Parcel.java revision e08523684d5414117f81debd4eb14bc8eb494c29
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.ArrayMap;
21import android.util.Log;
22import android.util.Size;
23import android.util.SizeF;
24import android.util.SparseArray;
25import android.util.SparseBooleanArray;
26
27import java.io.ByteArrayInputStream;
28import java.io.ByteArrayOutputStream;
29import java.io.FileDescriptor;
30import java.io.FileNotFoundException;
31import java.io.IOException;
32import java.io.ObjectInputStream;
33import java.io.ObjectOutputStream;
34import java.io.ObjectStreamClass;
35import java.io.Serializable;
36import java.lang.reflect.Field;
37import java.util.ArrayList;
38import java.util.Arrays;
39import java.util.HashMap;
40import java.util.List;
41import java.util.Map;
42import java.util.Set;
43
44/**
45 * Container for a message (data and object references) that can
46 * be sent through an IBinder.  A Parcel can contain both flattened data
47 * that will be unflattened on the other side of the IPC (using the various
48 * methods here for writing specific types, or the general
49 * {@link Parcelable} interface), and references to live {@link IBinder}
50 * objects that will result in the other side receiving a proxy IBinder
51 * connected with the original IBinder in the Parcel.
52 *
53 * <p class="note">Parcel is <strong>not</strong> a general-purpose
54 * serialization mechanism.  This class (and the corresponding
55 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
56 * designed as a high-performance IPC transport.  As such, it is not
57 * appropriate to place any Parcel data in to persistent storage: changes
58 * in the underlying implementation of any of the data in the Parcel can
59 * render older data unreadable.</p>
60 *
61 * <p>The bulk of the Parcel API revolves around reading and writing data
62 * of various types.  There are six major classes of such functions available.</p>
63 *
64 * <h3>Primitives</h3>
65 *
66 * <p>The most basic data functions are for writing and reading primitive
67 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
68 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
69 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
70 * {@link #writeString}, {@link #readString}.  Most other
71 * data operations are built on top of these.  The given data is written and
72 * read using the endianess of the host CPU.</p>
73 *
74 * <h3>Primitive Arrays</h3>
75 *
76 * <p>There are a variety of methods for reading and writing raw arrays
77 * of primitive objects, which generally result in writing a 4-byte length
78 * followed by the primitive data items.  The methods for reading can either
79 * read the data into an existing array, or create and return a new array.
80 * These available types are:</p>
81 *
82 * <ul>
83 * <li> {@link #writeBooleanArray(boolean[])},
84 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
85 * <li> {@link #writeByteArray(byte[])},
86 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
87 * {@link #createByteArray()}
88 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
89 * {@link #createCharArray()}
90 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
91 * {@link #createDoubleArray()}
92 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
93 * {@link #createFloatArray()}
94 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
95 * {@link #createIntArray()}
96 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
97 * {@link #createLongArray()}
98 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
99 * {@link #createStringArray()}.
100 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
101 * {@link #readSparseBooleanArray()}.
102 * </ul>
103 *
104 * <h3>Parcelables</h3>
105 *
106 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
107 * low-level) protocol for objects to write and read themselves from Parcels.
108 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
109 * and {@link #readParcelable(ClassLoader)} or
110 * {@link #writeParcelableArray} and
111 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
112 * methods write both the class type and its data to the Parcel, allowing
113 * that class to be reconstructed from the appropriate class loader when
114 * later reading.</p>
115 *
116 * <p>There are also some methods that provide a more efficient way to work
117 * with Parcelables: {@link #writeTypedArray},
118 * {@link #writeTypedList(List)},
119 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
120 * do not write the class information of the original object: instead, the
121 * caller of the read function must know what type to expect and pass in the
122 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
123 * properly construct the new object and read its data.  (To more efficient
124 * write and read a single Parceable object, you can directly call
125 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
126 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
127 * yourself.)</p>
128 *
129 * <h3>Bundles</h3>
130 *
131 * <p>A special type-safe container, called {@link Bundle}, is available
132 * for key/value maps of heterogeneous values.  This has many optimizations
133 * for improved performance when reading and writing data, and its type-safe
134 * API avoids difficult to debug type errors when finally marshalling the
135 * data contents into a Parcel.  The methods to use are
136 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
137 * {@link #readBundle(ClassLoader)}.
138 *
139 * <h3>Active Objects</h3>
140 *
141 * <p>An unusual feature of Parcel is the ability to read and write active
142 * objects.  For these objects the actual contents of the object is not
143 * written, rather a special token referencing the object is written.  When
144 * reading the object back from the Parcel, you do not get a new instance of
145 * the object, but rather a handle that operates on the exact same object that
146 * was originally written.  There are two forms of active objects available.</p>
147 *
148 * <p>{@link Binder} objects are a core facility of Android's general cross-process
149 * communication system.  The {@link IBinder} interface describes an abstract
150 * protocol with a Binder object.  Any such interface can be written in to
151 * a Parcel, and upon reading you will receive either the original object
152 * implementing that interface or a special proxy implementation
153 * that communicates calls back to the original object.  The methods to use are
154 * {@link #writeStrongBinder(IBinder)},
155 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
156 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
157 * {@link #createBinderArray()},
158 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
159 * {@link #createBinderArrayList()}.</p>
160 *
161 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
162 * can be written and {@link ParcelFileDescriptor} objects returned to operate
163 * on the original file descriptor.  The returned file descriptor is a dup
164 * of the original file descriptor: the object and fd is different, but
165 * operating on the same underlying file stream, with the same position, etc.
166 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
167 * {@link #readFileDescriptor()}.
168 *
169 * <h3>Untyped Containers</h3>
170 *
171 * <p>A final class of methods are for writing and reading standard Java
172 * containers of arbitrary types.  These all revolve around the
173 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
174 * which define the types of objects allowed.  The container methods are
175 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
176 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
177 * {@link #readArrayList(ClassLoader)},
178 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
179 * {@link #writeSparseArray(SparseArray)},
180 * {@link #readSparseArray(ClassLoader)}.
181 */
182public final class Parcel {
183    private static final boolean DEBUG_RECYCLE = false;
184    private static final boolean DEBUG_ARRAY_MAP = false;
185    private static final String TAG = "Parcel";
186
187    @SuppressWarnings({"UnusedDeclaration"})
188    private long mNativePtr; // used by native code
189
190    /**
191     * Flag indicating if {@link #mNativePtr} was allocated by this object,
192     * indicating that we're responsible for its lifecycle.
193     */
194    private boolean mOwnsNativeParcelObject;
195
196    private RuntimeException mStack;
197
198    private static final int POOL_SIZE = 6;
199    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
200    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
201
202    private static final int VAL_NULL = -1;
203    private static final int VAL_STRING = 0;
204    private static final int VAL_INTEGER = 1;
205    private static final int VAL_MAP = 2;
206    private static final int VAL_BUNDLE = 3;
207    private static final int VAL_PARCELABLE = 4;
208    private static final int VAL_SHORT = 5;
209    private static final int VAL_LONG = 6;
210    private static final int VAL_FLOAT = 7;
211    private static final int VAL_DOUBLE = 8;
212    private static final int VAL_BOOLEAN = 9;
213    private static final int VAL_CHARSEQUENCE = 10;
214    private static final int VAL_LIST  = 11;
215    private static final int VAL_SPARSEARRAY = 12;
216    private static final int VAL_BYTEARRAY = 13;
217    private static final int VAL_STRINGARRAY = 14;
218    private static final int VAL_IBINDER = 15;
219    private static final int VAL_PARCELABLEARRAY = 16;
220    private static final int VAL_OBJECTARRAY = 17;
221    private static final int VAL_INTARRAY = 18;
222    private static final int VAL_LONGARRAY = 19;
223    private static final int VAL_BYTE = 20;
224    private static final int VAL_SERIALIZABLE = 21;
225    private static final int VAL_SPARSEBOOLEANARRAY = 22;
226    private static final int VAL_BOOLEANARRAY = 23;
227    private static final int VAL_CHARSEQUENCEARRAY = 24;
228    private static final int VAL_PERSISTABLEBUNDLE = 25;
229    private static final int VAL_SIZE = 26;
230    private static final int VAL_SIZEF = 27;
231
232    // The initial int32 in a Binder call's reply Parcel header:
233    private static final int EX_SECURITY = -1;
234    private static final int EX_BAD_PARCELABLE = -2;
235    private static final int EX_ILLEGAL_ARGUMENT = -3;
236    private static final int EX_NULL_POINTER = -4;
237    private static final int EX_ILLEGAL_STATE = -5;
238    private static final int EX_NETWORK_MAIN_THREAD = -6;
239    private static final int EX_UNSUPPORTED_OPERATION = -7;
240    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
241
242    private static native int nativeDataSize(long nativePtr);
243    private static native int nativeDataAvail(long nativePtr);
244    private static native int nativeDataPosition(long nativePtr);
245    private static native int nativeDataCapacity(long nativePtr);
246    private static native void nativeSetDataSize(long nativePtr, int size);
247    private static native void nativeSetDataPosition(long nativePtr, int pos);
248    private static native void nativeSetDataCapacity(long nativePtr, int size);
249
250    private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
251    private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
252
253    private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
254    private static native void nativeWriteBlob(long nativePtr, byte[] b, int offset, int len);
255    private static native void nativeWriteInt(long nativePtr, int val);
256    private static native void nativeWriteLong(long nativePtr, long val);
257    private static native void nativeWriteFloat(long nativePtr, float val);
258    private static native void nativeWriteDouble(long nativePtr, double val);
259    private static native void nativeWriteString(long nativePtr, String val);
260    private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
261    private static native void nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
262
263    private static native byte[] nativeCreateByteArray(long nativePtr);
264    private static native byte[] nativeReadBlob(long nativePtr);
265    private static native int nativeReadInt(long nativePtr);
266    private static native long nativeReadLong(long nativePtr);
267    private static native float nativeReadFloat(long nativePtr);
268    private static native double nativeReadDouble(long nativePtr);
269    private static native String nativeReadString(long nativePtr);
270    private static native IBinder nativeReadStrongBinder(long nativePtr);
271    private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
272
273    private static native long nativeCreate();
274    private static native void nativeFreeBuffer(long nativePtr);
275    private static native void nativeDestroy(long nativePtr);
276
277    private static native byte[] nativeMarshall(long nativePtr);
278    private static native void nativeUnmarshall(
279            long nativePtr, byte[] data, int offset, int length);
280    private static native void nativeAppendFrom(
281            long thisNativePtr, long otherNativePtr, int offset, int length);
282    private static native boolean nativeHasFileDescriptors(long nativePtr);
283    private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
284    private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
285
286    public final static Parcelable.Creator<String> STRING_CREATOR
287             = new Parcelable.Creator<String>() {
288        public String createFromParcel(Parcel source) {
289            return source.readString();
290        }
291        public String[] newArray(int size) {
292            return new String[size];
293        }
294    };
295
296    /**
297     * Retrieve a new Parcel object from the pool.
298     */
299    public static Parcel obtain() {
300        final Parcel[] pool = sOwnedPool;
301        synchronized (pool) {
302            Parcel p;
303            for (int i=0; i<POOL_SIZE; i++) {
304                p = pool[i];
305                if (p != null) {
306                    pool[i] = null;
307                    if (DEBUG_RECYCLE) {
308                        p.mStack = new RuntimeException();
309                    }
310                    return p;
311                }
312            }
313        }
314        return new Parcel(0);
315    }
316
317    /**
318     * Put a Parcel object back into the pool.  You must not touch
319     * the object after this call.
320     */
321    public final void recycle() {
322        if (DEBUG_RECYCLE) mStack = null;
323        freeBuffer();
324
325        final Parcel[] pool;
326        if (mOwnsNativeParcelObject) {
327            pool = sOwnedPool;
328        } else {
329            mNativePtr = 0;
330            pool = sHolderPool;
331        }
332
333        synchronized (pool) {
334            for (int i=0; i<POOL_SIZE; i++) {
335                if (pool[i] == null) {
336                    pool[i] = this;
337                    return;
338                }
339            }
340        }
341    }
342
343    /**
344     * Returns the total amount of data contained in the parcel.
345     */
346    public final int dataSize() {
347        return nativeDataSize(mNativePtr);
348    }
349
350    /**
351     * Returns the amount of data remaining to be read from the
352     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
353     */
354    public final int dataAvail() {
355        return nativeDataAvail(mNativePtr);
356    }
357
358    /**
359     * Returns the current position in the parcel data.  Never
360     * more than {@link #dataSize}.
361     */
362    public final int dataPosition() {
363        return nativeDataPosition(mNativePtr);
364    }
365
366    /**
367     * Returns the total amount of space in the parcel.  This is always
368     * >= {@link #dataSize}.  The difference between it and dataSize() is the
369     * amount of room left until the parcel needs to re-allocate its
370     * data buffer.
371     */
372    public final int dataCapacity() {
373        return nativeDataCapacity(mNativePtr);
374    }
375
376    /**
377     * Change the amount of data in the parcel.  Can be either smaller or
378     * larger than the current size.  If larger than the current capacity,
379     * more memory will be allocated.
380     *
381     * @param size The new number of bytes in the Parcel.
382     */
383    public final void setDataSize(int size) {
384        nativeSetDataSize(mNativePtr, size);
385    }
386
387    /**
388     * Move the current read/write position in the parcel.
389     * @param pos New offset in the parcel; must be between 0 and
390     * {@link #dataSize}.
391     */
392    public final void setDataPosition(int pos) {
393        nativeSetDataPosition(mNativePtr, pos);
394    }
395
396    /**
397     * Change the capacity (current available space) of the parcel.
398     *
399     * @param size The new capacity of the parcel, in bytes.  Can not be
400     * less than {@link #dataSize} -- that is, you can not drop existing data
401     * with this method.
402     */
403    public final void setDataCapacity(int size) {
404        nativeSetDataCapacity(mNativePtr, size);
405    }
406
407    /** @hide */
408    public final boolean pushAllowFds(boolean allowFds) {
409        return nativePushAllowFds(mNativePtr, allowFds);
410    }
411
412    /** @hide */
413    public final void restoreAllowFds(boolean lastValue) {
414        nativeRestoreAllowFds(mNativePtr, lastValue);
415    }
416
417    /**
418     * Returns the raw bytes of the parcel.
419     *
420     * <p class="note">The data you retrieve here <strong>must not</strong>
421     * be placed in any kind of persistent storage (on local disk, across
422     * a network, etc).  For that, you should use standard serialization
423     * or another kind of general serialization mechanism.  The Parcel
424     * marshalled representation is highly optimized for local IPC, and as
425     * such does not attempt to maintain compatibility with data created
426     * in different versions of the platform.
427     */
428    public final byte[] marshall() {
429        return nativeMarshall(mNativePtr);
430    }
431
432    /**
433     * Set the bytes in data to be the raw bytes of this Parcel.
434     */
435    public final void unmarshall(byte[] data, int offset, int length) {
436        nativeUnmarshall(mNativePtr, data, offset, length);
437    }
438
439    public final void appendFrom(Parcel parcel, int offset, int length) {
440        nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length);
441    }
442
443    /**
444     * Report whether the parcel contains any marshalled file descriptors.
445     */
446    public final boolean hasFileDescriptors() {
447        return nativeHasFileDescriptors(mNativePtr);
448    }
449
450    /**
451     * Store or read an IBinder interface token in the parcel at the current
452     * {@link #dataPosition}.  This is used to validate that the marshalled
453     * transaction is intended for the target interface.
454     */
455    public final void writeInterfaceToken(String interfaceName) {
456        nativeWriteInterfaceToken(mNativePtr, interfaceName);
457    }
458
459    public final void enforceInterface(String interfaceName) {
460        nativeEnforceInterface(mNativePtr, interfaceName);
461    }
462
463    /**
464     * Write a byte array into the parcel at the current {@link #dataPosition},
465     * growing {@link #dataCapacity} if needed.
466     * @param b Bytes to place into the parcel.
467     */
468    public final void writeByteArray(byte[] b) {
469        writeByteArray(b, 0, (b != null) ? b.length : 0);
470    }
471
472    /**
473     * Write a byte array into the parcel at the current {@link #dataPosition},
474     * growing {@link #dataCapacity} if needed.
475     * @param b Bytes to place into the parcel.
476     * @param offset Index of first byte to be written.
477     * @param len Number of bytes to write.
478     */
479    public final void writeByteArray(byte[] b, int offset, int len) {
480        if (b == null) {
481            writeInt(-1);
482            return;
483        }
484        Arrays.checkOffsetAndCount(b.length, offset, len);
485        nativeWriteByteArray(mNativePtr, b, offset, len);
486    }
487
488    /**
489     * Write a blob of data into the parcel at the current {@link #dataPosition},
490     * growing {@link #dataCapacity} if needed.
491     * @param b Bytes to place into the parcel.
492     * {@hide}
493     * {@SystemApi}
494     */
495    public final void writeBlob(byte[] b) {
496        nativeWriteBlob(mNativePtr, b, 0, (b != null) ? b.length : 0);
497    }
498
499    /**
500     * Write an integer value into the parcel at the current dataPosition(),
501     * growing dataCapacity() if needed.
502     */
503    public final void writeInt(int val) {
504        nativeWriteInt(mNativePtr, val);
505    }
506
507    /**
508     * Write a long integer value into the parcel at the current dataPosition(),
509     * growing dataCapacity() if needed.
510     */
511    public final void writeLong(long val) {
512        nativeWriteLong(mNativePtr, val);
513    }
514
515    /**
516     * Write a floating point value into the parcel at the current
517     * dataPosition(), growing dataCapacity() if needed.
518     */
519    public final void writeFloat(float val) {
520        nativeWriteFloat(mNativePtr, val);
521    }
522
523    /**
524     * Write a double precision floating point value into the parcel at the
525     * current dataPosition(), growing dataCapacity() if needed.
526     */
527    public final void writeDouble(double val) {
528        nativeWriteDouble(mNativePtr, val);
529    }
530
531    /**
532     * Write a string value into the parcel at the current dataPosition(),
533     * growing dataCapacity() if needed.
534     */
535    public final void writeString(String val) {
536        nativeWriteString(mNativePtr, val);
537    }
538
539    /**
540     * Write a CharSequence value into the parcel at the current dataPosition(),
541     * growing dataCapacity() if needed.
542     * @hide
543     */
544    public final void writeCharSequence(CharSequence val) {
545        TextUtils.writeToParcel(val, this, 0);
546    }
547
548    /**
549     * Write an object into the parcel at the current dataPosition(),
550     * growing dataCapacity() if needed.
551     */
552    public final void writeStrongBinder(IBinder val) {
553        nativeWriteStrongBinder(mNativePtr, val);
554    }
555
556    /**
557     * Write an object into the parcel at the current dataPosition(),
558     * growing dataCapacity() if needed.
559     */
560    public final void writeStrongInterface(IInterface val) {
561        writeStrongBinder(val == null ? null : val.asBinder());
562    }
563
564    /**
565     * Write a FileDescriptor into the parcel at the current dataPosition(),
566     * growing dataCapacity() if needed.
567     *
568     * <p class="caution">The file descriptor will not be closed, which may
569     * result in file descriptor leaks when objects are returned from Binder
570     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
571     * accepts contextual flags and will close the original file descriptor
572     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
573     */
574    public final void writeFileDescriptor(FileDescriptor val) {
575        nativeWriteFileDescriptor(mNativePtr, val);
576    }
577
578    /**
579     * Write a byte value into the parcel at the current dataPosition(),
580     * growing dataCapacity() if needed.
581     */
582    public final void writeByte(byte val) {
583        writeInt(val);
584    }
585
586    /**
587     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
588     * at the current dataPosition(),
589     * growing dataCapacity() if needed.  The Map keys must be String objects.
590     * The Map values are written using {@link #writeValue} and must follow
591     * the specification there.
592     *
593     * <p>It is strongly recommended to use {@link #writeBundle} instead of
594     * this method, since the Bundle class provides a type-safe API that
595     * allows you to avoid mysterious type errors at the point of marshalling.
596     */
597    public final void writeMap(Map val) {
598        writeMapInternal((Map<String, Object>) val);
599    }
600
601    /**
602     * Flatten a Map into the parcel at the current dataPosition(),
603     * growing dataCapacity() if needed.  The Map keys must be String objects.
604     */
605    /* package */ void writeMapInternal(Map<String,Object> val) {
606        if (val == null) {
607            writeInt(-1);
608            return;
609        }
610        Set<Map.Entry<String,Object>> entries = val.entrySet();
611        writeInt(entries.size());
612        for (Map.Entry<String,Object> e : entries) {
613            writeValue(e.getKey());
614            writeValue(e.getValue());
615        }
616    }
617
618    /**
619     * Flatten an ArrayMap into the parcel at the current dataPosition(),
620     * growing dataCapacity() if needed.  The Map keys must be String objects.
621     */
622    /* package */ void writeArrayMapInternal(ArrayMap<String, Object> val) {
623        if (val == null) {
624            writeInt(-1);
625            return;
626        }
627        final int N = val.size();
628        writeInt(N);
629        if (DEBUG_ARRAY_MAP) {
630            RuntimeException here =  new RuntimeException("here");
631            here.fillInStackTrace();
632            Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
633        }
634        int startPos;
635        for (int i=0; i<N; i++) {
636            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
637            writeString(val.keyAt(i));
638            writeValue(val.valueAt(i));
639            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
640                    + (dataPosition()-startPos) + " bytes: key=0x"
641                    + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
642                    + " " + val.keyAt(i));
643        }
644    }
645
646    /**
647     * @hide For testing only.
648     */
649    public void writeArrayMap(ArrayMap<String, Object> val) {
650        writeArrayMapInternal(val);
651    }
652
653    /**
654     * Flatten a Bundle into the parcel at the current dataPosition(),
655     * growing dataCapacity() if needed.
656     */
657    public final void writeBundle(Bundle val) {
658        if (val == null) {
659            writeInt(-1);
660            return;
661        }
662
663        val.writeToParcel(this, 0);
664    }
665
666    /**
667     * Flatten a PersistableBundle into the parcel at the current dataPosition(),
668     * growing dataCapacity() if needed.
669     */
670    public final void writePersistableBundle(PersistableBundle val) {
671        if (val == null) {
672            writeInt(-1);
673            return;
674        }
675
676        val.writeToParcel(this, 0);
677    }
678
679    /**
680     * Flatten a Size into the parcel at the current dataPosition(),
681     * growing dataCapacity() if needed.
682     */
683    public final void writeSize(Size val) {
684        writeInt(val.getWidth());
685        writeInt(val.getHeight());
686    }
687
688    /**
689     * Flatten a SizeF into the parcel at the current dataPosition(),
690     * growing dataCapacity() if needed.
691     */
692    public final void writeSizeF(SizeF val) {
693        writeFloat(val.getWidth());
694        writeFloat(val.getHeight());
695    }
696
697    /**
698     * Flatten a List into the parcel at the current dataPosition(), growing
699     * dataCapacity() if needed.  The List values are written using
700     * {@link #writeValue} and must follow the specification there.
701     */
702    public final void writeList(List val) {
703        if (val == null) {
704            writeInt(-1);
705            return;
706        }
707        int N = val.size();
708        int i=0;
709        writeInt(N);
710        while (i < N) {
711            writeValue(val.get(i));
712            i++;
713        }
714    }
715
716    /**
717     * Flatten an Object array into the parcel at the current dataPosition(),
718     * growing dataCapacity() if needed.  The array values are written using
719     * {@link #writeValue} and must follow the specification there.
720     */
721    public final void writeArray(Object[] val) {
722        if (val == null) {
723            writeInt(-1);
724            return;
725        }
726        int N = val.length;
727        int i=0;
728        writeInt(N);
729        while (i < N) {
730            writeValue(val[i]);
731            i++;
732        }
733    }
734
735    /**
736     * Flatten a generic SparseArray into the parcel at the current
737     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
738     * values are written using {@link #writeValue} and must follow the
739     * specification there.
740     */
741    public final void writeSparseArray(SparseArray<Object> val) {
742        if (val == null) {
743            writeInt(-1);
744            return;
745        }
746        int N = val.size();
747        writeInt(N);
748        int i=0;
749        while (i < N) {
750            writeInt(val.keyAt(i));
751            writeValue(val.valueAt(i));
752            i++;
753        }
754    }
755
756    public final void writeSparseBooleanArray(SparseBooleanArray val) {
757        if (val == null) {
758            writeInt(-1);
759            return;
760        }
761        int N = val.size();
762        writeInt(N);
763        int i=0;
764        while (i < N) {
765            writeInt(val.keyAt(i));
766            writeByte((byte)(val.valueAt(i) ? 1 : 0));
767            i++;
768        }
769    }
770
771    public final void writeBooleanArray(boolean[] val) {
772        if (val != null) {
773            int N = val.length;
774            writeInt(N);
775            for (int i=0; i<N; i++) {
776                writeInt(val[i] ? 1 : 0);
777            }
778        } else {
779            writeInt(-1);
780        }
781    }
782
783    public final boolean[] createBooleanArray() {
784        int N = readInt();
785        // >>2 as a fast divide-by-4 works in the create*Array() functions
786        // because dataAvail() will never return a negative number.  4 is
787        // the size of a stored boolean in the stream.
788        if (N >= 0 && N <= (dataAvail() >> 2)) {
789            boolean[] val = new boolean[N];
790            for (int i=0; i<N; i++) {
791                val[i] = readInt() != 0;
792            }
793            return val;
794        } else {
795            return null;
796        }
797    }
798
799    public final void readBooleanArray(boolean[] val) {
800        int N = readInt();
801        if (N == val.length) {
802            for (int i=0; i<N; i++) {
803                val[i] = readInt() != 0;
804            }
805        } else {
806            throw new RuntimeException("bad array lengths");
807        }
808    }
809
810    public final void writeCharArray(char[] val) {
811        if (val != null) {
812            int N = val.length;
813            writeInt(N);
814            for (int i=0; i<N; i++) {
815                writeInt((int)val[i]);
816            }
817        } else {
818            writeInt(-1);
819        }
820    }
821
822    public final char[] createCharArray() {
823        int N = readInt();
824        if (N >= 0 && N <= (dataAvail() >> 2)) {
825            char[] val = new char[N];
826            for (int i=0; i<N; i++) {
827                val[i] = (char)readInt();
828            }
829            return val;
830        } else {
831            return null;
832        }
833    }
834
835    public final void readCharArray(char[] val) {
836        int N = readInt();
837        if (N == val.length) {
838            for (int i=0; i<N; i++) {
839                val[i] = (char)readInt();
840            }
841        } else {
842            throw new RuntimeException("bad array lengths");
843        }
844    }
845
846    public final void writeIntArray(int[] val) {
847        if (val != null) {
848            int N = val.length;
849            writeInt(N);
850            for (int i=0; i<N; i++) {
851                writeInt(val[i]);
852            }
853        } else {
854            writeInt(-1);
855        }
856    }
857
858    public final int[] createIntArray() {
859        int N = readInt();
860        if (N >= 0 && N <= (dataAvail() >> 2)) {
861            int[] val = new int[N];
862            for (int i=0; i<N; i++) {
863                val[i] = readInt();
864            }
865            return val;
866        } else {
867            return null;
868        }
869    }
870
871    public final void readIntArray(int[] val) {
872        int N = readInt();
873        if (N == val.length) {
874            for (int i=0; i<N; i++) {
875                val[i] = readInt();
876            }
877        } else {
878            throw new RuntimeException("bad array lengths");
879        }
880    }
881
882    public final void writeLongArray(long[] val) {
883        if (val != null) {
884            int N = val.length;
885            writeInt(N);
886            for (int i=0; i<N; i++) {
887                writeLong(val[i]);
888            }
889        } else {
890            writeInt(-1);
891        }
892    }
893
894    public final long[] createLongArray() {
895        int N = readInt();
896        // >>3 because stored longs are 64 bits
897        if (N >= 0 && N <= (dataAvail() >> 3)) {
898            long[] val = new long[N];
899            for (int i=0; i<N; i++) {
900                val[i] = readLong();
901            }
902            return val;
903        } else {
904            return null;
905        }
906    }
907
908    public final void readLongArray(long[] val) {
909        int N = readInt();
910        if (N == val.length) {
911            for (int i=0; i<N; i++) {
912                val[i] = readLong();
913            }
914        } else {
915            throw new RuntimeException("bad array lengths");
916        }
917    }
918
919    public final void writeFloatArray(float[] val) {
920        if (val != null) {
921            int N = val.length;
922            writeInt(N);
923            for (int i=0; i<N; i++) {
924                writeFloat(val[i]);
925            }
926        } else {
927            writeInt(-1);
928        }
929    }
930
931    public final float[] createFloatArray() {
932        int N = readInt();
933        // >>2 because stored floats are 4 bytes
934        if (N >= 0 && N <= (dataAvail() >> 2)) {
935            float[] val = new float[N];
936            for (int i=0; i<N; i++) {
937                val[i] = readFloat();
938            }
939            return val;
940        } else {
941            return null;
942        }
943    }
944
945    public final void readFloatArray(float[] val) {
946        int N = readInt();
947        if (N == val.length) {
948            for (int i=0; i<N; i++) {
949                val[i] = readFloat();
950            }
951        } else {
952            throw new RuntimeException("bad array lengths");
953        }
954    }
955
956    public final void writeDoubleArray(double[] val) {
957        if (val != null) {
958            int N = val.length;
959            writeInt(N);
960            for (int i=0; i<N; i++) {
961                writeDouble(val[i]);
962            }
963        } else {
964            writeInt(-1);
965        }
966    }
967
968    public final double[] createDoubleArray() {
969        int N = readInt();
970        // >>3 because stored doubles are 8 bytes
971        if (N >= 0 && N <= (dataAvail() >> 3)) {
972            double[] val = new double[N];
973            for (int i=0; i<N; i++) {
974                val[i] = readDouble();
975            }
976            return val;
977        } else {
978            return null;
979        }
980    }
981
982    public final void readDoubleArray(double[] val) {
983        int N = readInt();
984        if (N == val.length) {
985            for (int i=0; i<N; i++) {
986                val[i] = readDouble();
987            }
988        } else {
989            throw new RuntimeException("bad array lengths");
990        }
991    }
992
993    public final void writeStringArray(String[] val) {
994        if (val != null) {
995            int N = val.length;
996            writeInt(N);
997            for (int i=0; i<N; i++) {
998                writeString(val[i]);
999            }
1000        } else {
1001            writeInt(-1);
1002        }
1003    }
1004
1005    public final String[] createStringArray() {
1006        int N = readInt();
1007        if (N >= 0) {
1008            String[] val = new String[N];
1009            for (int i=0; i<N; i++) {
1010                val[i] = readString();
1011            }
1012            return val;
1013        } else {
1014            return null;
1015        }
1016    }
1017
1018    public final void readStringArray(String[] val) {
1019        int N = readInt();
1020        if (N == val.length) {
1021            for (int i=0; i<N; i++) {
1022                val[i] = readString();
1023            }
1024        } else {
1025            throw new RuntimeException("bad array lengths");
1026        }
1027    }
1028
1029    public final void writeBinderArray(IBinder[] val) {
1030        if (val != null) {
1031            int N = val.length;
1032            writeInt(N);
1033            for (int i=0; i<N; i++) {
1034                writeStrongBinder(val[i]);
1035            }
1036        } else {
1037            writeInt(-1);
1038        }
1039    }
1040
1041    /**
1042     * @hide
1043     */
1044    public final void writeCharSequenceArray(CharSequence[] val) {
1045        if (val != null) {
1046            int N = val.length;
1047            writeInt(N);
1048            for (int i=0; i<N; i++) {
1049                writeCharSequence(val[i]);
1050            }
1051        } else {
1052            writeInt(-1);
1053        }
1054    }
1055
1056    public final IBinder[] createBinderArray() {
1057        int N = readInt();
1058        if (N >= 0) {
1059            IBinder[] val = new IBinder[N];
1060            for (int i=0; i<N; i++) {
1061                val[i] = readStrongBinder();
1062            }
1063            return val;
1064        } else {
1065            return null;
1066        }
1067    }
1068
1069    public final void readBinderArray(IBinder[] val) {
1070        int N = readInt();
1071        if (N == val.length) {
1072            for (int i=0; i<N; i++) {
1073                val[i] = readStrongBinder();
1074            }
1075        } else {
1076            throw new RuntimeException("bad array lengths");
1077        }
1078    }
1079
1080    /**
1081     * Flatten a List containing a particular object type into the parcel, at
1082     * the current dataPosition() and growing dataCapacity() if needed.  The
1083     * type of the objects in the list must be one that implements Parcelable.
1084     * Unlike the generic writeList() method, however, only the raw data of the
1085     * objects is written and not their type, so you must use the corresponding
1086     * readTypedList() to unmarshall them.
1087     *
1088     * @param val The list of objects to be written.
1089     *
1090     * @see #createTypedArrayList
1091     * @see #readTypedList
1092     * @see Parcelable
1093     */
1094    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1095        if (val == null) {
1096            writeInt(-1);
1097            return;
1098        }
1099        int N = val.size();
1100        int i=0;
1101        writeInt(N);
1102        while (i < N) {
1103            T item = val.get(i);
1104            if (item != null) {
1105                writeInt(1);
1106                item.writeToParcel(this, 0);
1107            } else {
1108                writeInt(0);
1109            }
1110            i++;
1111        }
1112    }
1113
1114    /**
1115     * Flatten a List containing String objects into the parcel, at
1116     * the current dataPosition() and growing dataCapacity() if needed.  They
1117     * can later be retrieved with {@link #createStringArrayList} or
1118     * {@link #readStringList}.
1119     *
1120     * @param val The list of strings to be written.
1121     *
1122     * @see #createStringArrayList
1123     * @see #readStringList
1124     */
1125    public final void writeStringList(List<String> val) {
1126        if (val == null) {
1127            writeInt(-1);
1128            return;
1129        }
1130        int N = val.size();
1131        int i=0;
1132        writeInt(N);
1133        while (i < N) {
1134            writeString(val.get(i));
1135            i++;
1136        }
1137    }
1138
1139    /**
1140     * Flatten a List containing IBinder objects into the parcel, at
1141     * the current dataPosition() and growing dataCapacity() if needed.  They
1142     * can later be retrieved with {@link #createBinderArrayList} or
1143     * {@link #readBinderList}.
1144     *
1145     * @param val The list of strings to be written.
1146     *
1147     * @see #createBinderArrayList
1148     * @see #readBinderList
1149     */
1150    public final void writeBinderList(List<IBinder> val) {
1151        if (val == null) {
1152            writeInt(-1);
1153            return;
1154        }
1155        int N = val.size();
1156        int i=0;
1157        writeInt(N);
1158        while (i < N) {
1159            writeStrongBinder(val.get(i));
1160            i++;
1161        }
1162    }
1163
1164    /**
1165     * Flatten a heterogeneous array containing a particular object type into
1166     * the parcel, at
1167     * the current dataPosition() and growing dataCapacity() if needed.  The
1168     * type of the objects in the array must be one that implements Parcelable.
1169     * Unlike the {@link #writeParcelableArray} method, however, only the
1170     * raw data of the objects is written and not their type, so you must use
1171     * {@link #readTypedArray} with the correct corresponding
1172     * {@link Parcelable.Creator} implementation to unmarshall them.
1173     *
1174     * @param val The array of objects to be written.
1175     * @param parcelableFlags Contextual flags as per
1176     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1177     *
1178     * @see #readTypedArray
1179     * @see #writeParcelableArray
1180     * @see Parcelable.Creator
1181     */
1182    public final <T extends Parcelable> void writeTypedArray(T[] val,
1183            int parcelableFlags) {
1184        if (val != null) {
1185            int N = val.length;
1186            writeInt(N);
1187            for (int i=0; i<N; i++) {
1188                T item = val[i];
1189                if (item != null) {
1190                    writeInt(1);
1191                    item.writeToParcel(this, parcelableFlags);
1192                } else {
1193                    writeInt(0);
1194                }
1195            }
1196        } else {
1197            writeInt(-1);
1198        }
1199    }
1200
1201    /**
1202     * Flatten a generic object in to a parcel.  The given Object value may
1203     * currently be one of the following types:
1204     *
1205     * <ul>
1206     * <li> null
1207     * <li> String
1208     * <li> Byte
1209     * <li> Short
1210     * <li> Integer
1211     * <li> Long
1212     * <li> Float
1213     * <li> Double
1214     * <li> Boolean
1215     * <li> String[]
1216     * <li> boolean[]
1217     * <li> byte[]
1218     * <li> int[]
1219     * <li> long[]
1220     * <li> Object[] (supporting objects of the same type defined here).
1221     * <li> {@link Bundle}
1222     * <li> Map (as supported by {@link #writeMap}).
1223     * <li> Any object that implements the {@link Parcelable} protocol.
1224     * <li> Parcelable[]
1225     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1226     * <li> List (as supported by {@link #writeList}).
1227     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1228     * <li> {@link IBinder}
1229     * <li> Any object that implements Serializable (but see
1230     *      {@link #writeSerializable} for caveats).  Note that all of the
1231     *      previous types have relatively efficient implementations for
1232     *      writing to a Parcel; having to rely on the generic serialization
1233     *      approach is much less efficient and should be avoided whenever
1234     *      possible.
1235     * </ul>
1236     *
1237     * <p class="caution">{@link Parcelable} objects are written with
1238     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1239     * serializing objects containing {@link ParcelFileDescriptor}s,
1240     * this may result in file descriptor leaks when they are returned from
1241     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1242     * should be used).</p>
1243     */
1244    public final void writeValue(Object v) {
1245        if (v == null) {
1246            writeInt(VAL_NULL);
1247        } else if (v instanceof String) {
1248            writeInt(VAL_STRING);
1249            writeString((String) v);
1250        } else if (v instanceof Integer) {
1251            writeInt(VAL_INTEGER);
1252            writeInt((Integer) v);
1253        } else if (v instanceof Map) {
1254            writeInt(VAL_MAP);
1255            writeMap((Map) v);
1256        } else if (v instanceof Bundle) {
1257            // Must be before Parcelable
1258            writeInt(VAL_BUNDLE);
1259            writeBundle((Bundle) v);
1260        } else if (v instanceof Parcelable) {
1261            writeInt(VAL_PARCELABLE);
1262            writeParcelable((Parcelable) v, 0);
1263        } else if (v instanceof Short) {
1264            writeInt(VAL_SHORT);
1265            writeInt(((Short) v).intValue());
1266        } else if (v instanceof Long) {
1267            writeInt(VAL_LONG);
1268            writeLong((Long) v);
1269        } else if (v instanceof Float) {
1270            writeInt(VAL_FLOAT);
1271            writeFloat((Float) v);
1272        } else if (v instanceof Double) {
1273            writeInt(VAL_DOUBLE);
1274            writeDouble((Double) v);
1275        } else if (v instanceof Boolean) {
1276            writeInt(VAL_BOOLEAN);
1277            writeInt((Boolean) v ? 1 : 0);
1278        } else if (v instanceof CharSequence) {
1279            // Must be after String
1280            writeInt(VAL_CHARSEQUENCE);
1281            writeCharSequence((CharSequence) v);
1282        } else if (v instanceof List) {
1283            writeInt(VAL_LIST);
1284            writeList((List) v);
1285        } else if (v instanceof SparseArray) {
1286            writeInt(VAL_SPARSEARRAY);
1287            writeSparseArray((SparseArray) v);
1288        } else if (v instanceof boolean[]) {
1289            writeInt(VAL_BOOLEANARRAY);
1290            writeBooleanArray((boolean[]) v);
1291        } else if (v instanceof byte[]) {
1292            writeInt(VAL_BYTEARRAY);
1293            writeByteArray((byte[]) v);
1294        } else if (v instanceof String[]) {
1295            writeInt(VAL_STRINGARRAY);
1296            writeStringArray((String[]) v);
1297        } else if (v instanceof CharSequence[]) {
1298            // Must be after String[] and before Object[]
1299            writeInt(VAL_CHARSEQUENCEARRAY);
1300            writeCharSequenceArray((CharSequence[]) v);
1301        } else if (v instanceof IBinder) {
1302            writeInt(VAL_IBINDER);
1303            writeStrongBinder((IBinder) v);
1304        } else if (v instanceof Parcelable[]) {
1305            writeInt(VAL_PARCELABLEARRAY);
1306            writeParcelableArray((Parcelable[]) v, 0);
1307        } else if (v instanceof int[]) {
1308            writeInt(VAL_INTARRAY);
1309            writeIntArray((int[]) v);
1310        } else if (v instanceof long[]) {
1311            writeInt(VAL_LONGARRAY);
1312            writeLongArray((long[]) v);
1313        } else if (v instanceof Byte) {
1314            writeInt(VAL_BYTE);
1315            writeInt((Byte) v);
1316        } else if (v instanceof PersistableBundle) {
1317            writeInt(VAL_PERSISTABLEBUNDLE);
1318            writePersistableBundle((PersistableBundle) v);
1319        } else if (v instanceof Size) {
1320            writeInt(VAL_SIZE);
1321            writeSize((Size) v);
1322        } else if (v instanceof SizeF) {
1323            writeInt(VAL_SIZEF);
1324            writeSizeF((SizeF) v);
1325        } else {
1326            Class<?> clazz = v.getClass();
1327            if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1328                // Only pure Object[] are written here, Other arrays of non-primitive types are
1329                // handled by serialization as this does not record the component type.
1330                writeInt(VAL_OBJECTARRAY);
1331                writeArray((Object[]) v);
1332            } else if (v instanceof Serializable) {
1333                // Must be last
1334                writeInt(VAL_SERIALIZABLE);
1335                writeSerializable((Serializable) v);
1336            } else {
1337                throw new RuntimeException("Parcel: unable to marshal value " + v);
1338            }
1339        }
1340    }
1341
1342    /**
1343     * Flatten the name of the class of the Parcelable and its contents
1344     * into the parcel.
1345     *
1346     * @param p The Parcelable object to be written.
1347     * @param parcelableFlags Contextual flags as per
1348     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1349     */
1350    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1351        if (p == null) {
1352            writeString(null);
1353            return;
1354        }
1355        String name = p.getClass().getName();
1356        writeString(name);
1357        p.writeToParcel(this, parcelableFlags);
1358    }
1359
1360    /** @hide */
1361    public final void writeParcelableCreator(Parcelable p) {
1362        String name = p.getClass().getName();
1363        writeString(name);
1364    }
1365
1366    /**
1367     * Write a generic serializable object in to a Parcel.  It is strongly
1368     * recommended that this method be avoided, since the serialization
1369     * overhead is extremely large, and this approach will be much slower than
1370     * using the other approaches to writing data in to a Parcel.
1371     */
1372    public final void writeSerializable(Serializable s) {
1373        if (s == null) {
1374            writeString(null);
1375            return;
1376        }
1377        String name = s.getClass().getName();
1378        writeString(name);
1379
1380        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1381        try {
1382            ObjectOutputStream oos = new ObjectOutputStream(baos);
1383            oos.writeObject(s);
1384            oos.close();
1385
1386            writeByteArray(baos.toByteArray());
1387        } catch (IOException ioe) {
1388            throw new RuntimeException("Parcelable encountered " +
1389                "IOException writing serializable object (name = " + name +
1390                ")", ioe);
1391        }
1392    }
1393
1394    /**
1395     * Special function for writing an exception result at the header of
1396     * a parcel, to be used when returning an exception from a transaction.
1397     * Note that this currently only supports a few exception types; any other
1398     * exception will be re-thrown by this function as a RuntimeException
1399     * (to be caught by the system's last-resort exception handling when
1400     * dispatching a transaction).
1401     *
1402     * <p>The supported exception types are:
1403     * <ul>
1404     * <li>{@link BadParcelableException}
1405     * <li>{@link IllegalArgumentException}
1406     * <li>{@link IllegalStateException}
1407     * <li>{@link NullPointerException}
1408     * <li>{@link SecurityException}
1409     * <li>{@link NetworkOnMainThreadException}
1410     * </ul>
1411     *
1412     * @param e The Exception to be written.
1413     *
1414     * @see #writeNoException
1415     * @see #readException
1416     */
1417    public final void writeException(Exception e) {
1418        int code = 0;
1419        if (e instanceof SecurityException) {
1420            code = EX_SECURITY;
1421        } else if (e instanceof BadParcelableException) {
1422            code = EX_BAD_PARCELABLE;
1423        } else if (e instanceof IllegalArgumentException) {
1424            code = EX_ILLEGAL_ARGUMENT;
1425        } else if (e instanceof NullPointerException) {
1426            code = EX_NULL_POINTER;
1427        } else if (e instanceof IllegalStateException) {
1428            code = EX_ILLEGAL_STATE;
1429        } else if (e instanceof NetworkOnMainThreadException) {
1430            code = EX_NETWORK_MAIN_THREAD;
1431        } else if (e instanceof UnsupportedOperationException) {
1432            code = EX_UNSUPPORTED_OPERATION;
1433        }
1434        writeInt(code);
1435        StrictMode.clearGatheredViolations();
1436        if (code == 0) {
1437            if (e instanceof RuntimeException) {
1438                throw (RuntimeException) e;
1439            }
1440            throw new RuntimeException(e);
1441        }
1442        writeString(e.getMessage());
1443    }
1444
1445    /**
1446     * Special function for writing information at the front of the Parcel
1447     * indicating that no exception occurred.
1448     *
1449     * @see #writeException
1450     * @see #readException
1451     */
1452    public final void writeNoException() {
1453        // Despite the name of this function ("write no exception"),
1454        // it should instead be thought of as "write the RPC response
1455        // header", but because this function name is written out by
1456        // the AIDL compiler, we're not going to rename it.
1457        //
1458        // The response header, in the non-exception case (see also
1459        // writeException above, also called by the AIDL compiler), is
1460        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1461        // StrictMode has gathered up violations that have occurred
1462        // during a Binder call, in which case we write out the number
1463        // of violations and their details, serialized, before the
1464        // actual RPC respons data.  The receiving end of this is
1465        // readException(), below.
1466        if (StrictMode.hasGatheredViolations()) {
1467            writeInt(EX_HAS_REPLY_HEADER);
1468            final int sizePosition = dataPosition();
1469            writeInt(0);  // total size of fat header, to be filled in later
1470            StrictMode.writeGatheredViolationsToParcel(this);
1471            final int payloadPosition = dataPosition();
1472            setDataPosition(sizePosition);
1473            writeInt(payloadPosition - sizePosition);  // header size
1474            setDataPosition(payloadPosition);
1475        } else {
1476            writeInt(0);
1477        }
1478    }
1479
1480    /**
1481     * Special function for reading an exception result from the header of
1482     * a parcel, to be used after receiving the result of a transaction.  This
1483     * will throw the exception for you if it had been written to the Parcel,
1484     * otherwise return and let you read the normal result data from the Parcel.
1485     *
1486     * @see #writeException
1487     * @see #writeNoException
1488     */
1489    public final void readException() {
1490        int code = readExceptionCode();
1491        if (code != 0) {
1492            String msg = readString();
1493            readException(code, msg);
1494        }
1495    }
1496
1497    /**
1498     * Parses the header of a Binder call's response Parcel and
1499     * returns the exception code.  Deals with lite or fat headers.
1500     * In the common successful case, this header is generally zero.
1501     * In less common cases, it's a small negative number and will be
1502     * followed by an error string.
1503     *
1504     * This exists purely for android.database.DatabaseUtils and
1505     * insulating it from having to handle fat headers as returned by
1506     * e.g. StrictMode-induced RPC responses.
1507     *
1508     * @hide
1509     */
1510    public final int readExceptionCode() {
1511        int code = readInt();
1512        if (code == EX_HAS_REPLY_HEADER) {
1513            int headerSize = readInt();
1514            if (headerSize == 0) {
1515                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1516            } else {
1517                // Currently the only thing in the header is StrictMode stacks,
1518                // but discussions around event/RPC tracing suggest we might
1519                // put that here too.  If so, switch on sub-header tags here.
1520                // But for now, just parse out the StrictMode stuff.
1521                StrictMode.readAndHandleBinderCallViolations(this);
1522            }
1523            // And fat response headers are currently only used when
1524            // there are no exceptions, so return no error:
1525            return 0;
1526        }
1527        return code;
1528    }
1529
1530    /**
1531     * Throw an exception with the given message. Not intended for use
1532     * outside the Parcel class.
1533     *
1534     * @param code Used to determine which exception class to throw.
1535     * @param msg The exception message.
1536     */
1537    public final void readException(int code, String msg) {
1538        switch (code) {
1539            case EX_SECURITY:
1540                throw new SecurityException(msg);
1541            case EX_BAD_PARCELABLE:
1542                throw new BadParcelableException(msg);
1543            case EX_ILLEGAL_ARGUMENT:
1544                throw new IllegalArgumentException(msg);
1545            case EX_NULL_POINTER:
1546                throw new NullPointerException(msg);
1547            case EX_ILLEGAL_STATE:
1548                throw new IllegalStateException(msg);
1549            case EX_NETWORK_MAIN_THREAD:
1550                throw new NetworkOnMainThreadException();
1551            case EX_UNSUPPORTED_OPERATION:
1552                throw new UnsupportedOperationException(msg);
1553        }
1554        throw new RuntimeException("Unknown exception code: " + code
1555                + " msg " + msg);
1556    }
1557
1558    /**
1559     * Read an integer value from the parcel at the current dataPosition().
1560     */
1561    public final int readInt() {
1562        return nativeReadInt(mNativePtr);
1563    }
1564
1565    /**
1566     * Read a long integer value from the parcel at the current dataPosition().
1567     */
1568    public final long readLong() {
1569        return nativeReadLong(mNativePtr);
1570    }
1571
1572    /**
1573     * Read a floating point value from the parcel at the current
1574     * dataPosition().
1575     */
1576    public final float readFloat() {
1577        return nativeReadFloat(mNativePtr);
1578    }
1579
1580    /**
1581     * Read a double precision floating point value from the parcel at the
1582     * current dataPosition().
1583     */
1584    public final double readDouble() {
1585        return nativeReadDouble(mNativePtr);
1586    }
1587
1588    /**
1589     * Read a string value from the parcel at the current dataPosition().
1590     */
1591    public final String readString() {
1592        return nativeReadString(mNativePtr);
1593    }
1594
1595    /**
1596     * Read a CharSequence value from the parcel at the current dataPosition().
1597     * @hide
1598     */
1599    public final CharSequence readCharSequence() {
1600        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1601    }
1602
1603    /**
1604     * Read an object from the parcel at the current dataPosition().
1605     */
1606    public final IBinder readStrongBinder() {
1607        return nativeReadStrongBinder(mNativePtr);
1608    }
1609
1610    /**
1611     * Read a FileDescriptor from the parcel at the current dataPosition().
1612     */
1613    public final ParcelFileDescriptor readFileDescriptor() {
1614        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1615        return fd != null ? new ParcelFileDescriptor(fd) : null;
1616    }
1617
1618    /** {@hide} */
1619    public final FileDescriptor readRawFileDescriptor() {
1620        return nativeReadFileDescriptor(mNativePtr);
1621    }
1622
1623    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1624            int mode) throws FileNotFoundException;
1625    /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1626            throws IOException;
1627    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1628            throws IOException;
1629    /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1630
1631    /**
1632     * Read a byte value from the parcel at the current dataPosition().
1633     */
1634    public final byte readByte() {
1635        return (byte)(readInt() & 0xff);
1636    }
1637
1638    /**
1639     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1640     * been written with {@link #writeBundle}.  Read into an existing Map object
1641     * from the parcel at the current dataPosition().
1642     */
1643    public final void readMap(Map outVal, ClassLoader loader) {
1644        int N = readInt();
1645        readMapInternal(outVal, N, loader);
1646    }
1647
1648    /**
1649     * Read into an existing List object from the parcel at the current
1650     * dataPosition(), using the given class loader to load any enclosed
1651     * Parcelables.  If it is null, the default class loader is used.
1652     */
1653    public final void readList(List outVal, ClassLoader loader) {
1654        int N = readInt();
1655        readListInternal(outVal, N, loader);
1656    }
1657
1658    /**
1659     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1660     * been written with {@link #writeBundle}.  Read and return a new HashMap
1661     * object from the parcel at the current dataPosition(), using the given
1662     * class loader to load any enclosed Parcelables.  Returns null if
1663     * the previously written map object was null.
1664     */
1665    public final HashMap readHashMap(ClassLoader loader)
1666    {
1667        int N = readInt();
1668        if (N < 0) {
1669            return null;
1670        }
1671        HashMap m = new HashMap(N);
1672        readMapInternal(m, N, loader);
1673        return m;
1674    }
1675
1676    /**
1677     * Read and return a new Bundle object from the parcel at the current
1678     * dataPosition().  Returns null if the previously written Bundle object was
1679     * null.
1680     */
1681    public final Bundle readBundle() {
1682        return readBundle(null);
1683    }
1684
1685    /**
1686     * Read and return a new Bundle object from the parcel at the current
1687     * dataPosition(), using the given class loader to initialize the class
1688     * loader of the Bundle for later retrieval of Parcelable objects.
1689     * Returns null if the previously written Bundle object was null.
1690     */
1691    public final Bundle readBundle(ClassLoader loader) {
1692        int length = readInt();
1693        if (length < 0) {
1694            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1695            return null;
1696        }
1697
1698        final Bundle bundle = new Bundle(this, length);
1699        if (loader != null) {
1700            bundle.setClassLoader(loader);
1701        }
1702        return bundle;
1703    }
1704
1705    /**
1706     * Read and return a new Bundle object from the parcel at the current
1707     * dataPosition().  Returns null if the previously written Bundle object was
1708     * null.
1709     */
1710    public final PersistableBundle readPersistableBundle() {
1711        return readPersistableBundle(null);
1712    }
1713
1714    /**
1715     * Read and return a new Bundle object from the parcel at the current
1716     * dataPosition(), using the given class loader to initialize the class
1717     * loader of the Bundle for later retrieval of Parcelable objects.
1718     * Returns null if the previously written Bundle object was null.
1719     */
1720    public final PersistableBundle readPersistableBundle(ClassLoader loader) {
1721        int length = readInt();
1722        if (length < 0) {
1723            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1724            return null;
1725        }
1726
1727        final PersistableBundle bundle = new PersistableBundle(this, length);
1728        if (loader != null) {
1729            bundle.setClassLoader(loader);
1730        }
1731        return bundle;
1732    }
1733
1734    /**
1735     * Read a Size from the parcel at the current dataPosition().
1736     */
1737    public final Size readSize() {
1738        final int width = readInt();
1739        final int height = readInt();
1740        return new Size(width, height);
1741    }
1742
1743    /**
1744     * Read a SizeF from the parcel at the current dataPosition().
1745     */
1746    public final SizeF readSizeF() {
1747        final float width = readFloat();
1748        final float height = readFloat();
1749        return new SizeF(width, height);
1750    }
1751
1752    /**
1753     * Read and return a byte[] object from the parcel.
1754     */
1755    public final byte[] createByteArray() {
1756        return nativeCreateByteArray(mNativePtr);
1757    }
1758
1759    /**
1760     * Read a byte[] object from the parcel and copy it into the
1761     * given byte array.
1762     */
1763    public final void readByteArray(byte[] val) {
1764        // TODO: make this a native method to avoid the extra copy.
1765        byte[] ba = createByteArray();
1766        if (ba.length == val.length) {
1767           System.arraycopy(ba, 0, val, 0, ba.length);
1768        } else {
1769            throw new RuntimeException("bad array lengths");
1770        }
1771    }
1772
1773    /**
1774     * Read a blob of data from the parcel and return it as a byte array.
1775     * {@hide}
1776     * {@SystemApi}
1777     */
1778    public final byte[] readBlob() {
1779        return nativeReadBlob(mNativePtr);
1780    }
1781
1782    /**
1783     * Read and return a String[] object from the parcel.
1784     * {@hide}
1785     */
1786    public final String[] readStringArray() {
1787        String[] array = null;
1788
1789        int length = readInt();
1790        if (length >= 0)
1791        {
1792            array = new String[length];
1793
1794            for (int i = 0 ; i < length ; i++)
1795            {
1796                array[i] = readString();
1797            }
1798        }
1799
1800        return array;
1801    }
1802
1803    /**
1804     * Read and return a CharSequence[] object from the parcel.
1805     * {@hide}
1806     */
1807    public final CharSequence[] readCharSequenceArray() {
1808        CharSequence[] array = null;
1809
1810        int length = readInt();
1811        if (length >= 0)
1812        {
1813            array = new CharSequence[length];
1814
1815            for (int i = 0 ; i < length ; i++)
1816            {
1817                array[i] = readCharSequence();
1818            }
1819        }
1820
1821        return array;
1822    }
1823
1824    /**
1825     * Read and return a new ArrayList object from the parcel at the current
1826     * dataPosition().  Returns null if the previously written list object was
1827     * null.  The given class loader will be used to load any enclosed
1828     * Parcelables.
1829     */
1830    public final ArrayList readArrayList(ClassLoader loader) {
1831        int N = readInt();
1832        if (N < 0) {
1833            return null;
1834        }
1835        ArrayList l = new ArrayList(N);
1836        readListInternal(l, N, loader);
1837        return l;
1838    }
1839
1840    /**
1841     * Read and return a new Object array from the parcel at the current
1842     * dataPosition().  Returns null if the previously written array was
1843     * null.  The given class loader will be used to load any enclosed
1844     * Parcelables.
1845     */
1846    public final Object[] readArray(ClassLoader loader) {
1847        int N = readInt();
1848        if (N < 0) {
1849            return null;
1850        }
1851        Object[] l = new Object[N];
1852        readArrayInternal(l, N, loader);
1853        return l;
1854    }
1855
1856    /**
1857     * Read and return a new SparseArray object from the parcel at the current
1858     * dataPosition().  Returns null if the previously written list object was
1859     * null.  The given class loader will be used to load any enclosed
1860     * Parcelables.
1861     */
1862    public final SparseArray readSparseArray(ClassLoader loader) {
1863        int N = readInt();
1864        if (N < 0) {
1865            return null;
1866        }
1867        SparseArray sa = new SparseArray(N);
1868        readSparseArrayInternal(sa, N, loader);
1869        return sa;
1870    }
1871
1872    /**
1873     * Read and return a new SparseBooleanArray object from the parcel at the current
1874     * dataPosition().  Returns null if the previously written list object was
1875     * null.
1876     */
1877    public final SparseBooleanArray readSparseBooleanArray() {
1878        int N = readInt();
1879        if (N < 0) {
1880            return null;
1881        }
1882        SparseBooleanArray sa = new SparseBooleanArray(N);
1883        readSparseBooleanArrayInternal(sa, N);
1884        return sa;
1885    }
1886
1887    /**
1888     * Read and return a new ArrayList containing a particular object type from
1889     * the parcel that was written with {@link #writeTypedList} at the
1890     * current dataPosition().  Returns null if the
1891     * previously written list object was null.  The list <em>must</em> have
1892     * previously been written via {@link #writeTypedList} with the same object
1893     * type.
1894     *
1895     * @return A newly created ArrayList containing objects with the same data
1896     *         as those that were previously written.
1897     *
1898     * @see #writeTypedList
1899     */
1900    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1901        int N = readInt();
1902        if (N < 0) {
1903            return null;
1904        }
1905        ArrayList<T> l = new ArrayList<T>(N);
1906        while (N > 0) {
1907            if (readInt() != 0) {
1908                l.add(c.createFromParcel(this));
1909            } else {
1910                l.add(null);
1911            }
1912            N--;
1913        }
1914        return l;
1915    }
1916
1917    /**
1918     * Read into the given List items containing a particular object type
1919     * that were written with {@link #writeTypedList} at the
1920     * current dataPosition().  The list <em>must</em> have
1921     * previously been written via {@link #writeTypedList} with the same object
1922     * type.
1923     *
1924     * @return A newly created ArrayList containing objects with the same data
1925     *         as those that were previously written.
1926     *
1927     * @see #writeTypedList
1928     */
1929    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1930        int M = list.size();
1931        int N = readInt();
1932        int i = 0;
1933        for (; i < M && i < N; i++) {
1934            if (readInt() != 0) {
1935                list.set(i, c.createFromParcel(this));
1936            } else {
1937                list.set(i, null);
1938            }
1939        }
1940        for (; i<N; i++) {
1941            if (readInt() != 0) {
1942                list.add(c.createFromParcel(this));
1943            } else {
1944                list.add(null);
1945            }
1946        }
1947        for (; i<M; i++) {
1948            list.remove(N);
1949        }
1950    }
1951
1952    /**
1953     * Read and return a new ArrayList containing String objects from
1954     * the parcel that was written with {@link #writeStringList} at the
1955     * current dataPosition().  Returns null if the
1956     * previously written list object was null.
1957     *
1958     * @return A newly created ArrayList containing strings with the same data
1959     *         as those that were previously written.
1960     *
1961     * @see #writeStringList
1962     */
1963    public final ArrayList<String> createStringArrayList() {
1964        int N = readInt();
1965        if (N < 0) {
1966            return null;
1967        }
1968        ArrayList<String> l = new ArrayList<String>(N);
1969        while (N > 0) {
1970            l.add(readString());
1971            N--;
1972        }
1973        return l;
1974    }
1975
1976    /**
1977     * Read and return a new ArrayList containing IBinder objects from
1978     * the parcel that was written with {@link #writeBinderList} at the
1979     * current dataPosition().  Returns null if the
1980     * previously written list object was null.
1981     *
1982     * @return A newly created ArrayList containing strings with the same data
1983     *         as those that were previously written.
1984     *
1985     * @see #writeBinderList
1986     */
1987    public final ArrayList<IBinder> createBinderArrayList() {
1988        int N = readInt();
1989        if (N < 0) {
1990            return null;
1991        }
1992        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1993        while (N > 0) {
1994            l.add(readStrongBinder());
1995            N--;
1996        }
1997        return l;
1998    }
1999
2000    /**
2001     * Read into the given List items String objects that were written with
2002     * {@link #writeStringList} at the current dataPosition().
2003     *
2004     * @return A newly created ArrayList containing strings with the same data
2005     *         as those that were previously written.
2006     *
2007     * @see #writeStringList
2008     */
2009    public final void readStringList(List<String> list) {
2010        int M = list.size();
2011        int N = readInt();
2012        int i = 0;
2013        for (; i < M && i < N; i++) {
2014            list.set(i, readString());
2015        }
2016        for (; i<N; i++) {
2017            list.add(readString());
2018        }
2019        for (; i<M; i++) {
2020            list.remove(N);
2021        }
2022    }
2023
2024    /**
2025     * Read into the given List items IBinder objects that were written with
2026     * {@link #writeBinderList} at the current dataPosition().
2027     *
2028     * @return A newly created ArrayList containing strings with the same data
2029     *         as those that were previously written.
2030     *
2031     * @see #writeBinderList
2032     */
2033    public final void readBinderList(List<IBinder> list) {
2034        int M = list.size();
2035        int N = readInt();
2036        int i = 0;
2037        for (; i < M && i < N; i++) {
2038            list.set(i, readStrongBinder());
2039        }
2040        for (; i<N; i++) {
2041            list.add(readStrongBinder());
2042        }
2043        for (; i<M; i++) {
2044            list.remove(N);
2045        }
2046    }
2047
2048    /**
2049     * Read and return a new array containing a particular object type from
2050     * the parcel at the current dataPosition().  Returns null if the
2051     * previously written array was null.  The array <em>must</em> have
2052     * previously been written via {@link #writeTypedArray} with the same
2053     * object type.
2054     *
2055     * @return A newly created array containing objects with the same data
2056     *         as those that were previously written.
2057     *
2058     * @see #writeTypedArray
2059     */
2060    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
2061        int N = readInt();
2062        if (N < 0) {
2063            return null;
2064        }
2065        T[] l = c.newArray(N);
2066        for (int i=0; i<N; i++) {
2067            if (readInt() != 0) {
2068                l[i] = c.createFromParcel(this);
2069            }
2070        }
2071        return l;
2072    }
2073
2074    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
2075        int N = readInt();
2076        if (N == val.length) {
2077            for (int i=0; i<N; i++) {
2078                if (readInt() != 0) {
2079                    val[i] = c.createFromParcel(this);
2080                } else {
2081                    val[i] = null;
2082                }
2083            }
2084        } else {
2085            throw new RuntimeException("bad array lengths");
2086        }
2087    }
2088
2089    /**
2090     * @deprecated
2091     * @hide
2092     */
2093    @Deprecated
2094    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
2095        return createTypedArray(c);
2096    }
2097
2098    /**
2099     * Write a heterogeneous array of Parcelable objects into the Parcel.
2100     * Each object in the array is written along with its class name, so
2101     * that the correct class can later be instantiated.  As a result, this
2102     * has significantly more overhead than {@link #writeTypedArray}, but will
2103     * correctly handle an array containing more than one type of object.
2104     *
2105     * @param value The array of objects to be written.
2106     * @param parcelableFlags Contextual flags as per
2107     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
2108     *
2109     * @see #writeTypedArray
2110     */
2111    public final <T extends Parcelable> void writeParcelableArray(T[] value,
2112            int parcelableFlags) {
2113        if (value != null) {
2114            int N = value.length;
2115            writeInt(N);
2116            for (int i=0; i<N; i++) {
2117                writeParcelable(value[i], parcelableFlags);
2118            }
2119        } else {
2120            writeInt(-1);
2121        }
2122    }
2123
2124    /**
2125     * Read a typed object from a parcel.  The given class loader will be
2126     * used to load any enclosed Parcelables.  If it is null, the default class
2127     * loader will be used.
2128     */
2129    public final Object readValue(ClassLoader loader) {
2130        int type = readInt();
2131
2132        switch (type) {
2133        case VAL_NULL:
2134            return null;
2135
2136        case VAL_STRING:
2137            return readString();
2138
2139        case VAL_INTEGER:
2140            return readInt();
2141
2142        case VAL_MAP:
2143            return readHashMap(loader);
2144
2145        case VAL_PARCELABLE:
2146            return readParcelable(loader);
2147
2148        case VAL_SHORT:
2149            return (short) readInt();
2150
2151        case VAL_LONG:
2152            return readLong();
2153
2154        case VAL_FLOAT:
2155            return readFloat();
2156
2157        case VAL_DOUBLE:
2158            return readDouble();
2159
2160        case VAL_BOOLEAN:
2161            return readInt() == 1;
2162
2163        case VAL_CHARSEQUENCE:
2164            return readCharSequence();
2165
2166        case VAL_LIST:
2167            return readArrayList(loader);
2168
2169        case VAL_BOOLEANARRAY:
2170            return createBooleanArray();
2171
2172        case VAL_BYTEARRAY:
2173            return createByteArray();
2174
2175        case VAL_STRINGARRAY:
2176            return readStringArray();
2177
2178        case VAL_CHARSEQUENCEARRAY:
2179            return readCharSequenceArray();
2180
2181        case VAL_IBINDER:
2182            return readStrongBinder();
2183
2184        case VAL_OBJECTARRAY:
2185            return readArray(loader);
2186
2187        case VAL_INTARRAY:
2188            return createIntArray();
2189
2190        case VAL_LONGARRAY:
2191            return createLongArray();
2192
2193        case VAL_BYTE:
2194            return readByte();
2195
2196        case VAL_SERIALIZABLE:
2197            return readSerializable(loader);
2198
2199        case VAL_PARCELABLEARRAY:
2200            return readParcelableArray(loader);
2201
2202        case VAL_SPARSEARRAY:
2203            return readSparseArray(loader);
2204
2205        case VAL_SPARSEBOOLEANARRAY:
2206            return readSparseBooleanArray();
2207
2208        case VAL_BUNDLE:
2209            return readBundle(loader); // loading will be deferred
2210
2211        case VAL_PERSISTABLEBUNDLE:
2212            return readPersistableBundle(loader);
2213
2214        case VAL_SIZE:
2215            return readSize();
2216
2217        case VAL_SIZEF:
2218            return readSizeF();
2219
2220        default:
2221            int off = dataPosition() - 4;
2222            throw new RuntimeException(
2223                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2224        }
2225    }
2226
2227    /**
2228     * Read and return a new Parcelable from the parcel.  The given class loader
2229     * will be used to load any enclosed Parcelables.  If it is null, the default
2230     * class loader will be used.
2231     * @param loader A ClassLoader from which to instantiate the Parcelable
2232     * object, or null for the default class loader.
2233     * @return Returns the newly created Parcelable, or null if a null
2234     * object has been written.
2235     * @throws BadParcelableException Throws BadParcelableException if there
2236     * was an error trying to instantiate the Parcelable.
2237     */
2238    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2239        Parcelable.Creator<T> creator = readParcelableCreator(loader);
2240        if (creator == null) {
2241            return null;
2242        }
2243        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2244            return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2245        }
2246        return creator.createFromParcel(this);
2247    }
2248
2249    /** @hide */
2250    public final <T extends Parcelable> T readCreator(Parcelable.Creator<T> creator,
2251            ClassLoader loader) {
2252        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2253            return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2254        }
2255        return creator.createFromParcel(this);
2256    }
2257
2258    /** @hide */
2259    public final <T extends Parcelable> Parcelable.Creator<T> readParcelableCreator(
2260            ClassLoader loader) {
2261        String name = readString();
2262        if (name == null) {
2263            return null;
2264        }
2265        Parcelable.Creator<T> creator;
2266        synchronized (mCreators) {
2267            HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
2268            if (map == null) {
2269                map = new HashMap<String,Parcelable.Creator>();
2270                mCreators.put(loader, map);
2271            }
2272            creator = map.get(name);
2273            if (creator == null) {
2274                try {
2275                    Class c = loader == null ?
2276                        Class.forName(name) : Class.forName(name, true, loader);
2277                    Field f = c.getField("CREATOR");
2278                    creator = (Parcelable.Creator)f.get(null);
2279                }
2280                catch (IllegalAccessException e) {
2281                    Log.e(TAG, "Illegal access when unmarshalling: "
2282                                        + name, e);
2283                    throw new BadParcelableException(
2284                            "IllegalAccessException when unmarshalling: " + name);
2285                }
2286                catch (ClassNotFoundException e) {
2287                    Log.e(TAG, "Class not found when unmarshalling: "
2288                                        + name, e);
2289                    throw new BadParcelableException(
2290                            "ClassNotFoundException when unmarshalling: " + name);
2291                }
2292                catch (ClassCastException e) {
2293                    throw new BadParcelableException("Parcelable protocol requires a "
2294                                        + "Parcelable.Creator object called "
2295                                        + " CREATOR on class " + name);
2296                }
2297                catch (NoSuchFieldException e) {
2298                    throw new BadParcelableException("Parcelable protocol requires a "
2299                                        + "Parcelable.Creator object called "
2300                                        + " CREATOR on class " + name);
2301                }
2302                catch (NullPointerException e) {
2303                    throw new BadParcelableException("Parcelable protocol requires "
2304                            + "the CREATOR object to be static on class " + name);
2305                }
2306                if (creator == null) {
2307                    throw new BadParcelableException("Parcelable protocol requires a "
2308                                        + "Parcelable.Creator object called "
2309                                        + " CREATOR on class " + name);
2310                }
2311
2312                map.put(name, creator);
2313            }
2314        }
2315
2316        return creator;
2317    }
2318
2319    /**
2320     * Read and return a new Parcelable array from the parcel.
2321     * The given class loader will be used to load any enclosed
2322     * Parcelables.
2323     * @return the Parcelable array, or null if the array is null
2324     */
2325    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2326        int N = readInt();
2327        if (N < 0) {
2328            return null;
2329        }
2330        Parcelable[] p = new Parcelable[N];
2331        for (int i = 0; i < N; i++) {
2332            p[i] = (Parcelable) readParcelable(loader);
2333        }
2334        return p;
2335    }
2336
2337    /**
2338     * Read and return a new Serializable object from the parcel.
2339     * @return the Serializable object, or null if the Serializable name
2340     * wasn't found in the parcel.
2341     */
2342    public final Serializable readSerializable() {
2343        return readSerializable(null);
2344    }
2345
2346    private final Serializable readSerializable(final ClassLoader loader) {
2347        String name = readString();
2348        if (name == null) {
2349            // For some reason we were unable to read the name of the Serializable (either there
2350            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2351            // return null, which indicates that the name wasn't found in the parcel.
2352            return null;
2353        }
2354
2355        byte[] serializedData = createByteArray();
2356        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2357        try {
2358            ObjectInputStream ois = new ObjectInputStream(bais) {
2359                @Override
2360                protected Class<?> resolveClass(ObjectStreamClass osClass)
2361                        throws IOException, ClassNotFoundException {
2362                    // try the custom classloader if provided
2363                    if (loader != null) {
2364                        Class<?> c = Class.forName(osClass.getName(), false, loader);
2365                        if (c != null) {
2366                            return c;
2367                        }
2368                    }
2369                    return super.resolveClass(osClass);
2370                }
2371            };
2372            return (Serializable) ois.readObject();
2373        } catch (IOException ioe) {
2374            throw new RuntimeException("Parcelable encountered " +
2375                "IOException reading a Serializable object (name = " + name +
2376                ")", ioe);
2377        } catch (ClassNotFoundException cnfe) {
2378            throw new RuntimeException("Parcelable encountered " +
2379                "ClassNotFoundException reading a Serializable object (name = "
2380                + name + ")", cnfe);
2381        }
2382    }
2383
2384    // Cache of previously looked up CREATOR.createFromParcel() methods for
2385    // particular classes.  Keys are the names of the classes, values are
2386    // Method objects.
2387    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
2388        mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
2389
2390    /** @hide for internal use only. */
2391    static protected final Parcel obtain(int obj) {
2392        throw new UnsupportedOperationException();
2393    }
2394
2395    /** @hide */
2396    static protected final Parcel obtain(long obj) {
2397        final Parcel[] pool = sHolderPool;
2398        synchronized (pool) {
2399            Parcel p;
2400            for (int i=0; i<POOL_SIZE; i++) {
2401                p = pool[i];
2402                if (p != null) {
2403                    pool[i] = null;
2404                    if (DEBUG_RECYCLE) {
2405                        p.mStack = new RuntimeException();
2406                    }
2407                    p.init(obj);
2408                    return p;
2409                }
2410            }
2411        }
2412        return new Parcel(obj);
2413    }
2414
2415    private Parcel(long nativePtr) {
2416        if (DEBUG_RECYCLE) {
2417            mStack = new RuntimeException();
2418        }
2419        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2420        init(nativePtr);
2421    }
2422
2423    private void init(long nativePtr) {
2424        if (nativePtr != 0) {
2425            mNativePtr = nativePtr;
2426            mOwnsNativeParcelObject = false;
2427        } else {
2428            mNativePtr = nativeCreate();
2429            mOwnsNativeParcelObject = true;
2430        }
2431    }
2432
2433    private void freeBuffer() {
2434        if (mOwnsNativeParcelObject) {
2435            nativeFreeBuffer(mNativePtr);
2436        }
2437    }
2438
2439    private void destroy() {
2440        if (mNativePtr != 0) {
2441            if (mOwnsNativeParcelObject) {
2442                nativeDestroy(mNativePtr);
2443            }
2444            mNativePtr = 0;
2445        }
2446    }
2447
2448    @Override
2449    protected void finalize() throws Throwable {
2450        if (DEBUG_RECYCLE) {
2451            if (mStack != null) {
2452                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2453            }
2454        }
2455        destroy();
2456    }
2457
2458    /* package */ void readMapInternal(Map outVal, int N,
2459        ClassLoader loader) {
2460        while (N > 0) {
2461            Object key = readValue(loader);
2462            Object value = readValue(loader);
2463            outVal.put(key, value);
2464            N--;
2465        }
2466    }
2467
2468    /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
2469        ClassLoader loader) {
2470        if (DEBUG_ARRAY_MAP) {
2471            RuntimeException here =  new RuntimeException("here");
2472            here.fillInStackTrace();
2473            Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
2474        }
2475        int startPos;
2476        while (N > 0) {
2477            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
2478            String key = readString();
2479            Object value = readValue(loader);
2480            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
2481                    + (dataPosition()-startPos) + " bytes: key=0x"
2482                    + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
2483            outVal.append(key, value);
2484            N--;
2485        }
2486        outVal.validate();
2487    }
2488
2489    /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
2490        ClassLoader loader) {
2491        if (DEBUG_ARRAY_MAP) {
2492            RuntimeException here =  new RuntimeException("here");
2493            here.fillInStackTrace();
2494            Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
2495        }
2496        while (N > 0) {
2497            String key = readString();
2498            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
2499                    + (key != null ? key.hashCode() : 0) + " " + key);
2500            Object value = readValue(loader);
2501            outVal.put(key, value);
2502            N--;
2503        }
2504    }
2505
2506    /**
2507     * @hide For testing only.
2508     */
2509    public void readArrayMap(ArrayMap outVal, ClassLoader loader) {
2510        final int N = readInt();
2511        if (N < 0) {
2512            return;
2513        }
2514        readArrayMapInternal(outVal, N, loader);
2515    }
2516
2517    private void readListInternal(List outVal, int N,
2518        ClassLoader loader) {
2519        while (N > 0) {
2520            Object value = readValue(loader);
2521            //Log.d(TAG, "Unmarshalling value=" + value);
2522            outVal.add(value);
2523            N--;
2524        }
2525    }
2526
2527    private void readArrayInternal(Object[] outVal, int N,
2528        ClassLoader loader) {
2529        for (int i = 0; i < N; i++) {
2530            Object value = readValue(loader);
2531            //Log.d(TAG, "Unmarshalling value=" + value);
2532            outVal[i] = value;
2533        }
2534    }
2535
2536    private void readSparseArrayInternal(SparseArray outVal, int N,
2537        ClassLoader loader) {
2538        while (N > 0) {
2539            int key = readInt();
2540            Object value = readValue(loader);
2541            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2542            outVal.append(key, value);
2543            N--;
2544        }
2545    }
2546
2547
2548    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2549        while (N > 0) {
2550            int key = readInt();
2551            boolean value = this.readByte() == 1;
2552            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2553            outVal.append(key, value);
2554            N--;
2555        }
2556    }
2557}
2558