
2064        }
2065
2066        // set retry count for buffer fill
2067        if (track->isOffloaded()) {
2068            track->mRetryCount = kMaxTrackStartupRetriesOffload;
2069        } else {
2070            track->mRetryCount = kMaxTrackStartupRetries;
2071        }
2072
2073        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2074        track->mResetDone = false;
2075        track->mPresentationCompleteFrames = 0;
2076        mActiveTracks.add(track);
2077        mWakeLockUids.add(track->uid());
2078        mActiveTracksGeneration++;
2079        mLatestActiveTrack = track;
2080        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2081        if (chain != 0) {
2082            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2083                    track->sessionId());
2084            chain->incActiveTrackCnt();
2085        }
2086
2087        status = NO_ERROR;
2088    }
2089
2090    onAddNewTrack_l();
2091    return status;
2092}
2093
2094bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2095{
2096    track->terminate();
2097    // active tracks are removed by threadLoop()
2098    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2099    track->mState = TrackBase::STOPPED;
2100    if (!trackActive) {
2101        removeTrack_l(track);
2102    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2103        track->mState = TrackBase::STOPPING_1;
2104    }
2105
2106    return trackActive;
2107}
2108
2109void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2110{
2111    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2112    mTracks.remove(track);
2113    deleteTrackName_l(track->name());
2114    // redundant as track is about to be destroyed, for dumpsys only
2115    track->mName = -1;
2116    if (track->isFastTrack()) {
2117        int index = track->mFastIndex;
2118        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
2119        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2120        mFastTrackAvailMask |= 1 << index;
2121        // redundant as track is about to be destroyed, for dumpsys only
2122        track->mFastIndex = -1;
2123    }
2124    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2125    if (chain != 0) {
2126        chain->decTrackCnt();
2127    }
2128}
2129
2130void AudioFlinger::PlaybackThread::broadcast_l()
2131{
2132    // Thread could be blocked waiting for async
2133    // so signal it to handle state changes immediately
2134    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2135    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2136    mSignalPending = true;
2137    mWaitWorkCV.broadcast();
2138}
2139
2140String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2141{
2142    Mutex::Autolock _l(mLock);
2143    if (initCheck() != NO_ERROR) {
2144        return String8();
2145    }
2146
2147    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2148    const String8 out_s8(s);
2149    free(s);
2150    return out_s8;
2151}
2152
2153void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2154    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2155    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2156
2157    desc->mIoHandle = mId;
2158
2159    switch (event) {
2160    case AUDIO_OUTPUT_OPENED:
2161    case AUDIO_OUTPUT_CONFIG_CHANGED:
2162        desc->mPatch = mPatch;
2163        desc->mChannelMask = mChannelMask;
2164        desc->mSamplingRate = mSampleRate;
2165        desc->mFormat = mFormat;
2166        desc->mFrameCount = mNormalFrameCount; // FIXME see
2167                                             // AudioFlinger::frameCount(audio_io_handle_t)
2168        desc->mLatency = latency_l();
2169        break;
2170
2171    case AUDIO_OUTPUT_CLOSED:
2172    default:
2173        break;
2174    }
2175    mAudioFlinger->ioConfigChanged(event, desc, pid);
2176}
2177
2178void AudioFlinger::PlaybackThread::writeCallback()
2179{
2180    ALOG_ASSERT(mCallbackThread != 0);
2181    mCallbackThread->resetWriteBlocked();
2182}
2183
2184void AudioFlinger::PlaybackThread::drainCallback()
2185{
2186    ALOG_ASSERT(mCallbackThread != 0);
2187    mCallbackThread->resetDraining();
2188}
2189
2190void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2191{
2192    Mutex::Autolock _l(mLock);
2193    // reject out of sequence requests
2194    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2195        mWriteAckSequence &= ~1;
2196        mWaitWorkCV.signal();
2197    }
2198}
2199
2200void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2201{
2202    Mutex::Autolock _l(mLock);
2203    // reject out of sequence requests
2204    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2205        mDrainSequence &= ~1;
2206        mWaitWorkCV.signal();
2207    }
2208}
2209
2210// static
2211int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2212                                                void *param __unused,
2213                                                void *cookie)
2214{
2215    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2216    ALOGV("asyncCallback() event %d", event);
2217    switch (event) {
2218    case STREAM_CBK_EVENT_WRITE_READY:
2219        me->writeCallback();
2220        break;
2221    case STREAM_CBK_EVENT_DRAIN_READY:
2222        me->drainCallback();
2223        break;
2224    default:
2225        ALOGW("asyncCallback() unknown event %d", event);
2226        break;
2227    }
2228    return 0;
2229}
2230
2231void AudioFlinger::PlaybackThread::readOutputParameters_l()
2232{
2233    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2234    mSampleRate = mOutput->getSampleRate();
2235    mChannelMask = mOutput->getChannelMask();
2236    if (!audio_is_output_channel(mChannelMask)) {
2237        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2238    }
2239    if ((mType == MIXER || mType == DUPLICATING)
2240            && !isValidPcmSinkChannelMask(mChannelMask)) {
2241        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2242                mChannelMask);
2243    }
2244    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2245
2246    // Get actual HAL format.
2247    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2248    // Get format from the shim, which will be different than the HAL format
2249    // if playing compressed audio over HDMI passthrough.
2250    mFormat = mOutput->getFormat();
2251    if (!audio_is_valid_format(mFormat)) {
2252        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2253    }
2254    if ((mType == MIXER || mType == DUPLICATING)
2255            && !isValidPcmSinkFormat(mFormat)) {
2256        LOG_FATAL("HAL format %#x not supported for mixed output",
2257                mFormat);
2258    }
2259    mFrameSize = mOutput->getFrameSize();
2260    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2261    mFrameCount = mBufferSize / mFrameSize;
2262    if (mFrameCount & 15) {
2263        ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2264                mFrameCount);
2265    }
2266
2267    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2268            (mOutput->stream->set_callback != NULL)) {
2269        if (mOutput->stream->set_callback(mOutput->stream,
2270                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2271            mUseAsyncWrite = true;
2272            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2273        }
2274    }
2275
2276    mHwSupportsPause = false;
2277    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2278        if (mOutput->stream->pause != NULL) {
2279            if (mOutput->stream->resume != NULL) {
2280                mHwSupportsPause = true;
2281            } else {
2282                ALOGW("direct output implements pause but not resume");
2283            }
2284        } else if (mOutput->stream->resume != NULL) {
2285            ALOGW("direct output implements resume but not pause");
2286        }
2287    }
2288    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2289        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2290    }
2291
2292    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2293        // For best precision, we use float instead of the associated output
2294        // device format (typically PCM 16 bit).
2295
2296        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2297        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2298        mBufferSize = mFrameSize * mFrameCount;
2299
2300        // TODO: We currently use the associated output device channel mask and sample rate.
2301        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2302        // (if a valid mask) to avoid premature downmix.
2303        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2304        // instead of the output device sample rate to avoid loss of high frequency information.
2305        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2306    }
2307
2308    // Calculate size of normal sink buffer relative to the HAL output buffer size
2309    double multiplier = 1.0;
2310    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2311            kUseFastMixer == FastMixer_Dynamic)) {
2312        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2313        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2314        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2315        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2316        maxNormalFrameCount = maxNormalFrameCount & ~15;
2317        if (maxNormalFrameCount < minNormalFrameCount) {
2318            maxNormalFrameCount = minNormalFrameCount;
2319        }
2320        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2321        if (multiplier <= 1.0) {
2322            multiplier = 1.0;
2323        } else if (multiplier <= 2.0) {
2324            if (2 * mFrameCount <= maxNormalFrameCount) {
2325                multiplier = 2.0;
2326            } else {
2327                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2328            }
2329        } else {
2330            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2331            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2332            // track, but we sometimes have to do this to satisfy the maximum frame count
2333            // constraint)
2334            // FIXME this rounding up should not be done if no HAL SRC
2335            uint32_t truncMult = (uint32_t) multiplier;
2336            if ((truncMult & 1)) {
2337                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2338                    ++truncMult;
2339                }
2340            }
2341            multiplier = (double) truncMult;
2342        }
2343    }
2344    mNormalFrameCount = multiplier * mFrameCount;
2345    // round up to nearest 16 frames to satisfy AudioMixer
2346    if (mType == MIXER || mType == DUPLICATING) {
2347        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2348    }
2349    ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2350            mNormalFrameCount);
2351
2352    // Check if we want to throttle the processing to no more than 2x normal rate
2353    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2354    mThreadThrottleTimeMs = 0;
2355    mThreadThrottleEndMs = 0;
2356    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2357
2358    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2359    // Originally this was int16_t[] array, need to remove legacy implications.
2360    free(mSinkBuffer);
2361    mSinkBuffer = NULL;
2362    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2363    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2364    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2365    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2366
2367    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2368    // drives the output.
2369    free(mMixerBuffer);
2370    mMixerBuffer = NULL;
2371    if (mMixerBufferEnabled) {
2372        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2373        mMixerBufferSize = mNormalFrameCount * mChannelCount
2374                * audio_bytes_per_sample(mMixerBufferFormat);
2375        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2376    }
2377    free(mEffectBuffer);
2378    mEffectBuffer = NULL;
2379    if (mEffectBufferEnabled) {
2380        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2381        mEffectBufferSize = mNormalFrameCount * mChannelCount
2382                * audio_bytes_per_sample(mEffectBufferFormat);
2383        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2384    }
2385
2386    // force reconfiguration of effect chains and engines to take new buffer size and audio
2387    // parameters into account
2388    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2389    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2390    // matter.
2391    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2392    Vector< sp<EffectChain> > effectChains = mEffectChains;
2393    for (size_t i = 0; i < effectChains.size(); i ++) {
2394        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2395    }
2396}
2397
2398
2399status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2400{
2401    if (halFrames == NULL || dspFrames == NULL) {
2402        return BAD_VALUE;
2403    }
2404    Mutex::Autolock _l(mLock);
2405    if (initCheck() != NO_ERROR) {
2406        return INVALID_OPERATION;
2407    }
2408    int64_t framesWritten = mBytesWritten / mFrameSize;
2409    *halFrames = framesWritten;
2410
2411    if (isSuspended()) {
2412        // return an estimation of rendered frames when the output is suspended
2413        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2414        *dspFrames = (uint32_t)
2415                (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2416        return NO_ERROR;
2417    } else {
2418        status_t status;
2419        uint32_t frames;
2420        status = mOutput->getRenderPosition(&frames);
2421        *dspFrames = (size_t)frames;
2422        return status;
2423    }
2424}
2425
2426uint32_t AudioFlinger::PlaybackThread::hasAudioSession(audio_session_t sessionId) const
2427{
2428    Mutex::Autolock _l(mLock);
2429    uint32_t result = 0;
2430    if (getEffectChain_l(sessionId) != 0) {
2431        result = EFFECT_SESSION;
2432    }
2433
2434    for (size_t i = 0; i < mTracks.size(); ++i) {
2435        sp<Track> track = mTracks[i];
2436        if (sessionId == track->sessionId() && !track->isInvalid()) {
2437            result |= TRACK_SESSION;
2438            break;
2439        }
2440    }
2441
2442    return result;
2443}
2444
2445uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2446{
2447    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2448    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2449    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2450        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2451    }
2452    for (size_t i = 0; i < mTracks.size(); i++) {
2453        sp<Track> track = mTracks[i];
2454        if (sessionId == track->sessionId() && !track->isInvalid()) {
2455            return AudioSystem::getStrategyForStream(track->streamType());
2456        }
2457    }
2458    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2459}
2460
2461
2462AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2463{
2464    Mutex::Autolock _l(mLock);
2465    return mOutput;
2466}
2467
2468AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2469{
2470    Mutex::Autolock _l(mLock);
2471    AudioStreamOut *output = mOutput;
2472    mOutput = NULL;
2473    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2474    //       must push a NULL and wait for ack
2475    mOutputSink.clear();
2476    mPipeSink.clear();
2477    mNormalSink.clear();
2478    return output;
2479}
2480
2481// this method must always be called either with ThreadBase mLock held or inside the thread loop
2482audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2483{
2484    if (mOutput == NULL) {
2485        return NULL;
2486    }
2487    return &mOutput->stream->common;
2488}
2489
2490uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2491{
2492    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2493}
2494
2495status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2496{
2497    if (!isValidSyncEvent(event)) {
2498        return BAD_VALUE;
2499    }
2500
2501    Mutex::Autolock _l(mLock);
2502
2503    for (size_t i = 0; i < mTracks.size(); ++i) {
2504        sp<Track> track = mTracks[i];
2505        if (event->triggerSession() == track->sessionId()) {
2506            (void) track->setSyncEvent(event);
2507            return NO_ERROR;
2508        }
2509    }
2510
2511    return NAME_NOT_FOUND;
2512}
2513
2514bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2515{
2516    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2517}
2518
2519void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2520        const Vector< sp<Track> >& tracksToRemove)
2521{
2522    size_t count = tracksToRemove.size();
2523    if (count > 0) {
2524        for (size_t i = 0 ; i < count ; i++) {
2525            const sp<Track>& track = tracksToRemove.itemAt(i);
2526            if (track->isExternalTrack()) {
2527                AudioSystem::stopOutput(mId, track->streamType(),
2528                                        track->sessionId());
2529#ifdef ADD_BATTERY_DATA
2530                // to track the speaker usage
2531                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2532#endif
2533                if (track->isTerminated()) {
2534                    AudioSystem::releaseOutput(mId, track->streamType(),
2535                                               track->sessionId());
2536                }
2537            }
2538        }
2539    }
2540}
2541
2542void AudioFlinger::PlaybackThread::checkSilentMode_l()
2543{
2544    if (!mMasterMute) {
2545        char value[PROPERTY_VALUE_MAX];
2546        if (property_get("ro.audio.silent", value, "0") > 0) {
2547            char *endptr;
2548            unsigned long ul = strtoul(value, &endptr, 0);
2549            if (*endptr == '\0' && ul != 0) {
2550                ALOGD("Silence is golden");
2551                // The setprop command will not allow a property to be changed after
2552                // the first time it is set, so we don't have to worry about un-muting.
2553                setMasterMute_l(true);
2554            }
2555        }
2556    }
2557}
2558
2559// shared by MIXER and DIRECT, overridden by DUPLICATING
2560ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2561{
2562    // FIXME rewrite to reduce number of system calls
2563    mLastWriteTime = systemTime();
2564    mInWrite = true;
2565    ssize_t bytesWritten;
2566    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2567
2568    // If an NBAIO sink is present, use it to write the normal mixer's submix
2569    if (mNormalSink != 0) {
2570
2571        const size_t count = mBytesRemaining / mFrameSize;
2572
2573        ATRACE_BEGIN("write");
2574        // update the setpoint when AudioFlinger::mScreenState changes
2575        uint32_t screenState = AudioFlinger::mScreenState;
2576        if (screenState != mScreenState) {
2577            mScreenState = screenState;
2578            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2579            if (pipe != NULL) {
2580                pipe->setAvgFrames((mScreenState & 1) ?
2581                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2582            }
2583        }
2584        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2585        ATRACE_END();
2586        if (framesWritten > 0) {
2587            bytesWritten = framesWritten * mFrameSize;
2588        } else {
2589            bytesWritten = framesWritten;
2590        }
2591    // otherwise use the HAL / AudioStreamOut directly
2592    } else {
2593        // Direct output and offload threads
2594
2595        if (mUseAsyncWrite) {
2596            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2597            mWriteAckSequence += 2;
2598            mWriteAckSequence |= 1;
2599            ALOG_ASSERT(mCallbackThread != 0);
2600            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2601        }
2602        // FIXME We should have an implementation of timestamps for direct output threads.
2603        // They are used e.g for multichannel PCM playback over HDMI.
2604        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2605
2606        if (mUseAsyncWrite &&
2607                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2608            // do not wait for async callback in case of error of full write
2609            mWriteAckSequence &= ~1;
2610            ALOG_ASSERT(mCallbackThread != 0);
2611            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2612        }
2613    }
2614
2615    mNumWrites++;
2616    mInWrite = false;
2617    mStandby = false;
2618    return bytesWritten;
2619}
2620
2621void AudioFlinger::PlaybackThread::threadLoop_drain()
2622{
2623    if (mOutput->stream->drain) {
2624        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2625        if (mUseAsyncWrite) {
2626            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2627            mDrainSequence |= 1;
2628            ALOG_ASSERT(mCallbackThread != 0);
2629            mCallbackThread->setDraining(mDrainSequence);
2630        }
2631        mOutput->stream->drain(mOutput->stream,
2632            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2633                                                : AUDIO_DRAIN_ALL);
2634    }
2635}
2636
2637void AudioFlinger::PlaybackThread::threadLoop_exit()
2638{
2639    {
2640        Mutex::Autolock _l(mLock);
2641        for (size_t i = 0; i < mTracks.size(); i++) {
2642            sp<Track> track = mTracks[i];
2643            track->invalidate();
2644        }
2645    }
2646}
2647
2648/*
2649The derived values that are cached:
2650 - mSinkBufferSize from frame count * frame size
2651 - mActiveSleepTimeUs from activeSleepTimeUs()
2652 - mIdleSleepTimeUs from idleSleepTimeUs()
2653 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2654   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2655 - maxPeriod from frame count and sample rate (MIXER only)
2656
2657The parameters that affect these derived values are:
2658 - frame count
2659 - frame size
2660 - sample rate
2661 - device type: A2DP or not
2662 - device latency
2663 - format: PCM or not
2664 - active sleep time
2665 - idle sleep time
2666*/
2667
2668void AudioFlinger::PlaybackThread::cacheParameters_l()
2669{
2670    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2671    mActiveSleepTimeUs = activeSleepTimeUs();
2672    mIdleSleepTimeUs = idleSleepTimeUs();
2673
2674    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2675    // truncating audio when going to standby.
2676    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2677    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2678        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2679            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2680        }
2681    }
2682}
2683
2684void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2685{
2686    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2687            this,  streamType, mTracks.size());
2688    Mutex::Autolock _l(mLock);
2689
2690    size_t size = mTracks.size();
2691    for (size_t i = 0; i < size; i++) {
2692        sp<Track> t = mTracks[i];
2693        if (t->streamType() == streamType && t->isExternalTrack()) {
2694            t->invalidate();
2695        }
2696    }
2697}
2698
2699status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2700{
2701    audio_session_t session = chain->sessionId();
2702    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2703            ? mEffectBuffer : mSinkBuffer);
2704    bool ownsBuffer = false;
2705
2706    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2707    if (session > AUDIO_SESSION_OUTPUT_MIX) {
2708        // Only one effect chain can be present in direct output thread and it uses
2709        // the sink buffer as input
2710        if (mType != DIRECT) {
2711            size_t numSamples = mNormalFrameCount * mChannelCount;
2712            buffer = new int16_t[numSamples];
2713            memset(buffer, 0, numSamples * sizeof(int16_t));
2714            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2715            ownsBuffer = true;
2716        }
2717
2718        // Attach all tracks with same session ID to this chain.
2719        for (size_t i = 0; i < mTracks.size(); ++i) {
2720            sp<Track> track = mTracks[i];
2721            if (session == track->sessionId()) {
2722                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2723                        buffer);
2724                track->setMainBuffer(buffer);
2725                chain->incTrackCnt();
2726            }
2727        }
2728
2729        // indicate all active tracks in the chain
2730        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2731            sp<Track> track = mActiveTracks[i].promote();
2732            if (track == 0) {
2733                continue;
2734            }
2735            if (session == track->sessionId()) {
2736                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2737                chain->incActiveTrackCnt();
2738            }
2739        }
2740    }
2741    chain->setThread(this);
2742    chain->setInBuffer(buffer, ownsBuffer);
2743    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2744            ? mEffectBuffer : mSinkBuffer));
2745    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2746    // chains list in order to be processed last as it contains output stage effects.
2747    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2748    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2749    // after track specific effects and before output stage.
2750    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2751    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2752    // Effect chain for other sessions are inserted at beginning of effect
2753    // chains list to be processed before output mix effects. Relative order between other
2754    // sessions is not important.
2755    static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2756            AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2757            "audio_session_t constants misdefined");
2758    size_t size = mEffectChains.size();
2759    size_t i = 0;
2760    for (i = 0; i < size; i++) {
2761        if (mEffectChains[i]->sessionId() < session) {
2762            break;
2763        }
2764    }
2765    mEffectChains.insertAt(chain, i);
2766    checkSuspendOnAddEffectChain_l(chain);
2767
2768    return NO_ERROR;
2769}
2770
2771size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2772{
2773    audio_session_t session = chain->sessionId();
2774
2775    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2776
2777    for (size_t i = 0; i < mEffectChains.size(); i++) {
2778        if (chain == mEffectChains[i]) {
2779            mEffectChains.removeAt(i);
2780            // detach all active tracks from the chain
2781            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2782                sp<Track> track = mActiveTracks[i].promote();
2783                if (track == 0) {
2784                    continue;
2785                }
2786                if (session == track->sessionId()) {
2787                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2788                            chain.get(), session);
2789                    chain->decActiveTrackCnt();
2790                }
2791            }
2792
2793            // detach all tracks with same session ID from this chain
2794            for (size_t i = 0; i < mTracks.size(); ++i) {
2795                sp<Track> track = mTracks[i];
2796                if (session == track->sessionId()) {
2797                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2798                    chain->decTrackCnt();
2799                }
2800            }
2801            break;
2802        }
2803    }
2804    return mEffectChains.size();
2805}
2806
2807status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2808        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2809{
2810    Mutex::Autolock _l(mLock);
2811    return attachAuxEffect_l(track, EffectId);
2812}
2813
2814status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2815        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2816{
2817    status_t status = NO_ERROR;
2818
2819    if (EffectId == 0) {
2820        track->setAuxBuffer(0, NULL);
2821    } else {
2822        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2823        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2824        if (effect != 0) {
2825            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2826                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2827            } else {
2828                status = INVALID_OPERATION;
2829            }
2830        } else {
2831            status = BAD_VALUE;
2832        }
2833    }
2834    return status;
2835}
2836
2837void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2838{
2839    for (size_t i = 0; i < mTracks.size(); ++i) {
2840        sp<Track> track = mTracks[i];
2841        if (track->auxEffectId() == effectId) {
2842            attachAuxEffect_l(track, 0);
2843        }
2844    }
2845}
2846
2847bool AudioFlinger::PlaybackThread::threadLoop()
2848{
2849    Vector< sp<Track> > tracksToRemove;
2850
2851    mStandbyTimeNs = systemTime();
2852
2853    // MIXER
2854    nsecs_t lastWarning = 0;
2855
2856    // DUPLICATING
2857    // FIXME could this be made local to while loop?
2858    writeFrames = 0;
2859
2860    int lastGeneration = 0;
2861
2862    cacheParameters_l();
2863    mSleepTimeUs = mIdleSleepTimeUs;
2864
2865    if (mType == MIXER) {
2866        sleepTimeShift = 0;
2867    }
2868
2869    CpuStats cpuStats;
2870    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2871
2872    acquireWakeLock();
2873
2874    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2875    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2876    // and then that string will be logged at the next convenient opportunity.
2877    const char *logString = NULL;
2878
2879    checkSilentMode_l();
2880
2881    while (!exitPending())
2882    {
2883        cpuStats.sample(myName);
2884
2885        Vector< sp<EffectChain> > effectChains;
2886
2887        { // scope for mLock
2888
2889            Mutex::Autolock _l(mLock);
2890
2891            processConfigEvents_l();
2892
2893            if (logString != NULL) {
2894                mNBLogWriter->logTimestamp();
2895                mNBLogWriter->log(logString);
2896                logString = NULL;
2897            }
2898
2899            // Gather the framesReleased counters for all active tracks,
2900            // and associate with the sink frames written out.  We need
2901            // this to convert the sink timestamp to the track timestamp.
2902            if (mNormalSink != 0) {
2903                // Note: The DuplicatingThread may not have a mNormalSink.
2904                // We always fetch the timestamp here because often the downstream
2905                // sink will block whie writing.
2906                ExtendedTimestamp timestamp; // use private copy to fetch
2907                (void) mNormalSink->getTimestamp(timestamp);
2908                // copy over kernel info
2909                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
2910                        timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
2911                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
2912                        timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
2913            }
2914            // mFramesWritten for non-offloaded tracks are contiguous
2915            // even after standby() is called. This is useful for the track frame
2916            // to sink frame mapping.
2917            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
2918            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
2919            const size_t size = mActiveTracks.size();
2920            for (size_t i = 0; i < size; ++i) {
2921                sp<Track> t = mActiveTracks[i].promote();
2922                if (t != 0 && !t->isFastTrack()) {
2923                    t->updateTrackFrameInfo(
2924                            t->mAudioTrackServerProxy->framesReleased(),
2925                            mFramesWritten,
2926                            mTimestamp);
2927                }
2928            }
2929
2930            saveOutputTracks();
2931            if (mSignalPending) {
2932                // A signal was raised while we were unlocked
2933                mSignalPending = false;
2934            } else if (waitingAsyncCallback_l()) {
2935                if (exitPending()) {
2936                    break;
2937                }
2938                bool released = false;
2939                // The following works around a bug in the offload driver. Ideally we would release
2940                // the wake lock every time, but that causes the last offload buffer(s) to be
2941                // dropped while the device is on battery, so we need to hold a wake lock during
2942                // the drain phase.
2943                if (mBytesRemaining && !(mDrainSequence & 1)) {
2944                    releaseWakeLock_l();
2945                    released = true;
2946                }
2947                mWakeLockUids.clear();
2948                mActiveTracksGeneration++;
2949                ALOGV("wait async completion");
2950                mWaitWorkCV.wait(mLock);
2951                ALOGV("async completion/wake");
2952                if (released) {
2953                    acquireWakeLock_l();
2954                }
2955                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2956                mSleepTimeUs = 0;
2957
2958                continue;
2959            }
2960            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2961                                   isSuspended()) {
2962                // put audio hardware into standby after short delay
2963                if (shouldStandby_l()) {
2964
2965                    threadLoop_standby();
2966
2967                    mStandby = true;
2968                }
2969
2970                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2971                    // we're about to wait, flush the binder command buffer
2972                    IPCThreadState::self()->flushCommands();
2973
2974                    clearOutputTracks();
2975
2976                    if (exitPending()) {
2977                        break;
2978                    }
2979
2980                    releaseWakeLock_l();
2981                    mWakeLockUids.clear();
2982                    mActiveTracksGeneration++;
2983                    // wait until we have something to do...
2984                    ALOGV("%s going to sleep", myName.string());
2985                    mWaitWorkCV.wait(mLock);
2986                    ALOGV("%s waking up", myName.string());
2987                    acquireWakeLock_l();
2988
2989                    mMixerStatus = MIXER_IDLE;
2990                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2991                    mBytesWritten = 0;
2992                    mBytesRemaining = 0;
2993                    checkSilentMode_l();
2994
2995                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2996                    mSleepTimeUs = mIdleSleepTimeUs;
2997                    if (mType == MIXER) {
2998                        sleepTimeShift = 0;
2999                    }
3000
3001                    continue;
3002                }
3003            }
3004            // mMixerStatusIgnoringFastTracks is also updated internally
3005            mMixerStatus = prepareTracks_l(&tracksToRemove);
3006
3007            // compare with previously applied list
3008            if (lastGeneration != mActiveTracksGeneration) {
3009                // update wakelock
3010                updateWakeLockUids_l(mWakeLockUids);
3011                lastGeneration = mActiveTracksGeneration;
3012            }
3013
3014            // prevent any changes in effect chain list and in each effect chain
3015            // during mixing and effect process as the audio buffers could be deleted
3016            // or modified if an effect is created or deleted
3017            lockEffectChains_l(effectChains);
3018        } // mLock scope ends
3019
3020        if (mBytesRemaining == 0) {
3021            mCurrentWriteLength = 0;
3022            if (mMixerStatus == MIXER_TRACKS_READY) {
3023                // threadLoop_mix() sets mCurrentWriteLength
3024                threadLoop_mix();
3025            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3026                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
3027                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3028                // must be written to HAL
3029                threadLoop_sleepTime();
3030                if (mSleepTimeUs == 0) {
3031                    mCurrentWriteLength = mSinkBufferSize;
3032                }
3033            }
3034            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3035            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3036            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3037            // or mSinkBuffer (if there are no effects).
3038            //
3039            // This is done pre-effects computation; if effects change to
3040            // support higher precision, this needs to move.
3041            //
3042            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3043            // TODO use mSleepTimeUs == 0 as an additional condition.
3044            if (mMixerBufferValid) {
3045                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3046                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3047
3048                // mono blend occurs for mixer threads only (not direct or offloaded)
3049                // and is handled here if we're going directly to the sink.
3050                if (requireMonoBlend() && !mEffectBufferValid) {
3051                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3052                               true /*limit*/);
3053                }
3054
3055                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3056                        mNormalFrameCount * mChannelCount);
3057            }
3058
3059            mBytesRemaining = mCurrentWriteLength;
3060            if (isSuspended()) {
3061                mSleepTimeUs = suspendSleepTimeUs();
3062                // simulate write to HAL when suspended
3063                mBytesWritten += mSinkBufferSize;
3064                mFramesWritten += mSinkBufferSize / mFrameSize;
3065                mBytesRemaining = 0;
3066            }
3067
3068            // only process effects if we're going to write
3069            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3070                for (size_t i = 0; i < effectChains.size(); i ++) {
3071                    effectChains[i]->process_l();
3072                }
3073            }
3074        }
3075        // Process effect chains for offloaded thread even if no audio
3076        // was read from audio track: process only updates effect state
3077        // and thus does have to be synchronized with audio writes but may have
3078        // to be called while waiting for async write callback
3079        if (mType == OFFLOAD) {
3080            for (size_t i = 0; i < effectChains.size(); i ++) {
3081                effectChains[i]->process_l();
3082            }
3083        }
3084
3085        // Only if the Effects buffer is enabled and there is data in the
3086        // Effects buffer (buffer valid), we need to
3087        // copy into the sink buffer.
3088        // TODO use mSleepTimeUs == 0 as an additional condition.
3089        if (mEffectBufferValid) {
3090            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3091
3092            if (requireMonoBlend()) {
3093                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3094                           true /*limit*/);
3095            }
3096
3097            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3098                    mNormalFrameCount * mChannelCount);
3099        }
3100
3101        // enable changes in effect chain
3102        unlockEffectChains(effectChains);
3103
3104        if (!waitingAsyncCallback()) {
3105            // mSleepTimeUs == 0 means we must write to audio hardware
3106            if (mSleepTimeUs == 0) {
3107                ssize_t ret = 0;
3108                if (mBytesRemaining) {
3109                    ret = threadLoop_write();
3110                    if (ret < 0) {
3111                        mBytesRemaining = 0;
3112                    } else {
3113                        mBytesWritten += ret;
3114                        mBytesRemaining -= ret;
3115                        mFramesWritten += ret / mFrameSize;
3116                    }
3117                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3118                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3119                    threadLoop_drain();
3120                }
3121                if (mType == MIXER && !mStandby) {
3122                    // write blocked detection
3123                    nsecs_t now = systemTime();
3124                    nsecs_t delta = now - mLastWriteTime;
3125                    if (delta > maxPeriod) {
3126                        mNumDelayedWrites++;
3127                        if ((now - lastWarning) > kWarningThrottleNs) {
3128                            ATRACE_NAME("underrun");
3129                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3130                                    (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3131                            lastWarning = now;
3132                        }
3133                    }
3134
3135                    if (mThreadThrottle
3136                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3137                            && ret > 0) {                         // we wrote something
3138                        // Limit MixerThread data processing to no more than twice the
3139                        // expected processing rate.
3140                        //
3141                        // This helps prevent underruns with NuPlayer and other applications
3142                        // which may set up buffers that are close to the minimum size, or use
3143                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3144                        //
3145                        // The throttle smooths out sudden large data drains from the device,
3146                        // e.g. when it comes out of standby, which often causes problems with
3147                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3148                        // (2) minimum buffer sized tracks (even if the track is full,
3149                        //     the app won't fill fast enough to handle the sudden draw).
3150
3151                        const int32_t deltaMs = delta / 1000000;
3152                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3153                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3154                            usleep(throttleMs * 1000);
3155                            // notify of throttle start on verbose log
3156                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3157                                    "mixer(%p) throttle begin:"
3158                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3159                                    this, ret, deltaMs, throttleMs);
3160                            mThreadThrottleTimeMs += throttleMs;
3161                        } else {
3162                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3163                            if (diff > 0) {
3164                                // notify of throttle end on debug log
3165                                ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
3166                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3167                            }
3168                        }
3169                    }
3170                }
3171
3172            } else {
3173                ATRACE_BEGIN("sleep");
3174                if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
3175                    Mutex::Autolock _l(mLock);
3176                    if (!mSignalPending && !exitPending()) {
3177                        // Do not sleep more than one buffer duration since last write and not
3178                        // less than kDirectMinSleepTimeUs
3179                        // Wake up if a command is received
3180                        nsecs_t now = systemTime();
3181                        uint32_t deltaUs = (uint32_t)((now - mLastWriteTime) / 1000);
3182                        uint32_t timeoutUs = mSleepTimeUs;
3183                        if (timeoutUs + deltaUs > mBufferDurationUs) {
3184                            if (mBufferDurationUs > deltaUs) {
3185                                timeoutUs = mBufferDurationUs - deltaUs;
3186                                if (timeoutUs < kDirectMinSleepTimeUs) {
3187                                    timeoutUs = kDirectMinSleepTimeUs;
3188                                }
3189                            } else {
3190                                timeoutUs = kDirectMinSleepTimeUs;
3191                            }
3192                        }
3193                        mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)timeoutUs));
3194                    }
3195                } else {
3196                    usleep(mSleepTimeUs);
3197                }
3198                ATRACE_END();
3199            }
3200        }
3201
3202        // Finally let go of removed track(s), without the lock held
3203        // since we can't guarantee the destructors won't acquire that
3204        // same lock.  This will also mutate and push a new fast mixer state.
3205        threadLoop_removeTracks(tracksToRemove);
3206        tracksToRemove.clear();
3207
3208        // FIXME I don't understand the need for this here;
3209        //       it was in the original code but maybe the
3210        //       assignment in saveOutputTracks() makes this unnecessary?
3211        clearOutputTracks();
3212
3213        // Effect chains will be actually deleted here if they were removed from
3214        // mEffectChains list during mixing or effects processing
3215        effectChains.clear();
3216
3217        // FIXME Note that the above .clear() is no longer necessary since effectChains
3218        // is now local to this block, but will keep it for now (at least until merge done).
3219    }
3220
3221    threadLoop_exit();
3222
3223    if (!mStandby) {
3224        threadLoop_standby();
3225        mStandby = true;
3226    }
3227
3228    releaseWakeLock();
3229    mWakeLockUids.clear();
3230    mActiveTracksGeneration++;
3231
3232    ALOGV("Thread %p type %d exiting", this, mType);
3233    return false;
3234}
3235
3236// removeTracks_l() must be called with ThreadBase::mLock held
3237void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3238{
3239    size_t count = tracksToRemove.size();
3240    if (count > 0) {
3241        for (size_t i=0 ; i<count ; i++) {
3242            const sp<Track>& track = tracksToRemove.itemAt(i);
3243            mActiveTracks.remove(track);
3244            mWakeLockUids.remove(track->uid());
3245            mActiveTracksGeneration++;
3246            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3247            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3248            if (chain != 0) {
3249                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3250                        track->sessionId());
3251                chain->decActiveTrackCnt();
3252            }
3253            if (track->isTerminated()) {
3254                removeTrack_l(track);
3255            }
3256        }
3257    }
3258
3259}
3260
3261status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3262{
3263    if (mNormalSink != 0) {
3264        ExtendedTimestamp ets;
3265        status_t status = mNormalSink->getTimestamp(ets);
3266        if (status == NO_ERROR) {
3267            status = ets.getBestTimestamp(&timestamp);
3268        }
3269        return status;
3270    }
3271    if ((mType == OFFLOAD || mType == DIRECT)
3272            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3273        uint64_t position64;
3274        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3275        if (ret == 0) {
3276            timestamp.mPosition = (uint32_t)position64;
3277            return NO_ERROR;
3278        }
3279    }
3280    return INVALID_OPERATION;
3281}
3282
3283status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3284                                                          audio_patch_handle_t *handle)
3285{
3286    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3287    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3288    if (mFastMixer != 0) {
3289        FastMixerStateQueue *sq = mFastMixer->sq();
3290        FastMixerState *state = sq->begin();
3291        if (!(state->mCommand & FastMixerState::IDLE)) {
3292            previousCommand = state->mCommand;
3293            state->mCommand = FastMixerState::HOT_IDLE;
3294            sq->end();
3295            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3296        } else {
3297            sq->end(false /*didModify*/);
3298        }
3299    }
3300    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3301
3302    if (!(previousCommand & FastMixerState::IDLE)) {
3303        ALOG_ASSERT(mFastMixer != 0);
3304        FastMixerStateQueue *sq = mFastMixer->sq();
3305        FastMixerState *state = sq->begin();
3306        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3307        state->mCommand = previousCommand;
3308        sq->end();
3309        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3310    }
3311
3312    return status;
3313}
3314
3315status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3316                                                          audio_patch_handle_t *handle)
3317{
3318    status_t status = NO_ERROR;
3319
3320    // store new device and send to effects
3321    audio_devices_t type = AUDIO_DEVICE_NONE;
3322    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3323        type |= patch->sinks[i].ext.device.type;
3324    }
3325
3326#ifdef ADD_BATTERY_DATA
3327    // when changing the audio output device, call addBatteryData to notify
3328    // the change
3329    if (mOutDevice != type) {
3330        uint32_t params = 0;
3331        // check whether speaker is on
3332        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3333            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3334        }
3335
3336        audio_devices_t deviceWithoutSpeaker
3337            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3338        // check if any other device (except speaker) is on
3339        if (type & deviceWithoutSpeaker) {
3340            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3341        }
3342
3343        if (params != 0) {
3344            addBatteryData(params);
3345        }
3346    }
3347#endif
3348
3349    for (size_t i = 0; i < mEffectChains.size(); i++) {
3350        mEffectChains[i]->setDevice_l(type);
3351    }
3352
3353    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3354    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3355    bool configChanged = mPrevOutDevice != type;
3356    mOutDevice = type;
3357    mPatch = *patch;
3358
3359    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3360        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3361        status = hwDevice->create_audio_patch(hwDevice,
3362                                               patch->num_sources,
3363                                               patch->sources,
3364                                               patch->num_sinks,
3365                                               patch->sinks,
3366                                               handle);
3367    } else {
3368        char *address;
3369        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3370            //FIXME: we only support address on first sink with HAL version < 3.0
3371            address = audio_device_address_to_parameter(
3372                                                        patch->sinks[0].ext.device.type,
3373                                                        patch->sinks[0].ext.device.address);
3374        } else {
3375            address = (char *)calloc(1, 1);
3376        }
3377        AudioParameter param = AudioParameter(String8(address));
3378        free(address);
3379        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3380        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3381                param.toString().string());
3382        *handle = AUDIO_PATCH_HANDLE_NONE;
3383    }
3384    if (configChanged) {
3385        mPrevOutDevice = type;
3386        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3387    }
3388    return status;
3389}
3390
3391status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3392{
3393    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3394    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3395    if (mFastMixer != 0) {
3396        FastMixerStateQueue *sq = mFastMixer->sq();
3397        FastMixerState *state = sq->begin();
3398        if (!(state->mCommand & FastMixerState::IDLE)) {
3399            previousCommand = state->mCommand;
3400            state->mCommand = FastMixerState::HOT_IDLE;
3401            sq->end();
3402            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3403        } else {
3404            sq->end(false /*didModify*/);
3405        }
3406    }
3407
3408    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3409
3410    if (!(previousCommand & FastMixerState::IDLE)) {
3411        ALOG_ASSERT(mFastMixer != 0);
3412        FastMixerStateQueue *sq = mFastMixer->sq();
3413        FastMixerState *state = sq->begin();
3414        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3415        state->mCommand = previousCommand;
3416        sq->end();
3417        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3418    }
3419
3420    return status;
3421}
3422
3423status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3424{
3425    status_t status = NO_ERROR;
3426
3427    mOutDevice = AUDIO_DEVICE_NONE;
3428
3429    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3430        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3431        status = hwDevice->release_audio_patch(hwDevice, handle);
3432    } else {
3433        AudioParameter param;
3434        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3435        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3436                param.toString().string());
3437    }
3438    return status;
3439}
3440
3441void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3442{
3443    Mutex::Autolock _l(mLock);
3444    mTracks.add(track);
3445}
3446
3447void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3448{
3449    Mutex::Autolock _l(mLock);
3450    destroyTrack_l(track);
3451}
3452
3453void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3454{
3455    ThreadBase::getAudioPortConfig(config);
3456    config->role = AUDIO_PORT_ROLE_SOURCE;
3457    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3458    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3459}
3460
3461// ----------------------------------------------------------------------------
3462
3463AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3464        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3465    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3466        // mAudioMixer below
3467        // mFastMixer below
3468        mFastMixerFutex(0),
3469        mMasterMono(false)
3470        // mOutputSink below
3471        // mPipeSink below
3472        // mNormalSink below
3473{
3474    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3475    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3476            "mFrameCount=%zu, mNormalFrameCount=%zu",
3477            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3478            mNormalFrameCount);
3479    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3480
3481    if (type == DUPLICATING) {
3482        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3483        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3484        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3485        return;
3486    }
3487    // create an NBAIO sink for the HAL output stream, and negotiate
3488    mOutputSink = new AudioStreamOutSink(output->stream);
3489    size_t numCounterOffers = 0;
3490    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3491#if !LOG_NDEBUG
3492    ssize_t index =
3493#else
3494    (void)
3495#endif
3496            mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3497    ALOG_ASSERT(index == 0);
3498
3499    // initialize fast mixer depending on configuration
3500    bool initFastMixer;
3501    switch (kUseFastMixer) {
3502    case FastMixer_Never:
3503        initFastMixer = false;
3504        break;
3505    case FastMixer_Always:
3506        initFastMixer = true;
3507        break;
3508    case FastMixer_Static:
3509    case FastMixer_Dynamic:
3510        initFastMixer = mFrameCount < mNormalFrameCount;
3511        break;
3512    }
3513    if (initFastMixer) {
3514        audio_format_t fastMixerFormat;
3515        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3516            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3517        } else {
3518            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3519        }
3520        if (mFormat != fastMixerFormat) {
3521            // change our Sink format to accept our intermediate precision
3522            mFormat = fastMixerFormat;
3523            free(mSinkBuffer);
3524            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3525            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3526            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3527        }
3528
3529        // create a MonoPipe to connect our submix to FastMixer
3530        NBAIO_Format format = mOutputSink->format();
3531#ifdef TEE_SINK
3532        NBAIO_Format origformat = format;
3533#endif
3534        // adjust format to match that of the Fast Mixer
3535        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3536        format.mFormat = fastMixerFormat;
3537        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3538
3539        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3540        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3541        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3542        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3543        const NBAIO_Format offers[1] = {format};
3544        size_t numCounterOffers = 0;
3545#if !LOG_NDEBUG
3546        ssize_t index =
3547#else
3548        (void)
3549#endif
3550                monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3551        ALOG_ASSERT(index == 0);
3552        monoPipe->setAvgFrames((mScreenState & 1) ?
3553                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3554        mPipeSink = monoPipe;
3555
3556#ifdef TEE_SINK
3557        if (mTeeSinkOutputEnabled) {
3558            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3559            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3560            const NBAIO_Format offers2[1] = {origformat};
3561            numCounterOffers = 0;
3562            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3563            ALOG_ASSERT(index == 0);
3564            mTeeSink = teeSink;
3565            PipeReader *teeSource = new PipeReader(*teeSink);
3566            numCounterOffers = 0;
3567            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3568            ALOG_ASSERT(index == 0);
3569            mTeeSource = teeSource;
3570        }
3571#endif
3572
3573        // create fast mixer and configure it initially with just one fast track for our submix
3574        mFastMixer = new FastMixer();
3575        FastMixerStateQueue *sq = mFastMixer->sq();
3576#ifdef STATE_QUEUE_DUMP
3577        sq->setObserverDump(&mStateQueueObserverDump);
3578        sq->setMutatorDump(&mStateQueueMutatorDump);
3579#endif
3580        FastMixerState *state = sq->begin();
3581        FastTrack *fastTrack = &state->mFastTracks[0];
3582        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3583        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3584        fastTrack->mVolumeProvider = NULL;
3585        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3586        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3587        fastTrack->mGeneration++;
3588        state->mFastTracksGen++;
3589        state->mTrackMask = 1;
3590        // fast mixer will use the HAL output sink
3591        state->mOutputSink = mOutputSink.get();
3592        state->mOutputSinkGen++;
3593        state->mFrameCount = mFrameCount;
3594        state->mCommand = FastMixerState::COLD_IDLE;
3595        // already done in constructor initialization list
3596        //mFastMixerFutex = 0;
3597        state->mColdFutexAddr = &mFastMixerFutex;
3598        state->mColdGen++;
3599        state->mDumpState = &mFastMixerDumpState;
3600#ifdef TEE_SINK
3601        state->mTeeSink = mTeeSink.get();
3602#endif
3603        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3604        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3605        sq->end();
3606        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3607
3608        // start the fast mixer
3609        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3610        pid_t tid = mFastMixer->getTid();
3611        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3612
3613#ifdef AUDIO_WATCHDOG
3614        // create and start the watchdog
3615        mAudioWatchdog = new AudioWatchdog();
3616        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3617        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3618        tid = mAudioWatchdog->getTid();
3619        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3620#endif
3621
3622    }
3623
3624    switch (kUseFastMixer) {
3625    case FastMixer_Never:
3626    case FastMixer_Dynamic:
3627        mNormalSink = mOutputSink;
3628        break;
3629    case FastMixer_Always:
3630        mNormalSink = mPipeSink;
3631        break;
3632    case FastMixer_Static:
3633        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3634        break;
3635    }
3636}
3637
3638AudioFlinger::MixerThread::~MixerThread()
3639{
3640    if (mFastMixer != 0) {
3641        FastMixerStateQueue *sq = mFastMixer->sq();
3642        FastMixerState *state = sq->begin();
3643        if (state->mCommand == FastMixerState::COLD_IDLE) {
3644            int32_t old = android_atomic_inc(&mFastMixerFutex);
3645            if (old == -1) {
3646                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3647            }
3648        }
3649        state->mCommand = FastMixerState::EXIT;
3650        sq->end();
3651        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3652        mFastMixer->join();
3653        // Though the fast mixer thread has exited, it's state queue is still valid.
3654        // We'll use that extract the final state which contains one remaining fast track
3655        // corresponding to our sub-mix.
3656        state = sq->begin();
3657        ALOG_ASSERT(state->mTrackMask == 1);
3658        FastTrack *fastTrack = &state->mFastTracks[0];
3659        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3660        delete fastTrack->mBufferProvider;
3661        sq->end(false /*didModify*/);
3662        mFastMixer.clear();
3663#ifdef AUDIO_WATCHDOG
3664        if (mAudioWatchdog != 0) {
3665            mAudioWatchdog->requestExit();
3666            mAudioWatchdog->requestExitAndWait();
3667            mAudioWatchdog.clear();
3668        }
3669#endif
3670    }
3671    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3672    delete mAudioMixer;
3673}
3674
3675
3676uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3677{
3678    if (mFastMixer != 0) {
3679        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3680        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3681    }
3682    return latency;
3683}
3684
3685
3686void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3687{
3688    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3689}
3690
3691ssize_t AudioFlinger::MixerThread::threadLoop_write()
3692{
3693    // FIXME we should only do one push per cycle; confirm this is true
3694    // Start the fast mixer if it's not already running
3695    if (mFastMixer != 0) {
3696        FastMixerStateQueue *sq = mFastMixer->sq();
3697        FastMixerState *state = sq->begin();
3698        if (state->mCommand != FastMixerState::MIX_WRITE &&
3699                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3700            if (state->mCommand == FastMixerState::COLD_IDLE) {
3701
3702                // FIXME workaround for first HAL write being CPU bound on some devices
3703                ATRACE_BEGIN("write");
3704                mOutput->write((char *)mSinkBuffer, 0);
3705                ATRACE_END();
3706
3707                int32_t old = android_atomic_inc(&mFastMixerFutex);
3708                if (old == -1) {
3709                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3710                }
3711#ifdef AUDIO_WATCHDOG
3712                if (mAudioWatchdog != 0) {
3713                    mAudioWatchdog->resume();
3714                }
3715#endif
3716            }
3717            state->mCommand = FastMixerState::MIX_WRITE;
3718#ifdef FAST_THREAD_STATISTICS
3719            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3720                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3721#endif
3722            sq->end();
3723            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3724            if (kUseFastMixer == FastMixer_Dynamic) {
3725                mNormalSink = mPipeSink;
3726            }
3727        } else {
3728            sq->end(false /*didModify*/);
3729        }
3730    }
3731    return PlaybackThread::threadLoop_write();
3732}
3733
3734void AudioFlinger::MixerThread::threadLoop_standby()
3735{
3736    // Idle the fast mixer if it's currently running
3737    if (mFastMixer != 0) {
3738        FastMixerStateQueue *sq = mFastMixer->sq();
3739        FastMixerState *state = sq->begin();
3740        if (!(state->mCommand & FastMixerState::IDLE)) {
3741            state->mCommand = FastMixerState::COLD_IDLE;
3742            state->mColdFutexAddr = &mFastMixerFutex;
3743            state->mColdGen++;
3744            mFastMixerFutex = 0;
3745            sq->end();
3746            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3747            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3748            if (kUseFastMixer == FastMixer_Dynamic) {
3749                mNormalSink = mOutputSink;
3750            }
3751#ifdef AUDIO_WATCHDOG
3752            if (mAudioWatchdog != 0) {
3753                mAudioWatchdog->pause();
3754            }
3755#endif
3756        } else {
3757            sq->end(false /*didModify*/);
3758        }
3759    }
3760    PlaybackThread::threadLoop_standby();
3761}
3762
3763bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3764{
3765    return false;
3766}
3767
3768bool AudioFlinger::PlaybackThread::shouldStandby_l()
3769{
3770    return !mStandby;
3771}
3772
3773bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3774{
3775    Mutex::Autolock _l(mLock);
3776    return waitingAsyncCallback_l();
3777}
3778
3779// shared by MIXER and DIRECT, overridden by DUPLICATING
3780void AudioFlinger::PlaybackThread::threadLoop_standby()
3781{
3782    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3783    mOutput->standby();
3784    if (mUseAsyncWrite != 0) {
3785        // discard any pending drain or write ack by incrementing sequence
3786        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3787        mDrainSequence = (mDrainSequence + 2) & ~1;
3788        ALOG_ASSERT(mCallbackThread != 0);
3789        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3790        mCallbackThread->setDraining(mDrainSequence);
3791    }
3792    mHwPaused = false;
3793}
3794
3795void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3796{
3797    ALOGV("signal playback thread");
3798    broadcast_l();
3799}
3800
3801void AudioFlinger::MixerThread::threadLoop_mix()
3802{
3803    // mix buffers...
3804    mAudioMixer->process();
3805    mCurrentWriteLength = mSinkBufferSize;
3806    // increase sleep time progressively when application underrun condition clears.
3807    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3808    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3809    // such that we would underrun the audio HAL.
3810    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3811        sleepTimeShift--;
3812    }
3813    mSleepTimeUs = 0;
3814    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3815    //TODO: delay standby when effects have a tail
3816
3817}
3818
3819void AudioFlinger::MixerThread::threadLoop_sleepTime()
3820{
3821    // If no tracks are ready, sleep once for the duration of an output
3822    // buffer size, then write 0s to the output
3823    if (mSleepTimeUs == 0) {
3824        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3825            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3826            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3827                mSleepTimeUs = kMinThreadSleepTimeUs;
3828            }
3829            // reduce sleep time in case of consecutive application underruns to avoid
3830            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3831            // duration we would end up writing less data than needed by the audio HAL if
3832            // the condition persists.
3833            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3834                sleepTimeShift++;
3835            }
3836        } else {
3837            mSleepTimeUs = mIdleSleepTimeUs;
3838        }
3839    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3840        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3841        // before effects processing or output.
3842        if (mMixerBufferValid) {
3843            memset(mMixerBuffer, 0, mMixerBufferSize);
3844        } else {
3845            memset(mSinkBuffer, 0, mSinkBufferSize);
3846        }
3847        mSleepTimeUs = 0;
3848        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3849                "anticipated start");
3850    }
3851    // TODO add standby time extension fct of effect tail
3852}
3853
3854// prepareTracks_l() must be called with ThreadBase::mLock held
3855AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3856        Vector< sp<Track> > *tracksToRemove)
3857{
3858
3859    mixer_state mixerStatus = MIXER_IDLE;
3860    // find out which tracks need to be processed
3861    size_t count = mActiveTracks.size();
3862    size_t mixedTracks = 0;
3863    size_t tracksWithEffect = 0;
3864    // counts only _active_ fast tracks
3865    size_t fastTracks = 0;
3866    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3867
3868    float masterVolume = mMasterVolume;
3869    bool masterMute = mMasterMute;
3870
3871    if (masterMute) {
3872        masterVolume = 0;
3873    }
3874    // Delegate master volume control to effect in output mix effect chain if needed
3875    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3876    if (chain != 0) {
3877        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3878        chain->setVolume_l(&v, &v);
3879        masterVolume = (float)((v + (1 << 23)) >> 24);
3880        chain.clear();
3881    }
3882
3883    // prepare a new state to push
3884    FastMixerStateQueue *sq = NULL;
3885    FastMixerState *state = NULL;
3886    bool didModify = false;
3887    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3888    if (mFastMixer != 0) {
3889        sq = mFastMixer->sq();
3890        state = sq->begin();
3891    }
3892
3893    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3894    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3895
3896    for (size_t i=0 ; i<count ; i++) {
3897        const sp<Track> t = mActiveTracks[i].promote();
3898        if (t == 0) {
3899            continue;
3900        }
3901
3902        // this const just means the local variable doesn't change
3903        Track* const track = t.get();
3904
3905        // process fast tracks
3906        if (track->isFastTrack()) {
3907
3908            // It's theoretically possible (though unlikely) for a fast track to be created
3909            // and then removed within the same normal mix cycle.  This is not a problem, as
3910            // the track never becomes active so it's fast mixer slot is never touched.
3911            // The converse, of removing an (active) track and then creating a new track
3912            // at the identical fast mixer slot within the same normal mix cycle,
3913            // is impossible because the slot isn't marked available until the end of each cycle.
3914            int j = track->mFastIndex;
3915            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3916            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3917            FastTrack *fastTrack = &state->mFastTracks[j];
3918
3919            // Determine whether the track is currently in underrun condition,
3920            // and whether it had a recent underrun.
3921            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3922            FastTrackUnderruns underruns = ftDump->mUnderruns;
3923            uint32_t recentFull = (underruns.mBitFields.mFull -
3924                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3925            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3926                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3927            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3928                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3929            uint32_t recentUnderruns = recentPartial + recentEmpty;
3930            track->mObservedUnderruns = underruns;
3931            // don't count underruns that occur while stopping or pausing
3932            // or stopped which can occur when flush() is called while active
3933            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3934                    recentUnderruns > 0) {
3935                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3936                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3937            } else {
3938                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
3939            }
3940
3941            // This is similar to the state machine for normal tracks,
3942            // with a few modifications for fast tracks.
3943            bool isActive = true;
3944            switch (track->mState) {
3945            case TrackBase::STOPPING_1:
3946                // track stays active in STOPPING_1 state until first underrun
3947                if (recentUnderruns > 0 || track->isTerminated()) {
3948                    track->mState = TrackBase::STOPPING_2;
3949                }
3950                break;
3951            case TrackBase::PAUSING:
3952                // ramp down is not yet implemented
3953                track->setPaused();
3954                break;
3955            case TrackBase::RESUMING:
3956                // ramp up is not yet implemented
3957                track->mState = TrackBase::ACTIVE;
3958                break;
3959            case TrackBase::ACTIVE:
3960                if (recentFull > 0 || recentPartial > 0) {
3961                    // track has provided at least some frames recently: reset retry count
3962                    track->mRetryCount = kMaxTrackRetries;
3963                }
3964                if (recentUnderruns == 0) {
3965                    // no recent underruns: stay active
3966                    break;
3967                }
3968                // there has recently been an underrun of some kind
3969                if (track->sharedBuffer() == 0) {
3970                    // were any of the recent underruns "empty" (no frames available)?
3971                    if (recentEmpty == 0) {
3972                        // no, then ignore the partial underruns as they are allowed indefinitely
3973                        break;
3974                    }
3975                    // there has recently been an "empty" underrun: decrement the retry counter
3976                    if (--(track->mRetryCount) > 0) {
3977                        break;
3978                    }
3979                    // indicate to client process that the track was disabled because of underrun;
3980                    // it will then automatically call start() when data is available
3981                    track->disable();
3982                    // remove from active list, but state remains ACTIVE [confusing but true]
3983                    isActive = false;
3984                    break;
3985                }
3986                // fall through
3987            case TrackBase::STOPPING_2:
3988            case TrackBase::PAUSED:
3989            case TrackBase::STOPPED:
3990            case TrackBase::FLUSHED:   // flush() while active
3991                // Check for presentation complete if track is inactive
3992                // We have consumed all the buffers of this track.
3993                // This would be incomplete if we auto-paused on underrun
3994                {
3995                    size_t audioHALFrames =
3996                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3997                    int64_t framesWritten = mBytesWritten / mFrameSize;
3998                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3999                        // track stays in active list until presentation is complete
4000                        break;
4001                    }
4002                }
4003                if (track->isStopping_2()) {
4004                    track->mState = TrackBase::STOPPED;
4005                }
4006                if (track->isStopped()) {
4007                    // Can't reset directly, as fast mixer is still polling this track
4008                    //   track->reset();
4009                    // So instead mark this track as needing to be reset after push with ack
4010                    resetMask |= 1 << i;
4011                }
4012                isActive = false;
4013                break;
4014            case TrackBase::IDLE:
4015            default:
4016                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4017            }
4018
4019            if (isActive) {
4020                // was it previously inactive?
4021                if (!(state->mTrackMask & (1 << j))) {
4022                    ExtendedAudioBufferProvider *eabp = track;
4023                    VolumeProvider *vp = track;
4024                    fastTrack->mBufferProvider = eabp;
4025                    fastTrack->mVolumeProvider = vp;
4026                    fastTrack->mChannelMask = track->mChannelMask;
4027                    fastTrack->mFormat = track->mFormat;
4028                    fastTrack->mGeneration++;
4029                    state->mTrackMask |= 1 << j;
4030                    didModify = true;
4031                    // no acknowledgement required for newly active tracks
4032                }
4033                // cache the combined master volume and stream type volume for fast mixer; this
4034                // lacks any synchronization or barrier so VolumeProvider may read a stale value
4035                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
4036                ++fastTracks;
4037            } else {
4038                // was it previously active?
4039                if (state->mTrackMask & (1 << j)) {
4040                    fastTrack->mBufferProvider = NULL;
4041                    fastTrack->mGeneration++;
4042                    state->mTrackMask &= ~(1 << j);
4043                    didModify = true;
4044                    // If any fast tracks were removed, we must wait for acknowledgement
4045                    // because we're about to decrement the last sp<> on those tracks.
4046                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4047                } else {
4048                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
4049                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4050                            j, track->mState, state->mTrackMask, recentUnderruns,
4051                            track->sharedBuffer() != 0);
4052                }
4053                tracksToRemove->add(track);
4054                // Avoids a misleading display in dumpsys
4055                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4056            }
4057            continue;
4058        }
4059
4060        {   // local variable scope to avoid goto warning
4061
4062        audio_track_cblk_t* cblk = track->cblk();
4063
4064        // The first time a track is added we wait
4065        // for all its buffers to be filled before processing it
4066        int name = track->name();
4067        // make sure that we have enough frames to mix one full buffer.
4068        // enforce this condition only once to enable draining the buffer in case the client
4069        // app does not call stop() and relies on underrun to stop:
4070        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4071        // during last round
4072        size_t desiredFrames;
4073        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4074        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4075
4076        desiredFrames = sourceFramesNeededWithTimestretch(
4077                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4078        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4079        // add frames already consumed but not yet released by the resampler
4080        // because mAudioTrackServerProxy->framesReady() will include these frames
4081        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4082
4083        uint32_t minFrames = 1;
4084        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4085                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4086            minFrames = desiredFrames;
4087        }
4088
4089        size_t framesReady = track->framesReady();
4090        if (ATRACE_ENABLED()) {
4091            // I wish we had formatted trace names
4092            char traceName[16];
4093            strcpy(traceName, "nRdy");
4094            int name = track->name();
4095            if (AudioMixer::TRACK0 <= name &&
4096                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4097                name -= AudioMixer::TRACK0;
4098                traceName[4] = (name / 10) + '0';
4099                traceName[5] = (name % 10) + '0';
4100            } else {
4101                traceName[4] = '?';
4102                traceName[5] = '?';
4103            }
4104            traceName[6] = '\0';
4105            ATRACE_INT(traceName, framesReady);
4106        }
4107        if ((framesReady >= minFrames) && track->isReady() &&
4108                !track->isPaused() && !track->isTerminated())
4109        {
4110            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4111
4112            mixedTracks++;
4113
4114            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4115            // there is an effect chain connected to the track
4116            chain.clear();
4117            if (track->mainBuffer() != mSinkBuffer &&
4118                    track->mainBuffer() != mMixerBuffer) {
4119                if (mEffectBufferEnabled) {
4120                    mEffectBufferValid = true; // Later can set directly.
4121                }
4122                chain = getEffectChain_l(track->sessionId());
4123                // Delegate volume control to effect in track effect chain if needed
4124                if (chain != 0) {
4125                    tracksWithEffect++;
4126                } else {
4127                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4128                            "session %d",
4129                            name, track->sessionId());
4130                }
4131            }
4132
4133
4134            int param = AudioMixer::VOLUME;
4135            if (track->mFillingUpStatus == Track::FS_FILLED) {
4136                // no ramp for the first volume setting
4137                track->mFillingUpStatus = Track::FS_ACTIVE;
4138                if (track->mState == TrackBase::RESUMING) {
4139                    track->mState = TrackBase::ACTIVE;
4140                    param = AudioMixer::RAMP_VOLUME;
4141                }
4142                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4143            // FIXME should not make a decision based on mServer
4144            } else if (cblk->mServer != 0) {
4145                // If the track is stopped before the first frame was mixed,
4146                // do not apply ramp
4147                param = AudioMixer::RAMP_VOLUME;
4148            }
4149
4150            // compute volume for this track
4151            uint32_t vl, vr;       // in U8.24 integer format
4152            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4153            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4154                vl = vr = 0;
4155                vlf = vrf = vaf = 0.;
4156                if (track->isPausing()) {
4157                    track->setPaused();
4158                }
4159            } else {
4160
4161                // read original volumes with volume control
4162                float typeVolume = mStreamTypes[track->streamType()].volume;
4163                float v = masterVolume * typeVolume;
4164                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4165                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4166                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4167                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4168                // track volumes come from shared memory, so can't be trusted and must be clamped
4169                if (vlf > GAIN_FLOAT_UNITY) {
4170                    ALOGV("Track left volume out of range: %.3g", vlf);
4171                    vlf = GAIN_FLOAT_UNITY;
4172                }
4173                if (vrf > GAIN_FLOAT_UNITY) {
4174                    ALOGV("Track right volume out of range: %.3g", vrf);
4175                    vrf = GAIN_FLOAT_UNITY;
4176                }
4177                // now apply the master volume and stream type volume
4178                vlf *= v;
4179                vrf *= v;
4180                // assuming master volume and stream type volume each go up to 1.0,
4181                // then derive vl and vr as U8.24 versions for the effect chain
4182                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4183                vl = (uint32_t) (scaleto8_24 * vlf);
4184                vr = (uint32_t) (scaleto8_24 * vrf);
4185                // vl and vr are now in U8.24 format
4186                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4187                // send level comes from shared memory and so may be corrupt
4188                if (sendLevel > MAX_GAIN_INT) {
4189                    ALOGV("Track send level out of range: %04X", sendLevel);
4190                    sendLevel = MAX_GAIN_INT;
4191                }
4192                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4193                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4194            }
4195
4196            // Delegate volume control to effect in track effect chain if needed
4197            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4198                // Do not ramp volume if volume is controlled by effect
4199                param = AudioMixer::VOLUME;
4200                // Update remaining floating point volume levels
4201                vlf = (float)vl / (1 << 24);
4202                vrf = (float)vr / (1 << 24);
4203                track->mHasVolumeController = true;
4204            } else {
4205                // force no volume ramp when volume controller was just disabled or removed
4206                // from effect chain to avoid volume spike
4207                if (track->mHasVolumeController) {
4208                    param = AudioMixer::VOLUME;
4209                }
4210                track->mHasVolumeController = false;
4211            }
4212
4213            // XXX: these things DON'T need to be done each time
4214            mAudioMixer->setBufferProvider(name, track);
4215            mAudioMixer->enable(name);
4216
4217            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4218            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4219            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4220            mAudioMixer->setParameter(
4221                name,
4222                AudioMixer::TRACK,
4223                AudioMixer::FORMAT, (void *)track->format());
4224            mAudioMixer->setParameter(
4225                name,
4226                AudioMixer::TRACK,
4227                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4228            mAudioMixer->setParameter(
4229                name,
4230                AudioMixer::TRACK,
4231                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4232            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4233            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4234            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4235            if (reqSampleRate == 0) {
4236                reqSampleRate = mSampleRate;
4237            } else if (reqSampleRate > maxSampleRate) {
4238                reqSampleRate = maxSampleRate;
4239            }
4240            mAudioMixer->setParameter(
4241                name,
4242                AudioMixer::RESAMPLE,
4243                AudioMixer::SAMPLE_RATE,
4244                (void *)(uintptr_t)reqSampleRate);
4245
4246            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4247            mAudioMixer->setParameter(
4248                name,
4249                AudioMixer::TIMESTRETCH,
4250                AudioMixer::PLAYBACK_RATE,
4251                &playbackRate);
4252
4253            /*
4254             * Select the appropriate output buffer for the track.
4255             *
4256             * Tracks with effects go into their own effects chain buffer
4257             * and from there into either mEffectBuffer or mSinkBuffer.
4258             *
4259             * Other tracks can use mMixerBuffer for higher precision
4260             * channel accumulation.  If this buffer is enabled
4261             * (mMixerBufferEnabled true), then selected tracks will accumulate
4262             * into it.
4263             *
4264             */
4265            if (mMixerBufferEnabled
4266                    && (track->mainBuffer() == mSinkBuffer
4267                            || track->mainBuffer() == mMixerBuffer)) {
4268                mAudioMixer->setParameter(
4269                        name,
4270                        AudioMixer::TRACK,
4271                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4272                mAudioMixer->setParameter(
4273                        name,
4274                        AudioMixer::TRACK,
4275                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4276                // TODO: override track->mainBuffer()?
4277                mMixerBufferValid = true;
4278            } else {
4279                mAudioMixer->setParameter(
4280                        name,
4281                        AudioMixer::TRACK,
4282                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4283                mAudioMixer->setParameter(
4284                        name,
4285                        AudioMixer::TRACK,
4286                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4287            }
4288            mAudioMixer->setParameter(
4289                name,
4290                AudioMixer::TRACK,
4291                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4292
4293            // reset retry count
4294            track->mRetryCount = kMaxTrackRetries;
4295
4296            // If one track is ready, set the mixer ready if:
4297            //  - the mixer was not ready during previous round OR
4298            //  - no other track is not ready
4299            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4300                    mixerStatus != MIXER_TRACKS_ENABLED) {
4301                mixerStatus = MIXER_TRACKS_READY;
4302            }
4303        } else {
4304            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4305                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4306                        track, framesReady, desiredFrames);
4307                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4308            } else {
4309                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4310            }
4311
4312            // clear effect chain input buffer if an active track underruns to avoid sending
4313            // previous audio buffer again to effects
4314            chain = getEffectChain_l(track->sessionId());
4315            if (chain != 0) {
4316                chain->clearInputBuffer();
4317            }
4318
4319            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4320            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4321                    track->isStopped() || track->isPaused()) {
4322                // We have consumed all the buffers of this track.
4323                // Remove it from the list of active tracks.
4324                // TODO: use actual buffer filling status instead of latency when available from
4325                // audio HAL
4326                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4327                int64_t framesWritten = mBytesWritten / mFrameSize;
4328                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4329                    if (track->isStopped()) {
4330                        track->reset();
4331                    }
4332                    tracksToRemove->add(track);
4333                }
4334            } else {
4335                // No buffers for this track. Give it a few chances to
4336                // fill a buffer, then remove it from active list.
4337                if (--(track->mRetryCount) <= 0) {
4338                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4339                    tracksToRemove->add(track);
4340                    // indicate to client process that the track was disabled because of underrun;
4341                    // it will then automatically call start() when data is available
4342                    track->disable();
4343                // If one track is not ready, mark the mixer also not ready if:
4344                //  - the mixer was ready during previous round OR
4345                //  - no other track is ready
4346                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4347                                mixerStatus != MIXER_TRACKS_READY) {
4348                    mixerStatus = MIXER_TRACKS_ENABLED;
4349                }
4350            }
4351            mAudioMixer->disable(name);
4352        }
4353
4354        }   // local variable scope to avoid goto warning
4355
4356    }
4357
4358    // Push the new FastMixer state if necessary
4359    bool pauseAudioWatchdog = false;
4360    if (didModify) {
4361        state->mFastTracksGen++;
4362        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4363        if (kUseFastMixer == FastMixer_Dynamic &&
4364                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4365            state->mCommand = FastMixerState::COLD_IDLE;
4366            state->mColdFutexAddr = &mFastMixerFutex;
4367            state->mColdGen++;
4368            mFastMixerFutex = 0;
4369            if (kUseFastMixer == FastMixer_Dynamic) {
4370                mNormalSink = mOutputSink;
4371            }
4372            // If we go into cold idle, need to wait for acknowledgement
4373            // so that fast mixer stops doing I/O.
4374            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4375            pauseAudioWatchdog = true;
4376        }
4377    }
4378    if (sq != NULL) {
4379        sq->end(didModify);
4380        sq->push(block);
4381    }
4382#ifdef AUDIO_WATCHDOG
4383    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4384        mAudioWatchdog->pause();
4385    }
4386#endif
4387
4388    // Now perform the deferred reset on fast tracks that have stopped
4389    while (resetMask != 0) {
4390        size_t i = __builtin_ctz(resetMask);
4391        ALOG_ASSERT(i < count);
4392        resetMask &= ~(1 << i);
4393        sp<Track> t = mActiveTracks[i].promote();
4394        if (t == 0) {
4395            continue;
4396        }
4397        Track* track = t.get();
4398        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4399        track->reset();
4400    }
4401
4402    // remove all the tracks that need to be...
4403    removeTracks_l(*tracksToRemove);
4404
4405    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4406        mEffectBufferValid = true;
4407    }
4408
4409    if (mEffectBufferValid) {
4410        // as long as there are effects we should clear the effects buffer, to avoid
4411        // passing a non-clean buffer to the effect chain
4412        memset(mEffectBuffer, 0, mEffectBufferSize);
4413    }
4414    // sink or mix buffer must be cleared if all tracks are connected to an
4415    // effect chain as in this case the mixer will not write to the sink or mix buffer
4416    // and track effects will accumulate into it
4417    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4418            (mixedTracks == 0 && fastTracks > 0))) {
4419        // FIXME as a performance optimization, should remember previous zero status
4420        if (mMixerBufferValid) {
4421            memset(mMixerBuffer, 0, mMixerBufferSize);
4422            // TODO: In testing, mSinkBuffer below need not be cleared because
4423            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4424            // after mixing.
4425            //
4426            // To enforce this guarantee:
4427            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4428            // (mixedTracks == 0 && fastTracks > 0))
4429            // must imply MIXER_TRACKS_READY.
4430            // Later, we may clear buffers regardless, and skip much of this logic.
4431        }
4432        // FIXME as a performance optimization, should remember previous zero status
4433        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4434    }
4435
4436    // if any fast tracks, then status is ready
4437    mMixerStatusIgnoringFastTracks = mixerStatus;
4438    if (fastTracks > 0) {
4439        mixerStatus = MIXER_TRACKS_READY;
4440    }
4441    return mixerStatus;
4442}
4443
4444// getTrackName_l() must be called with ThreadBase::mLock held
4445int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4446        audio_format_t format, audio_session_t sessionId)
4447{
4448    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4449}
4450
4451// deleteTrackName_l() must be called with ThreadBase::mLock held
4452void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4453{
4454    ALOGV("remove track (%d) and delete from mixer", name);
4455    mAudioMixer->deleteTrackName(name);
4456}
4457
4458// checkForNewParameter_l() must be called with ThreadBase::mLock held
4459bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4460                                                       status_t& status)
4461{
4462    bool reconfig = false;
4463    bool a2dpDeviceChanged = false;
4464
4465    status = NO_ERROR;
4466
4467    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
4468    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
4469    if (mFastMixer != 0) {
4470        FastMixerStateQueue *sq = mFastMixer->sq();
4471        FastMixerState *state = sq->begin();
4472        if (!(state->mCommand & FastMixerState::IDLE)) {
4473            previousCommand = state->mCommand;
4474            state->mCommand = FastMixerState::HOT_IDLE;
4475            sq->end();
4476            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4477        } else {
4478            sq->end(false /*didModify*/);
4479        }
4480    }
4481
4482    AudioParameter param = AudioParameter(keyValuePair);
4483    int value;
4484    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4485        reconfig = true;
4486    }
4487    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4488        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4489            status = BAD_VALUE;
4490        } else {
4491            // no need to save value, since it's constant
4492            reconfig = true;
4493        }
4494    }
4495    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4496        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4497            status = BAD_VALUE;
4498        } else {
4499            // no need to save value, since it's constant
4500            reconfig = true;
4501        }
4502    }
4503    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4504        // do not accept frame count changes if tracks are open as the track buffer
4505        // size depends on frame count and correct behavior would not be guaranteed
4506        // if frame count is changed after track creation
4507        if (!mTracks.isEmpty()) {
4508            status = INVALID_OPERATION;
4509        } else {
4510            reconfig = true;
4511        }
4512    }
4513    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4514#ifdef ADD_BATTERY_DATA
4515        // when changing the audio output device, call addBatteryData to notify
4516        // the change
4517        if (mOutDevice != value) {
4518            uint32_t params = 0;
4519            // check whether speaker is on
4520            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4521                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4522            }
4523
4524            audio_devices_t deviceWithoutSpeaker
4525                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4526            // check if any other device (except speaker) is on
4527            if (value & deviceWithoutSpeaker) {
4528                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4529            }
4530
4531            if (params != 0) {
4532                addBatteryData(params);
4533            }
4534        }
4535#endif
4536
4537        // forward device change to effects that have requested to be
4538        // aware of attached audio device.
4539        if (value != AUDIO_DEVICE_NONE) {
4540            a2dpDeviceChanged =
4541                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4542            mOutDevice = value;
4543            for (size_t i = 0; i < mEffectChains.size(); i++) {
4544                mEffectChains[i]->setDevice_l(mOutDevice);
4545            }
4546        }
4547    }
4548
4549    if (status == NO_ERROR) {
4550        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4551                                                keyValuePair.string());
4552        if (!mStandby && status == INVALID_OPERATION) {
4553            mOutput->standby();
4554            mStandby = true;
4555            mBytesWritten = 0;
4556            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4557                                                   keyValuePair.string());
4558        }
4559        if (status == NO_ERROR && reconfig) {
4560            readOutputParameters_l();
4561            delete mAudioMixer;
4562            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4563            for (size_t i = 0; i < mTracks.size() ; i++) {
4564                int name = getTrackName_l(mTracks[i]->mChannelMask,
4565                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4566                if (name < 0) {
4567                    break;
4568                }
4569                mTracks[i]->mName = name;
4570            }
4571            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4572        }
4573    }
4574
4575    if (!(previousCommand & FastMixerState::IDLE)) {
4576        ALOG_ASSERT(mFastMixer != 0);
4577        FastMixerStateQueue *sq = mFastMixer->sq();
4578        FastMixerState *state = sq->begin();
4579        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4580        state->mCommand = previousCommand;
4581        sq->end();
4582        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4583    }
4584
4585    return reconfig || a2dpDeviceChanged;
4586}
4587
4588
4589void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4590{
4591    PlaybackThread::dumpInternals(fd, args);
4592    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4593    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4594    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4595
4596    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4597    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4598    // This is a large object so we place it on the heap.
4599    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4600    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4601    copy->dump(fd);
4602    delete copy;
4603
4604#ifdef STATE_QUEUE_DUMP
4605    // Similar for state queue
4606    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4607    observerCopy.dump(fd);
4608    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4609    mutatorCopy.dump(fd);
4610#endif
4611
4612#ifdef TEE_SINK
4613    // Write the tee output to a .wav file
4614    dumpTee(fd, mTeeSource, mId);
4615#endif
4616
4617#ifdef AUDIO_WATCHDOG
4618    if (mAudioWatchdog != 0) {
4619        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4620        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4621        wdCopy.dump(fd);
4622    }
4623#endif
4624}
4625
4626uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4627{
4628    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4629}
4630
4631uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4632{
4633    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4634}
4635
4636void AudioFlinger::MixerThread::cacheParameters_l()
4637{
4638    PlaybackThread::cacheParameters_l();
4639
4640    // FIXME: Relaxed timing because of a certain device that can't meet latency
4641    // Should be reduced to 2x after the vendor fixes the driver issue
4642    // increase threshold again due to low power audio mode. The way this warning
4643    // threshold is calculated and its usefulness should be reconsidered anyway.
4644    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4645}
4646
4647// ----------------------------------------------------------------------------
4648
4649AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4650        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady,
4651        uint32_t bitRate)
4652    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady, bitRate)
4653        // mLeftVolFloat, mRightVolFloat
4654{
4655}
4656
4657AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4658        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4659        ThreadBase::type_t type, bool systemReady, uint32_t bitRate)
4660    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady, bitRate)
4661        // mLeftVolFloat, mRightVolFloat
4662{
4663}
4664
4665AudioFlinger::DirectOutputThread::~DirectOutputThread()
4666{
4667}
4668
4669void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4670{
4671    float left, right;
4672
4673    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4674        left = right = 0;
4675    } else {
4676        float typeVolume = mStreamTypes[track->streamType()].volume;
4677        float v = mMasterVolume * typeVolume;
4678        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4679        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4680        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4681        if (left > GAIN_FLOAT_UNITY) {
4682            left = GAIN_FLOAT_UNITY;
4683        }
4684        left *= v;
4685        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4686        if (right > GAIN_FLOAT_UNITY) {
4687            right = GAIN_FLOAT_UNITY;
4688        }
4689        right *= v;
4690    }
4691
4692    if (lastTrack) {
4693        if (left != mLeftVolFloat || right != mRightVolFloat) {
4694            mLeftVolFloat = left;
4695            mRightVolFloat = right;
4696
4697            // Convert volumes from float to 8.24
4698            uint32_t vl = (uint32_t)(left * (1 << 24));
4699            uint32_t vr = (uint32_t)(right * (1 << 24));
4700
4701            // Delegate volume control to effect in track effect chain if needed
4702            // only one effect chain can be present on DirectOutputThread, so if
4703            // there is one, the track is connected to it
4704            if (!mEffectChains.isEmpty()) {
4705                mEffectChains[0]->setVolume_l(&vl, &vr);
4706                left = (float)vl / (1 << 24);
4707                right = (float)vr / (1 << 24);
4708            }
4709            if (mOutput->stream->set_volume) {
4710                mOutput->stream->set_volume(mOutput->stream, left, right);
4711            }
4712        }
4713    }
4714}
4715
4716void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4717{
4718    sp<Track> previousTrack = mPreviousTrack.promote();
4719    sp<Track> latestTrack = mLatestActiveTrack.promote();
4720
4721    if (previousTrack != 0 && latestTrack != 0) {
4722        if (mType == DIRECT) {
4723            if (previousTrack.get() != latestTrack.get()) {
4724                mFlushPending = true;
4725            }
4726        } else /* mType == OFFLOAD */ {
4727            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4728                mFlushPending = true;
4729            }
4730        }
4731    }
4732    PlaybackThread::onAddNewTrack_l();
4733}
4734
4735AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4736    Vector< sp<Track> > *tracksToRemove
4737)
4738{
4739    size_t count = mActiveTracks.size();
4740    mixer_state mixerStatus = MIXER_IDLE;
4741    bool doHwPause = false;
4742    bool doHwResume = false;
4743
4744    // find out which tracks need to be processed
4745    for (size_t i = 0; i < count; i++) {
4746        sp<Track> t = mActiveTracks[i].promote();
4747        // The track died recently
4748        if (t == 0) {
4749            continue;
4750        }
4751
4752        if (t->isInvalid()) {
4753            ALOGW("An invalidated track shouldn't be in active list");
4754            tracksToRemove->add(t);
4755            continue;
4756        }
4757
4758        Track* const track = t.get();
4759#ifdef VERY_VERY_VERBOSE_LOGGING
4760        audio_track_cblk_t* cblk = track->cblk();
4761#endif
4762        // Only consider last track started for volume and mixer state control.
4763        // In theory an older track could underrun and restart after the new one starts
4764        // but as we only care about the transition phase between two tracks on a
4765        // direct output, it is not a problem to ignore the underrun case.
4766        sp<Track> l = mLatestActiveTrack.promote();
4767        bool last = l.get() == track;
4768
4769        if (track->isPausing()) {
4770            track->setPaused();
4771            if (mHwSupportsPause && last && !mHwPaused) {
4772                doHwPause = true;
4773                mHwPaused = true;
4774            }
4775            tracksToRemove->add(track);
4776        } else if (track->isFlushPending()) {
4777            track->flushAck();
4778            if (last) {
4779                mFlushPending = true;
4780            }
4781        } else if (track->isResumePending()) {
4782            track->resumeAck();
4783            if (last && mHwPaused) {
4784                doHwResume = true;
4785                mHwPaused = false;
4786            }
4787        }
4788
4789        // The first time a track is added we wait
4790        // for all its buffers to be filled before processing it.
4791        // Allow draining the buffer in case the client
4792        // app does not call stop() and relies on underrun to stop:
4793        // hence the test on (track->mRetryCount > 1).
4794        // If retryCount<=1 then track is about to underrun and be removed.
4795        // Do not use a high threshold for compressed audio.
4796        uint32_t minFrames;
4797        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4798            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4799            minFrames = mNormalFrameCount;
4800        } else {
4801            minFrames = 1;
4802        }
4803
4804        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4805                !track->isStopping_2() && !track->isStopped())
4806        {
4807            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4808
4809            if (track->mFillingUpStatus == Track::FS_FILLED) {
4810                track->mFillingUpStatus = Track::FS_ACTIVE;
4811                // make sure processVolume_l() will apply new volume even if 0
4812                mLeftVolFloat = mRightVolFloat = -1.0;
4813                if (!mHwSupportsPause) {
4814                    track->resumeAck();
4815                }
4816            }
4817
4818            // compute volume for this track
4819            processVolume_l(track, last);
4820            if (last) {
4821                sp<Track> previousTrack = mPreviousTrack.promote();
4822                if (previousTrack != 0) {
4823                    if (track != previousTrack.get()) {
4824                        // Flush any data still being written from last track
4825                        mBytesRemaining = 0;
4826                        // Invalidate previous track to force a seek when resuming.
4827                        previousTrack->invalidate();
4828                    }
4829                }
4830                mPreviousTrack = track;
4831
4832                // reset retry count
4833                track->mRetryCount = kMaxTrackRetriesDirect;
4834                mActiveTrack = t;
4835                mixerStatus = MIXER_TRACKS_READY;
4836                if (mHwPaused) {
4837                    doHwResume = true;
4838                    mHwPaused = false;
4839                }
4840            }
4841        } else {
4842            // clear effect chain input buffer if the last active track started underruns
4843            // to avoid sending previous audio buffer again to effects
4844            if (!mEffectChains.isEmpty() && last) {
4845                mEffectChains[0]->clearInputBuffer();
4846            }
4847            if (track->isStopping_1()) {
4848                track->mState = TrackBase::STOPPING_2;
4849                if (last && mHwPaused) {
4850                     doHwResume = true;
4851                     mHwPaused = false;
4852                 }
4853            }
4854            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4855                    track->isStopping_2() || track->isPaused()) {
4856                // We have consumed all the buffers of this track.
4857                // Remove it from the list of active tracks.
4858                size_t audioHALFrames;
4859                if (audio_has_proportional_frames(mFormat)) {
4860                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4861                } else {
4862                    audioHALFrames = 0;
4863                }
4864
4865                int64_t framesWritten = mBytesWritten / mFrameSize;
4866                if (mStandby || !last ||
4867                        track->presentationComplete(framesWritten, audioHALFrames)) {
4868                    if (track->isStopping_2()) {
4869                        track->mState = TrackBase::STOPPED;
4870                    }
4871                    if (track->isStopped()) {
4872                        track->reset();
4873                    }
4874                    tracksToRemove->add(track);
4875                }
4876            } else {
4877                // No buffers for this track. Give it a few chances to
4878                // fill a buffer, then remove it from active list.
4879                // Only consider last track started for mixer state control
4880                if (--(track->mRetryCount) <= 0) {
4881                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4882                    tracksToRemove->add(track);
4883                    // indicate to client process that the track was disabled because of underrun;
4884                    // it will then automatically call start() when data is available
4885                    track->disable();
4886                } else if (last) {
4887                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4888                            "minFrames = %u, mFormat = %#x",
4889                            track->framesReady(), minFrames, mFormat);
4890                    mixerStatus = MIXER_TRACKS_ENABLED;
4891                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4892                        doHwPause = true;
4893                        mHwPaused = true;
4894                    }
4895                }
4896            }
4897        }
4898    }
4899
4900    // if an active track did not command a flush, check for pending flush on stopped tracks
4901    if (!mFlushPending) {
4902        for (size_t i = 0; i < mTracks.size(); i++) {
4903            if (mTracks[i]->isFlushPending()) {
4904                mTracks[i]->flushAck();
4905                mFlushPending = true;
4906            }
4907        }
4908    }
4909
4910    // make sure the pause/flush/resume sequence is executed in the right order.
4911    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4912    // before flush and then resume HW. This can happen in case of pause/flush/resume
4913    // if resume is received before pause is executed.
4914    if (mHwSupportsPause && !mStandby &&
4915            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4916        mOutput->stream->pause(mOutput->stream);
4917    }
4918    if (mFlushPending) {
4919        flushHw_l();
4920    }
4921    if (mHwSupportsPause && !mStandby && doHwResume) {
4922        mOutput->stream->resume(mOutput->stream);
4923    }
4924    // remove all the tracks that need to be...
4925    removeTracks_l(*tracksToRemove);
4926
4927    return mixerStatus;
4928}
4929
4930void AudioFlinger::DirectOutputThread::threadLoop_mix()
4931{
4932    size_t frameCount = mFrameCount;
4933    int8_t *curBuf = (int8_t *)mSinkBuffer;
4934    // output audio to hardware
4935    while (frameCount) {
4936        AudioBufferProvider::Buffer buffer;
4937        buffer.frameCount = frameCount;
4938        status_t status = mActiveTrack->getNextBuffer(&buffer);
4939        if (status != NO_ERROR || buffer.raw == NULL) {
4940            // no need to pad with 0 for compressed audio
4941            if (audio_has_proportional_frames(mFormat)) {
4942                memset(curBuf, 0, frameCount * mFrameSize);
4943            }
4944            break;
4945        }
4946        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4947        frameCount -= buffer.frameCount;
4948        curBuf += buffer.frameCount * mFrameSize;
4949        mActiveTrack->releaseBuffer(&buffer);
4950    }
4951    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4952    mSleepTimeUs = 0;
4953    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4954    mActiveTrack.clear();
4955}
4956
4957void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4958{
4959    // do not write to HAL when paused
4960    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4961        mSleepTimeUs = mIdleSleepTimeUs;
4962        return;
4963    }
4964    if (mSleepTimeUs == 0) {
4965        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4966            // For compressed offload, use faster sleep time when underruning until more than an
4967            // entire buffer was written to the audio HAL
4968            if (!audio_has_proportional_frames(mFormat) &&
4969                    (mType == OFFLOAD) && (mBytesWritten < (int64_t) mBufferSize)) {
4970                mSleepTimeUs = kDirectMinSleepTimeUs;
4971            } else {
4972                mSleepTimeUs = mActiveSleepTimeUs;
4973            }
4974        } else {
4975            mSleepTimeUs = mIdleSleepTimeUs;
4976        }
4977    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
4978        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4979        mSleepTimeUs = 0;
4980    }
4981}
4982
4983void AudioFlinger::DirectOutputThread::threadLoop_exit()
4984{
4985    {
4986        Mutex::Autolock _l(mLock);
4987        for (size_t i = 0; i < mTracks.size(); i++) {
4988            if (mTracks[i]->isFlushPending()) {
4989                mTracks[i]->flushAck();
4990                mFlushPending = true;
4991            }
4992        }
4993        if (mFlushPending) {
4994            flushHw_l();
4995        }
4996    }
4997    PlaybackThread::threadLoop_exit();
4998}
4999
5000// must be called with thread mutex locked
5001bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5002{
5003    bool trackPaused = false;
5004    bool trackStopped = false;
5005
5006    if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5007        return !mStandby;
5008    }
5009
5010    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5011    // after a timeout and we will enter standby then.
5012    if (mTracks.size() > 0) {
5013        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5014        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5015                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5016    }
5017
5018    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5019}
5020
5021// getTrackName_l() must be called with ThreadBase::mLock held
5022int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
5023        audio_format_t format __unused, audio_session_t sessionId __unused)
5024{
5025    return 0;
5026}
5027
5028// deleteTrackName_l() must be called with ThreadBase::mLock held
5029void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
5030{
5031}
5032
5033// checkForNewParameter_l() must be called with ThreadBase::mLock held
5034bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5035                                                              status_t& status)
5036{
5037    bool reconfig = false;
5038    bool a2dpDeviceChanged = false;
5039
5040    status = NO_ERROR;
5041
5042    AudioParameter param = AudioParameter(keyValuePair);
5043    int value;
5044    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5045        // forward device change to effects that have requested to be
5046        // aware of attached audio device.
5047        if (value != AUDIO_DEVICE_NONE) {
5048            a2dpDeviceChanged =
5049                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5050            mOutDevice = value;
5051            for (size_t i = 0; i < mEffectChains.size(); i++) {
5052                mEffectChains[i]->setDevice_l(mOutDevice);
5053            }
5054        }
5055    }
5056    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5057        // do not accept frame count changes if tracks are open as the track buffer
5058        // size depends on frame count and correct behavior would not be garantied
5059        // if frame count is changed after track creation
5060        if (!mTracks.isEmpty()) {
5061            status = INVALID_OPERATION;
5062        } else {
5063            reconfig = true;
5064        }
5065    }
5066    if (status == NO_ERROR) {
5067        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5068                                                keyValuePair.string());
5069        if (!mStandby && status == INVALID_OPERATION) {
5070            mOutput->standby();
5071            mStandby = true;
5072            mBytesWritten = 0;
5073            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5074                                                   keyValuePair.string());
5075        }
5076        if (status == NO_ERROR && reconfig) {
5077            readOutputParameters_l();
5078            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5079        }
5080    }
5081
5082    return reconfig || a2dpDeviceChanged;
5083}
5084
5085uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5086{
5087    uint32_t time;
5088    if (audio_has_proportional_frames(mFormat)) {
5089        time = PlaybackThread::activeSleepTimeUs();
5090    } else {
5091        time = kDirectMinSleepTimeUs;
5092    }
5093    return time;
5094}
5095
5096uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5097{
5098    uint32_t time;
5099    if (audio_has_proportional_frames(mFormat)) {
5100        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5101    } else {
5102        time = kDirectMinSleepTimeUs;
5103    }
5104    return time;
5105}
5106
5107uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5108{
5109    uint32_t time;
5110    if (audio_has_proportional_frames(mFormat)) {
5111        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5112    } else {
5113        time = kDirectMinSleepTimeUs;
5114    }
5115    return time;
5116}
5117
5118void AudioFlinger::DirectOutputThread::cacheParameters_l()
5119{
5120    PlaybackThread::cacheParameters_l();
5121
5122    // use shorter standby delay as on normal output to release
5123    // hardware resources as soon as possible
5124    // no delay on outputs with HW A/V sync
5125    if (usesHwAvSync()) {
5126        mStandbyDelayNs = 0;
5127    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5128        mStandbyDelayNs = kOffloadStandbyDelayNs;
5129    } else {
5130        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5131    }
5132}
5133
5134void AudioFlinger::DirectOutputThread::flushHw_l()
5135{
5136    mOutput->flush();
5137    mHwPaused = false;
5138    mFlushPending = false;
5139}
5140
5141// ----------------------------------------------------------------------------
5142
5143AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5144        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5145    :   Thread(false /*canCallJava*/),
5146        mPlaybackThread(playbackThread),
5147        mWriteAckSequence(0),
5148        mDrainSequence(0)
5149{
5150}
5151
5152AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5153{
5154}
5155
5156void AudioFlinger::AsyncCallbackThread::onFirstRef()
5157{
5158    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5159}
5160
5161bool AudioFlinger::AsyncCallbackThread::threadLoop()
5162{
5163    while (!exitPending()) {
5164        uint32_t writeAckSequence;
5165        uint32_t drainSequence;
5166
5167        {
5168            Mutex::Autolock _l(mLock);
5169            while (!((mWriteAckSequence & 1) ||
5170                     (mDrainSequence & 1) ||
5171                     exitPending())) {
5172                mWaitWorkCV.wait(mLock);
5173            }
5174
5175            if (exitPending()) {
5176                break;
5177            }
5178            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5179                  mWriteAckSequence, mDrainSequence);
5180            writeAckSequence = mWriteAckSequence;
5181            mWriteAckSequence &= ~1;
5182            drainSequence = mDrainSequence;
5183            mDrainSequence &= ~1;
5184        }
5185        {
5186            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5187            if (playbackThread != 0) {
5188                if (writeAckSequence & 1) {
5189                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5190                }
5191                if (drainSequence & 1) {
5192                    playbackThread->resetDraining(drainSequence >> 1);
5193                }
5194            }
5195        }
5196    }
5197    return false;
5198}
5199
5200void AudioFlinger::AsyncCallbackThread::exit()
5201{
5202    ALOGV("AsyncCallbackThread::exit");
5203    Mutex::Autolock _l(mLock);
5204    requestExit();
5205    mWaitWorkCV.broadcast();
5206}
5207
5208void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5209{
5210    Mutex::Autolock _l(mLock);
5211    // bit 0 is cleared
5212    mWriteAckSequence = sequence << 1;
5213}
5214
5215void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5216{
5217    Mutex::Autolock _l(mLock);
5218    // ignore unexpected callbacks
5219    if (mWriteAckSequence & 2) {
5220        mWriteAckSequence |= 1;
5221        mWaitWorkCV.signal();
5222    }
5223}
5224
5225void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5226{
5227    Mutex::Autolock _l(mLock);
5228    // bit 0 is cleared
5229    mDrainSequence = sequence << 1;
5230}
5231
5232void AudioFlinger::AsyncCallbackThread::resetDraining()
5233{
5234    Mutex::Autolock _l(mLock);
5235    // ignore unexpected callbacks
5236    if (mDrainSequence & 2) {
5237        mDrainSequence |= 1;
5238        mWaitWorkCV.signal();
5239    }
5240}
5241
5242
5243// ----------------------------------------------------------------------------
5244AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5245        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady,
5246        uint32_t bitRate)
5247    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady, bitRate),
5248        mPausedBytesRemaining(0)
5249{
5250    //FIXME: mStandby should be set to true by ThreadBase constructor
5251    mStandby = true;
5252}
5253
5254void AudioFlinger::OffloadThread::threadLoop_exit()
5255{
5256    if (mFlushPending || mHwPaused) {
5257        // If a flush is pending or track was paused, just discard buffered data
5258        flushHw_l();
5259    } else {
5260        mMixerStatus = MIXER_DRAIN_ALL;
5261        threadLoop_drain();
5262    }
5263    if (mUseAsyncWrite) {
5264        ALOG_ASSERT(mCallbackThread != 0);
5265        mCallbackThread->exit();
5266    }
5267    PlaybackThread::threadLoop_exit();
5268}
5269
5270AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5271    Vector< sp<Track> > *tracksToRemove
5272)
5273{
5274    size_t count = mActiveTracks.size();
5275
5276    mixer_state mixerStatus = MIXER_IDLE;
5277    bool doHwPause = false;
5278    bool doHwResume = false;
5279
5280    ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5281
5282    // find out which tracks need to be processed
5283    for (size_t i = 0; i < count; i++) {
5284        sp<Track> t = mActiveTracks[i].promote();
5285        // The track died recently
5286        if (t == 0) {
5287            continue;
5288        }
5289        Track* const track = t.get();
5290#ifdef VERY_VERY_VERBOSE_LOGGING
5291        audio_track_cblk_t* cblk = track->cblk();
5292#endif
5293        // Only consider last track started for volume and mixer state control.
5294        // In theory an older track could underrun and restart after the new one starts
5295        // but as we only care about the transition phase between two tracks on a
5296        // direct output, it is not a problem to ignore the underrun case.
5297        sp<Track> l = mLatestActiveTrack.promote();
5298        bool last = l.get() == track;
5299
5300        if (track->isInvalid()) {
5301            ALOGW("An invalidated track shouldn't be in active list");
5302            tracksToRemove->add(track);
5303            continue;
5304        }
5305
5306        if (track->mState == TrackBase::IDLE) {
5307            ALOGW("An idle track shouldn't be in active list");
5308            continue;
5309        }
5310
5311        if (track->isPausing()) {
5312            track->setPaused();
5313            if (last) {
5314                if (mHwSupportsPause && !mHwPaused) {
5315                    doHwPause = true;
5316                    mHwPaused = true;
5317                }
5318                // If we were part way through writing the mixbuffer to
5319                // the HAL we must save this until we resume
5320                // BUG - this will be wrong if a different track is made active,
5321                // in that case we want to discard the pending data in the
5322                // mixbuffer and tell the client to present it again when the
5323                // track is resumed
5324                mPausedWriteLength = mCurrentWriteLength;
5325                mPausedBytesRemaining = mBytesRemaining;
5326                mBytesRemaining = 0;    // stop writing
5327            }
5328            tracksToRemove->add(track);
5329        } else if (track->isFlushPending()) {
5330            track->mRetryCount = kMaxTrackRetriesOffload;
5331            track->flushAck();
5332            if (last) {
5333                mFlushPending = true;
5334            }
5335        } else if (track->isResumePending()){
5336            track->resumeAck();
5337            if (last) {
5338                if (mPausedBytesRemaining) {
5339                    // Need to continue write that was interrupted
5340                    mCurrentWriteLength = mPausedWriteLength;
5341                    mBytesRemaining = mPausedBytesRemaining;
5342                    mPausedBytesRemaining = 0;
5343                }
5344                if (mHwPaused) {
5345                    doHwResume = true;
5346                    mHwPaused = false;
5347                    // threadLoop_mix() will handle the case that we need to
5348                    // resume an interrupted write
5349                }
5350                // enable write to audio HAL
5351                mSleepTimeUs = 0;
5352
5353                // Do not handle new data in this iteration even if track->framesReady()
5354                mixerStatus = MIXER_TRACKS_ENABLED;
5355            }
5356        }  else if (track->framesReady() && track->isReady() &&
5357                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5358            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5359            if (track->mFillingUpStatus == Track::FS_FILLED) {
5360                track->mFillingUpStatus = Track::FS_ACTIVE;
5361                // make sure processVolume_l() will apply new volume even if 0
5362                mLeftVolFloat = mRightVolFloat = -1.0;
5363            }
5364
5365            if (last) {
5366                sp<Track> previousTrack = mPreviousTrack.promote();
5367                if (previousTrack != 0) {
5368                    if (track != previousTrack.get()) {
5369                        // Flush any data still being written from last track
5370                        mBytesRemaining = 0;
5371                        if (mPausedBytesRemaining) {
5372                            // Last track was paused so we also need to flush saved
5373                            // mixbuffer state and invalidate track so that it will
5374                            // re-submit that unwritten data when it is next resumed
5375                            mPausedBytesRemaining = 0;
5376                            // Invalidate is a bit drastic - would be more efficient
5377                            // to have a flag to tell client that some of the
5378                            // previously written data was lost
5379                            previousTrack->invalidate();
5380                        }
5381                        // flush data already sent to the DSP if changing audio session as audio
5382                        // comes from a different source. Also invalidate previous track to force a
5383                        // seek when resuming.
5384                        if (previousTrack->sessionId() != track->sessionId()) {
5385                            previousTrack->invalidate();
5386                        }
5387                    }
5388                }
5389                mPreviousTrack = track;
5390                // reset retry count
5391                track->mRetryCount = kMaxTrackRetriesOffload;
5392                mActiveTrack = t;
5393                mixerStatus = MIXER_TRACKS_READY;
5394            }
5395        } else {
5396            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5397            if (track->isStopping_1()) {
5398                // Hardware buffer can hold a large amount of audio so we must
5399                // wait for all current track's data to drain before we say
5400                // that the track is stopped.
5401                if (mBytesRemaining == 0) {
5402                    // Only start draining when all data in mixbuffer
5403                    // has been written
5404                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5405                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5406                    // do not drain if no data was ever sent to HAL (mStandby == true)
5407                    if (last && !mStandby) {
5408                        // do not modify drain sequence if we are already draining. This happens
5409                        // when resuming from pause after drain.
5410                        if ((mDrainSequence & 1) == 0) {
5411                            mSleepTimeUs = 0;
5412                            mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5413                            mixerStatus = MIXER_DRAIN_TRACK;
5414                            mDrainSequence += 2;
5415                        }
5416                        if (mHwPaused) {
5417                            // It is possible to move from PAUSED to STOPPING_1 without
5418                            // a resume so we must ensure hardware is running
5419                            doHwResume = true;
5420                            mHwPaused = false;
5421                        }
5422                    }
5423                }
5424            } else if (track->isStopping_2()) {
5425                // Drain has completed or we are in standby, signal presentation complete
5426                if (!(mDrainSequence & 1) || !last || mStandby) {
5427                    track->mState = TrackBase::STOPPED;
5428                    size_t audioHALFrames =
5429                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5430                    int64_t framesWritten =
5431                            mBytesWritten / mOutput->getFrameSize();
5432                    track->presentationComplete(framesWritten, audioHALFrames);
5433                    track->reset();
5434                    tracksToRemove->add(track);
5435                }
5436            } else {
5437                // No buffers for this track. Give it a few chances to
5438                // fill a buffer, then remove it from active list.
5439                if (--(track->mRetryCount) <= 0) {
5440                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5441                          track->name());
5442                    tracksToRemove->add(track);
5443                    // indicate to client process that the track was disabled because of underrun;
5444                    // it will then automatically call start() when data is available
5445                    track->disable();
5446                } else if (last){
5447                    mixerStatus = MIXER_TRACKS_ENABLED;
5448                }
5449            }
5450        }
5451        // compute volume for this track
5452        processVolume_l(track, last);
5453    }
5454
5455    // make sure the pause/flush/resume sequence is executed in the right order.
5456    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5457    // before flush and then resume HW. This can happen in case of pause/flush/resume
5458    // if resume is received before pause is executed.
5459    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5460        mOutput->stream->pause(mOutput->stream);
5461    }
5462    if (mFlushPending) {
5463        flushHw_l();
5464    }
5465    if (!mStandby && doHwResume) {
5466        mOutput->stream->resume(mOutput->stream);
5467    }
5468
5469    // remove all the tracks that need to be...
5470    removeTracks_l(*tracksToRemove);
5471
5472    return mixerStatus;
5473}
5474
5475// must be called with thread mutex locked
5476bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5477{
5478    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5479          mWriteAckSequence, mDrainSequence);
5480    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5481        return true;
5482    }
5483    return false;
5484}
5485
5486bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5487{
5488    Mutex::Autolock _l(mLock);
5489    return waitingAsyncCallback_l();
5490}
5491
5492void AudioFlinger::OffloadThread::flushHw_l()
5493{
5494    DirectOutputThread::flushHw_l();
5495    // Flush anything still waiting in the mixbuffer
5496    mCurrentWriteLength = 0;
5497    mBytesRemaining = 0;
5498    mPausedWriteLength = 0;
5499    mPausedBytesRemaining = 0;
5500
5501    if (mUseAsyncWrite) {
5502        // discard any pending drain or write ack by incrementing sequence
5503        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5504        mDrainSequence = (mDrainSequence + 2) & ~1;
5505        ALOG_ASSERT(mCallbackThread != 0);
5506        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5507        mCallbackThread->setDraining(mDrainSequence);
5508    }
5509}
5510
5511uint32_t AudioFlinger::OffloadThread::activeSleepTimeUs() const
5512{
5513    uint32_t time;
5514    if (audio_has_proportional_frames(mFormat)) {
5515        time = PlaybackThread::activeSleepTimeUs();
5516    } else {
5517        // sleep time is half the duration of an audio HAL buffer.
5518        // Note: This can be problematic in case of underrun with variable bit rate and
5519        // current rate is much less than initial rate.
5520        time = (uint32_t)max(kDirectMinSleepTimeUs, mBufferDurationUs / 2);
5521    }
5522    return time;
5523}
5524
5525// ----------------------------------------------------------------------------
5526
5527AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5528        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5529    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5530                    systemReady, DUPLICATING),
5531        mWaitTimeMs(UINT_MAX)
5532{
5533    addOutputTrack(mainThread);
5534}
5535
5536AudioFlinger::DuplicatingThread::~DuplicatingThread()
5537{
5538    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5539        mOutputTracks[i]->destroy();
5540    }
5541}
5542
5543void AudioFlinger::DuplicatingThread::threadLoop_mix()
5544{
5545    // mix buffers...
5546    if (outputsReady(outputTracks)) {
5547        mAudioMixer->process();
5548    } else {
5549        if (mMixerBufferValid) {
5550            memset(mMixerBuffer, 0, mMixerBufferSize);
5551        } else {
5552            memset(mSinkBuffer, 0, mSinkBufferSize);
5553        }
5554    }
5555    mSleepTimeUs = 0;
5556    writeFrames = mNormalFrameCount;
5557    mCurrentWriteLength = mSinkBufferSize;
5558    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5559}
5560
5561void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5562{
5563    if (mSleepTimeUs == 0) {
5564        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5565            mSleepTimeUs = mActiveSleepTimeUs;
5566        } else {
5567            mSleepTimeUs = mIdleSleepTimeUs;
5568        }
5569    } else if (mBytesWritten != 0) {
5570        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5571            writeFrames = mNormalFrameCount;
5572            memset(mSinkBuffer, 0, mSinkBufferSize);
5573        } else {
5574            // flush remaining overflow buffers in output tracks
5575            writeFrames = 0;
5576        }
5577        mSleepTimeUs = 0;
5578    }
5579}
5580
5581ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5582{
5583    for (size_t i = 0; i < outputTracks.size(); i++) {
5584        outputTracks[i]->write(mSinkBuffer, writeFrames);
5585    }
5586    mStandby = false;
5587    return (ssize_t)mSinkBufferSize;
5588}
5589
5590void AudioFlinger::DuplicatingThread::threadLoop_standby()
5591{
5592    // DuplicatingThread implements standby by stopping all tracks
5593    for (size_t i = 0; i < outputTracks.size(); i++) {
5594        outputTracks[i]->stop();
5595    }
5596}
5597
5598void AudioFlinger::DuplicatingThread::saveOutputTracks()
5599{
5600    outputTracks = mOutputTracks;
5601}
5602
5603void AudioFlinger::DuplicatingThread::clearOutputTracks()
5604{
5605    outputTracks.clear();
5606}
5607
5608void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5609{
5610    Mutex::Autolock _l(mLock);
5611    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5612    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5613    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5614    const size_t frameCount =
5615            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5616    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5617    // from different OutputTracks and their associated MixerThreads (e.g. one may
5618    // nearly empty and the other may be dropping data).
5619
5620    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5621                                            this,
5622                                            mSampleRate,
5623                                            mFormat,
5624                                            mChannelMask,
5625                                            frameCount,
5626                                            IPCThreadState::self()->getCallingUid());
5627    if (outputTrack->cblk() != NULL) {
5628        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5629        mOutputTracks.add(outputTrack);
5630        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5631        updateWaitTime_l();
5632    }
5633}
5634
5635void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5636{
5637    Mutex::Autolock _l(mLock);
5638    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5639        if (mOutputTracks[i]->thread() == thread) {
5640            mOutputTracks[i]->destroy();
5641            mOutputTracks.removeAt(i);
5642            updateWaitTime_l();
5643            if (thread->getOutput() == mOutput) {
5644                mOutput = NULL;
5645            }
5646            return;
5647        }
5648    }
5649    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5650}
5651
5652// caller must hold mLock
5653void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5654{
5655    mWaitTimeMs = UINT_MAX;
5656    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5657        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5658        if (strong != 0) {
5659            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5660            if (waitTimeMs < mWaitTimeMs) {
5661                mWaitTimeMs = waitTimeMs;
5662            }
5663        }
5664    }
5665}
5666
5667
5668bool AudioFlinger::DuplicatingThread::outputsReady(
5669        const SortedVector< sp<OutputTrack> > &outputTracks)
5670{
5671    for (size_t i = 0; i < outputTracks.size(); i++) {
5672        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5673        if (thread == 0) {
5674            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5675                    outputTracks[i].get());
5676            return false;
5677        }
5678        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5679        // see note at standby() declaration
5680        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5681            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5682                    thread.get());
5683            return false;
5684        }
5685    }
5686    return true;
5687}
5688
5689uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5690{
5691    return (mWaitTimeMs * 1000) / 2;
5692}
5693
5694void AudioFlinger::DuplicatingThread::cacheParameters_l()
5695{
5696    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5697    updateWaitTime_l();
5698
5699    MixerThread::cacheParameters_l();
5700}
5701
5702// ----------------------------------------------------------------------------
5703//      Record
5704// ----------------------------------------------------------------------------
5705
5706AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5707                                         AudioStreamIn *input,
5708                                         audio_io_handle_t id,
5709                                         audio_devices_t outDevice,
5710                                         audio_devices_t inDevice,
5711                                         bool systemReady
5712#ifdef TEE_SINK
5713                                         , const sp<NBAIO_Sink>& teeSink
5714#endif
5715                                         ) :
5716    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5717    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5718    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5719    mRsmpInRear(0)
5720#ifdef TEE_SINK
5721    , mTeeSink(teeSink)
5722#endif
5723    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5724            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5725    // mFastCapture below
5726    , mFastCaptureFutex(0)
5727    // mInputSource
5728    // mPipeSink
5729    // mPipeSource
5730    , mPipeFramesP2(0)
5731    // mPipeMemory
5732    // mFastCaptureNBLogWriter
5733    , mFastTrackAvail(false)
5734{
5735    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5736    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5737
5738    readInputParameters_l();
5739
5740    // create an NBAIO source for the HAL input stream, and negotiate
5741    mInputSource = new AudioStreamInSource(input->stream);
5742    size_t numCounterOffers = 0;
5743    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5744#if !LOG_NDEBUG
5745    ssize_t index =
5746#else
5747    (void)
5748#endif
5749            mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5750    ALOG_ASSERT(index == 0);
5751
5752    // initialize fast capture depending on configuration
5753    bool initFastCapture;
5754    switch (kUseFastCapture) {
5755    case FastCapture_Never:
5756        initFastCapture = false;
5757        break;
5758    case FastCapture_Always:
5759        initFastCapture = true;
5760        break;
5761    case FastCapture_Static:
5762        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5763        break;
5764    // case FastCapture_Dynamic:
5765    }
5766
5767    if (initFastCapture) {
5768        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5769        NBAIO_Format format = mInputSource->format();
5770        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5771        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5772        void *pipeBuffer;
5773        const sp<MemoryDealer> roHeap(readOnlyHeap());
5774        sp<IMemory> pipeMemory;
5775        if ((roHeap == 0) ||
5776                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5777                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5778            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5779            goto failed;
5780        }
5781        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5782        memset(pipeBuffer, 0, pipeSize);
5783        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5784        const NBAIO_Format offers[1] = {format};
5785        size_t numCounterOffers = 0;
5786        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5787        ALOG_ASSERT(index == 0);
5788        mPipeSink = pipe;
5789        PipeReader *pipeReader = new PipeReader(*pipe);
5790        numCounterOffers = 0;
5791        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5792        ALOG_ASSERT(index == 0);
5793        mPipeSource = pipeReader;
5794        mPipeFramesP2 = pipeFramesP2;
5795        mPipeMemory = pipeMemory;
5796
5797        // create fast capture
5798        mFastCapture = new FastCapture();
5799        FastCaptureStateQueue *sq = mFastCapture->sq();
5800#ifdef STATE_QUEUE_DUMP
5801        // FIXME
5802#endif
5803        FastCaptureState *state = sq->begin();
5804        state->mCblk = NULL;
5805        state->mInputSource = mInputSource.get();
5806        state->mInputSourceGen++;
5807        state->mPipeSink = pipe;
5808        state->mPipeSinkGen++;
5809        state->mFrameCount = mFrameCount;
5810        state->mCommand = FastCaptureState::COLD_IDLE;
5811        // already done in constructor initialization list
5812        //mFastCaptureFutex = 0;
5813        state->mColdFutexAddr = &mFastCaptureFutex;
5814        state->mColdGen++;
5815        state->mDumpState = &mFastCaptureDumpState;
5816#ifdef TEE_SINK
5817        // FIXME
5818#endif
5819        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5820        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5821        sq->end();
5822        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5823
5824        // start the fast capture
5825        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5826        pid_t tid = mFastCapture->getTid();
5827        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
5828#ifdef AUDIO_WATCHDOG
5829        // FIXME
5830#endif
5831
5832        mFastTrackAvail = true;
5833    }
5834failed: ;
5835
5836    // FIXME mNormalSource
5837}
5838
5839AudioFlinger::RecordThread::~RecordThread()
5840{
5841    if (mFastCapture != 0) {
5842        FastCaptureStateQueue *sq = mFastCapture->sq();
5843        FastCaptureState *state = sq->begin();
5844        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5845            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5846            if (old == -1) {
5847                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5848            }
5849        }
5850        state->mCommand = FastCaptureState::EXIT;
5851        sq->end();
5852        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5853        mFastCapture->join();
5854        mFastCapture.clear();
5855    }
5856    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5857    mAudioFlinger->unregisterWriter(mNBLogWriter);
5858    free(mRsmpInBuffer);
5859}
5860
5861void AudioFlinger::RecordThread::onFirstRef()
5862{
5863    run(mThreadName, PRIORITY_URGENT_AUDIO);
5864}
5865
5866bool AudioFlinger::RecordThread::threadLoop()
5867{
5868    nsecs_t lastWarning = 0;
5869
5870    inputStandBy();
5871
5872reacquire_wakelock:
5873    sp<RecordTrack> activeTrack;
5874    int activeTracksGen;
5875    {
5876        Mutex::Autolock _l(mLock);
5877        size_t size = mActiveTracks.size();
5878        activeTracksGen = mActiveTracksGen;
5879        if (size > 0) {
5880            // FIXME an arbitrary choice
5881            activeTrack = mActiveTracks[0];
5882            acquireWakeLock_l(activeTrack->uid());
5883            if (size > 1) {
5884                SortedVector<int> tmp;
5885                for (size_t i = 0; i < size; i++) {
5886                    tmp.add(mActiveTracks[i]->uid());
5887                }
5888                updateWakeLockUids_l(tmp);
5889            }
5890        } else {
5891            acquireWakeLock_l(-1);
5892        }
5893    }
5894
5895    // used to request a deferred sleep, to be executed later while mutex is unlocked
5896    uint32_t sleepUs = 0;
5897
5898    // loop while there is work to do
5899    for (;;) {
5900        Vector< sp<EffectChain> > effectChains;
5901
5902        // sleep with mutex unlocked
5903        if (sleepUs > 0) {
5904            ATRACE_BEGIN("sleep");
5905            usleep(sleepUs);
5906            ATRACE_END();
5907            sleepUs = 0;
5908        }
5909
5910        // activeTracks accumulates a copy of a subset of mActiveTracks
5911        Vector< sp<RecordTrack> > activeTracks;
5912
5913        // reference to the (first and only) active fast track
5914        sp<RecordTrack> fastTrack;
5915
5916        // reference to a fast track which is about to be removed
5917        sp<RecordTrack> fastTrackToRemove;
5918
5919        { // scope for mLock
5920            Mutex::Autolock _l(mLock);
5921
5922            processConfigEvents_l();
5923
5924            // check exitPending here because checkForNewParameters_l() and
5925            // checkForNewParameters_l() can temporarily release mLock
5926            if (exitPending()) {
5927                break;
5928            }
5929
5930            // if no active track(s), then standby and release wakelock
5931            size_t size = mActiveTracks.size();
5932            if (size == 0) {
5933                standbyIfNotAlreadyInStandby();
5934                // exitPending() can't become true here
5935                releaseWakeLock_l();
5936                ALOGV("RecordThread: loop stopping");
5937                // go to sleep
5938                mWaitWorkCV.wait(mLock);
5939                ALOGV("RecordThread: loop starting");
5940                goto reacquire_wakelock;
5941            }
5942
5943            if (mActiveTracksGen != activeTracksGen) {
5944                activeTracksGen = mActiveTracksGen;
5945                SortedVector<int> tmp;
5946                for (size_t i = 0; i < size; i++) {
5947                    tmp.add(mActiveTracks[i]->uid());
5948                }
5949                updateWakeLockUids_l(tmp);
5950            }
5951
5952            bool doBroadcast = false;
5953            for (size_t i = 0; i < size; ) {
5954
5955                activeTrack = mActiveTracks[i];
5956                if (activeTrack->isTerminated()) {
5957                    if (activeTrack->isFastTrack()) {
5958                        ALOG_ASSERT(fastTrackToRemove == 0);
5959                        fastTrackToRemove = activeTrack;
5960                    }
5961                    removeTrack_l(activeTrack);
5962                    mActiveTracks.remove(activeTrack);
5963                    mActiveTracksGen++;
5964                    size--;
5965                    continue;
5966                }
5967
5968                TrackBase::track_state activeTrackState = activeTrack->mState;
5969                switch (activeTrackState) {
5970
5971                case TrackBase::PAUSING:
5972                    mActiveTracks.remove(activeTrack);
5973                    mActiveTracksGen++;
5974                    doBroadcast = true;
5975                    size--;
5976                    continue;
5977
5978                case TrackBase::STARTING_1:
5979                    sleepUs = 10000;
5980                    i++;
5981                    continue;
5982
5983                case TrackBase::STARTING_2:
5984                    doBroadcast = true;
5985                    mStandby = false;
5986                    activeTrack->mState = TrackBase::ACTIVE;
5987                    break;
5988
5989                case TrackBase::ACTIVE:
5990                    break;
5991
5992                case TrackBase::IDLE:
5993                    i++;
5994                    continue;
5995
5996                default:
5997                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5998                }
5999
6000                activeTracks.add(activeTrack);
6001                i++;
6002
6003                if (activeTrack->isFastTrack()) {
6004                    ALOG_ASSERT(!mFastTrackAvail);
6005                    ALOG_ASSERT(fastTrack == 0);
6006                    fastTrack = activeTrack;
6007                }
6008            }
6009            if (doBroadcast) {
6010                mStartStopCond.broadcast();
6011            }
6012
6013            // sleep if there are no active tracks to process
6014            if (activeTracks.size() == 0) {
6015                if (sleepUs == 0) {
6016                    sleepUs = kRecordThreadSleepUs;
6017                }
6018                continue;
6019            }
6020            sleepUs = 0;
6021
6022            lockEffectChains_l(effectChains);
6023        }
6024
6025        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6026
6027        size_t size = effectChains.size();
6028        for (size_t i = 0; i < size; i++) {
6029            // thread mutex is not locked, but effect chain is locked
6030            effectChains[i]->process_l();
6031        }
6032
6033        // Push a new fast capture state if fast capture is not already running, or cblk change
6034        if (mFastCapture != 0) {
6035            FastCaptureStateQueue *sq = mFastCapture->sq();
6036            FastCaptureState *state = sq->begin();
6037            bool didModify = false;
6038            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6039            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6040                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6041                if (state->mCommand == FastCaptureState::COLD_IDLE) {
6042                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
6043                    if (old == -1) {
6044                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6045                    }
6046                }
6047                state->mCommand = FastCaptureState::READ_WRITE;
6048#if 0   // FIXME
6049                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6050                        FastThreadDumpState::kSamplingNforLowRamDevice :
6051                        FastThreadDumpState::kSamplingN);
6052#endif
6053                didModify = true;
6054            }
6055            audio_track_cblk_t *cblkOld = state->mCblk;
6056            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6057            if (cblkNew != cblkOld) {
6058                state->mCblk = cblkNew;
6059                // block until acked if removing a fast track
6060                if (cblkOld != NULL) {
6061                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6062                }
6063                didModify = true;
6064            }
6065            sq->end(didModify);
6066            if (didModify) {
6067                sq->push(block);
6068#if 0
6069                if (kUseFastCapture == FastCapture_Dynamic) {
6070                    mNormalSource = mPipeSource;
6071                }
6072#endif
6073            }
6074        }
6075
6076        // now run the fast track destructor with thread mutex unlocked
6077        fastTrackToRemove.clear();
6078
6079        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6080        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6081        // slow, then this RecordThread will overrun by not calling HAL read often enough.
6082        // If destination is non-contiguous, first read past the nominal end of buffer, then
6083        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
6084
6085        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6086        ssize_t framesRead;
6087
6088        // If an NBAIO source is present, use it to read the normal capture's data
6089        if (mPipeSource != 0) {
6090            size_t framesToRead = mBufferSize / mFrameSize;
6091            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6092                    framesToRead);
6093            if (framesRead == 0) {
6094                // since pipe is non-blocking, simulate blocking input
6095                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
6096            }
6097        // otherwise use the HAL / AudioStreamIn directly
6098        } else {
6099            ATRACE_BEGIN("read");
6100            ssize_t bytesRead = mInput->stream->read(mInput->stream,
6101                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6102            ATRACE_END();
6103            if (bytesRead < 0) {
6104                framesRead = bytesRead;
6105            } else {
6106                framesRead = bytesRead / mFrameSize;
6107            }
6108        }
6109
6110        // Update server timestamp with server stats
6111        // systemTime() is optional if the hardware supports timestamps.
6112        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6113        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6114
6115        // Update server timestamp with kernel stats
6116        if (mInput->stream->get_capture_position != nullptr) {
6117            int64_t position, time;
6118            int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6119            if (ret == NO_ERROR) {
6120                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6121                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6122                // Note: In general record buffers should tend to be empty in
6123                // a properly running pipeline.
6124                //
6125                // Also, it is not advantageous to call get_presentation_position during the read
6126                // as the read obtains a lock, preventing the timestamp call from executing.
6127            }
6128        }
6129        // Use this to track timestamp information
6130        // ALOGD("%s", mTimestamp.toString().c_str());
6131
6132        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6133            ALOGE("read failed: framesRead=%zd", framesRead);
6134            // Force input into standby so that it tries to recover at next read attempt
6135            inputStandBy();
6136            sleepUs = kRecordThreadSleepUs;
6137        }
6138        if (framesRead <= 0) {
6139            goto unlock;
6140        }
6141        ALOG_ASSERT(framesRead > 0);
6142
6143        if (mTeeSink != 0) {
6144            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6145        }
6146        // If destination is non-contiguous, we now correct for reading past end of buffer.
6147        {
6148            size_t part1 = mRsmpInFramesP2 - rear;
6149            if ((size_t) framesRead > part1) {
6150                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6151                        (framesRead - part1) * mFrameSize);
6152            }
6153        }
6154        rear = mRsmpInRear += framesRead;
6155
6156        size = activeTracks.size();
6157        // loop over each active track
6158        for (size_t i = 0; i < size; i++) {
6159            activeTrack = activeTracks[i];
6160
6161            // skip fast tracks, as those are handled directly by FastCapture
6162            if (activeTrack->isFastTrack()) {
6163                continue;
6164            }
6165
6166            // TODO: This code probably should be moved to RecordTrack.
6167            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6168
6169            enum {
6170                OVERRUN_UNKNOWN,
6171                OVERRUN_TRUE,
6172                OVERRUN_FALSE
6173            } overrun = OVERRUN_UNKNOWN;
6174
6175            // loop over getNextBuffer to handle circular sink
6176            for (;;) {
6177
6178                activeTrack->mSink.frameCount = ~0;
6179                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6180                size_t framesOut = activeTrack->mSink.frameCount;
6181                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6182
6183                // check available frames and handle overrun conditions
6184                // if the record track isn't draining fast enough.
6185                bool hasOverrun;
6186                size_t framesIn;
6187                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6188                if (hasOverrun) {
6189                    overrun = OVERRUN_TRUE;
6190                }
6191                if (framesOut == 0 || framesIn == 0) {
6192                    break;
6193                }
6194
6195                // Don't allow framesOut to be larger than what is possible with resampling
6196                // from framesIn.
6197                // This isn't strictly necessary but helps limit buffer resizing in
6198                // RecordBufferConverter.  TODO: remove when no longer needed.
6199                framesOut = min(framesOut,
6200                        destinationFramesPossible(
6201                                framesIn, mSampleRate, activeTrack->mSampleRate));
6202                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6203                framesOut = activeTrack->mRecordBufferConverter->convert(
6204                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6205
6206                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6207                    overrun = OVERRUN_FALSE;
6208                }
6209
6210                if (activeTrack->mFramesToDrop == 0) {
6211                    if (framesOut > 0) {
6212                        activeTrack->mSink.frameCount = framesOut;
6213                        activeTrack->releaseBuffer(&activeTrack->mSink);
6214                    }
6215                } else {
6216                    // FIXME could do a partial drop of framesOut
6217                    if (activeTrack->mFramesToDrop > 0) {
6218                        activeTrack->mFramesToDrop -= framesOut;
6219                        if (activeTrack->mFramesToDrop <= 0) {
6220                            activeTrack->clearSyncStartEvent();
6221                        }
6222                    } else {
6223                        activeTrack->mFramesToDrop += framesOut;
6224                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6225                                activeTrack->mSyncStartEvent->isCancelled()) {
6226                            ALOGW("Synced record %s, session %d, trigger session %d",
6227                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6228                                  activeTrack->sessionId(),
6229                                  (activeTrack->mSyncStartEvent != 0) ?
6230                                          activeTrack->mSyncStartEvent->triggerSession() :
6231                                          AUDIO_SESSION_NONE);
6232                            activeTrack->clearSyncStartEvent();
6233                        }
6234                    }
6235                }
6236
6237                if (framesOut == 0) {
6238                    break;
6239                }
6240            }
6241
6242            switch (overrun) {
6243            case OVERRUN_TRUE:
6244                // client isn't retrieving buffers fast enough
6245                if (!activeTrack->setOverflow()) {
6246                    nsecs_t now = systemTime();
6247                    // FIXME should lastWarning per track?
6248                    if ((now - lastWarning) > kWarningThrottleNs) {
6249                        ALOGW("RecordThread: buffer overflow");
6250                        lastWarning = now;
6251                    }
6252                }
6253                break;
6254            case OVERRUN_FALSE:
6255                activeTrack->clearOverflow();
6256                break;
6257            case OVERRUN_UNKNOWN:
6258                break;
6259            }
6260
6261            // update frame information and push timestamp out
6262            activeTrack->updateTrackFrameInfo(
6263                    activeTrack->mServerProxy->framesReleased(),
6264                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6265                    mSampleRate, mTimestamp);
6266        }
6267
6268unlock:
6269        // enable changes in effect chain
6270        unlockEffectChains(effectChains);
6271        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6272    }
6273
6274    standbyIfNotAlreadyInStandby();
6275
6276    {
6277        Mutex::Autolock _l(mLock);
6278        for (size_t i = 0; i < mTracks.size(); i++) {
6279            sp<RecordTrack> track = mTracks[i];
6280            track->invalidate();
6281        }
6282        mActiveTracks.clear();
6283        mActiveTracksGen++;
6284        mStartStopCond.broadcast();
6285    }
6286
6287    releaseWakeLock();
6288
6289    ALOGV("RecordThread %p exiting", this);
6290    return false;
6291}
6292
6293void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6294{
6295    if (!mStandby) {
6296        inputStandBy();
6297        mStandby = true;
6298    }
6299}
6300
6301void AudioFlinger::RecordThread::inputStandBy()
6302{
6303    // Idle the fast capture if it's currently running
6304    if (mFastCapture != 0) {
6305        FastCaptureStateQueue *sq = mFastCapture->sq();
6306        FastCaptureState *state = sq->begin();
6307        if (!(state->mCommand & FastCaptureState::IDLE)) {
6308            state->mCommand = FastCaptureState::COLD_IDLE;
6309            state->mColdFutexAddr = &mFastCaptureFutex;
6310            state->mColdGen++;
6311            mFastCaptureFutex = 0;
6312            sq->end();
6313            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6314            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6315#if 0
6316            if (kUseFastCapture == FastCapture_Dynamic) {
6317                // FIXME
6318            }
6319#endif
6320#ifdef AUDIO_WATCHDOG
6321            // FIXME
6322#endif
6323        } else {
6324            sq->end(false /*didModify*/);
6325        }
6326    }
6327    mInput->stream->common.standby(&mInput->stream->common);
6328}
6329
6330// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6331sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6332        const sp<AudioFlinger::Client>& client,
6333        uint32_t sampleRate,
6334        audio_format_t format,
6335        audio_channel_mask_t channelMask,
6336        size_t *pFrameCount,
6337        audio_session_t sessionId,
6338        size_t *notificationFrames,
6339        int uid,
6340        IAudioFlinger::track_flags_t *flags,
6341        pid_t tid,
6342        status_t *status)
6343{
6344    size_t frameCount = *pFrameCount;
6345    sp<RecordTrack> track;
6346    status_t lStatus;
6347
6348    // client expresses a preference for FAST, but we get the final say
6349    if (*flags & IAudioFlinger::TRACK_FAST) {
6350      if (
6351            // we formerly checked for a callback handler (non-0 tid),
6352            // but that is no longer required for TRANSFER_OBTAIN mode
6353            //
6354            // frame count is not specified, or is exactly the pipe depth
6355            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6356            // PCM data
6357            audio_is_linear_pcm(format) &&
6358            // hardware format
6359            (format == mFormat) &&
6360            // hardware channel mask
6361            (channelMask == mChannelMask) &&
6362            // hardware sample rate
6363            (sampleRate == mSampleRate) &&
6364            // record thread has an associated fast capture
6365            hasFastCapture() &&
6366            // there are sufficient fast track slots available
6367            mFastTrackAvail
6368        ) {
6369        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6370                frameCount, mFrameCount);
6371      } else {
6372        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6373                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6374                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6375                frameCount, mFrameCount, mPipeFramesP2,
6376                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6377                hasFastCapture(), tid, mFastTrackAvail);
6378        *flags &= ~IAudioFlinger::TRACK_FAST;
6379      }
6380    }
6381
6382    // compute track buffer size in frames, and suggest the notification frame count
6383    if (*flags & IAudioFlinger::TRACK_FAST) {
6384        // fast track: frame count is exactly the pipe depth
6385        frameCount = mPipeFramesP2;
6386        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6387        *notificationFrames = mFrameCount;
6388    } else {
6389        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6390        //                 or 20 ms if there is a fast capture
6391        // TODO This could be a roundupRatio inline, and const
6392        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6393                * sampleRate + mSampleRate - 1) / mSampleRate;
6394        // minimum number of notification periods is at least kMinNotifications,
6395        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6396        static const size_t kMinNotifications = 3;
6397        static const uint32_t kMinMs = 30;
6398        // TODO This could be a roundupRatio inline
6399        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6400        // TODO This could be a roundupRatio inline
6401        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6402                maxNotificationFrames;
6403        const size_t minFrameCount = maxNotificationFrames *
6404                max(kMinNotifications, minNotificationsByMs);
6405        frameCount = max(frameCount, minFrameCount);
6406        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6407            *notificationFrames = maxNotificationFrames;
6408        }
6409    }
6410    *pFrameCount = frameCount;
6411
6412    lStatus = initCheck();
6413    if (lStatus != NO_ERROR) {
6414        ALOGE("createRecordTrack_l() audio driver not initialized");
6415        goto Exit;
6416    }
6417
6418    { // scope for mLock
6419        Mutex::Autolock _l(mLock);
6420
6421        track = new RecordTrack(this, client, sampleRate,
6422                      format, channelMask, frameCount, NULL, sessionId, uid,
6423                      *flags, TrackBase::TYPE_DEFAULT);
6424
6425        lStatus = track->initCheck();
6426        if (lStatus != NO_ERROR) {
6427            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6428            // track must be cleared from the caller as the caller has the AF lock
6429            goto Exit;
6430        }
6431        mTracks.add(track);
6432
6433        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6434        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6435                        mAudioFlinger->btNrecIsOff();
6436        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6437        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6438
6439        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6440            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6441            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6442            // so ask activity manager to do this on our behalf
6443            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6444        }
6445    }
6446
6447    lStatus = NO_ERROR;
6448
6449Exit:
6450    *status = lStatus;
6451    return track;
6452}
6453
6454status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6455                                           AudioSystem::sync_event_t event,
6456                                           audio_session_t triggerSession)
6457{
6458    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6459    sp<ThreadBase> strongMe = this;
6460    status_t status = NO_ERROR;
6461
6462    if (event == AudioSystem::SYNC_EVENT_NONE) {
6463        recordTrack->clearSyncStartEvent();
6464    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6465        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6466                                       triggerSession,
6467                                       recordTrack->sessionId(),
6468                                       syncStartEventCallback,
6469                                       recordTrack);
6470        // Sync event can be cancelled by the trigger session if the track is not in a
6471        // compatible state in which case we start record immediately
6472        if (recordTrack->mSyncStartEvent->isCancelled()) {
6473            recordTrack->clearSyncStartEvent();
6474        } else {
6475            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6476            recordTrack->mFramesToDrop = -
6477                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6478        }
6479    }
6480
6481    {
6482        // This section is a rendezvous between binder thread executing start() and RecordThread
6483        AutoMutex lock(mLock);
6484        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6485            if (recordTrack->mState == TrackBase::PAUSING) {
6486                ALOGV("active record track PAUSING -> ACTIVE");
6487                recordTrack->mState = TrackBase::ACTIVE;
6488            } else {
6489                ALOGV("active record track state %d", recordTrack->mState);
6490            }
6491            return status;
6492        }
6493
6494        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6495        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6496        //      or using a separate command thread
6497        recordTrack->mState = TrackBase::STARTING_1;
6498        mActiveTracks.add(recordTrack);
6499        mActiveTracksGen++;
6500        status_t status = NO_ERROR;
6501        if (recordTrack->isExternalTrack()) {
6502            mLock.unlock();
6503            status = AudioSystem::startInput(mId, recordTrack->sessionId());
6504            mLock.lock();
6505            // FIXME should verify that recordTrack is still in mActiveTracks
6506            if (status != NO_ERROR) {
6507                mActiveTracks.remove(recordTrack);
6508                mActiveTracksGen++;
6509                recordTrack->clearSyncStartEvent();
6510                ALOGV("RecordThread::start error %d", status);
6511                return status;
6512            }
6513        }
6514        // Catch up with current buffer indices if thread is already running.
6515        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6516        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6517        // see previously buffered data before it called start(), but with greater risk of overrun.
6518
6519        recordTrack->mResamplerBufferProvider->reset();
6520        // clear any converter state as new data will be discontinuous
6521        recordTrack->mRecordBufferConverter->reset();
6522        recordTrack->mState = TrackBase::STARTING_2;
6523        // signal thread to start
6524        mWaitWorkCV.broadcast();
6525        if (mActiveTracks.indexOf(recordTrack) < 0) {
6526            ALOGV("Record failed to start");
6527            status = BAD_VALUE;
6528            goto startError;
6529        }
6530        return status;
6531    }
6532
6533startError:
6534    if (recordTrack->isExternalTrack()) {
6535        AudioSystem::stopInput(mId, recordTrack->sessionId());
6536    }
6537    recordTrack->clearSyncStartEvent();
6538    // FIXME I wonder why we do not reset the state here?
6539    return status;
6540}
6541
6542void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6543{
6544    sp<SyncEvent> strongEvent = event.promote();
6545
6546    if (strongEvent != 0) {
6547        sp<RefBase> ptr = strongEvent->cookie().promote();
6548        if (ptr != 0) {
6549            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6550            recordTrack->handleSyncStartEvent(strongEvent);
6551        }
6552    }
6553}
6554
6555bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6556    ALOGV("RecordThread::stop");
6557    AutoMutex _l(mLock);
6558    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6559        return false;
6560    }
6561    // note that threadLoop may still be processing the track at this point [without lock]
6562    recordTrack->mState = TrackBase::PAUSING;
6563    // do not wait for mStartStopCond if exiting
6564    if (exitPending()) {
6565        return true;
6566    }
6567    // FIXME incorrect usage of wait: no explicit predicate or loop
6568    mStartStopCond.wait(mLock);
6569    // if we have been restarted, recordTrack is in mActiveTracks here
6570    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6571        ALOGV("Record stopped OK");
6572        return true;
6573    }
6574    return false;
6575}
6576
6577bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6578{
6579    return false;
6580}
6581
6582status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6583{
6584#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6585    if (!isValidSyncEvent(event)) {
6586        return BAD_VALUE;
6587    }
6588
6589    audio_session_t eventSession = event->triggerSession();
6590    status_t ret = NAME_NOT_FOUND;
6591
6592    Mutex::Autolock _l(mLock);
6593
6594    for (size_t i = 0; i < mTracks.size(); i++) {
6595        sp<RecordTrack> track = mTracks[i];
6596        if (eventSession == track->sessionId()) {
6597            (void) track->setSyncEvent(event);
6598            ret = NO_ERROR;
6599        }
6600    }
6601    return ret;
6602#else
6603    return BAD_VALUE;
6604#endif
6605}
6606
6607// destroyTrack_l() must be called with ThreadBase::mLock held
6608void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6609{
6610    track->terminate();
6611    track->mState = TrackBase::STOPPED;
6612    // active tracks are removed by threadLoop()
6613    if (mActiveTracks.indexOf(track) < 0) {
6614        removeTrack_l(track);
6615    }
6616}
6617
6618void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6619{
6620    mTracks.remove(track);
6621    // need anything related to effects here?
6622    if (track->isFastTrack()) {
6623        ALOG_ASSERT(!mFastTrackAvail);
6624        mFastTrackAvail = true;
6625    }
6626}
6627
6628void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6629{
6630    dumpInternals(fd, args);
6631    dumpTracks(fd, args);
6632    dumpEffectChains(fd, args);
6633}
6634
6635void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6636{
6637    dprintf(fd, "\nInput thread %p:\n", this);
6638
6639    dumpBase(fd, args);
6640
6641    if (mActiveTracks.size() == 0) {
6642        dprintf(fd, "  No active record clients\n");
6643    }
6644    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6645    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6646
6647    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6648    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6649    // This is a large object so we place it on the heap.
6650    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6651    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6652    copy->dump(fd);
6653    delete copy;
6654}
6655
6656void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6657{
6658    const size_t SIZE = 256;
6659    char buffer[SIZE];
6660    String8 result;
6661
6662    size_t numtracks = mTracks.size();
6663    size_t numactive = mActiveTracks.size();
6664    size_t numactiveseen = 0;
6665    dprintf(fd, "  %zu Tracks", numtracks);
6666    if (numtracks) {
6667        dprintf(fd, " of which %zu are active\n", numactive);
6668        RecordTrack::appendDumpHeader(result);
6669        for (size_t i = 0; i < numtracks ; ++i) {
6670            sp<RecordTrack> track = mTracks[i];
6671            if (track != 0) {
6672                bool active = mActiveTracks.indexOf(track) >= 0;
6673                if (active) {
6674                    numactiveseen++;
6675                }
6676                track->dump(buffer, SIZE, active);
6677                result.append(buffer);
6678            }
6679        }
6680    } else {
6681        dprintf(fd, "\n");
6682    }
6683
6684    if (numactiveseen != numactive) {
6685        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6686                " not in the track list\n");
6687        result.append(buffer);
6688        RecordTrack::appendDumpHeader(result);
6689        for (size_t i = 0; i < numactive; ++i) {
6690            sp<RecordTrack> track = mActiveTracks[i];
6691            if (mTracks.indexOf(track) < 0) {
6692                track->dump(buffer, SIZE, true);
6693                result.append(buffer);
6694            }
6695        }
6696
6697    }
6698    write(fd, result.string(), result.size());
6699}
6700
6701
6702void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6703{
6704    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6705    RecordThread *recordThread = (RecordThread *) threadBase.get();
6706    mRsmpInFront = recordThread->mRsmpInRear;
6707    mRsmpInUnrel = 0;
6708}
6709
6710void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6711        size_t *framesAvailable, bool *hasOverrun)
6712{
6713    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6714    RecordThread *recordThread = (RecordThread *) threadBase.get();
6715    const int32_t rear = recordThread->mRsmpInRear;
6716    const int32_t front = mRsmpInFront;
6717    const ssize_t filled = rear - front;
6718
6719    size_t framesIn;
6720    bool overrun = false;
6721    if (filled < 0) {
6722        // should not happen, but treat like a massive overrun and re-sync
6723        framesIn = 0;
6724        mRsmpInFront = rear;
6725        overrun = true;
6726    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6727        framesIn = (size_t) filled;
6728    } else {
6729        // client is not keeping up with server, but give it latest data
6730        framesIn = recordThread->mRsmpInFrames;
6731        mRsmpInFront = /* front = */ rear - framesIn;
6732        overrun = true;
6733    }
6734    if (framesAvailable != NULL) {
6735        *framesAvailable = framesIn;
6736    }
6737    if (hasOverrun != NULL) {
6738        *hasOverrun = overrun;
6739    }
6740}
6741
6742// AudioBufferProvider interface
6743status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6744        AudioBufferProvider::Buffer* buffer)
6745{
6746    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6747    if (threadBase == 0) {
6748        buffer->frameCount = 0;
6749        buffer->raw = NULL;
6750        return NOT_ENOUGH_DATA;
6751    }
6752    RecordThread *recordThread = (RecordThread *) threadBase.get();
6753    int32_t rear = recordThread->mRsmpInRear;
6754    int32_t front = mRsmpInFront;
6755    ssize_t filled = rear - front;
6756    // FIXME should not be P2 (don't want to increase latency)
6757    // FIXME if client not keeping up, discard
6758    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6759    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6760    front &= recordThread->mRsmpInFramesP2 - 1;
6761    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6762    if (part1 > (size_t) filled) {
6763        part1 = filled;
6764    }
6765    size_t ask = buffer->frameCount;
6766    ALOG_ASSERT(ask > 0);
6767    if (part1 > ask) {
6768        part1 = ask;
6769    }
6770    if (part1 == 0) {
6771        // out of data is fine since the resampler will return a short-count.
6772        buffer->raw = NULL;
6773        buffer->frameCount = 0;
6774        mRsmpInUnrel = 0;
6775        return NOT_ENOUGH_DATA;
6776    }
6777
6778    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6779    buffer->frameCount = part1;
6780    mRsmpInUnrel = part1;
6781    return NO_ERROR;
6782}
6783
6784// AudioBufferProvider interface
6785void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6786        AudioBufferProvider::Buffer* buffer)
6787{
6788    size_t stepCount = buffer->frameCount;
6789    if (stepCount == 0) {
6790        return;
6791    }
6792    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6793    mRsmpInUnrel -= stepCount;
6794    mRsmpInFront += stepCount;
6795    buffer->raw = NULL;
6796    buffer->frameCount = 0;
6797}
6798
6799AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6800        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6801        uint32_t srcSampleRate,
6802        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6803        uint32_t dstSampleRate) :
6804            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6805            // mSrcFormat
6806            // mSrcSampleRate
6807            // mDstChannelMask
6808            // mDstFormat
6809            // mDstSampleRate
6810            // mSrcChannelCount
6811            // mDstChannelCount
6812            // mDstFrameSize
6813            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6814            mResampler(NULL),
6815            mIsLegacyDownmix(false),
6816            mIsLegacyUpmix(false),
6817            mRequiresFloat(false),
6818            mInputConverterProvider(NULL)
6819{
6820    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6821            dstChannelMask, dstFormat, dstSampleRate);
6822}
6823
6824AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6825    free(mBuf);
6826    delete mResampler;
6827    delete mInputConverterProvider;
6828}
6829
6830size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6831        AudioBufferProvider *provider, size_t frames)
6832{
6833    if (mInputConverterProvider != NULL) {
6834        mInputConverterProvider->setBufferProvider(provider);
6835        provider = mInputConverterProvider;
6836    }
6837
6838    if (mResampler == NULL) {
6839        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6840                mSrcSampleRate, mSrcFormat, mDstFormat);
6841
6842        AudioBufferProvider::Buffer buffer;
6843        for (size_t i = frames; i > 0; ) {
6844            buffer.frameCount = i;
6845            status_t status = provider->getNextBuffer(&buffer);
6846            if (status != OK || buffer.frameCount == 0) {
6847                frames -= i; // cannot fill request.
6848                break;
6849            }
6850            // format convert to destination buffer
6851            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6852
6853            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6854            i -= buffer.frameCount;
6855            provider->releaseBuffer(&buffer);
6856        }
6857    } else {
6858         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6859                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6860
6861         // reallocate buffer if needed
6862         if (mBufFrameSize != 0 && mBufFrames < frames) {
6863             free(mBuf);
6864             mBufFrames = frames;
6865             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6866         }
6867        // resampler accumulates, but we only have one source track
6868        memset(mBuf, 0, frames * mBufFrameSize);
6869        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6870        // format convert to destination buffer
6871        convertResampler(dst, mBuf, frames);
6872    }
6873    return frames;
6874}
6875
6876status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6877        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6878        uint32_t srcSampleRate,
6879        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6880        uint32_t dstSampleRate)
6881{
6882    // quick evaluation if there is any change.
6883    if (mSrcFormat == srcFormat
6884            && mSrcChannelMask == srcChannelMask
6885            && mSrcSampleRate == srcSampleRate
6886            && mDstFormat == dstFormat
6887            && mDstChannelMask == dstChannelMask
6888            && mDstSampleRate == dstSampleRate) {
6889        return NO_ERROR;
6890    }
6891
6892    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6893            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6894            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6895    const bool valid =
6896            audio_is_input_channel(srcChannelMask)
6897            && audio_is_input_channel(dstChannelMask)
6898            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6899            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6900            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6901            ; // no upsampling checks for now
6902    if (!valid) {
6903        return BAD_VALUE;
6904    }
6905
6906    mSrcFormat = srcFormat;
6907    mSrcChannelMask = srcChannelMask;
6908    mSrcSampleRate = srcSampleRate;
6909    mDstFormat = dstFormat;
6910    mDstChannelMask = dstChannelMask;
6911    mDstSampleRate = dstSampleRate;
6912
6913    // compute derived parameters
6914    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6915    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6916    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6917
6918    // do we need to resample?
6919    delete mResampler;
6920    mResampler = NULL;
6921    if (mSrcSampleRate != mDstSampleRate) {
6922        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6923                mSrcChannelCount, mDstSampleRate);
6924        mResampler->setSampleRate(mSrcSampleRate);
6925        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6926    }
6927
6928    // are we running legacy channel conversion modes?
6929    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6930                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6931                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6932    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6933                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6934                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6935
6936    // do we need to process in float?
6937    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6938
6939    // do we need a staging buffer to convert for destination (we can still optimize this)?
6940    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6941    if (mResampler != NULL) {
6942        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6943                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6944    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6945        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6946    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6947        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6948    } else {
6949        mBufFrameSize = 0;
6950    }
6951    mBufFrames = 0; // force the buffer to be resized.
6952
6953    // do we need an input converter buffer provider to give us float?
6954    delete mInputConverterProvider;
6955    mInputConverterProvider = NULL;
6956    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6957        mInputConverterProvider = new ReformatBufferProvider(
6958                audio_channel_count_from_in_mask(mSrcChannelMask),
6959                mSrcFormat,
6960                AUDIO_FORMAT_PCM_FLOAT,
6961                256 /* provider buffer frame count */);
6962    }
6963
6964    // do we need a remixer to do channel mask conversion
6965    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6966        (void) memcpy_by_index_array_initialization_from_channel_mask(
6967                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6968    }
6969    return NO_ERROR;
6970}
6971
6972void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6973        void *dst, const void *src, size_t frames)
6974{
6975    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6976    if (mBufFrameSize != 0 && mBufFrames < frames) {
6977        free(mBuf);
6978        mBufFrames = frames;
6979        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6980    }
6981    // do we need to do legacy upmix and downmix?
6982    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6983        void *dstBuf = mBuf != NULL ? mBuf : dst;
6984        if (mIsLegacyUpmix) {
6985            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6986                    (const float *)src, frames);
6987        } else /*mIsLegacyDownmix */ {
6988            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6989                    (const float *)src, frames);
6990        }
6991        if (mBuf != NULL) {
6992            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6993                    frames * mDstChannelCount);
6994        }
6995        return;
6996    }
6997    // do we need to do channel mask conversion?
6998    if (mSrcChannelMask != mDstChannelMask) {
6999        void *dstBuf = mBuf != NULL ? mBuf : dst;
7000        memcpy_by_index_array(dstBuf, mDstChannelCount,
7001                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
7002        if (dstBuf == dst) {
7003            return; // format is the same
7004        }
7005    }
7006    // convert to destination buffer
7007    const void *convertBuf = mBuf != NULL ? mBuf : src;
7008    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
7009            frames * mDstChannelCount);
7010}
7011
7012void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
7013        void *dst, /*not-a-const*/ void *src, size_t frames)
7014{
7015    // src buffer format is ALWAYS float when entering this routine
7016    if (mIsLegacyUpmix) {
7017        ; // mono to stereo already handled by resampler
7018    } else if (mIsLegacyDownmix
7019            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
7020        // the resampler outputs stereo for mono input channel (a feature?)
7021        // must convert to mono
7022        downmix_to_mono_float_from_stereo_float((float *)src,
7023                (const float *)src, frames);
7024    } else if (mSrcChannelMask != mDstChannelMask) {
7025        // convert to mono channel again for channel mask conversion (could be skipped
7026        // with further optimization).
7027        if (mSrcChannelCount == 1) {
7028            downmix_to_mono_float_from_stereo_float((float *)src,
7029                (const float *)src, frames);
7030        }
7031        // convert to destination format (in place, OK as float is larger than other types)
7032        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
7033            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7034                    frames * mSrcChannelCount);
7035        }
7036        // channel convert and save to dst
7037        memcpy_by_index_array(dst, mDstChannelCount,
7038                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
7039        return;
7040    }
7041    // convert to destination format and save to dst
7042    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7043            frames * mDstChannelCount);
7044}
7045
7046bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7047                                                        status_t& status)
7048{
7049    bool reconfig = false;
7050
7051    status = NO_ERROR;
7052
7053    audio_format_t reqFormat = mFormat;
7054    uint32_t samplingRate = mSampleRate;
7055    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7056    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7057
7058    AudioParameter param = AudioParameter(keyValuePair);
7059    int value;
7060    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7061    //      channel count change can be requested. Do we mandate the first client defines the
7062    //      HAL sampling rate and channel count or do we allow changes on the fly?
7063    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7064        samplingRate = value;
7065        reconfig = true;
7066    }
7067    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7068        if (!audio_is_linear_pcm((audio_format_t) value)) {
7069            status = BAD_VALUE;
7070        } else {
7071            reqFormat = (audio_format_t) value;
7072            reconfig = true;
7073        }
7074    }
7075    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7076        audio_channel_mask_t mask = (audio_channel_mask_t) value;
7077        if (!audio_is_input_channel(mask) ||
7078                audio_channel_count_from_in_mask(mask) > FCC_8) {
7079            status = BAD_VALUE;
7080        } else {
7081            channelMask = mask;
7082            reconfig = true;
7083        }
7084    }
7085    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7086        // do not accept frame count changes if tracks are open as the track buffer
7087        // size depends on frame count and correct behavior would not be guaranteed
7088        // if frame count is changed after track creation
7089        if (mActiveTracks.size() > 0) {
7090            status = INVALID_OPERATION;
7091        } else {
7092            reconfig = true;
7093        }
7094    }
7095    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7096        // forward device change to effects that have requested to be
7097        // aware of attached audio device.
7098        for (size_t i = 0; i < mEffectChains.size(); i++) {
7099            mEffectChains[i]->setDevice_l(value);
7100        }
7101
7102        // store input device and output device but do not forward output device to audio HAL.
7103        // Note that status is ignored by the caller for output device
7104        // (see AudioFlinger::setParameters()
7105        if (audio_is_output_devices(value)) {
7106            mOutDevice = value;
7107            status = BAD_VALUE;
7108        } else {
7109            mInDevice = value;
7110            if (value != AUDIO_DEVICE_NONE) {
7111                mPrevInDevice = value;
7112            }
7113            // disable AEC and NS if the device is a BT SCO headset supporting those
7114            // pre processings
7115            if (mTracks.size() > 0) {
7116                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7117                                    mAudioFlinger->btNrecIsOff();
7118                for (size_t i = 0; i < mTracks.size(); i++) {
7119                    sp<RecordTrack> track = mTracks[i];
7120                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7121                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7122                }
7123            }
7124        }
7125    }
7126    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7127            mAudioSource != (audio_source_t)value) {
7128        // forward device change to effects that have requested to be
7129        // aware of attached audio device.
7130        for (size_t i = 0; i < mEffectChains.size(); i++) {
7131            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7132        }
7133        mAudioSource = (audio_source_t)value;
7134    }
7135
7136    if (status == NO_ERROR) {
7137        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7138                keyValuePair.string());
7139        if (status == INVALID_OPERATION) {
7140            inputStandBy();
7141            status = mInput->stream->common.set_parameters(&mInput->stream->common,
7142                    keyValuePair.string());
7143        }
7144        if (reconfig) {
7145            if (status == BAD_VALUE &&
7146                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7147                audio_is_linear_pcm(reqFormat) &&
7148                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7149                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7150                audio_channel_count_from_in_mask(
7151                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7152                status = NO_ERROR;
7153            }
7154            if (status == NO_ERROR) {
7155                readInputParameters_l();
7156                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7157            }
7158        }
7159    }
7160
7161    return reconfig;
7162}
7163
7164String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7165{
7166    Mutex::Autolock _l(mLock);
7167    if (initCheck() != NO_ERROR) {
7168        return String8();
7169    }
7170
7171    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7172    const String8 out_s8(s);
7173    free(s);
7174    return out_s8;
7175}
7176
7177void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7178    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7179
7180    desc->mIoHandle = mId;
7181
7182    switch (event) {
7183    case AUDIO_INPUT_OPENED:
7184    case AUDIO_INPUT_CONFIG_CHANGED:
7185        desc->mPatch = mPatch;
7186        desc->mChannelMask = mChannelMask;
7187        desc->mSamplingRate = mSampleRate;
7188        desc->mFormat = mFormat;
7189        desc->mFrameCount = mFrameCount;
7190        desc->mLatency = 0;
7191        break;
7192
7193    case AUDIO_INPUT_CLOSED:
7194    default:
7195        break;
7196    }
7197    mAudioFlinger->ioConfigChanged(event, desc, pid);
7198}
7199
7200void AudioFlinger::RecordThread::readInputParameters_l()
7201{
7202    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7203    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7204    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7205    if (mChannelCount > FCC_8) {
7206        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7207    }
7208    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7209    mFormat = mHALFormat;
7210    if (!audio_is_linear_pcm(mFormat)) {
7211        ALOGE("HAL format %#x is not linear pcm", mFormat);
7212    }
7213    mFrameSize = audio_stream_in_frame_size(mInput->stream);
7214    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7215    mFrameCount = mBufferSize / mFrameSize;
7216    // This is the formula for calculating the temporary buffer size.
7217    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7218    // 1 full output buffer, regardless of the alignment of the available input.
7219    // The value is somewhat arbitrary, and could probably be even larger.
7220    // A larger value should allow more old data to be read after a track calls start(),
7221    // without increasing latency.
7222    //
7223    // Note this is independent of the maximum downsampling ratio permitted for capture.
7224    mRsmpInFrames = mFrameCount * 7;
7225    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7226    free(mRsmpInBuffer);
7227    mRsmpInBuffer = NULL;
7228
7229    // TODO optimize audio capture buffer sizes ...
7230    // Here we calculate the size of the sliding buffer used as a source
7231    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7232    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7233    // be better to have it derived from the pipe depth in the long term.
7234    // The current value is higher than necessary.  However it should not add to latency.
7235
7236    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7237    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7238    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7239    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7240
7241    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7242    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7243}
7244
7245uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7246{
7247    Mutex::Autolock _l(mLock);
7248    if (initCheck() != NO_ERROR) {
7249        return 0;
7250    }
7251
7252    return mInput->stream->get_input_frames_lost(mInput->stream);
7253}
7254
7255uint32_t AudioFlinger::RecordThread::hasAudioSession(audio_session_t sessionId) const
7256{
7257    Mutex::Autolock _l(mLock);
7258    uint32_t result = 0;
7259    if (getEffectChain_l(sessionId) != 0) {
7260        result = EFFECT_SESSION;
7261    }
7262
7263    for (size_t i = 0; i < mTracks.size(); ++i) {
7264        if (sessionId == mTracks[i]->sessionId()) {
7265            result |= TRACK_SESSION;
7266            break;
7267        }
7268    }
7269
7270    return result;
7271}
7272
7273KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7274{
7275    KeyedVector<audio_session_t, bool> ids;
7276    Mutex::Autolock _l(mLock);
7277    for (size_t j = 0; j < mTracks.size(); ++j) {
7278        sp<RecordThread::RecordTrack> track = mTracks[j];
7279        audio_session_t sessionId = track->sessionId();
7280        if (ids.indexOfKey(sessionId) < 0) {
7281            ids.add(sessionId, true);
7282        }
7283    }
7284    return ids;
7285}
7286
7287AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7288{
7289    Mutex::Autolock _l(mLock);
7290    AudioStreamIn *input = mInput;
7291    mInput = NULL;
7292    return input;
7293}
7294
7295// this method must always be called either with ThreadBase mLock held or inside the thread loop
7296audio_stream_t* AudioFlinger::RecordThread::stream() const
7297{
7298    if (mInput == NULL) {
7299        return NULL;
7300    }
7301    return &mInput->stream->common;
7302}
7303
7304status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7305{
7306    // only one chain per input thread
7307    if (mEffectChains.size() != 0) {
7308        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7309        return INVALID_OPERATION;
7310    }
7311    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7312    chain->setThread(this);
7313    chain->setInBuffer(NULL);
7314    chain->setOutBuffer(NULL);
7315
7316    checkSuspendOnAddEffectChain_l(chain);
7317
7318    // make sure enabled pre processing effects state is communicated to the HAL as we
7319    // just moved them to a new input stream.
7320    chain->syncHalEffectsState();
7321
7322    mEffectChains.add(chain);
7323
7324    return NO_ERROR;
7325}
7326
7327size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7328{
7329    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7330    ALOGW_IF(mEffectChains.size() != 1,
7331            "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7332            chain.get(), mEffectChains.size(), this);
7333    if (mEffectChains.size() == 1) {
7334        mEffectChains.removeAt(0);
7335    }
7336    return 0;
7337}
7338
7339status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7340                                                          audio_patch_handle_t *handle)
7341{
7342    status_t status = NO_ERROR;
7343
7344    // store new device and send to effects
7345    mInDevice = patch->sources[0].ext.device.type;
7346    mPatch = *patch;
7347    for (size_t i = 0; i < mEffectChains.size(); i++) {
7348        mEffectChains[i]->setDevice_l(mInDevice);
7349    }
7350
7351    // disable AEC and NS if the device is a BT SCO headset supporting those
7352    // pre processings
7353    if (mTracks.size() > 0) {
7354        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7355                            mAudioFlinger->btNrecIsOff();
7356        for (size_t i = 0; i < mTracks.size(); i++) {
7357            sp<RecordTrack> track = mTracks[i];
7358            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7359            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7360        }
7361    }
7362
7363    // store new source and send to effects
7364    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7365        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7366        for (size_t i = 0; i < mEffectChains.size(); i++) {
7367            mEffectChains[i]->setAudioSource_l(mAudioSource);
7368        }
7369    }
7370
7371    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7372        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7373        status = hwDevice->create_audio_patch(hwDevice,
7374                                               patch->num_sources,
7375                                               patch->sources,
7376                                               patch->num_sinks,
7377                                               patch->sinks,
7378                                               handle);
7379    } else {
7380        char *address;
7381        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7382            address = audio_device_address_to_parameter(
7383                                                patch->sources[0].ext.device.type,
7384                                                patch->sources[0].ext.device.address);
7385        } else {
7386            address = (char *)calloc(1, 1);
7387        }
7388        AudioParameter param = AudioParameter(String8(address));
7389        free(address);
7390        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7391                     (int)patch->sources[0].ext.device.type);
7392        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7393                                         (int)patch->sinks[0].ext.mix.usecase.source);
7394        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7395                param.toString().string());
7396        *handle = AUDIO_PATCH_HANDLE_NONE;
7397    }
7398
7399    if (mInDevice != mPrevInDevice) {
7400        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7401        mPrevInDevice = mInDevice;
7402    }
7403
7404    return status;
7405}
7406
7407status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7408{
7409    status_t status = NO_ERROR;
7410
7411    mInDevice = AUDIO_DEVICE_NONE;
7412
7413    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7414        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7415        status = hwDevice->release_audio_patch(hwDevice, handle);
7416    } else {
7417        AudioParameter param;
7418        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7419        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7420                param.toString().string());
7421    }
7422    return status;
7423}
7424
7425void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7426{
7427    Mutex::Autolock _l(mLock);
7428    mTracks.add(record);
7429}
7430
7431void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7432{
7433    Mutex::Autolock _l(mLock);
7434    destroyTrack_l(record);
7435}
7436
7437void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7438{
7439    ThreadBase::getAudioPortConfig(config);
7440    config->role = AUDIO_PORT_ROLE_SINK;
7441    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7442    config->ext.mix.usecase.source = mAudioSource;
7443}
7444
7445} // namespace android
7446