Parcel.java revision 85eaca25fe2a89f883e9a87d8f411cfb315f3e03
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.annotation.IntegerRes;
20import android.text.TextUtils;
21import android.util.ArrayMap;
22import android.util.Log;
23import android.util.Size;
24import android.util.SizeF;
25import android.util.SparseArray;
26import android.util.SparseBooleanArray;
27
28import java.io.ByteArrayInputStream;
29import java.io.ByteArrayOutputStream;
30import java.io.FileDescriptor;
31import java.io.FileNotFoundException;
32import java.io.IOException;
33import java.io.ObjectInputStream;
34import java.io.ObjectOutputStream;
35import java.io.ObjectStreamClass;
36import java.io.Serializable;
37import java.lang.reflect.Field;
38import java.lang.reflect.Modifier;
39import java.util.ArrayList;
40import java.util.Arrays;
41import java.util.HashMap;
42import java.util.List;
43import java.util.Map;
44import java.util.Set;
45
46import dalvik.system.VMRuntime;
47
48/**
49 * Container for a message (data and object references) that can
50 * be sent through an IBinder.  A Parcel can contain both flattened data
51 * that will be unflattened on the other side of the IPC (using the various
52 * methods here for writing specific types, or the general
53 * {@link Parcelable} interface), and references to live {@link IBinder}
54 * objects that will result in the other side receiving a proxy IBinder
55 * connected with the original IBinder in the Parcel.
56 *
57 * <p class="note">Parcel is <strong>not</strong> a general-purpose
58 * serialization mechanism.  This class (and the corresponding
59 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
60 * designed as a high-performance IPC transport.  As such, it is not
61 * appropriate to place any Parcel data in to persistent storage: changes
62 * in the underlying implementation of any of the data in the Parcel can
63 * render older data unreadable.</p>
64 *
65 * <p>The bulk of the Parcel API revolves around reading and writing data
66 * of various types.  There are six major classes of such functions available.</p>
67 *
68 * <h3>Primitives</h3>
69 *
70 * <p>The most basic data functions are for writing and reading primitive
71 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
72 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
73 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
74 * {@link #writeString}, {@link #readString}.  Most other
75 * data operations are built on top of these.  The given data is written and
76 * read using the endianess of the host CPU.</p>
77 *
78 * <h3>Primitive Arrays</h3>
79 *
80 * <p>There are a variety of methods for reading and writing raw arrays
81 * of primitive objects, which generally result in writing a 4-byte length
82 * followed by the primitive data items.  The methods for reading can either
83 * read the data into an existing array, or create and return a new array.
84 * These available types are:</p>
85 *
86 * <ul>
87 * <li> {@link #writeBooleanArray(boolean[])},
88 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
89 * <li> {@link #writeByteArray(byte[])},
90 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
91 * {@link #createByteArray()}
92 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
93 * {@link #createCharArray()}
94 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
95 * {@link #createDoubleArray()}
96 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
97 * {@link #createFloatArray()}
98 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
99 * {@link #createIntArray()}
100 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
101 * {@link #createLongArray()}
102 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
103 * {@link #createStringArray()}.
104 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
105 * {@link #readSparseBooleanArray()}.
106 * </ul>
107 *
108 * <h3>Parcelables</h3>
109 *
110 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
111 * low-level) protocol for objects to write and read themselves from Parcels.
112 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
113 * and {@link #readParcelable(ClassLoader)} or
114 * {@link #writeParcelableArray} and
115 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
116 * methods write both the class type and its data to the Parcel, allowing
117 * that class to be reconstructed from the appropriate class loader when
118 * later reading.</p>
119 *
120 * <p>There are also some methods that provide a more efficient way to work
121 * with Parcelables: {@link #writeTypedObject}, {@link #writeTypedArray},
122 * {@link #writeTypedList}, {@link #readTypedObject},
123 * {@link #createTypedArray} and {@link #createTypedArrayList}.  These methods
124 * do not write the class information of the original object: instead, the
125 * caller of the read function must know what type to expect and pass in the
126 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
127 * properly construct the new object and read its data.  (To more efficient
128 * write and read a single Parceable object that is not null, you can directly
129 * call {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
130 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
131 * yourself.)</p>
132 *
133 * <h3>Bundles</h3>
134 *
135 * <p>A special type-safe container, called {@link Bundle}, is available
136 * for key/value maps of heterogeneous values.  This has many optimizations
137 * for improved performance when reading and writing data, and its type-safe
138 * API avoids difficult to debug type errors when finally marshalling the
139 * data contents into a Parcel.  The methods to use are
140 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
141 * {@link #readBundle(ClassLoader)}.
142 *
143 * <h3>Active Objects</h3>
144 *
145 * <p>An unusual feature of Parcel is the ability to read and write active
146 * objects.  For these objects the actual contents of the object is not
147 * written, rather a special token referencing the object is written.  When
148 * reading the object back from the Parcel, you do not get a new instance of
149 * the object, but rather a handle that operates on the exact same object that
150 * was originally written.  There are two forms of active objects available.</p>
151 *
152 * <p>{@link Binder} objects are a core facility of Android's general cross-process
153 * communication system.  The {@link IBinder} interface describes an abstract
154 * protocol with a Binder object.  Any such interface can be written in to
155 * a Parcel, and upon reading you will receive either the original object
156 * implementing that interface or a special proxy implementation
157 * that communicates calls back to the original object.  The methods to use are
158 * {@link #writeStrongBinder(IBinder)},
159 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
160 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
161 * {@link #createBinderArray()},
162 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
163 * {@link #createBinderArrayList()}.</p>
164 *
165 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
166 * can be written and {@link ParcelFileDescriptor} objects returned to operate
167 * on the original file descriptor.  The returned file descriptor is a dup
168 * of the original file descriptor: the object and fd is different, but
169 * operating on the same underlying file stream, with the same position, etc.
170 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
171 * {@link #readFileDescriptor()}.
172 *
173 * <h3>Untyped Containers</h3>
174 *
175 * <p>A final class of methods are for writing and reading standard Java
176 * containers of arbitrary types.  These all revolve around the
177 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
178 * which define the types of objects allowed.  The container methods are
179 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
180 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
181 * {@link #readArrayList(ClassLoader)},
182 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
183 * {@link #writeSparseArray(SparseArray)},
184 * {@link #readSparseArray(ClassLoader)}.
185 */
186public final class Parcel {
187    private static final boolean DEBUG_RECYCLE = false;
188    private static final boolean DEBUG_ARRAY_MAP = false;
189    private static final String TAG = "Parcel";
190
191    @SuppressWarnings({"UnusedDeclaration"})
192    private long mNativePtr; // used by native code
193
194    /**
195     * Flag indicating if {@link #mNativePtr} was allocated by this object,
196     * indicating that we're responsible for its lifecycle.
197     */
198    private boolean mOwnsNativeParcelObject;
199    private long mNativeSize;
200
201    private RuntimeException mStack;
202
203    private static final int POOL_SIZE = 6;
204    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
205    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
206
207    private static final int VAL_NULL = -1;
208    private static final int VAL_STRING = 0;
209    private static final int VAL_INTEGER = 1;
210    private static final int VAL_MAP = 2;
211    private static final int VAL_BUNDLE = 3;
212    private static final int VAL_PARCELABLE = 4;
213    private static final int VAL_SHORT = 5;
214    private static final int VAL_LONG = 6;
215    private static final int VAL_FLOAT = 7;
216    private static final int VAL_DOUBLE = 8;
217    private static final int VAL_BOOLEAN = 9;
218    private static final int VAL_CHARSEQUENCE = 10;
219    private static final int VAL_LIST  = 11;
220    private static final int VAL_SPARSEARRAY = 12;
221    private static final int VAL_BYTEARRAY = 13;
222    private static final int VAL_STRINGARRAY = 14;
223    private static final int VAL_IBINDER = 15;
224    private static final int VAL_PARCELABLEARRAY = 16;
225    private static final int VAL_OBJECTARRAY = 17;
226    private static final int VAL_INTARRAY = 18;
227    private static final int VAL_LONGARRAY = 19;
228    private static final int VAL_BYTE = 20;
229    private static final int VAL_SERIALIZABLE = 21;
230    private static final int VAL_SPARSEBOOLEANARRAY = 22;
231    private static final int VAL_BOOLEANARRAY = 23;
232    private static final int VAL_CHARSEQUENCEARRAY = 24;
233    private static final int VAL_PERSISTABLEBUNDLE = 25;
234    private static final int VAL_SIZE = 26;
235    private static final int VAL_SIZEF = 27;
236    private static final int VAL_DOUBLEARRAY = 28;
237
238    // The initial int32 in a Binder call's reply Parcel header:
239    // Keep these in sync with libbinder's binder/Status.h.
240    private static final int EX_SECURITY = -1;
241    private static final int EX_BAD_PARCELABLE = -2;
242    private static final int EX_ILLEGAL_ARGUMENT = -3;
243    private static final int EX_NULL_POINTER = -4;
244    private static final int EX_ILLEGAL_STATE = -5;
245    private static final int EX_NETWORK_MAIN_THREAD = -6;
246    private static final int EX_UNSUPPORTED_OPERATION = -7;
247    private static final int EX_SERVICE_SPECIFIC = -8;
248    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
249    // EX_TRANSACTION_FAILED is used exclusively in native code.
250    // see libbinder's binder/Status.h
251    private static final int EX_TRANSACTION_FAILED = -129;
252
253    private static native int nativeDataSize(long nativePtr);
254    private static native int nativeDataAvail(long nativePtr);
255    private static native int nativeDataPosition(long nativePtr);
256    private static native int nativeDataCapacity(long nativePtr);
257    private static native long nativeSetDataSize(long nativePtr, int size);
258    private static native void nativeSetDataPosition(long nativePtr, int pos);
259    private static native void nativeSetDataCapacity(long nativePtr, int size);
260
261    private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
262    private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
263
264    private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
265    private static native void nativeWriteBlob(long nativePtr, byte[] b, int offset, int len);
266    private static native void nativeWriteInt(long nativePtr, int val);
267    private static native void nativeWriteLong(long nativePtr, long val);
268    private static native void nativeWriteFloat(long nativePtr, float val);
269    private static native void nativeWriteDouble(long nativePtr, double val);
270    private static native void nativeWriteString(long nativePtr, String val);
271    private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
272    private static native long nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
273
274    private static native byte[] nativeCreateByteArray(long nativePtr);
275    private static native byte[] nativeReadBlob(long nativePtr);
276    private static native int nativeReadInt(long nativePtr);
277    private static native long nativeReadLong(long nativePtr);
278    private static native float nativeReadFloat(long nativePtr);
279    private static native double nativeReadDouble(long nativePtr);
280    private static native String nativeReadString(long nativePtr);
281    private static native IBinder nativeReadStrongBinder(long nativePtr);
282    private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
283
284    private static native long nativeCreate();
285    private static native long nativeFreeBuffer(long nativePtr);
286    private static native void nativeDestroy(long nativePtr);
287
288    private static native byte[] nativeMarshall(long nativePtr);
289    private static native long nativeUnmarshall(
290            long nativePtr, byte[] data, int offset, int length);
291    private static native long nativeAppendFrom(
292            long thisNativePtr, long otherNativePtr, int offset, int length);
293    private static native boolean nativeHasFileDescriptors(long nativePtr);
294    private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
295    private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
296
297    private static native long nativeGetBlobAshmemSize(long nativePtr);
298
299    public final static Parcelable.Creator<String> STRING_CREATOR
300             = new Parcelable.Creator<String>() {
301        public String createFromParcel(Parcel source) {
302            return source.readString();
303        }
304        public String[] newArray(int size) {
305            return new String[size];
306        }
307    };
308
309    /**
310     * Retrieve a new Parcel object from the pool.
311     */
312    public static Parcel obtain() {
313        final Parcel[] pool = sOwnedPool;
314        synchronized (pool) {
315            Parcel p;
316            for (int i=0; i<POOL_SIZE; i++) {
317                p = pool[i];
318                if (p != null) {
319                    pool[i] = null;
320                    if (DEBUG_RECYCLE) {
321                        p.mStack = new RuntimeException();
322                    }
323                    return p;
324                }
325            }
326        }
327        return new Parcel(0);
328    }
329
330    /**
331     * Put a Parcel object back into the pool.  You must not touch
332     * the object after this call.
333     */
334    public final void recycle() {
335        if (DEBUG_RECYCLE) mStack = null;
336        freeBuffer();
337
338        final Parcel[] pool;
339        if (mOwnsNativeParcelObject) {
340            pool = sOwnedPool;
341        } else {
342            mNativePtr = 0;
343            pool = sHolderPool;
344        }
345
346        synchronized (pool) {
347            for (int i=0; i<POOL_SIZE; i++) {
348                if (pool[i] == null) {
349                    pool[i] = this;
350                    return;
351                }
352            }
353        }
354    }
355
356    /** @hide */
357    public static native long getGlobalAllocSize();
358
359    /** @hide */
360    public static native long getGlobalAllocCount();
361
362    /**
363     * Returns the total amount of data contained in the parcel.
364     */
365    public final int dataSize() {
366        return nativeDataSize(mNativePtr);
367    }
368
369    /**
370     * Returns the amount of data remaining to be read from the
371     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
372     */
373    public final int dataAvail() {
374        return nativeDataAvail(mNativePtr);
375    }
376
377    /**
378     * Returns the current position in the parcel data.  Never
379     * more than {@link #dataSize}.
380     */
381    public final int dataPosition() {
382        return nativeDataPosition(mNativePtr);
383    }
384
385    /**
386     * Returns the total amount of space in the parcel.  This is always
387     * >= {@link #dataSize}.  The difference between it and dataSize() is the
388     * amount of room left until the parcel needs to re-allocate its
389     * data buffer.
390     */
391    public final int dataCapacity() {
392        return nativeDataCapacity(mNativePtr);
393    }
394
395    /**
396     * Change the amount of data in the parcel.  Can be either smaller or
397     * larger than the current size.  If larger than the current capacity,
398     * more memory will be allocated.
399     *
400     * @param size The new number of bytes in the Parcel.
401     */
402    public final void setDataSize(int size) {
403        updateNativeSize(nativeSetDataSize(mNativePtr, size));
404    }
405
406    /**
407     * Move the current read/write position in the parcel.
408     * @param pos New offset in the parcel; must be between 0 and
409     * {@link #dataSize}.
410     */
411    public final void setDataPosition(int pos) {
412        nativeSetDataPosition(mNativePtr, pos);
413    }
414
415    /**
416     * Change the capacity (current available space) of the parcel.
417     *
418     * @param size The new capacity of the parcel, in bytes.  Can not be
419     * less than {@link #dataSize} -- that is, you can not drop existing data
420     * with this method.
421     */
422    public final void setDataCapacity(int size) {
423        nativeSetDataCapacity(mNativePtr, size);
424    }
425
426    /** @hide */
427    public final boolean pushAllowFds(boolean allowFds) {
428        return nativePushAllowFds(mNativePtr, allowFds);
429    }
430
431    /** @hide */
432    public final void restoreAllowFds(boolean lastValue) {
433        nativeRestoreAllowFds(mNativePtr, lastValue);
434    }
435
436    /**
437     * Returns the raw bytes of the parcel.
438     *
439     * <p class="note">The data you retrieve here <strong>must not</strong>
440     * be placed in any kind of persistent storage (on local disk, across
441     * a network, etc).  For that, you should use standard serialization
442     * or another kind of general serialization mechanism.  The Parcel
443     * marshalled representation is highly optimized for local IPC, and as
444     * such does not attempt to maintain compatibility with data created
445     * in different versions of the platform.
446     */
447    public final byte[] marshall() {
448        return nativeMarshall(mNativePtr);
449    }
450
451    /**
452     * Set the bytes in data to be the raw bytes of this Parcel.
453     */
454    public final void unmarshall(byte[] data, int offset, int length) {
455        updateNativeSize(nativeUnmarshall(mNativePtr, data, offset, length));
456    }
457
458    public final void appendFrom(Parcel parcel, int offset, int length) {
459        updateNativeSize(nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length));
460    }
461
462    /**
463     * Report whether the parcel contains any marshalled file descriptors.
464     */
465    public final boolean hasFileDescriptors() {
466        return nativeHasFileDescriptors(mNativePtr);
467    }
468
469    /**
470     * Store or read an IBinder interface token in the parcel at the current
471     * {@link #dataPosition}.  This is used to validate that the marshalled
472     * transaction is intended for the target interface.
473     */
474    public final void writeInterfaceToken(String interfaceName) {
475        nativeWriteInterfaceToken(mNativePtr, interfaceName);
476    }
477
478    public final void enforceInterface(String interfaceName) {
479        nativeEnforceInterface(mNativePtr, interfaceName);
480    }
481
482    /**
483     * Write a byte array into the parcel at the current {@link #dataPosition},
484     * growing {@link #dataCapacity} if needed.
485     * @param b Bytes to place into the parcel.
486     */
487    public final void writeByteArray(byte[] b) {
488        writeByteArray(b, 0, (b != null) ? b.length : 0);
489    }
490
491    /**
492     * Write a byte array into the parcel at the current {@link #dataPosition},
493     * growing {@link #dataCapacity} if needed.
494     * @param b Bytes to place into the parcel.
495     * @param offset Index of first byte to be written.
496     * @param len Number of bytes to write.
497     */
498    public final void writeByteArray(byte[] b, int offset, int len) {
499        if (b == null) {
500            writeInt(-1);
501            return;
502        }
503        Arrays.checkOffsetAndCount(b.length, offset, len);
504        nativeWriteByteArray(mNativePtr, b, offset, len);
505    }
506
507    /**
508     * Write a blob of data into the parcel at the current {@link #dataPosition},
509     * growing {@link #dataCapacity} if needed.
510     * @param b Bytes to place into the parcel.
511     * {@hide}
512     * {@SystemApi}
513     */
514    public final void writeBlob(byte[] b) {
515        writeBlob(b, 0, (b != null) ? b.length : 0);
516    }
517
518    /**
519     * Write a blob of data into the parcel at the current {@link #dataPosition},
520     * growing {@link #dataCapacity} if needed.
521     * @param b Bytes to place into the parcel.
522     * @param offset Index of first byte to be written.
523     * @param len Number of bytes to write.
524     * {@hide}
525     * {@SystemApi}
526     */
527    public final void writeBlob(byte[] b, int offset, int len) {
528        if (b == null) {
529            writeInt(-1);
530            return;
531        }
532        Arrays.checkOffsetAndCount(b.length, offset, len);
533        nativeWriteBlob(mNativePtr, b, offset, len);
534    }
535
536    /**
537     * Write an integer value into the parcel at the current dataPosition(),
538     * growing dataCapacity() if needed.
539     */
540    public final void writeInt(int val) {
541        nativeWriteInt(mNativePtr, val);
542    }
543
544    /**
545     * Write a long integer value into the parcel at the current dataPosition(),
546     * growing dataCapacity() if needed.
547     */
548    public final void writeLong(long val) {
549        nativeWriteLong(mNativePtr, val);
550    }
551
552    /**
553     * Write a floating point value into the parcel at the current
554     * dataPosition(), growing dataCapacity() if needed.
555     */
556    public final void writeFloat(float val) {
557        nativeWriteFloat(mNativePtr, val);
558    }
559
560    /**
561     * Write a double precision floating point value into the parcel at the
562     * current dataPosition(), growing dataCapacity() if needed.
563     */
564    public final void writeDouble(double val) {
565        nativeWriteDouble(mNativePtr, val);
566    }
567
568    /**
569     * Write a string value into the parcel at the current dataPosition(),
570     * growing dataCapacity() if needed.
571     */
572    public final void writeString(String val) {
573        nativeWriteString(mNativePtr, val);
574    }
575
576    /**
577     * Write a CharSequence value into the parcel at the current dataPosition(),
578     * growing dataCapacity() if needed.
579     * @hide
580     */
581    public final void writeCharSequence(CharSequence val) {
582        TextUtils.writeToParcel(val, this, 0);
583    }
584
585    /**
586     * Write an object into the parcel at the current dataPosition(),
587     * growing dataCapacity() if needed.
588     */
589    public final void writeStrongBinder(IBinder val) {
590        nativeWriteStrongBinder(mNativePtr, val);
591    }
592
593    /**
594     * Write an object into the parcel at the current dataPosition(),
595     * growing dataCapacity() if needed.
596     */
597    public final void writeStrongInterface(IInterface val) {
598        writeStrongBinder(val == null ? null : val.asBinder());
599    }
600
601    /**
602     * Write a FileDescriptor into the parcel at the current dataPosition(),
603     * growing dataCapacity() if needed.
604     *
605     * <p class="caution">The file descriptor will not be closed, which may
606     * result in file descriptor leaks when objects are returned from Binder
607     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
608     * accepts contextual flags and will close the original file descriptor
609     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
610     */
611    public final void writeFileDescriptor(FileDescriptor val) {
612        updateNativeSize(nativeWriteFileDescriptor(mNativePtr, val));
613    }
614
615    private void updateNativeSize(long newNativeSize) {
616        if (mOwnsNativeParcelObject) {
617            if (newNativeSize > Integer.MAX_VALUE) {
618                newNativeSize = Integer.MAX_VALUE;
619            }
620            if (newNativeSize != mNativeSize) {
621                int delta = (int) (newNativeSize - mNativeSize);
622                if (delta > 0) {
623                    VMRuntime.getRuntime().registerNativeAllocation(delta);
624                } else {
625                    VMRuntime.getRuntime().registerNativeFree(-delta);
626                }
627                mNativeSize = newNativeSize;
628            }
629        }
630    }
631
632    /**
633     * {@hide}
634     * This will be the new name for writeFileDescriptor, for consistency.
635     **/
636    public final void writeRawFileDescriptor(FileDescriptor val) {
637        nativeWriteFileDescriptor(mNativePtr, val);
638    }
639
640    /**
641     * {@hide}
642     * Write an array of FileDescriptor objects into the Parcel.
643     *
644     * @param value The array of objects to be written.
645     */
646    public final void writeRawFileDescriptorArray(FileDescriptor[] value) {
647        if (value != null) {
648            int N = value.length;
649            writeInt(N);
650            for (int i=0; i<N; i++) {
651                writeRawFileDescriptor(value[i]);
652            }
653        } else {
654            writeInt(-1);
655        }
656    }
657
658    /**
659     * Write a byte value into the parcel at the current dataPosition(),
660     * growing dataCapacity() if needed.
661     */
662    public final void writeByte(byte val) {
663        writeInt(val);
664    }
665
666    /**
667     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
668     * at the current dataPosition(),
669     * growing dataCapacity() if needed.  The Map keys must be String objects.
670     * The Map values are written using {@link #writeValue} and must follow
671     * the specification there.
672     *
673     * <p>It is strongly recommended to use {@link #writeBundle} instead of
674     * this method, since the Bundle class provides a type-safe API that
675     * allows you to avoid mysterious type errors at the point of marshalling.
676     */
677    public final void writeMap(Map val) {
678        writeMapInternal((Map<String, Object>) val);
679    }
680
681    /**
682     * Flatten a Map into the parcel at the current dataPosition(),
683     * growing dataCapacity() if needed.  The Map keys must be String objects.
684     */
685    /* package */ void writeMapInternal(Map<String,Object> val) {
686        if (val == null) {
687            writeInt(-1);
688            return;
689        }
690        Set<Map.Entry<String,Object>> entries = val.entrySet();
691        writeInt(entries.size());
692        for (Map.Entry<String,Object> e : entries) {
693            writeValue(e.getKey());
694            writeValue(e.getValue());
695        }
696    }
697
698    /**
699     * Flatten an ArrayMap into the parcel at the current dataPosition(),
700     * growing dataCapacity() if needed.  The Map keys must be String objects.
701     */
702    /* package */ void writeArrayMapInternal(ArrayMap<String, Object> val) {
703        if (val == null) {
704            writeInt(-1);
705            return;
706        }
707        final int N = val.size();
708        writeInt(N);
709        if (DEBUG_ARRAY_MAP) {
710            RuntimeException here =  new RuntimeException("here");
711            here.fillInStackTrace();
712            Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
713        }
714        int startPos;
715        for (int i=0; i<N; i++) {
716            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
717            writeString(val.keyAt(i));
718            writeValue(val.valueAt(i));
719            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
720                    + (dataPosition()-startPos) + " bytes: key=0x"
721                    + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
722                    + " " + val.keyAt(i));
723        }
724    }
725
726    /**
727     * @hide For testing only.
728     */
729    public void writeArrayMap(ArrayMap<String, Object> val) {
730        writeArrayMapInternal(val);
731    }
732
733    /**
734     * Flatten a Bundle into the parcel at the current dataPosition(),
735     * growing dataCapacity() if needed.
736     */
737    public final void writeBundle(Bundle val) {
738        if (val == null) {
739            writeInt(-1);
740            return;
741        }
742
743        val.writeToParcel(this, 0);
744    }
745
746    /**
747     * Flatten a PersistableBundle into the parcel at the current dataPosition(),
748     * growing dataCapacity() if needed.
749     */
750    public final void writePersistableBundle(PersistableBundle val) {
751        if (val == null) {
752            writeInt(-1);
753            return;
754        }
755
756        val.writeToParcel(this, 0);
757    }
758
759    /**
760     * Flatten a Size into the parcel at the current dataPosition(),
761     * growing dataCapacity() if needed.
762     */
763    public final void writeSize(Size val) {
764        writeInt(val.getWidth());
765        writeInt(val.getHeight());
766    }
767
768    /**
769     * Flatten a SizeF into the parcel at the current dataPosition(),
770     * growing dataCapacity() if needed.
771     */
772    public final void writeSizeF(SizeF val) {
773        writeFloat(val.getWidth());
774        writeFloat(val.getHeight());
775    }
776
777    /**
778     * Flatten a List into the parcel at the current dataPosition(), growing
779     * dataCapacity() if needed.  The List values are written using
780     * {@link #writeValue} and must follow the specification there.
781     */
782    public final void writeList(List val) {
783        if (val == null) {
784            writeInt(-1);
785            return;
786        }
787        int N = val.size();
788        int i=0;
789        writeInt(N);
790        while (i < N) {
791            writeValue(val.get(i));
792            i++;
793        }
794    }
795
796    /**
797     * Flatten an Object array into the parcel at the current dataPosition(),
798     * growing dataCapacity() if needed.  The array values are written using
799     * {@link #writeValue} and must follow the specification there.
800     */
801    public final void writeArray(Object[] val) {
802        if (val == null) {
803            writeInt(-1);
804            return;
805        }
806        int N = val.length;
807        int i=0;
808        writeInt(N);
809        while (i < N) {
810            writeValue(val[i]);
811            i++;
812        }
813    }
814
815    /**
816     * Flatten a generic SparseArray into the parcel at the current
817     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
818     * values are written using {@link #writeValue} and must follow the
819     * specification there.
820     */
821    public final void writeSparseArray(SparseArray<Object> val) {
822        if (val == null) {
823            writeInt(-1);
824            return;
825        }
826        int N = val.size();
827        writeInt(N);
828        int i=0;
829        while (i < N) {
830            writeInt(val.keyAt(i));
831            writeValue(val.valueAt(i));
832            i++;
833        }
834    }
835
836    public final void writeSparseBooleanArray(SparseBooleanArray val) {
837        if (val == null) {
838            writeInt(-1);
839            return;
840        }
841        int N = val.size();
842        writeInt(N);
843        int i=0;
844        while (i < N) {
845            writeInt(val.keyAt(i));
846            writeByte((byte)(val.valueAt(i) ? 1 : 0));
847            i++;
848        }
849    }
850
851    public final void writeBooleanArray(boolean[] val) {
852        if (val != null) {
853            int N = val.length;
854            writeInt(N);
855            for (int i=0; i<N; i++) {
856                writeInt(val[i] ? 1 : 0);
857            }
858        } else {
859            writeInt(-1);
860        }
861    }
862
863    public final boolean[] createBooleanArray() {
864        int N = readInt();
865        // >>2 as a fast divide-by-4 works in the create*Array() functions
866        // because dataAvail() will never return a negative number.  4 is
867        // the size of a stored boolean in the stream.
868        if (N >= 0 && N <= (dataAvail() >> 2)) {
869            boolean[] val = new boolean[N];
870            for (int i=0; i<N; i++) {
871                val[i] = readInt() != 0;
872            }
873            return val;
874        } else {
875            return null;
876        }
877    }
878
879    public final void readBooleanArray(boolean[] val) {
880        int N = readInt();
881        if (N == val.length) {
882            for (int i=0; i<N; i++) {
883                val[i] = readInt() != 0;
884            }
885        } else {
886            throw new RuntimeException("bad array lengths");
887        }
888    }
889
890    public final void writeCharArray(char[] val) {
891        if (val != null) {
892            int N = val.length;
893            writeInt(N);
894            for (int i=0; i<N; i++) {
895                writeInt((int)val[i]);
896            }
897        } else {
898            writeInt(-1);
899        }
900    }
901
902    public final char[] createCharArray() {
903        int N = readInt();
904        if (N >= 0 && N <= (dataAvail() >> 2)) {
905            char[] val = new char[N];
906            for (int i=0; i<N; i++) {
907                val[i] = (char)readInt();
908            }
909            return val;
910        } else {
911            return null;
912        }
913    }
914
915    public final void readCharArray(char[] val) {
916        int N = readInt();
917        if (N == val.length) {
918            for (int i=0; i<N; i++) {
919                val[i] = (char)readInt();
920            }
921        } else {
922            throw new RuntimeException("bad array lengths");
923        }
924    }
925
926    public final void writeIntArray(int[] val) {
927        if (val != null) {
928            int N = val.length;
929            writeInt(N);
930            for (int i=0; i<N; i++) {
931                writeInt(val[i]);
932            }
933        } else {
934            writeInt(-1);
935        }
936    }
937
938    public final int[] createIntArray() {
939        int N = readInt();
940        if (N >= 0 && N <= (dataAvail() >> 2)) {
941            int[] val = new int[N];
942            for (int i=0; i<N; i++) {
943                val[i] = readInt();
944            }
945            return val;
946        } else {
947            return null;
948        }
949    }
950
951    public final void readIntArray(int[] val) {
952        int N = readInt();
953        if (N == val.length) {
954            for (int i=0; i<N; i++) {
955                val[i] = readInt();
956            }
957        } else {
958            throw new RuntimeException("bad array lengths");
959        }
960    }
961
962    public final void writeLongArray(long[] val) {
963        if (val != null) {
964            int N = val.length;
965            writeInt(N);
966            for (int i=0; i<N; i++) {
967                writeLong(val[i]);
968            }
969        } else {
970            writeInt(-1);
971        }
972    }
973
974    public final long[] createLongArray() {
975        int N = readInt();
976        // >>3 because stored longs are 64 bits
977        if (N >= 0 && N <= (dataAvail() >> 3)) {
978            long[] val = new long[N];
979            for (int i=0; i<N; i++) {
980                val[i] = readLong();
981            }
982            return val;
983        } else {
984            return null;
985        }
986    }
987
988    public final void readLongArray(long[] val) {
989        int N = readInt();
990        if (N == val.length) {
991            for (int i=0; i<N; i++) {
992                val[i] = readLong();
993            }
994        } else {
995            throw new RuntimeException("bad array lengths");
996        }
997    }
998
999    public final void writeFloatArray(float[] val) {
1000        if (val != null) {
1001            int N = val.length;
1002            writeInt(N);
1003            for (int i=0; i<N; i++) {
1004                writeFloat(val[i]);
1005            }
1006        } else {
1007            writeInt(-1);
1008        }
1009    }
1010
1011    public final float[] createFloatArray() {
1012        int N = readInt();
1013        // >>2 because stored floats are 4 bytes
1014        if (N >= 0 && N <= (dataAvail() >> 2)) {
1015            float[] val = new float[N];
1016            for (int i=0; i<N; i++) {
1017                val[i] = readFloat();
1018            }
1019            return val;
1020        } else {
1021            return null;
1022        }
1023    }
1024
1025    public final void readFloatArray(float[] val) {
1026        int N = readInt();
1027        if (N == val.length) {
1028            for (int i=0; i<N; i++) {
1029                val[i] = readFloat();
1030            }
1031        } else {
1032            throw new RuntimeException("bad array lengths");
1033        }
1034    }
1035
1036    public final void writeDoubleArray(double[] val) {
1037        if (val != null) {
1038            int N = val.length;
1039            writeInt(N);
1040            for (int i=0; i<N; i++) {
1041                writeDouble(val[i]);
1042            }
1043        } else {
1044            writeInt(-1);
1045        }
1046    }
1047
1048    public final double[] createDoubleArray() {
1049        int N = readInt();
1050        // >>3 because stored doubles are 8 bytes
1051        if (N >= 0 && N <= (dataAvail() >> 3)) {
1052            double[] val = new double[N];
1053            for (int i=0; i<N; i++) {
1054                val[i] = readDouble();
1055            }
1056            return val;
1057        } else {
1058            return null;
1059        }
1060    }
1061
1062    public final void readDoubleArray(double[] val) {
1063        int N = readInt();
1064        if (N == val.length) {
1065            for (int i=0; i<N; i++) {
1066                val[i] = readDouble();
1067            }
1068        } else {
1069            throw new RuntimeException("bad array lengths");
1070        }
1071    }
1072
1073    public final void writeStringArray(String[] val) {
1074        if (val != null) {
1075            int N = val.length;
1076            writeInt(N);
1077            for (int i=0; i<N; i++) {
1078                writeString(val[i]);
1079            }
1080        } else {
1081            writeInt(-1);
1082        }
1083    }
1084
1085    public final String[] createStringArray() {
1086        int N = readInt();
1087        if (N >= 0) {
1088            String[] val = new String[N];
1089            for (int i=0; i<N; i++) {
1090                val[i] = readString();
1091            }
1092            return val;
1093        } else {
1094            return null;
1095        }
1096    }
1097
1098    public final void readStringArray(String[] val) {
1099        int N = readInt();
1100        if (N == val.length) {
1101            for (int i=0; i<N; i++) {
1102                val[i] = readString();
1103            }
1104        } else {
1105            throw new RuntimeException("bad array lengths");
1106        }
1107    }
1108
1109    public final void writeBinderArray(IBinder[] val) {
1110        if (val != null) {
1111            int N = val.length;
1112            writeInt(N);
1113            for (int i=0; i<N; i++) {
1114                writeStrongBinder(val[i]);
1115            }
1116        } else {
1117            writeInt(-1);
1118        }
1119    }
1120
1121    /**
1122     * @hide
1123     */
1124    public final void writeCharSequenceArray(CharSequence[] val) {
1125        if (val != null) {
1126            int N = val.length;
1127            writeInt(N);
1128            for (int i=0; i<N; i++) {
1129                writeCharSequence(val[i]);
1130            }
1131        } else {
1132            writeInt(-1);
1133        }
1134    }
1135
1136    /**
1137     * @hide
1138     */
1139    public final void writeCharSequenceList(ArrayList<CharSequence> val) {
1140        if (val != null) {
1141            int N = val.size();
1142            writeInt(N);
1143            for (int i=0; i<N; i++) {
1144                writeCharSequence(val.get(i));
1145            }
1146        } else {
1147            writeInt(-1);
1148        }
1149    }
1150
1151    public final IBinder[] createBinderArray() {
1152        int N = readInt();
1153        if (N >= 0) {
1154            IBinder[] val = new IBinder[N];
1155            for (int i=0; i<N; i++) {
1156                val[i] = readStrongBinder();
1157            }
1158            return val;
1159        } else {
1160            return null;
1161        }
1162    }
1163
1164    public final void readBinderArray(IBinder[] val) {
1165        int N = readInt();
1166        if (N == val.length) {
1167            for (int i=0; i<N; i++) {
1168                val[i] = readStrongBinder();
1169            }
1170        } else {
1171            throw new RuntimeException("bad array lengths");
1172        }
1173    }
1174
1175    /**
1176     * Flatten a List containing a particular object type into the parcel, at
1177     * the current dataPosition() and growing dataCapacity() if needed.  The
1178     * type of the objects in the list must be one that implements Parcelable.
1179     * Unlike the generic writeList() method, however, only the raw data of the
1180     * objects is written and not their type, so you must use the corresponding
1181     * readTypedList() to unmarshall them.
1182     *
1183     * @param val The list of objects to be written.
1184     *
1185     * @see #createTypedArrayList
1186     * @see #readTypedList
1187     * @see Parcelable
1188     */
1189    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1190        if (val == null) {
1191            writeInt(-1);
1192            return;
1193        }
1194        int N = val.size();
1195        int i=0;
1196        writeInt(N);
1197        while (i < N) {
1198            T item = val.get(i);
1199            if (item != null) {
1200                writeInt(1);
1201                item.writeToParcel(this, 0);
1202            } else {
1203                writeInt(0);
1204            }
1205            i++;
1206        }
1207    }
1208
1209    /**
1210     * Flatten a List containing String objects into the parcel, at
1211     * the current dataPosition() and growing dataCapacity() if needed.  They
1212     * can later be retrieved with {@link #createStringArrayList} or
1213     * {@link #readStringList}.
1214     *
1215     * @param val The list of strings to be written.
1216     *
1217     * @see #createStringArrayList
1218     * @see #readStringList
1219     */
1220    public final void writeStringList(List<String> val) {
1221        if (val == null) {
1222            writeInt(-1);
1223            return;
1224        }
1225        int N = val.size();
1226        int i=0;
1227        writeInt(N);
1228        while (i < N) {
1229            writeString(val.get(i));
1230            i++;
1231        }
1232    }
1233
1234    /**
1235     * Flatten a List containing IBinder objects into the parcel, at
1236     * the current dataPosition() and growing dataCapacity() if needed.  They
1237     * can later be retrieved with {@link #createBinderArrayList} or
1238     * {@link #readBinderList}.
1239     *
1240     * @param val The list of strings to be written.
1241     *
1242     * @see #createBinderArrayList
1243     * @see #readBinderList
1244     */
1245    public final void writeBinderList(List<IBinder> val) {
1246        if (val == null) {
1247            writeInt(-1);
1248            return;
1249        }
1250        int N = val.size();
1251        int i=0;
1252        writeInt(N);
1253        while (i < N) {
1254            writeStrongBinder(val.get(i));
1255            i++;
1256        }
1257    }
1258
1259    /**
1260     * Flatten a heterogeneous array containing a particular object type into
1261     * the parcel, at
1262     * the current dataPosition() and growing dataCapacity() if needed.  The
1263     * type of the objects in the array must be one that implements Parcelable.
1264     * Unlike the {@link #writeParcelableArray} method, however, only the
1265     * raw data of the objects is written and not their type, so you must use
1266     * {@link #readTypedArray} with the correct corresponding
1267     * {@link Parcelable.Creator} implementation to unmarshall them.
1268     *
1269     * @param val The array of objects to be written.
1270     * @param parcelableFlags Contextual flags as per
1271     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1272     *
1273     * @see #readTypedArray
1274     * @see #writeParcelableArray
1275     * @see Parcelable.Creator
1276     */
1277    public final <T extends Parcelable> void writeTypedArray(T[] val,
1278            int parcelableFlags) {
1279        if (val != null) {
1280            int N = val.length;
1281            writeInt(N);
1282            for (int i=0; i<N; i++) {
1283                T item = val[i];
1284                if (item != null) {
1285                    writeInt(1);
1286                    item.writeToParcel(this, parcelableFlags);
1287                } else {
1288                    writeInt(0);
1289                }
1290            }
1291        } else {
1292            writeInt(-1);
1293        }
1294    }
1295
1296    /**
1297     * Flatten the Parcelable object into the parcel.
1298     *
1299     * @param val The Parcelable object to be written.
1300     * @param parcelableFlags Contextual flags as per
1301     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1302     *
1303     * @see #readTypedObject
1304     */
1305    public final <T extends Parcelable> void writeTypedObject(T val, int parcelableFlags) {
1306        if (val != null) {
1307            writeInt(1);
1308            val.writeToParcel(this, parcelableFlags);
1309        } else {
1310            writeInt(0);
1311        }
1312    }
1313
1314    /**
1315     * Flatten a generic object in to a parcel.  The given Object value may
1316     * currently be one of the following types:
1317     *
1318     * <ul>
1319     * <li> null
1320     * <li> String
1321     * <li> Byte
1322     * <li> Short
1323     * <li> Integer
1324     * <li> Long
1325     * <li> Float
1326     * <li> Double
1327     * <li> Boolean
1328     * <li> String[]
1329     * <li> boolean[]
1330     * <li> byte[]
1331     * <li> int[]
1332     * <li> long[]
1333     * <li> Object[] (supporting objects of the same type defined here).
1334     * <li> {@link Bundle}
1335     * <li> Map (as supported by {@link #writeMap}).
1336     * <li> Any object that implements the {@link Parcelable} protocol.
1337     * <li> Parcelable[]
1338     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1339     * <li> List (as supported by {@link #writeList}).
1340     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1341     * <li> {@link IBinder}
1342     * <li> Any object that implements Serializable (but see
1343     *      {@link #writeSerializable} for caveats).  Note that all of the
1344     *      previous types have relatively efficient implementations for
1345     *      writing to a Parcel; having to rely on the generic serialization
1346     *      approach is much less efficient and should be avoided whenever
1347     *      possible.
1348     * </ul>
1349     *
1350     * <p class="caution">{@link Parcelable} objects are written with
1351     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1352     * serializing objects containing {@link ParcelFileDescriptor}s,
1353     * this may result in file descriptor leaks when they are returned from
1354     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1355     * should be used).</p>
1356     */
1357    public final void writeValue(Object v) {
1358        if (v == null) {
1359            writeInt(VAL_NULL);
1360        } else if (v instanceof String) {
1361            writeInt(VAL_STRING);
1362            writeString((String) v);
1363        } else if (v instanceof Integer) {
1364            writeInt(VAL_INTEGER);
1365            writeInt((Integer) v);
1366        } else if (v instanceof Map) {
1367            writeInt(VAL_MAP);
1368            writeMap((Map) v);
1369        } else if (v instanceof Bundle) {
1370            // Must be before Parcelable
1371            writeInt(VAL_BUNDLE);
1372            writeBundle((Bundle) v);
1373        } else if (v instanceof Parcelable) {
1374            writeInt(VAL_PARCELABLE);
1375            writeParcelable((Parcelable) v, 0);
1376        } else if (v instanceof Short) {
1377            writeInt(VAL_SHORT);
1378            writeInt(((Short) v).intValue());
1379        } else if (v instanceof Long) {
1380            writeInt(VAL_LONG);
1381            writeLong((Long) v);
1382        } else if (v instanceof Float) {
1383            writeInt(VAL_FLOAT);
1384            writeFloat((Float) v);
1385        } else if (v instanceof Double) {
1386            writeInt(VAL_DOUBLE);
1387            writeDouble((Double) v);
1388        } else if (v instanceof Boolean) {
1389            writeInt(VAL_BOOLEAN);
1390            writeInt((Boolean) v ? 1 : 0);
1391        } else if (v instanceof CharSequence) {
1392            // Must be after String
1393            writeInt(VAL_CHARSEQUENCE);
1394            writeCharSequence((CharSequence) v);
1395        } else if (v instanceof List) {
1396            writeInt(VAL_LIST);
1397            writeList((List) v);
1398        } else if (v instanceof SparseArray) {
1399            writeInt(VAL_SPARSEARRAY);
1400            writeSparseArray((SparseArray) v);
1401        } else if (v instanceof boolean[]) {
1402            writeInt(VAL_BOOLEANARRAY);
1403            writeBooleanArray((boolean[]) v);
1404        } else if (v instanceof byte[]) {
1405            writeInt(VAL_BYTEARRAY);
1406            writeByteArray((byte[]) v);
1407        } else if (v instanceof String[]) {
1408            writeInt(VAL_STRINGARRAY);
1409            writeStringArray((String[]) v);
1410        } else if (v instanceof CharSequence[]) {
1411            // Must be after String[] and before Object[]
1412            writeInt(VAL_CHARSEQUENCEARRAY);
1413            writeCharSequenceArray((CharSequence[]) v);
1414        } else if (v instanceof IBinder) {
1415            writeInt(VAL_IBINDER);
1416            writeStrongBinder((IBinder) v);
1417        } else if (v instanceof Parcelable[]) {
1418            writeInt(VAL_PARCELABLEARRAY);
1419            writeParcelableArray((Parcelable[]) v, 0);
1420        } else if (v instanceof int[]) {
1421            writeInt(VAL_INTARRAY);
1422            writeIntArray((int[]) v);
1423        } else if (v instanceof long[]) {
1424            writeInt(VAL_LONGARRAY);
1425            writeLongArray((long[]) v);
1426        } else if (v instanceof Byte) {
1427            writeInt(VAL_BYTE);
1428            writeInt((Byte) v);
1429        } else if (v instanceof PersistableBundle) {
1430            writeInt(VAL_PERSISTABLEBUNDLE);
1431            writePersistableBundle((PersistableBundle) v);
1432        } else if (v instanceof Size) {
1433            writeInt(VAL_SIZE);
1434            writeSize((Size) v);
1435        } else if (v instanceof SizeF) {
1436            writeInt(VAL_SIZEF);
1437            writeSizeF((SizeF) v);
1438        } else if (v instanceof double[]) {
1439            writeInt(VAL_DOUBLEARRAY);
1440            writeDoubleArray((double[]) v);
1441        } else {
1442            Class<?> clazz = v.getClass();
1443            if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1444                // Only pure Object[] are written here, Other arrays of non-primitive types are
1445                // handled by serialization as this does not record the component type.
1446                writeInt(VAL_OBJECTARRAY);
1447                writeArray((Object[]) v);
1448            } else if (v instanceof Serializable) {
1449                // Must be last
1450                writeInt(VAL_SERIALIZABLE);
1451                writeSerializable((Serializable) v);
1452            } else {
1453                throw new RuntimeException("Parcel: unable to marshal value " + v);
1454            }
1455        }
1456    }
1457
1458    /**
1459     * Flatten the name of the class of the Parcelable and its contents
1460     * into the parcel.
1461     *
1462     * @param p The Parcelable object to be written.
1463     * @param parcelableFlags Contextual flags as per
1464     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1465     */
1466    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1467        if (p == null) {
1468            writeString(null);
1469            return;
1470        }
1471        writeParcelableCreator(p);
1472        p.writeToParcel(this, parcelableFlags);
1473    }
1474
1475    /** @hide */
1476    public final void writeParcelableCreator(Parcelable p) {
1477        String name = p.getClass().getName();
1478        writeString(name);
1479    }
1480
1481    /**
1482     * Write a generic serializable object in to a Parcel.  It is strongly
1483     * recommended that this method be avoided, since the serialization
1484     * overhead is extremely large, and this approach will be much slower than
1485     * using the other approaches to writing data in to a Parcel.
1486     */
1487    public final void writeSerializable(Serializable s) {
1488        if (s == null) {
1489            writeString(null);
1490            return;
1491        }
1492        String name = s.getClass().getName();
1493        writeString(name);
1494
1495        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1496        try {
1497            ObjectOutputStream oos = new ObjectOutputStream(baos);
1498            oos.writeObject(s);
1499            oos.close();
1500
1501            writeByteArray(baos.toByteArray());
1502        } catch (IOException ioe) {
1503            throw new RuntimeException("Parcelable encountered " +
1504                "IOException writing serializable object (name = " + name +
1505                ")", ioe);
1506        }
1507    }
1508
1509    /**
1510     * Special function for writing an exception result at the header of
1511     * a parcel, to be used when returning an exception from a transaction.
1512     * Note that this currently only supports a few exception types; any other
1513     * exception will be re-thrown by this function as a RuntimeException
1514     * (to be caught by the system's last-resort exception handling when
1515     * dispatching a transaction).
1516     *
1517     * <p>The supported exception types are:
1518     * <ul>
1519     * <li>{@link BadParcelableException}
1520     * <li>{@link IllegalArgumentException}
1521     * <li>{@link IllegalStateException}
1522     * <li>{@link NullPointerException}
1523     * <li>{@link SecurityException}
1524     * <li>{@link NetworkOnMainThreadException}
1525     * </ul>
1526     *
1527     * @param e The Exception to be written.
1528     *
1529     * @see #writeNoException
1530     * @see #readException
1531     */
1532    public final void writeException(Exception e) {
1533        int code = 0;
1534        if (e instanceof SecurityException) {
1535            code = EX_SECURITY;
1536        } else if (e instanceof BadParcelableException) {
1537            code = EX_BAD_PARCELABLE;
1538        } else if (e instanceof IllegalArgumentException) {
1539            code = EX_ILLEGAL_ARGUMENT;
1540        } else if (e instanceof NullPointerException) {
1541            code = EX_NULL_POINTER;
1542        } else if (e instanceof IllegalStateException) {
1543            code = EX_ILLEGAL_STATE;
1544        } else if (e instanceof NetworkOnMainThreadException) {
1545            code = EX_NETWORK_MAIN_THREAD;
1546        } else if (e instanceof UnsupportedOperationException) {
1547            code = EX_UNSUPPORTED_OPERATION;
1548        } else if (e instanceof ServiceSpecificException) {
1549            code = EX_SERVICE_SPECIFIC;
1550        }
1551        writeInt(code);
1552        StrictMode.clearGatheredViolations();
1553        if (code == 0) {
1554            if (e instanceof RuntimeException) {
1555                throw (RuntimeException) e;
1556            }
1557            throw new RuntimeException(e);
1558        }
1559        writeString(e.getMessage());
1560        if (e instanceof ServiceSpecificException) {
1561            writeInt(((ServiceSpecificException)e).errorCode);
1562        }
1563    }
1564
1565    /**
1566     * Special function for writing information at the front of the Parcel
1567     * indicating that no exception occurred.
1568     *
1569     * @see #writeException
1570     * @see #readException
1571     */
1572    public final void writeNoException() {
1573        // Despite the name of this function ("write no exception"),
1574        // it should instead be thought of as "write the RPC response
1575        // header", but because this function name is written out by
1576        // the AIDL compiler, we're not going to rename it.
1577        //
1578        // The response header, in the non-exception case (see also
1579        // writeException above, also called by the AIDL compiler), is
1580        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1581        // StrictMode has gathered up violations that have occurred
1582        // during a Binder call, in which case we write out the number
1583        // of violations and their details, serialized, before the
1584        // actual RPC respons data.  The receiving end of this is
1585        // readException(), below.
1586        if (StrictMode.hasGatheredViolations()) {
1587            writeInt(EX_HAS_REPLY_HEADER);
1588            final int sizePosition = dataPosition();
1589            writeInt(0);  // total size of fat header, to be filled in later
1590            StrictMode.writeGatheredViolationsToParcel(this);
1591            final int payloadPosition = dataPosition();
1592            setDataPosition(sizePosition);
1593            writeInt(payloadPosition - sizePosition);  // header size
1594            setDataPosition(payloadPosition);
1595        } else {
1596            writeInt(0);
1597        }
1598    }
1599
1600    /**
1601     * Special function for reading an exception result from the header of
1602     * a parcel, to be used after receiving the result of a transaction.  This
1603     * will throw the exception for you if it had been written to the Parcel,
1604     * otherwise return and let you read the normal result data from the Parcel.
1605     *
1606     * @see #writeException
1607     * @see #writeNoException
1608     */
1609    public final void readException() {
1610        int code = readExceptionCode();
1611        if (code != 0) {
1612            String msg = readString();
1613            readException(code, msg);
1614        }
1615    }
1616
1617    /**
1618     * Parses the header of a Binder call's response Parcel and
1619     * returns the exception code.  Deals with lite or fat headers.
1620     * In the common successful case, this header is generally zero.
1621     * In less common cases, it's a small negative number and will be
1622     * followed by an error string.
1623     *
1624     * This exists purely for android.database.DatabaseUtils and
1625     * insulating it from having to handle fat headers as returned by
1626     * e.g. StrictMode-induced RPC responses.
1627     *
1628     * @hide
1629     */
1630    public final int readExceptionCode() {
1631        int code = readInt();
1632        if (code == EX_HAS_REPLY_HEADER) {
1633            int headerSize = readInt();
1634            if (headerSize == 0) {
1635                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1636            } else {
1637                // Currently the only thing in the header is StrictMode stacks,
1638                // but discussions around event/RPC tracing suggest we might
1639                // put that here too.  If so, switch on sub-header tags here.
1640                // But for now, just parse out the StrictMode stuff.
1641                StrictMode.readAndHandleBinderCallViolations(this);
1642            }
1643            // And fat response headers are currently only used when
1644            // there are no exceptions, so return no error:
1645            return 0;
1646        }
1647        return code;
1648    }
1649
1650    /**
1651     * Throw an exception with the given message. Not intended for use
1652     * outside the Parcel class.
1653     *
1654     * @param code Used to determine which exception class to throw.
1655     * @param msg The exception message.
1656     */
1657    public final void readException(int code, String msg) {
1658        switch (code) {
1659            case EX_SECURITY:
1660                throw new SecurityException(msg);
1661            case EX_BAD_PARCELABLE:
1662                throw new BadParcelableException(msg);
1663            case EX_ILLEGAL_ARGUMENT:
1664                throw new IllegalArgumentException(msg);
1665            case EX_NULL_POINTER:
1666                throw new NullPointerException(msg);
1667            case EX_ILLEGAL_STATE:
1668                throw new IllegalStateException(msg);
1669            case EX_NETWORK_MAIN_THREAD:
1670                throw new NetworkOnMainThreadException();
1671            case EX_UNSUPPORTED_OPERATION:
1672                throw new UnsupportedOperationException(msg);
1673            case EX_SERVICE_SPECIFIC:
1674                throw new ServiceSpecificException(readInt(), msg);
1675        }
1676        throw new RuntimeException("Unknown exception code: " + code
1677                + " msg " + msg);
1678    }
1679
1680    /**
1681     * Read an integer value from the parcel at the current dataPosition().
1682     */
1683    public final int readInt() {
1684        return nativeReadInt(mNativePtr);
1685    }
1686
1687    /**
1688     * Read a long integer value from the parcel at the current dataPosition().
1689     */
1690    public final long readLong() {
1691        return nativeReadLong(mNativePtr);
1692    }
1693
1694    /**
1695     * Read a floating point value from the parcel at the current
1696     * dataPosition().
1697     */
1698    public final float readFloat() {
1699        return nativeReadFloat(mNativePtr);
1700    }
1701
1702    /**
1703     * Read a double precision floating point value from the parcel at the
1704     * current dataPosition().
1705     */
1706    public final double readDouble() {
1707        return nativeReadDouble(mNativePtr);
1708    }
1709
1710    /**
1711     * Read a string value from the parcel at the current dataPosition().
1712     */
1713    public final String readString() {
1714        return nativeReadString(mNativePtr);
1715    }
1716
1717    /**
1718     * Read a CharSequence value from the parcel at the current dataPosition().
1719     * @hide
1720     */
1721    public final CharSequence readCharSequence() {
1722        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1723    }
1724
1725    /**
1726     * Read an object from the parcel at the current dataPosition().
1727     */
1728    public final IBinder readStrongBinder() {
1729        return nativeReadStrongBinder(mNativePtr);
1730    }
1731
1732    /**
1733     * Read a FileDescriptor from the parcel at the current dataPosition().
1734     */
1735    public final ParcelFileDescriptor readFileDescriptor() {
1736        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1737        return fd != null ? new ParcelFileDescriptor(fd) : null;
1738    }
1739
1740    /** {@hide} */
1741    public final FileDescriptor readRawFileDescriptor() {
1742        return nativeReadFileDescriptor(mNativePtr);
1743    }
1744
1745    /**
1746     * {@hide}
1747     * Read and return a new array of FileDescriptors from the parcel.
1748     * @return the FileDescriptor array, or null if the array is null.
1749     **/
1750    public final FileDescriptor[] createRawFileDescriptorArray() {
1751        int N = readInt();
1752        if (N < 0) {
1753            return null;
1754        }
1755        FileDescriptor[] f = new FileDescriptor[N];
1756        for (int i = 0; i < N; i++) {
1757            f[i] = readRawFileDescriptor();
1758        }
1759        return f;
1760    }
1761
1762    /**
1763     * {@hide}
1764     * Read an array of FileDescriptors from a parcel.
1765     * The passed array must be exactly the length of the array in the parcel.
1766     * @return the FileDescriptor array, or null if the array is null.
1767     **/
1768    public final void readRawFileDescriptorArray(FileDescriptor[] val) {
1769        int N = readInt();
1770        if (N == val.length) {
1771            for (int i=0; i<N; i++) {
1772                val[i] = readRawFileDescriptor();
1773            }
1774        } else {
1775            throw new RuntimeException("bad array lengths");
1776        }
1777    }
1778
1779
1780    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1781            int mode) throws FileNotFoundException;
1782    /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1783            throws IOException;
1784    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1785            throws IOException;
1786    /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1787
1788    /**
1789     * Read a byte value from the parcel at the current dataPosition().
1790     */
1791    public final byte readByte() {
1792        return (byte)(readInt() & 0xff);
1793    }
1794
1795    /**
1796     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1797     * been written with {@link #writeBundle}.  Read into an existing Map object
1798     * from the parcel at the current dataPosition().
1799     */
1800    public final void readMap(Map outVal, ClassLoader loader) {
1801        int N = readInt();
1802        readMapInternal(outVal, N, loader);
1803    }
1804
1805    /**
1806     * Read into an existing List object from the parcel at the current
1807     * dataPosition(), using the given class loader to load any enclosed
1808     * Parcelables.  If it is null, the default class loader is used.
1809     */
1810    public final void readList(List outVal, ClassLoader loader) {
1811        int N = readInt();
1812        readListInternal(outVal, N, loader);
1813    }
1814
1815    /**
1816     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1817     * been written with {@link #writeBundle}.  Read and return a new HashMap
1818     * object from the parcel at the current dataPosition(), using the given
1819     * class loader to load any enclosed Parcelables.  Returns null if
1820     * the previously written map object was null.
1821     */
1822    public final HashMap readHashMap(ClassLoader loader)
1823    {
1824        int N = readInt();
1825        if (N < 0) {
1826            return null;
1827        }
1828        HashMap m = new HashMap(N);
1829        readMapInternal(m, N, loader);
1830        return m;
1831    }
1832
1833    /**
1834     * Read and return a new Bundle object from the parcel at the current
1835     * dataPosition().  Returns null if the previously written Bundle object was
1836     * null.
1837     */
1838    public final Bundle readBundle() {
1839        return readBundle(null);
1840    }
1841
1842    /**
1843     * Read and return a new Bundle object from the parcel at the current
1844     * dataPosition(), using the given class loader to initialize the class
1845     * loader of the Bundle for later retrieval of Parcelable objects.
1846     * Returns null if the previously written Bundle object was null.
1847     */
1848    public final Bundle readBundle(ClassLoader loader) {
1849        int length = readInt();
1850        if (length < 0) {
1851            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1852            return null;
1853        }
1854
1855        final Bundle bundle = new Bundle(this, length);
1856        if (loader != null) {
1857            bundle.setClassLoader(loader);
1858        }
1859        return bundle;
1860    }
1861
1862    /**
1863     * Read and return a new Bundle object from the parcel at the current
1864     * dataPosition().  Returns null if the previously written Bundle object was
1865     * null.
1866     */
1867    public final PersistableBundle readPersistableBundle() {
1868        return readPersistableBundle(null);
1869    }
1870
1871    /**
1872     * Read and return a new Bundle object from the parcel at the current
1873     * dataPosition(), using the given class loader to initialize the class
1874     * loader of the Bundle for later retrieval of Parcelable objects.
1875     * Returns null if the previously written Bundle object was null.
1876     */
1877    public final PersistableBundle readPersistableBundle(ClassLoader loader) {
1878        int length = readInt();
1879        if (length < 0) {
1880            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1881            return null;
1882        }
1883
1884        final PersistableBundle bundle = new PersistableBundle(this, length);
1885        if (loader != null) {
1886            bundle.setClassLoader(loader);
1887        }
1888        return bundle;
1889    }
1890
1891    /**
1892     * Read a Size from the parcel at the current dataPosition().
1893     */
1894    public final Size readSize() {
1895        final int width = readInt();
1896        final int height = readInt();
1897        return new Size(width, height);
1898    }
1899
1900    /**
1901     * Read a SizeF from the parcel at the current dataPosition().
1902     */
1903    public final SizeF readSizeF() {
1904        final float width = readFloat();
1905        final float height = readFloat();
1906        return new SizeF(width, height);
1907    }
1908
1909    /**
1910     * Read and return a byte[] object from the parcel.
1911     */
1912    public final byte[] createByteArray() {
1913        return nativeCreateByteArray(mNativePtr);
1914    }
1915
1916    /**
1917     * Read a byte[] object from the parcel and copy it into the
1918     * given byte array.
1919     */
1920    public final void readByteArray(byte[] val) {
1921        // TODO: make this a native method to avoid the extra copy.
1922        byte[] ba = createByteArray();
1923        if (ba.length == val.length) {
1924           System.arraycopy(ba, 0, val, 0, ba.length);
1925        } else {
1926            throw new RuntimeException("bad array lengths");
1927        }
1928    }
1929
1930    /**
1931     * Read a blob of data from the parcel and return it as a byte array.
1932     * {@hide}
1933     * {@SystemApi}
1934     */
1935    public final byte[] readBlob() {
1936        return nativeReadBlob(mNativePtr);
1937    }
1938
1939    /**
1940     * Read and return a String[] object from the parcel.
1941     * {@hide}
1942     */
1943    public final String[] readStringArray() {
1944        String[] array = null;
1945
1946        int length = readInt();
1947        if (length >= 0)
1948        {
1949            array = new String[length];
1950
1951            for (int i = 0 ; i < length ; i++)
1952            {
1953                array[i] = readString();
1954            }
1955        }
1956
1957        return array;
1958    }
1959
1960    /**
1961     * Read and return a CharSequence[] object from the parcel.
1962     * {@hide}
1963     */
1964    public final CharSequence[] readCharSequenceArray() {
1965        CharSequence[] array = null;
1966
1967        int length = readInt();
1968        if (length >= 0)
1969        {
1970            array = new CharSequence[length];
1971
1972            for (int i = 0 ; i < length ; i++)
1973            {
1974                array[i] = readCharSequence();
1975            }
1976        }
1977
1978        return array;
1979    }
1980
1981    /**
1982     * Read and return an ArrayList&lt;CharSequence&gt; object from the parcel.
1983     * {@hide}
1984     */
1985    public final ArrayList<CharSequence> readCharSequenceList() {
1986        ArrayList<CharSequence> array = null;
1987
1988        int length = readInt();
1989        if (length >= 0) {
1990            array = new ArrayList<CharSequence>(length);
1991
1992            for (int i = 0 ; i < length ; i++) {
1993                array.add(readCharSequence());
1994            }
1995        }
1996
1997        return array;
1998    }
1999
2000    /**
2001     * Read and return a new ArrayList object from the parcel at the current
2002     * dataPosition().  Returns null if the previously written list object was
2003     * null.  The given class loader will be used to load any enclosed
2004     * Parcelables.
2005     */
2006    public final ArrayList readArrayList(ClassLoader loader) {
2007        int N = readInt();
2008        if (N < 0) {
2009            return null;
2010        }
2011        ArrayList l = new ArrayList(N);
2012        readListInternal(l, N, loader);
2013        return l;
2014    }
2015
2016    /**
2017     * Read and return a new Object array from the parcel at the current
2018     * dataPosition().  Returns null if the previously written array was
2019     * null.  The given class loader will be used to load any enclosed
2020     * Parcelables.
2021     */
2022    public final Object[] readArray(ClassLoader loader) {
2023        int N = readInt();
2024        if (N < 0) {
2025            return null;
2026        }
2027        Object[] l = new Object[N];
2028        readArrayInternal(l, N, loader);
2029        return l;
2030    }
2031
2032    /**
2033     * Read and return a new SparseArray object from the parcel at the current
2034     * dataPosition().  Returns null if the previously written list object was
2035     * null.  The given class loader will be used to load any enclosed
2036     * Parcelables.
2037     */
2038    public final SparseArray readSparseArray(ClassLoader loader) {
2039        int N = readInt();
2040        if (N < 0) {
2041            return null;
2042        }
2043        SparseArray sa = new SparseArray(N);
2044        readSparseArrayInternal(sa, N, loader);
2045        return sa;
2046    }
2047
2048    /**
2049     * Read and return a new SparseBooleanArray object from the parcel at the current
2050     * dataPosition().  Returns null if the previously written list object was
2051     * null.
2052     */
2053    public final SparseBooleanArray readSparseBooleanArray() {
2054        int N = readInt();
2055        if (N < 0) {
2056            return null;
2057        }
2058        SparseBooleanArray sa = new SparseBooleanArray(N);
2059        readSparseBooleanArrayInternal(sa, N);
2060        return sa;
2061    }
2062
2063    /**
2064     * Read and return a new ArrayList containing a particular object type from
2065     * the parcel that was written with {@link #writeTypedList} at the
2066     * current dataPosition().  Returns null if the
2067     * previously written list object was null.  The list <em>must</em> have
2068     * previously been written via {@link #writeTypedList} with the same object
2069     * type.
2070     *
2071     * @return A newly created ArrayList containing objects with the same data
2072     *         as those that were previously written.
2073     *
2074     * @see #writeTypedList
2075     */
2076    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
2077        int N = readInt();
2078        if (N < 0) {
2079            return null;
2080        }
2081        ArrayList<T> l = new ArrayList<T>(N);
2082        while (N > 0) {
2083            if (readInt() != 0) {
2084                l.add(c.createFromParcel(this));
2085            } else {
2086                l.add(null);
2087            }
2088            N--;
2089        }
2090        return l;
2091    }
2092
2093    /**
2094     * Read into the given List items containing a particular object type
2095     * that were written with {@link #writeTypedList} at the
2096     * current dataPosition().  The list <em>must</em> have
2097     * previously been written via {@link #writeTypedList} with the same object
2098     * type.
2099     *
2100     * @return A newly created ArrayList containing objects with the same data
2101     *         as those that were previously written.
2102     *
2103     * @see #writeTypedList
2104     */
2105    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
2106        int M = list.size();
2107        int N = readInt();
2108        int i = 0;
2109        for (; i < M && i < N; i++) {
2110            if (readInt() != 0) {
2111                list.set(i, c.createFromParcel(this));
2112            } else {
2113                list.set(i, null);
2114            }
2115        }
2116        for (; i<N; i++) {
2117            if (readInt() != 0) {
2118                list.add(c.createFromParcel(this));
2119            } else {
2120                list.add(null);
2121            }
2122        }
2123        for (; i<M; i++) {
2124            list.remove(N);
2125        }
2126    }
2127
2128    /**
2129     * Read and return a new ArrayList containing String objects from
2130     * the parcel that was written with {@link #writeStringList} at the
2131     * current dataPosition().  Returns null if the
2132     * previously written list object was null.
2133     *
2134     * @return A newly created ArrayList containing strings with the same data
2135     *         as those that were previously written.
2136     *
2137     * @see #writeStringList
2138     */
2139    public final ArrayList<String> createStringArrayList() {
2140        int N = readInt();
2141        if (N < 0) {
2142            return null;
2143        }
2144        ArrayList<String> l = new ArrayList<String>(N);
2145        while (N > 0) {
2146            l.add(readString());
2147            N--;
2148        }
2149        return l;
2150    }
2151
2152    /**
2153     * Read and return a new ArrayList containing IBinder objects from
2154     * the parcel that was written with {@link #writeBinderList} at the
2155     * current dataPosition().  Returns null if the
2156     * previously written list object was null.
2157     *
2158     * @return A newly created ArrayList containing strings with the same data
2159     *         as those that were previously written.
2160     *
2161     * @see #writeBinderList
2162     */
2163    public final ArrayList<IBinder> createBinderArrayList() {
2164        int N = readInt();
2165        if (N < 0) {
2166            return null;
2167        }
2168        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
2169        while (N > 0) {
2170            l.add(readStrongBinder());
2171            N--;
2172        }
2173        return l;
2174    }
2175
2176    /**
2177     * Read into the given List items String objects that were written with
2178     * {@link #writeStringList} at the current dataPosition().
2179     *
2180     * @return A newly created ArrayList containing strings with the same data
2181     *         as those that were previously written.
2182     *
2183     * @see #writeStringList
2184     */
2185    public final void readStringList(List<String> list) {
2186        int M = list.size();
2187        int N = readInt();
2188        int i = 0;
2189        for (; i < M && i < N; i++) {
2190            list.set(i, readString());
2191        }
2192        for (; i<N; i++) {
2193            list.add(readString());
2194        }
2195        for (; i<M; i++) {
2196            list.remove(N);
2197        }
2198    }
2199
2200    /**
2201     * Read into the given List items IBinder objects that were written with
2202     * {@link #writeBinderList} at the current dataPosition().
2203     *
2204     * @return A newly created ArrayList containing strings with the same data
2205     *         as those that were previously written.
2206     *
2207     * @see #writeBinderList
2208     */
2209    public final void readBinderList(List<IBinder> list) {
2210        int M = list.size();
2211        int N = readInt();
2212        int i = 0;
2213        for (; i < M && i < N; i++) {
2214            list.set(i, readStrongBinder());
2215        }
2216        for (; i<N; i++) {
2217            list.add(readStrongBinder());
2218        }
2219        for (; i<M; i++) {
2220            list.remove(N);
2221        }
2222    }
2223
2224    /**
2225     * Read and return a new array containing a particular object type from
2226     * the parcel at the current dataPosition().  Returns null if the
2227     * previously written array was null.  The array <em>must</em> have
2228     * previously been written via {@link #writeTypedArray} with the same
2229     * object type.
2230     *
2231     * @return A newly created array containing objects with the same data
2232     *         as those that were previously written.
2233     *
2234     * @see #writeTypedArray
2235     */
2236    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
2237        int N = readInt();
2238        if (N < 0) {
2239            return null;
2240        }
2241        T[] l = c.newArray(N);
2242        for (int i=0; i<N; i++) {
2243            if (readInt() != 0) {
2244                l[i] = c.createFromParcel(this);
2245            }
2246        }
2247        return l;
2248    }
2249
2250    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
2251        int N = readInt();
2252        if (N == val.length) {
2253            for (int i=0; i<N; i++) {
2254                if (readInt() != 0) {
2255                    val[i] = c.createFromParcel(this);
2256                } else {
2257                    val[i] = null;
2258                }
2259            }
2260        } else {
2261            throw new RuntimeException("bad array lengths");
2262        }
2263    }
2264
2265    /**
2266     * @deprecated
2267     * @hide
2268     */
2269    @Deprecated
2270    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
2271        return createTypedArray(c);
2272    }
2273
2274    /**
2275     * Read and return a typed Parcelable object from a parcel.
2276     * Returns null if the previous written object was null.
2277     * The object <em>must</em> have previous been written via
2278     * {@link #writeTypedObject} with the same object type.
2279     *
2280     * @return A newly created object of the type that was previously
2281     *         written.
2282     *
2283     * @see #writeTypedObject
2284     */
2285    public final <T> T readTypedObject(Parcelable.Creator<T> c) {
2286        if (readInt() != 0) {
2287            return c.createFromParcel(this);
2288        } else {
2289            return null;
2290        }
2291    }
2292
2293    /**
2294     * Write a heterogeneous array of Parcelable objects into the Parcel.
2295     * Each object in the array is written along with its class name, so
2296     * that the correct class can later be instantiated.  As a result, this
2297     * has significantly more overhead than {@link #writeTypedArray}, but will
2298     * correctly handle an array containing more than one type of object.
2299     *
2300     * @param value The array of objects to be written.
2301     * @param parcelableFlags Contextual flags as per
2302     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
2303     *
2304     * @see #writeTypedArray
2305     */
2306    public final <T extends Parcelable> void writeParcelableArray(T[] value,
2307            int parcelableFlags) {
2308        if (value != null) {
2309            int N = value.length;
2310            writeInt(N);
2311            for (int i=0; i<N; i++) {
2312                writeParcelable(value[i], parcelableFlags);
2313            }
2314        } else {
2315            writeInt(-1);
2316        }
2317    }
2318
2319    /**
2320     * Read a typed object from a parcel.  The given class loader will be
2321     * used to load any enclosed Parcelables.  If it is null, the default class
2322     * loader will be used.
2323     */
2324    public final Object readValue(ClassLoader loader) {
2325        int type = readInt();
2326
2327        switch (type) {
2328        case VAL_NULL:
2329            return null;
2330
2331        case VAL_STRING:
2332            return readString();
2333
2334        case VAL_INTEGER:
2335            return readInt();
2336
2337        case VAL_MAP:
2338            return readHashMap(loader);
2339
2340        case VAL_PARCELABLE:
2341            return readParcelable(loader);
2342
2343        case VAL_SHORT:
2344            return (short) readInt();
2345
2346        case VAL_LONG:
2347            return readLong();
2348
2349        case VAL_FLOAT:
2350            return readFloat();
2351
2352        case VAL_DOUBLE:
2353            return readDouble();
2354
2355        case VAL_BOOLEAN:
2356            return readInt() == 1;
2357
2358        case VAL_CHARSEQUENCE:
2359            return readCharSequence();
2360
2361        case VAL_LIST:
2362            return readArrayList(loader);
2363
2364        case VAL_BOOLEANARRAY:
2365            return createBooleanArray();
2366
2367        case VAL_BYTEARRAY:
2368            return createByteArray();
2369
2370        case VAL_STRINGARRAY:
2371            return readStringArray();
2372
2373        case VAL_CHARSEQUENCEARRAY:
2374            return readCharSequenceArray();
2375
2376        case VAL_IBINDER:
2377            return readStrongBinder();
2378
2379        case VAL_OBJECTARRAY:
2380            return readArray(loader);
2381
2382        case VAL_INTARRAY:
2383            return createIntArray();
2384
2385        case VAL_LONGARRAY:
2386            return createLongArray();
2387
2388        case VAL_BYTE:
2389            return readByte();
2390
2391        case VAL_SERIALIZABLE:
2392            return readSerializable(loader);
2393
2394        case VAL_PARCELABLEARRAY:
2395            return readParcelableArray(loader);
2396
2397        case VAL_SPARSEARRAY:
2398            return readSparseArray(loader);
2399
2400        case VAL_SPARSEBOOLEANARRAY:
2401            return readSparseBooleanArray();
2402
2403        case VAL_BUNDLE:
2404            return readBundle(loader); // loading will be deferred
2405
2406        case VAL_PERSISTABLEBUNDLE:
2407            return readPersistableBundle(loader);
2408
2409        case VAL_SIZE:
2410            return readSize();
2411
2412        case VAL_SIZEF:
2413            return readSizeF();
2414
2415        case VAL_DOUBLEARRAY:
2416            return createDoubleArray();
2417
2418        default:
2419            int off = dataPosition() - 4;
2420            throw new RuntimeException(
2421                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2422        }
2423    }
2424
2425    /**
2426     * Read and return a new Parcelable from the parcel.  The given class loader
2427     * will be used to load any enclosed Parcelables.  If it is null, the default
2428     * class loader will be used.
2429     * @param loader A ClassLoader from which to instantiate the Parcelable
2430     * object, or null for the default class loader.
2431     * @return Returns the newly created Parcelable, or null if a null
2432     * object has been written.
2433     * @throws BadParcelableException Throws BadParcelableException if there
2434     * was an error trying to instantiate the Parcelable.
2435     */
2436    @SuppressWarnings("unchecked")
2437    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2438        Parcelable.Creator<?> creator = readParcelableCreator(loader);
2439        if (creator == null) {
2440            return null;
2441        }
2442        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2443          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2444              (Parcelable.ClassLoaderCreator<?>) creator;
2445          return (T) classLoaderCreator.createFromParcel(this, loader);
2446        }
2447        return (T) creator.createFromParcel(this);
2448    }
2449
2450    /** @hide */
2451    @SuppressWarnings("unchecked")
2452    public final <T extends Parcelable> T readCreator(Parcelable.Creator<?> creator,
2453            ClassLoader loader) {
2454        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2455          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2456              (Parcelable.ClassLoaderCreator<?>) creator;
2457          return (T) classLoaderCreator.createFromParcel(this, loader);
2458        }
2459        return (T) creator.createFromParcel(this);
2460    }
2461
2462    /** @hide */
2463    public final Parcelable.Creator<?> readParcelableCreator(ClassLoader loader) {
2464        String name = readString();
2465        if (name == null) {
2466            return null;
2467        }
2468        Parcelable.Creator<?> creator;
2469        synchronized (mCreators) {
2470            HashMap<String,Parcelable.Creator<?>> map = mCreators.get(loader);
2471            if (map == null) {
2472                map = new HashMap<>();
2473                mCreators.put(loader, map);
2474            }
2475            creator = map.get(name);
2476            if (creator == null) {
2477                try {
2478                    // If loader == null, explicitly emulate Class.forName(String) "caller
2479                    // classloader" behavior.
2480                    ClassLoader parcelableClassLoader =
2481                            (loader == null ? getClass().getClassLoader() : loader);
2482                    // Avoid initializing the Parcelable class until we know it implements
2483                    // Parcelable and has the necessary CREATOR field. http://b/1171613.
2484                    Class<?> parcelableClass = Class.forName(name, false /* initialize */,
2485                            parcelableClassLoader);
2486                    if (!Parcelable.class.isAssignableFrom(parcelableClass)) {
2487                        throw new BadParcelableException("Parcelable protocol requires that the "
2488                                + "class implements Parcelable");
2489                    }
2490                    Field f = parcelableClass.getField("CREATOR");
2491                    if ((f.getModifiers() & Modifier.STATIC) == 0) {
2492                        throw new BadParcelableException("Parcelable protocol requires "
2493                                + "the CREATOR object to be static on class " + name);
2494                    }
2495                    Class<?> creatorType = f.getType();
2496                    if (!Parcelable.Creator.class.isAssignableFrom(creatorType)) {
2497                        // Fail before calling Field.get(), not after, to avoid initializing
2498                        // parcelableClass unnecessarily.
2499                        throw new BadParcelableException("Parcelable protocol requires a "
2500                                + "Parcelable.Creator object called "
2501                                + "CREATOR on class " + name);
2502                    }
2503                    creator = (Parcelable.Creator<?>) f.get(null);
2504                }
2505                catch (IllegalAccessException e) {
2506                    Log.e(TAG, "Illegal access when unmarshalling: " + name, e);
2507                    throw new BadParcelableException(
2508                            "IllegalAccessException when unmarshalling: " + name);
2509                }
2510                catch (ClassNotFoundException e) {
2511                    Log.e(TAG, "Class not found when unmarshalling: " + name, e);
2512                    throw new BadParcelableException(
2513                            "ClassNotFoundException when unmarshalling: " + name);
2514                }
2515                catch (NoSuchFieldException e) {
2516                    throw new BadParcelableException("Parcelable protocol requires a "
2517                            + "Parcelable.Creator object called "
2518                            + "CREATOR on class " + name);
2519                }
2520                if (creator == null) {
2521                    throw new BadParcelableException("Parcelable protocol requires a "
2522                            + "non-null Parcelable.Creator object called "
2523                            + "CREATOR on class " + name);
2524                }
2525
2526                map.put(name, creator);
2527            }
2528        }
2529
2530        return creator;
2531    }
2532
2533    /**
2534     * Read and return a new Parcelable array from the parcel.
2535     * The given class loader will be used to load any enclosed
2536     * Parcelables.
2537     * @return the Parcelable array, or null if the array is null
2538     */
2539    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2540        int N = readInt();
2541        if (N < 0) {
2542            return null;
2543        }
2544        Parcelable[] p = new Parcelable[N];
2545        for (int i = 0; i < N; i++) {
2546            p[i] = readParcelable(loader);
2547        }
2548        return p;
2549    }
2550
2551    /**
2552     * Read and return a new Serializable object from the parcel.
2553     * @return the Serializable object, or null if the Serializable name
2554     * wasn't found in the parcel.
2555     */
2556    public final Serializable readSerializable() {
2557        return readSerializable(null);
2558    }
2559
2560    private final Serializable readSerializable(final ClassLoader loader) {
2561        String name = readString();
2562        if (name == null) {
2563            // For some reason we were unable to read the name of the Serializable (either there
2564            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2565            // return null, which indicates that the name wasn't found in the parcel.
2566            return null;
2567        }
2568
2569        byte[] serializedData = createByteArray();
2570        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2571        try {
2572            ObjectInputStream ois = new ObjectInputStream(bais) {
2573                @Override
2574                protected Class<?> resolveClass(ObjectStreamClass osClass)
2575                        throws IOException, ClassNotFoundException {
2576                    // try the custom classloader if provided
2577                    if (loader != null) {
2578                        Class<?> c = Class.forName(osClass.getName(), false, loader);
2579                        if (c != null) {
2580                            return c;
2581                        }
2582                    }
2583                    return super.resolveClass(osClass);
2584                }
2585            };
2586            return (Serializable) ois.readObject();
2587        } catch (IOException ioe) {
2588            throw new RuntimeException("Parcelable encountered " +
2589                "IOException reading a Serializable object (name = " + name +
2590                ")", ioe);
2591        } catch (ClassNotFoundException cnfe) {
2592            throw new RuntimeException("Parcelable encountered " +
2593                "ClassNotFoundException reading a Serializable object (name = "
2594                + name + ")", cnfe);
2595        }
2596    }
2597
2598    // Cache of previously looked up CREATOR.createFromParcel() methods for
2599    // particular classes.  Keys are the names of the classes, values are
2600    // Method objects.
2601    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator<?>>>
2602        mCreators = new HashMap<>();
2603
2604    /** @hide for internal use only. */
2605    static protected final Parcel obtain(int obj) {
2606        throw new UnsupportedOperationException();
2607    }
2608
2609    /** @hide */
2610    static protected final Parcel obtain(long obj) {
2611        final Parcel[] pool = sHolderPool;
2612        synchronized (pool) {
2613            Parcel p;
2614            for (int i=0; i<POOL_SIZE; i++) {
2615                p = pool[i];
2616                if (p != null) {
2617                    pool[i] = null;
2618                    if (DEBUG_RECYCLE) {
2619                        p.mStack = new RuntimeException();
2620                    }
2621                    p.init(obj);
2622                    return p;
2623                }
2624            }
2625        }
2626        return new Parcel(obj);
2627    }
2628
2629    private Parcel(long nativePtr) {
2630        if (DEBUG_RECYCLE) {
2631            mStack = new RuntimeException();
2632        }
2633        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2634        init(nativePtr);
2635    }
2636
2637    private void init(long nativePtr) {
2638        if (nativePtr != 0) {
2639            mNativePtr = nativePtr;
2640            mOwnsNativeParcelObject = false;
2641        } else {
2642            mNativePtr = nativeCreate();
2643            mOwnsNativeParcelObject = true;
2644        }
2645    }
2646
2647    private void freeBuffer() {
2648        if (mOwnsNativeParcelObject) {
2649            updateNativeSize(nativeFreeBuffer(mNativePtr));
2650        }
2651    }
2652
2653    private void destroy() {
2654        if (mNativePtr != 0) {
2655            if (mOwnsNativeParcelObject) {
2656                nativeDestroy(mNativePtr);
2657                updateNativeSize(0);
2658            }
2659            mNativePtr = 0;
2660        }
2661    }
2662
2663    @Override
2664    protected void finalize() throws Throwable {
2665        if (DEBUG_RECYCLE) {
2666            if (mStack != null) {
2667                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2668            }
2669        }
2670        destroy();
2671    }
2672
2673    /* package */ void readMapInternal(Map outVal, int N,
2674        ClassLoader loader) {
2675        while (N > 0) {
2676            Object key = readValue(loader);
2677            Object value = readValue(loader);
2678            outVal.put(key, value);
2679            N--;
2680        }
2681    }
2682
2683    /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
2684        ClassLoader loader) {
2685        if (DEBUG_ARRAY_MAP) {
2686            RuntimeException here =  new RuntimeException("here");
2687            here.fillInStackTrace();
2688            Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
2689        }
2690        int startPos;
2691        while (N > 0) {
2692            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
2693            String key = readString();
2694            Object value = readValue(loader);
2695            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
2696                    + (dataPosition()-startPos) + " bytes: key=0x"
2697                    + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
2698            outVal.append(key, value);
2699            N--;
2700        }
2701        outVal.validate();
2702    }
2703
2704    /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
2705        ClassLoader loader) {
2706        if (DEBUG_ARRAY_MAP) {
2707            RuntimeException here =  new RuntimeException("here");
2708            here.fillInStackTrace();
2709            Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
2710        }
2711        while (N > 0) {
2712            String key = readString();
2713            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
2714                    + (key != null ? key.hashCode() : 0) + " " + key);
2715            Object value = readValue(loader);
2716            outVal.put(key, value);
2717            N--;
2718        }
2719    }
2720
2721    /**
2722     * @hide For testing only.
2723     */
2724    public void readArrayMap(ArrayMap outVal, ClassLoader loader) {
2725        final int N = readInt();
2726        if (N < 0) {
2727            return;
2728        }
2729        readArrayMapInternal(outVal, N, loader);
2730    }
2731
2732    private void readListInternal(List outVal, int N,
2733        ClassLoader loader) {
2734        while (N > 0) {
2735            Object value = readValue(loader);
2736            //Log.d(TAG, "Unmarshalling value=" + value);
2737            outVal.add(value);
2738            N--;
2739        }
2740    }
2741
2742    private void readArrayInternal(Object[] outVal, int N,
2743        ClassLoader loader) {
2744        for (int i = 0; i < N; i++) {
2745            Object value = readValue(loader);
2746            //Log.d(TAG, "Unmarshalling value=" + value);
2747            outVal[i] = value;
2748        }
2749    }
2750
2751    private void readSparseArrayInternal(SparseArray outVal, int N,
2752        ClassLoader loader) {
2753        while (N > 0) {
2754            int key = readInt();
2755            Object value = readValue(loader);
2756            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2757            outVal.append(key, value);
2758            N--;
2759        }
2760    }
2761
2762
2763    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2764        while (N > 0) {
2765            int key = readInt();
2766            boolean value = this.readByte() == 1;
2767            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2768            outVal.append(key, value);
2769            N--;
2770        }
2771    }
2772
2773    /**
2774     * @hide For testing
2775     */
2776    public long getBlobAshmemSize() {
2777        return nativeGetBlobAshmemSize(mNativePtr);
2778    }
2779}
2780