Parcel.java revision 44e440cc7e834de7811f005998acb32716835b00
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.ArrayMap;
21import android.util.Log;
22import android.util.Size;
23import android.util.SizeF;
24import android.util.SparseArray;
25import android.util.SparseBooleanArray;
26
27import java.io.ByteArrayInputStream;
28import java.io.ByteArrayOutputStream;
29import java.io.FileDescriptor;
30import java.io.FileNotFoundException;
31import java.io.IOException;
32import java.io.ObjectInputStream;
33import java.io.ObjectOutputStream;
34import java.io.ObjectStreamClass;
35import java.io.Serializable;
36import java.lang.reflect.Field;
37import java.lang.reflect.Modifier;
38import java.util.ArrayList;
39import java.util.Arrays;
40import java.util.HashMap;
41import java.util.List;
42import java.util.Map;
43import java.util.Set;
44
45/**
46 * Container for a message (data and object references) that can
47 * be sent through an IBinder.  A Parcel can contain both flattened data
48 * that will be unflattened on the other side of the IPC (using the various
49 * methods here for writing specific types, or the general
50 * {@link Parcelable} interface), and references to live {@link IBinder}
51 * objects that will result in the other side receiving a proxy IBinder
52 * connected with the original IBinder in the Parcel.
53 *
54 * <p class="note">Parcel is <strong>not</strong> a general-purpose
55 * serialization mechanism.  This class (and the corresponding
56 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
57 * designed as a high-performance IPC transport.  As such, it is not
58 * appropriate to place any Parcel data in to persistent storage: changes
59 * in the underlying implementation of any of the data in the Parcel can
60 * render older data unreadable.</p>
61 *
62 * <p>The bulk of the Parcel API revolves around reading and writing data
63 * of various types.  There are six major classes of such functions available.</p>
64 *
65 * <h3>Primitives</h3>
66 *
67 * <p>The most basic data functions are for writing and reading primitive
68 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
69 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
70 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
71 * {@link #writeString}, {@link #readString}.  Most other
72 * data operations are built on top of these.  The given data is written and
73 * read using the endianess of the host CPU.</p>
74 *
75 * <h3>Primitive Arrays</h3>
76 *
77 * <p>There are a variety of methods for reading and writing raw arrays
78 * of primitive objects, which generally result in writing a 4-byte length
79 * followed by the primitive data items.  The methods for reading can either
80 * read the data into an existing array, or create and return a new array.
81 * These available types are:</p>
82 *
83 * <ul>
84 * <li> {@link #writeBooleanArray(boolean[])},
85 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
86 * <li> {@link #writeByteArray(byte[])},
87 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
88 * {@link #createByteArray()}
89 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
90 * {@link #createCharArray()}
91 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
92 * {@link #createDoubleArray()}
93 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
94 * {@link #createFloatArray()}
95 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
96 * {@link #createIntArray()}
97 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
98 * {@link #createLongArray()}
99 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
100 * {@link #createStringArray()}.
101 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
102 * {@link #readSparseBooleanArray()}.
103 * </ul>
104 *
105 * <h3>Parcelables</h3>
106 *
107 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
108 * low-level) protocol for objects to write and read themselves from Parcels.
109 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
110 * and {@link #readParcelable(ClassLoader)} or
111 * {@link #writeParcelableArray} and
112 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
113 * methods write both the class type and its data to the Parcel, allowing
114 * that class to be reconstructed from the appropriate class loader when
115 * later reading.</p>
116 *
117 * <p>There are also some methods that provide a more efficient way to work
118 * with Parcelables: {@link #writeTypedArray},
119 * {@link #writeTypedList(List)},
120 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
121 * do not write the class information of the original object: instead, the
122 * caller of the read function must know what type to expect and pass in the
123 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
124 * properly construct the new object and read its data.  (To more efficient
125 * write and read a single Parceable object, you can directly call
126 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
127 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
128 * yourself.)</p>
129 *
130 * <h3>Bundles</h3>
131 *
132 * <p>A special type-safe container, called {@link Bundle}, is available
133 * for key/value maps of heterogeneous values.  This has many optimizations
134 * for improved performance when reading and writing data, and its type-safe
135 * API avoids difficult to debug type errors when finally marshalling the
136 * data contents into a Parcel.  The methods to use are
137 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
138 * {@link #readBundle(ClassLoader)}.
139 *
140 * <h3>Active Objects</h3>
141 *
142 * <p>An unusual feature of Parcel is the ability to read and write active
143 * objects.  For these objects the actual contents of the object is not
144 * written, rather a special token referencing the object is written.  When
145 * reading the object back from the Parcel, you do not get a new instance of
146 * the object, but rather a handle that operates on the exact same object that
147 * was originally written.  There are two forms of active objects available.</p>
148 *
149 * <p>{@link Binder} objects are a core facility of Android's general cross-process
150 * communication system.  The {@link IBinder} interface describes an abstract
151 * protocol with a Binder object.  Any such interface can be written in to
152 * a Parcel, and upon reading you will receive either the original object
153 * implementing that interface or a special proxy implementation
154 * that communicates calls back to the original object.  The methods to use are
155 * {@link #writeStrongBinder(IBinder)},
156 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
157 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
158 * {@link #createBinderArray()},
159 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
160 * {@link #createBinderArrayList()}.</p>
161 *
162 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
163 * can be written and {@link ParcelFileDescriptor} objects returned to operate
164 * on the original file descriptor.  The returned file descriptor is a dup
165 * of the original file descriptor: the object and fd is different, but
166 * operating on the same underlying file stream, with the same position, etc.
167 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
168 * {@link #readFileDescriptor()}.
169 *
170 * <h3>Untyped Containers</h3>
171 *
172 * <p>A final class of methods are for writing and reading standard Java
173 * containers of arbitrary types.  These all revolve around the
174 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
175 * which define the types of objects allowed.  The container methods are
176 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
177 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
178 * {@link #readArrayList(ClassLoader)},
179 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
180 * {@link #writeSparseArray(SparseArray)},
181 * {@link #readSparseArray(ClassLoader)}.
182 */
183public final class Parcel {
184    private static final boolean DEBUG_RECYCLE = false;
185    private static final boolean DEBUG_ARRAY_MAP = false;
186    private static final String TAG = "Parcel";
187
188    @SuppressWarnings({"UnusedDeclaration"})
189    private long mNativePtr; // used by native code
190
191    /**
192     * Flag indicating if {@link #mNativePtr} was allocated by this object,
193     * indicating that we're responsible for its lifecycle.
194     */
195    private boolean mOwnsNativeParcelObject;
196
197    private RuntimeException mStack;
198
199    private static final int POOL_SIZE = 6;
200    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
201    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
202
203    private static final int VAL_NULL = -1;
204    private static final int VAL_STRING = 0;
205    private static final int VAL_INTEGER = 1;
206    private static final int VAL_MAP = 2;
207    private static final int VAL_BUNDLE = 3;
208    private static final int VAL_PARCELABLE = 4;
209    private static final int VAL_SHORT = 5;
210    private static final int VAL_LONG = 6;
211    private static final int VAL_FLOAT = 7;
212    private static final int VAL_DOUBLE = 8;
213    private static final int VAL_BOOLEAN = 9;
214    private static final int VAL_CHARSEQUENCE = 10;
215    private static final int VAL_LIST  = 11;
216    private static final int VAL_SPARSEARRAY = 12;
217    private static final int VAL_BYTEARRAY = 13;
218    private static final int VAL_STRINGARRAY = 14;
219    private static final int VAL_IBINDER = 15;
220    private static final int VAL_PARCELABLEARRAY = 16;
221    private static final int VAL_OBJECTARRAY = 17;
222    private static final int VAL_INTARRAY = 18;
223    private static final int VAL_LONGARRAY = 19;
224    private static final int VAL_BYTE = 20;
225    private static final int VAL_SERIALIZABLE = 21;
226    private static final int VAL_SPARSEBOOLEANARRAY = 22;
227    private static final int VAL_BOOLEANARRAY = 23;
228    private static final int VAL_CHARSEQUENCEARRAY = 24;
229    private static final int VAL_PERSISTABLEBUNDLE = 25;
230    private static final int VAL_SIZE = 26;
231    private static final int VAL_SIZEF = 27;
232
233    // The initial int32 in a Binder call's reply Parcel header:
234    private static final int EX_SECURITY = -1;
235    private static final int EX_BAD_PARCELABLE = -2;
236    private static final int EX_ILLEGAL_ARGUMENT = -3;
237    private static final int EX_NULL_POINTER = -4;
238    private static final int EX_ILLEGAL_STATE = -5;
239    private static final int EX_NETWORK_MAIN_THREAD = -6;
240    private static final int EX_UNSUPPORTED_OPERATION = -7;
241    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
242
243    private static native int nativeDataSize(long nativePtr);
244    private static native int nativeDataAvail(long nativePtr);
245    private static native int nativeDataPosition(long nativePtr);
246    private static native int nativeDataCapacity(long nativePtr);
247    private static native void nativeSetDataSize(long nativePtr, int size);
248    private static native void nativeSetDataPosition(long nativePtr, int pos);
249    private static native void nativeSetDataCapacity(long nativePtr, int size);
250
251    private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
252    private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
253
254    private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
255    private static native void nativeWriteBlob(long nativePtr, byte[] b, int offset, int len);
256    private static native void nativeWriteInt(long nativePtr, int val);
257    private static native void nativeWriteLong(long nativePtr, long val);
258    private static native void nativeWriteFloat(long nativePtr, float val);
259    private static native void nativeWriteDouble(long nativePtr, double val);
260    private static native void nativeWriteString(long nativePtr, String val);
261    private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
262    private static native void nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
263
264    private static native byte[] nativeCreateByteArray(long nativePtr);
265    private static native byte[] nativeReadBlob(long nativePtr);
266    private static native int nativeReadInt(long nativePtr);
267    private static native long nativeReadLong(long nativePtr);
268    private static native float nativeReadFloat(long nativePtr);
269    private static native double nativeReadDouble(long nativePtr);
270    private static native String nativeReadString(long nativePtr);
271    private static native IBinder nativeReadStrongBinder(long nativePtr);
272    private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
273
274    private static native long nativeCreate();
275    private static native void nativeFreeBuffer(long nativePtr);
276    private static native void nativeDestroy(long nativePtr);
277
278    private static native byte[] nativeMarshall(long nativePtr);
279    private static native void nativeUnmarshall(
280            long nativePtr, byte[] data, int offset, int length);
281    private static native void nativeAppendFrom(
282            long thisNativePtr, long otherNativePtr, int offset, int length);
283    private static native boolean nativeHasFileDescriptors(long nativePtr);
284    private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
285    private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
286
287    public final static Parcelable.Creator<String> STRING_CREATOR
288             = new Parcelable.Creator<String>() {
289        public String createFromParcel(Parcel source) {
290            return source.readString();
291        }
292        public String[] newArray(int size) {
293            return new String[size];
294        }
295    };
296
297    /**
298     * Retrieve a new Parcel object from the pool.
299     */
300    public static Parcel obtain() {
301        final Parcel[] pool = sOwnedPool;
302        synchronized (pool) {
303            Parcel p;
304            for (int i=0; i<POOL_SIZE; i++) {
305                p = pool[i];
306                if (p != null) {
307                    pool[i] = null;
308                    if (DEBUG_RECYCLE) {
309                        p.mStack = new RuntimeException();
310                    }
311                    return p;
312                }
313            }
314        }
315        return new Parcel(0);
316    }
317
318    /**
319     * Put a Parcel object back into the pool.  You must not touch
320     * the object after this call.
321     */
322    public final void recycle() {
323        if (DEBUG_RECYCLE) mStack = null;
324        freeBuffer();
325
326        final Parcel[] pool;
327        if (mOwnsNativeParcelObject) {
328            pool = sOwnedPool;
329        } else {
330            mNativePtr = 0;
331            pool = sHolderPool;
332        }
333
334        synchronized (pool) {
335            for (int i=0; i<POOL_SIZE; i++) {
336                if (pool[i] == null) {
337                    pool[i] = this;
338                    return;
339                }
340            }
341        }
342    }
343
344    /** @hide */
345    public static native long getGlobalAllocSize();
346
347    /** @hide */
348    public static native long getGlobalAllocCount();
349
350    /**
351     * Returns the total amount of data contained in the parcel.
352     */
353    public final int dataSize() {
354        return nativeDataSize(mNativePtr);
355    }
356
357    /**
358     * Returns the amount of data remaining to be read from the
359     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
360     */
361    public final int dataAvail() {
362        return nativeDataAvail(mNativePtr);
363    }
364
365    /**
366     * Returns the current position in the parcel data.  Never
367     * more than {@link #dataSize}.
368     */
369    public final int dataPosition() {
370        return nativeDataPosition(mNativePtr);
371    }
372
373    /**
374     * Returns the total amount of space in the parcel.  This is always
375     * >= {@link #dataSize}.  The difference between it and dataSize() is the
376     * amount of room left until the parcel needs to re-allocate its
377     * data buffer.
378     */
379    public final int dataCapacity() {
380        return nativeDataCapacity(mNativePtr);
381    }
382
383    /**
384     * Change the amount of data in the parcel.  Can be either smaller or
385     * larger than the current size.  If larger than the current capacity,
386     * more memory will be allocated.
387     *
388     * @param size The new number of bytes in the Parcel.
389     */
390    public final void setDataSize(int size) {
391        nativeSetDataSize(mNativePtr, size);
392    }
393
394    /**
395     * Move the current read/write position in the parcel.
396     * @param pos New offset in the parcel; must be between 0 and
397     * {@link #dataSize}.
398     */
399    public final void setDataPosition(int pos) {
400        nativeSetDataPosition(mNativePtr, pos);
401    }
402
403    /**
404     * Change the capacity (current available space) of the parcel.
405     *
406     * @param size The new capacity of the parcel, in bytes.  Can not be
407     * less than {@link #dataSize} -- that is, you can not drop existing data
408     * with this method.
409     */
410    public final void setDataCapacity(int size) {
411        nativeSetDataCapacity(mNativePtr, size);
412    }
413
414    /** @hide */
415    public final boolean pushAllowFds(boolean allowFds) {
416        return nativePushAllowFds(mNativePtr, allowFds);
417    }
418
419    /** @hide */
420    public final void restoreAllowFds(boolean lastValue) {
421        nativeRestoreAllowFds(mNativePtr, lastValue);
422    }
423
424    /**
425     * Returns the raw bytes of the parcel.
426     *
427     * <p class="note">The data you retrieve here <strong>must not</strong>
428     * be placed in any kind of persistent storage (on local disk, across
429     * a network, etc).  For that, you should use standard serialization
430     * or another kind of general serialization mechanism.  The Parcel
431     * marshalled representation is highly optimized for local IPC, and as
432     * such does not attempt to maintain compatibility with data created
433     * in different versions of the platform.
434     */
435    public final byte[] marshall() {
436        return nativeMarshall(mNativePtr);
437    }
438
439    /**
440     * Set the bytes in data to be the raw bytes of this Parcel.
441     */
442    public final void unmarshall(byte[] data, int offset, int length) {
443        nativeUnmarshall(mNativePtr, data, offset, length);
444    }
445
446    public final void appendFrom(Parcel parcel, int offset, int length) {
447        nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length);
448    }
449
450    /**
451     * Report whether the parcel contains any marshalled file descriptors.
452     */
453    public final boolean hasFileDescriptors() {
454        return nativeHasFileDescriptors(mNativePtr);
455    }
456
457    /**
458     * Store or read an IBinder interface token in the parcel at the current
459     * {@link #dataPosition}.  This is used to validate that the marshalled
460     * transaction is intended for the target interface.
461     */
462    public final void writeInterfaceToken(String interfaceName) {
463        nativeWriteInterfaceToken(mNativePtr, interfaceName);
464    }
465
466    public final void enforceInterface(String interfaceName) {
467        nativeEnforceInterface(mNativePtr, interfaceName);
468    }
469
470    /**
471     * Write a byte array into the parcel at the current {@link #dataPosition},
472     * growing {@link #dataCapacity} if needed.
473     * @param b Bytes to place into the parcel.
474     */
475    public final void writeByteArray(byte[] b) {
476        writeByteArray(b, 0, (b != null) ? b.length : 0);
477    }
478
479    /**
480     * Write a byte array into the parcel at the current {@link #dataPosition},
481     * growing {@link #dataCapacity} if needed.
482     * @param b Bytes to place into the parcel.
483     * @param offset Index of first byte to be written.
484     * @param len Number of bytes to write.
485     */
486    public final void writeByteArray(byte[] b, int offset, int len) {
487        if (b == null) {
488            writeInt(-1);
489            return;
490        }
491        Arrays.checkOffsetAndCount(b.length, offset, len);
492        nativeWriteByteArray(mNativePtr, b, offset, len);
493    }
494
495    /**
496     * Write a blob of data into the parcel at the current {@link #dataPosition},
497     * growing {@link #dataCapacity} if needed.
498     * @param b Bytes to place into the parcel.
499     * {@hide}
500     * {@SystemApi}
501     */
502    public final void writeBlob(byte[] b) {
503        nativeWriteBlob(mNativePtr, b, 0, (b != null) ? b.length : 0);
504    }
505
506    /**
507     * Write an integer value into the parcel at the current dataPosition(),
508     * growing dataCapacity() if needed.
509     */
510    public final void writeInt(int val) {
511        nativeWriteInt(mNativePtr, val);
512    }
513
514    /**
515     * Write a long integer value into the parcel at the current dataPosition(),
516     * growing dataCapacity() if needed.
517     */
518    public final void writeLong(long val) {
519        nativeWriteLong(mNativePtr, val);
520    }
521
522    /**
523     * Write a floating point value into the parcel at the current
524     * dataPosition(), growing dataCapacity() if needed.
525     */
526    public final void writeFloat(float val) {
527        nativeWriteFloat(mNativePtr, val);
528    }
529
530    /**
531     * Write a double precision floating point value into the parcel at the
532     * current dataPosition(), growing dataCapacity() if needed.
533     */
534    public final void writeDouble(double val) {
535        nativeWriteDouble(mNativePtr, val);
536    }
537
538    /**
539     * Write a string value into the parcel at the current dataPosition(),
540     * growing dataCapacity() if needed.
541     */
542    public final void writeString(String val) {
543        nativeWriteString(mNativePtr, val);
544    }
545
546    /**
547     * Write a CharSequence value into the parcel at the current dataPosition(),
548     * growing dataCapacity() if needed.
549     * @hide
550     */
551    public final void writeCharSequence(CharSequence val) {
552        TextUtils.writeToParcel(val, this, 0);
553    }
554
555    /**
556     * Write an object into the parcel at the current dataPosition(),
557     * growing dataCapacity() if needed.
558     */
559    public final void writeStrongBinder(IBinder val) {
560        nativeWriteStrongBinder(mNativePtr, val);
561    }
562
563    /**
564     * Write an object into the parcel at the current dataPosition(),
565     * growing dataCapacity() if needed.
566     */
567    public final void writeStrongInterface(IInterface val) {
568        writeStrongBinder(val == null ? null : val.asBinder());
569    }
570
571    /**
572     * Write a FileDescriptor into the parcel at the current dataPosition(),
573     * growing dataCapacity() if needed.
574     *
575     * <p class="caution">The file descriptor will not be closed, which may
576     * result in file descriptor leaks when objects are returned from Binder
577     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
578     * accepts contextual flags and will close the original file descriptor
579     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
580     */
581    public final void writeFileDescriptor(FileDescriptor val) {
582        nativeWriteFileDescriptor(mNativePtr, val);
583    }
584
585    /**
586     * Write a byte value into the parcel at the current dataPosition(),
587     * growing dataCapacity() if needed.
588     */
589    public final void writeByte(byte val) {
590        writeInt(val);
591    }
592
593    /**
594     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
595     * at the current dataPosition(),
596     * growing dataCapacity() if needed.  The Map keys must be String objects.
597     * The Map values are written using {@link #writeValue} and must follow
598     * the specification there.
599     *
600     * <p>It is strongly recommended to use {@link #writeBundle} instead of
601     * this method, since the Bundle class provides a type-safe API that
602     * allows you to avoid mysterious type errors at the point of marshalling.
603     */
604    public final void writeMap(Map val) {
605        writeMapInternal((Map<String, Object>) val);
606    }
607
608    /**
609     * Flatten a Map into the parcel at the current dataPosition(),
610     * growing dataCapacity() if needed.  The Map keys must be String objects.
611     */
612    /* package */ void writeMapInternal(Map<String,Object> val) {
613        if (val == null) {
614            writeInt(-1);
615            return;
616        }
617        Set<Map.Entry<String,Object>> entries = val.entrySet();
618        writeInt(entries.size());
619        for (Map.Entry<String,Object> e : entries) {
620            writeValue(e.getKey());
621            writeValue(e.getValue());
622        }
623    }
624
625    /**
626     * Flatten an ArrayMap into the parcel at the current dataPosition(),
627     * growing dataCapacity() if needed.  The Map keys must be String objects.
628     */
629    /* package */ void writeArrayMapInternal(ArrayMap<String, Object> val) {
630        if (val == null) {
631            writeInt(-1);
632            return;
633        }
634        final int N = val.size();
635        writeInt(N);
636        if (DEBUG_ARRAY_MAP) {
637            RuntimeException here =  new RuntimeException("here");
638            here.fillInStackTrace();
639            Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
640        }
641        int startPos;
642        for (int i=0; i<N; i++) {
643            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
644            writeString(val.keyAt(i));
645            writeValue(val.valueAt(i));
646            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
647                    + (dataPosition()-startPos) + " bytes: key=0x"
648                    + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
649                    + " " + val.keyAt(i));
650        }
651    }
652
653    /**
654     * @hide For testing only.
655     */
656    public void writeArrayMap(ArrayMap<String, Object> val) {
657        writeArrayMapInternal(val);
658    }
659
660    /**
661     * Flatten a Bundle into the parcel at the current dataPosition(),
662     * growing dataCapacity() if needed.
663     */
664    public final void writeBundle(Bundle val) {
665        if (val == null) {
666            writeInt(-1);
667            return;
668        }
669
670        val.writeToParcel(this, 0);
671    }
672
673    /**
674     * Flatten a PersistableBundle into the parcel at the current dataPosition(),
675     * growing dataCapacity() if needed.
676     */
677    public final void writePersistableBundle(PersistableBundle val) {
678        if (val == null) {
679            writeInt(-1);
680            return;
681        }
682
683        val.writeToParcel(this, 0);
684    }
685
686    /**
687     * Flatten a Size into the parcel at the current dataPosition(),
688     * growing dataCapacity() if needed.
689     */
690    public final void writeSize(Size val) {
691        writeInt(val.getWidth());
692        writeInt(val.getHeight());
693    }
694
695    /**
696     * Flatten a SizeF into the parcel at the current dataPosition(),
697     * growing dataCapacity() if needed.
698     */
699    public final void writeSizeF(SizeF val) {
700        writeFloat(val.getWidth());
701        writeFloat(val.getHeight());
702    }
703
704    /**
705     * Flatten a List into the parcel at the current dataPosition(), growing
706     * dataCapacity() if needed.  The List values are written using
707     * {@link #writeValue} and must follow the specification there.
708     */
709    public final void writeList(List val) {
710        if (val == null) {
711            writeInt(-1);
712            return;
713        }
714        int N = val.size();
715        int i=0;
716        writeInt(N);
717        while (i < N) {
718            writeValue(val.get(i));
719            i++;
720        }
721    }
722
723    /**
724     * Flatten an Object array into the parcel at the current dataPosition(),
725     * growing dataCapacity() if needed.  The array values are written using
726     * {@link #writeValue} and must follow the specification there.
727     */
728    public final void writeArray(Object[] val) {
729        if (val == null) {
730            writeInt(-1);
731            return;
732        }
733        int N = val.length;
734        int i=0;
735        writeInt(N);
736        while (i < N) {
737            writeValue(val[i]);
738            i++;
739        }
740    }
741
742    /**
743     * Flatten a generic SparseArray into the parcel at the current
744     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
745     * values are written using {@link #writeValue} and must follow the
746     * specification there.
747     */
748    public final void writeSparseArray(SparseArray<Object> val) {
749        if (val == null) {
750            writeInt(-1);
751            return;
752        }
753        int N = val.size();
754        writeInt(N);
755        int i=0;
756        while (i < N) {
757            writeInt(val.keyAt(i));
758            writeValue(val.valueAt(i));
759            i++;
760        }
761    }
762
763    public final void writeSparseBooleanArray(SparseBooleanArray val) {
764        if (val == null) {
765            writeInt(-1);
766            return;
767        }
768        int N = val.size();
769        writeInt(N);
770        int i=0;
771        while (i < N) {
772            writeInt(val.keyAt(i));
773            writeByte((byte)(val.valueAt(i) ? 1 : 0));
774            i++;
775        }
776    }
777
778    public final void writeBooleanArray(boolean[] val) {
779        if (val != null) {
780            int N = val.length;
781            writeInt(N);
782            for (int i=0; i<N; i++) {
783                writeInt(val[i] ? 1 : 0);
784            }
785        } else {
786            writeInt(-1);
787        }
788    }
789
790    public final boolean[] createBooleanArray() {
791        int N = readInt();
792        // >>2 as a fast divide-by-4 works in the create*Array() functions
793        // because dataAvail() will never return a negative number.  4 is
794        // the size of a stored boolean in the stream.
795        if (N >= 0 && N <= (dataAvail() >> 2)) {
796            boolean[] val = new boolean[N];
797            for (int i=0; i<N; i++) {
798                val[i] = readInt() != 0;
799            }
800            return val;
801        } else {
802            return null;
803        }
804    }
805
806    public final void readBooleanArray(boolean[] val) {
807        int N = readInt();
808        if (N == val.length) {
809            for (int i=0; i<N; i++) {
810                val[i] = readInt() != 0;
811            }
812        } else {
813            throw new RuntimeException("bad array lengths");
814        }
815    }
816
817    public final void writeCharArray(char[] val) {
818        if (val != null) {
819            int N = val.length;
820            writeInt(N);
821            for (int i=0; i<N; i++) {
822                writeInt((int)val[i]);
823            }
824        } else {
825            writeInt(-1);
826        }
827    }
828
829    public final char[] createCharArray() {
830        int N = readInt();
831        if (N >= 0 && N <= (dataAvail() >> 2)) {
832            char[] val = new char[N];
833            for (int i=0; i<N; i++) {
834                val[i] = (char)readInt();
835            }
836            return val;
837        } else {
838            return null;
839        }
840    }
841
842    public final void readCharArray(char[] val) {
843        int N = readInt();
844        if (N == val.length) {
845            for (int i=0; i<N; i++) {
846                val[i] = (char)readInt();
847            }
848        } else {
849            throw new RuntimeException("bad array lengths");
850        }
851    }
852
853    public final void writeIntArray(int[] val) {
854        if (val != null) {
855            int N = val.length;
856            writeInt(N);
857            for (int i=0; i<N; i++) {
858                writeInt(val[i]);
859            }
860        } else {
861            writeInt(-1);
862        }
863    }
864
865    public final int[] createIntArray() {
866        int N = readInt();
867        if (N >= 0 && N <= (dataAvail() >> 2)) {
868            int[] val = new int[N];
869            for (int i=0; i<N; i++) {
870                val[i] = readInt();
871            }
872            return val;
873        } else {
874            return null;
875        }
876    }
877
878    public final void readIntArray(int[] val) {
879        int N = readInt();
880        if (N == val.length) {
881            for (int i=0; i<N; i++) {
882                val[i] = readInt();
883            }
884        } else {
885            throw new RuntimeException("bad array lengths");
886        }
887    }
888
889    public final void writeLongArray(long[] val) {
890        if (val != null) {
891            int N = val.length;
892            writeInt(N);
893            for (int i=0; i<N; i++) {
894                writeLong(val[i]);
895            }
896        } else {
897            writeInt(-1);
898        }
899    }
900
901    public final long[] createLongArray() {
902        int N = readInt();
903        // >>3 because stored longs are 64 bits
904        if (N >= 0 && N <= (dataAvail() >> 3)) {
905            long[] val = new long[N];
906            for (int i=0; i<N; i++) {
907                val[i] = readLong();
908            }
909            return val;
910        } else {
911            return null;
912        }
913    }
914
915    public final void readLongArray(long[] val) {
916        int N = readInt();
917        if (N == val.length) {
918            for (int i=0; i<N; i++) {
919                val[i] = readLong();
920            }
921        } else {
922            throw new RuntimeException("bad array lengths");
923        }
924    }
925
926    public final void writeFloatArray(float[] val) {
927        if (val != null) {
928            int N = val.length;
929            writeInt(N);
930            for (int i=0; i<N; i++) {
931                writeFloat(val[i]);
932            }
933        } else {
934            writeInt(-1);
935        }
936    }
937
938    public final float[] createFloatArray() {
939        int N = readInt();
940        // >>2 because stored floats are 4 bytes
941        if (N >= 0 && N <= (dataAvail() >> 2)) {
942            float[] val = new float[N];
943            for (int i=0; i<N; i++) {
944                val[i] = readFloat();
945            }
946            return val;
947        } else {
948            return null;
949        }
950    }
951
952    public final void readFloatArray(float[] val) {
953        int N = readInt();
954        if (N == val.length) {
955            for (int i=0; i<N; i++) {
956                val[i] = readFloat();
957            }
958        } else {
959            throw new RuntimeException("bad array lengths");
960        }
961    }
962
963    public final void writeDoubleArray(double[] val) {
964        if (val != null) {
965            int N = val.length;
966            writeInt(N);
967            for (int i=0; i<N; i++) {
968                writeDouble(val[i]);
969            }
970        } else {
971            writeInt(-1);
972        }
973    }
974
975    public final double[] createDoubleArray() {
976        int N = readInt();
977        // >>3 because stored doubles are 8 bytes
978        if (N >= 0 && N <= (dataAvail() >> 3)) {
979            double[] val = new double[N];
980            for (int i=0; i<N; i++) {
981                val[i] = readDouble();
982            }
983            return val;
984        } else {
985            return null;
986        }
987    }
988
989    public final void readDoubleArray(double[] val) {
990        int N = readInt();
991        if (N == val.length) {
992            for (int i=0; i<N; i++) {
993                val[i] = readDouble();
994            }
995        } else {
996            throw new RuntimeException("bad array lengths");
997        }
998    }
999
1000    public final void writeStringArray(String[] val) {
1001        if (val != null) {
1002            int N = val.length;
1003            writeInt(N);
1004            for (int i=0; i<N; i++) {
1005                writeString(val[i]);
1006            }
1007        } else {
1008            writeInt(-1);
1009        }
1010    }
1011
1012    public final String[] createStringArray() {
1013        int N = readInt();
1014        if (N >= 0) {
1015            String[] val = new String[N];
1016            for (int i=0; i<N; i++) {
1017                val[i] = readString();
1018            }
1019            return val;
1020        } else {
1021            return null;
1022        }
1023    }
1024
1025    public final void readStringArray(String[] val) {
1026        int N = readInt();
1027        if (N == val.length) {
1028            for (int i=0; i<N; i++) {
1029                val[i] = readString();
1030            }
1031        } else {
1032            throw new RuntimeException("bad array lengths");
1033        }
1034    }
1035
1036    public final void writeBinderArray(IBinder[] val) {
1037        if (val != null) {
1038            int N = val.length;
1039            writeInt(N);
1040            for (int i=0; i<N; i++) {
1041                writeStrongBinder(val[i]);
1042            }
1043        } else {
1044            writeInt(-1);
1045        }
1046    }
1047
1048    /**
1049     * @hide
1050     */
1051    public final void writeCharSequenceArray(CharSequence[] val) {
1052        if (val != null) {
1053            int N = val.length;
1054            writeInt(N);
1055            for (int i=0; i<N; i++) {
1056                writeCharSequence(val[i]);
1057            }
1058        } else {
1059            writeInt(-1);
1060        }
1061    }
1062
1063    /**
1064     * @hide
1065     */
1066    public final void writeCharSequenceList(ArrayList<CharSequence> val) {
1067        if (val != null) {
1068            int N = val.size();
1069            writeInt(N);
1070            for (int i=0; i<N; i++) {
1071                writeCharSequence(val.get(i));
1072            }
1073        } else {
1074            writeInt(-1);
1075        }
1076    }
1077
1078    public final IBinder[] createBinderArray() {
1079        int N = readInt();
1080        if (N >= 0) {
1081            IBinder[] val = new IBinder[N];
1082            for (int i=0; i<N; i++) {
1083                val[i] = readStrongBinder();
1084            }
1085            return val;
1086        } else {
1087            return null;
1088        }
1089    }
1090
1091    public final void readBinderArray(IBinder[] val) {
1092        int N = readInt();
1093        if (N == val.length) {
1094            for (int i=0; i<N; i++) {
1095                val[i] = readStrongBinder();
1096            }
1097        } else {
1098            throw new RuntimeException("bad array lengths");
1099        }
1100    }
1101
1102    /**
1103     * Flatten a List containing a particular object type into the parcel, at
1104     * the current dataPosition() and growing dataCapacity() if needed.  The
1105     * type of the objects in the list must be one that implements Parcelable.
1106     * Unlike the generic writeList() method, however, only the raw data of the
1107     * objects is written and not their type, so you must use the corresponding
1108     * readTypedList() to unmarshall them.
1109     *
1110     * @param val The list of objects to be written.
1111     *
1112     * @see #createTypedArrayList
1113     * @see #readTypedList
1114     * @see Parcelable
1115     */
1116    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1117        if (val == null) {
1118            writeInt(-1);
1119            return;
1120        }
1121        int N = val.size();
1122        int i=0;
1123        writeInt(N);
1124        while (i < N) {
1125            T item = val.get(i);
1126            if (item != null) {
1127                writeInt(1);
1128                item.writeToParcel(this, 0);
1129            } else {
1130                writeInt(0);
1131            }
1132            i++;
1133        }
1134    }
1135
1136    /**
1137     * Flatten a List containing String objects into the parcel, at
1138     * the current dataPosition() and growing dataCapacity() if needed.  They
1139     * can later be retrieved with {@link #createStringArrayList} or
1140     * {@link #readStringList}.
1141     *
1142     * @param val The list of strings to be written.
1143     *
1144     * @see #createStringArrayList
1145     * @see #readStringList
1146     */
1147    public final void writeStringList(List<String> val) {
1148        if (val == null) {
1149            writeInt(-1);
1150            return;
1151        }
1152        int N = val.size();
1153        int i=0;
1154        writeInt(N);
1155        while (i < N) {
1156            writeString(val.get(i));
1157            i++;
1158        }
1159    }
1160
1161    /**
1162     * Flatten a List containing IBinder objects into the parcel, at
1163     * the current dataPosition() and growing dataCapacity() if needed.  They
1164     * can later be retrieved with {@link #createBinderArrayList} or
1165     * {@link #readBinderList}.
1166     *
1167     * @param val The list of strings to be written.
1168     *
1169     * @see #createBinderArrayList
1170     * @see #readBinderList
1171     */
1172    public final void writeBinderList(List<IBinder> val) {
1173        if (val == null) {
1174            writeInt(-1);
1175            return;
1176        }
1177        int N = val.size();
1178        int i=0;
1179        writeInt(N);
1180        while (i < N) {
1181            writeStrongBinder(val.get(i));
1182            i++;
1183        }
1184    }
1185
1186    /**
1187     * Flatten a heterogeneous array containing a particular object type into
1188     * the parcel, at
1189     * the current dataPosition() and growing dataCapacity() if needed.  The
1190     * type of the objects in the array must be one that implements Parcelable.
1191     * Unlike the {@link #writeParcelableArray} method, however, only the
1192     * raw data of the objects is written and not their type, so you must use
1193     * {@link #readTypedArray} with the correct corresponding
1194     * {@link Parcelable.Creator} implementation to unmarshall them.
1195     *
1196     * @param val The array of objects to be written.
1197     * @param parcelableFlags Contextual flags as per
1198     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1199     *
1200     * @see #readTypedArray
1201     * @see #writeParcelableArray
1202     * @see Parcelable.Creator
1203     */
1204    public final <T extends Parcelable> void writeTypedArray(T[] val,
1205            int parcelableFlags) {
1206        if (val != null) {
1207            int N = val.length;
1208            writeInt(N);
1209            for (int i=0; i<N; i++) {
1210                T item = val[i];
1211                if (item != null) {
1212                    writeInt(1);
1213                    item.writeToParcel(this, parcelableFlags);
1214                } else {
1215                    writeInt(0);
1216                }
1217            }
1218        } else {
1219            writeInt(-1);
1220        }
1221    }
1222
1223    /**
1224     * Flatten a generic object in to a parcel.  The given Object value may
1225     * currently be one of the following types:
1226     *
1227     * <ul>
1228     * <li> null
1229     * <li> String
1230     * <li> Byte
1231     * <li> Short
1232     * <li> Integer
1233     * <li> Long
1234     * <li> Float
1235     * <li> Double
1236     * <li> Boolean
1237     * <li> String[]
1238     * <li> boolean[]
1239     * <li> byte[]
1240     * <li> int[]
1241     * <li> long[]
1242     * <li> Object[] (supporting objects of the same type defined here).
1243     * <li> {@link Bundle}
1244     * <li> Map (as supported by {@link #writeMap}).
1245     * <li> Any object that implements the {@link Parcelable} protocol.
1246     * <li> Parcelable[]
1247     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1248     * <li> List (as supported by {@link #writeList}).
1249     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1250     * <li> {@link IBinder}
1251     * <li> Any object that implements Serializable (but see
1252     *      {@link #writeSerializable} for caveats).  Note that all of the
1253     *      previous types have relatively efficient implementations for
1254     *      writing to a Parcel; having to rely on the generic serialization
1255     *      approach is much less efficient and should be avoided whenever
1256     *      possible.
1257     * </ul>
1258     *
1259     * <p class="caution">{@link Parcelable} objects are written with
1260     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1261     * serializing objects containing {@link ParcelFileDescriptor}s,
1262     * this may result in file descriptor leaks when they are returned from
1263     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1264     * should be used).</p>
1265     */
1266    public final void writeValue(Object v) {
1267        if (v == null) {
1268            writeInt(VAL_NULL);
1269        } else if (v instanceof String) {
1270            writeInt(VAL_STRING);
1271            writeString((String) v);
1272        } else if (v instanceof Integer) {
1273            writeInt(VAL_INTEGER);
1274            writeInt((Integer) v);
1275        } else if (v instanceof Map) {
1276            writeInt(VAL_MAP);
1277            writeMap((Map) v);
1278        } else if (v instanceof Bundle) {
1279            // Must be before Parcelable
1280            writeInt(VAL_BUNDLE);
1281            writeBundle((Bundle) v);
1282        } else if (v instanceof Parcelable) {
1283            writeInt(VAL_PARCELABLE);
1284            writeParcelable((Parcelable) v, 0);
1285        } else if (v instanceof Short) {
1286            writeInt(VAL_SHORT);
1287            writeInt(((Short) v).intValue());
1288        } else if (v instanceof Long) {
1289            writeInt(VAL_LONG);
1290            writeLong((Long) v);
1291        } else if (v instanceof Float) {
1292            writeInt(VAL_FLOAT);
1293            writeFloat((Float) v);
1294        } else if (v instanceof Double) {
1295            writeInt(VAL_DOUBLE);
1296            writeDouble((Double) v);
1297        } else if (v instanceof Boolean) {
1298            writeInt(VAL_BOOLEAN);
1299            writeInt((Boolean) v ? 1 : 0);
1300        } else if (v instanceof CharSequence) {
1301            // Must be after String
1302            writeInt(VAL_CHARSEQUENCE);
1303            writeCharSequence((CharSequence) v);
1304        } else if (v instanceof List) {
1305            writeInt(VAL_LIST);
1306            writeList((List) v);
1307        } else if (v instanceof SparseArray) {
1308            writeInt(VAL_SPARSEARRAY);
1309            writeSparseArray((SparseArray) v);
1310        } else if (v instanceof boolean[]) {
1311            writeInt(VAL_BOOLEANARRAY);
1312            writeBooleanArray((boolean[]) v);
1313        } else if (v instanceof byte[]) {
1314            writeInt(VAL_BYTEARRAY);
1315            writeByteArray((byte[]) v);
1316        } else if (v instanceof String[]) {
1317            writeInt(VAL_STRINGARRAY);
1318            writeStringArray((String[]) v);
1319        } else if (v instanceof CharSequence[]) {
1320            // Must be after String[] and before Object[]
1321            writeInt(VAL_CHARSEQUENCEARRAY);
1322            writeCharSequenceArray((CharSequence[]) v);
1323        } else if (v instanceof IBinder) {
1324            writeInt(VAL_IBINDER);
1325            writeStrongBinder((IBinder) v);
1326        } else if (v instanceof Parcelable[]) {
1327            writeInt(VAL_PARCELABLEARRAY);
1328            writeParcelableArray((Parcelable[]) v, 0);
1329        } else if (v instanceof int[]) {
1330            writeInt(VAL_INTARRAY);
1331            writeIntArray((int[]) v);
1332        } else if (v instanceof long[]) {
1333            writeInt(VAL_LONGARRAY);
1334            writeLongArray((long[]) v);
1335        } else if (v instanceof Byte) {
1336            writeInt(VAL_BYTE);
1337            writeInt((Byte) v);
1338        } else if (v instanceof PersistableBundle) {
1339            writeInt(VAL_PERSISTABLEBUNDLE);
1340            writePersistableBundle((PersistableBundle) v);
1341        } else if (v instanceof Size) {
1342            writeInt(VAL_SIZE);
1343            writeSize((Size) v);
1344        } else if (v instanceof SizeF) {
1345            writeInt(VAL_SIZEF);
1346            writeSizeF((SizeF) v);
1347        } else {
1348            Class<?> clazz = v.getClass();
1349            if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1350                // Only pure Object[] are written here, Other arrays of non-primitive types are
1351                // handled by serialization as this does not record the component type.
1352                writeInt(VAL_OBJECTARRAY);
1353                writeArray((Object[]) v);
1354            } else if (v instanceof Serializable) {
1355                // Must be last
1356                writeInt(VAL_SERIALIZABLE);
1357                writeSerializable((Serializable) v);
1358            } else {
1359                throw new RuntimeException("Parcel: unable to marshal value " + v);
1360            }
1361        }
1362    }
1363
1364    /**
1365     * Flatten the name of the class of the Parcelable and its contents
1366     * into the parcel.
1367     *
1368     * @param p The Parcelable object to be written.
1369     * @param parcelableFlags Contextual flags as per
1370     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1371     */
1372    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1373        if (p == null) {
1374            writeString(null);
1375            return;
1376        }
1377        writeParcelableCreator(p);
1378        p.writeToParcel(this, parcelableFlags);
1379    }
1380
1381    /** @hide */
1382    public final void writeParcelableCreator(Parcelable p) {
1383        String name = p.getClass().getName();
1384        writeString(name);
1385    }
1386
1387    /**
1388     * Write a generic serializable object in to a Parcel.  It is strongly
1389     * recommended that this method be avoided, since the serialization
1390     * overhead is extremely large, and this approach will be much slower than
1391     * using the other approaches to writing data in to a Parcel.
1392     */
1393    public final void writeSerializable(Serializable s) {
1394        if (s == null) {
1395            writeString(null);
1396            return;
1397        }
1398        String name = s.getClass().getName();
1399        writeString(name);
1400
1401        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1402        try {
1403            ObjectOutputStream oos = new ObjectOutputStream(baos);
1404            oos.writeObject(s);
1405            oos.close();
1406
1407            writeByteArray(baos.toByteArray());
1408        } catch (IOException ioe) {
1409            throw new RuntimeException("Parcelable encountered " +
1410                "IOException writing serializable object (name = " + name +
1411                ")", ioe);
1412        }
1413    }
1414
1415    /**
1416     * Special function for writing an exception result at the header of
1417     * a parcel, to be used when returning an exception from a transaction.
1418     * Note that this currently only supports a few exception types; any other
1419     * exception will be re-thrown by this function as a RuntimeException
1420     * (to be caught by the system's last-resort exception handling when
1421     * dispatching a transaction).
1422     *
1423     * <p>The supported exception types are:
1424     * <ul>
1425     * <li>{@link BadParcelableException}
1426     * <li>{@link IllegalArgumentException}
1427     * <li>{@link IllegalStateException}
1428     * <li>{@link NullPointerException}
1429     * <li>{@link SecurityException}
1430     * <li>{@link NetworkOnMainThreadException}
1431     * </ul>
1432     *
1433     * @param e The Exception to be written.
1434     *
1435     * @see #writeNoException
1436     * @see #readException
1437     */
1438    public final void writeException(Exception e) {
1439        int code = 0;
1440        if (e instanceof SecurityException) {
1441            code = EX_SECURITY;
1442        } else if (e instanceof BadParcelableException) {
1443            code = EX_BAD_PARCELABLE;
1444        } else if (e instanceof IllegalArgumentException) {
1445            code = EX_ILLEGAL_ARGUMENT;
1446        } else if (e instanceof NullPointerException) {
1447            code = EX_NULL_POINTER;
1448        } else if (e instanceof IllegalStateException) {
1449            code = EX_ILLEGAL_STATE;
1450        } else if (e instanceof NetworkOnMainThreadException) {
1451            code = EX_NETWORK_MAIN_THREAD;
1452        } else if (e instanceof UnsupportedOperationException) {
1453            code = EX_UNSUPPORTED_OPERATION;
1454        }
1455        writeInt(code);
1456        StrictMode.clearGatheredViolations();
1457        if (code == 0) {
1458            if (e instanceof RuntimeException) {
1459                throw (RuntimeException) e;
1460            }
1461            throw new RuntimeException(e);
1462        }
1463        writeString(e.getMessage());
1464    }
1465
1466    /**
1467     * Special function for writing information at the front of the Parcel
1468     * indicating that no exception occurred.
1469     *
1470     * @see #writeException
1471     * @see #readException
1472     */
1473    public final void writeNoException() {
1474        // Despite the name of this function ("write no exception"),
1475        // it should instead be thought of as "write the RPC response
1476        // header", but because this function name is written out by
1477        // the AIDL compiler, we're not going to rename it.
1478        //
1479        // The response header, in the non-exception case (see also
1480        // writeException above, also called by the AIDL compiler), is
1481        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1482        // StrictMode has gathered up violations that have occurred
1483        // during a Binder call, in which case we write out the number
1484        // of violations and their details, serialized, before the
1485        // actual RPC respons data.  The receiving end of this is
1486        // readException(), below.
1487        if (StrictMode.hasGatheredViolations()) {
1488            writeInt(EX_HAS_REPLY_HEADER);
1489            final int sizePosition = dataPosition();
1490            writeInt(0);  // total size of fat header, to be filled in later
1491            StrictMode.writeGatheredViolationsToParcel(this);
1492            final int payloadPosition = dataPosition();
1493            setDataPosition(sizePosition);
1494            writeInt(payloadPosition - sizePosition);  // header size
1495            setDataPosition(payloadPosition);
1496        } else {
1497            writeInt(0);
1498        }
1499    }
1500
1501    /**
1502     * Special function for reading an exception result from the header of
1503     * a parcel, to be used after receiving the result of a transaction.  This
1504     * will throw the exception for you if it had been written to the Parcel,
1505     * otherwise return and let you read the normal result data from the Parcel.
1506     *
1507     * @see #writeException
1508     * @see #writeNoException
1509     */
1510    public final void readException() {
1511        int code = readExceptionCode();
1512        if (code != 0) {
1513            String msg = readString();
1514            readException(code, msg);
1515        }
1516    }
1517
1518    /**
1519     * Parses the header of a Binder call's response Parcel and
1520     * returns the exception code.  Deals with lite or fat headers.
1521     * In the common successful case, this header is generally zero.
1522     * In less common cases, it's a small negative number and will be
1523     * followed by an error string.
1524     *
1525     * This exists purely for android.database.DatabaseUtils and
1526     * insulating it from having to handle fat headers as returned by
1527     * e.g. StrictMode-induced RPC responses.
1528     *
1529     * @hide
1530     */
1531    public final int readExceptionCode() {
1532        int code = readInt();
1533        if (code == EX_HAS_REPLY_HEADER) {
1534            int headerSize = readInt();
1535            if (headerSize == 0) {
1536                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1537            } else {
1538                // Currently the only thing in the header is StrictMode stacks,
1539                // but discussions around event/RPC tracing suggest we might
1540                // put that here too.  If so, switch on sub-header tags here.
1541                // But for now, just parse out the StrictMode stuff.
1542                StrictMode.readAndHandleBinderCallViolations(this);
1543            }
1544            // And fat response headers are currently only used when
1545            // there are no exceptions, so return no error:
1546            return 0;
1547        }
1548        return code;
1549    }
1550
1551    /**
1552     * Throw an exception with the given message. Not intended for use
1553     * outside the Parcel class.
1554     *
1555     * @param code Used to determine which exception class to throw.
1556     * @param msg The exception message.
1557     */
1558    public final void readException(int code, String msg) {
1559        switch (code) {
1560            case EX_SECURITY:
1561                throw new SecurityException(msg);
1562            case EX_BAD_PARCELABLE:
1563                throw new BadParcelableException(msg);
1564            case EX_ILLEGAL_ARGUMENT:
1565                throw new IllegalArgumentException(msg);
1566            case EX_NULL_POINTER:
1567                throw new NullPointerException(msg);
1568            case EX_ILLEGAL_STATE:
1569                throw new IllegalStateException(msg);
1570            case EX_NETWORK_MAIN_THREAD:
1571                throw new NetworkOnMainThreadException();
1572            case EX_UNSUPPORTED_OPERATION:
1573                throw new UnsupportedOperationException(msg);
1574        }
1575        throw new RuntimeException("Unknown exception code: " + code
1576                + " msg " + msg);
1577    }
1578
1579    /**
1580     * Read an integer value from the parcel at the current dataPosition().
1581     */
1582    public final int readInt() {
1583        return nativeReadInt(mNativePtr);
1584    }
1585
1586    /**
1587     * Read a long integer value from the parcel at the current dataPosition().
1588     */
1589    public final long readLong() {
1590        return nativeReadLong(mNativePtr);
1591    }
1592
1593    /**
1594     * Read a floating point value from the parcel at the current
1595     * dataPosition().
1596     */
1597    public final float readFloat() {
1598        return nativeReadFloat(mNativePtr);
1599    }
1600
1601    /**
1602     * Read a double precision floating point value from the parcel at the
1603     * current dataPosition().
1604     */
1605    public final double readDouble() {
1606        return nativeReadDouble(mNativePtr);
1607    }
1608
1609    /**
1610     * Read a string value from the parcel at the current dataPosition().
1611     */
1612    public final String readString() {
1613        return nativeReadString(mNativePtr);
1614    }
1615
1616    /**
1617     * Read a CharSequence value from the parcel at the current dataPosition().
1618     * @hide
1619     */
1620    public final CharSequence readCharSequence() {
1621        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1622    }
1623
1624    /**
1625     * Read an object from the parcel at the current dataPosition().
1626     */
1627    public final IBinder readStrongBinder() {
1628        return nativeReadStrongBinder(mNativePtr);
1629    }
1630
1631    /**
1632     * Read a FileDescriptor from the parcel at the current dataPosition().
1633     */
1634    public final ParcelFileDescriptor readFileDescriptor() {
1635        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1636        return fd != null ? new ParcelFileDescriptor(fd) : null;
1637    }
1638
1639    /** {@hide} */
1640    public final FileDescriptor readRawFileDescriptor() {
1641        return nativeReadFileDescriptor(mNativePtr);
1642    }
1643
1644    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1645            int mode) throws FileNotFoundException;
1646    /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1647            throws IOException;
1648    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1649            throws IOException;
1650    /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1651
1652    /**
1653     * Read a byte value from the parcel at the current dataPosition().
1654     */
1655    public final byte readByte() {
1656        return (byte)(readInt() & 0xff);
1657    }
1658
1659    /**
1660     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1661     * been written with {@link #writeBundle}.  Read into an existing Map object
1662     * from the parcel at the current dataPosition().
1663     */
1664    public final void readMap(Map outVal, ClassLoader loader) {
1665        int N = readInt();
1666        readMapInternal(outVal, N, loader);
1667    }
1668
1669    /**
1670     * Read into an existing List object from the parcel at the current
1671     * dataPosition(), using the given class loader to load any enclosed
1672     * Parcelables.  If it is null, the default class loader is used.
1673     */
1674    public final void readList(List outVal, ClassLoader loader) {
1675        int N = readInt();
1676        readListInternal(outVal, N, loader);
1677    }
1678
1679    /**
1680     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1681     * been written with {@link #writeBundle}.  Read and return a new HashMap
1682     * object from the parcel at the current dataPosition(), using the given
1683     * class loader to load any enclosed Parcelables.  Returns null if
1684     * the previously written map object was null.
1685     */
1686    public final HashMap readHashMap(ClassLoader loader)
1687    {
1688        int N = readInt();
1689        if (N < 0) {
1690            return null;
1691        }
1692        HashMap m = new HashMap(N);
1693        readMapInternal(m, N, loader);
1694        return m;
1695    }
1696
1697    /**
1698     * Read and return a new Bundle object from the parcel at the current
1699     * dataPosition().  Returns null if the previously written Bundle object was
1700     * null.
1701     */
1702    public final Bundle readBundle() {
1703        return readBundle(null);
1704    }
1705
1706    /**
1707     * Read and return a new Bundle object from the parcel at the current
1708     * dataPosition(), using the given class loader to initialize the class
1709     * loader of the Bundle for later retrieval of Parcelable objects.
1710     * Returns null if the previously written Bundle object was null.
1711     */
1712    public final Bundle readBundle(ClassLoader loader) {
1713        int length = readInt();
1714        if (length < 0) {
1715            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1716            return null;
1717        }
1718
1719        final Bundle bundle = new Bundle(this, length);
1720        if (loader != null) {
1721            bundle.setClassLoader(loader);
1722        }
1723        return bundle;
1724    }
1725
1726    /**
1727     * Read and return a new Bundle object from the parcel at the current
1728     * dataPosition().  Returns null if the previously written Bundle object was
1729     * null.
1730     */
1731    public final PersistableBundle readPersistableBundle() {
1732        return readPersistableBundle(null);
1733    }
1734
1735    /**
1736     * Read and return a new Bundle object from the parcel at the current
1737     * dataPosition(), using the given class loader to initialize the class
1738     * loader of the Bundle for later retrieval of Parcelable objects.
1739     * Returns null if the previously written Bundle object was null.
1740     */
1741    public final PersistableBundle readPersistableBundle(ClassLoader loader) {
1742        int length = readInt();
1743        if (length < 0) {
1744            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1745            return null;
1746        }
1747
1748        final PersistableBundle bundle = new PersistableBundle(this, length);
1749        if (loader != null) {
1750            bundle.setClassLoader(loader);
1751        }
1752        return bundle;
1753    }
1754
1755    /**
1756     * Read a Size from the parcel at the current dataPosition().
1757     */
1758    public final Size readSize() {
1759        final int width = readInt();
1760        final int height = readInt();
1761        return new Size(width, height);
1762    }
1763
1764    /**
1765     * Read a SizeF from the parcel at the current dataPosition().
1766     */
1767    public final SizeF readSizeF() {
1768        final float width = readFloat();
1769        final float height = readFloat();
1770        return new SizeF(width, height);
1771    }
1772
1773    /**
1774     * Read and return a byte[] object from the parcel.
1775     */
1776    public final byte[] createByteArray() {
1777        return nativeCreateByteArray(mNativePtr);
1778    }
1779
1780    /**
1781     * Read a byte[] object from the parcel and copy it into the
1782     * given byte array.
1783     */
1784    public final void readByteArray(byte[] val) {
1785        // TODO: make this a native method to avoid the extra copy.
1786        byte[] ba = createByteArray();
1787        if (ba.length == val.length) {
1788           System.arraycopy(ba, 0, val, 0, ba.length);
1789        } else {
1790            throw new RuntimeException("bad array lengths");
1791        }
1792    }
1793
1794    /**
1795     * Read a blob of data from the parcel and return it as a byte array.
1796     * {@hide}
1797     * {@SystemApi}
1798     */
1799    public final byte[] readBlob() {
1800        return nativeReadBlob(mNativePtr);
1801    }
1802
1803    /**
1804     * Read and return a String[] object from the parcel.
1805     * {@hide}
1806     */
1807    public final String[] readStringArray() {
1808        String[] array = null;
1809
1810        int length = readInt();
1811        if (length >= 0)
1812        {
1813            array = new String[length];
1814
1815            for (int i = 0 ; i < length ; i++)
1816            {
1817                array[i] = readString();
1818            }
1819        }
1820
1821        return array;
1822    }
1823
1824    /**
1825     * Read and return a CharSequence[] object from the parcel.
1826     * {@hide}
1827     */
1828    public final CharSequence[] readCharSequenceArray() {
1829        CharSequence[] array = null;
1830
1831        int length = readInt();
1832        if (length >= 0)
1833        {
1834            array = new CharSequence[length];
1835
1836            for (int i = 0 ; i < length ; i++)
1837            {
1838                array[i] = readCharSequence();
1839            }
1840        }
1841
1842        return array;
1843    }
1844
1845    /**
1846     * Read and return an ArrayList&lt;CharSequence&gt; object from the parcel.
1847     * {@hide}
1848     */
1849    public final ArrayList<CharSequence> readCharSequenceList() {
1850        ArrayList<CharSequence> array = null;
1851
1852        int length = readInt();
1853        if (length >= 0) {
1854            array = new ArrayList<CharSequence>(length);
1855
1856            for (int i = 0 ; i < length ; i++) {
1857                array.add(readCharSequence());
1858            }
1859        }
1860
1861        return array;
1862    }
1863
1864    /**
1865     * Read and return a new ArrayList object from the parcel at the current
1866     * dataPosition().  Returns null if the previously written list object was
1867     * null.  The given class loader will be used to load any enclosed
1868     * Parcelables.
1869     */
1870    public final ArrayList readArrayList(ClassLoader loader) {
1871        int N = readInt();
1872        if (N < 0) {
1873            return null;
1874        }
1875        ArrayList l = new ArrayList(N);
1876        readListInternal(l, N, loader);
1877        return l;
1878    }
1879
1880    /**
1881     * Read and return a new Object array from the parcel at the current
1882     * dataPosition().  Returns null if the previously written array was
1883     * null.  The given class loader will be used to load any enclosed
1884     * Parcelables.
1885     */
1886    public final Object[] readArray(ClassLoader loader) {
1887        int N = readInt();
1888        if (N < 0) {
1889            return null;
1890        }
1891        Object[] l = new Object[N];
1892        readArrayInternal(l, N, loader);
1893        return l;
1894    }
1895
1896    /**
1897     * Read and return a new SparseArray object from the parcel at the current
1898     * dataPosition().  Returns null if the previously written list object was
1899     * null.  The given class loader will be used to load any enclosed
1900     * Parcelables.
1901     */
1902    public final SparseArray readSparseArray(ClassLoader loader) {
1903        int N = readInt();
1904        if (N < 0) {
1905            return null;
1906        }
1907        SparseArray sa = new SparseArray(N);
1908        readSparseArrayInternal(sa, N, loader);
1909        return sa;
1910    }
1911
1912    /**
1913     * Read and return a new SparseBooleanArray object from the parcel at the current
1914     * dataPosition().  Returns null if the previously written list object was
1915     * null.
1916     */
1917    public final SparseBooleanArray readSparseBooleanArray() {
1918        int N = readInt();
1919        if (N < 0) {
1920            return null;
1921        }
1922        SparseBooleanArray sa = new SparseBooleanArray(N);
1923        readSparseBooleanArrayInternal(sa, N);
1924        return sa;
1925    }
1926
1927    /**
1928     * Read and return a new ArrayList containing a particular object type from
1929     * the parcel that was written with {@link #writeTypedList} at the
1930     * current dataPosition().  Returns null if the
1931     * previously written list object was null.  The list <em>must</em> have
1932     * previously been written via {@link #writeTypedList} with the same object
1933     * type.
1934     *
1935     * @return A newly created ArrayList containing objects with the same data
1936     *         as those that were previously written.
1937     *
1938     * @see #writeTypedList
1939     */
1940    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1941        int N = readInt();
1942        if (N < 0) {
1943            return null;
1944        }
1945        ArrayList<T> l = new ArrayList<T>(N);
1946        while (N > 0) {
1947            if (readInt() != 0) {
1948                l.add(c.createFromParcel(this));
1949            } else {
1950                l.add(null);
1951            }
1952            N--;
1953        }
1954        return l;
1955    }
1956
1957    /**
1958     * Read into the given List items containing a particular object type
1959     * that were written with {@link #writeTypedList} at the
1960     * current dataPosition().  The list <em>must</em> have
1961     * previously been written via {@link #writeTypedList} with the same object
1962     * type.
1963     *
1964     * @return A newly created ArrayList containing objects with the same data
1965     *         as those that were previously written.
1966     *
1967     * @see #writeTypedList
1968     */
1969    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1970        int M = list.size();
1971        int N = readInt();
1972        int i = 0;
1973        for (; i < M && i < N; i++) {
1974            if (readInt() != 0) {
1975                list.set(i, c.createFromParcel(this));
1976            } else {
1977                list.set(i, null);
1978            }
1979        }
1980        for (; i<N; i++) {
1981            if (readInt() != 0) {
1982                list.add(c.createFromParcel(this));
1983            } else {
1984                list.add(null);
1985            }
1986        }
1987        for (; i<M; i++) {
1988            list.remove(N);
1989        }
1990    }
1991
1992    /**
1993     * Read and return a new ArrayList containing String objects from
1994     * the parcel that was written with {@link #writeStringList} at the
1995     * current dataPosition().  Returns null if the
1996     * previously written list object was null.
1997     *
1998     * @return A newly created ArrayList containing strings with the same data
1999     *         as those that were previously written.
2000     *
2001     * @see #writeStringList
2002     */
2003    public final ArrayList<String> createStringArrayList() {
2004        int N = readInt();
2005        if (N < 0) {
2006            return null;
2007        }
2008        ArrayList<String> l = new ArrayList<String>(N);
2009        while (N > 0) {
2010            l.add(readString());
2011            N--;
2012        }
2013        return l;
2014    }
2015
2016    /**
2017     * Read and return a new ArrayList containing IBinder objects from
2018     * the parcel that was written with {@link #writeBinderList} at the
2019     * current dataPosition().  Returns null if the
2020     * previously written list object was null.
2021     *
2022     * @return A newly created ArrayList containing strings with the same data
2023     *         as those that were previously written.
2024     *
2025     * @see #writeBinderList
2026     */
2027    public final ArrayList<IBinder> createBinderArrayList() {
2028        int N = readInt();
2029        if (N < 0) {
2030            return null;
2031        }
2032        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
2033        while (N > 0) {
2034            l.add(readStrongBinder());
2035            N--;
2036        }
2037        return l;
2038    }
2039
2040    /**
2041     * Read into the given List items String objects that were written with
2042     * {@link #writeStringList} at the current dataPosition().
2043     *
2044     * @return A newly created ArrayList containing strings with the same data
2045     *         as those that were previously written.
2046     *
2047     * @see #writeStringList
2048     */
2049    public final void readStringList(List<String> list) {
2050        int M = list.size();
2051        int N = readInt();
2052        int i = 0;
2053        for (; i < M && i < N; i++) {
2054            list.set(i, readString());
2055        }
2056        for (; i<N; i++) {
2057            list.add(readString());
2058        }
2059        for (; i<M; i++) {
2060            list.remove(N);
2061        }
2062    }
2063
2064    /**
2065     * Read into the given List items IBinder objects that were written with
2066     * {@link #writeBinderList} at the current dataPosition().
2067     *
2068     * @return A newly created ArrayList containing strings with the same data
2069     *         as those that were previously written.
2070     *
2071     * @see #writeBinderList
2072     */
2073    public final void readBinderList(List<IBinder> list) {
2074        int M = list.size();
2075        int N = readInt();
2076        int i = 0;
2077        for (; i < M && i < N; i++) {
2078            list.set(i, readStrongBinder());
2079        }
2080        for (; i<N; i++) {
2081            list.add(readStrongBinder());
2082        }
2083        for (; i<M; i++) {
2084            list.remove(N);
2085        }
2086    }
2087
2088    /**
2089     * Read and return a new array containing a particular object type from
2090     * the parcel at the current dataPosition().  Returns null if the
2091     * previously written array was null.  The array <em>must</em> have
2092     * previously been written via {@link #writeTypedArray} with the same
2093     * object type.
2094     *
2095     * @return A newly created array containing objects with the same data
2096     *         as those that were previously written.
2097     *
2098     * @see #writeTypedArray
2099     */
2100    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
2101        int N = readInt();
2102        if (N < 0) {
2103            return null;
2104        }
2105        T[] l = c.newArray(N);
2106        for (int i=0; i<N; i++) {
2107            if (readInt() != 0) {
2108                l[i] = c.createFromParcel(this);
2109            }
2110        }
2111        return l;
2112    }
2113
2114    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
2115        int N = readInt();
2116        if (N == val.length) {
2117            for (int i=0; i<N; i++) {
2118                if (readInt() != 0) {
2119                    val[i] = c.createFromParcel(this);
2120                } else {
2121                    val[i] = null;
2122                }
2123            }
2124        } else {
2125            throw new RuntimeException("bad array lengths");
2126        }
2127    }
2128
2129    /**
2130     * @deprecated
2131     * @hide
2132     */
2133    @Deprecated
2134    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
2135        return createTypedArray(c);
2136    }
2137
2138    /**
2139     * Write a heterogeneous array of Parcelable objects into the Parcel.
2140     * Each object in the array is written along with its class name, so
2141     * that the correct class can later be instantiated.  As a result, this
2142     * has significantly more overhead than {@link #writeTypedArray}, but will
2143     * correctly handle an array containing more than one type of object.
2144     *
2145     * @param value The array of objects to be written.
2146     * @param parcelableFlags Contextual flags as per
2147     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
2148     *
2149     * @see #writeTypedArray
2150     */
2151    public final <T extends Parcelable> void writeParcelableArray(T[] value,
2152            int parcelableFlags) {
2153        if (value != null) {
2154            int N = value.length;
2155            writeInt(N);
2156            for (int i=0; i<N; i++) {
2157                writeParcelable(value[i], parcelableFlags);
2158            }
2159        } else {
2160            writeInt(-1);
2161        }
2162    }
2163
2164    /**
2165     * Read a typed object from a parcel.  The given class loader will be
2166     * used to load any enclosed Parcelables.  If it is null, the default class
2167     * loader will be used.
2168     */
2169    public final Object readValue(ClassLoader loader) {
2170        int type = readInt();
2171
2172        switch (type) {
2173        case VAL_NULL:
2174            return null;
2175
2176        case VAL_STRING:
2177            return readString();
2178
2179        case VAL_INTEGER:
2180            return readInt();
2181
2182        case VAL_MAP:
2183            return readHashMap(loader);
2184
2185        case VAL_PARCELABLE:
2186            return readParcelable(loader);
2187
2188        case VAL_SHORT:
2189            return (short) readInt();
2190
2191        case VAL_LONG:
2192            return readLong();
2193
2194        case VAL_FLOAT:
2195            return readFloat();
2196
2197        case VAL_DOUBLE:
2198            return readDouble();
2199
2200        case VAL_BOOLEAN:
2201            return readInt() == 1;
2202
2203        case VAL_CHARSEQUENCE:
2204            return readCharSequence();
2205
2206        case VAL_LIST:
2207            return readArrayList(loader);
2208
2209        case VAL_BOOLEANARRAY:
2210            return createBooleanArray();
2211
2212        case VAL_BYTEARRAY:
2213            return createByteArray();
2214
2215        case VAL_STRINGARRAY:
2216            return readStringArray();
2217
2218        case VAL_CHARSEQUENCEARRAY:
2219            return readCharSequenceArray();
2220
2221        case VAL_IBINDER:
2222            return readStrongBinder();
2223
2224        case VAL_OBJECTARRAY:
2225            return readArray(loader);
2226
2227        case VAL_INTARRAY:
2228            return createIntArray();
2229
2230        case VAL_LONGARRAY:
2231            return createLongArray();
2232
2233        case VAL_BYTE:
2234            return readByte();
2235
2236        case VAL_SERIALIZABLE:
2237            return readSerializable(loader);
2238
2239        case VAL_PARCELABLEARRAY:
2240            return readParcelableArray(loader);
2241
2242        case VAL_SPARSEARRAY:
2243            return readSparseArray(loader);
2244
2245        case VAL_SPARSEBOOLEANARRAY:
2246            return readSparseBooleanArray();
2247
2248        case VAL_BUNDLE:
2249            return readBundle(loader); // loading will be deferred
2250
2251        case VAL_PERSISTABLEBUNDLE:
2252            return readPersistableBundle(loader);
2253
2254        case VAL_SIZE:
2255            return readSize();
2256
2257        case VAL_SIZEF:
2258            return readSizeF();
2259
2260        default:
2261            int off = dataPosition() - 4;
2262            throw new RuntimeException(
2263                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2264        }
2265    }
2266
2267    /**
2268     * Read and return a new Parcelable from the parcel.  The given class loader
2269     * will be used to load any enclosed Parcelables.  If it is null, the default
2270     * class loader will be used.
2271     * @param loader A ClassLoader from which to instantiate the Parcelable
2272     * object, or null for the default class loader.
2273     * @return Returns the newly created Parcelable, or null if a null
2274     * object has been written.
2275     * @throws BadParcelableException Throws BadParcelableException if there
2276     * was an error trying to instantiate the Parcelable.
2277     */
2278    @SuppressWarnings("unchecked")
2279    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2280        Parcelable.Creator<?> creator = readParcelableCreator(loader);
2281        if (creator == null) {
2282            return null;
2283        }
2284        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2285          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2286              (Parcelable.ClassLoaderCreator<?>) creator;
2287          return (T) classLoaderCreator.createFromParcel(this, loader);
2288        }
2289        return (T) creator.createFromParcel(this);
2290    }
2291
2292    /** @hide */
2293    @SuppressWarnings("unchecked")
2294    public final <T extends Parcelable> T readCreator(Parcelable.Creator<?> creator,
2295            ClassLoader loader) {
2296        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2297          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2298              (Parcelable.ClassLoaderCreator<?>) creator;
2299          return (T) classLoaderCreator.createFromParcel(this, loader);
2300        }
2301        return (T) creator.createFromParcel(this);
2302    }
2303
2304    /** @hide */
2305    public final Parcelable.Creator<?> readParcelableCreator(ClassLoader loader) {
2306        String name = readString();
2307        if (name == null) {
2308            return null;
2309        }
2310        Parcelable.Creator<?> creator;
2311        synchronized (mCreators) {
2312            HashMap<String,Parcelable.Creator<?>> map = mCreators.get(loader);
2313            if (map == null) {
2314                map = new HashMap<>();
2315                mCreators.put(loader, map);
2316            }
2317            creator = map.get(name);
2318            if (creator == null) {
2319                try {
2320                    // If loader == null, explicitly emulate Class.forName(String) "caller
2321                    // classloader" behavior.
2322                    ClassLoader parcelableClassLoader =
2323                            (loader == null ? getClass().getClassLoader() : loader);
2324                    // Avoid initializing the Parcelable class until we know it implements
2325                    // Parcelable and has the necessary CREATOR field. http://b/1171613.
2326                    Class<?> parcelableClass = Class.forName(name, false /* initialize */,
2327                            parcelableClassLoader);
2328                    if (!Parcelable.class.isAssignableFrom(parcelableClass)) {
2329                        throw new BadParcelableException("Parcelable protocol requires that the "
2330                                + "class implements Parcelable");
2331                    }
2332                    Field f = parcelableClass.getField("CREATOR");
2333                    if ((f.getModifiers() & Modifier.STATIC) == 0) {
2334                        throw new BadParcelableException("Parcelable protocol requires "
2335                                + "the CREATOR object to be static on class " + name);
2336                    }
2337                    Class<?> creatorType = f.getType();
2338                    if (!Parcelable.Creator.class.isAssignableFrom(creatorType)) {
2339                        // Fail before calling Field.get(), not after, to avoid initializing
2340                        // parcelableClass unnecessarily.
2341                        throw new BadParcelableException("Parcelable protocol requires a "
2342                                + "Parcelable.Creator object called "
2343                                + "CREATOR on class " + name);
2344                    }
2345                    creator = (Parcelable.Creator<?>) f.get(null);
2346                }
2347                catch (IllegalAccessException e) {
2348                    Log.e(TAG, "Illegal access when unmarshalling: " + name, e);
2349                    throw new BadParcelableException(
2350                            "IllegalAccessException when unmarshalling: " + name);
2351                }
2352                catch (ClassNotFoundException e) {
2353                    Log.e(TAG, "Class not found when unmarshalling: " + name, e);
2354                    throw new BadParcelableException(
2355                            "ClassNotFoundException when unmarshalling: " + name);
2356                }
2357                catch (NoSuchFieldException e) {
2358                    throw new BadParcelableException("Parcelable protocol requires a "
2359                            + "Parcelable.Creator object called "
2360                            + "CREATOR on class " + name);
2361                }
2362                if (creator == null) {
2363                    throw new BadParcelableException("Parcelable protocol requires a "
2364                            + "non-null Parcelable.Creator object called "
2365                            + "CREATOR on class " + name);
2366                }
2367
2368                map.put(name, creator);
2369            }
2370        }
2371
2372        return creator;
2373    }
2374
2375    /**
2376     * Read and return a new Parcelable array from the parcel.
2377     * The given class loader will be used to load any enclosed
2378     * Parcelables.
2379     * @return the Parcelable array, or null if the array is null
2380     */
2381    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2382        int N = readInt();
2383        if (N < 0) {
2384            return null;
2385        }
2386        Parcelable[] p = new Parcelable[N];
2387        for (int i = 0; i < N; i++) {
2388            p[i] = readParcelable(loader);
2389        }
2390        return p;
2391    }
2392
2393    /**
2394     * Read and return a new Serializable object from the parcel.
2395     * @return the Serializable object, or null if the Serializable name
2396     * wasn't found in the parcel.
2397     */
2398    public final Serializable readSerializable() {
2399        return readSerializable(null);
2400    }
2401
2402    private final Serializable readSerializable(final ClassLoader loader) {
2403        String name = readString();
2404        if (name == null) {
2405            // For some reason we were unable to read the name of the Serializable (either there
2406            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2407            // return null, which indicates that the name wasn't found in the parcel.
2408            return null;
2409        }
2410
2411        byte[] serializedData = createByteArray();
2412        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2413        try {
2414            ObjectInputStream ois = new ObjectInputStream(bais) {
2415                @Override
2416                protected Class<?> resolveClass(ObjectStreamClass osClass)
2417                        throws IOException, ClassNotFoundException {
2418                    // try the custom classloader if provided
2419                    if (loader != null) {
2420                        Class<?> c = Class.forName(osClass.getName(), false, loader);
2421                        if (c != null) {
2422                            return c;
2423                        }
2424                    }
2425                    return super.resolveClass(osClass);
2426                }
2427            };
2428            return (Serializable) ois.readObject();
2429        } catch (IOException ioe) {
2430            throw new RuntimeException("Parcelable encountered " +
2431                "IOException reading a Serializable object (name = " + name +
2432                ")", ioe);
2433        } catch (ClassNotFoundException cnfe) {
2434            throw new RuntimeException("Parcelable encountered " +
2435                "ClassNotFoundException reading a Serializable object (name = "
2436                + name + ")", cnfe);
2437        }
2438    }
2439
2440    // Cache of previously looked up CREATOR.createFromParcel() methods for
2441    // particular classes.  Keys are the names of the classes, values are
2442    // Method objects.
2443    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator<?>>>
2444        mCreators = new HashMap<>();
2445
2446    /** @hide for internal use only. */
2447    static protected final Parcel obtain(int obj) {
2448        throw new UnsupportedOperationException();
2449    }
2450
2451    /** @hide */
2452    static protected final Parcel obtain(long obj) {
2453        final Parcel[] pool = sHolderPool;
2454        synchronized (pool) {
2455            Parcel p;
2456            for (int i=0; i<POOL_SIZE; i++) {
2457                p = pool[i];
2458                if (p != null) {
2459                    pool[i] = null;
2460                    if (DEBUG_RECYCLE) {
2461                        p.mStack = new RuntimeException();
2462                    }
2463                    p.init(obj);
2464                    return p;
2465                }
2466            }
2467        }
2468        return new Parcel(obj);
2469    }
2470
2471    private Parcel(long nativePtr) {
2472        if (DEBUG_RECYCLE) {
2473            mStack = new RuntimeException();
2474        }
2475        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2476        init(nativePtr);
2477    }
2478
2479    private void init(long nativePtr) {
2480        if (nativePtr != 0) {
2481            mNativePtr = nativePtr;
2482            mOwnsNativeParcelObject = false;
2483        } else {
2484            mNativePtr = nativeCreate();
2485            mOwnsNativeParcelObject = true;
2486        }
2487    }
2488
2489    private void freeBuffer() {
2490        if (mOwnsNativeParcelObject) {
2491            nativeFreeBuffer(mNativePtr);
2492        }
2493    }
2494
2495    private void destroy() {
2496        if (mNativePtr != 0) {
2497            if (mOwnsNativeParcelObject) {
2498                nativeDestroy(mNativePtr);
2499            }
2500            mNativePtr = 0;
2501        }
2502    }
2503
2504    @Override
2505    protected void finalize() throws Throwable {
2506        if (DEBUG_RECYCLE) {
2507            if (mStack != null) {
2508                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2509            }
2510        }
2511        destroy();
2512    }
2513
2514    /* package */ void readMapInternal(Map outVal, int N,
2515        ClassLoader loader) {
2516        while (N > 0) {
2517            Object key = readValue(loader);
2518            Object value = readValue(loader);
2519            outVal.put(key, value);
2520            N--;
2521        }
2522    }
2523
2524    /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
2525        ClassLoader loader) {
2526        if (DEBUG_ARRAY_MAP) {
2527            RuntimeException here =  new RuntimeException("here");
2528            here.fillInStackTrace();
2529            Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
2530        }
2531        int startPos;
2532        while (N > 0) {
2533            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
2534            String key = readString();
2535            Object value = readValue(loader);
2536            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
2537                    + (dataPosition()-startPos) + " bytes: key=0x"
2538                    + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
2539            outVal.append(key, value);
2540            N--;
2541        }
2542        outVal.validate();
2543    }
2544
2545    /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
2546        ClassLoader loader) {
2547        if (DEBUG_ARRAY_MAP) {
2548            RuntimeException here =  new RuntimeException("here");
2549            here.fillInStackTrace();
2550            Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
2551        }
2552        while (N > 0) {
2553            String key = readString();
2554            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
2555                    + (key != null ? key.hashCode() : 0) + " " + key);
2556            Object value = readValue(loader);
2557            outVal.put(key, value);
2558            N--;
2559        }
2560    }
2561
2562    /**
2563     * @hide For testing only.
2564     */
2565    public void readArrayMap(ArrayMap outVal, ClassLoader loader) {
2566        final int N = readInt();
2567        if (N < 0) {
2568            return;
2569        }
2570        readArrayMapInternal(outVal, N, loader);
2571    }
2572
2573    private void readListInternal(List outVal, int N,
2574        ClassLoader loader) {
2575        while (N > 0) {
2576            Object value = readValue(loader);
2577            //Log.d(TAG, "Unmarshalling value=" + value);
2578            outVal.add(value);
2579            N--;
2580        }
2581    }
2582
2583    private void readArrayInternal(Object[] outVal, int N,
2584        ClassLoader loader) {
2585        for (int i = 0; i < N; i++) {
2586            Object value = readValue(loader);
2587            //Log.d(TAG, "Unmarshalling value=" + value);
2588            outVal[i] = value;
2589        }
2590    }
2591
2592    private void readSparseArrayInternal(SparseArray outVal, int N,
2593        ClassLoader loader) {
2594        while (N > 0) {
2595            int key = readInt();
2596            Object value = readValue(loader);
2597            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2598            outVal.append(key, value);
2599            N--;
2600        }
2601    }
2602
2603
2604    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2605        while (N > 0) {
2606            int key = readInt();
2607            boolean value = this.readByte() == 1;
2608            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2609            outVal.append(key, value);
2610            N--;
2611        }
2612    }
2613}
2614