Threads.cpp revision d330ee46022f34da76d14d0c4d2910526ecc2321
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/primitives.h>
40#include <audio_utils/format.h>
41#include <audio_utils/minifloat.h>
42
43// NBAIO implementations
44#include <media/nbaio/AudioStreamInSource.h>
45#include <media/nbaio/AudioStreamOutSink.h>
46#include <media/nbaio/MonoPipe.h>
47#include <media/nbaio/MonoPipeReader.h>
48#include <media/nbaio/Pipe.h>
49#include <media/nbaio/PipeReader.h>
50#include <media/nbaio/SourceAudioBufferProvider.h>
51
52#include <powermanager/PowerManager.h>
53
54#include <common_time/cc_helper.h>
55#include <common_time/local_clock.h>
56
57#include "AudioFlinger.h"
58#include "AudioMixer.h"
59#include "BufferProviders.h"
60#include "FastMixer.h"
61#include "FastCapture.h"
62#include "ServiceUtilities.h"
63#include "SchedulingPolicyService.h"
64
65#ifdef ADD_BATTERY_DATA
66#include <media/IMediaPlayerService.h>
67#include <media/IMediaDeathNotifier.h>
68#endif
69
70#ifdef DEBUG_CPU_USAGE
71#include <cpustats/CentralTendencyStatistics.h>
72#include <cpustats/ThreadCpuUsage.h>
73#endif
74
75// ----------------------------------------------------------------------------
76
77// Note: the following macro is used for extremely verbose logging message.  In
78// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
79// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
80// are so verbose that we want to suppress them even when we have ALOG_ASSERT
81// turned on.  Do not uncomment the #def below unless you really know what you
82// are doing and want to see all of the extremely verbose messages.
83//#define VERY_VERY_VERBOSE_LOGGING
84#ifdef VERY_VERY_VERBOSE_LOGGING
85#define ALOGVV ALOGV
86#else
87#define ALOGVV(a...) do { } while(0)
88#endif
89
90// TODO: Move these macro/inlines to a header file.
91#define max(a, b) ((a) > (b) ? (a) : (b))
92template <typename T>
93static inline T min(const T& a, const T& b)
94{
95    return a < b ? a : b;
96}
97
98#ifndef ARRAY_SIZE
99#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
100#endif
101
102namespace android {
103
104// retry counts for buffer fill timeout
105// 50 * ~20msecs = 1 second
106static const int8_t kMaxTrackRetries = 50;
107static const int8_t kMaxTrackStartupRetries = 50;
108// allow less retry attempts on direct output thread.
109// direct outputs can be a scarce resource in audio hardware and should
110// be released as quickly as possible.
111static const int8_t kMaxTrackRetriesDirect = 2;
112
113// don't warn about blocked writes or record buffer overflows more often than this
114static const nsecs_t kWarningThrottleNs = seconds(5);
115
116// RecordThread loop sleep time upon application overrun or audio HAL read error
117static const int kRecordThreadSleepUs = 5000;
118
119// maximum time to wait in sendConfigEvent_l() for a status to be received
120static const nsecs_t kConfigEventTimeoutNs = seconds(2);
121
122// minimum sleep time for the mixer thread loop when tracks are active but in underrun
123static const uint32_t kMinThreadSleepTimeUs = 5000;
124// maximum divider applied to the active sleep time in the mixer thread loop
125static const uint32_t kMaxThreadSleepTimeShift = 2;
126
127// minimum normal sink buffer size, expressed in milliseconds rather than frames
128static const uint32_t kMinNormalSinkBufferSizeMs = 20;
129// maximum normal sink buffer size
130static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
131
132// Offloaded output thread standby delay: allows track transition without going to standby
133static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
134
135// Whether to use fast mixer
136static const enum {
137    FastMixer_Never,    // never initialize or use: for debugging only
138    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
139                        // normal mixer multiplier is 1
140    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
141                        // multiplier is calculated based on min & max normal mixer buffer size
142    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
143                        // multiplier is calculated based on min & max normal mixer buffer size
144    // FIXME for FastMixer_Dynamic:
145    //  Supporting this option will require fixing HALs that can't handle large writes.
146    //  For example, one HAL implementation returns an error from a large write,
147    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
148    //  We could either fix the HAL implementations, or provide a wrapper that breaks
149    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
150} kUseFastMixer = FastMixer_Static;
151
152// Whether to use fast capture
153static const enum {
154    FastCapture_Never,  // never initialize or use: for debugging only
155    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
156    FastCapture_Static, // initialize if needed, then use all the time if initialized
157} kUseFastCapture = FastCapture_Static;
158
159// Priorities for requestPriority
160static const int kPriorityAudioApp = 2;
161static const int kPriorityFastMixer = 3;
162static const int kPriorityFastCapture = 3;
163
164// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
165// for the track.  The client then sub-divides this into smaller buffers for its use.
166// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
167// So for now we just assume that client is double-buffered for fast tracks.
168// FIXME It would be better for client to tell AudioFlinger the value of N,
169// so AudioFlinger could allocate the right amount of memory.
170// See the client's minBufCount and mNotificationFramesAct calculations for details.
171
172// This is the default value, if not specified by property.
173static const int kFastTrackMultiplier = 2;
174
175// The minimum and maximum allowed values
176static const int kFastTrackMultiplierMin = 1;
177static const int kFastTrackMultiplierMax = 2;
178
179// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
180static int sFastTrackMultiplier = kFastTrackMultiplier;
181
182// See Thread::readOnlyHeap().
183// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
184// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
185// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
186static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
187
188// ----------------------------------------------------------------------------
189
190static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
191
192static void sFastTrackMultiplierInit()
193{
194    char value[PROPERTY_VALUE_MAX];
195    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
196        char *endptr;
197        unsigned long ul = strtoul(value, &endptr, 0);
198        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
199            sFastTrackMultiplier = (int) ul;
200        }
201    }
202}
203
204// ----------------------------------------------------------------------------
205
206#ifdef ADD_BATTERY_DATA
207// To collect the amplifier usage
208static void addBatteryData(uint32_t params) {
209    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
210    if (service == NULL) {
211        // it already logged
212        return;
213    }
214
215    service->addBatteryData(params);
216}
217#endif
218
219
220// ----------------------------------------------------------------------------
221//      CPU Stats
222// ----------------------------------------------------------------------------
223
224class CpuStats {
225public:
226    CpuStats();
227    void sample(const String8 &title);
228#ifdef DEBUG_CPU_USAGE
229private:
230    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
231    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
232
233    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
234
235    int mCpuNum;                        // thread's current CPU number
236    int mCpukHz;                        // frequency of thread's current CPU in kHz
237#endif
238};
239
240CpuStats::CpuStats()
241#ifdef DEBUG_CPU_USAGE
242    : mCpuNum(-1), mCpukHz(-1)
243#endif
244{
245}
246
247void CpuStats::sample(const String8 &title
248#ifndef DEBUG_CPU_USAGE
249                __unused
250#endif
251        ) {
252#ifdef DEBUG_CPU_USAGE
253    // get current thread's delta CPU time in wall clock ns
254    double wcNs;
255    bool valid = mCpuUsage.sampleAndEnable(wcNs);
256
257    // record sample for wall clock statistics
258    if (valid) {
259        mWcStats.sample(wcNs);
260    }
261
262    // get the current CPU number
263    int cpuNum = sched_getcpu();
264
265    // get the current CPU frequency in kHz
266    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
267
268    // check if either CPU number or frequency changed
269    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
270        mCpuNum = cpuNum;
271        mCpukHz = cpukHz;
272        // ignore sample for purposes of cycles
273        valid = false;
274    }
275
276    // if no change in CPU number or frequency, then record sample for cycle statistics
277    if (valid && mCpukHz > 0) {
278        double cycles = wcNs * cpukHz * 0.000001;
279        mHzStats.sample(cycles);
280    }
281
282    unsigned n = mWcStats.n();
283    // mCpuUsage.elapsed() is expensive, so don't call it every loop
284    if ((n & 127) == 1) {
285        long long elapsed = mCpuUsage.elapsed();
286        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
287            double perLoop = elapsed / (double) n;
288            double perLoop100 = perLoop * 0.01;
289            double perLoop1k = perLoop * 0.001;
290            double mean = mWcStats.mean();
291            double stddev = mWcStats.stddev();
292            double minimum = mWcStats.minimum();
293            double maximum = mWcStats.maximum();
294            double meanCycles = mHzStats.mean();
295            double stddevCycles = mHzStats.stddev();
296            double minCycles = mHzStats.minimum();
297            double maxCycles = mHzStats.maximum();
298            mCpuUsage.resetElapsed();
299            mWcStats.reset();
300            mHzStats.reset();
301            ALOGD("CPU usage for %s over past %.1f secs\n"
302                "  (%u mixer loops at %.1f mean ms per loop):\n"
303                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
304                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
305                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
306                    title.string(),
307                    elapsed * .000000001, n, perLoop * .000001,
308                    mean * .001,
309                    stddev * .001,
310                    minimum * .001,
311                    maximum * .001,
312                    mean / perLoop100,
313                    stddev / perLoop100,
314                    minimum / perLoop100,
315                    maximum / perLoop100,
316                    meanCycles / perLoop1k,
317                    stddevCycles / perLoop1k,
318                    minCycles / perLoop1k,
319                    maxCycles / perLoop1k);
320
321        }
322    }
323#endif
324};
325
326// ----------------------------------------------------------------------------
327//      ThreadBase
328// ----------------------------------------------------------------------------
329
330// static
331const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
332{
333    switch (type) {
334    case MIXER:
335        return "MIXER";
336    case DIRECT:
337        return "DIRECT";
338    case DUPLICATING:
339        return "DUPLICATING";
340    case RECORD:
341        return "RECORD";
342    case OFFLOAD:
343        return "OFFLOAD";
344    default:
345        return "unknown";
346    }
347}
348
349String8 devicesToString(audio_devices_t devices)
350{
351    static const struct mapping {
352        audio_devices_t mDevices;
353        const char *    mString;
354    } mappingsOut[] = {
355        AUDIO_DEVICE_OUT_EARPIECE,          "EARPIECE",
356        AUDIO_DEVICE_OUT_SPEAKER,           "SPEAKER",
357        AUDIO_DEVICE_OUT_WIRED_HEADSET,     "WIRED_HEADSET",
358        AUDIO_DEVICE_OUT_WIRED_HEADPHONE,   "WIRED_HEADPHONE",
359        AUDIO_DEVICE_OUT_TELEPHONY_TX,      "TELEPHONY_TX",
360        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
361    }, mappingsIn[] = {
362        AUDIO_DEVICE_IN_BUILTIN_MIC,        "BUILTIN_MIC",
363        AUDIO_DEVICE_IN_WIRED_HEADSET,      "WIRED_HEADSET",
364        AUDIO_DEVICE_IN_VOICE_CALL,         "VOICE_CALL",
365        AUDIO_DEVICE_IN_REMOTE_SUBMIX,      "REMOTE_SUBMIX",
366        AUDIO_DEVICE_NONE,                  "NONE",         // must be last
367    };
368    String8 result;
369    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
370    const mapping *entry;
371    if (devices & AUDIO_DEVICE_BIT_IN) {
372        devices &= ~AUDIO_DEVICE_BIT_IN;
373        entry = mappingsIn;
374    } else {
375        entry = mappingsOut;
376    }
377    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
378        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
379        if (devices & entry->mDevices) {
380            if (!result.isEmpty()) {
381                result.append("|");
382            }
383            result.append(entry->mString);
384        }
385    }
386    if (devices & ~allDevices) {
387        if (!result.isEmpty()) {
388            result.append("|");
389        }
390        result.appendFormat("0x%X", devices & ~allDevices);
391    }
392    if (result.isEmpty()) {
393        result.append(entry->mString);
394    }
395    return result;
396}
397
398String8 inputFlagsToString(audio_input_flags_t flags)
399{
400    static const struct mapping {
401        audio_input_flags_t     mFlag;
402        const char *            mString;
403    } mappings[] = {
404        AUDIO_INPUT_FLAG_FAST,              "FAST",
405        AUDIO_INPUT_FLAG_HW_HOTWORD,        "HW_HOTWORD",
406        AUDIO_INPUT_FLAG_NONE,              "NONE",         // must be last
407    };
408    String8 result;
409    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
410    const mapping *entry;
411    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
412        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
413        if (flags & entry->mFlag) {
414            if (!result.isEmpty()) {
415                result.append("|");
416            }
417            result.append(entry->mString);
418        }
419    }
420    if (flags & ~allFlags) {
421        if (!result.isEmpty()) {
422            result.append("|");
423        }
424        result.appendFormat("0x%X", flags & ~allFlags);
425    }
426    if (result.isEmpty()) {
427        result.append(entry->mString);
428    }
429    return result;
430}
431
432String8 outputFlagsToString(audio_output_flags_t flags)
433{
434    static const struct mapping {
435        audio_output_flags_t    mFlag;
436        const char *            mString;
437    } mappings[] = {
438        AUDIO_OUTPUT_FLAG_DIRECT,           "DIRECT",
439        AUDIO_OUTPUT_FLAG_PRIMARY,          "PRIMARY",
440        AUDIO_OUTPUT_FLAG_FAST,             "FAST",
441        AUDIO_OUTPUT_FLAG_DEEP_BUFFER,      "DEEP_BUFFER",
442        AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD, "COMPRESS_OFFLOAD",
443        AUDIO_OUTPUT_FLAG_NON_BLOCKING,     "NON_BLOCKING",
444        AUDIO_OUTPUT_FLAG_HW_AV_SYNC,       "HW_AV_SYNC",
445        AUDIO_OUTPUT_FLAG_NONE,             "NONE",         // must be last
446    };
447    String8 result;
448    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
449    const mapping *entry;
450    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
451        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
452        if (flags & entry->mFlag) {
453            if (!result.isEmpty()) {
454                result.append("|");
455            }
456            result.append(entry->mString);
457        }
458    }
459    if (flags & ~allFlags) {
460        if (!result.isEmpty()) {
461            result.append("|");
462        }
463        result.appendFormat("0x%X", flags & ~allFlags);
464    }
465    if (result.isEmpty()) {
466        result.append(entry->mString);
467    }
468    return result;
469}
470
471const char *sourceToString(audio_source_t source)
472{
473    switch (source) {
474    case AUDIO_SOURCE_DEFAULT:              return "default";
475    case AUDIO_SOURCE_MIC:                  return "mic";
476    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
477    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
478    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
479    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
480    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
481    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
482    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
483    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
484    case AUDIO_SOURCE_HOTWORD:              return "hotword";
485    default:                                return "unknown";
486    }
487}
488
489AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
490        audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
491    :   Thread(false /*canCallJava*/),
492        mType(type),
493        mAudioFlinger(audioFlinger),
494        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
495        // are set by PlaybackThread::readOutputParameters_l() or
496        // RecordThread::readInputParameters_l()
497        //FIXME: mStandby should be true here. Is this some kind of hack?
498        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
499        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
500        // mName will be set by concrete (non-virtual) subclass
501        mDeathRecipient(new PMDeathRecipient(this))
502{
503}
504
505AudioFlinger::ThreadBase::~ThreadBase()
506{
507    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
508    mConfigEvents.clear();
509
510    // do not lock the mutex in destructor
511    releaseWakeLock_l();
512    if (mPowerManager != 0) {
513        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
514        binder->unlinkToDeath(mDeathRecipient);
515    }
516}
517
518status_t AudioFlinger::ThreadBase::readyToRun()
519{
520    status_t status = initCheck();
521    if (status == NO_ERROR) {
522        ALOGI("AudioFlinger's thread %p ready to run", this);
523    } else {
524        ALOGE("No working audio driver found.");
525    }
526    return status;
527}
528
529void AudioFlinger::ThreadBase::exit()
530{
531    ALOGV("ThreadBase::exit");
532    // do any cleanup required for exit to succeed
533    preExit();
534    {
535        // This lock prevents the following race in thread (uniprocessor for illustration):
536        //  if (!exitPending()) {
537        //      // context switch from here to exit()
538        //      // exit() calls requestExit(), what exitPending() observes
539        //      // exit() calls signal(), which is dropped since no waiters
540        //      // context switch back from exit() to here
541        //      mWaitWorkCV.wait(...);
542        //      // now thread is hung
543        //  }
544        AutoMutex lock(mLock);
545        requestExit();
546        mWaitWorkCV.broadcast();
547    }
548    // When Thread::requestExitAndWait is made virtual and this method is renamed to
549    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
550    requestExitAndWait();
551}
552
553status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
554{
555    status_t status;
556
557    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
558    Mutex::Autolock _l(mLock);
559
560    return sendSetParameterConfigEvent_l(keyValuePairs);
561}
562
563// sendConfigEvent_l() must be called with ThreadBase::mLock held
564// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
565status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
566{
567    status_t status = NO_ERROR;
568
569    mConfigEvents.add(event);
570    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
571    mWaitWorkCV.signal();
572    mLock.unlock();
573    {
574        Mutex::Autolock _l(event->mLock);
575        while (event->mWaitStatus) {
576            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
577                event->mStatus = TIMED_OUT;
578                event->mWaitStatus = false;
579            }
580        }
581        status = event->mStatus;
582    }
583    mLock.lock();
584    return status;
585}
586
587void AudioFlinger::ThreadBase::sendIoConfigEvent(int event, int param)
588{
589    Mutex::Autolock _l(mLock);
590    sendIoConfigEvent_l(event, param);
591}
592
593// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
594void AudioFlinger::ThreadBase::sendIoConfigEvent_l(int event, int param)
595{
596    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, param);
597    sendConfigEvent_l(configEvent);
598}
599
600// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
601void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
602{
603    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
604    sendConfigEvent_l(configEvent);
605}
606
607// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
608status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
609{
610    sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
611    return sendConfigEvent_l(configEvent);
612}
613
614status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
615                                                        const struct audio_patch *patch,
616                                                        audio_patch_handle_t *handle)
617{
618    Mutex::Autolock _l(mLock);
619    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
620    status_t status = sendConfigEvent_l(configEvent);
621    if (status == NO_ERROR) {
622        CreateAudioPatchConfigEventData *data =
623                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
624        *handle = data->mHandle;
625    }
626    return status;
627}
628
629status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
630                                                                const audio_patch_handle_t handle)
631{
632    Mutex::Autolock _l(mLock);
633    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
634    return sendConfigEvent_l(configEvent);
635}
636
637
638// post condition: mConfigEvents.isEmpty()
639void AudioFlinger::ThreadBase::processConfigEvents_l()
640{
641    bool configChanged = false;
642
643    while (!mConfigEvents.isEmpty()) {
644        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
645        sp<ConfigEvent> event = mConfigEvents[0];
646        mConfigEvents.removeAt(0);
647        switch (event->mType) {
648        case CFG_EVENT_PRIO: {
649            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
650            // FIXME Need to understand why this has to be done asynchronously
651            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
652                    true /*asynchronous*/);
653            if (err != 0) {
654                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
655                      data->mPrio, data->mPid, data->mTid, err);
656            }
657        } break;
658        case CFG_EVENT_IO: {
659            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
660            audioConfigChanged(data->mEvent, data->mParam);
661        } break;
662        case CFG_EVENT_SET_PARAMETER: {
663            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
664            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
665                configChanged = true;
666            }
667        } break;
668        case CFG_EVENT_CREATE_AUDIO_PATCH: {
669            CreateAudioPatchConfigEventData *data =
670                                            (CreateAudioPatchConfigEventData *)event->mData.get();
671            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
672        } break;
673        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
674            ReleaseAudioPatchConfigEventData *data =
675                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
676            event->mStatus = releaseAudioPatch_l(data->mHandle);
677        } break;
678        default:
679            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
680            break;
681        }
682        {
683            Mutex::Autolock _l(event->mLock);
684            if (event->mWaitStatus) {
685                event->mWaitStatus = false;
686                event->mCond.signal();
687            }
688        }
689        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
690    }
691
692    if (configChanged) {
693        cacheParameters_l();
694    }
695}
696
697String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
698    String8 s;
699    if (output) {
700        if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
701        if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
702        if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
703        if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
704        if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
705        if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
706        if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
707        if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
708        if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
709        if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
710        if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
711        if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
712        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
713        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
714        if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
715        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
716        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
717        if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
718        if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
719    } else {
720        if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
721        if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
722        if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
723        if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
724        if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
725        if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
726        if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
727        if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
728        if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
729        if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
730        if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
731        if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
732        if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
733        if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
734        if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
735    }
736    int len = s.length();
737    if (s.length() > 2) {
738        char *str = s.lockBuffer(len);
739        s.unlockBuffer(len - 2);
740    }
741    return s;
742}
743
744void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
745{
746    const size_t SIZE = 256;
747    char buffer[SIZE];
748    String8 result;
749
750    bool locked = AudioFlinger::dumpTryLock(mLock);
751    if (!locked) {
752        dprintf(fd, "thread %p may be deadlocked\n", this);
753    }
754
755    dprintf(fd, "  Thread name: %s\n", mThreadName);
756    dprintf(fd, "  I/O handle: %d\n", mId);
757    dprintf(fd, "  TID: %d\n", getTid());
758    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
759    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
760    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
761    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
762    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
763    dprintf(fd, "  Channel count: %u\n", mChannelCount);
764    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
765            channelMaskToString(mChannelMask, mType != RECORD).string());
766    dprintf(fd, "  Format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
767    dprintf(fd, "  Frame size: %zu bytes\n", mFrameSize);
768    dprintf(fd, "  Pending config events:");
769    size_t numConfig = mConfigEvents.size();
770    if (numConfig) {
771        for (size_t i = 0; i < numConfig; i++) {
772            mConfigEvents[i]->dump(buffer, SIZE);
773            dprintf(fd, "\n    %s", buffer);
774        }
775        dprintf(fd, "\n");
776    } else {
777        dprintf(fd, " none\n");
778    }
779    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
780    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
781    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
782
783    if (locked) {
784        mLock.unlock();
785    }
786}
787
788void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
789{
790    const size_t SIZE = 256;
791    char buffer[SIZE];
792    String8 result;
793
794    size_t numEffectChains = mEffectChains.size();
795    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
796    write(fd, buffer, strlen(buffer));
797
798    for (size_t i = 0; i < numEffectChains; ++i) {
799        sp<EffectChain> chain = mEffectChains[i];
800        if (chain != 0) {
801            chain->dump(fd, args);
802        }
803    }
804}
805
806void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
807{
808    Mutex::Autolock _l(mLock);
809    acquireWakeLock_l(uid);
810}
811
812String16 AudioFlinger::ThreadBase::getWakeLockTag()
813{
814    switch (mType) {
815    case MIXER:
816        return String16("AudioMix");
817    case DIRECT:
818        return String16("AudioDirectOut");
819    case DUPLICATING:
820        return String16("AudioDup");
821    case RECORD:
822        return String16("AudioIn");
823    case OFFLOAD:
824        return String16("AudioOffload");
825    default:
826        ALOG_ASSERT(false);
827        return String16("AudioUnknown");
828    }
829}
830
831void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
832{
833    getPowerManager_l();
834    if (mPowerManager != 0) {
835        sp<IBinder> binder = new BBinder();
836        status_t status;
837        if (uid >= 0) {
838            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
839                    binder,
840                    getWakeLockTag(),
841                    String16("media"),
842                    uid,
843                    true /* FIXME force oneway contrary to .aidl */);
844        } else {
845            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
846                    binder,
847                    getWakeLockTag(),
848                    String16("media"),
849                    true /* FIXME force oneway contrary to .aidl */);
850        }
851        if (status == NO_ERROR) {
852            mWakeLockToken = binder;
853        }
854        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
855    }
856}
857
858void AudioFlinger::ThreadBase::releaseWakeLock()
859{
860    Mutex::Autolock _l(mLock);
861    releaseWakeLock_l();
862}
863
864void AudioFlinger::ThreadBase::releaseWakeLock_l()
865{
866    if (mWakeLockToken != 0) {
867        ALOGV("releaseWakeLock_l() %s", mThreadName);
868        if (mPowerManager != 0) {
869            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
870                    true /* FIXME force oneway contrary to .aidl */);
871        }
872        mWakeLockToken.clear();
873    }
874}
875
876void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
877    Mutex::Autolock _l(mLock);
878    updateWakeLockUids_l(uids);
879}
880
881void AudioFlinger::ThreadBase::getPowerManager_l() {
882
883    if (mPowerManager == 0) {
884        // use checkService() to avoid blocking if power service is not up yet
885        sp<IBinder> binder =
886            defaultServiceManager()->checkService(String16("power"));
887        if (binder == 0) {
888            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
889        } else {
890            mPowerManager = interface_cast<IPowerManager>(binder);
891            binder->linkToDeath(mDeathRecipient);
892        }
893    }
894}
895
896void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
897
898    getPowerManager_l();
899    if (mWakeLockToken == NULL) {
900        ALOGE("no wake lock to update!");
901        return;
902    }
903    if (mPowerManager != 0) {
904        sp<IBinder> binder = new BBinder();
905        status_t status;
906        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
907                    true /* FIXME force oneway contrary to .aidl */);
908        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
909    }
910}
911
912void AudioFlinger::ThreadBase::clearPowerManager()
913{
914    Mutex::Autolock _l(mLock);
915    releaseWakeLock_l();
916    mPowerManager.clear();
917}
918
919void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
920{
921    sp<ThreadBase> thread = mThread.promote();
922    if (thread != 0) {
923        thread->clearPowerManager();
924    }
925    ALOGW("power manager service died !!!");
926}
927
928void AudioFlinger::ThreadBase::setEffectSuspended(
929        const effect_uuid_t *type, bool suspend, int sessionId)
930{
931    Mutex::Autolock _l(mLock);
932    setEffectSuspended_l(type, suspend, sessionId);
933}
934
935void AudioFlinger::ThreadBase::setEffectSuspended_l(
936        const effect_uuid_t *type, bool suspend, int sessionId)
937{
938    sp<EffectChain> chain = getEffectChain_l(sessionId);
939    if (chain != 0) {
940        if (type != NULL) {
941            chain->setEffectSuspended_l(type, suspend);
942        } else {
943            chain->setEffectSuspendedAll_l(suspend);
944        }
945    }
946
947    updateSuspendedSessions_l(type, suspend, sessionId);
948}
949
950void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
951{
952    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
953    if (index < 0) {
954        return;
955    }
956
957    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
958            mSuspendedSessions.valueAt(index);
959
960    for (size_t i = 0; i < sessionEffects.size(); i++) {
961        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
962        for (int j = 0; j < desc->mRefCount; j++) {
963            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
964                chain->setEffectSuspendedAll_l(true);
965            } else {
966                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
967                    desc->mType.timeLow);
968                chain->setEffectSuspended_l(&desc->mType, true);
969            }
970        }
971    }
972}
973
974void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
975                                                         bool suspend,
976                                                         int sessionId)
977{
978    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
979
980    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
981
982    if (suspend) {
983        if (index >= 0) {
984            sessionEffects = mSuspendedSessions.valueAt(index);
985        } else {
986            mSuspendedSessions.add(sessionId, sessionEffects);
987        }
988    } else {
989        if (index < 0) {
990            return;
991        }
992        sessionEffects = mSuspendedSessions.valueAt(index);
993    }
994
995
996    int key = EffectChain::kKeyForSuspendAll;
997    if (type != NULL) {
998        key = type->timeLow;
999    }
1000    index = sessionEffects.indexOfKey(key);
1001
1002    sp<SuspendedSessionDesc> desc;
1003    if (suspend) {
1004        if (index >= 0) {
1005            desc = sessionEffects.valueAt(index);
1006        } else {
1007            desc = new SuspendedSessionDesc();
1008            if (type != NULL) {
1009                desc->mType = *type;
1010            }
1011            sessionEffects.add(key, desc);
1012            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1013        }
1014        desc->mRefCount++;
1015    } else {
1016        if (index < 0) {
1017            return;
1018        }
1019        desc = sessionEffects.valueAt(index);
1020        if (--desc->mRefCount == 0) {
1021            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1022            sessionEffects.removeItemsAt(index);
1023            if (sessionEffects.isEmpty()) {
1024                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1025                                 sessionId);
1026                mSuspendedSessions.removeItem(sessionId);
1027            }
1028        }
1029    }
1030    if (!sessionEffects.isEmpty()) {
1031        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1032    }
1033}
1034
1035void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1036                                                            bool enabled,
1037                                                            int sessionId)
1038{
1039    Mutex::Autolock _l(mLock);
1040    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1041}
1042
1043void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1044                                                            bool enabled,
1045                                                            int sessionId)
1046{
1047    if (mType != RECORD) {
1048        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1049        // another session. This gives the priority to well behaved effect control panels
1050        // and applications not using global effects.
1051        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1052        // global effects
1053        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1054            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1055        }
1056    }
1057
1058    sp<EffectChain> chain = getEffectChain_l(sessionId);
1059    if (chain != 0) {
1060        chain->checkSuspendOnEffectEnabled(effect, enabled);
1061    }
1062}
1063
1064// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1065sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1066        const sp<AudioFlinger::Client>& client,
1067        const sp<IEffectClient>& effectClient,
1068        int32_t priority,
1069        int sessionId,
1070        effect_descriptor_t *desc,
1071        int *enabled,
1072        status_t *status)
1073{
1074    sp<EffectModule> effect;
1075    sp<EffectHandle> handle;
1076    status_t lStatus;
1077    sp<EffectChain> chain;
1078    bool chainCreated = false;
1079    bool effectCreated = false;
1080    bool effectRegistered = false;
1081
1082    lStatus = initCheck();
1083    if (lStatus != NO_ERROR) {
1084        ALOGW("createEffect_l() Audio driver not initialized.");
1085        goto Exit;
1086    }
1087
1088    // Reject any effect on Direct output threads for now, since the format of
1089    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1090    if (mType == DIRECT) {
1091        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1092                desc->name, mThreadName);
1093        lStatus = BAD_VALUE;
1094        goto Exit;
1095    }
1096
1097    // Reject any effect on mixer or duplicating multichannel sinks.
1098    // TODO: fix both format and multichannel issues with effects.
1099    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1100        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1101                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1102        lStatus = BAD_VALUE;
1103        goto Exit;
1104    }
1105
1106    // Allow global effects only on offloaded and mixer threads
1107    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1108        switch (mType) {
1109        case MIXER:
1110        case OFFLOAD:
1111            break;
1112        case DIRECT:
1113        case DUPLICATING:
1114        case RECORD:
1115        default:
1116            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1117                    desc->name, mThreadName);
1118            lStatus = BAD_VALUE;
1119            goto Exit;
1120        }
1121    }
1122
1123    // Only Pre processor effects are allowed on input threads and only on input threads
1124    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1125        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1126                desc->name, desc->flags, mType);
1127        lStatus = BAD_VALUE;
1128        goto Exit;
1129    }
1130
1131    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1132
1133    { // scope for mLock
1134        Mutex::Autolock _l(mLock);
1135
1136        // check for existing effect chain with the requested audio session
1137        chain = getEffectChain_l(sessionId);
1138        if (chain == 0) {
1139            // create a new chain for this session
1140            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1141            chain = new EffectChain(this, sessionId);
1142            addEffectChain_l(chain);
1143            chain->setStrategy(getStrategyForSession_l(sessionId));
1144            chainCreated = true;
1145        } else {
1146            effect = chain->getEffectFromDesc_l(desc);
1147        }
1148
1149        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1150
1151        if (effect == 0) {
1152            int id = mAudioFlinger->nextUniqueId();
1153            // Check CPU and memory usage
1154            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1155            if (lStatus != NO_ERROR) {
1156                goto Exit;
1157            }
1158            effectRegistered = true;
1159            // create a new effect module if none present in the chain
1160            effect = new EffectModule(this, chain, desc, id, sessionId);
1161            lStatus = effect->status();
1162            if (lStatus != NO_ERROR) {
1163                goto Exit;
1164            }
1165            effect->setOffloaded(mType == OFFLOAD, mId);
1166
1167            lStatus = chain->addEffect_l(effect);
1168            if (lStatus != NO_ERROR) {
1169                goto Exit;
1170            }
1171            effectCreated = true;
1172
1173            effect->setDevice(mOutDevice);
1174            effect->setDevice(mInDevice);
1175            effect->setMode(mAudioFlinger->getMode());
1176            effect->setAudioSource(mAudioSource);
1177        }
1178        // create effect handle and connect it to effect module
1179        handle = new EffectHandle(effect, client, effectClient, priority);
1180        lStatus = handle->initCheck();
1181        if (lStatus == OK) {
1182            lStatus = effect->addHandle(handle.get());
1183        }
1184        if (enabled != NULL) {
1185            *enabled = (int)effect->isEnabled();
1186        }
1187    }
1188
1189Exit:
1190    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1191        Mutex::Autolock _l(mLock);
1192        if (effectCreated) {
1193            chain->removeEffect_l(effect);
1194        }
1195        if (effectRegistered) {
1196            AudioSystem::unregisterEffect(effect->id());
1197        }
1198        if (chainCreated) {
1199            removeEffectChain_l(chain);
1200        }
1201        handle.clear();
1202    }
1203
1204    *status = lStatus;
1205    return handle;
1206}
1207
1208sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1209{
1210    Mutex::Autolock _l(mLock);
1211    return getEffect_l(sessionId, effectId);
1212}
1213
1214sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1215{
1216    sp<EffectChain> chain = getEffectChain_l(sessionId);
1217    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1218}
1219
1220// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1221// PlaybackThread::mLock held
1222status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1223{
1224    // check for existing effect chain with the requested audio session
1225    int sessionId = effect->sessionId();
1226    sp<EffectChain> chain = getEffectChain_l(sessionId);
1227    bool chainCreated = false;
1228
1229    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1230             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1231                    this, effect->desc().name, effect->desc().flags);
1232
1233    if (chain == 0) {
1234        // create a new chain for this session
1235        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1236        chain = new EffectChain(this, sessionId);
1237        addEffectChain_l(chain);
1238        chain->setStrategy(getStrategyForSession_l(sessionId));
1239        chainCreated = true;
1240    }
1241    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1242
1243    if (chain->getEffectFromId_l(effect->id()) != 0) {
1244        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1245                this, effect->desc().name, chain.get());
1246        return BAD_VALUE;
1247    }
1248
1249    effect->setOffloaded(mType == OFFLOAD, mId);
1250
1251    status_t status = chain->addEffect_l(effect);
1252    if (status != NO_ERROR) {
1253        if (chainCreated) {
1254            removeEffectChain_l(chain);
1255        }
1256        return status;
1257    }
1258
1259    effect->setDevice(mOutDevice);
1260    effect->setDevice(mInDevice);
1261    effect->setMode(mAudioFlinger->getMode());
1262    effect->setAudioSource(mAudioSource);
1263    return NO_ERROR;
1264}
1265
1266void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1267
1268    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1269    effect_descriptor_t desc = effect->desc();
1270    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1271        detachAuxEffect_l(effect->id());
1272    }
1273
1274    sp<EffectChain> chain = effect->chain().promote();
1275    if (chain != 0) {
1276        // remove effect chain if removing last effect
1277        if (chain->removeEffect_l(effect) == 0) {
1278            removeEffectChain_l(chain);
1279        }
1280    } else {
1281        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1282    }
1283}
1284
1285void AudioFlinger::ThreadBase::lockEffectChains_l(
1286        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1287{
1288    effectChains = mEffectChains;
1289    for (size_t i = 0; i < mEffectChains.size(); i++) {
1290        mEffectChains[i]->lock();
1291    }
1292}
1293
1294void AudioFlinger::ThreadBase::unlockEffectChains(
1295        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1296{
1297    for (size_t i = 0; i < effectChains.size(); i++) {
1298        effectChains[i]->unlock();
1299    }
1300}
1301
1302sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1303{
1304    Mutex::Autolock _l(mLock);
1305    return getEffectChain_l(sessionId);
1306}
1307
1308sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1309{
1310    size_t size = mEffectChains.size();
1311    for (size_t i = 0; i < size; i++) {
1312        if (mEffectChains[i]->sessionId() == sessionId) {
1313            return mEffectChains[i];
1314        }
1315    }
1316    return 0;
1317}
1318
1319void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1320{
1321    Mutex::Autolock _l(mLock);
1322    size_t size = mEffectChains.size();
1323    for (size_t i = 0; i < size; i++) {
1324        mEffectChains[i]->setMode_l(mode);
1325    }
1326}
1327
1328void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1329{
1330    config->type = AUDIO_PORT_TYPE_MIX;
1331    config->ext.mix.handle = mId;
1332    config->sample_rate = mSampleRate;
1333    config->format = mFormat;
1334    config->channel_mask = mChannelMask;
1335    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1336                            AUDIO_PORT_CONFIG_FORMAT;
1337}
1338
1339
1340// ----------------------------------------------------------------------------
1341//      Playback
1342// ----------------------------------------------------------------------------
1343
1344AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1345                                             AudioStreamOut* output,
1346                                             audio_io_handle_t id,
1347                                             audio_devices_t device,
1348                                             type_t type)
1349    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
1350        mNormalFrameCount(0), mSinkBuffer(NULL),
1351        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1352        mMixerBuffer(NULL),
1353        mMixerBufferSize(0),
1354        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1355        mMixerBufferValid(false),
1356        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1357        mEffectBuffer(NULL),
1358        mEffectBufferSize(0),
1359        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1360        mEffectBufferValid(false),
1361        mSuspended(0), mBytesWritten(0),
1362        mActiveTracksGeneration(0),
1363        // mStreamTypes[] initialized in constructor body
1364        mOutput(output),
1365        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1366        mMixerStatus(MIXER_IDLE),
1367        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1368        standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
1369        mBytesRemaining(0),
1370        mCurrentWriteLength(0),
1371        mUseAsyncWrite(false),
1372        mWriteAckSequence(0),
1373        mDrainSequence(0),
1374        mSignalPending(false),
1375        mScreenState(AudioFlinger::mScreenState),
1376        // index 0 is reserved for normal mixer's submix
1377        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1378        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1379        // mLatchD, mLatchQ,
1380        mLatchDValid(false), mLatchQValid(false)
1381{
1382    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1383    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1384
1385    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1386    // it would be safer to explicitly pass initial masterVolume/masterMute as
1387    // parameter.
1388    //
1389    // If the HAL we are using has support for master volume or master mute,
1390    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1391    // and the mute set to false).
1392    mMasterVolume = audioFlinger->masterVolume_l();
1393    mMasterMute = audioFlinger->masterMute_l();
1394    if (mOutput && mOutput->audioHwDev) {
1395        if (mOutput->audioHwDev->canSetMasterVolume()) {
1396            mMasterVolume = 1.0;
1397        }
1398
1399        if (mOutput->audioHwDev->canSetMasterMute()) {
1400            mMasterMute = false;
1401        }
1402    }
1403
1404    readOutputParameters_l();
1405
1406    // ++ operator does not compile
1407    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1408            stream = (audio_stream_type_t) (stream + 1)) {
1409        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1410        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1411    }
1412}
1413
1414AudioFlinger::PlaybackThread::~PlaybackThread()
1415{
1416    mAudioFlinger->unregisterWriter(mNBLogWriter);
1417    free(mSinkBuffer);
1418    free(mMixerBuffer);
1419    free(mEffectBuffer);
1420}
1421
1422void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1423{
1424    dumpInternals(fd, args);
1425    dumpTracks(fd, args);
1426    dumpEffectChains(fd, args);
1427}
1428
1429void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1430{
1431    const size_t SIZE = 256;
1432    char buffer[SIZE];
1433    String8 result;
1434
1435    result.appendFormat("  Stream volumes in dB: ");
1436    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1437        const stream_type_t *st = &mStreamTypes[i];
1438        if (i > 0) {
1439            result.appendFormat(", ");
1440        }
1441        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1442        if (st->mute) {
1443            result.append("M");
1444        }
1445    }
1446    result.append("\n");
1447    write(fd, result.string(), result.length());
1448    result.clear();
1449
1450    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1451    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1452    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1453            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1454
1455    size_t numtracks = mTracks.size();
1456    size_t numactive = mActiveTracks.size();
1457    dprintf(fd, "  %d Tracks", numtracks);
1458    size_t numactiveseen = 0;
1459    if (numtracks) {
1460        dprintf(fd, " of which %d are active\n", numactive);
1461        Track::appendDumpHeader(result);
1462        for (size_t i = 0; i < numtracks; ++i) {
1463            sp<Track> track = mTracks[i];
1464            if (track != 0) {
1465                bool active = mActiveTracks.indexOf(track) >= 0;
1466                if (active) {
1467                    numactiveseen++;
1468                }
1469                track->dump(buffer, SIZE, active);
1470                result.append(buffer);
1471            }
1472        }
1473    } else {
1474        result.append("\n");
1475    }
1476    if (numactiveseen != numactive) {
1477        // some tracks in the active list were not in the tracks list
1478        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1479                " not in the track list\n");
1480        result.append(buffer);
1481        Track::appendDumpHeader(result);
1482        for (size_t i = 0; i < numactive; ++i) {
1483            sp<Track> track = mActiveTracks[i].promote();
1484            if (track != 0 && mTracks.indexOf(track) < 0) {
1485                track->dump(buffer, SIZE, true);
1486                result.append(buffer);
1487            }
1488        }
1489    }
1490
1491    write(fd, result.string(), result.size());
1492}
1493
1494void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1495{
1496    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1497
1498    dumpBase(fd, args);
1499
1500    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1501    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1502    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1503    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1504    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1505    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1506    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1507    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1508    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1509    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1510    AudioStreamOut *output = mOutput;
1511    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1512    String8 flagsAsString = outputFlagsToString(flags);
1513    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1514}
1515
1516// Thread virtuals
1517
1518void AudioFlinger::PlaybackThread::onFirstRef()
1519{
1520    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1521}
1522
1523// ThreadBase virtuals
1524void AudioFlinger::PlaybackThread::preExit()
1525{
1526    ALOGV("  preExit()");
1527    // FIXME this is using hard-coded strings but in the future, this functionality will be
1528    //       converted to use audio HAL extensions required to support tunneling
1529    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1530}
1531
1532// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1533sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1534        const sp<AudioFlinger::Client>& client,
1535        audio_stream_type_t streamType,
1536        uint32_t sampleRate,
1537        audio_format_t format,
1538        audio_channel_mask_t channelMask,
1539        size_t *pFrameCount,
1540        const sp<IMemory>& sharedBuffer,
1541        int sessionId,
1542        IAudioFlinger::track_flags_t *flags,
1543        pid_t tid,
1544        int uid,
1545        status_t *status)
1546{
1547    size_t frameCount = *pFrameCount;
1548    sp<Track> track;
1549    status_t lStatus;
1550
1551    bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1552
1553    // client expresses a preference for FAST, but we get the final say
1554    if (*flags & IAudioFlinger::TRACK_FAST) {
1555      if (
1556            // not timed
1557            (!isTimed) &&
1558            // either of these use cases:
1559            (
1560              // use case 1: shared buffer with any frame count
1561              (
1562                (sharedBuffer != 0)
1563              ) ||
1564              // use case 2: frame count is default or at least as large as HAL
1565              (
1566                // we formerly checked for a callback handler (non-0 tid),
1567                // but that is no longer required for TRANSFER_OBTAIN mode
1568                ((frameCount == 0) ||
1569                (frameCount >= mFrameCount))
1570              )
1571            ) &&
1572            // PCM data
1573            audio_is_linear_pcm(format) &&
1574            // identical channel mask to sink, or mono in and stereo sink
1575            (channelMask == mChannelMask ||
1576                    (channelMask == AUDIO_CHANNEL_OUT_MONO &&
1577                            mChannelMask == AUDIO_CHANNEL_OUT_STEREO)) &&
1578            // hardware sample rate
1579            (sampleRate == mSampleRate) &&
1580            // normal mixer has an associated fast mixer
1581            hasFastMixer() &&
1582            // there are sufficient fast track slots available
1583            (mFastTrackAvailMask != 0)
1584            // FIXME test that MixerThread for this fast track has a capable output HAL
1585            // FIXME add a permission test also?
1586        ) {
1587        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1588        if (frameCount == 0) {
1589            // read the fast track multiplier property the first time it is needed
1590            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1591            if (ok != 0) {
1592                ALOGE("%s pthread_once failed: %d", __func__, ok);
1593            }
1594            frameCount = mFrameCount * sFastTrackMultiplier;
1595        }
1596        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1597                frameCount, mFrameCount);
1598      } else {
1599        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1600                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1601                "sampleRate=%u mSampleRate=%u "
1602                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1603                isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1604                audio_is_linear_pcm(format),
1605                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1606        *flags &= ~IAudioFlinger::TRACK_FAST;
1607      }
1608    }
1609    // For normal PCM streaming tracks, update minimum frame count.
1610    // For compatibility with AudioTrack calculation, buffer depth is forced
1611    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1612    // This is probably too conservative, but legacy application code may depend on it.
1613    // If you change this calculation, also review the start threshold which is related.
1614    if (!(*flags & IAudioFlinger::TRACK_FAST)
1615            && audio_is_linear_pcm(format) && sharedBuffer == 0) {
1616        // this must match AudioTrack.cpp calculateMinFrameCount().
1617        // TODO: Move to a common library
1618        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1619        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1620        if (minBufCount < 2) {
1621            minBufCount = 2;
1622        }
1623        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1624        // or the client should compute and pass in a larger buffer request.
1625        size_t minFrameCount =
1626                minBufCount * sourceFramesNeededWithTimestretch(
1627                        sampleRate, mNormalFrameCount,
1628                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1629        if (frameCount < minFrameCount) { // including frameCount == 0
1630            frameCount = minFrameCount;
1631        }
1632    }
1633    *pFrameCount = frameCount;
1634
1635    switch (mType) {
1636
1637    case DIRECT:
1638        if (audio_is_linear_pcm(format)) {
1639            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1640                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1641                        "for output %p with format %#x",
1642                        sampleRate, format, channelMask, mOutput, mFormat);
1643                lStatus = BAD_VALUE;
1644                goto Exit;
1645            }
1646        }
1647        break;
1648
1649    case OFFLOAD:
1650        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1651            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1652                    "for output %p with format %#x",
1653                    sampleRate, format, channelMask, mOutput, mFormat);
1654            lStatus = BAD_VALUE;
1655            goto Exit;
1656        }
1657        break;
1658
1659    default:
1660        if (!audio_is_linear_pcm(format)) {
1661                ALOGE("createTrack_l() Bad parameter: format %#x \""
1662                        "for output %p with format %#x",
1663                        format, mOutput, mFormat);
1664                lStatus = BAD_VALUE;
1665                goto Exit;
1666        }
1667        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1668            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1669            lStatus = BAD_VALUE;
1670            goto Exit;
1671        }
1672        break;
1673
1674    }
1675
1676    lStatus = initCheck();
1677    if (lStatus != NO_ERROR) {
1678        ALOGE("createTrack_l() audio driver not initialized");
1679        goto Exit;
1680    }
1681
1682    { // scope for mLock
1683        Mutex::Autolock _l(mLock);
1684
1685        // all tracks in same audio session must share the same routing strategy otherwise
1686        // conflicts will happen when tracks are moved from one output to another by audio policy
1687        // manager
1688        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1689        for (size_t i = 0; i < mTracks.size(); ++i) {
1690            sp<Track> t = mTracks[i];
1691            if (t != 0 && t->isExternalTrack()) {
1692                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1693                if (sessionId == t->sessionId() && strategy != actual) {
1694                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1695                            strategy, actual);
1696                    lStatus = BAD_VALUE;
1697                    goto Exit;
1698                }
1699            }
1700        }
1701
1702        if (!isTimed) {
1703            track = new Track(this, client, streamType, sampleRate, format,
1704                              channelMask, frameCount, NULL, sharedBuffer,
1705                              sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1706        } else {
1707            track = TimedTrack::create(this, client, streamType, sampleRate, format,
1708                    channelMask, frameCount, sharedBuffer, sessionId, uid);
1709        }
1710
1711        // new Track always returns non-NULL,
1712        // but TimedTrack::create() is a factory that could fail by returning NULL
1713        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1714        if (lStatus != NO_ERROR) {
1715            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1716            // track must be cleared from the caller as the caller has the AF lock
1717            goto Exit;
1718        }
1719        mTracks.add(track);
1720
1721        sp<EffectChain> chain = getEffectChain_l(sessionId);
1722        if (chain != 0) {
1723            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1724            track->setMainBuffer(chain->inBuffer());
1725            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1726            chain->incTrackCnt();
1727        }
1728
1729        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1730            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1731            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1732            // so ask activity manager to do this on our behalf
1733            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1734        }
1735    }
1736
1737    lStatus = NO_ERROR;
1738
1739Exit:
1740    *status = lStatus;
1741    return track;
1742}
1743
1744uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1745{
1746    return latency;
1747}
1748
1749uint32_t AudioFlinger::PlaybackThread::latency() const
1750{
1751    Mutex::Autolock _l(mLock);
1752    return latency_l();
1753}
1754uint32_t AudioFlinger::PlaybackThread::latency_l() const
1755{
1756    if (initCheck() == NO_ERROR) {
1757        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1758    } else {
1759        return 0;
1760    }
1761}
1762
1763void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1764{
1765    Mutex::Autolock _l(mLock);
1766    // Don't apply master volume in SW if our HAL can do it for us.
1767    if (mOutput && mOutput->audioHwDev &&
1768        mOutput->audioHwDev->canSetMasterVolume()) {
1769        mMasterVolume = 1.0;
1770    } else {
1771        mMasterVolume = value;
1772    }
1773}
1774
1775void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1776{
1777    Mutex::Autolock _l(mLock);
1778    // Don't apply master mute in SW if our HAL can do it for us.
1779    if (mOutput && mOutput->audioHwDev &&
1780        mOutput->audioHwDev->canSetMasterMute()) {
1781        mMasterMute = false;
1782    } else {
1783        mMasterMute = muted;
1784    }
1785}
1786
1787void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1788{
1789    Mutex::Autolock _l(mLock);
1790    mStreamTypes[stream].volume = value;
1791    broadcast_l();
1792}
1793
1794void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1795{
1796    Mutex::Autolock _l(mLock);
1797    mStreamTypes[stream].mute = muted;
1798    broadcast_l();
1799}
1800
1801float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1802{
1803    Mutex::Autolock _l(mLock);
1804    return mStreamTypes[stream].volume;
1805}
1806
1807// addTrack_l() must be called with ThreadBase::mLock held
1808status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1809{
1810    status_t status = ALREADY_EXISTS;
1811
1812    // set retry count for buffer fill
1813    track->mRetryCount = kMaxTrackStartupRetries;
1814    if (mActiveTracks.indexOf(track) < 0) {
1815        // the track is newly added, make sure it fills up all its
1816        // buffers before playing. This is to ensure the client will
1817        // effectively get the latency it requested.
1818        if (track->isExternalTrack()) {
1819            TrackBase::track_state state = track->mState;
1820            mLock.unlock();
1821            status = AudioSystem::startOutput(mId, track->streamType(),
1822                                              (audio_session_t)track->sessionId());
1823            mLock.lock();
1824            // abort track was stopped/paused while we released the lock
1825            if (state != track->mState) {
1826                if (status == NO_ERROR) {
1827                    mLock.unlock();
1828                    AudioSystem::stopOutput(mId, track->streamType(),
1829                                            (audio_session_t)track->sessionId());
1830                    mLock.lock();
1831                }
1832                return INVALID_OPERATION;
1833            }
1834            // abort if start is rejected by audio policy manager
1835            if (status != NO_ERROR) {
1836                return PERMISSION_DENIED;
1837            }
1838#ifdef ADD_BATTERY_DATA
1839            // to track the speaker usage
1840            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1841#endif
1842        }
1843
1844        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1845        track->mResetDone = false;
1846        track->mPresentationCompleteFrames = 0;
1847        mActiveTracks.add(track);
1848        mWakeLockUids.add(track->uid());
1849        mActiveTracksGeneration++;
1850        mLatestActiveTrack = track;
1851        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1852        if (chain != 0) {
1853            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1854                    track->sessionId());
1855            chain->incActiveTrackCnt();
1856        }
1857
1858        status = NO_ERROR;
1859    }
1860
1861    onAddNewTrack_l();
1862    return status;
1863}
1864
1865bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1866{
1867    track->terminate();
1868    // active tracks are removed by threadLoop()
1869    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1870    track->mState = TrackBase::STOPPED;
1871    if (!trackActive) {
1872        removeTrack_l(track);
1873    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1874        track->mState = TrackBase::STOPPING_1;
1875    }
1876
1877    return trackActive;
1878}
1879
1880void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1881{
1882    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1883    mTracks.remove(track);
1884    deleteTrackName_l(track->name());
1885    // redundant as track is about to be destroyed, for dumpsys only
1886    track->mName = -1;
1887    if (track->isFastTrack()) {
1888        int index = track->mFastIndex;
1889        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1890        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1891        mFastTrackAvailMask |= 1 << index;
1892        // redundant as track is about to be destroyed, for dumpsys only
1893        track->mFastIndex = -1;
1894    }
1895    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1896    if (chain != 0) {
1897        chain->decTrackCnt();
1898    }
1899}
1900
1901void AudioFlinger::PlaybackThread::broadcast_l()
1902{
1903    // Thread could be blocked waiting for async
1904    // so signal it to handle state changes immediately
1905    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1906    // be lost so we also flag to prevent it blocking on mWaitWorkCV
1907    mSignalPending = true;
1908    mWaitWorkCV.broadcast();
1909}
1910
1911String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
1912{
1913    Mutex::Autolock _l(mLock);
1914    if (initCheck() != NO_ERROR) {
1915        return String8();
1916    }
1917
1918    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
1919    const String8 out_s8(s);
1920    free(s);
1921    return out_s8;
1922}
1923
1924void AudioFlinger::PlaybackThread::audioConfigChanged(int event, int param) {
1925    AudioSystem::OutputDescriptor desc;
1926    void *param2 = NULL;
1927
1928    ALOGV("PlaybackThread::audioConfigChanged, thread %p, event %d, param %d", this, event,
1929            param);
1930
1931    switch (event) {
1932    case AudioSystem::OUTPUT_OPENED:
1933    case AudioSystem::OUTPUT_CONFIG_CHANGED:
1934        desc.channelMask = mChannelMask;
1935        desc.samplingRate = mSampleRate;
1936        desc.format = mFormat;
1937        desc.frameCount = mNormalFrameCount; // FIXME see
1938                                             // AudioFlinger::frameCount(audio_io_handle_t)
1939        desc.latency = latency_l();
1940        param2 = &desc;
1941        break;
1942
1943    case AudioSystem::STREAM_CONFIG_CHANGED:
1944        param2 = &param;
1945    case AudioSystem::OUTPUT_CLOSED:
1946    default:
1947        break;
1948    }
1949    mAudioFlinger->audioConfigChanged(event, mId, param2);
1950}
1951
1952void AudioFlinger::PlaybackThread::writeCallback()
1953{
1954    ALOG_ASSERT(mCallbackThread != 0);
1955    mCallbackThread->resetWriteBlocked();
1956}
1957
1958void AudioFlinger::PlaybackThread::drainCallback()
1959{
1960    ALOG_ASSERT(mCallbackThread != 0);
1961    mCallbackThread->resetDraining();
1962}
1963
1964void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
1965{
1966    Mutex::Autolock _l(mLock);
1967    // reject out of sequence requests
1968    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
1969        mWriteAckSequence &= ~1;
1970        mWaitWorkCV.signal();
1971    }
1972}
1973
1974void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
1975{
1976    Mutex::Autolock _l(mLock);
1977    // reject out of sequence requests
1978    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
1979        mDrainSequence &= ~1;
1980        mWaitWorkCV.signal();
1981    }
1982}
1983
1984// static
1985int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
1986                                                void *param __unused,
1987                                                void *cookie)
1988{
1989    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
1990    ALOGV("asyncCallback() event %d", event);
1991    switch (event) {
1992    case STREAM_CBK_EVENT_WRITE_READY:
1993        me->writeCallback();
1994        break;
1995    case STREAM_CBK_EVENT_DRAIN_READY:
1996        me->drainCallback();
1997        break;
1998    default:
1999        ALOGW("asyncCallback() unknown event %d", event);
2000        break;
2001    }
2002    return 0;
2003}
2004
2005void AudioFlinger::PlaybackThread::readOutputParameters_l()
2006{
2007    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2008    mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
2009    mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
2010    if (!audio_is_output_channel(mChannelMask)) {
2011        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2012    }
2013    if ((mType == MIXER || mType == DUPLICATING)
2014            && !isValidPcmSinkChannelMask(mChannelMask)) {
2015        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2016                mChannelMask);
2017    }
2018    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2019    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2020    mFormat = mHALFormat;
2021    if (!audio_is_valid_format(mFormat)) {
2022        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2023    }
2024    if ((mType == MIXER || mType == DUPLICATING)
2025            && !isValidPcmSinkFormat(mFormat)) {
2026        LOG_FATAL("HAL format %#x not supported for mixed output",
2027                mFormat);
2028    }
2029    mFrameSize = mOutput->getFrameSize();
2030    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2031    mFrameCount = mBufferSize / mFrameSize;
2032    if (mFrameCount & 15) {
2033        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2034                mFrameCount);
2035    }
2036
2037    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2038            (mOutput->stream->set_callback != NULL)) {
2039        if (mOutput->stream->set_callback(mOutput->stream,
2040                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2041            mUseAsyncWrite = true;
2042            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2043        }
2044    }
2045
2046    mHwSupportsPause = false;
2047    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2048        if (mOutput->stream->pause != NULL) {
2049            if (mOutput->stream->resume != NULL) {
2050                mHwSupportsPause = true;
2051            } else {
2052                ALOGW("direct output implements pause but not resume");
2053            }
2054        } else if (mOutput->stream->resume != NULL) {
2055            ALOGW("direct output implements resume but not pause");
2056        }
2057    }
2058
2059    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2060        // For best precision, we use float instead of the associated output
2061        // device format (typically PCM 16 bit).
2062
2063        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2064        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2065        mBufferSize = mFrameSize * mFrameCount;
2066
2067        // TODO: We currently use the associated output device channel mask and sample rate.
2068        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2069        // (if a valid mask) to avoid premature downmix.
2070        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2071        // instead of the output device sample rate to avoid loss of high frequency information.
2072        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2073    }
2074
2075    // Calculate size of normal sink buffer relative to the HAL output buffer size
2076    double multiplier = 1.0;
2077    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2078            kUseFastMixer == FastMixer_Dynamic)) {
2079        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2080        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2081        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2082        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2083        maxNormalFrameCount = maxNormalFrameCount & ~15;
2084        if (maxNormalFrameCount < minNormalFrameCount) {
2085            maxNormalFrameCount = minNormalFrameCount;
2086        }
2087        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2088        if (multiplier <= 1.0) {
2089            multiplier = 1.0;
2090        } else if (multiplier <= 2.0) {
2091            if (2 * mFrameCount <= maxNormalFrameCount) {
2092                multiplier = 2.0;
2093            } else {
2094                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2095            }
2096        } else {
2097            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2098            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2099            // track, but we sometimes have to do this to satisfy the maximum frame count
2100            // constraint)
2101            // FIXME this rounding up should not be done if no HAL SRC
2102            uint32_t truncMult = (uint32_t) multiplier;
2103            if ((truncMult & 1)) {
2104                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2105                    ++truncMult;
2106                }
2107            }
2108            multiplier = (double) truncMult;
2109        }
2110    }
2111    mNormalFrameCount = multiplier * mFrameCount;
2112    // round up to nearest 16 frames to satisfy AudioMixer
2113    if (mType == MIXER || mType == DUPLICATING) {
2114        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2115    }
2116    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2117            mNormalFrameCount);
2118
2119    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2120    // Originally this was int16_t[] array, need to remove legacy implications.
2121    free(mSinkBuffer);
2122    mSinkBuffer = NULL;
2123    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2124    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2125    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2126    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2127
2128    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2129    // drives the output.
2130    free(mMixerBuffer);
2131    mMixerBuffer = NULL;
2132    if (mMixerBufferEnabled) {
2133        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2134        mMixerBufferSize = mNormalFrameCount * mChannelCount
2135                * audio_bytes_per_sample(mMixerBufferFormat);
2136        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2137    }
2138    free(mEffectBuffer);
2139    mEffectBuffer = NULL;
2140    if (mEffectBufferEnabled) {
2141        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2142        mEffectBufferSize = mNormalFrameCount * mChannelCount
2143                * audio_bytes_per_sample(mEffectBufferFormat);
2144        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2145    }
2146
2147    // force reconfiguration of effect chains and engines to take new buffer size and audio
2148    // parameters into account
2149    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2150    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2151    // matter.
2152    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2153    Vector< sp<EffectChain> > effectChains = mEffectChains;
2154    for (size_t i = 0; i < effectChains.size(); i ++) {
2155        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2156    }
2157}
2158
2159
2160status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2161{
2162    if (halFrames == NULL || dspFrames == NULL) {
2163        return BAD_VALUE;
2164    }
2165    Mutex::Autolock _l(mLock);
2166    if (initCheck() != NO_ERROR) {
2167        return INVALID_OPERATION;
2168    }
2169    size_t framesWritten = mBytesWritten / mFrameSize;
2170    *halFrames = framesWritten;
2171
2172    if (isSuspended()) {
2173        // return an estimation of rendered frames when the output is suspended
2174        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2175        *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2176        return NO_ERROR;
2177    } else {
2178        status_t status;
2179        uint32_t frames;
2180        status = mOutput->getRenderPosition(&frames);
2181        *dspFrames = (size_t)frames;
2182        return status;
2183    }
2184}
2185
2186uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2187{
2188    Mutex::Autolock _l(mLock);
2189    uint32_t result = 0;
2190    if (getEffectChain_l(sessionId) != 0) {
2191        result = EFFECT_SESSION;
2192    }
2193
2194    for (size_t i = 0; i < mTracks.size(); ++i) {
2195        sp<Track> track = mTracks[i];
2196        if (sessionId == track->sessionId() && !track->isInvalid()) {
2197            result |= TRACK_SESSION;
2198            break;
2199        }
2200    }
2201
2202    return result;
2203}
2204
2205uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2206{
2207    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2208    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2209    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2210        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2211    }
2212    for (size_t i = 0; i < mTracks.size(); i++) {
2213        sp<Track> track = mTracks[i];
2214        if (sessionId == track->sessionId() && !track->isInvalid()) {
2215            return AudioSystem::getStrategyForStream(track->streamType());
2216        }
2217    }
2218    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2219}
2220
2221
2222AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2223{
2224    Mutex::Autolock _l(mLock);
2225    return mOutput;
2226}
2227
2228AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2229{
2230    Mutex::Autolock _l(mLock);
2231    AudioStreamOut *output = mOutput;
2232    mOutput = NULL;
2233    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2234    //       must push a NULL and wait for ack
2235    mOutputSink.clear();
2236    mPipeSink.clear();
2237    mNormalSink.clear();
2238    return output;
2239}
2240
2241// this method must always be called either with ThreadBase mLock held or inside the thread loop
2242audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2243{
2244    if (mOutput == NULL) {
2245        return NULL;
2246    }
2247    return &mOutput->stream->common;
2248}
2249
2250uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2251{
2252    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2253}
2254
2255status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2256{
2257    if (!isValidSyncEvent(event)) {
2258        return BAD_VALUE;
2259    }
2260
2261    Mutex::Autolock _l(mLock);
2262
2263    for (size_t i = 0; i < mTracks.size(); ++i) {
2264        sp<Track> track = mTracks[i];
2265        if (event->triggerSession() == track->sessionId()) {
2266            (void) track->setSyncEvent(event);
2267            return NO_ERROR;
2268        }
2269    }
2270
2271    return NAME_NOT_FOUND;
2272}
2273
2274bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2275{
2276    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2277}
2278
2279void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2280        const Vector< sp<Track> >& tracksToRemove)
2281{
2282    size_t count = tracksToRemove.size();
2283    if (count > 0) {
2284        for (size_t i = 0 ; i < count ; i++) {
2285            const sp<Track>& track = tracksToRemove.itemAt(i);
2286            if (track->isExternalTrack()) {
2287                AudioSystem::stopOutput(mId, track->streamType(),
2288                                        (audio_session_t)track->sessionId());
2289#ifdef ADD_BATTERY_DATA
2290                // to track the speaker usage
2291                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2292#endif
2293                if (track->isTerminated()) {
2294                    AudioSystem::releaseOutput(mId, track->streamType(),
2295                                               (audio_session_t)track->sessionId());
2296                }
2297            }
2298        }
2299    }
2300}
2301
2302void AudioFlinger::PlaybackThread::checkSilentMode_l()
2303{
2304    if (!mMasterMute) {
2305        char value[PROPERTY_VALUE_MAX];
2306        if (property_get("ro.audio.silent", value, "0") > 0) {
2307            char *endptr;
2308            unsigned long ul = strtoul(value, &endptr, 0);
2309            if (*endptr == '\0' && ul != 0) {
2310                ALOGD("Silence is golden");
2311                // The setprop command will not allow a property to be changed after
2312                // the first time it is set, so we don't have to worry about un-muting.
2313                setMasterMute_l(true);
2314            }
2315        }
2316    }
2317}
2318
2319// shared by MIXER and DIRECT, overridden by DUPLICATING
2320ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2321{
2322    // FIXME rewrite to reduce number of system calls
2323    mLastWriteTime = systemTime();
2324    mInWrite = true;
2325    ssize_t bytesWritten;
2326    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2327
2328    // If an NBAIO sink is present, use it to write the normal mixer's submix
2329    if (mNormalSink != 0) {
2330
2331        const size_t count = mBytesRemaining / mFrameSize;
2332
2333        ATRACE_BEGIN("write");
2334        // update the setpoint when AudioFlinger::mScreenState changes
2335        uint32_t screenState = AudioFlinger::mScreenState;
2336        if (screenState != mScreenState) {
2337            mScreenState = screenState;
2338            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2339            if (pipe != NULL) {
2340                pipe->setAvgFrames((mScreenState & 1) ?
2341                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2342            }
2343        }
2344        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2345        ATRACE_END();
2346        if (framesWritten > 0) {
2347            bytesWritten = framesWritten * mFrameSize;
2348        } else {
2349            bytesWritten = framesWritten;
2350        }
2351        mLatchDValid = false;
2352        status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2353        if (status == NO_ERROR) {
2354            size_t totalFramesWritten = mNormalSink->framesWritten();
2355            if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2356                mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2357                // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2358                mLatchDValid = true;
2359            }
2360        }
2361    // otherwise use the HAL / AudioStreamOut directly
2362    } else {
2363        // Direct output and offload threads
2364
2365        if (mUseAsyncWrite) {
2366            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2367            mWriteAckSequence += 2;
2368            mWriteAckSequence |= 1;
2369            ALOG_ASSERT(mCallbackThread != 0);
2370            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2371        }
2372        // FIXME We should have an implementation of timestamps for direct output threads.
2373        // They are used e.g for multichannel PCM playback over HDMI.
2374        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2375        if (mUseAsyncWrite &&
2376                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2377            // do not wait for async callback in case of error of full write
2378            mWriteAckSequence &= ~1;
2379            ALOG_ASSERT(mCallbackThread != 0);
2380            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2381        }
2382    }
2383
2384    mNumWrites++;
2385    mInWrite = false;
2386    mStandby = false;
2387    return bytesWritten;
2388}
2389
2390void AudioFlinger::PlaybackThread::threadLoop_drain()
2391{
2392    if (mOutput->stream->drain) {
2393        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2394        if (mUseAsyncWrite) {
2395            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2396            mDrainSequence |= 1;
2397            ALOG_ASSERT(mCallbackThread != 0);
2398            mCallbackThread->setDraining(mDrainSequence);
2399        }
2400        mOutput->stream->drain(mOutput->stream,
2401            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2402                                                : AUDIO_DRAIN_ALL);
2403    }
2404}
2405
2406void AudioFlinger::PlaybackThread::threadLoop_exit()
2407{
2408    {
2409        Mutex::Autolock _l(mLock);
2410        for (size_t i = 0; i < mTracks.size(); i++) {
2411            sp<Track> track = mTracks[i];
2412            track->invalidate();
2413        }
2414    }
2415}
2416
2417/*
2418The derived values that are cached:
2419 - mSinkBufferSize from frame count * frame size
2420 - activeSleepTime from activeSleepTimeUs()
2421 - idleSleepTime from idleSleepTimeUs()
2422 - standbyDelay from mActiveSleepTimeUs (DIRECT only)
2423 - maxPeriod from frame count and sample rate (MIXER only)
2424
2425The parameters that affect these derived values are:
2426 - frame count
2427 - frame size
2428 - sample rate
2429 - device type: A2DP or not
2430 - device latency
2431 - format: PCM or not
2432 - active sleep time
2433 - idle sleep time
2434*/
2435
2436void AudioFlinger::PlaybackThread::cacheParameters_l()
2437{
2438    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2439    activeSleepTime = activeSleepTimeUs();
2440    idleSleepTime = idleSleepTimeUs();
2441}
2442
2443void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2444{
2445    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2446            this,  streamType, mTracks.size());
2447    Mutex::Autolock _l(mLock);
2448
2449    size_t size = mTracks.size();
2450    for (size_t i = 0; i < size; i++) {
2451        sp<Track> t = mTracks[i];
2452        if (t->streamType() == streamType) {
2453            t->invalidate();
2454        }
2455    }
2456}
2457
2458status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2459{
2460    int session = chain->sessionId();
2461    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2462            ? mEffectBuffer : mSinkBuffer);
2463    bool ownsBuffer = false;
2464
2465    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2466    if (session > 0) {
2467        // Only one effect chain can be present in direct output thread and it uses
2468        // the sink buffer as input
2469        if (mType != DIRECT) {
2470            size_t numSamples = mNormalFrameCount * mChannelCount;
2471            buffer = new int16_t[numSamples];
2472            memset(buffer, 0, numSamples * sizeof(int16_t));
2473            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2474            ownsBuffer = true;
2475        }
2476
2477        // Attach all tracks with same session ID to this chain.
2478        for (size_t i = 0; i < mTracks.size(); ++i) {
2479            sp<Track> track = mTracks[i];
2480            if (session == track->sessionId()) {
2481                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2482                        buffer);
2483                track->setMainBuffer(buffer);
2484                chain->incTrackCnt();
2485            }
2486        }
2487
2488        // indicate all active tracks in the chain
2489        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2490            sp<Track> track = mActiveTracks[i].promote();
2491            if (track == 0) {
2492                continue;
2493            }
2494            if (session == track->sessionId()) {
2495                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2496                chain->incActiveTrackCnt();
2497            }
2498        }
2499    }
2500    chain->setThread(this);
2501    chain->setInBuffer(buffer, ownsBuffer);
2502    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2503            ? mEffectBuffer : mSinkBuffer));
2504    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2505    // chains list in order to be processed last as it contains output stage effects
2506    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2507    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2508    // after track specific effects and before output stage
2509    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2510    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2511    // Effect chain for other sessions are inserted at beginning of effect
2512    // chains list to be processed before output mix effects. Relative order between other
2513    // sessions is not important
2514    size_t size = mEffectChains.size();
2515    size_t i = 0;
2516    for (i = 0; i < size; i++) {
2517        if (mEffectChains[i]->sessionId() < session) {
2518            break;
2519        }
2520    }
2521    mEffectChains.insertAt(chain, i);
2522    checkSuspendOnAddEffectChain_l(chain);
2523
2524    return NO_ERROR;
2525}
2526
2527size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2528{
2529    int session = chain->sessionId();
2530
2531    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2532
2533    for (size_t i = 0; i < mEffectChains.size(); i++) {
2534        if (chain == mEffectChains[i]) {
2535            mEffectChains.removeAt(i);
2536            // detach all active tracks from the chain
2537            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2538                sp<Track> track = mActiveTracks[i].promote();
2539                if (track == 0) {
2540                    continue;
2541                }
2542                if (session == track->sessionId()) {
2543                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2544                            chain.get(), session);
2545                    chain->decActiveTrackCnt();
2546                }
2547            }
2548
2549            // detach all tracks with same session ID from this chain
2550            for (size_t i = 0; i < mTracks.size(); ++i) {
2551                sp<Track> track = mTracks[i];
2552                if (session == track->sessionId()) {
2553                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2554                    chain->decTrackCnt();
2555                }
2556            }
2557            break;
2558        }
2559    }
2560    return mEffectChains.size();
2561}
2562
2563status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2564        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2565{
2566    Mutex::Autolock _l(mLock);
2567    return attachAuxEffect_l(track, EffectId);
2568}
2569
2570status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2571        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2572{
2573    status_t status = NO_ERROR;
2574
2575    if (EffectId == 0) {
2576        track->setAuxBuffer(0, NULL);
2577    } else {
2578        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2579        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2580        if (effect != 0) {
2581            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2582                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2583            } else {
2584                status = INVALID_OPERATION;
2585            }
2586        } else {
2587            status = BAD_VALUE;
2588        }
2589    }
2590    return status;
2591}
2592
2593void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2594{
2595    for (size_t i = 0; i < mTracks.size(); ++i) {
2596        sp<Track> track = mTracks[i];
2597        if (track->auxEffectId() == effectId) {
2598            attachAuxEffect_l(track, 0);
2599        }
2600    }
2601}
2602
2603bool AudioFlinger::PlaybackThread::threadLoop()
2604{
2605    Vector< sp<Track> > tracksToRemove;
2606
2607    standbyTime = systemTime();
2608
2609    // MIXER
2610    nsecs_t lastWarning = 0;
2611
2612    // DUPLICATING
2613    // FIXME could this be made local to while loop?
2614    writeFrames = 0;
2615
2616    int lastGeneration = 0;
2617
2618    cacheParameters_l();
2619    sleepTime = idleSleepTime;
2620
2621    if (mType == MIXER) {
2622        sleepTimeShift = 0;
2623    }
2624
2625    CpuStats cpuStats;
2626    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2627
2628    acquireWakeLock();
2629
2630    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2631    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2632    // and then that string will be logged at the next convenient opportunity.
2633    const char *logString = NULL;
2634
2635    checkSilentMode_l();
2636
2637    while (!exitPending())
2638    {
2639        cpuStats.sample(myName);
2640
2641        Vector< sp<EffectChain> > effectChains;
2642
2643        { // scope for mLock
2644
2645            Mutex::Autolock _l(mLock);
2646
2647            processConfigEvents_l();
2648
2649            if (logString != NULL) {
2650                mNBLogWriter->logTimestamp();
2651                mNBLogWriter->log(logString);
2652                logString = NULL;
2653            }
2654
2655            // Gather the framesReleased counters for all active tracks,
2656            // and latch them atomically with the timestamp.
2657            // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2658            mLatchD.mFramesReleased.clear();
2659            size_t size = mActiveTracks.size();
2660            for (size_t i = 0; i < size; i++) {
2661                sp<Track> t = mActiveTracks[i].promote();
2662                if (t != 0) {
2663                    mLatchD.mFramesReleased.add(t.get(),
2664                            t->mAudioTrackServerProxy->framesReleased());
2665                }
2666            }
2667            if (mLatchDValid) {
2668                mLatchQ = mLatchD;
2669                mLatchDValid = false;
2670                mLatchQValid = true;
2671            }
2672
2673            saveOutputTracks();
2674            if (mSignalPending) {
2675                // A signal was raised while we were unlocked
2676                mSignalPending = false;
2677            } else if (waitingAsyncCallback_l()) {
2678                if (exitPending()) {
2679                    break;
2680                }
2681                releaseWakeLock_l();
2682                mWakeLockUids.clear();
2683                mActiveTracksGeneration++;
2684                ALOGV("wait async completion");
2685                mWaitWorkCV.wait(mLock);
2686                ALOGV("async completion/wake");
2687                acquireWakeLock_l();
2688                standbyTime = systemTime() + standbyDelay;
2689                sleepTime = 0;
2690
2691                continue;
2692            }
2693            if ((!mActiveTracks.size() && systemTime() > standbyTime) ||
2694                                   isSuspended()) {
2695                // put audio hardware into standby after short delay
2696                if (shouldStandby_l()) {
2697
2698                    threadLoop_standby();
2699
2700                    mStandby = true;
2701                }
2702
2703                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2704                    // we're about to wait, flush the binder command buffer
2705                    IPCThreadState::self()->flushCommands();
2706
2707                    clearOutputTracks();
2708
2709                    if (exitPending()) {
2710                        break;
2711                    }
2712
2713                    releaseWakeLock_l();
2714                    mWakeLockUids.clear();
2715                    mActiveTracksGeneration++;
2716                    // wait until we have something to do...
2717                    ALOGV("%s going to sleep", myName.string());
2718                    mWaitWorkCV.wait(mLock);
2719                    ALOGV("%s waking up", myName.string());
2720                    acquireWakeLock_l();
2721
2722                    mMixerStatus = MIXER_IDLE;
2723                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2724                    mBytesWritten = 0;
2725                    mBytesRemaining = 0;
2726                    checkSilentMode_l();
2727
2728                    standbyTime = systemTime() + standbyDelay;
2729                    sleepTime = idleSleepTime;
2730                    if (mType == MIXER) {
2731                        sleepTimeShift = 0;
2732                    }
2733
2734                    continue;
2735                }
2736            }
2737            // mMixerStatusIgnoringFastTracks is also updated internally
2738            mMixerStatus = prepareTracks_l(&tracksToRemove);
2739
2740            // compare with previously applied list
2741            if (lastGeneration != mActiveTracksGeneration) {
2742                // update wakelock
2743                updateWakeLockUids_l(mWakeLockUids);
2744                lastGeneration = mActiveTracksGeneration;
2745            }
2746
2747            // prevent any changes in effect chain list and in each effect chain
2748            // during mixing and effect process as the audio buffers could be deleted
2749            // or modified if an effect is created or deleted
2750            lockEffectChains_l(effectChains);
2751        } // mLock scope ends
2752
2753        if (mBytesRemaining == 0) {
2754            mCurrentWriteLength = 0;
2755            if (mMixerStatus == MIXER_TRACKS_READY) {
2756                // threadLoop_mix() sets mCurrentWriteLength
2757                threadLoop_mix();
2758            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2759                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
2760                // threadLoop_sleepTime sets sleepTime to 0 if data
2761                // must be written to HAL
2762                threadLoop_sleepTime();
2763                if (sleepTime == 0) {
2764                    mCurrentWriteLength = mSinkBufferSize;
2765                }
2766            }
2767            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2768            // mMixerBuffer with data if mMixerBufferValid is true and sleepTime == 0.
2769            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2770            // or mSinkBuffer (if there are no effects).
2771            //
2772            // This is done pre-effects computation; if effects change to
2773            // support higher precision, this needs to move.
2774            //
2775            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2776            // TODO use sleepTime == 0 as an additional condition.
2777            if (mMixerBufferValid) {
2778                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2779                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2780
2781                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2782                        mNormalFrameCount * mChannelCount);
2783            }
2784
2785            mBytesRemaining = mCurrentWriteLength;
2786            if (isSuspended()) {
2787                sleepTime = suspendSleepTimeUs();
2788                // simulate write to HAL when suspended
2789                mBytesWritten += mSinkBufferSize;
2790                mBytesRemaining = 0;
2791            }
2792
2793            // only process effects if we're going to write
2794            if (sleepTime == 0 && mType != OFFLOAD) {
2795                for (size_t i = 0; i < effectChains.size(); i ++) {
2796                    effectChains[i]->process_l();
2797                }
2798            }
2799        }
2800        // Process effect chains for offloaded thread even if no audio
2801        // was read from audio track: process only updates effect state
2802        // and thus does have to be synchronized with audio writes but may have
2803        // to be called while waiting for async write callback
2804        if (mType == OFFLOAD) {
2805            for (size_t i = 0; i < effectChains.size(); i ++) {
2806                effectChains[i]->process_l();
2807            }
2808        }
2809
2810        // Only if the Effects buffer is enabled and there is data in the
2811        // Effects buffer (buffer valid), we need to
2812        // copy into the sink buffer.
2813        // TODO use sleepTime == 0 as an additional condition.
2814        if (mEffectBufferValid) {
2815            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2816            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2817                    mNormalFrameCount * mChannelCount);
2818        }
2819
2820        // enable changes in effect chain
2821        unlockEffectChains(effectChains);
2822
2823        if (!waitingAsyncCallback()) {
2824            // sleepTime == 0 means we must write to audio hardware
2825            if (sleepTime == 0) {
2826                if (mBytesRemaining) {
2827                    ssize_t ret = threadLoop_write();
2828                    if (ret < 0) {
2829                        mBytesRemaining = 0;
2830                    } else {
2831                        mBytesWritten += ret;
2832                        mBytesRemaining -= ret;
2833                    }
2834                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2835                        (mMixerStatus == MIXER_DRAIN_ALL)) {
2836                    threadLoop_drain();
2837                }
2838                if (mType == MIXER) {
2839                    // write blocked detection
2840                    nsecs_t now = systemTime();
2841                    nsecs_t delta = now - mLastWriteTime;
2842                    if (!mStandby && delta > maxPeriod) {
2843                        mNumDelayedWrites++;
2844                        if ((now - lastWarning) > kWarningThrottleNs) {
2845                            ATRACE_NAME("underrun");
2846                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2847                                    ns2ms(delta), mNumDelayedWrites, this);
2848                            lastWarning = now;
2849                        }
2850                    }
2851                }
2852
2853            } else {
2854                ATRACE_BEGIN("sleep");
2855                usleep(sleepTime);
2856                ATRACE_END();
2857            }
2858        }
2859
2860        // Finally let go of removed track(s), without the lock held
2861        // since we can't guarantee the destructors won't acquire that
2862        // same lock.  This will also mutate and push a new fast mixer state.
2863        threadLoop_removeTracks(tracksToRemove);
2864        tracksToRemove.clear();
2865
2866        // FIXME I don't understand the need for this here;
2867        //       it was in the original code but maybe the
2868        //       assignment in saveOutputTracks() makes this unnecessary?
2869        clearOutputTracks();
2870
2871        // Effect chains will be actually deleted here if they were removed from
2872        // mEffectChains list during mixing or effects processing
2873        effectChains.clear();
2874
2875        // FIXME Note that the above .clear() is no longer necessary since effectChains
2876        // is now local to this block, but will keep it for now (at least until merge done).
2877    }
2878
2879    threadLoop_exit();
2880
2881    if (!mStandby) {
2882        threadLoop_standby();
2883        mStandby = true;
2884    }
2885
2886    releaseWakeLock();
2887    mWakeLockUids.clear();
2888    mActiveTracksGeneration++;
2889
2890    ALOGV("Thread %p type %d exiting", this, mType);
2891    return false;
2892}
2893
2894// removeTracks_l() must be called with ThreadBase::mLock held
2895void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
2896{
2897    size_t count = tracksToRemove.size();
2898    if (count > 0) {
2899        for (size_t i=0 ; i<count ; i++) {
2900            const sp<Track>& track = tracksToRemove.itemAt(i);
2901            mActiveTracks.remove(track);
2902            mWakeLockUids.remove(track->uid());
2903            mActiveTracksGeneration++;
2904            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
2905            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2906            if (chain != 0) {
2907                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
2908                        track->sessionId());
2909                chain->decActiveTrackCnt();
2910            }
2911            if (track->isTerminated()) {
2912                removeTrack_l(track);
2913            }
2914        }
2915    }
2916
2917}
2918
2919status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
2920{
2921    if (mNormalSink != 0) {
2922        return mNormalSink->getTimestamp(timestamp);
2923    }
2924    if ((mType == OFFLOAD || mType == DIRECT)
2925            && mOutput != NULL && mOutput->stream->get_presentation_position) {
2926        uint64_t position64;
2927        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
2928        if (ret == 0) {
2929            timestamp.mPosition = (uint32_t)position64;
2930            return NO_ERROR;
2931        }
2932    }
2933    return INVALID_OPERATION;
2934}
2935
2936status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
2937                                                          audio_patch_handle_t *handle)
2938{
2939    status_t status = NO_ERROR;
2940    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2941        // store new device and send to effects
2942        audio_devices_t type = AUDIO_DEVICE_NONE;
2943        for (unsigned int i = 0; i < patch->num_sinks; i++) {
2944            type |= patch->sinks[i].ext.device.type;
2945        }
2946        mOutDevice = type;
2947        for (size_t i = 0; i < mEffectChains.size(); i++) {
2948            mEffectChains[i]->setDevice_l(mOutDevice);
2949        }
2950
2951        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2952        status = hwDevice->create_audio_patch(hwDevice,
2953                                               patch->num_sources,
2954                                               patch->sources,
2955                                               patch->num_sinks,
2956                                               patch->sinks,
2957                                               handle);
2958    } else {
2959        ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
2960    }
2961    return status;
2962}
2963
2964status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
2965{
2966    status_t status = NO_ERROR;
2967    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
2968        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
2969        status = hwDevice->release_audio_patch(hwDevice, handle);
2970    } else {
2971        ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
2972    }
2973    return status;
2974}
2975
2976void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
2977{
2978    Mutex::Autolock _l(mLock);
2979    mTracks.add(track);
2980}
2981
2982void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
2983{
2984    Mutex::Autolock _l(mLock);
2985    destroyTrack_l(track);
2986}
2987
2988void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
2989{
2990    ThreadBase::getAudioPortConfig(config);
2991    config->role = AUDIO_PORT_ROLE_SOURCE;
2992    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
2993    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
2994}
2995
2996// ----------------------------------------------------------------------------
2997
2998AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
2999        audio_io_handle_t id, audio_devices_t device, type_t type)
3000    :   PlaybackThread(audioFlinger, output, id, device, type),
3001        // mAudioMixer below
3002        // mFastMixer below
3003        mFastMixerFutex(0)
3004        // mOutputSink below
3005        // mPipeSink below
3006        // mNormalSink below
3007{
3008    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3009    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3010            "mFrameCount=%d, mNormalFrameCount=%d",
3011            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3012            mNormalFrameCount);
3013    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3014
3015    if (type == DUPLICATING) {
3016        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3017        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3018        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3019        return;
3020    }
3021    // create an NBAIO sink for the HAL output stream, and negotiate
3022    mOutputSink = new AudioStreamOutSink(output->stream);
3023    size_t numCounterOffers = 0;
3024    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3025    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3026    ALOG_ASSERT(index == 0);
3027
3028    // initialize fast mixer depending on configuration
3029    bool initFastMixer;
3030    switch (kUseFastMixer) {
3031    case FastMixer_Never:
3032        initFastMixer = false;
3033        break;
3034    case FastMixer_Always:
3035        initFastMixer = true;
3036        break;
3037    case FastMixer_Static:
3038    case FastMixer_Dynamic:
3039        initFastMixer = mFrameCount < mNormalFrameCount;
3040        break;
3041    }
3042    if (initFastMixer) {
3043        audio_format_t fastMixerFormat;
3044        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3045            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3046        } else {
3047            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3048        }
3049        if (mFormat != fastMixerFormat) {
3050            // change our Sink format to accept our intermediate precision
3051            mFormat = fastMixerFormat;
3052            free(mSinkBuffer);
3053            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3054            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3055            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3056        }
3057
3058        // create a MonoPipe to connect our submix to FastMixer
3059        NBAIO_Format format = mOutputSink->format();
3060        NBAIO_Format origformat = format;
3061        // adjust format to match that of the Fast Mixer
3062        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3063        format.mFormat = fastMixerFormat;
3064        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3065
3066        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3067        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3068        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3069        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3070        const NBAIO_Format offers[1] = {format};
3071        size_t numCounterOffers = 0;
3072        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3073        ALOG_ASSERT(index == 0);
3074        monoPipe->setAvgFrames((mScreenState & 1) ?
3075                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3076        mPipeSink = monoPipe;
3077
3078#ifdef TEE_SINK
3079        if (mTeeSinkOutputEnabled) {
3080            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3081            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3082            const NBAIO_Format offers2[1] = {origformat};
3083            numCounterOffers = 0;
3084            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3085            ALOG_ASSERT(index == 0);
3086            mTeeSink = teeSink;
3087            PipeReader *teeSource = new PipeReader(*teeSink);
3088            numCounterOffers = 0;
3089            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3090            ALOG_ASSERT(index == 0);
3091            mTeeSource = teeSource;
3092        }
3093#endif
3094
3095        // create fast mixer and configure it initially with just one fast track for our submix
3096        mFastMixer = new FastMixer();
3097        FastMixerStateQueue *sq = mFastMixer->sq();
3098#ifdef STATE_QUEUE_DUMP
3099        sq->setObserverDump(&mStateQueueObserverDump);
3100        sq->setMutatorDump(&mStateQueueMutatorDump);
3101#endif
3102        FastMixerState *state = sq->begin();
3103        FastTrack *fastTrack = &state->mFastTracks[0];
3104        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3105        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3106        fastTrack->mVolumeProvider = NULL;
3107        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3108        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3109        fastTrack->mGeneration++;
3110        state->mFastTracksGen++;
3111        state->mTrackMask = 1;
3112        // fast mixer will use the HAL output sink
3113        state->mOutputSink = mOutputSink.get();
3114        state->mOutputSinkGen++;
3115        state->mFrameCount = mFrameCount;
3116        state->mCommand = FastMixerState::COLD_IDLE;
3117        // already done in constructor initialization list
3118        //mFastMixerFutex = 0;
3119        state->mColdFutexAddr = &mFastMixerFutex;
3120        state->mColdGen++;
3121        state->mDumpState = &mFastMixerDumpState;
3122#ifdef TEE_SINK
3123        state->mTeeSink = mTeeSink.get();
3124#endif
3125        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3126        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3127        sq->end();
3128        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3129
3130        // start the fast mixer
3131        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3132        pid_t tid = mFastMixer->getTid();
3133        int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
3134        if (err != 0) {
3135            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
3136                    kPriorityFastMixer, getpid_cached, tid, err);
3137        }
3138
3139#ifdef AUDIO_WATCHDOG
3140        // create and start the watchdog
3141        mAudioWatchdog = new AudioWatchdog();
3142        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3143        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3144        tid = mAudioWatchdog->getTid();
3145        err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
3146        if (err != 0) {
3147            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
3148                    kPriorityFastMixer, getpid_cached, tid, err);
3149        }
3150#endif
3151
3152    }
3153
3154    switch (kUseFastMixer) {
3155    case FastMixer_Never:
3156    case FastMixer_Dynamic:
3157        mNormalSink = mOutputSink;
3158        break;
3159    case FastMixer_Always:
3160        mNormalSink = mPipeSink;
3161        break;
3162    case FastMixer_Static:
3163        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3164        break;
3165    }
3166}
3167
3168AudioFlinger::MixerThread::~MixerThread()
3169{
3170    if (mFastMixer != 0) {
3171        FastMixerStateQueue *sq = mFastMixer->sq();
3172        FastMixerState *state = sq->begin();
3173        if (state->mCommand == FastMixerState::COLD_IDLE) {
3174            int32_t old = android_atomic_inc(&mFastMixerFutex);
3175            if (old == -1) {
3176                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3177            }
3178        }
3179        state->mCommand = FastMixerState::EXIT;
3180        sq->end();
3181        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3182        mFastMixer->join();
3183        // Though the fast mixer thread has exited, it's state queue is still valid.
3184        // We'll use that extract the final state which contains one remaining fast track
3185        // corresponding to our sub-mix.
3186        state = sq->begin();
3187        ALOG_ASSERT(state->mTrackMask == 1);
3188        FastTrack *fastTrack = &state->mFastTracks[0];
3189        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3190        delete fastTrack->mBufferProvider;
3191        sq->end(false /*didModify*/);
3192        mFastMixer.clear();
3193#ifdef AUDIO_WATCHDOG
3194        if (mAudioWatchdog != 0) {
3195            mAudioWatchdog->requestExit();
3196            mAudioWatchdog->requestExitAndWait();
3197            mAudioWatchdog.clear();
3198        }
3199#endif
3200    }
3201    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3202    delete mAudioMixer;
3203}
3204
3205
3206uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3207{
3208    if (mFastMixer != 0) {
3209        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3210        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3211    }
3212    return latency;
3213}
3214
3215
3216void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3217{
3218    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3219}
3220
3221ssize_t AudioFlinger::MixerThread::threadLoop_write()
3222{
3223    // FIXME we should only do one push per cycle; confirm this is true
3224    // Start the fast mixer if it's not already running
3225    if (mFastMixer != 0) {
3226        FastMixerStateQueue *sq = mFastMixer->sq();
3227        FastMixerState *state = sq->begin();
3228        if (state->mCommand != FastMixerState::MIX_WRITE &&
3229                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3230            if (state->mCommand == FastMixerState::COLD_IDLE) {
3231                int32_t old = android_atomic_inc(&mFastMixerFutex);
3232                if (old == -1) {
3233                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3234                }
3235#ifdef AUDIO_WATCHDOG
3236                if (mAudioWatchdog != 0) {
3237                    mAudioWatchdog->resume();
3238                }
3239#endif
3240            }
3241            state->mCommand = FastMixerState::MIX_WRITE;
3242#ifdef FAST_THREAD_STATISTICS
3243            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3244                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3245#endif
3246            sq->end();
3247            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3248            if (kUseFastMixer == FastMixer_Dynamic) {
3249                mNormalSink = mPipeSink;
3250            }
3251        } else {
3252            sq->end(false /*didModify*/);
3253        }
3254    }
3255    return PlaybackThread::threadLoop_write();
3256}
3257
3258void AudioFlinger::MixerThread::threadLoop_standby()
3259{
3260    // Idle the fast mixer if it's currently running
3261    if (mFastMixer != 0) {
3262        FastMixerStateQueue *sq = mFastMixer->sq();
3263        FastMixerState *state = sq->begin();
3264        if (!(state->mCommand & FastMixerState::IDLE)) {
3265            state->mCommand = FastMixerState::COLD_IDLE;
3266            state->mColdFutexAddr = &mFastMixerFutex;
3267            state->mColdGen++;
3268            mFastMixerFutex = 0;
3269            sq->end();
3270            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3271            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3272            if (kUseFastMixer == FastMixer_Dynamic) {
3273                mNormalSink = mOutputSink;
3274            }
3275#ifdef AUDIO_WATCHDOG
3276            if (mAudioWatchdog != 0) {
3277                mAudioWatchdog->pause();
3278            }
3279#endif
3280        } else {
3281            sq->end(false /*didModify*/);
3282        }
3283    }
3284    PlaybackThread::threadLoop_standby();
3285}
3286
3287bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3288{
3289    return false;
3290}
3291
3292bool AudioFlinger::PlaybackThread::shouldStandby_l()
3293{
3294    return !mStandby;
3295}
3296
3297bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3298{
3299    Mutex::Autolock _l(mLock);
3300    return waitingAsyncCallback_l();
3301}
3302
3303// shared by MIXER and DIRECT, overridden by DUPLICATING
3304void AudioFlinger::PlaybackThread::threadLoop_standby()
3305{
3306    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3307    mOutput->standby();
3308    if (mUseAsyncWrite != 0) {
3309        // discard any pending drain or write ack by incrementing sequence
3310        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3311        mDrainSequence = (mDrainSequence + 2) & ~1;
3312        ALOG_ASSERT(mCallbackThread != 0);
3313        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3314        mCallbackThread->setDraining(mDrainSequence);
3315    }
3316    mHwPaused = false;
3317}
3318
3319void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3320{
3321    ALOGV("signal playback thread");
3322    broadcast_l();
3323}
3324
3325void AudioFlinger::MixerThread::threadLoop_mix()
3326{
3327    // obtain the presentation timestamp of the next output buffer
3328    int64_t pts;
3329    status_t status = INVALID_OPERATION;
3330
3331    if (mNormalSink != 0) {
3332        status = mNormalSink->getNextWriteTimestamp(&pts);
3333    } else {
3334        status = mOutputSink->getNextWriteTimestamp(&pts);
3335    }
3336
3337    if (status != NO_ERROR) {
3338        pts = AudioBufferProvider::kInvalidPTS;
3339    }
3340
3341    // mix buffers...
3342    mAudioMixer->process(pts);
3343    mCurrentWriteLength = mSinkBufferSize;
3344    // increase sleep time progressively when application underrun condition clears.
3345    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3346    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3347    // such that we would underrun the audio HAL.
3348    if ((sleepTime == 0) && (sleepTimeShift > 0)) {
3349        sleepTimeShift--;
3350    }
3351    sleepTime = 0;
3352    standbyTime = systemTime() + standbyDelay;
3353    //TODO: delay standby when effects have a tail
3354
3355}
3356
3357void AudioFlinger::MixerThread::threadLoop_sleepTime()
3358{
3359    // If no tracks are ready, sleep once for the duration of an output
3360    // buffer size, then write 0s to the output
3361    if (sleepTime == 0) {
3362        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3363            sleepTime = activeSleepTime >> sleepTimeShift;
3364            if (sleepTime < kMinThreadSleepTimeUs) {
3365                sleepTime = kMinThreadSleepTimeUs;
3366            }
3367            // reduce sleep time in case of consecutive application underruns to avoid
3368            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3369            // duration we would end up writing less data than needed by the audio HAL if
3370            // the condition persists.
3371            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3372                sleepTimeShift++;
3373            }
3374        } else {
3375            sleepTime = idleSleepTime;
3376        }
3377    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3378        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3379        // before effects processing or output.
3380        if (mMixerBufferValid) {
3381            memset(mMixerBuffer, 0, mMixerBufferSize);
3382        } else {
3383            memset(mSinkBuffer, 0, mSinkBufferSize);
3384        }
3385        sleepTime = 0;
3386        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3387                "anticipated start");
3388    }
3389    // TODO add standby time extension fct of effect tail
3390}
3391
3392// prepareTracks_l() must be called with ThreadBase::mLock held
3393AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3394        Vector< sp<Track> > *tracksToRemove)
3395{
3396
3397    mixer_state mixerStatus = MIXER_IDLE;
3398    // find out which tracks need to be processed
3399    size_t count = mActiveTracks.size();
3400    size_t mixedTracks = 0;
3401    size_t tracksWithEffect = 0;
3402    // counts only _active_ fast tracks
3403    size_t fastTracks = 0;
3404    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3405
3406    float masterVolume = mMasterVolume;
3407    bool masterMute = mMasterMute;
3408
3409    if (masterMute) {
3410        masterVolume = 0;
3411    }
3412    // Delegate master volume control to effect in output mix effect chain if needed
3413    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3414    if (chain != 0) {
3415        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3416        chain->setVolume_l(&v, &v);
3417        masterVolume = (float)((v + (1 << 23)) >> 24);
3418        chain.clear();
3419    }
3420
3421    // prepare a new state to push
3422    FastMixerStateQueue *sq = NULL;
3423    FastMixerState *state = NULL;
3424    bool didModify = false;
3425    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3426    if (mFastMixer != 0) {
3427        sq = mFastMixer->sq();
3428        state = sq->begin();
3429    }
3430
3431    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3432    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3433
3434    for (size_t i=0 ; i<count ; i++) {
3435        const sp<Track> t = mActiveTracks[i].promote();
3436        if (t == 0) {
3437            continue;
3438        }
3439
3440        // this const just means the local variable doesn't change
3441        Track* const track = t.get();
3442
3443        // process fast tracks
3444        if (track->isFastTrack()) {
3445
3446            // It's theoretically possible (though unlikely) for a fast track to be created
3447            // and then removed within the same normal mix cycle.  This is not a problem, as
3448            // the track never becomes active so it's fast mixer slot is never touched.
3449            // The converse, of removing an (active) track and then creating a new track
3450            // at the identical fast mixer slot within the same normal mix cycle,
3451            // is impossible because the slot isn't marked available until the end of each cycle.
3452            int j = track->mFastIndex;
3453            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3454            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3455            FastTrack *fastTrack = &state->mFastTracks[j];
3456
3457            // Determine whether the track is currently in underrun condition,
3458            // and whether it had a recent underrun.
3459            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3460            FastTrackUnderruns underruns = ftDump->mUnderruns;
3461            uint32_t recentFull = (underruns.mBitFields.mFull -
3462                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3463            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3464                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3465            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3466                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3467            uint32_t recentUnderruns = recentPartial + recentEmpty;
3468            track->mObservedUnderruns = underruns;
3469            // don't count underruns that occur while stopping or pausing
3470            // or stopped which can occur when flush() is called while active
3471            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3472                    recentUnderruns > 0) {
3473                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3474                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3475            }
3476
3477            // This is similar to the state machine for normal tracks,
3478            // with a few modifications for fast tracks.
3479            bool isActive = true;
3480            switch (track->mState) {
3481            case TrackBase::STOPPING_1:
3482                // track stays active in STOPPING_1 state until first underrun
3483                if (recentUnderruns > 0 || track->isTerminated()) {
3484                    track->mState = TrackBase::STOPPING_2;
3485                }
3486                break;
3487            case TrackBase::PAUSING:
3488                // ramp down is not yet implemented
3489                track->setPaused();
3490                break;
3491            case TrackBase::RESUMING:
3492                // ramp up is not yet implemented
3493                track->mState = TrackBase::ACTIVE;
3494                break;
3495            case TrackBase::ACTIVE:
3496                if (recentFull > 0 || recentPartial > 0) {
3497                    // track has provided at least some frames recently: reset retry count
3498                    track->mRetryCount = kMaxTrackRetries;
3499                }
3500                if (recentUnderruns == 0) {
3501                    // no recent underruns: stay active
3502                    break;
3503                }
3504                // there has recently been an underrun of some kind
3505                if (track->sharedBuffer() == 0) {
3506                    // were any of the recent underruns "empty" (no frames available)?
3507                    if (recentEmpty == 0) {
3508                        // no, then ignore the partial underruns as they are allowed indefinitely
3509                        break;
3510                    }
3511                    // there has recently been an "empty" underrun: decrement the retry counter
3512                    if (--(track->mRetryCount) > 0) {
3513                        break;
3514                    }
3515                    // indicate to client process that the track was disabled because of underrun;
3516                    // it will then automatically call start() when data is available
3517                    android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3518                    // remove from active list, but state remains ACTIVE [confusing but true]
3519                    isActive = false;
3520                    break;
3521                }
3522                // fall through
3523            case TrackBase::STOPPING_2:
3524            case TrackBase::PAUSED:
3525            case TrackBase::STOPPED:
3526            case TrackBase::FLUSHED:   // flush() while active
3527                // Check for presentation complete if track is inactive
3528                // We have consumed all the buffers of this track.
3529                // This would be incomplete if we auto-paused on underrun
3530                {
3531                    size_t audioHALFrames =
3532                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3533                    size_t framesWritten = mBytesWritten / mFrameSize;
3534                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3535                        // track stays in active list until presentation is complete
3536                        break;
3537                    }
3538                }
3539                if (track->isStopping_2()) {
3540                    track->mState = TrackBase::STOPPED;
3541                }
3542                if (track->isStopped()) {
3543                    // Can't reset directly, as fast mixer is still polling this track
3544                    //   track->reset();
3545                    // So instead mark this track as needing to be reset after push with ack
3546                    resetMask |= 1 << i;
3547                }
3548                isActive = false;
3549                break;
3550            case TrackBase::IDLE:
3551            default:
3552                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3553            }
3554
3555            if (isActive) {
3556                // was it previously inactive?
3557                if (!(state->mTrackMask & (1 << j))) {
3558                    ExtendedAudioBufferProvider *eabp = track;
3559                    VolumeProvider *vp = track;
3560                    fastTrack->mBufferProvider = eabp;
3561                    fastTrack->mVolumeProvider = vp;
3562                    fastTrack->mChannelMask = track->mChannelMask;
3563                    fastTrack->mFormat = track->mFormat;
3564                    fastTrack->mGeneration++;
3565                    state->mTrackMask |= 1 << j;
3566                    didModify = true;
3567                    // no acknowledgement required for newly active tracks
3568                }
3569                // cache the combined master volume and stream type volume for fast mixer; this
3570                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3571                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3572                ++fastTracks;
3573            } else {
3574                // was it previously active?
3575                if (state->mTrackMask & (1 << j)) {
3576                    fastTrack->mBufferProvider = NULL;
3577                    fastTrack->mGeneration++;
3578                    state->mTrackMask &= ~(1 << j);
3579                    didModify = true;
3580                    // If any fast tracks were removed, we must wait for acknowledgement
3581                    // because we're about to decrement the last sp<> on those tracks.
3582                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3583                } else {
3584                    LOG_ALWAYS_FATAL("fast track %d should have been active", j);
3585                }
3586                tracksToRemove->add(track);
3587                // Avoids a misleading display in dumpsys
3588                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3589            }
3590            continue;
3591        }
3592
3593        {   // local variable scope to avoid goto warning
3594
3595        audio_track_cblk_t* cblk = track->cblk();
3596
3597        // The first time a track is added we wait
3598        // for all its buffers to be filled before processing it
3599        int name = track->name();
3600        // make sure that we have enough frames to mix one full buffer.
3601        // enforce this condition only once to enable draining the buffer in case the client
3602        // app does not call stop() and relies on underrun to stop:
3603        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3604        // during last round
3605        size_t desiredFrames;
3606        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
3607        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
3608
3609        desiredFrames = sourceFramesNeededWithTimestretch(
3610                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
3611        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
3612        // add frames already consumed but not yet released by the resampler
3613        // because mAudioTrackServerProxy->framesReady() will include these frames
3614        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3615
3616        uint32_t minFrames = 1;
3617        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3618                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3619            minFrames = desiredFrames;
3620        }
3621
3622        size_t framesReady = track->framesReady();
3623        if (ATRACE_ENABLED()) {
3624            // I wish we had formatted trace names
3625            char traceName[16];
3626            strcpy(traceName, "nRdy");
3627            int name = track->name();
3628            if (AudioMixer::TRACK0 <= name &&
3629                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
3630                name -= AudioMixer::TRACK0;
3631                traceName[4] = (name / 10) + '0';
3632                traceName[5] = (name % 10) + '0';
3633            } else {
3634                traceName[4] = '?';
3635                traceName[5] = '?';
3636            }
3637            traceName[6] = '\0';
3638            ATRACE_INT(traceName, framesReady);
3639        }
3640        if ((framesReady >= minFrames) && track->isReady() &&
3641                !track->isPaused() && !track->isTerminated())
3642        {
3643            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3644
3645            mixedTracks++;
3646
3647            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3648            // there is an effect chain connected to the track
3649            chain.clear();
3650            if (track->mainBuffer() != mSinkBuffer &&
3651                    track->mainBuffer() != mMixerBuffer) {
3652                if (mEffectBufferEnabled) {
3653                    mEffectBufferValid = true; // Later can set directly.
3654                }
3655                chain = getEffectChain_l(track->sessionId());
3656                // Delegate volume control to effect in track effect chain if needed
3657                if (chain != 0) {
3658                    tracksWithEffect++;
3659                } else {
3660                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3661                            "session %d",
3662                            name, track->sessionId());
3663                }
3664            }
3665
3666
3667            int param = AudioMixer::VOLUME;
3668            if (track->mFillingUpStatus == Track::FS_FILLED) {
3669                // no ramp for the first volume setting
3670                track->mFillingUpStatus = Track::FS_ACTIVE;
3671                if (track->mState == TrackBase::RESUMING) {
3672                    track->mState = TrackBase::ACTIVE;
3673                    param = AudioMixer::RAMP_VOLUME;
3674                }
3675                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3676            // FIXME should not make a decision based on mServer
3677            } else if (cblk->mServer != 0) {
3678                // If the track is stopped before the first frame was mixed,
3679                // do not apply ramp
3680                param = AudioMixer::RAMP_VOLUME;
3681            }
3682
3683            // compute volume for this track
3684            uint32_t vl, vr;       // in U8.24 integer format
3685            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
3686            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3687                vl = vr = 0;
3688                vlf = vrf = vaf = 0.;
3689                if (track->isPausing()) {
3690                    track->setPaused();
3691                }
3692            } else {
3693
3694                // read original volumes with volume control
3695                float typeVolume = mStreamTypes[track->streamType()].volume;
3696                float v = masterVolume * typeVolume;
3697                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3698                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3699                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3700                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3701                // track volumes come from shared memory, so can't be trusted and must be clamped
3702                if (vlf > GAIN_FLOAT_UNITY) {
3703                    ALOGV("Track left volume out of range: %.3g", vlf);
3704                    vlf = GAIN_FLOAT_UNITY;
3705                }
3706                if (vrf > GAIN_FLOAT_UNITY) {
3707                    ALOGV("Track right volume out of range: %.3g", vrf);
3708                    vrf = GAIN_FLOAT_UNITY;
3709                }
3710                // now apply the master volume and stream type volume
3711                vlf *= v;
3712                vrf *= v;
3713                // assuming master volume and stream type volume each go up to 1.0,
3714                // then derive vl and vr as U8.24 versions for the effect chain
3715                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3716                vl = (uint32_t) (scaleto8_24 * vlf);
3717                vr = (uint32_t) (scaleto8_24 * vrf);
3718                // vl and vr are now in U8.24 format
3719                uint16_t sendLevel = proxy->getSendLevel_U4_12();
3720                // send level comes from shared memory and so may be corrupt
3721                if (sendLevel > MAX_GAIN_INT) {
3722                    ALOGV("Track send level out of range: %04X", sendLevel);
3723                    sendLevel = MAX_GAIN_INT;
3724                }
3725                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
3726                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
3727            }
3728
3729            // Delegate volume control to effect in track effect chain if needed
3730            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
3731                // Do not ramp volume if volume is controlled by effect
3732                param = AudioMixer::VOLUME;
3733                // Update remaining floating point volume levels
3734                vlf = (float)vl / (1 << 24);
3735                vrf = (float)vr / (1 << 24);
3736                track->mHasVolumeController = true;
3737            } else {
3738                // force no volume ramp when volume controller was just disabled or removed
3739                // from effect chain to avoid volume spike
3740                if (track->mHasVolumeController) {
3741                    param = AudioMixer::VOLUME;
3742                }
3743                track->mHasVolumeController = false;
3744            }
3745
3746            // XXX: these things DON'T need to be done each time
3747            mAudioMixer->setBufferProvider(name, track);
3748            mAudioMixer->enable(name);
3749
3750            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
3751            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
3752            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
3753            mAudioMixer->setParameter(
3754                name,
3755                AudioMixer::TRACK,
3756                AudioMixer::FORMAT, (void *)track->format());
3757            mAudioMixer->setParameter(
3758                name,
3759                AudioMixer::TRACK,
3760                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
3761            mAudioMixer->setParameter(
3762                name,
3763                AudioMixer::TRACK,
3764                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
3765            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
3766            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
3767            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
3768            if (reqSampleRate == 0) {
3769                reqSampleRate = mSampleRate;
3770            } else if (reqSampleRate > maxSampleRate) {
3771                reqSampleRate = maxSampleRate;
3772            }
3773            mAudioMixer->setParameter(
3774                name,
3775                AudioMixer::RESAMPLE,
3776                AudioMixer::SAMPLE_RATE,
3777                (void *)(uintptr_t)reqSampleRate);
3778
3779            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
3780            mAudioMixer->setParameter(
3781                name,
3782                AudioMixer::TIMESTRETCH,
3783                AudioMixer::PLAYBACK_RATE,
3784                &playbackRate);
3785
3786            /*
3787             * Select the appropriate output buffer for the track.
3788             *
3789             * Tracks with effects go into their own effects chain buffer
3790             * and from there into either mEffectBuffer or mSinkBuffer.
3791             *
3792             * Other tracks can use mMixerBuffer for higher precision
3793             * channel accumulation.  If this buffer is enabled
3794             * (mMixerBufferEnabled true), then selected tracks will accumulate
3795             * into it.
3796             *
3797             */
3798            if (mMixerBufferEnabled
3799                    && (track->mainBuffer() == mSinkBuffer
3800                            || track->mainBuffer() == mMixerBuffer)) {
3801                mAudioMixer->setParameter(
3802                        name,
3803                        AudioMixer::TRACK,
3804                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
3805                mAudioMixer->setParameter(
3806                        name,
3807                        AudioMixer::TRACK,
3808                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
3809                // TODO: override track->mainBuffer()?
3810                mMixerBufferValid = true;
3811            } else {
3812                mAudioMixer->setParameter(
3813                        name,
3814                        AudioMixer::TRACK,
3815                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
3816                mAudioMixer->setParameter(
3817                        name,
3818                        AudioMixer::TRACK,
3819                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
3820            }
3821            mAudioMixer->setParameter(
3822                name,
3823                AudioMixer::TRACK,
3824                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
3825
3826            // reset retry count
3827            track->mRetryCount = kMaxTrackRetries;
3828
3829            // If one track is ready, set the mixer ready if:
3830            //  - the mixer was not ready during previous round OR
3831            //  - no other track is not ready
3832            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
3833                    mixerStatus != MIXER_TRACKS_ENABLED) {
3834                mixerStatus = MIXER_TRACKS_READY;
3835            }
3836        } else {
3837            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
3838                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
3839            }
3840            // clear effect chain input buffer if an active track underruns to avoid sending
3841            // previous audio buffer again to effects
3842            chain = getEffectChain_l(track->sessionId());
3843            if (chain != 0) {
3844                chain->clearInputBuffer();
3845            }
3846
3847            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
3848            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
3849                    track->isStopped() || track->isPaused()) {
3850                // We have consumed all the buffers of this track.
3851                // Remove it from the list of active tracks.
3852                // TODO: use actual buffer filling status instead of latency when available from
3853                // audio HAL
3854                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
3855                size_t framesWritten = mBytesWritten / mFrameSize;
3856                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
3857                    if (track->isStopped()) {
3858                        track->reset();
3859                    }
3860                    tracksToRemove->add(track);
3861                }
3862            } else {
3863                // No buffers for this track. Give it a few chances to
3864                // fill a buffer, then remove it from active list.
3865                if (--(track->mRetryCount) <= 0) {
3866                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
3867                    tracksToRemove->add(track);
3868                    // indicate to client process that the track was disabled because of underrun;
3869                    // it will then automatically call start() when data is available
3870                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
3871                // If one track is not ready, mark the mixer also not ready if:
3872                //  - the mixer was ready during previous round OR
3873                //  - no other track is ready
3874                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
3875                                mixerStatus != MIXER_TRACKS_READY) {
3876                    mixerStatus = MIXER_TRACKS_ENABLED;
3877                }
3878            }
3879            mAudioMixer->disable(name);
3880        }
3881
3882        }   // local variable scope to avoid goto warning
3883track_is_ready: ;
3884
3885    }
3886
3887    // Push the new FastMixer state if necessary
3888    bool pauseAudioWatchdog = false;
3889    if (didModify) {
3890        state->mFastTracksGen++;
3891        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
3892        if (kUseFastMixer == FastMixer_Dynamic &&
3893                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
3894            state->mCommand = FastMixerState::COLD_IDLE;
3895            state->mColdFutexAddr = &mFastMixerFutex;
3896            state->mColdGen++;
3897            mFastMixerFutex = 0;
3898            if (kUseFastMixer == FastMixer_Dynamic) {
3899                mNormalSink = mOutputSink;
3900            }
3901            // If we go into cold idle, need to wait for acknowledgement
3902            // so that fast mixer stops doing I/O.
3903            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3904            pauseAudioWatchdog = true;
3905        }
3906    }
3907    if (sq != NULL) {
3908        sq->end(didModify);
3909        sq->push(block);
3910    }
3911#ifdef AUDIO_WATCHDOG
3912    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
3913        mAudioWatchdog->pause();
3914    }
3915#endif
3916
3917    // Now perform the deferred reset on fast tracks that have stopped
3918    while (resetMask != 0) {
3919        size_t i = __builtin_ctz(resetMask);
3920        ALOG_ASSERT(i < count);
3921        resetMask &= ~(1 << i);
3922        sp<Track> t = mActiveTracks[i].promote();
3923        if (t == 0) {
3924            continue;
3925        }
3926        Track* track = t.get();
3927        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
3928        track->reset();
3929    }
3930
3931    // remove all the tracks that need to be...
3932    removeTracks_l(*tracksToRemove);
3933
3934    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
3935        mEffectBufferValid = true;
3936    }
3937
3938    if (mEffectBufferValid) {
3939        // as long as there are effects we should clear the effects buffer, to avoid
3940        // passing a non-clean buffer to the effect chain
3941        memset(mEffectBuffer, 0, mEffectBufferSize);
3942    }
3943    // sink or mix buffer must be cleared if all tracks are connected to an
3944    // effect chain as in this case the mixer will not write to the sink or mix buffer
3945    // and track effects will accumulate into it
3946    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3947            (mixedTracks == 0 && fastTracks > 0))) {
3948        // FIXME as a performance optimization, should remember previous zero status
3949        if (mMixerBufferValid) {
3950            memset(mMixerBuffer, 0, mMixerBufferSize);
3951            // TODO: In testing, mSinkBuffer below need not be cleared because
3952            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
3953            // after mixing.
3954            //
3955            // To enforce this guarantee:
3956            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3957            // (mixedTracks == 0 && fastTracks > 0))
3958            // must imply MIXER_TRACKS_READY.
3959            // Later, we may clear buffers regardless, and skip much of this logic.
3960        }
3961        // FIXME as a performance optimization, should remember previous zero status
3962        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
3963    }
3964
3965    // if any fast tracks, then status is ready
3966    mMixerStatusIgnoringFastTracks = mixerStatus;
3967    if (fastTracks > 0) {
3968        mixerStatus = MIXER_TRACKS_READY;
3969    }
3970    return mixerStatus;
3971}
3972
3973// getTrackName_l() must be called with ThreadBase::mLock held
3974int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
3975        audio_format_t format, int sessionId)
3976{
3977    return mAudioMixer->getTrackName(channelMask, format, sessionId);
3978}
3979
3980// deleteTrackName_l() must be called with ThreadBase::mLock held
3981void AudioFlinger::MixerThread::deleteTrackName_l(int name)
3982{
3983    ALOGV("remove track (%d) and delete from mixer", name);
3984    mAudioMixer->deleteTrackName(name);
3985}
3986
3987// checkForNewParameter_l() must be called with ThreadBase::mLock held
3988bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
3989                                                       status_t& status)
3990{
3991    bool reconfig = false;
3992
3993    status = NO_ERROR;
3994
3995    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3996    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3997    if (mFastMixer != 0) {
3998        FastMixerStateQueue *sq = mFastMixer->sq();
3999        FastMixerState *state = sq->begin();
4000        if (!(state->mCommand & FastMixerState::IDLE)) {
4001            previousCommand = state->mCommand;
4002            state->mCommand = FastMixerState::HOT_IDLE;
4003            sq->end();
4004            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4005        } else {
4006            sq->end(false /*didModify*/);
4007        }
4008    }
4009
4010    AudioParameter param = AudioParameter(keyValuePair);
4011    int value;
4012    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4013        reconfig = true;
4014    }
4015    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4016        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4017            status = BAD_VALUE;
4018        } else {
4019            // no need to save value, since it's constant
4020            reconfig = true;
4021        }
4022    }
4023    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4024        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4025            status = BAD_VALUE;
4026        } else {
4027            // no need to save value, since it's constant
4028            reconfig = true;
4029        }
4030    }
4031    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4032        // do not accept frame count changes if tracks are open as the track buffer
4033        // size depends on frame count and correct behavior would not be guaranteed
4034        // if frame count is changed after track creation
4035        if (!mTracks.isEmpty()) {
4036            status = INVALID_OPERATION;
4037        } else {
4038            reconfig = true;
4039        }
4040    }
4041    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4042#ifdef ADD_BATTERY_DATA
4043        // when changing the audio output device, call addBatteryData to notify
4044        // the change
4045        if (mOutDevice != value) {
4046            uint32_t params = 0;
4047            // check whether speaker is on
4048            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4049                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4050            }
4051
4052            audio_devices_t deviceWithoutSpeaker
4053                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4054            // check if any other device (except speaker) is on
4055            if (value & deviceWithoutSpeaker ) {
4056                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4057            }
4058
4059            if (params != 0) {
4060                addBatteryData(params);
4061            }
4062        }
4063#endif
4064
4065        // forward device change to effects that have requested to be
4066        // aware of attached audio device.
4067        if (value != AUDIO_DEVICE_NONE) {
4068            mOutDevice = value;
4069            for (size_t i = 0; i < mEffectChains.size(); i++) {
4070                mEffectChains[i]->setDevice_l(mOutDevice);
4071            }
4072        }
4073    }
4074
4075    if (status == NO_ERROR) {
4076        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4077                                                keyValuePair.string());
4078        if (!mStandby && status == INVALID_OPERATION) {
4079            mOutput->standby();
4080            mStandby = true;
4081            mBytesWritten = 0;
4082            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4083                                                   keyValuePair.string());
4084        }
4085        if (status == NO_ERROR && reconfig) {
4086            readOutputParameters_l();
4087            delete mAudioMixer;
4088            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4089            for (size_t i = 0; i < mTracks.size() ; i++) {
4090                int name = getTrackName_l(mTracks[i]->mChannelMask,
4091                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4092                if (name < 0) {
4093                    break;
4094                }
4095                mTracks[i]->mName = name;
4096            }
4097            sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
4098        }
4099    }
4100
4101    if (!(previousCommand & FastMixerState::IDLE)) {
4102        ALOG_ASSERT(mFastMixer != 0);
4103        FastMixerStateQueue *sq = mFastMixer->sq();
4104        FastMixerState *state = sq->begin();
4105        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4106        state->mCommand = previousCommand;
4107        sq->end();
4108        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4109    }
4110
4111    return reconfig;
4112}
4113
4114
4115void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4116{
4117    const size_t SIZE = 256;
4118    char buffer[SIZE];
4119    String8 result;
4120
4121    PlaybackThread::dumpInternals(fd, args);
4122
4123    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4124
4125    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4126    const FastMixerDumpState copy(mFastMixerDumpState);
4127    copy.dump(fd);
4128
4129#ifdef STATE_QUEUE_DUMP
4130    // Similar for state queue
4131    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4132    observerCopy.dump(fd);
4133    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4134    mutatorCopy.dump(fd);
4135#endif
4136
4137#ifdef TEE_SINK
4138    // Write the tee output to a .wav file
4139    dumpTee(fd, mTeeSource, mId);
4140#endif
4141
4142#ifdef AUDIO_WATCHDOG
4143    if (mAudioWatchdog != 0) {
4144        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4145        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4146        wdCopy.dump(fd);
4147    }
4148#endif
4149}
4150
4151uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4152{
4153    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4154}
4155
4156uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4157{
4158    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4159}
4160
4161void AudioFlinger::MixerThread::cacheParameters_l()
4162{
4163    PlaybackThread::cacheParameters_l();
4164
4165    // FIXME: Relaxed timing because of a certain device that can't meet latency
4166    // Should be reduced to 2x after the vendor fixes the driver issue
4167    // increase threshold again due to low power audio mode. The way this warning
4168    // threshold is calculated and its usefulness should be reconsidered anyway.
4169    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4170}
4171
4172// ----------------------------------------------------------------------------
4173
4174AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4175        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
4176    :   PlaybackThread(audioFlinger, output, id, device, DIRECT)
4177        // mLeftVolFloat, mRightVolFloat
4178{
4179}
4180
4181AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4182        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4183        ThreadBase::type_t type)
4184    :   PlaybackThread(audioFlinger, output, id, device, type)
4185        // mLeftVolFloat, mRightVolFloat
4186{
4187}
4188
4189AudioFlinger::DirectOutputThread::~DirectOutputThread()
4190{
4191}
4192
4193void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4194{
4195    audio_track_cblk_t* cblk = track->cblk();
4196    float left, right;
4197
4198    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4199        left = right = 0;
4200    } else {
4201        float typeVolume = mStreamTypes[track->streamType()].volume;
4202        float v = mMasterVolume * typeVolume;
4203        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4204        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4205        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4206        if (left > GAIN_FLOAT_UNITY) {
4207            left = GAIN_FLOAT_UNITY;
4208        }
4209        left *= v;
4210        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4211        if (right > GAIN_FLOAT_UNITY) {
4212            right = GAIN_FLOAT_UNITY;
4213        }
4214        right *= v;
4215    }
4216
4217    if (lastTrack) {
4218        if (left != mLeftVolFloat || right != mRightVolFloat) {
4219            mLeftVolFloat = left;
4220            mRightVolFloat = right;
4221
4222            // Convert volumes from float to 8.24
4223            uint32_t vl = (uint32_t)(left * (1 << 24));
4224            uint32_t vr = (uint32_t)(right * (1 << 24));
4225
4226            // Delegate volume control to effect in track effect chain if needed
4227            // only one effect chain can be present on DirectOutputThread, so if
4228            // there is one, the track is connected to it
4229            if (!mEffectChains.isEmpty()) {
4230                mEffectChains[0]->setVolume_l(&vl, &vr);
4231                left = (float)vl / (1 << 24);
4232                right = (float)vr / (1 << 24);
4233            }
4234            if (mOutput->stream->set_volume) {
4235                mOutput->stream->set_volume(mOutput->stream, left, right);
4236            }
4237        }
4238    }
4239}
4240
4241
4242AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4243    Vector< sp<Track> > *tracksToRemove
4244)
4245{
4246    size_t count = mActiveTracks.size();
4247    mixer_state mixerStatus = MIXER_IDLE;
4248    bool doHwPause = false;
4249    bool doHwResume = false;
4250    bool flushPending = false;
4251
4252    // find out which tracks need to be processed
4253    for (size_t i = 0; i < count; i++) {
4254        sp<Track> t = mActiveTracks[i].promote();
4255        // The track died recently
4256        if (t == 0) {
4257            continue;
4258        }
4259
4260        Track* const track = t.get();
4261        audio_track_cblk_t* cblk = track->cblk();
4262        // Only consider last track started for volume and mixer state control.
4263        // In theory an older track could underrun and restart after the new one starts
4264        // but as we only care about the transition phase between two tracks on a
4265        // direct output, it is not a problem to ignore the underrun case.
4266        sp<Track> l = mLatestActiveTrack.promote();
4267        bool last = l.get() == track;
4268
4269        if (mHwSupportsPause && track->isPausing()) {
4270            track->setPaused();
4271            if (last && !mHwPaused) {
4272                doHwPause = true;
4273                mHwPaused = true;
4274            }
4275            tracksToRemove->add(track);
4276        } else if (track->isFlushPending()) {
4277            track->flushAck();
4278            if (last) {
4279                flushPending = true;
4280            }
4281        } else if (mHwSupportsPause && track->isResumePending()){
4282            track->resumeAck();
4283            if (last) {
4284                if (mHwPaused) {
4285                    doHwResume = true;
4286                    mHwPaused = false;
4287                }
4288            }
4289        }
4290
4291        // The first time a track is added we wait
4292        // for all its buffers to be filled before processing it.
4293        // Allow draining the buffer in case the client
4294        // app does not call stop() and relies on underrun to stop:
4295        // hence the test on (track->mRetryCount > 1).
4296        // If retryCount<=1 then track is about to underrun and be removed.
4297        uint32_t minFrames;
4298        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4299            && (track->mRetryCount > 1)) {
4300            minFrames = mNormalFrameCount;
4301        } else {
4302            minFrames = 1;
4303        }
4304
4305        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4306                !track->isStopping_2() && !track->isStopped())
4307        {
4308            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4309
4310            if (track->mFillingUpStatus == Track::FS_FILLED) {
4311                track->mFillingUpStatus = Track::FS_ACTIVE;
4312                // make sure processVolume_l() will apply new volume even if 0
4313                mLeftVolFloat = mRightVolFloat = -1.0;
4314                if (!mHwSupportsPause) {
4315                    track->resumeAck();
4316                }
4317            }
4318
4319            // compute volume for this track
4320            processVolume_l(track, last);
4321            if (last) {
4322                // reset retry count
4323                track->mRetryCount = kMaxTrackRetriesDirect;
4324                mActiveTrack = t;
4325                mixerStatus = MIXER_TRACKS_READY;
4326                if (usesHwAvSync() && mHwPaused) {
4327                    doHwResume = true;
4328                    mHwPaused = false;
4329                }
4330            }
4331        } else {
4332            // clear effect chain input buffer if the last active track started underruns
4333            // to avoid sending previous audio buffer again to effects
4334            if (!mEffectChains.isEmpty() && last) {
4335                mEffectChains[0]->clearInputBuffer();
4336            }
4337            if (track->isStopping_1()) {
4338                track->mState = TrackBase::STOPPING_2;
4339                if (last && mHwPaused) {
4340                     doHwResume = true;
4341                     mHwPaused = false;
4342                 }
4343            }
4344            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4345                    track->isStopping_2() || track->isPaused()) {
4346                // We have consumed all the buffers of this track.
4347                // Remove it from the list of active tracks.
4348                size_t audioHALFrames;
4349                if (audio_is_linear_pcm(mFormat)) {
4350                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4351                } else {
4352                    audioHALFrames = 0;
4353                }
4354
4355                size_t framesWritten = mBytesWritten / mFrameSize;
4356                if (mStandby || !last ||
4357                        track->presentationComplete(framesWritten, audioHALFrames)) {
4358                    if (track->isStopping_2()) {
4359                        track->mState = TrackBase::STOPPED;
4360                    }
4361                    if (track->isStopped()) {
4362                        track->reset();
4363                    }
4364                    tracksToRemove->add(track);
4365                }
4366            } else {
4367                // No buffers for this track. Give it a few chances to
4368                // fill a buffer, then remove it from active list.
4369                // Only consider last track started for mixer state control
4370                if (--(track->mRetryCount) <= 0) {
4371                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4372                    tracksToRemove->add(track);
4373                    // indicate to client process that the track was disabled because of underrun;
4374                    // it will then automatically call start() when data is available
4375                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4376                } else if (last) {
4377                    mixerStatus = MIXER_TRACKS_ENABLED;
4378                    if (usesHwAvSync() && !mHwPaused && !mStandby) {
4379                        doHwPause = true;
4380                        mHwPaused = true;
4381                    }
4382                }
4383            }
4384        }
4385    }
4386
4387    // if an active track did not command a flush, check for pending flush on stopped tracks
4388    if (!flushPending) {
4389        for (size_t i = 0; i < mTracks.size(); i++) {
4390            if (mTracks[i]->isFlushPending()) {
4391                mTracks[i]->flushAck();
4392                flushPending = true;
4393            }
4394        }
4395    }
4396
4397    // make sure the pause/flush/resume sequence is executed in the right order.
4398    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4399    // before flush and then resume HW. This can happen in case of pause/flush/resume
4400    // if resume is received before pause is executed.
4401    if (mHwSupportsPause && !mStandby &&
4402            (doHwPause || (flushPending && !mHwPaused && (count != 0)))) {
4403        mOutput->stream->pause(mOutput->stream);
4404    }
4405    if (flushPending) {
4406        flushHw_l();
4407    }
4408    if (mHwSupportsPause && !mStandby && doHwResume) {
4409        mOutput->stream->resume(mOutput->stream);
4410    }
4411    // remove all the tracks that need to be...
4412    removeTracks_l(*tracksToRemove);
4413
4414    return mixerStatus;
4415}
4416
4417void AudioFlinger::DirectOutputThread::threadLoop_mix()
4418{
4419    size_t frameCount = mFrameCount;
4420    int8_t *curBuf = (int8_t *)mSinkBuffer;
4421    // output audio to hardware
4422    while (frameCount) {
4423        AudioBufferProvider::Buffer buffer;
4424        buffer.frameCount = frameCount;
4425        status_t status = mActiveTrack->getNextBuffer(&buffer);
4426        if (status != NO_ERROR || buffer.raw == NULL) {
4427            memset(curBuf, 0, frameCount * mFrameSize);
4428            break;
4429        }
4430        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4431        frameCount -= buffer.frameCount;
4432        curBuf += buffer.frameCount * mFrameSize;
4433        mActiveTrack->releaseBuffer(&buffer);
4434    }
4435    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4436    sleepTime = 0;
4437    standbyTime = systemTime() + standbyDelay;
4438    mActiveTrack.clear();
4439}
4440
4441void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4442{
4443    // do not write to HAL when paused
4444    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4445        sleepTime = idleSleepTime;
4446        return;
4447    }
4448    if (sleepTime == 0) {
4449        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4450            sleepTime = activeSleepTime;
4451        } else {
4452            sleepTime = idleSleepTime;
4453        }
4454    } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4455        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4456        sleepTime = 0;
4457    }
4458}
4459
4460void AudioFlinger::DirectOutputThread::threadLoop_exit()
4461{
4462    {
4463        Mutex::Autolock _l(mLock);
4464        bool flushPending = false;
4465        for (size_t i = 0; i < mTracks.size(); i++) {
4466            if (mTracks[i]->isFlushPending()) {
4467                mTracks[i]->flushAck();
4468                flushPending = true;
4469            }
4470        }
4471        if (flushPending) {
4472            flushHw_l();
4473        }
4474    }
4475    PlaybackThread::threadLoop_exit();
4476}
4477
4478// must be called with thread mutex locked
4479bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4480{
4481    bool trackPaused = false;
4482    bool trackStopped = false;
4483
4484    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4485    // after a timeout and we will enter standby then.
4486    if (mTracks.size() > 0) {
4487        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4488        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4489                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4490    }
4491
4492    return !mStandby && !(trackPaused || (usesHwAvSync() && mHwPaused && !trackStopped));
4493}
4494
4495// getTrackName_l() must be called with ThreadBase::mLock held
4496int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4497        audio_format_t format __unused, int sessionId __unused)
4498{
4499    return 0;
4500}
4501
4502// deleteTrackName_l() must be called with ThreadBase::mLock held
4503void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4504{
4505}
4506
4507// checkForNewParameter_l() must be called with ThreadBase::mLock held
4508bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4509                                                              status_t& status)
4510{
4511    bool reconfig = false;
4512
4513    status = NO_ERROR;
4514
4515    AudioParameter param = AudioParameter(keyValuePair);
4516    int value;
4517    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4518        // forward device change to effects that have requested to be
4519        // aware of attached audio device.
4520        if (value != AUDIO_DEVICE_NONE) {
4521            mOutDevice = value;
4522            for (size_t i = 0; i < mEffectChains.size(); i++) {
4523                mEffectChains[i]->setDevice_l(mOutDevice);
4524            }
4525        }
4526    }
4527    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4528        // do not accept frame count changes if tracks are open as the track buffer
4529        // size depends on frame count and correct behavior would not be garantied
4530        // if frame count is changed after track creation
4531        if (!mTracks.isEmpty()) {
4532            status = INVALID_OPERATION;
4533        } else {
4534            reconfig = true;
4535        }
4536    }
4537    if (status == NO_ERROR) {
4538        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4539                                                keyValuePair.string());
4540        if (!mStandby && status == INVALID_OPERATION) {
4541            mOutput->standby();
4542            mStandby = true;
4543            mBytesWritten = 0;
4544            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4545                                                   keyValuePair.string());
4546        }
4547        if (status == NO_ERROR && reconfig) {
4548            readOutputParameters_l();
4549            sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
4550        }
4551    }
4552
4553    return reconfig;
4554}
4555
4556uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4557{
4558    uint32_t time;
4559    if (audio_is_linear_pcm(mFormat)) {
4560        time = PlaybackThread::activeSleepTimeUs();
4561    } else {
4562        time = 10000;
4563    }
4564    return time;
4565}
4566
4567uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4568{
4569    uint32_t time;
4570    if (audio_is_linear_pcm(mFormat)) {
4571        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4572    } else {
4573        time = 10000;
4574    }
4575    return time;
4576}
4577
4578uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4579{
4580    uint32_t time;
4581    if (audio_is_linear_pcm(mFormat)) {
4582        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4583    } else {
4584        time = 10000;
4585    }
4586    return time;
4587}
4588
4589void AudioFlinger::DirectOutputThread::cacheParameters_l()
4590{
4591    PlaybackThread::cacheParameters_l();
4592
4593    // use shorter standby delay as on normal output to release
4594    // hardware resources as soon as possible
4595    // no delay on outputs with HW A/V sync
4596    if (usesHwAvSync()) {
4597        standbyDelay = 0;
4598    } else if (audio_is_linear_pcm(mFormat)) {
4599        standbyDelay = microseconds(activeSleepTime*2);
4600    } else {
4601        standbyDelay = kOffloadStandbyDelayNs;
4602    }
4603}
4604
4605void AudioFlinger::DirectOutputThread::flushHw_l()
4606{
4607    mOutput->flush();
4608    mHwPaused = false;
4609}
4610
4611// ----------------------------------------------------------------------------
4612
4613AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4614        const wp<AudioFlinger::PlaybackThread>& playbackThread)
4615    :   Thread(false /*canCallJava*/),
4616        mPlaybackThread(playbackThread),
4617        mWriteAckSequence(0),
4618        mDrainSequence(0)
4619{
4620}
4621
4622AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4623{
4624}
4625
4626void AudioFlinger::AsyncCallbackThread::onFirstRef()
4627{
4628    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4629}
4630
4631bool AudioFlinger::AsyncCallbackThread::threadLoop()
4632{
4633    while (!exitPending()) {
4634        uint32_t writeAckSequence;
4635        uint32_t drainSequence;
4636
4637        {
4638            Mutex::Autolock _l(mLock);
4639            while (!((mWriteAckSequence & 1) ||
4640                     (mDrainSequence & 1) ||
4641                     exitPending())) {
4642                mWaitWorkCV.wait(mLock);
4643            }
4644
4645            if (exitPending()) {
4646                break;
4647            }
4648            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4649                  mWriteAckSequence, mDrainSequence);
4650            writeAckSequence = mWriteAckSequence;
4651            mWriteAckSequence &= ~1;
4652            drainSequence = mDrainSequence;
4653            mDrainSequence &= ~1;
4654        }
4655        {
4656            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4657            if (playbackThread != 0) {
4658                if (writeAckSequence & 1) {
4659                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4660                }
4661                if (drainSequence & 1) {
4662                    playbackThread->resetDraining(drainSequence >> 1);
4663                }
4664            }
4665        }
4666    }
4667    return false;
4668}
4669
4670void AudioFlinger::AsyncCallbackThread::exit()
4671{
4672    ALOGV("AsyncCallbackThread::exit");
4673    Mutex::Autolock _l(mLock);
4674    requestExit();
4675    mWaitWorkCV.broadcast();
4676}
4677
4678void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
4679{
4680    Mutex::Autolock _l(mLock);
4681    // bit 0 is cleared
4682    mWriteAckSequence = sequence << 1;
4683}
4684
4685void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
4686{
4687    Mutex::Autolock _l(mLock);
4688    // ignore unexpected callbacks
4689    if (mWriteAckSequence & 2) {
4690        mWriteAckSequence |= 1;
4691        mWaitWorkCV.signal();
4692    }
4693}
4694
4695void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
4696{
4697    Mutex::Autolock _l(mLock);
4698    // bit 0 is cleared
4699    mDrainSequence = sequence << 1;
4700}
4701
4702void AudioFlinger::AsyncCallbackThread::resetDraining()
4703{
4704    Mutex::Autolock _l(mLock);
4705    // ignore unexpected callbacks
4706    if (mDrainSequence & 2) {
4707        mDrainSequence |= 1;
4708        mWaitWorkCV.signal();
4709    }
4710}
4711
4712
4713// ----------------------------------------------------------------------------
4714AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
4715        AudioStreamOut* output, audio_io_handle_t id, uint32_t device)
4716    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD),
4717        mPausedBytesRemaining(0)
4718{
4719    //FIXME: mStandby should be set to true by ThreadBase constructor
4720    mStandby = true;
4721}
4722
4723void AudioFlinger::OffloadThread::threadLoop_exit()
4724{
4725    if (mFlushPending || mHwPaused) {
4726        // If a flush is pending or track was paused, just discard buffered data
4727        flushHw_l();
4728    } else {
4729        mMixerStatus = MIXER_DRAIN_ALL;
4730        threadLoop_drain();
4731    }
4732    if (mUseAsyncWrite) {
4733        ALOG_ASSERT(mCallbackThread != 0);
4734        mCallbackThread->exit();
4735    }
4736    PlaybackThread::threadLoop_exit();
4737}
4738
4739AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
4740    Vector< sp<Track> > *tracksToRemove
4741)
4742{
4743    size_t count = mActiveTracks.size();
4744
4745    mixer_state mixerStatus = MIXER_IDLE;
4746    bool doHwPause = false;
4747    bool doHwResume = false;
4748
4749    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
4750
4751    // find out which tracks need to be processed
4752    for (size_t i = 0; i < count; i++) {
4753        sp<Track> t = mActiveTracks[i].promote();
4754        // The track died recently
4755        if (t == 0) {
4756            continue;
4757        }
4758        Track* const track = t.get();
4759        audio_track_cblk_t* cblk = track->cblk();
4760        // Only consider last track started for volume and mixer state control.
4761        // In theory an older track could underrun and restart after the new one starts
4762        // but as we only care about the transition phase between two tracks on a
4763        // direct output, it is not a problem to ignore the underrun case.
4764        sp<Track> l = mLatestActiveTrack.promote();
4765        bool last = l.get() == track;
4766
4767        if (track->isInvalid()) {
4768            ALOGW("An invalidated track shouldn't be in active list");
4769            tracksToRemove->add(track);
4770            continue;
4771        }
4772
4773        if (track->mState == TrackBase::IDLE) {
4774            ALOGW("An idle track shouldn't be in active list");
4775            continue;
4776        }
4777
4778        if (track->isPausing()) {
4779            track->setPaused();
4780            if (last) {
4781                if (!mHwPaused) {
4782                    doHwPause = true;
4783                    mHwPaused = true;
4784                }
4785                // If we were part way through writing the mixbuffer to
4786                // the HAL we must save this until we resume
4787                // BUG - this will be wrong if a different track is made active,
4788                // in that case we want to discard the pending data in the
4789                // mixbuffer and tell the client to present it again when the
4790                // track is resumed
4791                mPausedWriteLength = mCurrentWriteLength;
4792                mPausedBytesRemaining = mBytesRemaining;
4793                mBytesRemaining = 0;    // stop writing
4794            }
4795            tracksToRemove->add(track);
4796        } else if (track->isFlushPending()) {
4797            track->flushAck();
4798            if (last) {
4799                mFlushPending = true;
4800            }
4801        } else if (track->isResumePending()){
4802            track->resumeAck();
4803            if (last) {
4804                if (mPausedBytesRemaining) {
4805                    // Need to continue write that was interrupted
4806                    mCurrentWriteLength = mPausedWriteLength;
4807                    mBytesRemaining = mPausedBytesRemaining;
4808                    mPausedBytesRemaining = 0;
4809                }
4810                if (mHwPaused) {
4811                    doHwResume = true;
4812                    mHwPaused = false;
4813                    // threadLoop_mix() will handle the case that we need to
4814                    // resume an interrupted write
4815                }
4816                // enable write to audio HAL
4817                sleepTime = 0;
4818
4819                // Do not handle new data in this iteration even if track->framesReady()
4820                mixerStatus = MIXER_TRACKS_ENABLED;
4821            }
4822        }  else if (track->framesReady() && track->isReady() &&
4823                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
4824            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
4825            if (track->mFillingUpStatus == Track::FS_FILLED) {
4826                track->mFillingUpStatus = Track::FS_ACTIVE;
4827                // make sure processVolume_l() will apply new volume even if 0
4828                mLeftVolFloat = mRightVolFloat = -1.0;
4829            }
4830
4831            if (last) {
4832                sp<Track> previousTrack = mPreviousTrack.promote();
4833                if (previousTrack != 0) {
4834                    if (track != previousTrack.get()) {
4835                        // Flush any data still being written from last track
4836                        mBytesRemaining = 0;
4837                        if (mPausedBytesRemaining) {
4838                            // Last track was paused so we also need to flush saved
4839                            // mixbuffer state and invalidate track so that it will
4840                            // re-submit that unwritten data when it is next resumed
4841                            mPausedBytesRemaining = 0;
4842                            // Invalidate is a bit drastic - would be more efficient
4843                            // to have a flag to tell client that some of the
4844                            // previously written data was lost
4845                            previousTrack->invalidate();
4846                        }
4847                        // flush data already sent to the DSP if changing audio session as audio
4848                        // comes from a different source. Also invalidate previous track to force a
4849                        // seek when resuming.
4850                        if (previousTrack->sessionId() != track->sessionId()) {
4851                            previousTrack->invalidate();
4852                        }
4853                    }
4854                }
4855                mPreviousTrack = track;
4856                // reset retry count
4857                track->mRetryCount = kMaxTrackRetriesOffload;
4858                mActiveTrack = t;
4859                mixerStatus = MIXER_TRACKS_READY;
4860            }
4861        } else {
4862            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
4863            if (track->isStopping_1()) {
4864                // Hardware buffer can hold a large amount of audio so we must
4865                // wait for all current track's data to drain before we say
4866                // that the track is stopped.
4867                if (mBytesRemaining == 0) {
4868                    // Only start draining when all data in mixbuffer
4869                    // has been written
4870                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
4871                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
4872                    // do not drain if no data was ever sent to HAL (mStandby == true)
4873                    if (last && !mStandby) {
4874                        // do not modify drain sequence if we are already draining. This happens
4875                        // when resuming from pause after drain.
4876                        if ((mDrainSequence & 1) == 0) {
4877                            sleepTime = 0;
4878                            standbyTime = systemTime() + standbyDelay;
4879                            mixerStatus = MIXER_DRAIN_TRACK;
4880                            mDrainSequence += 2;
4881                        }
4882                        if (mHwPaused) {
4883                            // It is possible to move from PAUSED to STOPPING_1 without
4884                            // a resume so we must ensure hardware is running
4885                            doHwResume = true;
4886                            mHwPaused = false;
4887                        }
4888                    }
4889                }
4890            } else if (track->isStopping_2()) {
4891                // Drain has completed or we are in standby, signal presentation complete
4892                if (!(mDrainSequence & 1) || !last || mStandby) {
4893                    track->mState = TrackBase::STOPPED;
4894                    size_t audioHALFrames =
4895                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4896                    size_t framesWritten =
4897                            mBytesWritten / mOutput->getFrameSize();
4898                    track->presentationComplete(framesWritten, audioHALFrames);
4899                    track->reset();
4900                    tracksToRemove->add(track);
4901                }
4902            } else {
4903                // No buffers for this track. Give it a few chances to
4904                // fill a buffer, then remove it from active list.
4905                if (--(track->mRetryCount) <= 0) {
4906                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
4907                          track->name());
4908                    tracksToRemove->add(track);
4909                    // indicate to client process that the track was disabled because of underrun;
4910                    // it will then automatically call start() when data is available
4911                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4912                } else if (last){
4913                    mixerStatus = MIXER_TRACKS_ENABLED;
4914                }
4915            }
4916        }
4917        // compute volume for this track
4918        processVolume_l(track, last);
4919    }
4920
4921    // make sure the pause/flush/resume sequence is executed in the right order.
4922    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4923    // before flush and then resume HW. This can happen in case of pause/flush/resume
4924    // if resume is received before pause is executed.
4925    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4926        mOutput->stream->pause(mOutput->stream);
4927    }
4928    if (mFlushPending) {
4929        flushHw_l();
4930        mFlushPending = false;
4931    }
4932    if (!mStandby && doHwResume) {
4933        mOutput->stream->resume(mOutput->stream);
4934    }
4935
4936    // remove all the tracks that need to be...
4937    removeTracks_l(*tracksToRemove);
4938
4939    return mixerStatus;
4940}
4941
4942// must be called with thread mutex locked
4943bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
4944{
4945    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
4946          mWriteAckSequence, mDrainSequence);
4947    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
4948        return true;
4949    }
4950    return false;
4951}
4952
4953bool AudioFlinger::OffloadThread::waitingAsyncCallback()
4954{
4955    Mutex::Autolock _l(mLock);
4956    return waitingAsyncCallback_l();
4957}
4958
4959void AudioFlinger::OffloadThread::flushHw_l()
4960{
4961    DirectOutputThread::flushHw_l();
4962    // Flush anything still waiting in the mixbuffer
4963    mCurrentWriteLength = 0;
4964    mBytesRemaining = 0;
4965    mPausedWriteLength = 0;
4966    mPausedBytesRemaining = 0;
4967
4968    if (mUseAsyncWrite) {
4969        // discard any pending drain or write ack by incrementing sequence
4970        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4971        mDrainSequence = (mDrainSequence + 2) & ~1;
4972        ALOG_ASSERT(mCallbackThread != 0);
4973        mCallbackThread->setWriteBlocked(mWriteAckSequence);
4974        mCallbackThread->setDraining(mDrainSequence);
4975    }
4976}
4977
4978void AudioFlinger::OffloadThread::onAddNewTrack_l()
4979{
4980    sp<Track> previousTrack = mPreviousTrack.promote();
4981    sp<Track> latestTrack = mLatestActiveTrack.promote();
4982
4983    if (previousTrack != 0 && latestTrack != 0 &&
4984        (previousTrack->sessionId() != latestTrack->sessionId())) {
4985        mFlushPending = true;
4986    }
4987    PlaybackThread::onAddNewTrack_l();
4988}
4989
4990// ----------------------------------------------------------------------------
4991
4992AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
4993        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
4994    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
4995                DUPLICATING),
4996        mWaitTimeMs(UINT_MAX)
4997{
4998    addOutputTrack(mainThread);
4999}
5000
5001AudioFlinger::DuplicatingThread::~DuplicatingThread()
5002{
5003    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5004        mOutputTracks[i]->destroy();
5005    }
5006}
5007
5008void AudioFlinger::DuplicatingThread::threadLoop_mix()
5009{
5010    // mix buffers...
5011    if (outputsReady(outputTracks)) {
5012        mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
5013    } else {
5014        if (mMixerBufferValid) {
5015            memset(mMixerBuffer, 0, mMixerBufferSize);
5016        } else {
5017            memset(mSinkBuffer, 0, mSinkBufferSize);
5018        }
5019    }
5020    sleepTime = 0;
5021    writeFrames = mNormalFrameCount;
5022    mCurrentWriteLength = mSinkBufferSize;
5023    standbyTime = systemTime() + standbyDelay;
5024}
5025
5026void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5027{
5028    if (sleepTime == 0) {
5029        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5030            sleepTime = activeSleepTime;
5031        } else {
5032            sleepTime = idleSleepTime;
5033        }
5034    } else if (mBytesWritten != 0) {
5035        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5036            writeFrames = mNormalFrameCount;
5037            memset(mSinkBuffer, 0, mSinkBufferSize);
5038        } else {
5039            // flush remaining overflow buffers in output tracks
5040            writeFrames = 0;
5041        }
5042        sleepTime = 0;
5043    }
5044}
5045
5046ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5047{
5048    for (size_t i = 0; i < outputTracks.size(); i++) {
5049        outputTracks[i]->write(mSinkBuffer, writeFrames);
5050    }
5051    mStandby = false;
5052    return (ssize_t)mSinkBufferSize;
5053}
5054
5055void AudioFlinger::DuplicatingThread::threadLoop_standby()
5056{
5057    // DuplicatingThread implements standby by stopping all tracks
5058    for (size_t i = 0; i < outputTracks.size(); i++) {
5059        outputTracks[i]->stop();
5060    }
5061}
5062
5063void AudioFlinger::DuplicatingThread::saveOutputTracks()
5064{
5065    outputTracks = mOutputTracks;
5066}
5067
5068void AudioFlinger::DuplicatingThread::clearOutputTracks()
5069{
5070    outputTracks.clear();
5071}
5072
5073void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5074{
5075    Mutex::Autolock _l(mLock);
5076    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5077    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5078    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5079    const size_t frameCount =
5080            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5081    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5082    // from different OutputTracks and their associated MixerThreads (e.g. one may
5083    // nearly empty and the other may be dropping data).
5084
5085    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5086                                            this,
5087                                            mSampleRate,
5088                                            mFormat,
5089                                            mChannelMask,
5090                                            frameCount,
5091                                            IPCThreadState::self()->getCallingUid());
5092    if (outputTrack->cblk() != NULL) {
5093        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5094        mOutputTracks.add(outputTrack);
5095        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5096        updateWaitTime_l();
5097    }
5098}
5099
5100void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5101{
5102    Mutex::Autolock _l(mLock);
5103    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5104        if (mOutputTracks[i]->thread() == thread) {
5105            mOutputTracks[i]->destroy();
5106            mOutputTracks.removeAt(i);
5107            updateWaitTime_l();
5108            return;
5109        }
5110    }
5111    ALOGV("removeOutputTrack(): unkonwn thread: %p", thread);
5112}
5113
5114// caller must hold mLock
5115void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5116{
5117    mWaitTimeMs = UINT_MAX;
5118    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5119        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5120        if (strong != 0) {
5121            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5122            if (waitTimeMs < mWaitTimeMs) {
5123                mWaitTimeMs = waitTimeMs;
5124            }
5125        }
5126    }
5127}
5128
5129
5130bool AudioFlinger::DuplicatingThread::outputsReady(
5131        const SortedVector< sp<OutputTrack> > &outputTracks)
5132{
5133    for (size_t i = 0; i < outputTracks.size(); i++) {
5134        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5135        if (thread == 0) {
5136            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5137                    outputTracks[i].get());
5138            return false;
5139        }
5140        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5141        // see note at standby() declaration
5142        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5143            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5144                    thread.get());
5145            return false;
5146        }
5147    }
5148    return true;
5149}
5150
5151uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5152{
5153    return (mWaitTimeMs * 1000) / 2;
5154}
5155
5156void AudioFlinger::DuplicatingThread::cacheParameters_l()
5157{
5158    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5159    updateWaitTime_l();
5160
5161    MixerThread::cacheParameters_l();
5162}
5163
5164// ----------------------------------------------------------------------------
5165//      Record
5166// ----------------------------------------------------------------------------
5167
5168AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5169                                         AudioStreamIn *input,
5170                                         audio_io_handle_t id,
5171                                         audio_devices_t outDevice,
5172                                         audio_devices_t inDevice
5173#ifdef TEE_SINK
5174                                         , const sp<NBAIO_Sink>& teeSink
5175#endif
5176                                         ) :
5177    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD),
5178    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5179    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5180    mRsmpInRear(0)
5181#ifdef TEE_SINK
5182    , mTeeSink(teeSink)
5183#endif
5184    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5185            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5186    // mFastCapture below
5187    , mFastCaptureFutex(0)
5188    // mInputSource
5189    // mPipeSink
5190    // mPipeSource
5191    , mPipeFramesP2(0)
5192    // mPipeMemory
5193    // mFastCaptureNBLogWriter
5194    , mFastTrackAvail(false)
5195{
5196    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5197    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5198
5199    readInputParameters_l();
5200
5201    // create an NBAIO source for the HAL input stream, and negotiate
5202    mInputSource = new AudioStreamInSource(input->stream);
5203    size_t numCounterOffers = 0;
5204    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5205    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5206    ALOG_ASSERT(index == 0);
5207
5208    // initialize fast capture depending on configuration
5209    bool initFastCapture;
5210    switch (kUseFastCapture) {
5211    case FastCapture_Never:
5212        initFastCapture = false;
5213        break;
5214    case FastCapture_Always:
5215        initFastCapture = true;
5216        break;
5217    case FastCapture_Static:
5218        uint32_t primaryOutputSampleRate;
5219        {
5220            AutoMutex _l(audioFlinger->mHardwareLock);
5221            primaryOutputSampleRate = audioFlinger->mPrimaryOutputSampleRate;
5222        }
5223        initFastCapture =
5224                // either capture sample rate is same as (a reasonable) primary output sample rate
5225                (((primaryOutputSampleRate == 44100 || primaryOutputSampleRate == 48000) &&
5226                    (mSampleRate == primaryOutputSampleRate)) ||
5227                // or primary output sample rate is unknown, and capture sample rate is reasonable
5228                ((primaryOutputSampleRate == 0) &&
5229                    ((mSampleRate == 44100 || mSampleRate == 48000)))) &&
5230                // and the buffer size is < 12 ms
5231                (mFrameCount * 1000) / mSampleRate < 12;
5232        break;
5233    // case FastCapture_Dynamic:
5234    }
5235
5236    if (initFastCapture) {
5237        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5238        NBAIO_Format format = mInputSource->format();
5239        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5240        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5241        void *pipeBuffer;
5242        const sp<MemoryDealer> roHeap(readOnlyHeap());
5243        sp<IMemory> pipeMemory;
5244        if ((roHeap == 0) ||
5245                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5246                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5247            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5248            goto failed;
5249        }
5250        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5251        memset(pipeBuffer, 0, pipeSize);
5252        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5253        const NBAIO_Format offers[1] = {format};
5254        size_t numCounterOffers = 0;
5255        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5256        ALOG_ASSERT(index == 0);
5257        mPipeSink = pipe;
5258        PipeReader *pipeReader = new PipeReader(*pipe);
5259        numCounterOffers = 0;
5260        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5261        ALOG_ASSERT(index == 0);
5262        mPipeSource = pipeReader;
5263        mPipeFramesP2 = pipeFramesP2;
5264        mPipeMemory = pipeMemory;
5265
5266        // create fast capture
5267        mFastCapture = new FastCapture();
5268        FastCaptureStateQueue *sq = mFastCapture->sq();
5269#ifdef STATE_QUEUE_DUMP
5270        // FIXME
5271#endif
5272        FastCaptureState *state = sq->begin();
5273        state->mCblk = NULL;
5274        state->mInputSource = mInputSource.get();
5275        state->mInputSourceGen++;
5276        state->mPipeSink = pipe;
5277        state->mPipeSinkGen++;
5278        state->mFrameCount = mFrameCount;
5279        state->mCommand = FastCaptureState::COLD_IDLE;
5280        // already done in constructor initialization list
5281        //mFastCaptureFutex = 0;
5282        state->mColdFutexAddr = &mFastCaptureFutex;
5283        state->mColdGen++;
5284        state->mDumpState = &mFastCaptureDumpState;
5285#ifdef TEE_SINK
5286        // FIXME
5287#endif
5288        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5289        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5290        sq->end();
5291        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5292
5293        // start the fast capture
5294        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5295        pid_t tid = mFastCapture->getTid();
5296        int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
5297        if (err != 0) {
5298            ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
5299                    kPriorityFastCapture, getpid_cached, tid, err);
5300        }
5301
5302#ifdef AUDIO_WATCHDOG
5303        // FIXME
5304#endif
5305
5306        mFastTrackAvail = true;
5307    }
5308failed: ;
5309
5310    // FIXME mNormalSource
5311}
5312
5313AudioFlinger::RecordThread::~RecordThread()
5314{
5315    if (mFastCapture != 0) {
5316        FastCaptureStateQueue *sq = mFastCapture->sq();
5317        FastCaptureState *state = sq->begin();
5318        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5319            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5320            if (old == -1) {
5321                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5322            }
5323        }
5324        state->mCommand = FastCaptureState::EXIT;
5325        sq->end();
5326        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5327        mFastCapture->join();
5328        mFastCapture.clear();
5329    }
5330    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5331    mAudioFlinger->unregisterWriter(mNBLogWriter);
5332    free(mRsmpInBuffer);
5333}
5334
5335void AudioFlinger::RecordThread::onFirstRef()
5336{
5337    run(mThreadName, PRIORITY_URGENT_AUDIO);
5338}
5339
5340bool AudioFlinger::RecordThread::threadLoop()
5341{
5342    nsecs_t lastWarning = 0;
5343
5344    inputStandBy();
5345
5346reacquire_wakelock:
5347    sp<RecordTrack> activeTrack;
5348    int activeTracksGen;
5349    {
5350        Mutex::Autolock _l(mLock);
5351        size_t size = mActiveTracks.size();
5352        activeTracksGen = mActiveTracksGen;
5353        if (size > 0) {
5354            // FIXME an arbitrary choice
5355            activeTrack = mActiveTracks[0];
5356            acquireWakeLock_l(activeTrack->uid());
5357            if (size > 1) {
5358                SortedVector<int> tmp;
5359                for (size_t i = 0; i < size; i++) {
5360                    tmp.add(mActiveTracks[i]->uid());
5361                }
5362                updateWakeLockUids_l(tmp);
5363            }
5364        } else {
5365            acquireWakeLock_l(-1);
5366        }
5367    }
5368
5369    // used to request a deferred sleep, to be executed later while mutex is unlocked
5370    uint32_t sleepUs = 0;
5371
5372    // loop while there is work to do
5373    for (;;) {
5374        Vector< sp<EffectChain> > effectChains;
5375
5376        // sleep with mutex unlocked
5377        if (sleepUs > 0) {
5378            ATRACE_BEGIN("sleep");
5379            usleep(sleepUs);
5380            ATRACE_END();
5381            sleepUs = 0;
5382        }
5383
5384        // activeTracks accumulates a copy of a subset of mActiveTracks
5385        Vector< sp<RecordTrack> > activeTracks;
5386
5387        // reference to the (first and only) active fast track
5388        sp<RecordTrack> fastTrack;
5389
5390        // reference to a fast track which is about to be removed
5391        sp<RecordTrack> fastTrackToRemove;
5392
5393        { // scope for mLock
5394            Mutex::Autolock _l(mLock);
5395
5396            processConfigEvents_l();
5397
5398            // check exitPending here because checkForNewParameters_l() and
5399            // checkForNewParameters_l() can temporarily release mLock
5400            if (exitPending()) {
5401                break;
5402            }
5403
5404            // if no active track(s), then standby and release wakelock
5405            size_t size = mActiveTracks.size();
5406            if (size == 0) {
5407                standbyIfNotAlreadyInStandby();
5408                // exitPending() can't become true here
5409                releaseWakeLock_l();
5410                ALOGV("RecordThread: loop stopping");
5411                // go to sleep
5412                mWaitWorkCV.wait(mLock);
5413                ALOGV("RecordThread: loop starting");
5414                goto reacquire_wakelock;
5415            }
5416
5417            if (mActiveTracksGen != activeTracksGen) {
5418                activeTracksGen = mActiveTracksGen;
5419                SortedVector<int> tmp;
5420                for (size_t i = 0; i < size; i++) {
5421                    tmp.add(mActiveTracks[i]->uid());
5422                }
5423                updateWakeLockUids_l(tmp);
5424            }
5425
5426            bool doBroadcast = false;
5427            for (size_t i = 0; i < size; ) {
5428
5429                activeTrack = mActiveTracks[i];
5430                if (activeTrack->isTerminated()) {
5431                    if (activeTrack->isFastTrack()) {
5432                        ALOG_ASSERT(fastTrackToRemove == 0);
5433                        fastTrackToRemove = activeTrack;
5434                    }
5435                    removeTrack_l(activeTrack);
5436                    mActiveTracks.remove(activeTrack);
5437                    mActiveTracksGen++;
5438                    size--;
5439                    continue;
5440                }
5441
5442                TrackBase::track_state activeTrackState = activeTrack->mState;
5443                switch (activeTrackState) {
5444
5445                case TrackBase::PAUSING:
5446                    mActiveTracks.remove(activeTrack);
5447                    mActiveTracksGen++;
5448                    doBroadcast = true;
5449                    size--;
5450                    continue;
5451
5452                case TrackBase::STARTING_1:
5453                    sleepUs = 10000;
5454                    i++;
5455                    continue;
5456
5457                case TrackBase::STARTING_2:
5458                    doBroadcast = true;
5459                    mStandby = false;
5460                    activeTrack->mState = TrackBase::ACTIVE;
5461                    break;
5462
5463                case TrackBase::ACTIVE:
5464                    break;
5465
5466                case TrackBase::IDLE:
5467                    i++;
5468                    continue;
5469
5470                default:
5471                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5472                }
5473
5474                activeTracks.add(activeTrack);
5475                i++;
5476
5477                if (activeTrack->isFastTrack()) {
5478                    ALOG_ASSERT(!mFastTrackAvail);
5479                    ALOG_ASSERT(fastTrack == 0);
5480                    fastTrack = activeTrack;
5481                }
5482            }
5483            if (doBroadcast) {
5484                mStartStopCond.broadcast();
5485            }
5486
5487            // sleep if there are no active tracks to process
5488            if (activeTracks.size() == 0) {
5489                if (sleepUs == 0) {
5490                    sleepUs = kRecordThreadSleepUs;
5491                }
5492                continue;
5493            }
5494            sleepUs = 0;
5495
5496            lockEffectChains_l(effectChains);
5497        }
5498
5499        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5500
5501        size_t size = effectChains.size();
5502        for (size_t i = 0; i < size; i++) {
5503            // thread mutex is not locked, but effect chain is locked
5504            effectChains[i]->process_l();
5505        }
5506
5507        // Push a new fast capture state if fast capture is not already running, or cblk change
5508        if (mFastCapture != 0) {
5509            FastCaptureStateQueue *sq = mFastCapture->sq();
5510            FastCaptureState *state = sq->begin();
5511            bool didModify = false;
5512            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5513            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5514                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5515                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5516                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5517                    if (old == -1) {
5518                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5519                    }
5520                }
5521                state->mCommand = FastCaptureState::READ_WRITE;
5522#if 0   // FIXME
5523                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5524                        FastThreadDumpState::kSamplingNforLowRamDevice :
5525                        FastThreadDumpState::kSamplingN);
5526#endif
5527                didModify = true;
5528            }
5529            audio_track_cblk_t *cblkOld = state->mCblk;
5530            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5531            if (cblkNew != cblkOld) {
5532                state->mCblk = cblkNew;
5533                // block until acked if removing a fast track
5534                if (cblkOld != NULL) {
5535                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5536                }
5537                didModify = true;
5538            }
5539            sq->end(didModify);
5540            if (didModify) {
5541                sq->push(block);
5542#if 0
5543                if (kUseFastCapture == FastCapture_Dynamic) {
5544                    mNormalSource = mPipeSource;
5545                }
5546#endif
5547            }
5548        }
5549
5550        // now run the fast track destructor with thread mutex unlocked
5551        fastTrackToRemove.clear();
5552
5553        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5554        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5555        // slow, then this RecordThread will overrun by not calling HAL read often enough.
5556        // If destination is non-contiguous, first read past the nominal end of buffer, then
5557        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5558
5559        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5560        ssize_t framesRead;
5561
5562        // If an NBAIO source is present, use it to read the normal capture's data
5563        if (mPipeSource != 0) {
5564            size_t framesToRead = mBufferSize / mFrameSize;
5565            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
5566                    framesToRead, AudioBufferProvider::kInvalidPTS);
5567            if (framesRead == 0) {
5568                // since pipe is non-blocking, simulate blocking input
5569                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5570            }
5571        // otherwise use the HAL / AudioStreamIn directly
5572        } else {
5573            ssize_t bytesRead = mInput->stream->read(mInput->stream,
5574                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
5575            if (bytesRead < 0) {
5576                framesRead = bytesRead;
5577            } else {
5578                framesRead = bytesRead / mFrameSize;
5579            }
5580        }
5581
5582        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5583            ALOGE("read failed: framesRead=%d", framesRead);
5584            // Force input into standby so that it tries to recover at next read attempt
5585            inputStandBy();
5586            sleepUs = kRecordThreadSleepUs;
5587        }
5588        if (framesRead <= 0) {
5589            goto unlock;
5590        }
5591        ALOG_ASSERT(framesRead > 0);
5592
5593        if (mTeeSink != 0) {
5594            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
5595        }
5596        // If destination is non-contiguous, we now correct for reading past end of buffer.
5597        {
5598            size_t part1 = mRsmpInFramesP2 - rear;
5599            if ((size_t) framesRead > part1) {
5600                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
5601                        (framesRead - part1) * mFrameSize);
5602            }
5603        }
5604        rear = mRsmpInRear += framesRead;
5605
5606        size = activeTracks.size();
5607        // loop over each active track
5608        for (size_t i = 0; i < size; i++) {
5609            activeTrack = activeTracks[i];
5610
5611            // skip fast tracks, as those are handled directly by FastCapture
5612            if (activeTrack->isFastTrack()) {
5613                continue;
5614            }
5615
5616            // TODO: This code probably should be moved to RecordTrack.
5617            // TODO: Update the activeTrack buffer converter in case of reconfigure.
5618
5619            enum {
5620                OVERRUN_UNKNOWN,
5621                OVERRUN_TRUE,
5622                OVERRUN_FALSE
5623            } overrun = OVERRUN_UNKNOWN;
5624
5625            // loop over getNextBuffer to handle circular sink
5626            for (;;) {
5627
5628                activeTrack->mSink.frameCount = ~0;
5629                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5630                size_t framesOut = activeTrack->mSink.frameCount;
5631                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5632
5633                // check available frames and handle overrun conditions
5634                // if the record track isn't draining fast enough.
5635                bool hasOverrun;
5636                size_t framesIn;
5637                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
5638                if (hasOverrun) {
5639                    overrun = OVERRUN_TRUE;
5640                }
5641                if (framesOut == 0 || framesIn == 0) {
5642                    break;
5643                }
5644
5645                // Don't allow framesOut to be larger than what is possible with resampling
5646                // from framesIn.
5647                // This isn't strictly necessary but helps limit buffer resizing in
5648                // RecordBufferConverter.  TODO: remove when no longer needed.
5649                framesOut = min(framesOut,
5650                        destinationFramesPossible(
5651                                framesIn, mSampleRate, activeTrack->mSampleRate));
5652                // process frames from the RecordThread buffer provider to the RecordTrack buffer
5653                framesOut = activeTrack->mRecordBufferConverter->convert(
5654                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
5655
5656                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5657                    overrun = OVERRUN_FALSE;
5658                }
5659
5660                if (activeTrack->mFramesToDrop == 0) {
5661                    if (framesOut > 0) {
5662                        activeTrack->mSink.frameCount = framesOut;
5663                        activeTrack->releaseBuffer(&activeTrack->mSink);
5664                    }
5665                } else {
5666                    // FIXME could do a partial drop of framesOut
5667                    if (activeTrack->mFramesToDrop > 0) {
5668                        activeTrack->mFramesToDrop -= framesOut;
5669                        if (activeTrack->mFramesToDrop <= 0) {
5670                            activeTrack->clearSyncStartEvent();
5671                        }
5672                    } else {
5673                        activeTrack->mFramesToDrop += framesOut;
5674                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5675                                activeTrack->mSyncStartEvent->isCancelled()) {
5676                            ALOGW("Synced record %s, session %d, trigger session %d",
5677                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5678                                  activeTrack->sessionId(),
5679                                  (activeTrack->mSyncStartEvent != 0) ?
5680                                          activeTrack->mSyncStartEvent->triggerSession() : 0);
5681                            activeTrack->clearSyncStartEvent();
5682                        }
5683                    }
5684                }
5685
5686                if (framesOut == 0) {
5687                    break;
5688                }
5689            }
5690
5691            switch (overrun) {
5692            case OVERRUN_TRUE:
5693                // client isn't retrieving buffers fast enough
5694                if (!activeTrack->setOverflow()) {
5695                    nsecs_t now = systemTime();
5696                    // FIXME should lastWarning per track?
5697                    if ((now - lastWarning) > kWarningThrottleNs) {
5698                        ALOGW("RecordThread: buffer overflow");
5699                        lastWarning = now;
5700                    }
5701                }
5702                break;
5703            case OVERRUN_FALSE:
5704                activeTrack->clearOverflow();
5705                break;
5706            case OVERRUN_UNKNOWN:
5707                break;
5708            }
5709
5710        }
5711
5712unlock:
5713        // enable changes in effect chain
5714        unlockEffectChains(effectChains);
5715        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
5716    }
5717
5718    standbyIfNotAlreadyInStandby();
5719
5720    {
5721        Mutex::Autolock _l(mLock);
5722        for (size_t i = 0; i < mTracks.size(); i++) {
5723            sp<RecordTrack> track = mTracks[i];
5724            track->invalidate();
5725        }
5726        mActiveTracks.clear();
5727        mActiveTracksGen++;
5728        mStartStopCond.broadcast();
5729    }
5730
5731    releaseWakeLock();
5732
5733    ALOGV("RecordThread %p exiting", this);
5734    return false;
5735}
5736
5737void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
5738{
5739    if (!mStandby) {
5740        inputStandBy();
5741        mStandby = true;
5742    }
5743}
5744
5745void AudioFlinger::RecordThread::inputStandBy()
5746{
5747    // Idle the fast capture if it's currently running
5748    if (mFastCapture != 0) {
5749        FastCaptureStateQueue *sq = mFastCapture->sq();
5750        FastCaptureState *state = sq->begin();
5751        if (!(state->mCommand & FastCaptureState::IDLE)) {
5752            state->mCommand = FastCaptureState::COLD_IDLE;
5753            state->mColdFutexAddr = &mFastCaptureFutex;
5754            state->mColdGen++;
5755            mFastCaptureFutex = 0;
5756            sq->end();
5757            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
5758            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
5759#if 0
5760            if (kUseFastCapture == FastCapture_Dynamic) {
5761                // FIXME
5762            }
5763#endif
5764#ifdef AUDIO_WATCHDOG
5765            // FIXME
5766#endif
5767        } else {
5768            sq->end(false /*didModify*/);
5769        }
5770    }
5771    mInput->stream->common.standby(&mInput->stream->common);
5772}
5773
5774// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
5775sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
5776        const sp<AudioFlinger::Client>& client,
5777        uint32_t sampleRate,
5778        audio_format_t format,
5779        audio_channel_mask_t channelMask,
5780        size_t *pFrameCount,
5781        int sessionId,
5782        size_t *notificationFrames,
5783        int uid,
5784        IAudioFlinger::track_flags_t *flags,
5785        pid_t tid,
5786        status_t *status)
5787{
5788    size_t frameCount = *pFrameCount;
5789    sp<RecordTrack> track;
5790    status_t lStatus;
5791
5792    // client expresses a preference for FAST, but we get the final say
5793    if (*flags & IAudioFlinger::TRACK_FAST) {
5794      if (
5795            // we formerly checked for a callback handler (non-0 tid),
5796            // but that is no longer required for TRANSFER_OBTAIN mode
5797            //
5798            // frame count is not specified, or is exactly the pipe depth
5799            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
5800            // PCM data
5801            audio_is_linear_pcm(format) &&
5802            // native format
5803            (format == mFormat) &&
5804            // native channel mask
5805            (channelMask == mChannelMask) &&
5806            // native hardware sample rate
5807            (sampleRate == mSampleRate) &&
5808            // record thread has an associated fast capture
5809            hasFastCapture() &&
5810            // there are sufficient fast track slots available
5811            mFastTrackAvail
5812        ) {
5813        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
5814                frameCount, mFrameCount);
5815      } else {
5816        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
5817                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
5818                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
5819                frameCount, mFrameCount, mPipeFramesP2,
5820                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
5821                hasFastCapture(), tid, mFastTrackAvail);
5822        *flags &= ~IAudioFlinger::TRACK_FAST;
5823      }
5824    }
5825
5826    // compute track buffer size in frames, and suggest the notification frame count
5827    if (*flags & IAudioFlinger::TRACK_FAST) {
5828        // fast track: frame count is exactly the pipe depth
5829        frameCount = mPipeFramesP2;
5830        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
5831        *notificationFrames = mFrameCount;
5832    } else {
5833        // not fast track: max notification period is resampled equivalent of one HAL buffer time
5834        //                 or 20 ms if there is a fast capture
5835        // TODO This could be a roundupRatio inline, and const
5836        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
5837                * sampleRate + mSampleRate - 1) / mSampleRate;
5838        // minimum number of notification periods is at least kMinNotifications,
5839        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
5840        static const size_t kMinNotifications = 3;
5841        static const uint32_t kMinMs = 30;
5842        // TODO This could be a roundupRatio inline
5843        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
5844        // TODO This could be a roundupRatio inline
5845        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
5846                maxNotificationFrames;
5847        const size_t minFrameCount = maxNotificationFrames *
5848                max(kMinNotifications, minNotificationsByMs);
5849        frameCount = max(frameCount, minFrameCount);
5850        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
5851            *notificationFrames = maxNotificationFrames;
5852        }
5853    }
5854    *pFrameCount = frameCount;
5855
5856    lStatus = initCheck();
5857    if (lStatus != NO_ERROR) {
5858        ALOGE("createRecordTrack_l() audio driver not initialized");
5859        goto Exit;
5860    }
5861
5862    { // scope for mLock
5863        Mutex::Autolock _l(mLock);
5864
5865        track = new RecordTrack(this, client, sampleRate,
5866                      format, channelMask, frameCount, NULL, sessionId, uid,
5867                      *flags, TrackBase::TYPE_DEFAULT);
5868
5869        lStatus = track->initCheck();
5870        if (lStatus != NO_ERROR) {
5871            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
5872            // track must be cleared from the caller as the caller has the AF lock
5873            goto Exit;
5874        }
5875        mTracks.add(track);
5876
5877        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
5878        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
5879                        mAudioFlinger->btNrecIsOff();
5880        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
5881        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
5882
5883        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
5884            pid_t callingPid = IPCThreadState::self()->getCallingPid();
5885            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
5886            // so ask activity manager to do this on our behalf
5887            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
5888        }
5889    }
5890
5891    lStatus = NO_ERROR;
5892
5893Exit:
5894    *status = lStatus;
5895    return track;
5896}
5897
5898status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
5899                                           AudioSystem::sync_event_t event,
5900                                           int triggerSession)
5901{
5902    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
5903    sp<ThreadBase> strongMe = this;
5904    status_t status = NO_ERROR;
5905
5906    if (event == AudioSystem::SYNC_EVENT_NONE) {
5907        recordTrack->clearSyncStartEvent();
5908    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
5909        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
5910                                       triggerSession,
5911                                       recordTrack->sessionId(),
5912                                       syncStartEventCallback,
5913                                       recordTrack);
5914        // Sync event can be cancelled by the trigger session if the track is not in a
5915        // compatible state in which case we start record immediately
5916        if (recordTrack->mSyncStartEvent->isCancelled()) {
5917            recordTrack->clearSyncStartEvent();
5918        } else {
5919            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
5920            recordTrack->mFramesToDrop = -
5921                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
5922        }
5923    }
5924
5925    {
5926        // This section is a rendezvous between binder thread executing start() and RecordThread
5927        AutoMutex lock(mLock);
5928        if (mActiveTracks.indexOf(recordTrack) >= 0) {
5929            if (recordTrack->mState == TrackBase::PAUSING) {
5930                ALOGV("active record track PAUSING -> ACTIVE");
5931                recordTrack->mState = TrackBase::ACTIVE;
5932            } else {
5933                ALOGV("active record track state %d", recordTrack->mState);
5934            }
5935            return status;
5936        }
5937
5938        // TODO consider other ways of handling this, such as changing the state to :STARTING and
5939        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
5940        //      or using a separate command thread
5941        recordTrack->mState = TrackBase::STARTING_1;
5942        mActiveTracks.add(recordTrack);
5943        mActiveTracksGen++;
5944        status_t status = NO_ERROR;
5945        if (recordTrack->isExternalTrack()) {
5946            mLock.unlock();
5947            status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
5948            mLock.lock();
5949            // FIXME should verify that recordTrack is still in mActiveTracks
5950            if (status != NO_ERROR) {
5951                mActiveTracks.remove(recordTrack);
5952                mActiveTracksGen++;
5953                recordTrack->clearSyncStartEvent();
5954                ALOGV("RecordThread::start error %d", status);
5955                return status;
5956            }
5957        }
5958        // Catch up with current buffer indices if thread is already running.
5959        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
5960        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
5961        // see previously buffered data before it called start(), but with greater risk of overrun.
5962
5963        recordTrack->mResamplerBufferProvider->reset();
5964        // clear any converter state as new data will be discontinuous
5965        recordTrack->mRecordBufferConverter->reset();
5966        recordTrack->mState = TrackBase::STARTING_2;
5967        // signal thread to start
5968        mWaitWorkCV.broadcast();
5969        if (mActiveTracks.indexOf(recordTrack) < 0) {
5970            ALOGV("Record failed to start");
5971            status = BAD_VALUE;
5972            goto startError;
5973        }
5974        return status;
5975    }
5976
5977startError:
5978    if (recordTrack->isExternalTrack()) {
5979        AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
5980    }
5981    recordTrack->clearSyncStartEvent();
5982    // FIXME I wonder why we do not reset the state here?
5983    return status;
5984}
5985
5986void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
5987{
5988    sp<SyncEvent> strongEvent = event.promote();
5989
5990    if (strongEvent != 0) {
5991        sp<RefBase> ptr = strongEvent->cookie().promote();
5992        if (ptr != 0) {
5993            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
5994            recordTrack->handleSyncStartEvent(strongEvent);
5995        }
5996    }
5997}
5998
5999bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6000    ALOGV("RecordThread::stop");
6001    AutoMutex _l(mLock);
6002    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6003        return false;
6004    }
6005    // note that threadLoop may still be processing the track at this point [without lock]
6006    recordTrack->mState = TrackBase::PAUSING;
6007    // do not wait for mStartStopCond if exiting
6008    if (exitPending()) {
6009        return true;
6010    }
6011    // FIXME incorrect usage of wait: no explicit predicate or loop
6012    mStartStopCond.wait(mLock);
6013    // if we have been restarted, recordTrack is in mActiveTracks here
6014    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6015        ALOGV("Record stopped OK");
6016        return true;
6017    }
6018    return false;
6019}
6020
6021bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6022{
6023    return false;
6024}
6025
6026status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6027{
6028#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6029    if (!isValidSyncEvent(event)) {
6030        return BAD_VALUE;
6031    }
6032
6033    int eventSession = event->triggerSession();
6034    status_t ret = NAME_NOT_FOUND;
6035
6036    Mutex::Autolock _l(mLock);
6037
6038    for (size_t i = 0; i < mTracks.size(); i++) {
6039        sp<RecordTrack> track = mTracks[i];
6040        if (eventSession == track->sessionId()) {
6041            (void) track->setSyncEvent(event);
6042            ret = NO_ERROR;
6043        }
6044    }
6045    return ret;
6046#else
6047    return BAD_VALUE;
6048#endif
6049}
6050
6051// destroyTrack_l() must be called with ThreadBase::mLock held
6052void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6053{
6054    track->terminate();
6055    track->mState = TrackBase::STOPPED;
6056    // active tracks are removed by threadLoop()
6057    if (mActiveTracks.indexOf(track) < 0) {
6058        removeTrack_l(track);
6059    }
6060}
6061
6062void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6063{
6064    mTracks.remove(track);
6065    // need anything related to effects here?
6066    if (track->isFastTrack()) {
6067        ALOG_ASSERT(!mFastTrackAvail);
6068        mFastTrackAvail = true;
6069    }
6070}
6071
6072void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6073{
6074    dumpInternals(fd, args);
6075    dumpTracks(fd, args);
6076    dumpEffectChains(fd, args);
6077}
6078
6079void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6080{
6081    dprintf(fd, "\nInput thread %p:\n", this);
6082
6083    dumpBase(fd, args);
6084
6085    if (mActiveTracks.size() == 0) {
6086        dprintf(fd, "  No active record clients\n");
6087    }
6088    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6089    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6090
6091    //  Make a non-atomic copy of fast capture dump state so it won't change underneath us
6092    const FastCaptureDumpState copy(mFastCaptureDumpState);
6093    copy.dump(fd);
6094}
6095
6096void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6097{
6098    const size_t SIZE = 256;
6099    char buffer[SIZE];
6100    String8 result;
6101
6102    size_t numtracks = mTracks.size();
6103    size_t numactive = mActiveTracks.size();
6104    size_t numactiveseen = 0;
6105    dprintf(fd, "  %d Tracks", numtracks);
6106    if (numtracks) {
6107        dprintf(fd, " of which %d are active\n", numactive);
6108        RecordTrack::appendDumpHeader(result);
6109        for (size_t i = 0; i < numtracks ; ++i) {
6110            sp<RecordTrack> track = mTracks[i];
6111            if (track != 0) {
6112                bool active = mActiveTracks.indexOf(track) >= 0;
6113                if (active) {
6114                    numactiveseen++;
6115                }
6116                track->dump(buffer, SIZE, active);
6117                result.append(buffer);
6118            }
6119        }
6120    } else {
6121        dprintf(fd, "\n");
6122    }
6123
6124    if (numactiveseen != numactive) {
6125        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6126                " not in the track list\n");
6127        result.append(buffer);
6128        RecordTrack::appendDumpHeader(result);
6129        for (size_t i = 0; i < numactive; ++i) {
6130            sp<RecordTrack> track = mActiveTracks[i];
6131            if (mTracks.indexOf(track) < 0) {
6132                track->dump(buffer, SIZE, true);
6133                result.append(buffer);
6134            }
6135        }
6136
6137    }
6138    write(fd, result.string(), result.size());
6139}
6140
6141
6142void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6143{
6144    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6145    RecordThread *recordThread = (RecordThread *) threadBase.get();
6146    mRsmpInFront = recordThread->mRsmpInRear;
6147    mRsmpInUnrel = 0;
6148}
6149
6150void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6151        size_t *framesAvailable, bool *hasOverrun)
6152{
6153    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6154    RecordThread *recordThread = (RecordThread *) threadBase.get();
6155    const int32_t rear = recordThread->mRsmpInRear;
6156    const int32_t front = mRsmpInFront;
6157    const ssize_t filled = rear - front;
6158
6159    size_t framesIn;
6160    bool overrun = false;
6161    if (filled < 0) {
6162        // should not happen, but treat like a massive overrun and re-sync
6163        framesIn = 0;
6164        mRsmpInFront = rear;
6165        overrun = true;
6166    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6167        framesIn = (size_t) filled;
6168    } else {
6169        // client is not keeping up with server, but give it latest data
6170        framesIn = recordThread->mRsmpInFrames;
6171        mRsmpInFront = /* front = */ rear - framesIn;
6172        overrun = true;
6173    }
6174    if (framesAvailable != NULL) {
6175        *framesAvailable = framesIn;
6176    }
6177    if (hasOverrun != NULL) {
6178        *hasOverrun = overrun;
6179    }
6180}
6181
6182// AudioBufferProvider interface
6183status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6184        AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6185{
6186    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6187    if (threadBase == 0) {
6188        buffer->frameCount = 0;
6189        buffer->raw = NULL;
6190        return NOT_ENOUGH_DATA;
6191    }
6192    RecordThread *recordThread = (RecordThread *) threadBase.get();
6193    int32_t rear = recordThread->mRsmpInRear;
6194    int32_t front = mRsmpInFront;
6195    ssize_t filled = rear - front;
6196    // FIXME should not be P2 (don't want to increase latency)
6197    // FIXME if client not keeping up, discard
6198    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6199    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6200    front &= recordThread->mRsmpInFramesP2 - 1;
6201    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6202    if (part1 > (size_t) filled) {
6203        part1 = filled;
6204    }
6205    size_t ask = buffer->frameCount;
6206    ALOG_ASSERT(ask > 0);
6207    if (part1 > ask) {
6208        part1 = ask;
6209    }
6210    if (part1 == 0) {
6211        // out of data is fine since the resampler will return a short-count.
6212        buffer->raw = NULL;
6213        buffer->frameCount = 0;
6214        mRsmpInUnrel = 0;
6215        return NOT_ENOUGH_DATA;
6216    }
6217
6218    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6219    buffer->frameCount = part1;
6220    mRsmpInUnrel = part1;
6221    return NO_ERROR;
6222}
6223
6224// AudioBufferProvider interface
6225void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6226        AudioBufferProvider::Buffer* buffer)
6227{
6228    size_t stepCount = buffer->frameCount;
6229    if (stepCount == 0) {
6230        return;
6231    }
6232    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6233    mRsmpInUnrel -= stepCount;
6234    mRsmpInFront += stepCount;
6235    buffer->raw = NULL;
6236    buffer->frameCount = 0;
6237}
6238
6239AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6240        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6241        uint32_t srcSampleRate,
6242        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6243        uint32_t dstSampleRate) :
6244            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6245            // mSrcFormat
6246            // mSrcSampleRate
6247            // mDstChannelMask
6248            // mDstFormat
6249            // mDstSampleRate
6250            // mSrcChannelCount
6251            // mDstChannelCount
6252            // mDstFrameSize
6253            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6254            mResampler(NULL),
6255            mIsLegacyDownmix(false),
6256            mIsLegacyUpmix(false),
6257            mRequiresFloat(false),
6258            mInputConverterProvider(NULL)
6259{
6260    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6261            dstChannelMask, dstFormat, dstSampleRate);
6262}
6263
6264AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6265    free(mBuf);
6266    delete mResampler;
6267    delete mInputConverterProvider;
6268}
6269
6270size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6271        AudioBufferProvider *provider, size_t frames)
6272{
6273    if (mInputConverterProvider != NULL) {
6274        mInputConverterProvider->setBufferProvider(provider);
6275        provider = mInputConverterProvider;
6276    }
6277
6278    if (mResampler == NULL) {
6279        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6280                mSrcSampleRate, mSrcFormat, mDstFormat);
6281
6282        AudioBufferProvider::Buffer buffer;
6283        for (size_t i = frames; i > 0; ) {
6284            buffer.frameCount = i;
6285            status_t status = provider->getNextBuffer(&buffer, 0);
6286            if (status != OK || buffer.frameCount == 0) {
6287                frames -= i; // cannot fill request.
6288                break;
6289            }
6290            // format convert to destination buffer
6291            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6292
6293            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6294            i -= buffer.frameCount;
6295            provider->releaseBuffer(&buffer);
6296        }
6297    } else {
6298         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6299                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6300
6301         // reallocate buffer if needed
6302         if (mBufFrameSize != 0 && mBufFrames < frames) {
6303             free(mBuf);
6304             mBufFrames = frames;
6305             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6306         }
6307        // resampler accumulates, but we only have one source track
6308        memset(mBuf, 0, frames * mBufFrameSize);
6309        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6310        // format convert to destination buffer
6311        convertResampler(dst, mBuf, frames);
6312    }
6313    return frames;
6314}
6315
6316status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6317        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6318        uint32_t srcSampleRate,
6319        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6320        uint32_t dstSampleRate)
6321{
6322    // quick evaluation if there is any change.
6323    if (mSrcFormat == srcFormat
6324            && mSrcChannelMask == srcChannelMask
6325            && mSrcSampleRate == srcSampleRate
6326            && mDstFormat == dstFormat
6327            && mDstChannelMask == dstChannelMask
6328            && mDstSampleRate == dstSampleRate) {
6329        return NO_ERROR;
6330    }
6331
6332    const bool valid =
6333            audio_is_input_channel(srcChannelMask)
6334            && audio_is_input_channel(dstChannelMask)
6335            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6336            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6337            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6338            ; // no upsampling checks for now
6339    if (!valid) {
6340        return BAD_VALUE;
6341    }
6342
6343    mSrcFormat = srcFormat;
6344    mSrcChannelMask = srcChannelMask;
6345    mSrcSampleRate = srcSampleRate;
6346    mDstFormat = dstFormat;
6347    mDstChannelMask = dstChannelMask;
6348    mDstSampleRate = dstSampleRate;
6349
6350    // compute derived parameters
6351    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6352    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6353    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6354
6355    // do we need to resample?
6356    delete mResampler;
6357    mResampler = NULL;
6358    if (mSrcSampleRate != mDstSampleRate) {
6359        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6360                mSrcChannelCount, mDstSampleRate);
6361        mResampler->setSampleRate(mSrcSampleRate);
6362        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6363    }
6364
6365    // are we running legacy channel conversion modes?
6366    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6367                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6368                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6369    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6370                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6371                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6372
6373    // do we need to process in float?
6374    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6375
6376    // do we need a staging buffer to convert for destination (we can still optimize this)?
6377    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6378    if (mResampler != NULL) {
6379        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6380                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6381    } else if ((mIsLegacyUpmix || mIsLegacyDownmix) && mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6382        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6383    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6384        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6385    } else {
6386        mBufFrameSize = 0;
6387    }
6388    mBufFrames = 0; // force the buffer to be resized.
6389
6390    // do we need an input converter buffer provider to give us float?
6391    delete mInputConverterProvider;
6392    mInputConverterProvider = NULL;
6393    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6394        mInputConverterProvider = new ReformatBufferProvider(
6395                audio_channel_count_from_in_mask(mSrcChannelMask),
6396                mSrcFormat,
6397                AUDIO_FORMAT_PCM_FLOAT,
6398                256 /* provider buffer frame count */);
6399    }
6400
6401    // do we need a remixer to do channel mask conversion
6402    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6403        (void) memcpy_by_index_array_initialization_from_channel_mask(
6404                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6405    }
6406    return NO_ERROR;
6407}
6408
6409void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6410        void *dst, const void *src, size_t frames)
6411{
6412    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6413    if (mBufFrameSize != 0 && mBufFrames < frames) {
6414        free(mBuf);
6415        mBufFrames = frames;
6416        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6417    }
6418    // do we need to do legacy upmix and downmix?
6419    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6420        void *dstBuf = mBuf != NULL ? mBuf : dst;
6421        if (mIsLegacyUpmix) {
6422            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6423                    (const float *)src, frames);
6424        } else /*mIsLegacyDownmix */ {
6425            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6426                    (const float *)src, frames);
6427        }
6428        if (mBuf != NULL) {
6429            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6430                    frames * mDstChannelCount);
6431        }
6432        return;
6433    }
6434    // do we need to do channel mask conversion?
6435    if (mSrcChannelMask != mDstChannelMask) {
6436        void *dstBuf = mBuf != NULL ? mBuf : dst;
6437        memcpy_by_index_array(dstBuf, mDstChannelCount,
6438                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6439        if (dstBuf == dst) {
6440            return; // format is the same
6441        }
6442    }
6443    // convert to destination buffer
6444    const void *convertBuf = mBuf != NULL ? mBuf : src;
6445    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6446            frames * mDstChannelCount);
6447}
6448
6449void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6450        void *dst, /*not-a-const*/ void *src, size_t frames)
6451{
6452    // src buffer format is ALWAYS float when entering this routine
6453    if (mIsLegacyUpmix) {
6454        ; // mono to stereo already handled by resampler
6455    } else if (mIsLegacyDownmix
6456            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6457        // the resampler outputs stereo for mono input channel (a feature?)
6458        // must convert to mono
6459        downmix_to_mono_float_from_stereo_float((float *)src,
6460                (const float *)src, frames);
6461    } else if (mSrcChannelMask != mDstChannelMask) {
6462        // convert to mono channel again for channel mask conversion (could be skipped
6463        // with further optimization).
6464        if (mSrcChannelCount == 1) {
6465            downmix_to_mono_float_from_stereo_float((float *)src,
6466                (const float *)src, frames);
6467        }
6468        // convert to destination format (in place, OK as float is larger than other types)
6469        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6470            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6471                    frames * mSrcChannelCount);
6472        }
6473        // channel convert and save to dst
6474        memcpy_by_index_array(dst, mDstChannelCount,
6475                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6476        return;
6477    }
6478    // convert to destination format and save to dst
6479    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6480            frames * mDstChannelCount);
6481}
6482
6483bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6484                                                        status_t& status)
6485{
6486    bool reconfig = false;
6487
6488    status = NO_ERROR;
6489
6490    audio_format_t reqFormat = mFormat;
6491    uint32_t samplingRate = mSampleRate;
6492    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6493    // possible that we are > 2 channels, use channel index mask
6494    if (channelMask == AUDIO_CHANNEL_INVALID && mChannelCount <= FCC_8) {
6495        audio_channel_mask_for_index_assignment_from_count(mChannelCount);
6496    }
6497
6498    AudioParameter param = AudioParameter(keyValuePair);
6499    int value;
6500    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6501    //      channel count change can be requested. Do we mandate the first client defines the
6502    //      HAL sampling rate and channel count or do we allow changes on the fly?
6503    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6504        samplingRate = value;
6505        reconfig = true;
6506    }
6507    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6508        if (!audio_is_linear_pcm((audio_format_t) value)) {
6509            status = BAD_VALUE;
6510        } else {
6511            reqFormat = (audio_format_t) value;
6512            reconfig = true;
6513        }
6514    }
6515    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6516        audio_channel_mask_t mask = (audio_channel_mask_t) value;
6517        if (!audio_is_input_channel(mask) ||
6518                audio_channel_count_from_in_mask(mask) > FCC_8) {
6519            status = BAD_VALUE;
6520        } else {
6521            channelMask = mask;
6522            reconfig = true;
6523        }
6524    }
6525    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6526        // do not accept frame count changes if tracks are open as the track buffer
6527        // size depends on frame count and correct behavior would not be guaranteed
6528        // if frame count is changed after track creation
6529        if (mActiveTracks.size() > 0) {
6530            status = INVALID_OPERATION;
6531        } else {
6532            reconfig = true;
6533        }
6534    }
6535    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6536        // forward device change to effects that have requested to be
6537        // aware of attached audio device.
6538        for (size_t i = 0; i < mEffectChains.size(); i++) {
6539            mEffectChains[i]->setDevice_l(value);
6540        }
6541
6542        // store input device and output device but do not forward output device to audio HAL.
6543        // Note that status is ignored by the caller for output device
6544        // (see AudioFlinger::setParameters()
6545        if (audio_is_output_devices(value)) {
6546            mOutDevice = value;
6547            status = BAD_VALUE;
6548        } else {
6549            mInDevice = value;
6550            // disable AEC and NS if the device is a BT SCO headset supporting those
6551            // pre processings
6552            if (mTracks.size() > 0) {
6553                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6554                                    mAudioFlinger->btNrecIsOff();
6555                for (size_t i = 0; i < mTracks.size(); i++) {
6556                    sp<RecordTrack> track = mTracks[i];
6557                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6558                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6559                }
6560            }
6561        }
6562    }
6563    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6564            mAudioSource != (audio_source_t)value) {
6565        // forward device change to effects that have requested to be
6566        // aware of attached audio device.
6567        for (size_t i = 0; i < mEffectChains.size(); i++) {
6568            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6569        }
6570        mAudioSource = (audio_source_t)value;
6571    }
6572
6573    if (status == NO_ERROR) {
6574        status = mInput->stream->common.set_parameters(&mInput->stream->common,
6575                keyValuePair.string());
6576        if (status == INVALID_OPERATION) {
6577            inputStandBy();
6578            status = mInput->stream->common.set_parameters(&mInput->stream->common,
6579                    keyValuePair.string());
6580        }
6581        if (reconfig) {
6582            if (status == BAD_VALUE &&
6583                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
6584                audio_is_linear_pcm(reqFormat) &&
6585                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6586                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
6587                audio_channel_count_from_in_mask(
6588                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_2 &&
6589                (channelMask == AUDIO_CHANNEL_IN_MONO ||
6590                        channelMask == AUDIO_CHANNEL_IN_STEREO)) {
6591                status = NO_ERROR;
6592            }
6593            if (status == NO_ERROR) {
6594                readInputParameters_l();
6595                sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
6596            }
6597        }
6598    }
6599
6600    return reconfig;
6601}
6602
6603String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6604{
6605    Mutex::Autolock _l(mLock);
6606    if (initCheck() != NO_ERROR) {
6607        return String8();
6608    }
6609
6610    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6611    const String8 out_s8(s);
6612    free(s);
6613    return out_s8;
6614}
6615
6616void AudioFlinger::RecordThread::audioConfigChanged(int event, int param __unused) {
6617    AudioSystem::OutputDescriptor desc;
6618    const void *param2 = NULL;
6619
6620    switch (event) {
6621    case AudioSystem::INPUT_OPENED:
6622    case AudioSystem::INPUT_CONFIG_CHANGED:
6623        desc.channelMask = mChannelMask;
6624        desc.samplingRate = mSampleRate;
6625        desc.format = mFormat;
6626        desc.frameCount = mFrameCount;
6627        desc.latency = 0;
6628        param2 = &desc;
6629        break;
6630
6631    case AudioSystem::INPUT_CLOSED:
6632    default:
6633        break;
6634    }
6635    mAudioFlinger->audioConfigChanged(event, mId, param2);
6636}
6637
6638void AudioFlinger::RecordThread::readInputParameters_l()
6639{
6640    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6641    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6642    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6643    if (mChannelCount > FCC_8) {
6644        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
6645    }
6646    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6647    mFormat = mHALFormat;
6648    if (!audio_is_linear_pcm(mFormat)) {
6649        ALOGE("HAL format %#x is not linear pcm", mFormat);
6650    }
6651    mFrameSize = audio_stream_in_frame_size(mInput->stream);
6652    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6653    mFrameCount = mBufferSize / mFrameSize;
6654    // This is the formula for calculating the temporary buffer size.
6655    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6656    // 1 full output buffer, regardless of the alignment of the available input.
6657    // The value is somewhat arbitrary, and could probably be even larger.
6658    // A larger value should allow more old data to be read after a track calls start(),
6659    // without increasing latency.
6660    //
6661    // Note this is independent of the maximum downsampling ratio permitted for capture.
6662    mRsmpInFrames = mFrameCount * 7;
6663    mRsmpInFramesP2 = roundup(mRsmpInFrames);
6664    free(mRsmpInBuffer);
6665
6666    // TODO optimize audio capture buffer sizes ...
6667    // Here we calculate the size of the sliding buffer used as a source
6668    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6669    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
6670    // be better to have it derived from the pipe depth in the long term.
6671    // The current value is higher than necessary.  However it should not add to latency.
6672
6673    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6674    (void)posix_memalign(&mRsmpInBuffer, 32, (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize);
6675
6676    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6677    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6678}
6679
6680uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6681{
6682    Mutex::Autolock _l(mLock);
6683    if (initCheck() != NO_ERROR) {
6684        return 0;
6685    }
6686
6687    return mInput->stream->get_input_frames_lost(mInput->stream);
6688}
6689
6690uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6691{
6692    Mutex::Autolock _l(mLock);
6693    uint32_t result = 0;
6694    if (getEffectChain_l(sessionId) != 0) {
6695        result = EFFECT_SESSION;
6696    }
6697
6698    for (size_t i = 0; i < mTracks.size(); ++i) {
6699        if (sessionId == mTracks[i]->sessionId()) {
6700            result |= TRACK_SESSION;
6701            break;
6702        }
6703    }
6704
6705    return result;
6706}
6707
6708KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
6709{
6710    KeyedVector<int, bool> ids;
6711    Mutex::Autolock _l(mLock);
6712    for (size_t j = 0; j < mTracks.size(); ++j) {
6713        sp<RecordThread::RecordTrack> track = mTracks[j];
6714        int sessionId = track->sessionId();
6715        if (ids.indexOfKey(sessionId) < 0) {
6716            ids.add(sessionId, true);
6717        }
6718    }
6719    return ids;
6720}
6721
6722AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
6723{
6724    Mutex::Autolock _l(mLock);
6725    AudioStreamIn *input = mInput;
6726    mInput = NULL;
6727    return input;
6728}
6729
6730// this method must always be called either with ThreadBase mLock held or inside the thread loop
6731audio_stream_t* AudioFlinger::RecordThread::stream() const
6732{
6733    if (mInput == NULL) {
6734        return NULL;
6735    }
6736    return &mInput->stream->common;
6737}
6738
6739status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
6740{
6741    // only one chain per input thread
6742    if (mEffectChains.size() != 0) {
6743        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
6744        return INVALID_OPERATION;
6745    }
6746    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
6747    chain->setThread(this);
6748    chain->setInBuffer(NULL);
6749    chain->setOutBuffer(NULL);
6750
6751    checkSuspendOnAddEffectChain_l(chain);
6752
6753    // make sure enabled pre processing effects state is communicated to the HAL as we
6754    // just moved them to a new input stream.
6755    chain->syncHalEffectsState();
6756
6757    mEffectChains.add(chain);
6758
6759    return NO_ERROR;
6760}
6761
6762size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
6763{
6764    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
6765    ALOGW_IF(mEffectChains.size() != 1,
6766            "removeEffectChain_l() %p invalid chain size %d on thread %p",
6767            chain.get(), mEffectChains.size(), this);
6768    if (mEffectChains.size() == 1) {
6769        mEffectChains.removeAt(0);
6770    }
6771    return 0;
6772}
6773
6774status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
6775                                                          audio_patch_handle_t *handle)
6776{
6777    status_t status = NO_ERROR;
6778    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6779        // store new device and send to effects
6780        mInDevice = patch->sources[0].ext.device.type;
6781        for (size_t i = 0; i < mEffectChains.size(); i++) {
6782            mEffectChains[i]->setDevice_l(mInDevice);
6783        }
6784
6785        // disable AEC and NS if the device is a BT SCO headset supporting those
6786        // pre processings
6787        if (mTracks.size() > 0) {
6788            bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6789                                mAudioFlinger->btNrecIsOff();
6790            for (size_t i = 0; i < mTracks.size(); i++) {
6791                sp<RecordTrack> track = mTracks[i];
6792                setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6793                setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6794            }
6795        }
6796
6797        // store new source and send to effects
6798        if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
6799            mAudioSource = patch->sinks[0].ext.mix.usecase.source;
6800            for (size_t i = 0; i < mEffectChains.size(); i++) {
6801                mEffectChains[i]->setAudioSource_l(mAudioSource);
6802            }
6803        }
6804
6805        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6806        status = hwDevice->create_audio_patch(hwDevice,
6807                                               patch->num_sources,
6808                                               patch->sources,
6809                                               patch->num_sinks,
6810                                               patch->sinks,
6811                                               handle);
6812    } else {
6813        ALOG_ASSERT(false, "createAudioPatch_l() called on a pre 3.0 HAL");
6814    }
6815    return status;
6816}
6817
6818status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
6819{
6820    status_t status = NO_ERROR;
6821    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
6822        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
6823        status = hwDevice->release_audio_patch(hwDevice, handle);
6824    } else {
6825        ALOG_ASSERT(false, "releaseAudioPatch_l() called on a pre 3.0 HAL");
6826    }
6827    return status;
6828}
6829
6830void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
6831{
6832    Mutex::Autolock _l(mLock);
6833    mTracks.add(record);
6834}
6835
6836void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
6837{
6838    Mutex::Autolock _l(mLock);
6839    destroyTrack_l(record);
6840}
6841
6842void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
6843{
6844    ThreadBase::getAudioPortConfig(config);
6845    config->role = AUDIO_PORT_ROLE_SINK;
6846    config->ext.mix.hw_module = mInput->audioHwDev->handle();
6847    config->ext.mix.usecase.source = mAudioSource;
6848}
6849
6850} // namespace android
6851