Threads.cpp revision fdb3c07db5d44535eb8c3ec46dc78ad8446c01eb
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include "AudioFlinger.h"
57#include "AudioMixer.h"
58#include "BufferProviders.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "mediautils/SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74// ----------------------------------------------------------------------------
75
76// Note: the following macro is used for extremely verbose logging message.  In
77// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
78// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
79// are so verbose that we want to suppress them even when we have ALOG_ASSERT
80// turned on.  Do not uncomment the #def below unless you really know what you
81// are doing and want to see all of the extremely verbose messages.
82//#define VERY_VERY_VERBOSE_LOGGING
83#ifdef VERY_VERY_VERBOSE_LOGGING
84#define ALOGVV ALOGV
85#else
86#define ALOGVV(a...) do { } while(0)
87#endif
88
89// TODO: Move these macro/inlines to a header file.
90#define max(a, b) ((a) > (b) ? (a) : (b))
91template <typename T>
92static inline T min(const T& a, const T& b)
93{
94    return a < b ? a : b;
95}
96
97#ifndef ARRAY_SIZE
98#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
99#endif
100
101namespace android {
102
103// retry counts for buffer fill timeout
104// 50 * ~20msecs = 1 second
105static const int8_t kMaxTrackRetries = 50;
106static const int8_t kMaxTrackStartupRetries = 50;
107// allow less retry attempts on direct output thread.
108// direct outputs can be a scarce resource in audio hardware and should
109// be released as quickly as possible.
110static const int8_t kMaxTrackRetriesDirect = 2;
111
112// don't warn about blocked writes or record buffer overflows more often than this
113static const nsecs_t kWarningThrottleNs = seconds(5);
114
115// RecordThread loop sleep time upon application overrun or audio HAL read error
116static const int kRecordThreadSleepUs = 5000;
117
118// maximum time to wait in sendConfigEvent_l() for a status to be received
119static const nsecs_t kConfigEventTimeoutNs = seconds(2);
120
121// minimum sleep time for the mixer thread loop when tracks are active but in underrun
122static const uint32_t kMinThreadSleepTimeUs = 5000;
123// maximum divider applied to the active sleep time in the mixer thread loop
124static const uint32_t kMaxThreadSleepTimeShift = 2;
125
126// minimum normal sink buffer size, expressed in milliseconds rather than frames
127// FIXME This should be based on experimentally observed scheduling jitter
128static const uint32_t kMinNormalSinkBufferSizeMs = 20;
129// maximum normal sink buffer size
130static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
131
132// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
133// FIXME This should be based on experimentally observed scheduling jitter
134static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
135
136// Offloaded output thread standby delay: allows track transition without going to standby
137static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
138
139// Whether to use fast mixer
140static const enum {
141    FastMixer_Never,    // never initialize or use: for debugging only
142    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
143                        // normal mixer multiplier is 1
144    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
145                        // multiplier is calculated based on min & max normal mixer buffer size
146    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
147                        // multiplier is calculated based on min & max normal mixer buffer size
148    // FIXME for FastMixer_Dynamic:
149    //  Supporting this option will require fixing HALs that can't handle large writes.
150    //  For example, one HAL implementation returns an error from a large write,
151    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
152    //  We could either fix the HAL implementations, or provide a wrapper that breaks
153    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
154} kUseFastMixer = FastMixer_Static;
155
156// Whether to use fast capture
157static const enum {
158    FastCapture_Never,  // never initialize or use: for debugging only
159    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
160    FastCapture_Static, // initialize if needed, then use all the time if initialized
161} kUseFastCapture = FastCapture_Static;
162
163// Priorities for requestPriority
164static const int kPriorityAudioApp = 2;
165static const int kPriorityFastMixer = 3;
166static const int kPriorityFastCapture = 3;
167
168// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
169// for the track.  The client then sub-divides this into smaller buffers for its use.
170// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
171// So for now we just assume that client is double-buffered for fast tracks.
172// FIXME It would be better for client to tell AudioFlinger the value of N,
173// so AudioFlinger could allocate the right amount of memory.
174// See the client's minBufCount and mNotificationFramesAct calculations for details.
175
176// This is the default value, if not specified by property.
177static const int kFastTrackMultiplier = 2;
178
179// The minimum and maximum allowed values
180static const int kFastTrackMultiplierMin = 1;
181static const int kFastTrackMultiplierMax = 2;
182
183// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
184static int sFastTrackMultiplier = kFastTrackMultiplier;
185
186// See Thread::readOnlyHeap().
187// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
188// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
189// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
190static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
191
192// ----------------------------------------------------------------------------
193
194static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
195
196static void sFastTrackMultiplierInit()
197{
198    char value[PROPERTY_VALUE_MAX];
199    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
200        char *endptr;
201        unsigned long ul = strtoul(value, &endptr, 0);
202        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
203            sFastTrackMultiplier = (int) ul;
204        }
205    }
206}
207
208// ----------------------------------------------------------------------------
209
210#ifdef ADD_BATTERY_DATA
211// To collect the amplifier usage
212static void addBatteryData(uint32_t params) {
213    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
214    if (service == NULL) {
215        // it already logged
216        return;
217    }
218
219    service->addBatteryData(params);
220}
221#endif
222
223// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
224struct {
225    // call when you acquire a partial wakelock
226    void acquire(const sp<IBinder> &wakeLockToken) {
227        pthread_mutex_lock(&mLock);
228        if (wakeLockToken.get() == nullptr) {
229            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
230        } else {
231            if (mCount == 0) {
232                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
233            }
234            ++mCount;
235        }
236        pthread_mutex_unlock(&mLock);
237    }
238
239    // call when you release a partial wakelock.
240    void release(const sp<IBinder> &wakeLockToken) {
241        if (wakeLockToken.get() == nullptr) {
242            return;
243        }
244        pthread_mutex_lock(&mLock);
245        if (--mCount < 0) {
246            ALOGE("negative wakelock count");
247            mCount = 0;
248        }
249        pthread_mutex_unlock(&mLock);
250    }
251
252    // retrieves the boottime timebase offset from monotonic.
253    int64_t getBoottimeOffset() {
254        pthread_mutex_lock(&mLock);
255        int64_t boottimeOffset = mBoottimeOffset;
256        pthread_mutex_unlock(&mLock);
257        return boottimeOffset;
258    }
259
260    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
261    // and the selected timebase.
262    // Currently only TIMEBASE_BOOTTIME is allowed.
263    //
264    // This only needs to be called upon acquiring the first partial wakelock
265    // after all other partial wakelocks are released.
266    //
267    // We do an empirical measurement of the offset rather than parsing
268    // /proc/timer_list since the latter is not a formal kernel ABI.
269    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
270        int clockbase;
271        switch (timebase) {
272        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
273            clockbase = SYSTEM_TIME_BOOTTIME;
274            break;
275        default:
276            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
277            break;
278        }
279        // try three times to get the clock offset, choose the one
280        // with the minimum gap in measurements.
281        const int tries = 3;
282        nsecs_t bestGap, measured;
283        for (int i = 0; i < tries; ++i) {
284            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
285            const nsecs_t tbase = systemTime(clockbase);
286            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
287            const nsecs_t gap = tmono2 - tmono;
288            if (i == 0 || gap < bestGap) {
289                bestGap = gap;
290                measured = tbase - ((tmono + tmono2) >> 1);
291            }
292        }
293
294        // to avoid micro-adjusting, we don't change the timebase
295        // unless it is significantly different.
296        //
297        // Assumption: It probably takes more than toleranceNs to
298        // suspend and resume the device.
299        static int64_t toleranceNs = 10000; // 10 us
300        if (llabs(*offset - measured) > toleranceNs) {
301            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
302                    (long long)*offset, (long long)measured);
303            *offset = measured;
304        }
305    }
306
307    pthread_mutex_t mLock;
308    int32_t mCount;
309    int64_t mBoottimeOffset;
310} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
311
312// ----------------------------------------------------------------------------
313//      CPU Stats
314// ----------------------------------------------------------------------------
315
316class CpuStats {
317public:
318    CpuStats();
319    void sample(const String8 &title);
320#ifdef DEBUG_CPU_USAGE
321private:
322    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
323    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
324
325    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
326
327    int mCpuNum;                        // thread's current CPU number
328    int mCpukHz;                        // frequency of thread's current CPU in kHz
329#endif
330};
331
332CpuStats::CpuStats()
333#ifdef DEBUG_CPU_USAGE
334    : mCpuNum(-1), mCpukHz(-1)
335#endif
336{
337}
338
339void CpuStats::sample(const String8 &title
340#ifndef DEBUG_CPU_USAGE
341                __unused
342#endif
343        ) {
344#ifdef DEBUG_CPU_USAGE
345    // get current thread's delta CPU time in wall clock ns
346    double wcNs;
347    bool valid = mCpuUsage.sampleAndEnable(wcNs);
348
349    // record sample for wall clock statistics
350    if (valid) {
351        mWcStats.sample(wcNs);
352    }
353
354    // get the current CPU number
355    int cpuNum = sched_getcpu();
356
357    // get the current CPU frequency in kHz
358    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
359
360    // check if either CPU number or frequency changed
361    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
362        mCpuNum = cpuNum;
363        mCpukHz = cpukHz;
364        // ignore sample for purposes of cycles
365        valid = false;
366    }
367
368    // if no change in CPU number or frequency, then record sample for cycle statistics
369    if (valid && mCpukHz > 0) {
370        double cycles = wcNs * cpukHz * 0.000001;
371        mHzStats.sample(cycles);
372    }
373
374    unsigned n = mWcStats.n();
375    // mCpuUsage.elapsed() is expensive, so don't call it every loop
376    if ((n & 127) == 1) {
377        long long elapsed = mCpuUsage.elapsed();
378        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
379            double perLoop = elapsed / (double) n;
380            double perLoop100 = perLoop * 0.01;
381            double perLoop1k = perLoop * 0.001;
382            double mean = mWcStats.mean();
383            double stddev = mWcStats.stddev();
384            double minimum = mWcStats.minimum();
385            double maximum = mWcStats.maximum();
386            double meanCycles = mHzStats.mean();
387            double stddevCycles = mHzStats.stddev();
388            double minCycles = mHzStats.minimum();
389            double maxCycles = mHzStats.maximum();
390            mCpuUsage.resetElapsed();
391            mWcStats.reset();
392            mHzStats.reset();
393            ALOGD("CPU usage for %s over past %.1f secs\n"
394                "  (%u mixer loops at %.1f mean ms per loop):\n"
395                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
396                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
397                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
398                    title.string(),
399                    elapsed * .000000001, n, perLoop * .000001,
400                    mean * .001,
401                    stddev * .001,
402                    minimum * .001,
403                    maximum * .001,
404                    mean / perLoop100,
405                    stddev / perLoop100,
406                    minimum / perLoop100,
407                    maximum / perLoop100,
408                    meanCycles / perLoop1k,
409                    stddevCycles / perLoop1k,
410                    minCycles / perLoop1k,
411                    maxCycles / perLoop1k);
412
413        }
414    }
415#endif
416};
417
418// ----------------------------------------------------------------------------
419//      ThreadBase
420// ----------------------------------------------------------------------------
421
422// static
423const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
424{
425    switch (type) {
426    case MIXER:
427        return "MIXER";
428    case DIRECT:
429        return "DIRECT";
430    case DUPLICATING:
431        return "DUPLICATING";
432    case RECORD:
433        return "RECORD";
434    case OFFLOAD:
435        return "OFFLOAD";
436    default:
437        return "unknown";
438    }
439}
440
441String8 devicesToString(audio_devices_t devices)
442{
443    static const struct mapping {
444        audio_devices_t mDevices;
445        const char *    mString;
446    } mappingsOut[] = {
447        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
448        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
449        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
450        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
451        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
452        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
453        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
454        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
455        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
456        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
457        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
458        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
459        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
460        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
461        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
462        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
463        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
464        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
465        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
466        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
467        {AUDIO_DEVICE_OUT_FM,               "FM"},
468        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
469        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
470        {AUDIO_DEVICE_OUT_IP,               "IP"},
471        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
472    }, mappingsIn[] = {
473        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
474        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
475        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
476        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
477        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
478        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
479        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
480        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
481        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
482        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
483        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
484        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
485        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
486        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
487        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
488        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
489        {AUDIO_DEVICE_IN_LINE,              "LINE"},
490        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
491        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
492        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
493        {AUDIO_DEVICE_IN_IP,                "IP"},
494        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
495    };
496    String8 result;
497    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
498    const mapping *entry;
499    if (devices & AUDIO_DEVICE_BIT_IN) {
500        devices &= ~AUDIO_DEVICE_BIT_IN;
501        entry = mappingsIn;
502    } else {
503        entry = mappingsOut;
504    }
505    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
506        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
507        if (devices & entry->mDevices) {
508            if (!result.isEmpty()) {
509                result.append("|");
510            }
511            result.append(entry->mString);
512        }
513    }
514    if (devices & ~allDevices) {
515        if (!result.isEmpty()) {
516            result.append("|");
517        }
518        result.appendFormat("0x%X", devices & ~allDevices);
519    }
520    if (result.isEmpty()) {
521        result.append(entry->mString);
522    }
523    return result;
524}
525
526String8 inputFlagsToString(audio_input_flags_t flags)
527{
528    static const struct mapping {
529        audio_input_flags_t     mFlag;
530        const char *            mString;
531    } mappings[] = {
532        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
533        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
534        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
535        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
536        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
537    };
538    String8 result;
539    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
540    const mapping *entry;
541    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
542        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
543        if (flags & entry->mFlag) {
544            if (!result.isEmpty()) {
545                result.append("|");
546            }
547            result.append(entry->mString);
548        }
549    }
550    if (flags & ~allFlags) {
551        if (!result.isEmpty()) {
552            result.append("|");
553        }
554        result.appendFormat("0x%X", flags & ~allFlags);
555    }
556    if (result.isEmpty()) {
557        result.append(entry->mString);
558    }
559    return result;
560}
561
562String8 outputFlagsToString(audio_output_flags_t flags)
563{
564    static const struct mapping {
565        audio_output_flags_t    mFlag;
566        const char *            mString;
567    } mappings[] = {
568        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
569        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
570        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
571        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
572        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
573        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
574        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
575        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
576        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
577        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
578        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
579    };
580    String8 result;
581    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
582    const mapping *entry;
583    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
584        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
585        if (flags & entry->mFlag) {
586            if (!result.isEmpty()) {
587                result.append("|");
588            }
589            result.append(entry->mString);
590        }
591    }
592    if (flags & ~allFlags) {
593        if (!result.isEmpty()) {
594            result.append("|");
595        }
596        result.appendFormat("0x%X", flags & ~allFlags);
597    }
598    if (result.isEmpty()) {
599        result.append(entry->mString);
600    }
601    return result;
602}
603
604const char *sourceToString(audio_source_t source)
605{
606    switch (source) {
607    case AUDIO_SOURCE_DEFAULT:              return "default";
608    case AUDIO_SOURCE_MIC:                  return "mic";
609    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
610    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
611    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
612    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
613    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
614    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
615    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
616    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
617    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
618    case AUDIO_SOURCE_HOTWORD:              return "hotword";
619    default:                                return "unknown";
620    }
621}
622
623AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
624        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
625    :   Thread(false /*canCallJava*/),
626        mType(type),
627        mAudioFlinger(audioFlinger),
628        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
629        // are set by PlaybackThread::readOutputParameters_l() or
630        // RecordThread::readInputParameters_l()
631        //FIXME: mStandby should be true here. Is this some kind of hack?
632        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
633        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
634        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
635        // mName will be set by concrete (non-virtual) subclass
636        mDeathRecipient(new PMDeathRecipient(this)),
637        mSystemReady(systemReady),
638        mNotifiedBatteryStart(false)
639{
640    memset(&mPatch, 0, sizeof(struct audio_patch));
641}
642
643AudioFlinger::ThreadBase::~ThreadBase()
644{
645    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
646    mConfigEvents.clear();
647
648    // do not lock the mutex in destructor
649    releaseWakeLock_l();
650    if (mPowerManager != 0) {
651        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
652        binder->unlinkToDeath(mDeathRecipient);
653    }
654}
655
656status_t AudioFlinger::ThreadBase::readyToRun()
657{
658    status_t status = initCheck();
659    if (status == NO_ERROR) {
660        ALOGI("AudioFlinger's thread %p ready to run", this);
661    } else {
662        ALOGE("No working audio driver found.");
663    }
664    return status;
665}
666
667void AudioFlinger::ThreadBase::exit()
668{
669    ALOGV("ThreadBase::exit");
670    // do any cleanup required for exit to succeed
671    preExit();
672    {
673        // This lock prevents the following race in thread (uniprocessor for illustration):
674        //  if (!exitPending()) {
675        //      // context switch from here to exit()
676        //      // exit() calls requestExit(), what exitPending() observes
677        //      // exit() calls signal(), which is dropped since no waiters
678        //      // context switch back from exit() to here
679        //      mWaitWorkCV.wait(...);
680        //      // now thread is hung
681        //  }
682        AutoMutex lock(mLock);
683        requestExit();
684        mWaitWorkCV.broadcast();
685    }
686    // When Thread::requestExitAndWait is made virtual and this method is renamed to
687    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
688    requestExitAndWait();
689}
690
691status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
692{
693    status_t status;
694
695    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
696    Mutex::Autolock _l(mLock);
697
698    return sendSetParameterConfigEvent_l(keyValuePairs);
699}
700
701// sendConfigEvent_l() must be called with ThreadBase::mLock held
702// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
703status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
704{
705    status_t status = NO_ERROR;
706
707    if (event->mRequiresSystemReady && !mSystemReady) {
708        event->mWaitStatus = false;
709        mPendingConfigEvents.add(event);
710        return status;
711    }
712    mConfigEvents.add(event);
713    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
714    mWaitWorkCV.signal();
715    mLock.unlock();
716    {
717        Mutex::Autolock _l(event->mLock);
718        while (event->mWaitStatus) {
719            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
720                event->mStatus = TIMED_OUT;
721                event->mWaitStatus = false;
722            }
723        }
724        status = event->mStatus;
725    }
726    mLock.lock();
727    return status;
728}
729
730void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
731{
732    Mutex::Autolock _l(mLock);
733    sendIoConfigEvent_l(event, pid);
734}
735
736// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
737void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
738{
739    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
740    sendConfigEvent_l(configEvent);
741}
742
743void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
744{
745    Mutex::Autolock _l(mLock);
746    sendPrioConfigEvent_l(pid, tid, prio);
747}
748
749// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
750void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
751{
752    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
753    sendConfigEvent_l(configEvent);
754}
755
756// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
757status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
758{
759    sp<ConfigEvent> configEvent;
760    AudioParameter param(keyValuePair);
761    int value;
762    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
763        setMasterMono_l(value != 0);
764        if (param.size() == 1) {
765            return NO_ERROR; // should be a solo parameter - we don't pass down
766        }
767        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
768        configEvent = new SetParameterConfigEvent(param.toString());
769    } else {
770        configEvent = new SetParameterConfigEvent(keyValuePair);
771    }
772    return sendConfigEvent_l(configEvent);
773}
774
775status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
776                                                        const struct audio_patch *patch,
777                                                        audio_patch_handle_t *handle)
778{
779    Mutex::Autolock _l(mLock);
780    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
781    status_t status = sendConfigEvent_l(configEvent);
782    if (status == NO_ERROR) {
783        CreateAudioPatchConfigEventData *data =
784                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
785        *handle = data->mHandle;
786    }
787    return status;
788}
789
790status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
791                                                                const audio_patch_handle_t handle)
792{
793    Mutex::Autolock _l(mLock);
794    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
795    return sendConfigEvent_l(configEvent);
796}
797
798
799// post condition: mConfigEvents.isEmpty()
800void AudioFlinger::ThreadBase::processConfigEvents_l()
801{
802    bool configChanged = false;
803
804    while (!mConfigEvents.isEmpty()) {
805        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
806        sp<ConfigEvent> event = mConfigEvents[0];
807        mConfigEvents.removeAt(0);
808        switch (event->mType) {
809        case CFG_EVENT_PRIO: {
810            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
811            // FIXME Need to understand why this has to be done asynchronously
812            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
813                    true /*asynchronous*/);
814            if (err != 0) {
815                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
816                      data->mPrio, data->mPid, data->mTid, err);
817            }
818        } break;
819        case CFG_EVENT_IO: {
820            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
821            ioConfigChanged(data->mEvent, data->mPid);
822        } break;
823        case CFG_EVENT_SET_PARAMETER: {
824            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
825            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
826                configChanged = true;
827            }
828        } break;
829        case CFG_EVENT_CREATE_AUDIO_PATCH: {
830            CreateAudioPatchConfigEventData *data =
831                                            (CreateAudioPatchConfigEventData *)event->mData.get();
832            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
833        } break;
834        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
835            ReleaseAudioPatchConfigEventData *data =
836                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
837            event->mStatus = releaseAudioPatch_l(data->mHandle);
838        } break;
839        default:
840            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
841            break;
842        }
843        {
844            Mutex::Autolock _l(event->mLock);
845            if (event->mWaitStatus) {
846                event->mWaitStatus = false;
847                event->mCond.signal();
848            }
849        }
850        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
851    }
852
853    if (configChanged) {
854        cacheParameters_l();
855    }
856}
857
858String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
859    String8 s;
860    const audio_channel_representation_t representation =
861            audio_channel_mask_get_representation(mask);
862
863    switch (representation) {
864    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
865        if (output) {
866            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
867            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
868            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
869            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
870            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
871            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
872            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
873            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
874            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
875            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
876            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
877            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
878            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
879            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
880            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
881            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
882            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
883            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
884            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
885        } else {
886            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
887            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
888            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
889            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
890            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
891            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
892            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
893            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
894            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
895            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
896            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
897            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
898            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
899            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
900            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
901        }
902        const int len = s.length();
903        if (len > 2) {
904            char *str = s.lockBuffer(len); // needed?
905            s.unlockBuffer(len - 2);       // remove trailing ", "
906        }
907        return s;
908    }
909    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
910        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
911        return s;
912    default:
913        s.appendFormat("unknown mask, representation:%d  bits:%#x",
914                representation, audio_channel_mask_get_bits(mask));
915        return s;
916    }
917}
918
919void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
920{
921    const size_t SIZE = 256;
922    char buffer[SIZE];
923    String8 result;
924
925    bool locked = AudioFlinger::dumpTryLock(mLock);
926    if (!locked) {
927        dprintf(fd, "thread %p may be deadlocked\n", this);
928    }
929
930    dprintf(fd, "  Thread name: %s\n", mThreadName);
931    dprintf(fd, "  I/O handle: %d\n", mId);
932    dprintf(fd, "  TID: %d\n", getTid());
933    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
934    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
935    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
936    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
937    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
938    dprintf(fd, "  Channel count: %u\n", mChannelCount);
939    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
940            channelMaskToString(mChannelMask, mType != RECORD).string());
941    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
942    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
943    dprintf(fd, "  Pending config events:");
944    size_t numConfig = mConfigEvents.size();
945    if (numConfig) {
946        for (size_t i = 0; i < numConfig; i++) {
947            mConfigEvents[i]->dump(buffer, SIZE);
948            dprintf(fd, "\n    %s", buffer);
949        }
950        dprintf(fd, "\n");
951    } else {
952        dprintf(fd, " none\n");
953    }
954    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
955    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
956    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
957
958    if (locked) {
959        mLock.unlock();
960    }
961}
962
963void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
964{
965    const size_t SIZE = 256;
966    char buffer[SIZE];
967    String8 result;
968
969    size_t numEffectChains = mEffectChains.size();
970    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
971    write(fd, buffer, strlen(buffer));
972
973    for (size_t i = 0; i < numEffectChains; ++i) {
974        sp<EffectChain> chain = mEffectChains[i];
975        if (chain != 0) {
976            chain->dump(fd, args);
977        }
978    }
979}
980
981void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
982{
983    Mutex::Autolock _l(mLock);
984    acquireWakeLock_l(uid);
985}
986
987String16 AudioFlinger::ThreadBase::getWakeLockTag()
988{
989    switch (mType) {
990    case MIXER:
991        return String16("AudioMix");
992    case DIRECT:
993        return String16("AudioDirectOut");
994    case DUPLICATING:
995        return String16("AudioDup");
996    case RECORD:
997        return String16("AudioIn");
998    case OFFLOAD:
999        return String16("AudioOffload");
1000    default:
1001        ALOG_ASSERT(false);
1002        return String16("AudioUnknown");
1003    }
1004}
1005
1006void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1007{
1008    getPowerManager_l();
1009    if (mPowerManager != 0) {
1010        sp<IBinder> binder = new BBinder();
1011        status_t status;
1012        if (uid >= 0) {
1013            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1014                    binder,
1015                    getWakeLockTag(),
1016                    String16("audioserver"),
1017                    uid,
1018                    true /* FIXME force oneway contrary to .aidl */);
1019        } else {
1020            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1021                    binder,
1022                    getWakeLockTag(),
1023                    String16("audioserver"),
1024                    true /* FIXME force oneway contrary to .aidl */);
1025        }
1026        if (status == NO_ERROR) {
1027            mWakeLockToken = binder;
1028        }
1029        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1030    }
1031
1032    if (!mNotifiedBatteryStart) {
1033        BatteryNotifier::getInstance().noteStartAudio();
1034        mNotifiedBatteryStart = true;
1035    }
1036    gBoottime.acquire(mWakeLockToken);
1037}
1038
1039void AudioFlinger::ThreadBase::releaseWakeLock()
1040{
1041    Mutex::Autolock _l(mLock);
1042    releaseWakeLock_l();
1043}
1044
1045void AudioFlinger::ThreadBase::releaseWakeLock_l()
1046{
1047    gBoottime.release(mWakeLockToken);
1048    if (mWakeLockToken != 0) {
1049        ALOGV("releaseWakeLock_l() %s", mThreadName);
1050        if (mPowerManager != 0) {
1051            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1052                    true /* FIXME force oneway contrary to .aidl */);
1053        }
1054        mWakeLockToken.clear();
1055    }
1056
1057    if (mNotifiedBatteryStart) {
1058        BatteryNotifier::getInstance().noteStopAudio();
1059        mNotifiedBatteryStart = false;
1060    }
1061}
1062
1063void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1064    Mutex::Autolock _l(mLock);
1065    updateWakeLockUids_l(uids);
1066}
1067
1068void AudioFlinger::ThreadBase::getPowerManager_l() {
1069    if (mSystemReady && mPowerManager == 0) {
1070        // use checkService() to avoid blocking if power service is not up yet
1071        sp<IBinder> binder =
1072            defaultServiceManager()->checkService(String16("power"));
1073        if (binder == 0) {
1074            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1075        } else {
1076            mPowerManager = interface_cast<IPowerManager>(binder);
1077            binder->linkToDeath(mDeathRecipient);
1078        }
1079    }
1080}
1081
1082void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1083    getPowerManager_l();
1084    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1085        if (mSystemReady) {
1086            ALOGE("no wake lock to update, but system ready!");
1087        } else {
1088            ALOGW("no wake lock to update, system not ready yet");
1089        }
1090        return;
1091    }
1092    if (mPowerManager != 0) {
1093        sp<IBinder> binder = new BBinder();
1094        status_t status;
1095        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1096                    true /* FIXME force oneway contrary to .aidl */);
1097        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1098    }
1099}
1100
1101void AudioFlinger::ThreadBase::clearPowerManager()
1102{
1103    Mutex::Autolock _l(mLock);
1104    releaseWakeLock_l();
1105    mPowerManager.clear();
1106}
1107
1108void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1109{
1110    sp<ThreadBase> thread = mThread.promote();
1111    if (thread != 0) {
1112        thread->clearPowerManager();
1113    }
1114    ALOGW("power manager service died !!!");
1115}
1116
1117void AudioFlinger::ThreadBase::setEffectSuspended(
1118        const effect_uuid_t *type, bool suspend, int sessionId)
1119{
1120    Mutex::Autolock _l(mLock);
1121    setEffectSuspended_l(type, suspend, sessionId);
1122}
1123
1124void AudioFlinger::ThreadBase::setEffectSuspended_l(
1125        const effect_uuid_t *type, bool suspend, int sessionId)
1126{
1127    sp<EffectChain> chain = getEffectChain_l(sessionId);
1128    if (chain != 0) {
1129        if (type != NULL) {
1130            chain->setEffectSuspended_l(type, suspend);
1131        } else {
1132            chain->setEffectSuspendedAll_l(suspend);
1133        }
1134    }
1135
1136    updateSuspendedSessions_l(type, suspend, sessionId);
1137}
1138
1139void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1140{
1141    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1142    if (index < 0) {
1143        return;
1144    }
1145
1146    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1147            mSuspendedSessions.valueAt(index);
1148
1149    for (size_t i = 0; i < sessionEffects.size(); i++) {
1150        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1151        for (int j = 0; j < desc->mRefCount; j++) {
1152            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1153                chain->setEffectSuspendedAll_l(true);
1154            } else {
1155                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1156                    desc->mType.timeLow);
1157                chain->setEffectSuspended_l(&desc->mType, true);
1158            }
1159        }
1160    }
1161}
1162
1163void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1164                                                         bool suspend,
1165                                                         int sessionId)
1166{
1167    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1168
1169    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1170
1171    if (suspend) {
1172        if (index >= 0) {
1173            sessionEffects = mSuspendedSessions.valueAt(index);
1174        } else {
1175            mSuspendedSessions.add(sessionId, sessionEffects);
1176        }
1177    } else {
1178        if (index < 0) {
1179            return;
1180        }
1181        sessionEffects = mSuspendedSessions.valueAt(index);
1182    }
1183
1184
1185    int key = EffectChain::kKeyForSuspendAll;
1186    if (type != NULL) {
1187        key = type->timeLow;
1188    }
1189    index = sessionEffects.indexOfKey(key);
1190
1191    sp<SuspendedSessionDesc> desc;
1192    if (suspend) {
1193        if (index >= 0) {
1194            desc = sessionEffects.valueAt(index);
1195        } else {
1196            desc = new SuspendedSessionDesc();
1197            if (type != NULL) {
1198                desc->mType = *type;
1199            }
1200            sessionEffects.add(key, desc);
1201            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1202        }
1203        desc->mRefCount++;
1204    } else {
1205        if (index < 0) {
1206            return;
1207        }
1208        desc = sessionEffects.valueAt(index);
1209        if (--desc->mRefCount == 0) {
1210            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1211            sessionEffects.removeItemsAt(index);
1212            if (sessionEffects.isEmpty()) {
1213                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1214                                 sessionId);
1215                mSuspendedSessions.removeItem(sessionId);
1216            }
1217        }
1218    }
1219    if (!sessionEffects.isEmpty()) {
1220        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1221    }
1222}
1223
1224void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1225                                                            bool enabled,
1226                                                            int sessionId)
1227{
1228    Mutex::Autolock _l(mLock);
1229    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1230}
1231
1232void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1233                                                            bool enabled,
1234                                                            int sessionId)
1235{
1236    if (mType != RECORD) {
1237        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1238        // another session. This gives the priority to well behaved effect control panels
1239        // and applications not using global effects.
1240        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1241        // global effects
1242        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1243            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1244        }
1245    }
1246
1247    sp<EffectChain> chain = getEffectChain_l(sessionId);
1248    if (chain != 0) {
1249        chain->checkSuspendOnEffectEnabled(effect, enabled);
1250    }
1251}
1252
1253// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1254sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1255        const sp<AudioFlinger::Client>& client,
1256        const sp<IEffectClient>& effectClient,
1257        int32_t priority,
1258        int sessionId,
1259        effect_descriptor_t *desc,
1260        int *enabled,
1261        status_t *status)
1262{
1263    sp<EffectModule> effect;
1264    sp<EffectHandle> handle;
1265    status_t lStatus;
1266    sp<EffectChain> chain;
1267    bool chainCreated = false;
1268    bool effectCreated = false;
1269    bool effectRegistered = false;
1270
1271    lStatus = initCheck();
1272    if (lStatus != NO_ERROR) {
1273        ALOGW("createEffect_l() Audio driver not initialized.");
1274        goto Exit;
1275    }
1276
1277    // Reject any effect on Direct output threads for now, since the format of
1278    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1279    if (mType == DIRECT) {
1280        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1281                desc->name, mThreadName);
1282        lStatus = BAD_VALUE;
1283        goto Exit;
1284    }
1285
1286    // Reject any effect on mixer or duplicating multichannel sinks.
1287    // TODO: fix both format and multichannel issues with effects.
1288    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1289        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1290                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1291        lStatus = BAD_VALUE;
1292        goto Exit;
1293    }
1294
1295    // Allow global effects only on offloaded and mixer threads
1296    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1297        switch (mType) {
1298        case MIXER:
1299        case OFFLOAD:
1300            break;
1301        case DIRECT:
1302        case DUPLICATING:
1303        case RECORD:
1304        default:
1305            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1306                    desc->name, mThreadName);
1307            lStatus = BAD_VALUE;
1308            goto Exit;
1309        }
1310    }
1311
1312    // Only Pre processor effects are allowed on input threads and only on input threads
1313    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1314        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1315                desc->name, desc->flags, mType);
1316        lStatus = BAD_VALUE;
1317        goto Exit;
1318    }
1319
1320    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1321
1322    { // scope for mLock
1323        Mutex::Autolock _l(mLock);
1324
1325        // check for existing effect chain with the requested audio session
1326        chain = getEffectChain_l(sessionId);
1327        if (chain == 0) {
1328            // create a new chain for this session
1329            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1330            chain = new EffectChain(this, sessionId);
1331            addEffectChain_l(chain);
1332            chain->setStrategy(getStrategyForSession_l(sessionId));
1333            chainCreated = true;
1334        } else {
1335            effect = chain->getEffectFromDesc_l(desc);
1336        }
1337
1338        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1339
1340        if (effect == 0) {
1341            int id = mAudioFlinger->nextUniqueId();
1342            // Check CPU and memory usage
1343            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1344            if (lStatus != NO_ERROR) {
1345                goto Exit;
1346            }
1347            effectRegistered = true;
1348            // create a new effect module if none present in the chain
1349            effect = new EffectModule(this, chain, desc, id, sessionId);
1350            lStatus = effect->status();
1351            if (lStatus != NO_ERROR) {
1352                goto Exit;
1353            }
1354            effect->setOffloaded(mType == OFFLOAD, mId);
1355
1356            lStatus = chain->addEffect_l(effect);
1357            if (lStatus != NO_ERROR) {
1358                goto Exit;
1359            }
1360            effectCreated = true;
1361
1362            effect->setDevice(mOutDevice);
1363            effect->setDevice(mInDevice);
1364            effect->setMode(mAudioFlinger->getMode());
1365            effect->setAudioSource(mAudioSource);
1366        }
1367        // create effect handle and connect it to effect module
1368        handle = new EffectHandle(effect, client, effectClient, priority);
1369        lStatus = handle->initCheck();
1370        if (lStatus == OK) {
1371            lStatus = effect->addHandle(handle.get());
1372        }
1373        if (enabled != NULL) {
1374            *enabled = (int)effect->isEnabled();
1375        }
1376    }
1377
1378Exit:
1379    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1380        Mutex::Autolock _l(mLock);
1381        if (effectCreated) {
1382            chain->removeEffect_l(effect);
1383        }
1384        if (effectRegistered) {
1385            AudioSystem::unregisterEffect(effect->id());
1386        }
1387        if (chainCreated) {
1388            removeEffectChain_l(chain);
1389        }
1390        handle.clear();
1391    }
1392
1393    *status = lStatus;
1394    return handle;
1395}
1396
1397sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1398{
1399    Mutex::Autolock _l(mLock);
1400    return getEffect_l(sessionId, effectId);
1401}
1402
1403sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1404{
1405    sp<EffectChain> chain = getEffectChain_l(sessionId);
1406    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1407}
1408
1409// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1410// PlaybackThread::mLock held
1411status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1412{
1413    // check for existing effect chain with the requested audio session
1414    int sessionId = effect->sessionId();
1415    sp<EffectChain> chain = getEffectChain_l(sessionId);
1416    bool chainCreated = false;
1417
1418    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1419             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1420                    this, effect->desc().name, effect->desc().flags);
1421
1422    if (chain == 0) {
1423        // create a new chain for this session
1424        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1425        chain = new EffectChain(this, sessionId);
1426        addEffectChain_l(chain);
1427        chain->setStrategy(getStrategyForSession_l(sessionId));
1428        chainCreated = true;
1429    }
1430    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1431
1432    if (chain->getEffectFromId_l(effect->id()) != 0) {
1433        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1434                this, effect->desc().name, chain.get());
1435        return BAD_VALUE;
1436    }
1437
1438    effect->setOffloaded(mType == OFFLOAD, mId);
1439
1440    status_t status = chain->addEffect_l(effect);
1441    if (status != NO_ERROR) {
1442        if (chainCreated) {
1443            removeEffectChain_l(chain);
1444        }
1445        return status;
1446    }
1447
1448    effect->setDevice(mOutDevice);
1449    effect->setDevice(mInDevice);
1450    effect->setMode(mAudioFlinger->getMode());
1451    effect->setAudioSource(mAudioSource);
1452    return NO_ERROR;
1453}
1454
1455void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1456
1457    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1458    effect_descriptor_t desc = effect->desc();
1459    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1460        detachAuxEffect_l(effect->id());
1461    }
1462
1463    sp<EffectChain> chain = effect->chain().promote();
1464    if (chain != 0) {
1465        // remove effect chain if removing last effect
1466        if (chain->removeEffect_l(effect) == 0) {
1467            removeEffectChain_l(chain);
1468        }
1469    } else {
1470        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1471    }
1472}
1473
1474void AudioFlinger::ThreadBase::lockEffectChains_l(
1475        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1476{
1477    effectChains = mEffectChains;
1478    for (size_t i = 0; i < mEffectChains.size(); i++) {
1479        mEffectChains[i]->lock();
1480    }
1481}
1482
1483void AudioFlinger::ThreadBase::unlockEffectChains(
1484        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1485{
1486    for (size_t i = 0; i < effectChains.size(); i++) {
1487        effectChains[i]->unlock();
1488    }
1489}
1490
1491sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1492{
1493    Mutex::Autolock _l(mLock);
1494    return getEffectChain_l(sessionId);
1495}
1496
1497sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1498{
1499    size_t size = mEffectChains.size();
1500    for (size_t i = 0; i < size; i++) {
1501        if (mEffectChains[i]->sessionId() == sessionId) {
1502            return mEffectChains[i];
1503        }
1504    }
1505    return 0;
1506}
1507
1508void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1509{
1510    Mutex::Autolock _l(mLock);
1511    size_t size = mEffectChains.size();
1512    for (size_t i = 0; i < size; i++) {
1513        mEffectChains[i]->setMode_l(mode);
1514    }
1515}
1516
1517void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1518{
1519    config->type = AUDIO_PORT_TYPE_MIX;
1520    config->ext.mix.handle = mId;
1521    config->sample_rate = mSampleRate;
1522    config->format = mFormat;
1523    config->channel_mask = mChannelMask;
1524    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1525                            AUDIO_PORT_CONFIG_FORMAT;
1526}
1527
1528void AudioFlinger::ThreadBase::systemReady()
1529{
1530    Mutex::Autolock _l(mLock);
1531    if (mSystemReady) {
1532        return;
1533    }
1534    mSystemReady = true;
1535
1536    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1537        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1538    }
1539    mPendingConfigEvents.clear();
1540}
1541
1542
1543// ----------------------------------------------------------------------------
1544//      Playback
1545// ----------------------------------------------------------------------------
1546
1547AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1548                                             AudioStreamOut* output,
1549                                             audio_io_handle_t id,
1550                                             audio_devices_t device,
1551                                             type_t type,
1552                                             bool systemReady)
1553    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1554        mNormalFrameCount(0), mSinkBuffer(NULL),
1555        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1556        mMixerBuffer(NULL),
1557        mMixerBufferSize(0),
1558        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1559        mMixerBufferValid(false),
1560        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1561        mEffectBuffer(NULL),
1562        mEffectBufferSize(0),
1563        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1564        mEffectBufferValid(false),
1565        mSuspended(0), mBytesWritten(0),
1566        mActiveTracksGeneration(0),
1567        // mStreamTypes[] initialized in constructor body
1568        mOutput(output),
1569        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1570        mMixerStatus(MIXER_IDLE),
1571        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1572        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1573        mBytesRemaining(0),
1574        mCurrentWriteLength(0),
1575        mUseAsyncWrite(false),
1576        mWriteAckSequence(0),
1577        mDrainSequence(0),
1578        mSignalPending(false),
1579        mScreenState(AudioFlinger::mScreenState),
1580        // index 0 is reserved for normal mixer's submix
1581        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1582        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1583        // mLatchD, mLatchQ,
1584        mLatchDValid(false), mLatchQValid(false)
1585{
1586    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1587    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1588
1589    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1590    // it would be safer to explicitly pass initial masterVolume/masterMute as
1591    // parameter.
1592    //
1593    // If the HAL we are using has support for master volume or master mute,
1594    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1595    // and the mute set to false).
1596    mMasterVolume = audioFlinger->masterVolume_l();
1597    mMasterMute = audioFlinger->masterMute_l();
1598    if (mOutput && mOutput->audioHwDev) {
1599        if (mOutput->audioHwDev->canSetMasterVolume()) {
1600            mMasterVolume = 1.0;
1601        }
1602
1603        if (mOutput->audioHwDev->canSetMasterMute()) {
1604            mMasterMute = false;
1605        }
1606    }
1607
1608    readOutputParameters_l();
1609
1610    // ++ operator does not compile
1611    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1612            stream = (audio_stream_type_t) (stream + 1)) {
1613        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1614        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1615    }
1616}
1617
1618AudioFlinger::PlaybackThread::~PlaybackThread()
1619{
1620    mAudioFlinger->unregisterWriter(mNBLogWriter);
1621    free(mSinkBuffer);
1622    free(mMixerBuffer);
1623    free(mEffectBuffer);
1624}
1625
1626void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1627{
1628    dumpInternals(fd, args);
1629    dumpTracks(fd, args);
1630    dumpEffectChains(fd, args);
1631}
1632
1633void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1634{
1635    const size_t SIZE = 256;
1636    char buffer[SIZE];
1637    String8 result;
1638
1639    result.appendFormat("  Stream volumes in dB: ");
1640    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1641        const stream_type_t *st = &mStreamTypes[i];
1642        if (i > 0) {
1643            result.appendFormat(", ");
1644        }
1645        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1646        if (st->mute) {
1647            result.append("M");
1648        }
1649    }
1650    result.append("\n");
1651    write(fd, result.string(), result.length());
1652    result.clear();
1653
1654    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1655    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1656    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1657            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1658
1659    size_t numtracks = mTracks.size();
1660    size_t numactive = mActiveTracks.size();
1661    dprintf(fd, "  %d Tracks", numtracks);
1662    size_t numactiveseen = 0;
1663    if (numtracks) {
1664        dprintf(fd, " of which %d are active\n", numactive);
1665        Track::appendDumpHeader(result);
1666        for (size_t i = 0; i < numtracks; ++i) {
1667            sp<Track> track = mTracks[i];
1668            if (track != 0) {
1669                bool active = mActiveTracks.indexOf(track) >= 0;
1670                if (active) {
1671                    numactiveseen++;
1672                }
1673                track->dump(buffer, SIZE, active);
1674                result.append(buffer);
1675            }
1676        }
1677    } else {
1678        result.append("\n");
1679    }
1680    if (numactiveseen != numactive) {
1681        // some tracks in the active list were not in the tracks list
1682        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1683                " not in the track list\n");
1684        result.append(buffer);
1685        Track::appendDumpHeader(result);
1686        for (size_t i = 0; i < numactive; ++i) {
1687            sp<Track> track = mActiveTracks[i].promote();
1688            if (track != 0 && mTracks.indexOf(track) < 0) {
1689                track->dump(buffer, SIZE, true);
1690                result.append(buffer);
1691            }
1692        }
1693    }
1694
1695    write(fd, result.string(), result.size());
1696}
1697
1698void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1699{
1700    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1701
1702    dumpBase(fd, args);
1703
1704    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1705    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1706    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1707    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1708    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1709    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1710    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1711    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1712    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1713    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1714    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1715    AudioStreamOut *output = mOutput;
1716    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1717    String8 flagsAsString = outputFlagsToString(flags);
1718    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1719}
1720
1721// Thread virtuals
1722
1723void AudioFlinger::PlaybackThread::onFirstRef()
1724{
1725    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1726}
1727
1728// ThreadBase virtuals
1729void AudioFlinger::PlaybackThread::preExit()
1730{
1731    ALOGV("  preExit()");
1732    // FIXME this is using hard-coded strings but in the future, this functionality will be
1733    //       converted to use audio HAL extensions required to support tunneling
1734    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1735}
1736
1737// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1738sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1739        const sp<AudioFlinger::Client>& client,
1740        audio_stream_type_t streamType,
1741        uint32_t sampleRate,
1742        audio_format_t format,
1743        audio_channel_mask_t channelMask,
1744        size_t *pFrameCount,
1745        const sp<IMemory>& sharedBuffer,
1746        int sessionId,
1747        IAudioFlinger::track_flags_t *flags,
1748        pid_t tid,
1749        int uid,
1750        status_t *status)
1751{
1752    size_t frameCount = *pFrameCount;
1753    sp<Track> track;
1754    status_t lStatus;
1755
1756    // client expresses a preference for FAST, but we get the final say
1757    if (*flags & IAudioFlinger::TRACK_FAST) {
1758      if (
1759            // either of these use cases:
1760            (
1761              // use case 1: shared buffer with any frame count
1762              (
1763                (sharedBuffer != 0)
1764              ) ||
1765              // use case 2: frame count is default or at least as large as HAL
1766              (
1767                // we formerly checked for a callback handler (non-0 tid),
1768                // but that is no longer required for TRANSFER_OBTAIN mode
1769                ((frameCount == 0) ||
1770                (frameCount >= mFrameCount))
1771              )
1772            ) &&
1773            // PCM data
1774            audio_is_linear_pcm(format) &&
1775            // TODO: extract as a data library function that checks that a computationally
1776            // expensive downmixer is not required: isFastOutputChannelConversion()
1777            (channelMask == mChannelMask ||
1778                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1779                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1780                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1781            // hardware sample rate
1782            (sampleRate == mSampleRate) &&
1783            // normal mixer has an associated fast mixer
1784            hasFastMixer() &&
1785            // there are sufficient fast track slots available
1786            (mFastTrackAvailMask != 0)
1787            // FIXME test that MixerThread for this fast track has a capable output HAL
1788            // FIXME add a permission test also?
1789        ) {
1790        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1791        if (frameCount == 0) {
1792            // read the fast track multiplier property the first time it is needed
1793            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1794            if (ok != 0) {
1795                ALOGE("%s pthread_once failed: %d", __func__, ok);
1796            }
1797            frameCount = mFrameCount * sFastTrackMultiplier;
1798        }
1799        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1800                frameCount, mFrameCount);
1801      } else {
1802        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%d "
1803                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1804                "sampleRate=%u mSampleRate=%u "
1805                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1806                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1807                audio_is_linear_pcm(format),
1808                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1809        *flags &= ~IAudioFlinger::TRACK_FAST;
1810      }
1811    }
1812    // For normal PCM streaming tracks, update minimum frame count.
1813    // For compatibility with AudioTrack calculation, buffer depth is forced
1814    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1815    // This is probably too conservative, but legacy application code may depend on it.
1816    // If you change this calculation, also review the start threshold which is related.
1817    if (!(*flags & IAudioFlinger::TRACK_FAST)
1818            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1819        // this must match AudioTrack.cpp calculateMinFrameCount().
1820        // TODO: Move to a common library
1821        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1822        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1823        if (minBufCount < 2) {
1824            minBufCount = 2;
1825        }
1826        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1827        // or the client should compute and pass in a larger buffer request.
1828        size_t minFrameCount =
1829                minBufCount * sourceFramesNeededWithTimestretch(
1830                        sampleRate, mNormalFrameCount,
1831                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1832        if (frameCount < minFrameCount) { // including frameCount == 0
1833            frameCount = minFrameCount;
1834        }
1835    }
1836    *pFrameCount = frameCount;
1837
1838    switch (mType) {
1839
1840    case DIRECT:
1841        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1842            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1843                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1844                        "for output %p with format %#x",
1845                        sampleRate, format, channelMask, mOutput, mFormat);
1846                lStatus = BAD_VALUE;
1847                goto Exit;
1848            }
1849        }
1850        break;
1851
1852    case OFFLOAD:
1853        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1854            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1855                    "for output %p with format %#x",
1856                    sampleRate, format, channelMask, mOutput, mFormat);
1857            lStatus = BAD_VALUE;
1858            goto Exit;
1859        }
1860        break;
1861
1862    default:
1863        if (!audio_is_linear_pcm(format)) {
1864                ALOGE("createTrack_l() Bad parameter: format %#x \""
1865                        "for output %p with format %#x",
1866                        format, mOutput, mFormat);
1867                lStatus = BAD_VALUE;
1868                goto Exit;
1869        }
1870        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1871            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1872            lStatus = BAD_VALUE;
1873            goto Exit;
1874        }
1875        break;
1876
1877    }
1878
1879    lStatus = initCheck();
1880    if (lStatus != NO_ERROR) {
1881        ALOGE("createTrack_l() audio driver not initialized");
1882        goto Exit;
1883    }
1884
1885    { // scope for mLock
1886        Mutex::Autolock _l(mLock);
1887
1888        // all tracks in same audio session must share the same routing strategy otherwise
1889        // conflicts will happen when tracks are moved from one output to another by audio policy
1890        // manager
1891        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1892        for (size_t i = 0; i < mTracks.size(); ++i) {
1893            sp<Track> t = mTracks[i];
1894            if (t != 0 && t->isExternalTrack()) {
1895                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1896                if (sessionId == t->sessionId() && strategy != actual) {
1897                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1898                            strategy, actual);
1899                    lStatus = BAD_VALUE;
1900                    goto Exit;
1901                }
1902            }
1903        }
1904
1905        track = new Track(this, client, streamType, sampleRate, format,
1906                          channelMask, frameCount, NULL, sharedBuffer,
1907                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1908
1909        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1910        if (lStatus != NO_ERROR) {
1911            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1912            // track must be cleared from the caller as the caller has the AF lock
1913            goto Exit;
1914        }
1915        mTracks.add(track);
1916
1917        sp<EffectChain> chain = getEffectChain_l(sessionId);
1918        if (chain != 0) {
1919            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1920            track->setMainBuffer(chain->inBuffer());
1921            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1922            chain->incTrackCnt();
1923        }
1924
1925        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1926            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1927            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1928            // so ask activity manager to do this on our behalf
1929            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1930        }
1931    }
1932
1933    lStatus = NO_ERROR;
1934
1935Exit:
1936    *status = lStatus;
1937    return track;
1938}
1939
1940uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1941{
1942    return latency;
1943}
1944
1945uint32_t AudioFlinger::PlaybackThread::latency() const
1946{
1947    Mutex::Autolock _l(mLock);
1948    return latency_l();
1949}
1950uint32_t AudioFlinger::PlaybackThread::latency_l() const
1951{
1952    if (initCheck() == NO_ERROR) {
1953        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1954    } else {
1955        return 0;
1956    }
1957}
1958
1959void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1960{
1961    Mutex::Autolock _l(mLock);
1962    // Don't apply master volume in SW if our HAL can do it for us.
1963    if (mOutput && mOutput->audioHwDev &&
1964        mOutput->audioHwDev->canSetMasterVolume()) {
1965        mMasterVolume = 1.0;
1966    } else {
1967        mMasterVolume = value;
1968    }
1969}
1970
1971void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1972{
1973    Mutex::Autolock _l(mLock);
1974    // Don't apply master mute in SW if our HAL can do it for us.
1975    if (mOutput && mOutput->audioHwDev &&
1976        mOutput->audioHwDev->canSetMasterMute()) {
1977        mMasterMute = false;
1978    } else {
1979        mMasterMute = muted;
1980    }
1981}
1982
1983void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1984{
1985    Mutex::Autolock _l(mLock);
1986    mStreamTypes[stream].volume = value;
1987    broadcast_l();
1988}
1989
1990void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1991{
1992    Mutex::Autolock _l(mLock);
1993    mStreamTypes[stream].mute = muted;
1994    broadcast_l();
1995}
1996
1997float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1998{
1999    Mutex::Autolock _l(mLock);
2000    return mStreamTypes[stream].volume;
2001}
2002
2003// addTrack_l() must be called with ThreadBase::mLock held
2004status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2005{
2006    status_t status = ALREADY_EXISTS;
2007
2008    // set retry count for buffer fill
2009    track->mRetryCount = kMaxTrackStartupRetries;
2010    if (mActiveTracks.indexOf(track) < 0) {
2011        // the track is newly added, make sure it fills up all its
2012        // buffers before playing. This is to ensure the client will
2013        // effectively get the latency it requested.
2014        if (track->isExternalTrack()) {
2015            TrackBase::track_state state = track->mState;
2016            mLock.unlock();
2017            status = AudioSystem::startOutput(mId, track->streamType(),
2018                                              (audio_session_t)track->sessionId());
2019            mLock.lock();
2020            // abort track was stopped/paused while we released the lock
2021            if (state != track->mState) {
2022                if (status == NO_ERROR) {
2023                    mLock.unlock();
2024                    AudioSystem::stopOutput(mId, track->streamType(),
2025                                            (audio_session_t)track->sessionId());
2026                    mLock.lock();
2027                }
2028                return INVALID_OPERATION;
2029            }
2030            // abort if start is rejected by audio policy manager
2031            if (status != NO_ERROR) {
2032                return PERMISSION_DENIED;
2033            }
2034#ifdef ADD_BATTERY_DATA
2035            // to track the speaker usage
2036            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2037#endif
2038        }
2039
2040        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2041        track->mResetDone = false;
2042        track->mPresentationCompleteFrames = 0;
2043        mActiveTracks.add(track);
2044        mWakeLockUids.add(track->uid());
2045        mActiveTracksGeneration++;
2046        mLatestActiveTrack = track;
2047        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2048        if (chain != 0) {
2049            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2050                    track->sessionId());
2051            chain->incActiveTrackCnt();
2052        }
2053
2054        status = NO_ERROR;
2055    }
2056
2057    onAddNewTrack_l();
2058    return status;
2059}
2060
2061bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2062{
2063    track->terminate();
2064    // active tracks are removed by threadLoop()
2065    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2066    track->mState = TrackBase::STOPPED;
2067    if (!trackActive) {
2068        removeTrack_l(track);
2069    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2070        track->mState = TrackBase::STOPPING_1;
2071    }
2072
2073    return trackActive;
2074}
2075
2076void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2077{
2078    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2079    mTracks.remove(track);
2080    deleteTrackName_l(track->name());
2081    // redundant as track is about to be destroyed, for dumpsys only
2082    track->mName = -1;
2083    if (track->isFastTrack()) {
2084        int index = track->mFastIndex;
2085        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
2086        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2087        mFastTrackAvailMask |= 1 << index;
2088        // redundant as track is about to be destroyed, for dumpsys only
2089        track->mFastIndex = -1;
2090    }
2091    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2092    if (chain != 0) {
2093        chain->decTrackCnt();
2094    }
2095}
2096
2097void AudioFlinger::PlaybackThread::broadcast_l()
2098{
2099    // Thread could be blocked waiting for async
2100    // so signal it to handle state changes immediately
2101    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2102    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2103    mSignalPending = true;
2104    mWaitWorkCV.broadcast();
2105}
2106
2107String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2108{
2109    Mutex::Autolock _l(mLock);
2110    if (initCheck() != NO_ERROR) {
2111        return String8();
2112    }
2113
2114    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2115    const String8 out_s8(s);
2116    free(s);
2117    return out_s8;
2118}
2119
2120void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2121    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2122    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2123
2124    desc->mIoHandle = mId;
2125
2126    switch (event) {
2127    case AUDIO_OUTPUT_OPENED:
2128    case AUDIO_OUTPUT_CONFIG_CHANGED:
2129        desc->mPatch = mPatch;
2130        desc->mChannelMask = mChannelMask;
2131        desc->mSamplingRate = mSampleRate;
2132        desc->mFormat = mFormat;
2133        desc->mFrameCount = mNormalFrameCount; // FIXME see
2134                                             // AudioFlinger::frameCount(audio_io_handle_t)
2135        desc->mLatency = latency_l();
2136        break;
2137
2138    case AUDIO_OUTPUT_CLOSED:
2139    default:
2140        break;
2141    }
2142    mAudioFlinger->ioConfigChanged(event, desc, pid);
2143}
2144
2145void AudioFlinger::PlaybackThread::writeCallback()
2146{
2147    ALOG_ASSERT(mCallbackThread != 0);
2148    mCallbackThread->resetWriteBlocked();
2149}
2150
2151void AudioFlinger::PlaybackThread::drainCallback()
2152{
2153    ALOG_ASSERT(mCallbackThread != 0);
2154    mCallbackThread->resetDraining();
2155}
2156
2157void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2158{
2159    Mutex::Autolock _l(mLock);
2160    // reject out of sequence requests
2161    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2162        mWriteAckSequence &= ~1;
2163        mWaitWorkCV.signal();
2164    }
2165}
2166
2167void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2168{
2169    Mutex::Autolock _l(mLock);
2170    // reject out of sequence requests
2171    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2172        mDrainSequence &= ~1;
2173        mWaitWorkCV.signal();
2174    }
2175}
2176
2177// static
2178int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2179                                                void *param __unused,
2180                                                void *cookie)
2181{
2182    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2183    ALOGV("asyncCallback() event %d", event);
2184    switch (event) {
2185    case STREAM_CBK_EVENT_WRITE_READY:
2186        me->writeCallback();
2187        break;
2188    case STREAM_CBK_EVENT_DRAIN_READY:
2189        me->drainCallback();
2190        break;
2191    default:
2192        ALOGW("asyncCallback() unknown event %d", event);
2193        break;
2194    }
2195    return 0;
2196}
2197
2198void AudioFlinger::PlaybackThread::readOutputParameters_l()
2199{
2200    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2201    mSampleRate = mOutput->getSampleRate();
2202    mChannelMask = mOutput->getChannelMask();
2203    if (!audio_is_output_channel(mChannelMask)) {
2204        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2205    }
2206    if ((mType == MIXER || mType == DUPLICATING)
2207            && !isValidPcmSinkChannelMask(mChannelMask)) {
2208        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2209                mChannelMask);
2210    }
2211    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2212
2213    // Get actual HAL format.
2214    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2215    // Get format from the shim, which will be different than the HAL format
2216    // if playing compressed audio over HDMI passthrough.
2217    mFormat = mOutput->getFormat();
2218    if (!audio_is_valid_format(mFormat)) {
2219        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2220    }
2221    if ((mType == MIXER || mType == DUPLICATING)
2222            && !isValidPcmSinkFormat(mFormat)) {
2223        LOG_FATAL("HAL format %#x not supported for mixed output",
2224                mFormat);
2225    }
2226    mFrameSize = mOutput->getFrameSize();
2227    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2228    mFrameCount = mBufferSize / mFrameSize;
2229    if (mFrameCount & 15) {
2230        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2231                mFrameCount);
2232    }
2233
2234    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2235            (mOutput->stream->set_callback != NULL)) {
2236        if (mOutput->stream->set_callback(mOutput->stream,
2237                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2238            mUseAsyncWrite = true;
2239            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2240        }
2241    }
2242
2243    mHwSupportsPause = false;
2244    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2245        if (mOutput->stream->pause != NULL) {
2246            if (mOutput->stream->resume != NULL) {
2247                mHwSupportsPause = true;
2248            } else {
2249                ALOGW("direct output implements pause but not resume");
2250            }
2251        } else if (mOutput->stream->resume != NULL) {
2252            ALOGW("direct output implements resume but not pause");
2253        }
2254    }
2255    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2256        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2257    }
2258
2259    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2260        // For best precision, we use float instead of the associated output
2261        // device format (typically PCM 16 bit).
2262
2263        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2264        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2265        mBufferSize = mFrameSize * mFrameCount;
2266
2267        // TODO: We currently use the associated output device channel mask and sample rate.
2268        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2269        // (if a valid mask) to avoid premature downmix.
2270        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2271        // instead of the output device sample rate to avoid loss of high frequency information.
2272        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2273    }
2274
2275    // Calculate size of normal sink buffer relative to the HAL output buffer size
2276    double multiplier = 1.0;
2277    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2278            kUseFastMixer == FastMixer_Dynamic)) {
2279        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2280        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2281        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2282        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2283        maxNormalFrameCount = maxNormalFrameCount & ~15;
2284        if (maxNormalFrameCount < minNormalFrameCount) {
2285            maxNormalFrameCount = minNormalFrameCount;
2286        }
2287        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2288        if (multiplier <= 1.0) {
2289            multiplier = 1.0;
2290        } else if (multiplier <= 2.0) {
2291            if (2 * mFrameCount <= maxNormalFrameCount) {
2292                multiplier = 2.0;
2293            } else {
2294                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2295            }
2296        } else {
2297            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2298            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2299            // track, but we sometimes have to do this to satisfy the maximum frame count
2300            // constraint)
2301            // FIXME this rounding up should not be done if no HAL SRC
2302            uint32_t truncMult = (uint32_t) multiplier;
2303            if ((truncMult & 1)) {
2304                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2305                    ++truncMult;
2306                }
2307            }
2308            multiplier = (double) truncMult;
2309        }
2310    }
2311    mNormalFrameCount = multiplier * mFrameCount;
2312    // round up to nearest 16 frames to satisfy AudioMixer
2313    if (mType == MIXER || mType == DUPLICATING) {
2314        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2315    }
2316    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2317            mNormalFrameCount);
2318
2319    // Check if we want to throttle the processing to no more than 2x normal rate
2320    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2321    mThreadThrottleTimeMs = 0;
2322    mThreadThrottleEndMs = 0;
2323    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2324
2325    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2326    // Originally this was int16_t[] array, need to remove legacy implications.
2327    free(mSinkBuffer);
2328    mSinkBuffer = NULL;
2329    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2330    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2331    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2332    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2333
2334    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2335    // drives the output.
2336    free(mMixerBuffer);
2337    mMixerBuffer = NULL;
2338    if (mMixerBufferEnabled) {
2339        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2340        mMixerBufferSize = mNormalFrameCount * mChannelCount
2341                * audio_bytes_per_sample(mMixerBufferFormat);
2342        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2343    }
2344    free(mEffectBuffer);
2345    mEffectBuffer = NULL;
2346    if (mEffectBufferEnabled) {
2347        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2348        mEffectBufferSize = mNormalFrameCount * mChannelCount
2349                * audio_bytes_per_sample(mEffectBufferFormat);
2350        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2351    }
2352
2353    // force reconfiguration of effect chains and engines to take new buffer size and audio
2354    // parameters into account
2355    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2356    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2357    // matter.
2358    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2359    Vector< sp<EffectChain> > effectChains = mEffectChains;
2360    for (size_t i = 0; i < effectChains.size(); i ++) {
2361        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2362    }
2363}
2364
2365
2366status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2367{
2368    if (halFrames == NULL || dspFrames == NULL) {
2369        return BAD_VALUE;
2370    }
2371    Mutex::Autolock _l(mLock);
2372    if (initCheck() != NO_ERROR) {
2373        return INVALID_OPERATION;
2374    }
2375    size_t framesWritten = mBytesWritten / mFrameSize;
2376    *halFrames = framesWritten;
2377
2378    if (isSuspended()) {
2379        // return an estimation of rendered frames when the output is suspended
2380        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2381        *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2382        return NO_ERROR;
2383    } else {
2384        status_t status;
2385        uint32_t frames;
2386        status = mOutput->getRenderPosition(&frames);
2387        *dspFrames = (size_t)frames;
2388        return status;
2389    }
2390}
2391
2392uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2393{
2394    Mutex::Autolock _l(mLock);
2395    uint32_t result = 0;
2396    if (getEffectChain_l(sessionId) != 0) {
2397        result = EFFECT_SESSION;
2398    }
2399
2400    for (size_t i = 0; i < mTracks.size(); ++i) {
2401        sp<Track> track = mTracks[i];
2402        if (sessionId == track->sessionId() && !track->isInvalid()) {
2403            result |= TRACK_SESSION;
2404            break;
2405        }
2406    }
2407
2408    return result;
2409}
2410
2411uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2412{
2413    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2414    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2415    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2416        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2417    }
2418    for (size_t i = 0; i < mTracks.size(); i++) {
2419        sp<Track> track = mTracks[i];
2420        if (sessionId == track->sessionId() && !track->isInvalid()) {
2421            return AudioSystem::getStrategyForStream(track->streamType());
2422        }
2423    }
2424    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2425}
2426
2427
2428AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2429{
2430    Mutex::Autolock _l(mLock);
2431    return mOutput;
2432}
2433
2434AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2435{
2436    Mutex::Autolock _l(mLock);
2437    AudioStreamOut *output = mOutput;
2438    mOutput = NULL;
2439    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2440    //       must push a NULL and wait for ack
2441    mOutputSink.clear();
2442    mPipeSink.clear();
2443    mNormalSink.clear();
2444    return output;
2445}
2446
2447// this method must always be called either with ThreadBase mLock held or inside the thread loop
2448audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2449{
2450    if (mOutput == NULL) {
2451        return NULL;
2452    }
2453    return &mOutput->stream->common;
2454}
2455
2456uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2457{
2458    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2459}
2460
2461status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2462{
2463    if (!isValidSyncEvent(event)) {
2464        return BAD_VALUE;
2465    }
2466
2467    Mutex::Autolock _l(mLock);
2468
2469    for (size_t i = 0; i < mTracks.size(); ++i) {
2470        sp<Track> track = mTracks[i];
2471        if (event->triggerSession() == track->sessionId()) {
2472            (void) track->setSyncEvent(event);
2473            return NO_ERROR;
2474        }
2475    }
2476
2477    return NAME_NOT_FOUND;
2478}
2479
2480bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2481{
2482    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2483}
2484
2485void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2486        const Vector< sp<Track> >& tracksToRemove)
2487{
2488    size_t count = tracksToRemove.size();
2489    if (count > 0) {
2490        for (size_t i = 0 ; i < count ; i++) {
2491            const sp<Track>& track = tracksToRemove.itemAt(i);
2492            if (track->isExternalTrack()) {
2493                AudioSystem::stopOutput(mId, track->streamType(),
2494                                        (audio_session_t)track->sessionId());
2495#ifdef ADD_BATTERY_DATA
2496                // to track the speaker usage
2497                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2498#endif
2499                if (track->isTerminated()) {
2500                    AudioSystem::releaseOutput(mId, track->streamType(),
2501                                               (audio_session_t)track->sessionId());
2502                }
2503            }
2504        }
2505    }
2506}
2507
2508void AudioFlinger::PlaybackThread::checkSilentMode_l()
2509{
2510    if (!mMasterMute) {
2511        char value[PROPERTY_VALUE_MAX];
2512        if (property_get("ro.audio.silent", value, "0") > 0) {
2513            char *endptr;
2514            unsigned long ul = strtoul(value, &endptr, 0);
2515            if (*endptr == '\0' && ul != 0) {
2516                ALOGD("Silence is golden");
2517                // The setprop command will not allow a property to be changed after
2518                // the first time it is set, so we don't have to worry about un-muting.
2519                setMasterMute_l(true);
2520            }
2521        }
2522    }
2523}
2524
2525// shared by MIXER and DIRECT, overridden by DUPLICATING
2526ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2527{
2528    // FIXME rewrite to reduce number of system calls
2529    mLastWriteTime = systemTime();
2530    mInWrite = true;
2531    ssize_t bytesWritten;
2532    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2533
2534    // If an NBAIO sink is present, use it to write the normal mixer's submix
2535    if (mNormalSink != 0) {
2536
2537        const size_t count = mBytesRemaining / mFrameSize;
2538
2539        ATRACE_BEGIN("write");
2540        // update the setpoint when AudioFlinger::mScreenState changes
2541        uint32_t screenState = AudioFlinger::mScreenState;
2542        if (screenState != mScreenState) {
2543            mScreenState = screenState;
2544            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2545            if (pipe != NULL) {
2546                pipe->setAvgFrames((mScreenState & 1) ?
2547                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2548            }
2549        }
2550        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2551        ATRACE_END();
2552        if (framesWritten > 0) {
2553            bytesWritten = framesWritten * mFrameSize;
2554        } else {
2555            bytesWritten = framesWritten;
2556        }
2557        mLatchDValid = false;
2558        status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2559        if (status == NO_ERROR) {
2560            size_t totalFramesWritten = mNormalSink->framesWritten();
2561            if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2562                mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2563                // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2564                mLatchDValid = true;
2565            }
2566        }
2567    // otherwise use the HAL / AudioStreamOut directly
2568    } else {
2569        // Direct output and offload threads
2570
2571        if (mUseAsyncWrite) {
2572            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2573            mWriteAckSequence += 2;
2574            mWriteAckSequence |= 1;
2575            ALOG_ASSERT(mCallbackThread != 0);
2576            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2577        }
2578        // FIXME We should have an implementation of timestamps for direct output threads.
2579        // They are used e.g for multichannel PCM playback over HDMI.
2580        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2581        if (mUseAsyncWrite &&
2582                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2583            // do not wait for async callback in case of error of full write
2584            mWriteAckSequence &= ~1;
2585            ALOG_ASSERT(mCallbackThread != 0);
2586            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2587        }
2588    }
2589
2590    mNumWrites++;
2591    mInWrite = false;
2592    mStandby = false;
2593    return bytesWritten;
2594}
2595
2596void AudioFlinger::PlaybackThread::threadLoop_drain()
2597{
2598    if (mOutput->stream->drain) {
2599        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2600        if (mUseAsyncWrite) {
2601            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2602            mDrainSequence |= 1;
2603            ALOG_ASSERT(mCallbackThread != 0);
2604            mCallbackThread->setDraining(mDrainSequence);
2605        }
2606        mOutput->stream->drain(mOutput->stream,
2607            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2608                                                : AUDIO_DRAIN_ALL);
2609    }
2610}
2611
2612void AudioFlinger::PlaybackThread::threadLoop_exit()
2613{
2614    {
2615        Mutex::Autolock _l(mLock);
2616        for (size_t i = 0; i < mTracks.size(); i++) {
2617            sp<Track> track = mTracks[i];
2618            track->invalidate();
2619        }
2620    }
2621}
2622
2623/*
2624The derived values that are cached:
2625 - mSinkBufferSize from frame count * frame size
2626 - mActiveSleepTimeUs from activeSleepTimeUs()
2627 - mIdleSleepTimeUs from idleSleepTimeUs()
2628 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2629   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2630 - maxPeriod from frame count and sample rate (MIXER only)
2631
2632The parameters that affect these derived values are:
2633 - frame count
2634 - frame size
2635 - sample rate
2636 - device type: A2DP or not
2637 - device latency
2638 - format: PCM or not
2639 - active sleep time
2640 - idle sleep time
2641*/
2642
2643void AudioFlinger::PlaybackThread::cacheParameters_l()
2644{
2645    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2646    mActiveSleepTimeUs = activeSleepTimeUs();
2647    mIdleSleepTimeUs = idleSleepTimeUs();
2648
2649    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2650    // truncating audio when going to standby.
2651    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2652    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2653        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2654            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2655        }
2656    }
2657}
2658
2659void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2660{
2661    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2662            this,  streamType, mTracks.size());
2663    Mutex::Autolock _l(mLock);
2664
2665    size_t size = mTracks.size();
2666    for (size_t i = 0; i < size; i++) {
2667        sp<Track> t = mTracks[i];
2668        if (t->streamType() == streamType && t->isExternalTrack()) {
2669            t->invalidate();
2670        }
2671    }
2672}
2673
2674status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2675{
2676    int session = chain->sessionId();
2677    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2678            ? mEffectBuffer : mSinkBuffer);
2679    bool ownsBuffer = false;
2680
2681    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2682    if (session > 0) {
2683        // Only one effect chain can be present in direct output thread and it uses
2684        // the sink buffer as input
2685        if (mType != DIRECT) {
2686            size_t numSamples = mNormalFrameCount * mChannelCount;
2687            buffer = new int16_t[numSamples];
2688            memset(buffer, 0, numSamples * sizeof(int16_t));
2689            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2690            ownsBuffer = true;
2691        }
2692
2693        // Attach all tracks with same session ID to this chain.
2694        for (size_t i = 0; i < mTracks.size(); ++i) {
2695            sp<Track> track = mTracks[i];
2696            if (session == track->sessionId()) {
2697                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2698                        buffer);
2699                track->setMainBuffer(buffer);
2700                chain->incTrackCnt();
2701            }
2702        }
2703
2704        // indicate all active tracks in the chain
2705        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2706            sp<Track> track = mActiveTracks[i].promote();
2707            if (track == 0) {
2708                continue;
2709            }
2710            if (session == track->sessionId()) {
2711                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2712                chain->incActiveTrackCnt();
2713            }
2714        }
2715    }
2716    chain->setThread(this);
2717    chain->setInBuffer(buffer, ownsBuffer);
2718    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2719            ? mEffectBuffer : mSinkBuffer));
2720    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2721    // chains list in order to be processed last as it contains output stage effects
2722    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2723    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2724    // after track specific effects and before output stage
2725    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2726    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2727    // Effect chain for other sessions are inserted at beginning of effect
2728    // chains list to be processed before output mix effects. Relative order between other
2729    // sessions is not important
2730    size_t size = mEffectChains.size();
2731    size_t i = 0;
2732    for (i = 0; i < size; i++) {
2733        if (mEffectChains[i]->sessionId() < session) {
2734            break;
2735        }
2736    }
2737    mEffectChains.insertAt(chain, i);
2738    checkSuspendOnAddEffectChain_l(chain);
2739
2740    return NO_ERROR;
2741}
2742
2743size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2744{
2745    int session = chain->sessionId();
2746
2747    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2748
2749    for (size_t i = 0; i < mEffectChains.size(); i++) {
2750        if (chain == mEffectChains[i]) {
2751            mEffectChains.removeAt(i);
2752            // detach all active tracks from the chain
2753            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2754                sp<Track> track = mActiveTracks[i].promote();
2755                if (track == 0) {
2756                    continue;
2757                }
2758                if (session == track->sessionId()) {
2759                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2760                            chain.get(), session);
2761                    chain->decActiveTrackCnt();
2762                }
2763            }
2764
2765            // detach all tracks with same session ID from this chain
2766            for (size_t i = 0; i < mTracks.size(); ++i) {
2767                sp<Track> track = mTracks[i];
2768                if (session == track->sessionId()) {
2769                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2770                    chain->decTrackCnt();
2771                }
2772            }
2773            break;
2774        }
2775    }
2776    return mEffectChains.size();
2777}
2778
2779status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2780        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2781{
2782    Mutex::Autolock _l(mLock);
2783    return attachAuxEffect_l(track, EffectId);
2784}
2785
2786status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2787        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2788{
2789    status_t status = NO_ERROR;
2790
2791    if (EffectId == 0) {
2792        track->setAuxBuffer(0, NULL);
2793    } else {
2794        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2795        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2796        if (effect != 0) {
2797            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2798                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2799            } else {
2800                status = INVALID_OPERATION;
2801            }
2802        } else {
2803            status = BAD_VALUE;
2804        }
2805    }
2806    return status;
2807}
2808
2809void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2810{
2811    for (size_t i = 0; i < mTracks.size(); ++i) {
2812        sp<Track> track = mTracks[i];
2813        if (track->auxEffectId() == effectId) {
2814            attachAuxEffect_l(track, 0);
2815        }
2816    }
2817}
2818
2819bool AudioFlinger::PlaybackThread::threadLoop()
2820{
2821    Vector< sp<Track> > tracksToRemove;
2822
2823    mStandbyTimeNs = systemTime();
2824
2825    // MIXER
2826    nsecs_t lastWarning = 0;
2827
2828    // DUPLICATING
2829    // FIXME could this be made local to while loop?
2830    writeFrames = 0;
2831
2832    int lastGeneration = 0;
2833
2834    cacheParameters_l();
2835    mSleepTimeUs = mIdleSleepTimeUs;
2836
2837    if (mType == MIXER) {
2838        sleepTimeShift = 0;
2839    }
2840
2841    CpuStats cpuStats;
2842    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2843
2844    acquireWakeLock();
2845
2846    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2847    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2848    // and then that string will be logged at the next convenient opportunity.
2849    const char *logString = NULL;
2850
2851    checkSilentMode_l();
2852
2853    while (!exitPending())
2854    {
2855        cpuStats.sample(myName);
2856
2857        Vector< sp<EffectChain> > effectChains;
2858
2859        { // scope for mLock
2860
2861            Mutex::Autolock _l(mLock);
2862
2863            processConfigEvents_l();
2864
2865            if (logString != NULL) {
2866                mNBLogWriter->logTimestamp();
2867                mNBLogWriter->log(logString);
2868                logString = NULL;
2869            }
2870
2871            // Gather the framesReleased counters for all active tracks,
2872            // and latch them atomically with the timestamp.
2873            // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2874            mLatchD.mFramesReleased.clear();
2875            size_t size = mActiveTracks.size();
2876            for (size_t i = 0; i < size; i++) {
2877                sp<Track> t = mActiveTracks[i].promote();
2878                if (t != 0) {
2879                    mLatchD.mFramesReleased.add(t.get(),
2880                            t->mAudioTrackServerProxy->framesReleased());
2881                }
2882            }
2883            if (mLatchDValid) {
2884                mLatchQ = mLatchD;
2885                mLatchDValid = false;
2886                mLatchQValid = true;
2887            }
2888
2889            saveOutputTracks();
2890            if (mSignalPending) {
2891                // A signal was raised while we were unlocked
2892                mSignalPending = false;
2893            } else if (waitingAsyncCallback_l()) {
2894                if (exitPending()) {
2895                    break;
2896                }
2897                bool released = false;
2898                // The following works around a bug in the offload driver. Ideally we would release
2899                // the wake lock every time, but that causes the last offload buffer(s) to be
2900                // dropped while the device is on battery, so we need to hold a wake lock during
2901                // the drain phase.
2902                if (mBytesRemaining && !(mDrainSequence & 1)) {
2903                    releaseWakeLock_l();
2904                    released = true;
2905                }
2906                mWakeLockUids.clear();
2907                mActiveTracksGeneration++;
2908                ALOGV("wait async completion");
2909                mWaitWorkCV.wait(mLock);
2910                ALOGV("async completion/wake");
2911                if (released) {
2912                    acquireWakeLock_l();
2913                }
2914                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2915                mSleepTimeUs = 0;
2916
2917                continue;
2918            }
2919            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2920                                   isSuspended()) {
2921                // put audio hardware into standby after short delay
2922                if (shouldStandby_l()) {
2923
2924                    threadLoop_standby();
2925
2926                    mStandby = true;
2927                }
2928
2929                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2930                    // we're about to wait, flush the binder command buffer
2931                    IPCThreadState::self()->flushCommands();
2932
2933                    clearOutputTracks();
2934
2935                    if (exitPending()) {
2936                        break;
2937                    }
2938
2939                    releaseWakeLock_l();
2940                    mWakeLockUids.clear();
2941                    mActiveTracksGeneration++;
2942                    // wait until we have something to do...
2943                    ALOGV("%s going to sleep", myName.string());
2944                    mWaitWorkCV.wait(mLock);
2945                    ALOGV("%s waking up", myName.string());
2946                    acquireWakeLock_l();
2947
2948                    mMixerStatus = MIXER_IDLE;
2949                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2950                    mBytesWritten = 0;
2951                    mBytesRemaining = 0;
2952                    checkSilentMode_l();
2953
2954                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2955                    mSleepTimeUs = mIdleSleepTimeUs;
2956                    if (mType == MIXER) {
2957                        sleepTimeShift = 0;
2958                    }
2959
2960                    continue;
2961                }
2962            }
2963            // mMixerStatusIgnoringFastTracks is also updated internally
2964            mMixerStatus = prepareTracks_l(&tracksToRemove);
2965
2966            // compare with previously applied list
2967            if (lastGeneration != mActiveTracksGeneration) {
2968                // update wakelock
2969                updateWakeLockUids_l(mWakeLockUids);
2970                lastGeneration = mActiveTracksGeneration;
2971            }
2972
2973            // prevent any changes in effect chain list and in each effect chain
2974            // during mixing and effect process as the audio buffers could be deleted
2975            // or modified if an effect is created or deleted
2976            lockEffectChains_l(effectChains);
2977        } // mLock scope ends
2978
2979        if (mBytesRemaining == 0) {
2980            mCurrentWriteLength = 0;
2981            if (mMixerStatus == MIXER_TRACKS_READY) {
2982                // threadLoop_mix() sets mCurrentWriteLength
2983                threadLoop_mix();
2984            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2985                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
2986                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
2987                // must be written to HAL
2988                threadLoop_sleepTime();
2989                if (mSleepTimeUs == 0) {
2990                    mCurrentWriteLength = mSinkBufferSize;
2991                }
2992            }
2993            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2994            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
2995            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2996            // or mSinkBuffer (if there are no effects).
2997            //
2998            // This is done pre-effects computation; if effects change to
2999            // support higher precision, this needs to move.
3000            //
3001            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3002            // TODO use mSleepTimeUs == 0 as an additional condition.
3003            if (mMixerBufferValid) {
3004                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3005                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3006
3007                // mono blend occurs for mixer threads only (not direct or offloaded)
3008                // and is handled here if we're going directly to the sink.
3009                if (requireMonoBlend() && !mEffectBufferValid) {
3010                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3011                               true /*limit*/);
3012                }
3013
3014                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3015                        mNormalFrameCount * mChannelCount);
3016            }
3017
3018            mBytesRemaining = mCurrentWriteLength;
3019            if (isSuspended()) {
3020                mSleepTimeUs = suspendSleepTimeUs();
3021                // simulate write to HAL when suspended
3022                mBytesWritten += mSinkBufferSize;
3023                mBytesRemaining = 0;
3024            }
3025
3026            // only process effects if we're going to write
3027            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3028                for (size_t i = 0; i < effectChains.size(); i ++) {
3029                    effectChains[i]->process_l();
3030                }
3031            }
3032        }
3033        // Process effect chains for offloaded thread even if no audio
3034        // was read from audio track: process only updates effect state
3035        // and thus does have to be synchronized with audio writes but may have
3036        // to be called while waiting for async write callback
3037        if (mType == OFFLOAD) {
3038            for (size_t i = 0; i < effectChains.size(); i ++) {
3039                effectChains[i]->process_l();
3040            }
3041        }
3042
3043        // Only if the Effects buffer is enabled and there is data in the
3044        // Effects buffer (buffer valid), we need to
3045        // copy into the sink buffer.
3046        // TODO use mSleepTimeUs == 0 as an additional condition.
3047        if (mEffectBufferValid) {
3048            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3049
3050            if (requireMonoBlend()) {
3051                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3052                           true /*limit*/);
3053            }
3054
3055            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3056                    mNormalFrameCount * mChannelCount);
3057        }
3058
3059        // enable changes in effect chain
3060        unlockEffectChains(effectChains);
3061
3062        if (!waitingAsyncCallback()) {
3063            // mSleepTimeUs == 0 means we must write to audio hardware
3064            if (mSleepTimeUs == 0) {
3065                ssize_t ret = 0;
3066                if (mBytesRemaining) {
3067                    ret = threadLoop_write();
3068                    if (ret < 0) {
3069                        mBytesRemaining = 0;
3070                    } else {
3071                        mBytesWritten += ret;
3072                        mBytesRemaining -= ret;
3073                    }
3074                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3075                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3076                    threadLoop_drain();
3077                }
3078                if (mType == MIXER && !mStandby) {
3079                    // write blocked detection
3080                    nsecs_t now = systemTime();
3081                    nsecs_t delta = now - mLastWriteTime;
3082                    if (delta > maxPeriod) {
3083                        mNumDelayedWrites++;
3084                        if ((now - lastWarning) > kWarningThrottleNs) {
3085                            ATRACE_NAME("underrun");
3086                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3087                                    ns2ms(delta), mNumDelayedWrites, this);
3088                            lastWarning = now;
3089                        }
3090                    }
3091
3092                    if (mThreadThrottle
3093                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3094                            && ret > 0) {                         // we wrote something
3095                        // Limit MixerThread data processing to no more than twice the
3096                        // expected processing rate.
3097                        //
3098                        // This helps prevent underruns with NuPlayer and other applications
3099                        // which may set up buffers that are close to the minimum size, or use
3100                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3101                        //
3102                        // The throttle smooths out sudden large data drains from the device,
3103                        // e.g. when it comes out of standby, which often causes problems with
3104                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3105                        // (2) minimum buffer sized tracks (even if the track is full,
3106                        //     the app won't fill fast enough to handle the sudden draw).
3107
3108                        const int32_t deltaMs = delta / 1000000;
3109                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3110                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3111                            usleep(throttleMs * 1000);
3112                            // notify of throttle start on verbose log
3113                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3114                                    "mixer(%p) throttle begin:"
3115                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3116                                    this, ret, deltaMs, throttleMs);
3117                            mThreadThrottleTimeMs += throttleMs;
3118                        } else {
3119                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3120                            if (diff > 0) {
3121                                // notify of throttle end on debug log
3122                                ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
3123                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3124                            }
3125                        }
3126                    }
3127                }
3128
3129            } else {
3130                ATRACE_BEGIN("sleep");
3131                usleep(mSleepTimeUs);
3132                ATRACE_END();
3133            }
3134        }
3135
3136        // Finally let go of removed track(s), without the lock held
3137        // since we can't guarantee the destructors won't acquire that
3138        // same lock.  This will also mutate and push a new fast mixer state.
3139        threadLoop_removeTracks(tracksToRemove);
3140        tracksToRemove.clear();
3141
3142        // FIXME I don't understand the need for this here;
3143        //       it was in the original code but maybe the
3144        //       assignment in saveOutputTracks() makes this unnecessary?
3145        clearOutputTracks();
3146
3147        // Effect chains will be actually deleted here if they were removed from
3148        // mEffectChains list during mixing or effects processing
3149        effectChains.clear();
3150
3151        // FIXME Note that the above .clear() is no longer necessary since effectChains
3152        // is now local to this block, but will keep it for now (at least until merge done).
3153    }
3154
3155    threadLoop_exit();
3156
3157    if (!mStandby) {
3158        threadLoop_standby();
3159        mStandby = true;
3160    }
3161
3162    releaseWakeLock();
3163    mWakeLockUids.clear();
3164    mActiveTracksGeneration++;
3165
3166    ALOGV("Thread %p type %d exiting", this, mType);
3167    return false;
3168}
3169
3170// removeTracks_l() must be called with ThreadBase::mLock held
3171void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3172{
3173    size_t count = tracksToRemove.size();
3174    if (count > 0) {
3175        for (size_t i=0 ; i<count ; i++) {
3176            const sp<Track>& track = tracksToRemove.itemAt(i);
3177            mActiveTracks.remove(track);
3178            mWakeLockUids.remove(track->uid());
3179            mActiveTracksGeneration++;
3180            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3181            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3182            if (chain != 0) {
3183                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3184                        track->sessionId());
3185                chain->decActiveTrackCnt();
3186            }
3187            if (track->isTerminated()) {
3188                removeTrack_l(track);
3189            }
3190        }
3191    }
3192
3193}
3194
3195status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3196{
3197    if (mNormalSink != 0) {
3198        return mNormalSink->getTimestamp(timestamp);
3199    }
3200    if ((mType == OFFLOAD || mType == DIRECT)
3201            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3202        uint64_t position64;
3203        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3204        if (ret == 0) {
3205            timestamp.mPosition = (uint32_t)position64;
3206            return NO_ERROR;
3207        }
3208    }
3209    return INVALID_OPERATION;
3210}
3211
3212status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3213                                                          audio_patch_handle_t *handle)
3214{
3215    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3216    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3217    if (mFastMixer != 0) {
3218        FastMixerStateQueue *sq = mFastMixer->sq();
3219        FastMixerState *state = sq->begin();
3220        if (!(state->mCommand & FastMixerState::IDLE)) {
3221            previousCommand = state->mCommand;
3222            state->mCommand = FastMixerState::HOT_IDLE;
3223            sq->end();
3224            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3225        } else {
3226            sq->end(false /*didModify*/);
3227        }
3228    }
3229    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3230
3231    if (!(previousCommand & FastMixerState::IDLE)) {
3232        ALOG_ASSERT(mFastMixer != 0);
3233        FastMixerStateQueue *sq = mFastMixer->sq();
3234        FastMixerState *state = sq->begin();
3235        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3236        state->mCommand = previousCommand;
3237        sq->end();
3238        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3239    }
3240
3241    return status;
3242}
3243
3244status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3245                                                          audio_patch_handle_t *handle)
3246{
3247    status_t status = NO_ERROR;
3248
3249    // store new device and send to effects
3250    audio_devices_t type = AUDIO_DEVICE_NONE;
3251    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3252        type |= patch->sinks[i].ext.device.type;
3253    }
3254
3255#ifdef ADD_BATTERY_DATA
3256    // when changing the audio output device, call addBatteryData to notify
3257    // the change
3258    if (mOutDevice != type) {
3259        uint32_t params = 0;
3260        // check whether speaker is on
3261        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3262            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3263        }
3264
3265        audio_devices_t deviceWithoutSpeaker
3266            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3267        // check if any other device (except speaker) is on
3268        if (type & deviceWithoutSpeaker) {
3269            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3270        }
3271
3272        if (params != 0) {
3273            addBatteryData(params);
3274        }
3275    }
3276#endif
3277
3278    for (size_t i = 0; i < mEffectChains.size(); i++) {
3279        mEffectChains[i]->setDevice_l(type);
3280    }
3281
3282    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3283    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3284    bool configChanged = mPrevOutDevice != type;
3285    mOutDevice = type;
3286    mPatch = *patch;
3287
3288    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3289        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3290        status = hwDevice->create_audio_patch(hwDevice,
3291                                               patch->num_sources,
3292                                               patch->sources,
3293                                               patch->num_sinks,
3294                                               patch->sinks,
3295                                               handle);
3296    } else {
3297        char *address;
3298        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3299            //FIXME: we only support address on first sink with HAL version < 3.0
3300            address = audio_device_address_to_parameter(
3301                                                        patch->sinks[0].ext.device.type,
3302                                                        patch->sinks[0].ext.device.address);
3303        } else {
3304            address = (char *)calloc(1, 1);
3305        }
3306        AudioParameter param = AudioParameter(String8(address));
3307        free(address);
3308        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3309        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3310                param.toString().string());
3311        *handle = AUDIO_PATCH_HANDLE_NONE;
3312    }
3313    if (configChanged) {
3314        mPrevOutDevice = type;
3315        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3316    }
3317    return status;
3318}
3319
3320status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3321{
3322    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3323    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3324    if (mFastMixer != 0) {
3325        FastMixerStateQueue *sq = mFastMixer->sq();
3326        FastMixerState *state = sq->begin();
3327        if (!(state->mCommand & FastMixerState::IDLE)) {
3328            previousCommand = state->mCommand;
3329            state->mCommand = FastMixerState::HOT_IDLE;
3330            sq->end();
3331            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3332        } else {
3333            sq->end(false /*didModify*/);
3334        }
3335    }
3336
3337    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3338
3339    if (!(previousCommand & FastMixerState::IDLE)) {
3340        ALOG_ASSERT(mFastMixer != 0);
3341        FastMixerStateQueue *sq = mFastMixer->sq();
3342        FastMixerState *state = sq->begin();
3343        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3344        state->mCommand = previousCommand;
3345        sq->end();
3346        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3347    }
3348
3349    return status;
3350}
3351
3352status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3353{
3354    status_t status = NO_ERROR;
3355
3356    mOutDevice = AUDIO_DEVICE_NONE;
3357
3358    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3359        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3360        status = hwDevice->release_audio_patch(hwDevice, handle);
3361    } else {
3362        AudioParameter param;
3363        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3364        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3365                param.toString().string());
3366    }
3367    return status;
3368}
3369
3370void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3371{
3372    Mutex::Autolock _l(mLock);
3373    mTracks.add(track);
3374}
3375
3376void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3377{
3378    Mutex::Autolock _l(mLock);
3379    destroyTrack_l(track);
3380}
3381
3382void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3383{
3384    ThreadBase::getAudioPortConfig(config);
3385    config->role = AUDIO_PORT_ROLE_SOURCE;
3386    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3387    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3388}
3389
3390// ----------------------------------------------------------------------------
3391
3392AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3393        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3394    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3395        // mAudioMixer below
3396        // mFastMixer below
3397        mFastMixerFutex(0),
3398        mMasterMono(false)
3399        // mOutputSink below
3400        // mPipeSink below
3401        // mNormalSink below
3402{
3403    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3404    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3405            "mFrameCount=%d, mNormalFrameCount=%d",
3406            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3407            mNormalFrameCount);
3408    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3409
3410    if (type == DUPLICATING) {
3411        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3412        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3413        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3414        return;
3415    }
3416    // create an NBAIO sink for the HAL output stream, and negotiate
3417    mOutputSink = new AudioStreamOutSink(output->stream);
3418    size_t numCounterOffers = 0;
3419    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3420    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3421    ALOG_ASSERT(index == 0);
3422
3423    // initialize fast mixer depending on configuration
3424    bool initFastMixer;
3425    switch (kUseFastMixer) {
3426    case FastMixer_Never:
3427        initFastMixer = false;
3428        break;
3429    case FastMixer_Always:
3430        initFastMixer = true;
3431        break;
3432    case FastMixer_Static:
3433    case FastMixer_Dynamic:
3434        initFastMixer = mFrameCount < mNormalFrameCount;
3435        break;
3436    }
3437    if (initFastMixer) {
3438        audio_format_t fastMixerFormat;
3439        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3440            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3441        } else {
3442            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3443        }
3444        if (mFormat != fastMixerFormat) {
3445            // change our Sink format to accept our intermediate precision
3446            mFormat = fastMixerFormat;
3447            free(mSinkBuffer);
3448            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3449            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3450            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3451        }
3452
3453        // create a MonoPipe to connect our submix to FastMixer
3454        NBAIO_Format format = mOutputSink->format();
3455        NBAIO_Format origformat = format;
3456        // adjust format to match that of the Fast Mixer
3457        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3458        format.mFormat = fastMixerFormat;
3459        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3460
3461        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3462        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3463        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3464        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3465        const NBAIO_Format offers[1] = {format};
3466        size_t numCounterOffers = 0;
3467        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3468        ALOG_ASSERT(index == 0);
3469        monoPipe->setAvgFrames((mScreenState & 1) ?
3470                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3471        mPipeSink = monoPipe;
3472
3473#ifdef TEE_SINK
3474        if (mTeeSinkOutputEnabled) {
3475            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3476            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3477            const NBAIO_Format offers2[1] = {origformat};
3478            numCounterOffers = 0;
3479            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3480            ALOG_ASSERT(index == 0);
3481            mTeeSink = teeSink;
3482            PipeReader *teeSource = new PipeReader(*teeSink);
3483            numCounterOffers = 0;
3484            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3485            ALOG_ASSERT(index == 0);
3486            mTeeSource = teeSource;
3487        }
3488#endif
3489
3490        // create fast mixer and configure it initially with just one fast track for our submix
3491        mFastMixer = new FastMixer();
3492        FastMixerStateQueue *sq = mFastMixer->sq();
3493#ifdef STATE_QUEUE_DUMP
3494        sq->setObserverDump(&mStateQueueObserverDump);
3495        sq->setMutatorDump(&mStateQueueMutatorDump);
3496#endif
3497        FastMixerState *state = sq->begin();
3498        FastTrack *fastTrack = &state->mFastTracks[0];
3499        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3500        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3501        fastTrack->mVolumeProvider = NULL;
3502        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3503        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3504        fastTrack->mGeneration++;
3505        state->mFastTracksGen++;
3506        state->mTrackMask = 1;
3507        // fast mixer will use the HAL output sink
3508        state->mOutputSink = mOutputSink.get();
3509        state->mOutputSinkGen++;
3510        state->mFrameCount = mFrameCount;
3511        state->mCommand = FastMixerState::COLD_IDLE;
3512        // already done in constructor initialization list
3513        //mFastMixerFutex = 0;
3514        state->mColdFutexAddr = &mFastMixerFutex;
3515        state->mColdGen++;
3516        state->mDumpState = &mFastMixerDumpState;
3517#ifdef TEE_SINK
3518        state->mTeeSink = mTeeSink.get();
3519#endif
3520        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3521        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3522        sq->end();
3523        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3524
3525        // start the fast mixer
3526        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3527        pid_t tid = mFastMixer->getTid();
3528        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3529
3530#ifdef AUDIO_WATCHDOG
3531        // create and start the watchdog
3532        mAudioWatchdog = new AudioWatchdog();
3533        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3534        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3535        tid = mAudioWatchdog->getTid();
3536        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3537#endif
3538
3539    }
3540
3541    switch (kUseFastMixer) {
3542    case FastMixer_Never:
3543    case FastMixer_Dynamic:
3544        mNormalSink = mOutputSink;
3545        break;
3546    case FastMixer_Always:
3547        mNormalSink = mPipeSink;
3548        break;
3549    case FastMixer_Static:
3550        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3551        break;
3552    }
3553}
3554
3555AudioFlinger::MixerThread::~MixerThread()
3556{
3557    if (mFastMixer != 0) {
3558        FastMixerStateQueue *sq = mFastMixer->sq();
3559        FastMixerState *state = sq->begin();
3560        if (state->mCommand == FastMixerState::COLD_IDLE) {
3561            int32_t old = android_atomic_inc(&mFastMixerFutex);
3562            if (old == -1) {
3563                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3564            }
3565        }
3566        state->mCommand = FastMixerState::EXIT;
3567        sq->end();
3568        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3569        mFastMixer->join();
3570        // Though the fast mixer thread has exited, it's state queue is still valid.
3571        // We'll use that extract the final state which contains one remaining fast track
3572        // corresponding to our sub-mix.
3573        state = sq->begin();
3574        ALOG_ASSERT(state->mTrackMask == 1);
3575        FastTrack *fastTrack = &state->mFastTracks[0];
3576        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3577        delete fastTrack->mBufferProvider;
3578        sq->end(false /*didModify*/);
3579        mFastMixer.clear();
3580#ifdef AUDIO_WATCHDOG
3581        if (mAudioWatchdog != 0) {
3582            mAudioWatchdog->requestExit();
3583            mAudioWatchdog->requestExitAndWait();
3584            mAudioWatchdog.clear();
3585        }
3586#endif
3587    }
3588    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3589    delete mAudioMixer;
3590}
3591
3592
3593uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3594{
3595    if (mFastMixer != 0) {
3596        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3597        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3598    }
3599    return latency;
3600}
3601
3602
3603void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3604{
3605    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3606}
3607
3608ssize_t AudioFlinger::MixerThread::threadLoop_write()
3609{
3610    // FIXME we should only do one push per cycle; confirm this is true
3611    // Start the fast mixer if it's not already running
3612    if (mFastMixer != 0) {
3613        FastMixerStateQueue *sq = mFastMixer->sq();
3614        FastMixerState *state = sq->begin();
3615        if (state->mCommand != FastMixerState::MIX_WRITE &&
3616                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3617            if (state->mCommand == FastMixerState::COLD_IDLE) {
3618
3619                // FIXME workaround for first HAL write being CPU bound on some devices
3620                ATRACE_BEGIN("write");
3621                mOutput->write((char *)mSinkBuffer, 0);
3622                ATRACE_END();
3623
3624                int32_t old = android_atomic_inc(&mFastMixerFutex);
3625                if (old == -1) {
3626                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3627                }
3628#ifdef AUDIO_WATCHDOG
3629                if (mAudioWatchdog != 0) {
3630                    mAudioWatchdog->resume();
3631                }
3632#endif
3633            }
3634            state->mCommand = FastMixerState::MIX_WRITE;
3635#ifdef FAST_THREAD_STATISTICS
3636            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3637                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3638#endif
3639            sq->end();
3640            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3641            if (kUseFastMixer == FastMixer_Dynamic) {
3642                mNormalSink = mPipeSink;
3643            }
3644        } else {
3645            sq->end(false /*didModify*/);
3646        }
3647    }
3648    return PlaybackThread::threadLoop_write();
3649}
3650
3651void AudioFlinger::MixerThread::threadLoop_standby()
3652{
3653    // Idle the fast mixer if it's currently running
3654    if (mFastMixer != 0) {
3655        FastMixerStateQueue *sq = mFastMixer->sq();
3656        FastMixerState *state = sq->begin();
3657        if (!(state->mCommand & FastMixerState::IDLE)) {
3658            state->mCommand = FastMixerState::COLD_IDLE;
3659            state->mColdFutexAddr = &mFastMixerFutex;
3660            state->mColdGen++;
3661            mFastMixerFutex = 0;
3662            sq->end();
3663            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3664            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3665            if (kUseFastMixer == FastMixer_Dynamic) {
3666                mNormalSink = mOutputSink;
3667            }
3668#ifdef AUDIO_WATCHDOG
3669            if (mAudioWatchdog != 0) {
3670                mAudioWatchdog->pause();
3671            }
3672#endif
3673        } else {
3674            sq->end(false /*didModify*/);
3675        }
3676    }
3677    PlaybackThread::threadLoop_standby();
3678}
3679
3680bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3681{
3682    return false;
3683}
3684
3685bool AudioFlinger::PlaybackThread::shouldStandby_l()
3686{
3687    return !mStandby;
3688}
3689
3690bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3691{
3692    Mutex::Autolock _l(mLock);
3693    return waitingAsyncCallback_l();
3694}
3695
3696// shared by MIXER and DIRECT, overridden by DUPLICATING
3697void AudioFlinger::PlaybackThread::threadLoop_standby()
3698{
3699    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3700    mOutput->standby();
3701    if (mUseAsyncWrite != 0) {
3702        // discard any pending drain or write ack by incrementing sequence
3703        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3704        mDrainSequence = (mDrainSequence + 2) & ~1;
3705        ALOG_ASSERT(mCallbackThread != 0);
3706        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3707        mCallbackThread->setDraining(mDrainSequence);
3708    }
3709    mHwPaused = false;
3710}
3711
3712void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3713{
3714    ALOGV("signal playback thread");
3715    broadcast_l();
3716}
3717
3718void AudioFlinger::MixerThread::threadLoop_mix()
3719{
3720    // mix buffers...
3721    mAudioMixer->process();
3722    mCurrentWriteLength = mSinkBufferSize;
3723    // increase sleep time progressively when application underrun condition clears.
3724    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3725    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3726    // such that we would underrun the audio HAL.
3727    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3728        sleepTimeShift--;
3729    }
3730    mSleepTimeUs = 0;
3731    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3732    //TODO: delay standby when effects have a tail
3733
3734}
3735
3736void AudioFlinger::MixerThread::threadLoop_sleepTime()
3737{
3738    // If no tracks are ready, sleep once for the duration of an output
3739    // buffer size, then write 0s to the output
3740    if (mSleepTimeUs == 0) {
3741        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3742            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3743            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3744                mSleepTimeUs = kMinThreadSleepTimeUs;
3745            }
3746            // reduce sleep time in case of consecutive application underruns to avoid
3747            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3748            // duration we would end up writing less data than needed by the audio HAL if
3749            // the condition persists.
3750            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3751                sleepTimeShift++;
3752            }
3753        } else {
3754            mSleepTimeUs = mIdleSleepTimeUs;
3755        }
3756    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3757        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3758        // before effects processing or output.
3759        if (mMixerBufferValid) {
3760            memset(mMixerBuffer, 0, mMixerBufferSize);
3761        } else {
3762            memset(mSinkBuffer, 0, mSinkBufferSize);
3763        }
3764        mSleepTimeUs = 0;
3765        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3766                "anticipated start");
3767    }
3768    // TODO add standby time extension fct of effect tail
3769}
3770
3771// prepareTracks_l() must be called with ThreadBase::mLock held
3772AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3773        Vector< sp<Track> > *tracksToRemove)
3774{
3775
3776    mixer_state mixerStatus = MIXER_IDLE;
3777    // find out which tracks need to be processed
3778    size_t count = mActiveTracks.size();
3779    size_t mixedTracks = 0;
3780    size_t tracksWithEffect = 0;
3781    // counts only _active_ fast tracks
3782    size_t fastTracks = 0;
3783    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3784
3785    float masterVolume = mMasterVolume;
3786    bool masterMute = mMasterMute;
3787
3788    if (masterMute) {
3789        masterVolume = 0;
3790    }
3791    // Delegate master volume control to effect in output mix effect chain if needed
3792    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3793    if (chain != 0) {
3794        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3795        chain->setVolume_l(&v, &v);
3796        masterVolume = (float)((v + (1 << 23)) >> 24);
3797        chain.clear();
3798    }
3799
3800    // prepare a new state to push
3801    FastMixerStateQueue *sq = NULL;
3802    FastMixerState *state = NULL;
3803    bool didModify = false;
3804    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3805    if (mFastMixer != 0) {
3806        sq = mFastMixer->sq();
3807        state = sq->begin();
3808    }
3809
3810    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3811    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3812
3813    for (size_t i=0 ; i<count ; i++) {
3814        const sp<Track> t = mActiveTracks[i].promote();
3815        if (t == 0) {
3816            continue;
3817        }
3818
3819        // this const just means the local variable doesn't change
3820        Track* const track = t.get();
3821
3822        // process fast tracks
3823        if (track->isFastTrack()) {
3824
3825            // It's theoretically possible (though unlikely) for a fast track to be created
3826            // and then removed within the same normal mix cycle.  This is not a problem, as
3827            // the track never becomes active so it's fast mixer slot is never touched.
3828            // The converse, of removing an (active) track and then creating a new track
3829            // at the identical fast mixer slot within the same normal mix cycle,
3830            // is impossible because the slot isn't marked available until the end of each cycle.
3831            int j = track->mFastIndex;
3832            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3833            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3834            FastTrack *fastTrack = &state->mFastTracks[j];
3835
3836            // Determine whether the track is currently in underrun condition,
3837            // and whether it had a recent underrun.
3838            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3839            FastTrackUnderruns underruns = ftDump->mUnderruns;
3840            uint32_t recentFull = (underruns.mBitFields.mFull -
3841                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3842            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3843                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3844            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3845                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3846            uint32_t recentUnderruns = recentPartial + recentEmpty;
3847            track->mObservedUnderruns = underruns;
3848            // don't count underruns that occur while stopping or pausing
3849            // or stopped which can occur when flush() is called while active
3850            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3851                    recentUnderruns > 0) {
3852                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3853                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3854            } else {
3855                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
3856            }
3857
3858            // This is similar to the state machine for normal tracks,
3859            // with a few modifications for fast tracks.
3860            bool isActive = true;
3861            switch (track->mState) {
3862            case TrackBase::STOPPING_1:
3863                // track stays active in STOPPING_1 state until first underrun
3864                if (recentUnderruns > 0 || track->isTerminated()) {
3865                    track->mState = TrackBase::STOPPING_2;
3866                }
3867                break;
3868            case TrackBase::PAUSING:
3869                // ramp down is not yet implemented
3870                track->setPaused();
3871                break;
3872            case TrackBase::RESUMING:
3873                // ramp up is not yet implemented
3874                track->mState = TrackBase::ACTIVE;
3875                break;
3876            case TrackBase::ACTIVE:
3877                if (recentFull > 0 || recentPartial > 0) {
3878                    // track has provided at least some frames recently: reset retry count
3879                    track->mRetryCount = kMaxTrackRetries;
3880                }
3881                if (recentUnderruns == 0) {
3882                    // no recent underruns: stay active
3883                    break;
3884                }
3885                // there has recently been an underrun of some kind
3886                if (track->sharedBuffer() == 0) {
3887                    // were any of the recent underruns "empty" (no frames available)?
3888                    if (recentEmpty == 0) {
3889                        // no, then ignore the partial underruns as they are allowed indefinitely
3890                        break;
3891                    }
3892                    // there has recently been an "empty" underrun: decrement the retry counter
3893                    if (--(track->mRetryCount) > 0) {
3894                        break;
3895                    }
3896                    // indicate to client process that the track was disabled because of underrun;
3897                    // it will then automatically call start() when data is available
3898                    android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3899                    // remove from active list, but state remains ACTIVE [confusing but true]
3900                    isActive = false;
3901                    break;
3902                }
3903                // fall through
3904            case TrackBase::STOPPING_2:
3905            case TrackBase::PAUSED:
3906            case TrackBase::STOPPED:
3907            case TrackBase::FLUSHED:   // flush() while active
3908                // Check for presentation complete if track is inactive
3909                // We have consumed all the buffers of this track.
3910                // This would be incomplete if we auto-paused on underrun
3911                {
3912                    size_t audioHALFrames =
3913                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3914                    size_t framesWritten = mBytesWritten / mFrameSize;
3915                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3916                        // track stays in active list until presentation is complete
3917                        break;
3918                    }
3919                }
3920                if (track->isStopping_2()) {
3921                    track->mState = TrackBase::STOPPED;
3922                }
3923                if (track->isStopped()) {
3924                    // Can't reset directly, as fast mixer is still polling this track
3925                    //   track->reset();
3926                    // So instead mark this track as needing to be reset after push with ack
3927                    resetMask |= 1 << i;
3928                }
3929                isActive = false;
3930                break;
3931            case TrackBase::IDLE:
3932            default:
3933                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3934            }
3935
3936            if (isActive) {
3937                // was it previously inactive?
3938                if (!(state->mTrackMask & (1 << j))) {
3939                    ExtendedAudioBufferProvider *eabp = track;
3940                    VolumeProvider *vp = track;
3941                    fastTrack->mBufferProvider = eabp;
3942                    fastTrack->mVolumeProvider = vp;
3943                    fastTrack->mChannelMask = track->mChannelMask;
3944                    fastTrack->mFormat = track->mFormat;
3945                    fastTrack->mGeneration++;
3946                    state->mTrackMask |= 1 << j;
3947                    didModify = true;
3948                    // no acknowledgement required for newly active tracks
3949                }
3950                // cache the combined master volume and stream type volume for fast mixer; this
3951                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3952                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3953                ++fastTracks;
3954            } else {
3955                // was it previously active?
3956                if (state->mTrackMask & (1 << j)) {
3957                    fastTrack->mBufferProvider = NULL;
3958                    fastTrack->mGeneration++;
3959                    state->mTrackMask &= ~(1 << j);
3960                    didModify = true;
3961                    // If any fast tracks were removed, we must wait for acknowledgement
3962                    // because we're about to decrement the last sp<> on those tracks.
3963                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3964                } else {
3965                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
3966                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
3967                            j, track->mState, state->mTrackMask, recentUnderruns,
3968                            track->sharedBuffer() != 0);
3969                }
3970                tracksToRemove->add(track);
3971                // Avoids a misleading display in dumpsys
3972                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3973            }
3974            continue;
3975        }
3976
3977        {   // local variable scope to avoid goto warning
3978
3979        audio_track_cblk_t* cblk = track->cblk();
3980
3981        // The first time a track is added we wait
3982        // for all its buffers to be filled before processing it
3983        int name = track->name();
3984        // make sure that we have enough frames to mix one full buffer.
3985        // enforce this condition only once to enable draining the buffer in case the client
3986        // app does not call stop() and relies on underrun to stop:
3987        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3988        // during last round
3989        size_t desiredFrames;
3990        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
3991        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
3992
3993        desiredFrames = sourceFramesNeededWithTimestretch(
3994                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
3995        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
3996        // add frames already consumed but not yet released by the resampler
3997        // because mAudioTrackServerProxy->framesReady() will include these frames
3998        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3999
4000        uint32_t minFrames = 1;
4001        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4002                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4003            minFrames = desiredFrames;
4004        }
4005
4006        size_t framesReady = track->framesReady();
4007        if (ATRACE_ENABLED()) {
4008            // I wish we had formatted trace names
4009            char traceName[16];
4010            strcpy(traceName, "nRdy");
4011            int name = track->name();
4012            if (AudioMixer::TRACK0 <= name &&
4013                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4014                name -= AudioMixer::TRACK0;
4015                traceName[4] = (name / 10) + '0';
4016                traceName[5] = (name % 10) + '0';
4017            } else {
4018                traceName[4] = '?';
4019                traceName[5] = '?';
4020            }
4021            traceName[6] = '\0';
4022            ATRACE_INT(traceName, framesReady);
4023        }
4024        if ((framesReady >= minFrames) && track->isReady() &&
4025                !track->isPaused() && !track->isTerminated())
4026        {
4027            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4028
4029            mixedTracks++;
4030
4031            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4032            // there is an effect chain connected to the track
4033            chain.clear();
4034            if (track->mainBuffer() != mSinkBuffer &&
4035                    track->mainBuffer() != mMixerBuffer) {
4036                if (mEffectBufferEnabled) {
4037                    mEffectBufferValid = true; // Later can set directly.
4038                }
4039                chain = getEffectChain_l(track->sessionId());
4040                // Delegate volume control to effect in track effect chain if needed
4041                if (chain != 0) {
4042                    tracksWithEffect++;
4043                } else {
4044                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4045                            "session %d",
4046                            name, track->sessionId());
4047                }
4048            }
4049
4050
4051            int param = AudioMixer::VOLUME;
4052            if (track->mFillingUpStatus == Track::FS_FILLED) {
4053                // no ramp for the first volume setting
4054                track->mFillingUpStatus = Track::FS_ACTIVE;
4055                if (track->mState == TrackBase::RESUMING) {
4056                    track->mState = TrackBase::ACTIVE;
4057                    param = AudioMixer::RAMP_VOLUME;
4058                }
4059                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4060            // FIXME should not make a decision based on mServer
4061            } else if (cblk->mServer != 0) {
4062                // If the track is stopped before the first frame was mixed,
4063                // do not apply ramp
4064                param = AudioMixer::RAMP_VOLUME;
4065            }
4066
4067            // compute volume for this track
4068            uint32_t vl, vr;       // in U8.24 integer format
4069            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4070            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4071                vl = vr = 0;
4072                vlf = vrf = vaf = 0.;
4073                if (track->isPausing()) {
4074                    track->setPaused();
4075                }
4076            } else {
4077
4078                // read original volumes with volume control
4079                float typeVolume = mStreamTypes[track->streamType()].volume;
4080                float v = masterVolume * typeVolume;
4081                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4082                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4083                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4084                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4085                // track volumes come from shared memory, so can't be trusted and must be clamped
4086                if (vlf > GAIN_FLOAT_UNITY) {
4087                    ALOGV("Track left volume out of range: %.3g", vlf);
4088                    vlf = GAIN_FLOAT_UNITY;
4089                }
4090                if (vrf > GAIN_FLOAT_UNITY) {
4091                    ALOGV("Track right volume out of range: %.3g", vrf);
4092                    vrf = GAIN_FLOAT_UNITY;
4093                }
4094                // now apply the master volume and stream type volume
4095                vlf *= v;
4096                vrf *= v;
4097                // assuming master volume and stream type volume each go up to 1.0,
4098                // then derive vl and vr as U8.24 versions for the effect chain
4099                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4100                vl = (uint32_t) (scaleto8_24 * vlf);
4101                vr = (uint32_t) (scaleto8_24 * vrf);
4102                // vl and vr are now in U8.24 format
4103                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4104                // send level comes from shared memory and so may be corrupt
4105                if (sendLevel > MAX_GAIN_INT) {
4106                    ALOGV("Track send level out of range: %04X", sendLevel);
4107                    sendLevel = MAX_GAIN_INT;
4108                }
4109                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4110                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4111            }
4112
4113            // Delegate volume control to effect in track effect chain if needed
4114            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4115                // Do not ramp volume if volume is controlled by effect
4116                param = AudioMixer::VOLUME;
4117                // Update remaining floating point volume levels
4118                vlf = (float)vl / (1 << 24);
4119                vrf = (float)vr / (1 << 24);
4120                track->mHasVolumeController = true;
4121            } else {
4122                // force no volume ramp when volume controller was just disabled or removed
4123                // from effect chain to avoid volume spike
4124                if (track->mHasVolumeController) {
4125                    param = AudioMixer::VOLUME;
4126                }
4127                track->mHasVolumeController = false;
4128            }
4129
4130            // XXX: these things DON'T need to be done each time
4131            mAudioMixer->setBufferProvider(name, track);
4132            mAudioMixer->enable(name);
4133
4134            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4135            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4136            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4137            mAudioMixer->setParameter(
4138                name,
4139                AudioMixer::TRACK,
4140                AudioMixer::FORMAT, (void *)track->format());
4141            mAudioMixer->setParameter(
4142                name,
4143                AudioMixer::TRACK,
4144                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4145            mAudioMixer->setParameter(
4146                name,
4147                AudioMixer::TRACK,
4148                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4149            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4150            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4151            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4152            if (reqSampleRate == 0) {
4153                reqSampleRate = mSampleRate;
4154            } else if (reqSampleRate > maxSampleRate) {
4155                reqSampleRate = maxSampleRate;
4156            }
4157            mAudioMixer->setParameter(
4158                name,
4159                AudioMixer::RESAMPLE,
4160                AudioMixer::SAMPLE_RATE,
4161                (void *)(uintptr_t)reqSampleRate);
4162
4163            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4164            mAudioMixer->setParameter(
4165                name,
4166                AudioMixer::TIMESTRETCH,
4167                AudioMixer::PLAYBACK_RATE,
4168                &playbackRate);
4169
4170            /*
4171             * Select the appropriate output buffer for the track.
4172             *
4173             * Tracks with effects go into their own effects chain buffer
4174             * and from there into either mEffectBuffer or mSinkBuffer.
4175             *
4176             * Other tracks can use mMixerBuffer for higher precision
4177             * channel accumulation.  If this buffer is enabled
4178             * (mMixerBufferEnabled true), then selected tracks will accumulate
4179             * into it.
4180             *
4181             */
4182            if (mMixerBufferEnabled
4183                    && (track->mainBuffer() == mSinkBuffer
4184                            || track->mainBuffer() == mMixerBuffer)) {
4185                mAudioMixer->setParameter(
4186                        name,
4187                        AudioMixer::TRACK,
4188                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4189                mAudioMixer->setParameter(
4190                        name,
4191                        AudioMixer::TRACK,
4192                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4193                // TODO: override track->mainBuffer()?
4194                mMixerBufferValid = true;
4195            } else {
4196                mAudioMixer->setParameter(
4197                        name,
4198                        AudioMixer::TRACK,
4199                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4200                mAudioMixer->setParameter(
4201                        name,
4202                        AudioMixer::TRACK,
4203                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4204            }
4205            mAudioMixer->setParameter(
4206                name,
4207                AudioMixer::TRACK,
4208                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4209
4210            // reset retry count
4211            track->mRetryCount = kMaxTrackRetries;
4212
4213            // If one track is ready, set the mixer ready if:
4214            //  - the mixer was not ready during previous round OR
4215            //  - no other track is not ready
4216            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4217                    mixerStatus != MIXER_TRACKS_ENABLED) {
4218                mixerStatus = MIXER_TRACKS_READY;
4219            }
4220        } else {
4221            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4222                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4223                        track, framesReady, desiredFrames);
4224                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4225            } else {
4226                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4227            }
4228
4229            // clear effect chain input buffer if an active track underruns to avoid sending
4230            // previous audio buffer again to effects
4231            chain = getEffectChain_l(track->sessionId());
4232            if (chain != 0) {
4233                chain->clearInputBuffer();
4234            }
4235
4236            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4237            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4238                    track->isStopped() || track->isPaused()) {
4239                // We have consumed all the buffers of this track.
4240                // Remove it from the list of active tracks.
4241                // TODO: use actual buffer filling status instead of latency when available from
4242                // audio HAL
4243                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4244                size_t framesWritten = mBytesWritten / mFrameSize;
4245                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4246                    if (track->isStopped()) {
4247                        track->reset();
4248                    }
4249                    tracksToRemove->add(track);
4250                }
4251            } else {
4252                // No buffers for this track. Give it a few chances to
4253                // fill a buffer, then remove it from active list.
4254                if (--(track->mRetryCount) <= 0) {
4255                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4256                    tracksToRemove->add(track);
4257                    // indicate to client process that the track was disabled because of underrun;
4258                    // it will then automatically call start() when data is available
4259                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4260                // If one track is not ready, mark the mixer also not ready if:
4261                //  - the mixer was ready during previous round OR
4262                //  - no other track is ready
4263                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4264                                mixerStatus != MIXER_TRACKS_READY) {
4265                    mixerStatus = MIXER_TRACKS_ENABLED;
4266                }
4267            }
4268            mAudioMixer->disable(name);
4269        }
4270
4271        }   // local variable scope to avoid goto warning
4272track_is_ready: ;
4273
4274    }
4275
4276    // Push the new FastMixer state if necessary
4277    bool pauseAudioWatchdog = false;
4278    if (didModify) {
4279        state->mFastTracksGen++;
4280        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4281        if (kUseFastMixer == FastMixer_Dynamic &&
4282                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4283            state->mCommand = FastMixerState::COLD_IDLE;
4284            state->mColdFutexAddr = &mFastMixerFutex;
4285            state->mColdGen++;
4286            mFastMixerFutex = 0;
4287            if (kUseFastMixer == FastMixer_Dynamic) {
4288                mNormalSink = mOutputSink;
4289            }
4290            // If we go into cold idle, need to wait for acknowledgement
4291            // so that fast mixer stops doing I/O.
4292            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4293            pauseAudioWatchdog = true;
4294        }
4295    }
4296    if (sq != NULL) {
4297        sq->end(didModify);
4298        sq->push(block);
4299    }
4300#ifdef AUDIO_WATCHDOG
4301    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4302        mAudioWatchdog->pause();
4303    }
4304#endif
4305
4306    // Now perform the deferred reset on fast tracks that have stopped
4307    while (resetMask != 0) {
4308        size_t i = __builtin_ctz(resetMask);
4309        ALOG_ASSERT(i < count);
4310        resetMask &= ~(1 << i);
4311        sp<Track> t = mActiveTracks[i].promote();
4312        if (t == 0) {
4313            continue;
4314        }
4315        Track* track = t.get();
4316        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4317        track->reset();
4318    }
4319
4320    // remove all the tracks that need to be...
4321    removeTracks_l(*tracksToRemove);
4322
4323    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4324        mEffectBufferValid = true;
4325    }
4326
4327    if (mEffectBufferValid) {
4328        // as long as there are effects we should clear the effects buffer, to avoid
4329        // passing a non-clean buffer to the effect chain
4330        memset(mEffectBuffer, 0, mEffectBufferSize);
4331    }
4332    // sink or mix buffer must be cleared if all tracks are connected to an
4333    // effect chain as in this case the mixer will not write to the sink or mix buffer
4334    // and track effects will accumulate into it
4335    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4336            (mixedTracks == 0 && fastTracks > 0))) {
4337        // FIXME as a performance optimization, should remember previous zero status
4338        if (mMixerBufferValid) {
4339            memset(mMixerBuffer, 0, mMixerBufferSize);
4340            // TODO: In testing, mSinkBuffer below need not be cleared because
4341            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4342            // after mixing.
4343            //
4344            // To enforce this guarantee:
4345            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4346            // (mixedTracks == 0 && fastTracks > 0))
4347            // must imply MIXER_TRACKS_READY.
4348            // Later, we may clear buffers regardless, and skip much of this logic.
4349        }
4350        // FIXME as a performance optimization, should remember previous zero status
4351        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4352    }
4353
4354    // if any fast tracks, then status is ready
4355    mMixerStatusIgnoringFastTracks = mixerStatus;
4356    if (fastTracks > 0) {
4357        mixerStatus = MIXER_TRACKS_READY;
4358    }
4359    return mixerStatus;
4360}
4361
4362// getTrackName_l() must be called with ThreadBase::mLock held
4363int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4364        audio_format_t format, int sessionId)
4365{
4366    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4367}
4368
4369// deleteTrackName_l() must be called with ThreadBase::mLock held
4370void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4371{
4372    ALOGV("remove track (%d) and delete from mixer", name);
4373    mAudioMixer->deleteTrackName(name);
4374}
4375
4376// checkForNewParameter_l() must be called with ThreadBase::mLock held
4377bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4378                                                       status_t& status)
4379{
4380    bool reconfig = false;
4381    bool a2dpDeviceChanged = false;
4382
4383    status = NO_ERROR;
4384
4385    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
4386    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
4387    if (mFastMixer != 0) {
4388        FastMixerStateQueue *sq = mFastMixer->sq();
4389        FastMixerState *state = sq->begin();
4390        if (!(state->mCommand & FastMixerState::IDLE)) {
4391            previousCommand = state->mCommand;
4392            state->mCommand = FastMixerState::HOT_IDLE;
4393            sq->end();
4394            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4395        } else {
4396            sq->end(false /*didModify*/);
4397        }
4398    }
4399
4400    AudioParameter param = AudioParameter(keyValuePair);
4401    int value;
4402    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4403        reconfig = true;
4404    }
4405    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4406        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4407            status = BAD_VALUE;
4408        } else {
4409            // no need to save value, since it's constant
4410            reconfig = true;
4411        }
4412    }
4413    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4414        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4415            status = BAD_VALUE;
4416        } else {
4417            // no need to save value, since it's constant
4418            reconfig = true;
4419        }
4420    }
4421    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4422        // do not accept frame count changes if tracks are open as the track buffer
4423        // size depends on frame count and correct behavior would not be guaranteed
4424        // if frame count is changed after track creation
4425        if (!mTracks.isEmpty()) {
4426            status = INVALID_OPERATION;
4427        } else {
4428            reconfig = true;
4429        }
4430    }
4431    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4432#ifdef ADD_BATTERY_DATA
4433        // when changing the audio output device, call addBatteryData to notify
4434        // the change
4435        if (mOutDevice != value) {
4436            uint32_t params = 0;
4437            // check whether speaker is on
4438            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4439                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4440            }
4441
4442            audio_devices_t deviceWithoutSpeaker
4443                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4444            // check if any other device (except speaker) is on
4445            if (value & deviceWithoutSpeaker) {
4446                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4447            }
4448
4449            if (params != 0) {
4450                addBatteryData(params);
4451            }
4452        }
4453#endif
4454
4455        // forward device change to effects that have requested to be
4456        // aware of attached audio device.
4457        if (value != AUDIO_DEVICE_NONE) {
4458            a2dpDeviceChanged =
4459                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4460            mOutDevice = value;
4461            for (size_t i = 0; i < mEffectChains.size(); i++) {
4462                mEffectChains[i]->setDevice_l(mOutDevice);
4463            }
4464        }
4465    }
4466
4467    if (status == NO_ERROR) {
4468        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4469                                                keyValuePair.string());
4470        if (!mStandby && status == INVALID_OPERATION) {
4471            mOutput->standby();
4472            mStandby = true;
4473            mBytesWritten = 0;
4474            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4475                                                   keyValuePair.string());
4476        }
4477        if (status == NO_ERROR && reconfig) {
4478            readOutputParameters_l();
4479            delete mAudioMixer;
4480            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4481            for (size_t i = 0; i < mTracks.size() ; i++) {
4482                int name = getTrackName_l(mTracks[i]->mChannelMask,
4483                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4484                if (name < 0) {
4485                    break;
4486                }
4487                mTracks[i]->mName = name;
4488            }
4489            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4490        }
4491    }
4492
4493    if (!(previousCommand & FastMixerState::IDLE)) {
4494        ALOG_ASSERT(mFastMixer != 0);
4495        FastMixerStateQueue *sq = mFastMixer->sq();
4496        FastMixerState *state = sq->begin();
4497        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4498        state->mCommand = previousCommand;
4499        sq->end();
4500        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4501    }
4502
4503    return reconfig || a2dpDeviceChanged;
4504}
4505
4506
4507void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4508{
4509    const size_t SIZE = 256;
4510    char buffer[SIZE];
4511    String8 result;
4512
4513    PlaybackThread::dumpInternals(fd, args);
4514    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4515    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4516    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4517
4518    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4519    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4520    // This is a large object so we place it on the heap.
4521    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4522    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4523    copy->dump(fd);
4524    delete copy;
4525
4526#ifdef STATE_QUEUE_DUMP
4527    // Similar for state queue
4528    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4529    observerCopy.dump(fd);
4530    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4531    mutatorCopy.dump(fd);
4532#endif
4533
4534#ifdef TEE_SINK
4535    // Write the tee output to a .wav file
4536    dumpTee(fd, mTeeSource, mId);
4537#endif
4538
4539#ifdef AUDIO_WATCHDOG
4540    if (mAudioWatchdog != 0) {
4541        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4542        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4543        wdCopy.dump(fd);
4544    }
4545#endif
4546}
4547
4548uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4549{
4550    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4551}
4552
4553uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4554{
4555    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4556}
4557
4558void AudioFlinger::MixerThread::cacheParameters_l()
4559{
4560    PlaybackThread::cacheParameters_l();
4561
4562    // FIXME: Relaxed timing because of a certain device that can't meet latency
4563    // Should be reduced to 2x after the vendor fixes the driver issue
4564    // increase threshold again due to low power audio mode. The way this warning
4565    // threshold is calculated and its usefulness should be reconsidered anyway.
4566    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4567}
4568
4569// ----------------------------------------------------------------------------
4570
4571AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4572        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4573    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4574        // mLeftVolFloat, mRightVolFloat
4575{
4576}
4577
4578AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4579        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4580        ThreadBase::type_t type, bool systemReady)
4581    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4582        // mLeftVolFloat, mRightVolFloat
4583{
4584}
4585
4586AudioFlinger::DirectOutputThread::~DirectOutputThread()
4587{
4588}
4589
4590void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4591{
4592    audio_track_cblk_t* cblk = track->cblk();
4593    float left, right;
4594
4595    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4596        left = right = 0;
4597    } else {
4598        float typeVolume = mStreamTypes[track->streamType()].volume;
4599        float v = mMasterVolume * typeVolume;
4600        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4601        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4602        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4603        if (left > GAIN_FLOAT_UNITY) {
4604            left = GAIN_FLOAT_UNITY;
4605        }
4606        left *= v;
4607        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4608        if (right > GAIN_FLOAT_UNITY) {
4609            right = GAIN_FLOAT_UNITY;
4610        }
4611        right *= v;
4612    }
4613
4614    if (lastTrack) {
4615        if (left != mLeftVolFloat || right != mRightVolFloat) {
4616            mLeftVolFloat = left;
4617            mRightVolFloat = right;
4618
4619            // Convert volumes from float to 8.24
4620            uint32_t vl = (uint32_t)(left * (1 << 24));
4621            uint32_t vr = (uint32_t)(right * (1 << 24));
4622
4623            // Delegate volume control to effect in track effect chain if needed
4624            // only one effect chain can be present on DirectOutputThread, so if
4625            // there is one, the track is connected to it
4626            if (!mEffectChains.isEmpty()) {
4627                mEffectChains[0]->setVolume_l(&vl, &vr);
4628                left = (float)vl / (1 << 24);
4629                right = (float)vr / (1 << 24);
4630            }
4631            if (mOutput->stream->set_volume) {
4632                mOutput->stream->set_volume(mOutput->stream, left, right);
4633            }
4634        }
4635    }
4636}
4637
4638void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4639{
4640    sp<Track> previousTrack = mPreviousTrack.promote();
4641    sp<Track> latestTrack = mLatestActiveTrack.promote();
4642
4643    if (previousTrack != 0 && latestTrack != 0) {
4644        if (mType == DIRECT) {
4645            if (previousTrack.get() != latestTrack.get()) {
4646                mFlushPending = true;
4647            }
4648        } else /* mType == OFFLOAD */ {
4649            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4650                mFlushPending = true;
4651            }
4652        }
4653    }
4654    PlaybackThread::onAddNewTrack_l();
4655}
4656
4657AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4658    Vector< sp<Track> > *tracksToRemove
4659)
4660{
4661    size_t count = mActiveTracks.size();
4662    mixer_state mixerStatus = MIXER_IDLE;
4663    bool doHwPause = false;
4664    bool doHwResume = false;
4665
4666    // find out which tracks need to be processed
4667    for (size_t i = 0; i < count; i++) {
4668        sp<Track> t = mActiveTracks[i].promote();
4669        // The track died recently
4670        if (t == 0) {
4671            continue;
4672        }
4673
4674        if (t->isInvalid()) {
4675            ALOGW("An invalidated track shouldn't be in active list");
4676            tracksToRemove->add(t);
4677            continue;
4678        }
4679
4680        Track* const track = t.get();
4681        audio_track_cblk_t* cblk = track->cblk();
4682        // Only consider last track started for volume and mixer state control.
4683        // In theory an older track could underrun and restart after the new one starts
4684        // but as we only care about the transition phase between two tracks on a
4685        // direct output, it is not a problem to ignore the underrun case.
4686        sp<Track> l = mLatestActiveTrack.promote();
4687        bool last = l.get() == track;
4688
4689        if (track->isPausing()) {
4690            track->setPaused();
4691            if (mHwSupportsPause && last && !mHwPaused) {
4692                doHwPause = true;
4693                mHwPaused = true;
4694            }
4695            tracksToRemove->add(track);
4696        } else if (track->isFlushPending()) {
4697            track->flushAck();
4698            if (last) {
4699                mFlushPending = true;
4700            }
4701        } else if (track->isResumePending()) {
4702            track->resumeAck();
4703            if (last && mHwPaused) {
4704                doHwResume = true;
4705                mHwPaused = false;
4706            }
4707        }
4708
4709        // The first time a track is added we wait
4710        // for all its buffers to be filled before processing it.
4711        // Allow draining the buffer in case the client
4712        // app does not call stop() and relies on underrun to stop:
4713        // hence the test on (track->mRetryCount > 1).
4714        // If retryCount<=1 then track is about to underrun and be removed.
4715        // Do not use a high threshold for compressed audio.
4716        uint32_t minFrames;
4717        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4718            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4719            minFrames = mNormalFrameCount;
4720        } else {
4721            minFrames = 1;
4722        }
4723
4724        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4725                !track->isStopping_2() && !track->isStopped())
4726        {
4727            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4728
4729            if (track->mFillingUpStatus == Track::FS_FILLED) {
4730                track->mFillingUpStatus = Track::FS_ACTIVE;
4731                // make sure processVolume_l() will apply new volume even if 0
4732                mLeftVolFloat = mRightVolFloat = -1.0;
4733                if (!mHwSupportsPause) {
4734                    track->resumeAck();
4735                }
4736            }
4737
4738            // compute volume for this track
4739            processVolume_l(track, last);
4740            if (last) {
4741                sp<Track> previousTrack = mPreviousTrack.promote();
4742                if (previousTrack != 0) {
4743                    if (track != previousTrack.get()) {
4744                        // Flush any data still being written from last track
4745                        mBytesRemaining = 0;
4746                        // Invalidate previous track to force a seek when resuming.
4747                        previousTrack->invalidate();
4748                    }
4749                }
4750                mPreviousTrack = track;
4751
4752                // reset retry count
4753                track->mRetryCount = kMaxTrackRetriesDirect;
4754                mActiveTrack = t;
4755                mixerStatus = MIXER_TRACKS_READY;
4756                if (mHwPaused) {
4757                    doHwResume = true;
4758                    mHwPaused = false;
4759                }
4760            }
4761        } else {
4762            // clear effect chain input buffer if the last active track started underruns
4763            // to avoid sending previous audio buffer again to effects
4764            if (!mEffectChains.isEmpty() && last) {
4765                mEffectChains[0]->clearInputBuffer();
4766            }
4767            if (track->isStopping_1()) {
4768                track->mState = TrackBase::STOPPING_2;
4769                if (last && mHwPaused) {
4770                     doHwResume = true;
4771                     mHwPaused = false;
4772                 }
4773            }
4774            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4775                    track->isStopping_2() || track->isPaused()) {
4776                // We have consumed all the buffers of this track.
4777                // Remove it from the list of active tracks.
4778                size_t audioHALFrames;
4779                if (audio_has_proportional_frames(mFormat)) {
4780                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4781                } else {
4782                    audioHALFrames = 0;
4783                }
4784
4785                size_t framesWritten = mBytesWritten / mFrameSize;
4786                if (mStandby || !last ||
4787                        track->presentationComplete(framesWritten, audioHALFrames)) {
4788                    if (track->isStopping_2()) {
4789                        track->mState = TrackBase::STOPPED;
4790                    }
4791                    if (track->isStopped()) {
4792                        track->reset();
4793                    }
4794                    tracksToRemove->add(track);
4795                }
4796            } else {
4797                // No buffers for this track. Give it a few chances to
4798                // fill a buffer, then remove it from active list.
4799                // Only consider last track started for mixer state control
4800                if (--(track->mRetryCount) <= 0) {
4801                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4802                    tracksToRemove->add(track);
4803                    // indicate to client process that the track was disabled because of underrun;
4804                    // it will then automatically call start() when data is available
4805                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4806                } else if (last) {
4807                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4808                            "minFrames = %u, mFormat = %#x",
4809                            track->framesReady(), minFrames, mFormat);
4810                    mixerStatus = MIXER_TRACKS_ENABLED;
4811                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4812                        doHwPause = true;
4813                        mHwPaused = true;
4814                    }
4815                }
4816            }
4817        }
4818    }
4819
4820    // if an active track did not command a flush, check for pending flush on stopped tracks
4821    if (!mFlushPending) {
4822        for (size_t i = 0; i < mTracks.size(); i++) {
4823            if (mTracks[i]->isFlushPending()) {
4824                mTracks[i]->flushAck();
4825                mFlushPending = true;
4826            }
4827        }
4828    }
4829
4830    // make sure the pause/flush/resume sequence is executed in the right order.
4831    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4832    // before flush and then resume HW. This can happen in case of pause/flush/resume
4833    // if resume is received before pause is executed.
4834    if (mHwSupportsPause && !mStandby &&
4835            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4836        mOutput->stream->pause(mOutput->stream);
4837    }
4838    if (mFlushPending) {
4839        flushHw_l();
4840    }
4841    if (mHwSupportsPause && !mStandby && doHwResume) {
4842        mOutput->stream->resume(mOutput->stream);
4843    }
4844    // remove all the tracks that need to be...
4845    removeTracks_l(*tracksToRemove);
4846
4847    return mixerStatus;
4848}
4849
4850void AudioFlinger::DirectOutputThread::threadLoop_mix()
4851{
4852    size_t frameCount = mFrameCount;
4853    int8_t *curBuf = (int8_t *)mSinkBuffer;
4854    // output audio to hardware
4855    while (frameCount) {
4856        AudioBufferProvider::Buffer buffer;
4857        buffer.frameCount = frameCount;
4858        status_t status = mActiveTrack->getNextBuffer(&buffer);
4859        if (status != NO_ERROR || buffer.raw == NULL) {
4860            memset(curBuf, 0, frameCount * mFrameSize);
4861            break;
4862        }
4863        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4864        frameCount -= buffer.frameCount;
4865        curBuf += buffer.frameCount * mFrameSize;
4866        mActiveTrack->releaseBuffer(&buffer);
4867    }
4868    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4869    mSleepTimeUs = 0;
4870    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4871    mActiveTrack.clear();
4872}
4873
4874void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4875{
4876    // do not write to HAL when paused
4877    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4878        mSleepTimeUs = mIdleSleepTimeUs;
4879        return;
4880    }
4881    if (mSleepTimeUs == 0) {
4882        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4883            mSleepTimeUs = mActiveSleepTimeUs;
4884        } else {
4885            mSleepTimeUs = mIdleSleepTimeUs;
4886        }
4887    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
4888        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4889        mSleepTimeUs = 0;
4890    }
4891}
4892
4893void AudioFlinger::DirectOutputThread::threadLoop_exit()
4894{
4895    {
4896        Mutex::Autolock _l(mLock);
4897        for (size_t i = 0; i < mTracks.size(); i++) {
4898            if (mTracks[i]->isFlushPending()) {
4899                mTracks[i]->flushAck();
4900                mFlushPending = true;
4901            }
4902        }
4903        if (mFlushPending) {
4904            flushHw_l();
4905        }
4906    }
4907    PlaybackThread::threadLoop_exit();
4908}
4909
4910// must be called with thread mutex locked
4911bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4912{
4913    bool trackPaused = false;
4914    bool trackStopped = false;
4915
4916    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4917    // after a timeout and we will enter standby then.
4918    if (mTracks.size() > 0) {
4919        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4920        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4921                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4922    }
4923
4924    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
4925}
4926
4927// getTrackName_l() must be called with ThreadBase::mLock held
4928int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4929        audio_format_t format __unused, int sessionId __unused)
4930{
4931    return 0;
4932}
4933
4934// deleteTrackName_l() must be called with ThreadBase::mLock held
4935void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4936{
4937}
4938
4939// checkForNewParameter_l() must be called with ThreadBase::mLock held
4940bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4941                                                              status_t& status)
4942{
4943    bool reconfig = false;
4944    bool a2dpDeviceChanged = false;
4945
4946    status = NO_ERROR;
4947
4948    AudioParameter param = AudioParameter(keyValuePair);
4949    int value;
4950    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4951        // forward device change to effects that have requested to be
4952        // aware of attached audio device.
4953        if (value != AUDIO_DEVICE_NONE) {
4954            a2dpDeviceChanged =
4955                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4956            mOutDevice = value;
4957            for (size_t i = 0; i < mEffectChains.size(); i++) {
4958                mEffectChains[i]->setDevice_l(mOutDevice);
4959            }
4960        }
4961    }
4962    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4963        // do not accept frame count changes if tracks are open as the track buffer
4964        // size depends on frame count and correct behavior would not be garantied
4965        // if frame count is changed after track creation
4966        if (!mTracks.isEmpty()) {
4967            status = INVALID_OPERATION;
4968        } else {
4969            reconfig = true;
4970        }
4971    }
4972    if (status == NO_ERROR) {
4973        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4974                                                keyValuePair.string());
4975        if (!mStandby && status == INVALID_OPERATION) {
4976            mOutput->standby();
4977            mStandby = true;
4978            mBytesWritten = 0;
4979            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4980                                                   keyValuePair.string());
4981        }
4982        if (status == NO_ERROR && reconfig) {
4983            readOutputParameters_l();
4984            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4985        }
4986    }
4987
4988    return reconfig || a2dpDeviceChanged;
4989}
4990
4991uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4992{
4993    uint32_t time;
4994    if (audio_has_proportional_frames(mFormat)) {
4995        time = PlaybackThread::activeSleepTimeUs();
4996    } else {
4997        time = 10000;
4998    }
4999    return time;
5000}
5001
5002uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5003{
5004    uint32_t time;
5005    if (audio_has_proportional_frames(mFormat)) {
5006        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5007    } else {
5008        time = 10000;
5009    }
5010    return time;
5011}
5012
5013uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5014{
5015    uint32_t time;
5016    if (audio_has_proportional_frames(mFormat)) {
5017        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5018    } else {
5019        time = 10000;
5020    }
5021    return time;
5022}
5023
5024void AudioFlinger::DirectOutputThread::cacheParameters_l()
5025{
5026    PlaybackThread::cacheParameters_l();
5027
5028    // use shorter standby delay as on normal output to release
5029    // hardware resources as soon as possible
5030    // no delay on outputs with HW A/V sync
5031    if (usesHwAvSync()) {
5032        mStandbyDelayNs = 0;
5033    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5034        mStandbyDelayNs = kOffloadStandbyDelayNs;
5035    } else {
5036        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5037    }
5038}
5039
5040void AudioFlinger::DirectOutputThread::flushHw_l()
5041{
5042    mOutput->flush();
5043    mHwPaused = false;
5044    mFlushPending = false;
5045}
5046
5047// ----------------------------------------------------------------------------
5048
5049AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5050        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5051    :   Thread(false /*canCallJava*/),
5052        mPlaybackThread(playbackThread),
5053        mWriteAckSequence(0),
5054        mDrainSequence(0)
5055{
5056}
5057
5058AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5059{
5060}
5061
5062void AudioFlinger::AsyncCallbackThread::onFirstRef()
5063{
5064    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5065}
5066
5067bool AudioFlinger::AsyncCallbackThread::threadLoop()
5068{
5069    while (!exitPending()) {
5070        uint32_t writeAckSequence;
5071        uint32_t drainSequence;
5072
5073        {
5074            Mutex::Autolock _l(mLock);
5075            while (!((mWriteAckSequence & 1) ||
5076                     (mDrainSequence & 1) ||
5077                     exitPending())) {
5078                mWaitWorkCV.wait(mLock);
5079            }
5080
5081            if (exitPending()) {
5082                break;
5083            }
5084            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5085                  mWriteAckSequence, mDrainSequence);
5086            writeAckSequence = mWriteAckSequence;
5087            mWriteAckSequence &= ~1;
5088            drainSequence = mDrainSequence;
5089            mDrainSequence &= ~1;
5090        }
5091        {
5092            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5093            if (playbackThread != 0) {
5094                if (writeAckSequence & 1) {
5095                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5096                }
5097                if (drainSequence & 1) {
5098                    playbackThread->resetDraining(drainSequence >> 1);
5099                }
5100            }
5101        }
5102    }
5103    return false;
5104}
5105
5106void AudioFlinger::AsyncCallbackThread::exit()
5107{
5108    ALOGV("AsyncCallbackThread::exit");
5109    Mutex::Autolock _l(mLock);
5110    requestExit();
5111    mWaitWorkCV.broadcast();
5112}
5113
5114void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5115{
5116    Mutex::Autolock _l(mLock);
5117    // bit 0 is cleared
5118    mWriteAckSequence = sequence << 1;
5119}
5120
5121void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5122{
5123    Mutex::Autolock _l(mLock);
5124    // ignore unexpected callbacks
5125    if (mWriteAckSequence & 2) {
5126        mWriteAckSequence |= 1;
5127        mWaitWorkCV.signal();
5128    }
5129}
5130
5131void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5132{
5133    Mutex::Autolock _l(mLock);
5134    // bit 0 is cleared
5135    mDrainSequence = sequence << 1;
5136}
5137
5138void AudioFlinger::AsyncCallbackThread::resetDraining()
5139{
5140    Mutex::Autolock _l(mLock);
5141    // ignore unexpected callbacks
5142    if (mDrainSequence & 2) {
5143        mDrainSequence |= 1;
5144        mWaitWorkCV.signal();
5145    }
5146}
5147
5148
5149// ----------------------------------------------------------------------------
5150AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5151        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5152    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5153        mPausedBytesRemaining(0)
5154{
5155    //FIXME: mStandby should be set to true by ThreadBase constructor
5156    mStandby = true;
5157}
5158
5159void AudioFlinger::OffloadThread::threadLoop_exit()
5160{
5161    if (mFlushPending || mHwPaused) {
5162        // If a flush is pending or track was paused, just discard buffered data
5163        flushHw_l();
5164    } else {
5165        mMixerStatus = MIXER_DRAIN_ALL;
5166        threadLoop_drain();
5167    }
5168    if (mUseAsyncWrite) {
5169        ALOG_ASSERT(mCallbackThread != 0);
5170        mCallbackThread->exit();
5171    }
5172    PlaybackThread::threadLoop_exit();
5173}
5174
5175AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5176    Vector< sp<Track> > *tracksToRemove
5177)
5178{
5179    size_t count = mActiveTracks.size();
5180
5181    mixer_state mixerStatus = MIXER_IDLE;
5182    bool doHwPause = false;
5183    bool doHwResume = false;
5184
5185    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
5186
5187    // find out which tracks need to be processed
5188    for (size_t i = 0; i < count; i++) {
5189        sp<Track> t = mActiveTracks[i].promote();
5190        // The track died recently
5191        if (t == 0) {
5192            continue;
5193        }
5194        Track* const track = t.get();
5195        audio_track_cblk_t* cblk = track->cblk();
5196        // Only consider last track started for volume and mixer state control.
5197        // In theory an older track could underrun and restart after the new one starts
5198        // but as we only care about the transition phase between two tracks on a
5199        // direct output, it is not a problem to ignore the underrun case.
5200        sp<Track> l = mLatestActiveTrack.promote();
5201        bool last = l.get() == track;
5202
5203        if (track->isInvalid()) {
5204            ALOGW("An invalidated track shouldn't be in active list");
5205            tracksToRemove->add(track);
5206            continue;
5207        }
5208
5209        if (track->mState == TrackBase::IDLE) {
5210            ALOGW("An idle track shouldn't be in active list");
5211            continue;
5212        }
5213
5214        if (track->isPausing()) {
5215            track->setPaused();
5216            if (last) {
5217                if (mHwSupportsPause && !mHwPaused) {
5218                    doHwPause = true;
5219                    mHwPaused = true;
5220                }
5221                // If we were part way through writing the mixbuffer to
5222                // the HAL we must save this until we resume
5223                // BUG - this will be wrong if a different track is made active,
5224                // in that case we want to discard the pending data in the
5225                // mixbuffer and tell the client to present it again when the
5226                // track is resumed
5227                mPausedWriteLength = mCurrentWriteLength;
5228                mPausedBytesRemaining = mBytesRemaining;
5229                mBytesRemaining = 0;    // stop writing
5230            }
5231            tracksToRemove->add(track);
5232        } else if (track->isFlushPending()) {
5233            track->flushAck();
5234            if (last) {
5235                mFlushPending = true;
5236            }
5237        } else if (track->isResumePending()){
5238            track->resumeAck();
5239            if (last) {
5240                if (mPausedBytesRemaining) {
5241                    // Need to continue write that was interrupted
5242                    mCurrentWriteLength = mPausedWriteLength;
5243                    mBytesRemaining = mPausedBytesRemaining;
5244                    mPausedBytesRemaining = 0;
5245                }
5246                if (mHwPaused) {
5247                    doHwResume = true;
5248                    mHwPaused = false;
5249                    // threadLoop_mix() will handle the case that we need to
5250                    // resume an interrupted write
5251                }
5252                // enable write to audio HAL
5253                mSleepTimeUs = 0;
5254
5255                // Do not handle new data in this iteration even if track->framesReady()
5256                mixerStatus = MIXER_TRACKS_ENABLED;
5257            }
5258        }  else if (track->framesReady() && track->isReady() &&
5259                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5260            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5261            if (track->mFillingUpStatus == Track::FS_FILLED) {
5262                track->mFillingUpStatus = Track::FS_ACTIVE;
5263                // make sure processVolume_l() will apply new volume even if 0
5264                mLeftVolFloat = mRightVolFloat = -1.0;
5265            }
5266
5267            if (last) {
5268                sp<Track> previousTrack = mPreviousTrack.promote();
5269                if (previousTrack != 0) {
5270                    if (track != previousTrack.get()) {
5271                        // Flush any data still being written from last track
5272                        mBytesRemaining = 0;
5273                        if (mPausedBytesRemaining) {
5274                            // Last track was paused so we also need to flush saved
5275                            // mixbuffer state and invalidate track so that it will
5276                            // re-submit that unwritten data when it is next resumed
5277                            mPausedBytesRemaining = 0;
5278                            // Invalidate is a bit drastic - would be more efficient
5279                            // to have a flag to tell client that some of the
5280                            // previously written data was lost
5281                            previousTrack->invalidate();
5282                        }
5283                        // flush data already sent to the DSP if changing audio session as audio
5284                        // comes from a different source. Also invalidate previous track to force a
5285                        // seek when resuming.
5286                        if (previousTrack->sessionId() != track->sessionId()) {
5287                            previousTrack->invalidate();
5288                        }
5289                    }
5290                }
5291                mPreviousTrack = track;
5292                // reset retry count
5293                track->mRetryCount = kMaxTrackRetriesOffload;
5294                mActiveTrack = t;
5295                mixerStatus = MIXER_TRACKS_READY;
5296            }
5297        } else {
5298            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5299            if (track->isStopping_1()) {
5300                // Hardware buffer can hold a large amount of audio so we must
5301                // wait for all current track's data to drain before we say
5302                // that the track is stopped.
5303                if (mBytesRemaining == 0) {
5304                    // Only start draining when all data in mixbuffer
5305                    // has been written
5306                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5307                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5308                    // do not drain if no data was ever sent to HAL (mStandby == true)
5309                    if (last && !mStandby) {
5310                        // do not modify drain sequence if we are already draining. This happens
5311                        // when resuming from pause after drain.
5312                        if ((mDrainSequence & 1) == 0) {
5313                            mSleepTimeUs = 0;
5314                            mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5315                            mixerStatus = MIXER_DRAIN_TRACK;
5316                            mDrainSequence += 2;
5317                        }
5318                        if (mHwPaused) {
5319                            // It is possible to move from PAUSED to STOPPING_1 without
5320                            // a resume so we must ensure hardware is running
5321                            doHwResume = true;
5322                            mHwPaused = false;
5323                        }
5324                    }
5325                }
5326            } else if (track->isStopping_2()) {
5327                // Drain has completed or we are in standby, signal presentation complete
5328                if (!(mDrainSequence & 1) || !last || mStandby) {
5329                    track->mState = TrackBase::STOPPED;
5330                    size_t audioHALFrames =
5331                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5332                    size_t framesWritten =
5333                            mBytesWritten / mOutput->getFrameSize();
5334                    track->presentationComplete(framesWritten, audioHALFrames);
5335                    track->reset();
5336                    tracksToRemove->add(track);
5337                }
5338            } else {
5339                // No buffers for this track. Give it a few chances to
5340                // fill a buffer, then remove it from active list.
5341                if (--(track->mRetryCount) <= 0) {
5342                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5343                          track->name());
5344                    tracksToRemove->add(track);
5345                    // indicate to client process that the track was disabled because of underrun;
5346                    // it will then automatically call start() when data is available
5347                    android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
5348                } else if (last){
5349                    mixerStatus = MIXER_TRACKS_ENABLED;
5350                }
5351            }
5352        }
5353        // compute volume for this track
5354        processVolume_l(track, last);
5355    }
5356
5357    // make sure the pause/flush/resume sequence is executed in the right order.
5358    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5359    // before flush and then resume HW. This can happen in case of pause/flush/resume
5360    // if resume is received before pause is executed.
5361    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5362        mOutput->stream->pause(mOutput->stream);
5363    }
5364    if (mFlushPending) {
5365        flushHw_l();
5366    }
5367    if (!mStandby && doHwResume) {
5368        mOutput->stream->resume(mOutput->stream);
5369    }
5370
5371    // remove all the tracks that need to be...
5372    removeTracks_l(*tracksToRemove);
5373
5374    return mixerStatus;
5375}
5376
5377// must be called with thread mutex locked
5378bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5379{
5380    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5381          mWriteAckSequence, mDrainSequence);
5382    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5383        return true;
5384    }
5385    return false;
5386}
5387
5388bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5389{
5390    Mutex::Autolock _l(mLock);
5391    return waitingAsyncCallback_l();
5392}
5393
5394void AudioFlinger::OffloadThread::flushHw_l()
5395{
5396    DirectOutputThread::flushHw_l();
5397    // Flush anything still waiting in the mixbuffer
5398    mCurrentWriteLength = 0;
5399    mBytesRemaining = 0;
5400    mPausedWriteLength = 0;
5401    mPausedBytesRemaining = 0;
5402
5403    if (mUseAsyncWrite) {
5404        // discard any pending drain or write ack by incrementing sequence
5405        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5406        mDrainSequence = (mDrainSequence + 2) & ~1;
5407        ALOG_ASSERT(mCallbackThread != 0);
5408        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5409        mCallbackThread->setDraining(mDrainSequence);
5410    }
5411}
5412
5413// ----------------------------------------------------------------------------
5414
5415AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5416        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5417    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5418                    systemReady, DUPLICATING),
5419        mWaitTimeMs(UINT_MAX)
5420{
5421    addOutputTrack(mainThread);
5422}
5423
5424AudioFlinger::DuplicatingThread::~DuplicatingThread()
5425{
5426    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5427        mOutputTracks[i]->destroy();
5428    }
5429}
5430
5431void AudioFlinger::DuplicatingThread::threadLoop_mix()
5432{
5433    // mix buffers...
5434    if (outputsReady(outputTracks)) {
5435        mAudioMixer->process();
5436    } else {
5437        if (mMixerBufferValid) {
5438            memset(mMixerBuffer, 0, mMixerBufferSize);
5439        } else {
5440            memset(mSinkBuffer, 0, mSinkBufferSize);
5441        }
5442    }
5443    mSleepTimeUs = 0;
5444    writeFrames = mNormalFrameCount;
5445    mCurrentWriteLength = mSinkBufferSize;
5446    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5447}
5448
5449void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5450{
5451    if (mSleepTimeUs == 0) {
5452        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5453            mSleepTimeUs = mActiveSleepTimeUs;
5454        } else {
5455            mSleepTimeUs = mIdleSleepTimeUs;
5456        }
5457    } else if (mBytesWritten != 0) {
5458        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5459            writeFrames = mNormalFrameCount;
5460            memset(mSinkBuffer, 0, mSinkBufferSize);
5461        } else {
5462            // flush remaining overflow buffers in output tracks
5463            writeFrames = 0;
5464        }
5465        mSleepTimeUs = 0;
5466    }
5467}
5468
5469ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5470{
5471    for (size_t i = 0; i < outputTracks.size(); i++) {
5472        outputTracks[i]->write(mSinkBuffer, writeFrames);
5473    }
5474    mStandby = false;
5475    return (ssize_t)mSinkBufferSize;
5476}
5477
5478void AudioFlinger::DuplicatingThread::threadLoop_standby()
5479{
5480    // DuplicatingThread implements standby by stopping all tracks
5481    for (size_t i = 0; i < outputTracks.size(); i++) {
5482        outputTracks[i]->stop();
5483    }
5484}
5485
5486void AudioFlinger::DuplicatingThread::saveOutputTracks()
5487{
5488    outputTracks = mOutputTracks;
5489}
5490
5491void AudioFlinger::DuplicatingThread::clearOutputTracks()
5492{
5493    outputTracks.clear();
5494}
5495
5496void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5497{
5498    Mutex::Autolock _l(mLock);
5499    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5500    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5501    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5502    const size_t frameCount =
5503            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5504    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5505    // from different OutputTracks and their associated MixerThreads (e.g. one may
5506    // nearly empty and the other may be dropping data).
5507
5508    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5509                                            this,
5510                                            mSampleRate,
5511                                            mFormat,
5512                                            mChannelMask,
5513                                            frameCount,
5514                                            IPCThreadState::self()->getCallingUid());
5515    if (outputTrack->cblk() != NULL) {
5516        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5517        mOutputTracks.add(outputTrack);
5518        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5519        updateWaitTime_l();
5520    }
5521}
5522
5523void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5524{
5525    Mutex::Autolock _l(mLock);
5526    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5527        if (mOutputTracks[i]->thread() == thread) {
5528            mOutputTracks[i]->destroy();
5529            mOutputTracks.removeAt(i);
5530            updateWaitTime_l();
5531            if (thread->getOutput() == mOutput) {
5532                mOutput = NULL;
5533            }
5534            return;
5535        }
5536    }
5537    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5538}
5539
5540// caller must hold mLock
5541void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5542{
5543    mWaitTimeMs = UINT_MAX;
5544    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5545        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5546        if (strong != 0) {
5547            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5548            if (waitTimeMs < mWaitTimeMs) {
5549                mWaitTimeMs = waitTimeMs;
5550            }
5551        }
5552    }
5553}
5554
5555
5556bool AudioFlinger::DuplicatingThread::outputsReady(
5557        const SortedVector< sp<OutputTrack> > &outputTracks)
5558{
5559    for (size_t i = 0; i < outputTracks.size(); i++) {
5560        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5561        if (thread == 0) {
5562            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5563                    outputTracks[i].get());
5564            return false;
5565        }
5566        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5567        // see note at standby() declaration
5568        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5569            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5570                    thread.get());
5571            return false;
5572        }
5573    }
5574    return true;
5575}
5576
5577uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5578{
5579    return (mWaitTimeMs * 1000) / 2;
5580}
5581
5582void AudioFlinger::DuplicatingThread::cacheParameters_l()
5583{
5584    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5585    updateWaitTime_l();
5586
5587    MixerThread::cacheParameters_l();
5588}
5589
5590// ----------------------------------------------------------------------------
5591//      Record
5592// ----------------------------------------------------------------------------
5593
5594AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5595                                         AudioStreamIn *input,
5596                                         audio_io_handle_t id,
5597                                         audio_devices_t outDevice,
5598                                         audio_devices_t inDevice,
5599                                         bool systemReady
5600#ifdef TEE_SINK
5601                                         , const sp<NBAIO_Sink>& teeSink
5602#endif
5603                                         ) :
5604    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5605    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5606    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5607    mRsmpInRear(0)
5608#ifdef TEE_SINK
5609    , mTeeSink(teeSink)
5610#endif
5611    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5612            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5613    // mFastCapture below
5614    , mFastCaptureFutex(0)
5615    // mInputSource
5616    // mPipeSink
5617    // mPipeSource
5618    , mPipeFramesP2(0)
5619    // mPipeMemory
5620    // mFastCaptureNBLogWriter
5621    , mFastTrackAvail(false)
5622{
5623    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5624    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5625
5626    readInputParameters_l();
5627
5628    // create an NBAIO source for the HAL input stream, and negotiate
5629    mInputSource = new AudioStreamInSource(input->stream);
5630    size_t numCounterOffers = 0;
5631    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5632    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5633    ALOG_ASSERT(index == 0);
5634
5635    // initialize fast capture depending on configuration
5636    bool initFastCapture;
5637    switch (kUseFastCapture) {
5638    case FastCapture_Never:
5639        initFastCapture = false;
5640        break;
5641    case FastCapture_Always:
5642        initFastCapture = true;
5643        break;
5644    case FastCapture_Static:
5645        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5646        break;
5647    // case FastCapture_Dynamic:
5648    }
5649
5650    if (initFastCapture) {
5651        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5652        NBAIO_Format format = mInputSource->format();
5653        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5654        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5655        void *pipeBuffer;
5656        const sp<MemoryDealer> roHeap(readOnlyHeap());
5657        sp<IMemory> pipeMemory;
5658        if ((roHeap == 0) ||
5659                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5660                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5661            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5662            goto failed;
5663        }
5664        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5665        memset(pipeBuffer, 0, pipeSize);
5666        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5667        const NBAIO_Format offers[1] = {format};
5668        size_t numCounterOffers = 0;
5669        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5670        ALOG_ASSERT(index == 0);
5671        mPipeSink = pipe;
5672        PipeReader *pipeReader = new PipeReader(*pipe);
5673        numCounterOffers = 0;
5674        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5675        ALOG_ASSERT(index == 0);
5676        mPipeSource = pipeReader;
5677        mPipeFramesP2 = pipeFramesP2;
5678        mPipeMemory = pipeMemory;
5679
5680        // create fast capture
5681        mFastCapture = new FastCapture();
5682        FastCaptureStateQueue *sq = mFastCapture->sq();
5683#ifdef STATE_QUEUE_DUMP
5684        // FIXME
5685#endif
5686        FastCaptureState *state = sq->begin();
5687        state->mCblk = NULL;
5688        state->mInputSource = mInputSource.get();
5689        state->mInputSourceGen++;
5690        state->mPipeSink = pipe;
5691        state->mPipeSinkGen++;
5692        state->mFrameCount = mFrameCount;
5693        state->mCommand = FastCaptureState::COLD_IDLE;
5694        // already done in constructor initialization list
5695        //mFastCaptureFutex = 0;
5696        state->mColdFutexAddr = &mFastCaptureFutex;
5697        state->mColdGen++;
5698        state->mDumpState = &mFastCaptureDumpState;
5699#ifdef TEE_SINK
5700        // FIXME
5701#endif
5702        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5703        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5704        sq->end();
5705        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5706
5707        // start the fast capture
5708        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5709        pid_t tid = mFastCapture->getTid();
5710        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
5711#ifdef AUDIO_WATCHDOG
5712        // FIXME
5713#endif
5714
5715        mFastTrackAvail = true;
5716    }
5717failed: ;
5718
5719    // FIXME mNormalSource
5720}
5721
5722AudioFlinger::RecordThread::~RecordThread()
5723{
5724    if (mFastCapture != 0) {
5725        FastCaptureStateQueue *sq = mFastCapture->sq();
5726        FastCaptureState *state = sq->begin();
5727        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5728            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5729            if (old == -1) {
5730                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5731            }
5732        }
5733        state->mCommand = FastCaptureState::EXIT;
5734        sq->end();
5735        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5736        mFastCapture->join();
5737        mFastCapture.clear();
5738    }
5739    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5740    mAudioFlinger->unregisterWriter(mNBLogWriter);
5741    free(mRsmpInBuffer);
5742}
5743
5744void AudioFlinger::RecordThread::onFirstRef()
5745{
5746    run(mThreadName, PRIORITY_URGENT_AUDIO);
5747}
5748
5749bool AudioFlinger::RecordThread::threadLoop()
5750{
5751    nsecs_t lastWarning = 0;
5752
5753    inputStandBy();
5754
5755reacquire_wakelock:
5756    sp<RecordTrack> activeTrack;
5757    int activeTracksGen;
5758    {
5759        Mutex::Autolock _l(mLock);
5760        size_t size = mActiveTracks.size();
5761        activeTracksGen = mActiveTracksGen;
5762        if (size > 0) {
5763            // FIXME an arbitrary choice
5764            activeTrack = mActiveTracks[0];
5765            acquireWakeLock_l(activeTrack->uid());
5766            if (size > 1) {
5767                SortedVector<int> tmp;
5768                for (size_t i = 0; i < size; i++) {
5769                    tmp.add(mActiveTracks[i]->uid());
5770                }
5771                updateWakeLockUids_l(tmp);
5772            }
5773        } else {
5774            acquireWakeLock_l(-1);
5775        }
5776    }
5777
5778    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
5779            gBoottime.getBoottimeOffset();
5780
5781    // used to request a deferred sleep, to be executed later while mutex is unlocked
5782    uint32_t sleepUs = 0;
5783
5784    // loop while there is work to do
5785    for (;;) {
5786        Vector< sp<EffectChain> > effectChains;
5787
5788        // sleep with mutex unlocked
5789        if (sleepUs > 0) {
5790            ATRACE_BEGIN("sleep");
5791            usleep(sleepUs);
5792            ATRACE_END();
5793            sleepUs = 0;
5794        }
5795
5796        // activeTracks accumulates a copy of a subset of mActiveTracks
5797        Vector< sp<RecordTrack> > activeTracks;
5798
5799        // reference to the (first and only) active fast track
5800        sp<RecordTrack> fastTrack;
5801
5802        // reference to a fast track which is about to be removed
5803        sp<RecordTrack> fastTrackToRemove;
5804
5805        { // scope for mLock
5806            Mutex::Autolock _l(mLock);
5807
5808            processConfigEvents_l();
5809
5810            // check exitPending here because checkForNewParameters_l() and
5811            // checkForNewParameters_l() can temporarily release mLock
5812            if (exitPending()) {
5813                break;
5814            }
5815
5816            // if no active track(s), then standby and release wakelock
5817            size_t size = mActiveTracks.size();
5818            if (size == 0) {
5819                standbyIfNotAlreadyInStandby();
5820                // exitPending() can't become true here
5821                releaseWakeLock_l();
5822                ALOGV("RecordThread: loop stopping");
5823                // go to sleep
5824                mWaitWorkCV.wait(mLock);
5825                ALOGV("RecordThread: loop starting");
5826                goto reacquire_wakelock;
5827            }
5828
5829            if (mActiveTracksGen != activeTracksGen) {
5830                activeTracksGen = mActiveTracksGen;
5831                SortedVector<int> tmp;
5832                for (size_t i = 0; i < size; i++) {
5833                    tmp.add(mActiveTracks[i]->uid());
5834                }
5835                updateWakeLockUids_l(tmp);
5836            }
5837
5838            bool doBroadcast = false;
5839            for (size_t i = 0; i < size; ) {
5840
5841                activeTrack = mActiveTracks[i];
5842                if (activeTrack->isTerminated()) {
5843                    if (activeTrack->isFastTrack()) {
5844                        ALOG_ASSERT(fastTrackToRemove == 0);
5845                        fastTrackToRemove = activeTrack;
5846                    }
5847                    removeTrack_l(activeTrack);
5848                    mActiveTracks.remove(activeTrack);
5849                    mActiveTracksGen++;
5850                    size--;
5851                    continue;
5852                }
5853
5854                TrackBase::track_state activeTrackState = activeTrack->mState;
5855                switch (activeTrackState) {
5856
5857                case TrackBase::PAUSING:
5858                    mActiveTracks.remove(activeTrack);
5859                    mActiveTracksGen++;
5860                    doBroadcast = true;
5861                    size--;
5862                    continue;
5863
5864                case TrackBase::STARTING_1:
5865                    sleepUs = 10000;
5866                    i++;
5867                    continue;
5868
5869                case TrackBase::STARTING_2:
5870                    doBroadcast = true;
5871                    mStandby = false;
5872                    activeTrack->mState = TrackBase::ACTIVE;
5873                    break;
5874
5875                case TrackBase::ACTIVE:
5876                    break;
5877
5878                case TrackBase::IDLE:
5879                    i++;
5880                    continue;
5881
5882                default:
5883                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5884                }
5885
5886                activeTracks.add(activeTrack);
5887                i++;
5888
5889                if (activeTrack->isFastTrack()) {
5890                    ALOG_ASSERT(!mFastTrackAvail);
5891                    ALOG_ASSERT(fastTrack == 0);
5892                    fastTrack = activeTrack;
5893                }
5894            }
5895            if (doBroadcast) {
5896                mStartStopCond.broadcast();
5897            }
5898
5899            // sleep if there are no active tracks to process
5900            if (activeTracks.size() == 0) {
5901                if (sleepUs == 0) {
5902                    sleepUs = kRecordThreadSleepUs;
5903                }
5904                continue;
5905            }
5906            sleepUs = 0;
5907
5908            lockEffectChains_l(effectChains);
5909        }
5910
5911        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5912
5913        size_t size = effectChains.size();
5914        for (size_t i = 0; i < size; i++) {
5915            // thread mutex is not locked, but effect chain is locked
5916            effectChains[i]->process_l();
5917        }
5918
5919        // Push a new fast capture state if fast capture is not already running, or cblk change
5920        if (mFastCapture != 0) {
5921            FastCaptureStateQueue *sq = mFastCapture->sq();
5922            FastCaptureState *state = sq->begin();
5923            bool didModify = false;
5924            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5925            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5926                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5927                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5928                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5929                    if (old == -1) {
5930                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5931                    }
5932                }
5933                state->mCommand = FastCaptureState::READ_WRITE;
5934#if 0   // FIXME
5935                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5936                        FastThreadDumpState::kSamplingNforLowRamDevice :
5937                        FastThreadDumpState::kSamplingN);
5938#endif
5939                didModify = true;
5940            }
5941            audio_track_cblk_t *cblkOld = state->mCblk;
5942            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5943            if (cblkNew != cblkOld) {
5944                state->mCblk = cblkNew;
5945                // block until acked if removing a fast track
5946                if (cblkOld != NULL) {
5947                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5948                }
5949                didModify = true;
5950            }
5951            sq->end(didModify);
5952            if (didModify) {
5953                sq->push(block);
5954#if 0
5955                if (kUseFastCapture == FastCapture_Dynamic) {
5956                    mNormalSource = mPipeSource;
5957                }
5958#endif
5959            }
5960        }
5961
5962        // now run the fast track destructor with thread mutex unlocked
5963        fastTrackToRemove.clear();
5964
5965        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5966        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5967        // slow, then this RecordThread will overrun by not calling HAL read often enough.
5968        // If destination is non-contiguous, first read past the nominal end of buffer, then
5969        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5970
5971        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5972        ssize_t framesRead;
5973
5974        // If an NBAIO source is present, use it to read the normal capture's data
5975        if (mPipeSource != 0) {
5976            size_t framesToRead = mBufferSize / mFrameSize;
5977            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
5978                    framesToRead);
5979            if (framesRead == 0) {
5980                // since pipe is non-blocking, simulate blocking input
5981                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5982            }
5983        // otherwise use the HAL / AudioStreamIn directly
5984        } else {
5985            ssize_t bytesRead = mInput->stream->read(mInput->stream,
5986                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
5987            if (bytesRead < 0) {
5988                framesRead = bytesRead;
5989            } else {
5990                framesRead = bytesRead / mFrameSize;
5991            }
5992        }
5993
5994        // Update server timestamp with server stats
5995        // systemTime() is optional if the hardware supports timestamps.
5996        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
5997        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
5998
5999        // Update server timestamp with kernel stats
6000        if (mInput->stream->get_capture_position != nullptr) {
6001            int64_t position, time;
6002            int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6003            if (ret == NO_ERROR) {
6004                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6005                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6006                // Note: In general record buffers should tend to be empty in
6007                // a properly running pipeline.
6008                //
6009                // Also, it is not advantageous to call get_presentation_position during the read
6010                // as the read obtains a lock, preventing the timestamp call from executing.
6011            }
6012        }
6013        // Use this to track timestamp information
6014        // ALOGD("%s", mTimestamp.toString().c_str());
6015
6016        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6017            ALOGE("read failed: framesRead=%d", framesRead);
6018            // Force input into standby so that it tries to recover at next read attempt
6019            inputStandBy();
6020            sleepUs = kRecordThreadSleepUs;
6021        }
6022        if (framesRead <= 0) {
6023            goto unlock;
6024        }
6025        ALOG_ASSERT(framesRead > 0);
6026
6027        if (mTeeSink != 0) {
6028            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6029        }
6030        // If destination is non-contiguous, we now correct for reading past end of buffer.
6031        {
6032            size_t part1 = mRsmpInFramesP2 - rear;
6033            if ((size_t) framesRead > part1) {
6034                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6035                        (framesRead - part1) * mFrameSize);
6036            }
6037        }
6038        rear = mRsmpInRear += framesRead;
6039
6040        size = activeTracks.size();
6041        // loop over each active track
6042        for (size_t i = 0; i < size; i++) {
6043            activeTrack = activeTracks[i];
6044
6045            // skip fast tracks, as those are handled directly by FastCapture
6046            if (activeTrack->isFastTrack()) {
6047                continue;
6048            }
6049
6050            // TODO: This code probably should be moved to RecordTrack.
6051            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6052
6053            enum {
6054                OVERRUN_UNKNOWN,
6055                OVERRUN_TRUE,
6056                OVERRUN_FALSE
6057            } overrun = OVERRUN_UNKNOWN;
6058
6059            // loop over getNextBuffer to handle circular sink
6060            for (;;) {
6061
6062                activeTrack->mSink.frameCount = ~0;
6063                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6064                size_t framesOut = activeTrack->mSink.frameCount;
6065                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6066
6067                // check available frames and handle overrun conditions
6068                // if the record track isn't draining fast enough.
6069                bool hasOverrun;
6070                size_t framesIn;
6071                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6072                if (hasOverrun) {
6073                    overrun = OVERRUN_TRUE;
6074                }
6075                if (framesOut == 0 || framesIn == 0) {
6076                    break;
6077                }
6078
6079                // Don't allow framesOut to be larger than what is possible with resampling
6080                // from framesIn.
6081                // This isn't strictly necessary but helps limit buffer resizing in
6082                // RecordBufferConverter.  TODO: remove when no longer needed.
6083                framesOut = min(framesOut,
6084                        destinationFramesPossible(
6085                                framesIn, mSampleRate, activeTrack->mSampleRate));
6086                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6087                framesOut = activeTrack->mRecordBufferConverter->convert(
6088                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6089
6090                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6091                    overrun = OVERRUN_FALSE;
6092                }
6093
6094                if (activeTrack->mFramesToDrop == 0) {
6095                    if (framesOut > 0) {
6096                        activeTrack->mSink.frameCount = framesOut;
6097                        activeTrack->releaseBuffer(&activeTrack->mSink);
6098                    }
6099                } else {
6100                    // FIXME could do a partial drop of framesOut
6101                    if (activeTrack->mFramesToDrop > 0) {
6102                        activeTrack->mFramesToDrop -= framesOut;
6103                        if (activeTrack->mFramesToDrop <= 0) {
6104                            activeTrack->clearSyncStartEvent();
6105                        }
6106                    } else {
6107                        activeTrack->mFramesToDrop += framesOut;
6108                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6109                                activeTrack->mSyncStartEvent->isCancelled()) {
6110                            ALOGW("Synced record %s, session %d, trigger session %d",
6111                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6112                                  activeTrack->sessionId(),
6113                                  (activeTrack->mSyncStartEvent != 0) ?
6114                                          activeTrack->mSyncStartEvent->triggerSession() : 0);
6115                            activeTrack->clearSyncStartEvent();
6116                        }
6117                    }
6118                }
6119
6120                if (framesOut == 0) {
6121                    break;
6122                }
6123            }
6124
6125            switch (overrun) {
6126            case OVERRUN_TRUE:
6127                // client isn't retrieving buffers fast enough
6128                if (!activeTrack->setOverflow()) {
6129                    nsecs_t now = systemTime();
6130                    // FIXME should lastWarning per track?
6131                    if ((now - lastWarning) > kWarningThrottleNs) {
6132                        ALOGW("RecordThread: buffer overflow");
6133                        lastWarning = now;
6134                    }
6135                }
6136                break;
6137            case OVERRUN_FALSE:
6138                activeTrack->clearOverflow();
6139                break;
6140            case OVERRUN_UNKNOWN:
6141                break;
6142            }
6143
6144            // update frame information and push timestamp out
6145            activeTrack->updateTrackFrameInfo(
6146                    activeTrack->mAudioRecordServerProxy->framesReleased(),
6147                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6148                    mSampleRate, mTimestamp);
6149        }
6150
6151unlock:
6152        // enable changes in effect chain
6153        unlockEffectChains(effectChains);
6154        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6155    }
6156
6157    standbyIfNotAlreadyInStandby();
6158
6159    {
6160        Mutex::Autolock _l(mLock);
6161        for (size_t i = 0; i < mTracks.size(); i++) {
6162            sp<RecordTrack> track = mTracks[i];
6163            track->invalidate();
6164        }
6165        mActiveTracks.clear();
6166        mActiveTracksGen++;
6167        mStartStopCond.broadcast();
6168    }
6169
6170    releaseWakeLock();
6171
6172    ALOGV("RecordThread %p exiting", this);
6173    return false;
6174}
6175
6176void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6177{
6178    if (!mStandby) {
6179        inputStandBy();
6180        mStandby = true;
6181    }
6182}
6183
6184void AudioFlinger::RecordThread::inputStandBy()
6185{
6186    // Idle the fast capture if it's currently running
6187    if (mFastCapture != 0) {
6188        FastCaptureStateQueue *sq = mFastCapture->sq();
6189        FastCaptureState *state = sq->begin();
6190        if (!(state->mCommand & FastCaptureState::IDLE)) {
6191            state->mCommand = FastCaptureState::COLD_IDLE;
6192            state->mColdFutexAddr = &mFastCaptureFutex;
6193            state->mColdGen++;
6194            mFastCaptureFutex = 0;
6195            sq->end();
6196            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6197            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6198#if 0
6199            if (kUseFastCapture == FastCapture_Dynamic) {
6200                // FIXME
6201            }
6202#endif
6203#ifdef AUDIO_WATCHDOG
6204            // FIXME
6205#endif
6206        } else {
6207            sq->end(false /*didModify*/);
6208        }
6209    }
6210    mInput->stream->common.standby(&mInput->stream->common);
6211}
6212
6213// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6214sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6215        const sp<AudioFlinger::Client>& client,
6216        uint32_t sampleRate,
6217        audio_format_t format,
6218        audio_channel_mask_t channelMask,
6219        size_t *pFrameCount,
6220        int sessionId,
6221        size_t *notificationFrames,
6222        int uid,
6223        IAudioFlinger::track_flags_t *flags,
6224        pid_t tid,
6225        status_t *status)
6226{
6227    size_t frameCount = *pFrameCount;
6228    sp<RecordTrack> track;
6229    status_t lStatus;
6230
6231    // client expresses a preference for FAST, but we get the final say
6232    if (*flags & IAudioFlinger::TRACK_FAST) {
6233      if (
6234            // we formerly checked for a callback handler (non-0 tid),
6235            // but that is no longer required for TRANSFER_OBTAIN mode
6236            //
6237            // frame count is not specified, or is exactly the pipe depth
6238            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6239            // PCM data
6240            audio_is_linear_pcm(format) &&
6241            // native format
6242            (format == mFormat) &&
6243            // native channel mask
6244            (channelMask == mChannelMask) &&
6245            // native hardware sample rate
6246            (sampleRate == mSampleRate) &&
6247            // record thread has an associated fast capture
6248            hasFastCapture() &&
6249            // there are sufficient fast track slots available
6250            mFastTrackAvail
6251        ) {
6252        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
6253                frameCount, mFrameCount);
6254      } else {
6255        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
6256                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6257                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6258                frameCount, mFrameCount, mPipeFramesP2,
6259                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6260                hasFastCapture(), tid, mFastTrackAvail);
6261        *flags &= ~IAudioFlinger::TRACK_FAST;
6262      }
6263    }
6264
6265    // compute track buffer size in frames, and suggest the notification frame count
6266    if (*flags & IAudioFlinger::TRACK_FAST) {
6267        // fast track: frame count is exactly the pipe depth
6268        frameCount = mPipeFramesP2;
6269        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6270        *notificationFrames = mFrameCount;
6271    } else {
6272        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6273        //                 or 20 ms if there is a fast capture
6274        // TODO This could be a roundupRatio inline, and const
6275        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6276                * sampleRate + mSampleRate - 1) / mSampleRate;
6277        // minimum number of notification periods is at least kMinNotifications,
6278        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6279        static const size_t kMinNotifications = 3;
6280        static const uint32_t kMinMs = 30;
6281        // TODO This could be a roundupRatio inline
6282        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6283        // TODO This could be a roundupRatio inline
6284        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6285                maxNotificationFrames;
6286        const size_t minFrameCount = maxNotificationFrames *
6287                max(kMinNotifications, minNotificationsByMs);
6288        frameCount = max(frameCount, minFrameCount);
6289        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6290            *notificationFrames = maxNotificationFrames;
6291        }
6292    }
6293    *pFrameCount = frameCount;
6294
6295    lStatus = initCheck();
6296    if (lStatus != NO_ERROR) {
6297        ALOGE("createRecordTrack_l() audio driver not initialized");
6298        goto Exit;
6299    }
6300
6301    { // scope for mLock
6302        Mutex::Autolock _l(mLock);
6303
6304        track = new RecordTrack(this, client, sampleRate,
6305                      format, channelMask, frameCount, NULL, sessionId, uid,
6306                      *flags, TrackBase::TYPE_DEFAULT);
6307
6308        lStatus = track->initCheck();
6309        if (lStatus != NO_ERROR) {
6310            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6311            // track must be cleared from the caller as the caller has the AF lock
6312            goto Exit;
6313        }
6314        mTracks.add(track);
6315
6316        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6317        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6318                        mAudioFlinger->btNrecIsOff();
6319        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6320        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6321
6322        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6323            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6324            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6325            // so ask activity manager to do this on our behalf
6326            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6327        }
6328    }
6329
6330    lStatus = NO_ERROR;
6331
6332Exit:
6333    *status = lStatus;
6334    return track;
6335}
6336
6337status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6338                                           AudioSystem::sync_event_t event,
6339                                           int triggerSession)
6340{
6341    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6342    sp<ThreadBase> strongMe = this;
6343    status_t status = NO_ERROR;
6344
6345    if (event == AudioSystem::SYNC_EVENT_NONE) {
6346        recordTrack->clearSyncStartEvent();
6347    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6348        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6349                                       triggerSession,
6350                                       recordTrack->sessionId(),
6351                                       syncStartEventCallback,
6352                                       recordTrack);
6353        // Sync event can be cancelled by the trigger session if the track is not in a
6354        // compatible state in which case we start record immediately
6355        if (recordTrack->mSyncStartEvent->isCancelled()) {
6356            recordTrack->clearSyncStartEvent();
6357        } else {
6358            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6359            recordTrack->mFramesToDrop = -
6360                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6361        }
6362    }
6363
6364    {
6365        // This section is a rendezvous between binder thread executing start() and RecordThread
6366        AutoMutex lock(mLock);
6367        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6368            if (recordTrack->mState == TrackBase::PAUSING) {
6369                ALOGV("active record track PAUSING -> ACTIVE");
6370                recordTrack->mState = TrackBase::ACTIVE;
6371            } else {
6372                ALOGV("active record track state %d", recordTrack->mState);
6373            }
6374            return status;
6375        }
6376
6377        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6378        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6379        //      or using a separate command thread
6380        recordTrack->mState = TrackBase::STARTING_1;
6381        mActiveTracks.add(recordTrack);
6382        mActiveTracksGen++;
6383        status_t status = NO_ERROR;
6384        if (recordTrack->isExternalTrack()) {
6385            mLock.unlock();
6386            status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
6387            mLock.lock();
6388            // FIXME should verify that recordTrack is still in mActiveTracks
6389            if (status != NO_ERROR) {
6390                mActiveTracks.remove(recordTrack);
6391                mActiveTracksGen++;
6392                recordTrack->clearSyncStartEvent();
6393                ALOGV("RecordThread::start error %d", status);
6394                return status;
6395            }
6396        }
6397        // Catch up with current buffer indices if thread is already running.
6398        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6399        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6400        // see previously buffered data before it called start(), but with greater risk of overrun.
6401
6402        recordTrack->mResamplerBufferProvider->reset();
6403        // clear any converter state as new data will be discontinuous
6404        recordTrack->mRecordBufferConverter->reset();
6405        recordTrack->mState = TrackBase::STARTING_2;
6406        // signal thread to start
6407        mWaitWorkCV.broadcast();
6408        if (mActiveTracks.indexOf(recordTrack) < 0) {
6409            ALOGV("Record failed to start");
6410            status = BAD_VALUE;
6411            goto startError;
6412        }
6413        return status;
6414    }
6415
6416startError:
6417    if (recordTrack->isExternalTrack()) {
6418        AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
6419    }
6420    recordTrack->clearSyncStartEvent();
6421    // FIXME I wonder why we do not reset the state here?
6422    return status;
6423}
6424
6425void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6426{
6427    sp<SyncEvent> strongEvent = event.promote();
6428
6429    if (strongEvent != 0) {
6430        sp<RefBase> ptr = strongEvent->cookie().promote();
6431        if (ptr != 0) {
6432            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6433            recordTrack->handleSyncStartEvent(strongEvent);
6434        }
6435    }
6436}
6437
6438bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6439    ALOGV("RecordThread::stop");
6440    AutoMutex _l(mLock);
6441    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6442        return false;
6443    }
6444    // note that threadLoop may still be processing the track at this point [without lock]
6445    recordTrack->mState = TrackBase::PAUSING;
6446    // do not wait for mStartStopCond if exiting
6447    if (exitPending()) {
6448        return true;
6449    }
6450    // FIXME incorrect usage of wait: no explicit predicate or loop
6451    mStartStopCond.wait(mLock);
6452    // if we have been restarted, recordTrack is in mActiveTracks here
6453    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6454        ALOGV("Record stopped OK");
6455        return true;
6456    }
6457    return false;
6458}
6459
6460bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6461{
6462    return false;
6463}
6464
6465status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6466{
6467#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6468    if (!isValidSyncEvent(event)) {
6469        return BAD_VALUE;
6470    }
6471
6472    int eventSession = event->triggerSession();
6473    status_t ret = NAME_NOT_FOUND;
6474
6475    Mutex::Autolock _l(mLock);
6476
6477    for (size_t i = 0; i < mTracks.size(); i++) {
6478        sp<RecordTrack> track = mTracks[i];
6479        if (eventSession == track->sessionId()) {
6480            (void) track->setSyncEvent(event);
6481            ret = NO_ERROR;
6482        }
6483    }
6484    return ret;
6485#else
6486    return BAD_VALUE;
6487#endif
6488}
6489
6490// destroyTrack_l() must be called with ThreadBase::mLock held
6491void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6492{
6493    track->terminate();
6494    track->mState = TrackBase::STOPPED;
6495    // active tracks are removed by threadLoop()
6496    if (mActiveTracks.indexOf(track) < 0) {
6497        removeTrack_l(track);
6498    }
6499}
6500
6501void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6502{
6503    mTracks.remove(track);
6504    // need anything related to effects here?
6505    if (track->isFastTrack()) {
6506        ALOG_ASSERT(!mFastTrackAvail);
6507        mFastTrackAvail = true;
6508    }
6509}
6510
6511void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6512{
6513    dumpInternals(fd, args);
6514    dumpTracks(fd, args);
6515    dumpEffectChains(fd, args);
6516}
6517
6518void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6519{
6520    dprintf(fd, "\nInput thread %p:\n", this);
6521
6522    dumpBase(fd, args);
6523
6524    if (mActiveTracks.size() == 0) {
6525        dprintf(fd, "  No active record clients\n");
6526    }
6527    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6528    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6529
6530    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6531    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6532    // This is a large object so we place it on the heap.
6533    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6534    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6535    copy->dump(fd);
6536    delete copy;
6537}
6538
6539void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6540{
6541    const size_t SIZE = 256;
6542    char buffer[SIZE];
6543    String8 result;
6544
6545    size_t numtracks = mTracks.size();
6546    size_t numactive = mActiveTracks.size();
6547    size_t numactiveseen = 0;
6548    dprintf(fd, "  %d Tracks", numtracks);
6549    if (numtracks) {
6550        dprintf(fd, " of which %d are active\n", numactive);
6551        RecordTrack::appendDumpHeader(result);
6552        for (size_t i = 0; i < numtracks ; ++i) {
6553            sp<RecordTrack> track = mTracks[i];
6554            if (track != 0) {
6555                bool active = mActiveTracks.indexOf(track) >= 0;
6556                if (active) {
6557                    numactiveseen++;
6558                }
6559                track->dump(buffer, SIZE, active);
6560                result.append(buffer);
6561            }
6562        }
6563    } else {
6564        dprintf(fd, "\n");
6565    }
6566
6567    if (numactiveseen != numactive) {
6568        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6569                " not in the track list\n");
6570        result.append(buffer);
6571        RecordTrack::appendDumpHeader(result);
6572        for (size_t i = 0; i < numactive; ++i) {
6573            sp<RecordTrack> track = mActiveTracks[i];
6574            if (mTracks.indexOf(track) < 0) {
6575                track->dump(buffer, SIZE, true);
6576                result.append(buffer);
6577            }
6578        }
6579
6580    }
6581    write(fd, result.string(), result.size());
6582}
6583
6584
6585void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6586{
6587    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6588    RecordThread *recordThread = (RecordThread *) threadBase.get();
6589    mRsmpInFront = recordThread->mRsmpInRear;
6590    mRsmpInUnrel = 0;
6591}
6592
6593void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6594        size_t *framesAvailable, bool *hasOverrun)
6595{
6596    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6597    RecordThread *recordThread = (RecordThread *) threadBase.get();
6598    const int32_t rear = recordThread->mRsmpInRear;
6599    const int32_t front = mRsmpInFront;
6600    const ssize_t filled = rear - front;
6601
6602    size_t framesIn;
6603    bool overrun = false;
6604    if (filled < 0) {
6605        // should not happen, but treat like a massive overrun and re-sync
6606        framesIn = 0;
6607        mRsmpInFront = rear;
6608        overrun = true;
6609    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6610        framesIn = (size_t) filled;
6611    } else {
6612        // client is not keeping up with server, but give it latest data
6613        framesIn = recordThread->mRsmpInFrames;
6614        mRsmpInFront = /* front = */ rear - framesIn;
6615        overrun = true;
6616    }
6617    if (framesAvailable != NULL) {
6618        *framesAvailable = framesIn;
6619    }
6620    if (hasOverrun != NULL) {
6621        *hasOverrun = overrun;
6622    }
6623}
6624
6625// AudioBufferProvider interface
6626status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6627        AudioBufferProvider::Buffer* buffer)
6628{
6629    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6630    if (threadBase == 0) {
6631        buffer->frameCount = 0;
6632        buffer->raw = NULL;
6633        return NOT_ENOUGH_DATA;
6634    }
6635    RecordThread *recordThread = (RecordThread *) threadBase.get();
6636    int32_t rear = recordThread->mRsmpInRear;
6637    int32_t front = mRsmpInFront;
6638    ssize_t filled = rear - front;
6639    // FIXME should not be P2 (don't want to increase latency)
6640    // FIXME if client not keeping up, discard
6641    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6642    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6643    front &= recordThread->mRsmpInFramesP2 - 1;
6644    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6645    if (part1 > (size_t) filled) {
6646        part1 = filled;
6647    }
6648    size_t ask = buffer->frameCount;
6649    ALOG_ASSERT(ask > 0);
6650    if (part1 > ask) {
6651        part1 = ask;
6652    }
6653    if (part1 == 0) {
6654        // out of data is fine since the resampler will return a short-count.
6655        buffer->raw = NULL;
6656        buffer->frameCount = 0;
6657        mRsmpInUnrel = 0;
6658        return NOT_ENOUGH_DATA;
6659    }
6660
6661    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6662    buffer->frameCount = part1;
6663    mRsmpInUnrel = part1;
6664    return NO_ERROR;
6665}
6666
6667// AudioBufferProvider interface
6668void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6669        AudioBufferProvider::Buffer* buffer)
6670{
6671    size_t stepCount = buffer->frameCount;
6672    if (stepCount == 0) {
6673        return;
6674    }
6675    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6676    mRsmpInUnrel -= stepCount;
6677    mRsmpInFront += stepCount;
6678    buffer->raw = NULL;
6679    buffer->frameCount = 0;
6680}
6681
6682AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6683        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6684        uint32_t srcSampleRate,
6685        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6686        uint32_t dstSampleRate) :
6687            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6688            // mSrcFormat
6689            // mSrcSampleRate
6690            // mDstChannelMask
6691            // mDstFormat
6692            // mDstSampleRate
6693            // mSrcChannelCount
6694            // mDstChannelCount
6695            // mDstFrameSize
6696            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6697            mResampler(NULL),
6698            mIsLegacyDownmix(false),
6699            mIsLegacyUpmix(false),
6700            mRequiresFloat(false),
6701            mInputConverterProvider(NULL)
6702{
6703    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6704            dstChannelMask, dstFormat, dstSampleRate);
6705}
6706
6707AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6708    free(mBuf);
6709    delete mResampler;
6710    delete mInputConverterProvider;
6711}
6712
6713size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6714        AudioBufferProvider *provider, size_t frames)
6715{
6716    if (mInputConverterProvider != NULL) {
6717        mInputConverterProvider->setBufferProvider(provider);
6718        provider = mInputConverterProvider;
6719    }
6720
6721    if (mResampler == NULL) {
6722        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6723                mSrcSampleRate, mSrcFormat, mDstFormat);
6724
6725        AudioBufferProvider::Buffer buffer;
6726        for (size_t i = frames; i > 0; ) {
6727            buffer.frameCount = i;
6728            status_t status = provider->getNextBuffer(&buffer);
6729            if (status != OK || buffer.frameCount == 0) {
6730                frames -= i; // cannot fill request.
6731                break;
6732            }
6733            // format convert to destination buffer
6734            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6735
6736            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6737            i -= buffer.frameCount;
6738            provider->releaseBuffer(&buffer);
6739        }
6740    } else {
6741         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6742                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6743
6744         // reallocate buffer if needed
6745         if (mBufFrameSize != 0 && mBufFrames < frames) {
6746             free(mBuf);
6747             mBufFrames = frames;
6748             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6749         }
6750        // resampler accumulates, but we only have one source track
6751        memset(mBuf, 0, frames * mBufFrameSize);
6752        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6753        // format convert to destination buffer
6754        convertResampler(dst, mBuf, frames);
6755    }
6756    return frames;
6757}
6758
6759status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6760        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6761        uint32_t srcSampleRate,
6762        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6763        uint32_t dstSampleRate)
6764{
6765    // quick evaluation if there is any change.
6766    if (mSrcFormat == srcFormat
6767            && mSrcChannelMask == srcChannelMask
6768            && mSrcSampleRate == srcSampleRate
6769            && mDstFormat == dstFormat
6770            && mDstChannelMask == dstChannelMask
6771            && mDstSampleRate == dstSampleRate) {
6772        return NO_ERROR;
6773    }
6774
6775    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6776            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6777            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6778    const bool valid =
6779            audio_is_input_channel(srcChannelMask)
6780            && audio_is_input_channel(dstChannelMask)
6781            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6782            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6783            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6784            ; // no upsampling checks for now
6785    if (!valid) {
6786        return BAD_VALUE;
6787    }
6788
6789    mSrcFormat = srcFormat;
6790    mSrcChannelMask = srcChannelMask;
6791    mSrcSampleRate = srcSampleRate;
6792    mDstFormat = dstFormat;
6793    mDstChannelMask = dstChannelMask;
6794    mDstSampleRate = dstSampleRate;
6795
6796    // compute derived parameters
6797    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6798    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6799    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6800
6801    // do we need to resample?
6802    delete mResampler;
6803    mResampler = NULL;
6804    if (mSrcSampleRate != mDstSampleRate) {
6805        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6806                mSrcChannelCount, mDstSampleRate);
6807        mResampler->setSampleRate(mSrcSampleRate);
6808        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6809    }
6810
6811    // are we running legacy channel conversion modes?
6812    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6813                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6814                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6815    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6816                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6817                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6818
6819    // do we need to process in float?
6820    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6821
6822    // do we need a staging buffer to convert for destination (we can still optimize this)?
6823    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6824    if (mResampler != NULL) {
6825        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6826                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6827    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6828        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6829    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6830        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6831    } else {
6832        mBufFrameSize = 0;
6833    }
6834    mBufFrames = 0; // force the buffer to be resized.
6835
6836    // do we need an input converter buffer provider to give us float?
6837    delete mInputConverterProvider;
6838    mInputConverterProvider = NULL;
6839    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6840        mInputConverterProvider = new ReformatBufferProvider(
6841                audio_channel_count_from_in_mask(mSrcChannelMask),
6842                mSrcFormat,
6843                AUDIO_FORMAT_PCM_FLOAT,
6844                256 /* provider buffer frame count */);
6845    }
6846
6847    // do we need a remixer to do channel mask conversion
6848    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6849        (void) memcpy_by_index_array_initialization_from_channel_mask(
6850                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6851    }
6852    return NO_ERROR;
6853}
6854
6855void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6856        void *dst, const void *src, size_t frames)
6857{
6858    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6859    if (mBufFrameSize != 0 && mBufFrames < frames) {
6860        free(mBuf);
6861        mBufFrames = frames;
6862        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6863    }
6864    // do we need to do legacy upmix and downmix?
6865    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6866        void *dstBuf = mBuf != NULL ? mBuf : dst;
6867        if (mIsLegacyUpmix) {
6868            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6869                    (const float *)src, frames);
6870        } else /*mIsLegacyDownmix */ {
6871            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6872                    (const float *)src, frames);
6873        }
6874        if (mBuf != NULL) {
6875            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6876                    frames * mDstChannelCount);
6877        }
6878        return;
6879    }
6880    // do we need to do channel mask conversion?
6881    if (mSrcChannelMask != mDstChannelMask) {
6882        void *dstBuf = mBuf != NULL ? mBuf : dst;
6883        memcpy_by_index_array(dstBuf, mDstChannelCount,
6884                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6885        if (dstBuf == dst) {
6886            return; // format is the same
6887        }
6888    }
6889    // convert to destination buffer
6890    const void *convertBuf = mBuf != NULL ? mBuf : src;
6891    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6892            frames * mDstChannelCount);
6893}
6894
6895void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6896        void *dst, /*not-a-const*/ void *src, size_t frames)
6897{
6898    // src buffer format is ALWAYS float when entering this routine
6899    if (mIsLegacyUpmix) {
6900        ; // mono to stereo already handled by resampler
6901    } else if (mIsLegacyDownmix
6902            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6903        // the resampler outputs stereo for mono input channel (a feature?)
6904        // must convert to mono
6905        downmix_to_mono_float_from_stereo_float((float *)src,
6906                (const float *)src, frames);
6907    } else if (mSrcChannelMask != mDstChannelMask) {
6908        // convert to mono channel again for channel mask conversion (could be skipped
6909        // with further optimization).
6910        if (mSrcChannelCount == 1) {
6911            downmix_to_mono_float_from_stereo_float((float *)src,
6912                (const float *)src, frames);
6913        }
6914        // convert to destination format (in place, OK as float is larger than other types)
6915        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6916            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6917                    frames * mSrcChannelCount);
6918        }
6919        // channel convert and save to dst
6920        memcpy_by_index_array(dst, mDstChannelCount,
6921                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6922        return;
6923    }
6924    // convert to destination format and save to dst
6925    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6926            frames * mDstChannelCount);
6927}
6928
6929bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6930                                                        status_t& status)
6931{
6932    bool reconfig = false;
6933
6934    status = NO_ERROR;
6935
6936    audio_format_t reqFormat = mFormat;
6937    uint32_t samplingRate = mSampleRate;
6938    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
6939    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6940
6941    AudioParameter param = AudioParameter(keyValuePair);
6942    int value;
6943    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6944    //      channel count change can be requested. Do we mandate the first client defines the
6945    //      HAL sampling rate and channel count or do we allow changes on the fly?
6946    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6947        samplingRate = value;
6948        reconfig = true;
6949    }
6950    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6951        if (!audio_is_linear_pcm((audio_format_t) value)) {
6952            status = BAD_VALUE;
6953        } else {
6954            reqFormat = (audio_format_t) value;
6955            reconfig = true;
6956        }
6957    }
6958    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6959        audio_channel_mask_t mask = (audio_channel_mask_t) value;
6960        if (!audio_is_input_channel(mask) ||
6961                audio_channel_count_from_in_mask(mask) > FCC_8) {
6962            status = BAD_VALUE;
6963        } else {
6964            channelMask = mask;
6965            reconfig = true;
6966        }
6967    }
6968    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6969        // do not accept frame count changes if tracks are open as the track buffer
6970        // size depends on frame count and correct behavior would not be guaranteed
6971        // if frame count is changed after track creation
6972        if (mActiveTracks.size() > 0) {
6973            status = INVALID_OPERATION;
6974        } else {
6975            reconfig = true;
6976        }
6977    }
6978    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6979        // forward device change to effects that have requested to be
6980        // aware of attached audio device.
6981        for (size_t i = 0; i < mEffectChains.size(); i++) {
6982            mEffectChains[i]->setDevice_l(value);
6983        }
6984
6985        // store input device and output device but do not forward output device to audio HAL.
6986        // Note that status is ignored by the caller for output device
6987        // (see AudioFlinger::setParameters()
6988        if (audio_is_output_devices(value)) {
6989            mOutDevice = value;
6990            status = BAD_VALUE;
6991        } else {
6992            mInDevice = value;
6993            if (value != AUDIO_DEVICE_NONE) {
6994                mPrevInDevice = value;
6995            }
6996            // disable AEC and NS if the device is a BT SCO headset supporting those
6997            // pre processings
6998            if (mTracks.size() > 0) {
6999                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7000                                    mAudioFlinger->btNrecIsOff();
7001                for (size_t i = 0; i < mTracks.size(); i++) {
7002                    sp<RecordTrack> track = mTracks[i];
7003                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7004                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7005                }
7006            }
7007        }
7008    }
7009    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7010            mAudioSource != (audio_source_t)value) {
7011        // forward device change to effects that have requested to be
7012        // aware of attached audio device.
7013        for (size_t i = 0; i < mEffectChains.size(); i++) {
7014            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7015        }
7016        mAudioSource = (audio_source_t)value;
7017    }
7018
7019    if (status == NO_ERROR) {
7020        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7021                keyValuePair.string());
7022        if (status == INVALID_OPERATION) {
7023            inputStandBy();
7024            status = mInput->stream->common.set_parameters(&mInput->stream->common,
7025                    keyValuePair.string());
7026        }
7027        if (reconfig) {
7028            if (status == BAD_VALUE &&
7029                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7030                audio_is_linear_pcm(reqFormat) &&
7031                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7032                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7033                audio_channel_count_from_in_mask(
7034                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7035                status = NO_ERROR;
7036            }
7037            if (status == NO_ERROR) {
7038                readInputParameters_l();
7039                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7040            }
7041        }
7042    }
7043
7044    return reconfig;
7045}
7046
7047String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7048{
7049    Mutex::Autolock _l(mLock);
7050    if (initCheck() != NO_ERROR) {
7051        return String8();
7052    }
7053
7054    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7055    const String8 out_s8(s);
7056    free(s);
7057    return out_s8;
7058}
7059
7060void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7061    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7062
7063    desc->mIoHandle = mId;
7064
7065    switch (event) {
7066    case AUDIO_INPUT_OPENED:
7067    case AUDIO_INPUT_CONFIG_CHANGED:
7068        desc->mPatch = mPatch;
7069        desc->mChannelMask = mChannelMask;
7070        desc->mSamplingRate = mSampleRate;
7071        desc->mFormat = mFormat;
7072        desc->mFrameCount = mFrameCount;
7073        desc->mLatency = 0;
7074        break;
7075
7076    case AUDIO_INPUT_CLOSED:
7077    default:
7078        break;
7079    }
7080    mAudioFlinger->ioConfigChanged(event, desc, pid);
7081}
7082
7083void AudioFlinger::RecordThread::readInputParameters_l()
7084{
7085    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7086    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7087    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7088    if (mChannelCount > FCC_8) {
7089        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7090    }
7091    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7092    mFormat = mHALFormat;
7093    if (!audio_is_linear_pcm(mFormat)) {
7094        ALOGE("HAL format %#x is not linear pcm", mFormat);
7095    }
7096    mFrameSize = audio_stream_in_frame_size(mInput->stream);
7097    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7098    mFrameCount = mBufferSize / mFrameSize;
7099    // This is the formula for calculating the temporary buffer size.
7100    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7101    // 1 full output buffer, regardless of the alignment of the available input.
7102    // The value is somewhat arbitrary, and could probably be even larger.
7103    // A larger value should allow more old data to be read after a track calls start(),
7104    // without increasing latency.
7105    //
7106    // Note this is independent of the maximum downsampling ratio permitted for capture.
7107    mRsmpInFrames = mFrameCount * 7;
7108    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7109    free(mRsmpInBuffer);
7110    mRsmpInBuffer = NULL;
7111
7112    // TODO optimize audio capture buffer sizes ...
7113    // Here we calculate the size of the sliding buffer used as a source
7114    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7115    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7116    // be better to have it derived from the pipe depth in the long term.
7117    // The current value is higher than necessary.  However it should not add to latency.
7118
7119    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7120    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7121    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7122    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7123
7124    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7125    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7126}
7127
7128uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7129{
7130    Mutex::Autolock _l(mLock);
7131    if (initCheck() != NO_ERROR) {
7132        return 0;
7133    }
7134
7135    return mInput->stream->get_input_frames_lost(mInput->stream);
7136}
7137
7138uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
7139{
7140    Mutex::Autolock _l(mLock);
7141    uint32_t result = 0;
7142    if (getEffectChain_l(sessionId) != 0) {
7143        result = EFFECT_SESSION;
7144    }
7145
7146    for (size_t i = 0; i < mTracks.size(); ++i) {
7147        if (sessionId == mTracks[i]->sessionId()) {
7148            result |= TRACK_SESSION;
7149            break;
7150        }
7151    }
7152
7153    return result;
7154}
7155
7156KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
7157{
7158    KeyedVector<int, bool> ids;
7159    Mutex::Autolock _l(mLock);
7160    for (size_t j = 0; j < mTracks.size(); ++j) {
7161        sp<RecordThread::RecordTrack> track = mTracks[j];
7162        int sessionId = track->sessionId();
7163        if (ids.indexOfKey(sessionId) < 0) {
7164            ids.add(sessionId, true);
7165        }
7166    }
7167    return ids;
7168}
7169
7170AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7171{
7172    Mutex::Autolock _l(mLock);
7173    AudioStreamIn *input = mInput;
7174    mInput = NULL;
7175    return input;
7176}
7177
7178// this method must always be called either with ThreadBase mLock held or inside the thread loop
7179audio_stream_t* AudioFlinger::RecordThread::stream() const
7180{
7181    if (mInput == NULL) {
7182        return NULL;
7183    }
7184    return &mInput->stream->common;
7185}
7186
7187status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7188{
7189    // only one chain per input thread
7190    if (mEffectChains.size() != 0) {
7191        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7192        return INVALID_OPERATION;
7193    }
7194    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7195    chain->setThread(this);
7196    chain->setInBuffer(NULL);
7197    chain->setOutBuffer(NULL);
7198
7199    checkSuspendOnAddEffectChain_l(chain);
7200
7201    // make sure enabled pre processing effects state is communicated to the HAL as we
7202    // just moved them to a new input stream.
7203    chain->syncHalEffectsState();
7204
7205    mEffectChains.add(chain);
7206
7207    return NO_ERROR;
7208}
7209
7210size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7211{
7212    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7213    ALOGW_IF(mEffectChains.size() != 1,
7214            "removeEffectChain_l() %p invalid chain size %d on thread %p",
7215            chain.get(), mEffectChains.size(), this);
7216    if (mEffectChains.size() == 1) {
7217        mEffectChains.removeAt(0);
7218    }
7219    return 0;
7220}
7221
7222status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7223                                                          audio_patch_handle_t *handle)
7224{
7225    status_t status = NO_ERROR;
7226
7227    // store new device and send to effects
7228    mInDevice = patch->sources[0].ext.device.type;
7229    mPatch = *patch;
7230    for (size_t i = 0; i < mEffectChains.size(); i++) {
7231        mEffectChains[i]->setDevice_l(mInDevice);
7232    }
7233
7234    // disable AEC and NS if the device is a BT SCO headset supporting those
7235    // pre processings
7236    if (mTracks.size() > 0) {
7237        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7238                            mAudioFlinger->btNrecIsOff();
7239        for (size_t i = 0; i < mTracks.size(); i++) {
7240            sp<RecordTrack> track = mTracks[i];
7241            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7242            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7243        }
7244    }
7245
7246    // store new source and send to effects
7247    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7248        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7249        for (size_t i = 0; i < mEffectChains.size(); i++) {
7250            mEffectChains[i]->setAudioSource_l(mAudioSource);
7251        }
7252    }
7253
7254    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7255        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7256        status = hwDevice->create_audio_patch(hwDevice,
7257                                               patch->num_sources,
7258                                               patch->sources,
7259                                               patch->num_sinks,
7260                                               patch->sinks,
7261                                               handle);
7262    } else {
7263        char *address;
7264        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7265            address = audio_device_address_to_parameter(
7266                                                patch->sources[0].ext.device.type,
7267                                                patch->sources[0].ext.device.address);
7268        } else {
7269            address = (char *)calloc(1, 1);
7270        }
7271        AudioParameter param = AudioParameter(String8(address));
7272        free(address);
7273        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7274                     (int)patch->sources[0].ext.device.type);
7275        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7276                                         (int)patch->sinks[0].ext.mix.usecase.source);
7277        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7278                param.toString().string());
7279        *handle = AUDIO_PATCH_HANDLE_NONE;
7280    }
7281
7282    if (mInDevice != mPrevInDevice) {
7283        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7284        mPrevInDevice = mInDevice;
7285    }
7286
7287    return status;
7288}
7289
7290status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7291{
7292    status_t status = NO_ERROR;
7293
7294    mInDevice = AUDIO_DEVICE_NONE;
7295
7296    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7297        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7298        status = hwDevice->release_audio_patch(hwDevice, handle);
7299    } else {
7300        AudioParameter param;
7301        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7302        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7303                param.toString().string());
7304    }
7305    return status;
7306}
7307
7308void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7309{
7310    Mutex::Autolock _l(mLock);
7311    mTracks.add(record);
7312}
7313
7314void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7315{
7316    Mutex::Autolock _l(mLock);
7317    destroyTrack_l(record);
7318}
7319
7320void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7321{
7322    ThreadBase::getAudioPortConfig(config);
7323    config->role = AUDIO_PORT_ROLE_SINK;
7324    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7325    config->ext.mix.usecase.source = mAudioSource;
7326}
7327
7328} // namespace android
7329