DisplayList.cpp revision b79a3e301a8d89b9e1b1f6f3d7fd6aa56610a6f0
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_VIEW
18
19#include <SkCanvas.h>
20#include <algorithm>
21
22#include <utils/Trace.h>
23
24#include "Debug.h"
25#include "DisplayList.h"
26#include "DisplayListOp.h"
27#include "DisplayListLogBuffer.h"
28
29namespace android {
30namespace uirenderer {
31
32void DisplayList::outputLogBuffer(int fd) {
33    DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
34    if (logBuffer.isEmpty()) {
35        return;
36    }
37
38    FILE *file = fdopen(fd, "a");
39
40    fprintf(file, "\nRecent DisplayList operations\n");
41    logBuffer.outputCommands(file);
42
43    String8 cachesLog;
44    Caches::getInstance().dumpMemoryUsage(cachesLog);
45    fprintf(file, "\nCaches:\n%s", cachesLog.string());
46    fprintf(file, "\n");
47
48    fflush(file);
49}
50
51DisplayList::DisplayList() :
52        mDisplayListData(0), mDestroyed(false), mTransformMatrix(NULL), mTransformCamera(NULL),
53        mTransformMatrix3D(NULL), mStaticMatrix(NULL), mAnimationMatrix(NULL) {
54
55    mLeft = 0;
56    mTop = 0;
57    mRight = 0;
58    mBottom = 0;
59    mClipToBounds = true;
60    mIsolatedZVolume = true;
61    mProjectBackwards = false;
62    mProjectionReceiver = false;
63    mOutline.rewind();
64    mClipToOutline = false;
65    mCastsShadow = false;
66    mUsesGlobalCamera = false;
67    mAlpha = 1;
68    mHasOverlappingRendering = true;
69    mTranslationX = 0;
70    mTranslationY = 0;
71    mTranslationZ = 0;
72    mRotation = 0;
73    mRotationX = 0;
74    mRotationY= 0;
75    mScaleX = 1;
76    mScaleY = 1;
77    mPivotX = 0;
78    mPivotY = 0;
79    mCameraDistance = 0;
80    mMatrixDirty = false;
81    mMatrixFlags = 0;
82    mPrevWidth = -1;
83    mPrevHeight = -1;
84    mWidth = 0;
85    mHeight = 0;
86    mPivotExplicitlySet = false;
87    mCaching = false;
88}
89
90DisplayList::~DisplayList() {
91    LOG_ALWAYS_FATAL_IF(mDestroyed, "Double destroyed DisplayList %p", this);
92
93    mDestroyed = true;
94    delete mDisplayListData;
95    delete mTransformMatrix;
96    delete mTransformCamera;
97    delete mTransformMatrix3D;
98    delete mStaticMatrix;
99    delete mAnimationMatrix;
100}
101
102void DisplayList::destroyDisplayListDeferred(DisplayList* displayList) {
103    if (displayList) {
104        DISPLAY_LIST_LOGD("Deferring display list destruction");
105        Caches::getInstance().deleteDisplayListDeferred(displayList);
106    }
107}
108
109void DisplayList::setData(DisplayListData* data) {
110    delete mDisplayListData;
111    mDisplayListData = data;
112    if (mDisplayListData) {
113        Caches::getInstance().registerFunctors(mDisplayListData->functorCount);
114    }
115}
116
117/**
118 * This function is a simplified version of replay(), where we simply retrieve and log the
119 * display list. This function should remain in sync with the replay() function.
120 */
121void DisplayList::output(uint32_t level) {
122    ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this,
123            mName.string(), isRenderable());
124    ALOGD("%*s%s %d", level * 2, "", "Save",
125            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
126
127    outputViewProperties(level);
128    int flags = DisplayListOp::kOpLogFlag_Recurse;
129    for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
130        mDisplayListData->displayListOps[i]->output(level, flags);
131    }
132
133    ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, mName.string());
134}
135
136float DisplayList::getPivotX() {
137    updateMatrix();
138    return mPivotX;
139}
140
141float DisplayList::getPivotY() {
142    updateMatrix();
143    return mPivotY;
144}
145
146void DisplayList::updateMatrix() {
147    if (mMatrixDirty) {
148        // NOTE: mTransformMatrix won't be up to date if a DisplayList goes from a complex transform
149        // to a pure translate. This is safe because the matrix isn't read in pure translate cases.
150        if (mMatrixFlags && mMatrixFlags != TRANSLATION) {
151            if (!mTransformMatrix) {
152                // only allocate a matrix if we have a complex transform
153                mTransformMatrix = new Matrix4();
154            }
155            if (!mPivotExplicitlySet) {
156                if (mWidth != mPrevWidth || mHeight != mPrevHeight) {
157                    mPrevWidth = mWidth;
158                    mPrevHeight = mHeight;
159                    mPivotX = mPrevWidth / 2.0f;
160                    mPivotY = mPrevHeight / 2.0f;
161                }
162            }
163
164            if ((mMatrixFlags & ROTATION_3D) == 0) {
165                mTransformMatrix->loadTranslate(
166                        mPivotX + mTranslationX,
167                        mPivotY + mTranslationY,
168                        0);
169                mTransformMatrix->rotate(mRotation, 0, 0, 1);
170                mTransformMatrix->scale(mScaleX, mScaleY, 1);
171                mTransformMatrix->translate(-mPivotX, -mPivotY);
172            } else {
173                if (!mTransformCamera) {
174                    mTransformCamera = new Sk3DView();
175                    mTransformMatrix3D = new SkMatrix();
176                }
177                SkMatrix transformMatrix;
178                transformMatrix.reset();
179                mTransformCamera->save();
180                transformMatrix.preScale(mScaleX, mScaleY, mPivotX, mPivotY);
181                mTransformCamera->rotateX(mRotationX);
182                mTransformCamera->rotateY(mRotationY);
183                mTransformCamera->rotateZ(-mRotation);
184                mTransformCamera->getMatrix(mTransformMatrix3D);
185                mTransformMatrix3D->preTranslate(-mPivotX, -mPivotY);
186                mTransformMatrix3D->postTranslate(mPivotX + mTranslationX,
187                        mPivotY + mTranslationY);
188                transformMatrix.postConcat(*mTransformMatrix3D);
189                mTransformCamera->restore();
190
191                mTransformMatrix->load(transformMatrix);
192            }
193        }
194        mMatrixDirty = false;
195    }
196}
197
198void DisplayList::outputViewProperties(const int level) {
199    updateMatrix();
200    if (mLeft != 0 || mTop != 0) {
201        ALOGD("%*sTranslate (left, top) %d, %d", level * 2, "", mLeft, mTop);
202    }
203    if (mStaticMatrix) {
204        ALOGD("%*sConcatMatrix (static) %p: " SK_MATRIX_STRING,
205                level * 2, "", mStaticMatrix, SK_MATRIX_ARGS(mStaticMatrix));
206    }
207    if (mAnimationMatrix) {
208        ALOGD("%*sConcatMatrix (animation) %p: " SK_MATRIX_STRING,
209                level * 2, "", mAnimationMatrix, SK_MATRIX_ARGS(mAnimationMatrix));
210    }
211    if (mMatrixFlags != 0) {
212        if (mMatrixFlags == TRANSLATION) {
213            ALOGD("%*sTranslate %.2f, %.2f, %.2f",
214                    level * 2, "", mTranslationX, mTranslationY, mTranslationZ);
215        } else {
216            ALOGD("%*sConcatMatrix %p: " MATRIX_4_STRING,
217                    level * 2, "", mTransformMatrix, MATRIX_4_ARGS(mTransformMatrix));
218        }
219    }
220
221    bool clipToBoundsNeeded = mCaching ? false : mClipToBounds;
222    if (mAlpha < 1) {
223        if (mCaching) {
224            ALOGD("%*sSetOverrideLayerAlpha %.2f", level * 2, "", mAlpha);
225        } else if (!mHasOverlappingRendering) {
226            ALOGD("%*sScaleAlpha %.2f", level * 2, "", mAlpha);
227        } else {
228            int flags = SkCanvas::kHasAlphaLayer_SaveFlag;
229            if (clipToBoundsNeeded) {
230                flags |= SkCanvas::kClipToLayer_SaveFlag;
231                clipToBoundsNeeded = false; // clipping done by save layer
232            }
233            ALOGD("%*sSaveLayerAlpha %.2f, %.2f, %.2f, %.2f, %d, 0x%x", level * 2, "",
234                    (float) 0, (float) 0, (float) mRight - mLeft, (float) mBottom - mTop,
235                    (int)(mAlpha * 255), flags);
236        }
237    }
238    if (clipToBoundsNeeded) {
239        ALOGD("%*sClipRect %.2f, %.2f, %.2f, %.2f", level * 2, "", 0.0f, 0.0f,
240                (float) mRight - mLeft, (float) mBottom - mTop);
241    }
242}
243
244/*
245 * For property operations, we pass a savecount of 0, since the operations aren't part of the
246 * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
247 * base saveCount (i.e., how RestoreToCount uses saveCount + mCount)
248 */
249#define PROPERTY_SAVECOUNT 0
250
251template <class T>
252void DisplayList::setViewProperties(OpenGLRenderer& renderer, T& handler,
253        const int level) {
254#if DEBUG_DISPLAY_LIST
255    outputViewProperties(level);
256#endif
257    updateMatrix();
258    if (mLeft != 0 || mTop != 0) {
259        renderer.translate(mLeft, mTop);
260    }
261    if (mStaticMatrix) {
262        renderer.concatMatrix(mStaticMatrix);
263    } else if (mAnimationMatrix) {
264        renderer.concatMatrix(mAnimationMatrix);
265    }
266    if (mMatrixFlags != 0) {
267        if (mMatrixFlags == TRANSLATION) {
268            renderer.translate(mTranslationX, mTranslationY);
269        } else {
270            renderer.concatMatrix(*mTransformMatrix);
271        }
272    }
273    bool clipToBoundsNeeded = mCaching ? false : mClipToBounds;
274    if (mAlpha < 1) {
275        if (mCaching) {
276            renderer.setOverrideLayerAlpha(mAlpha);
277        } else if (!mHasOverlappingRendering) {
278            renderer.scaleAlpha(mAlpha);
279        } else {
280            // TODO: should be able to store the size of a DL at record time and not
281            // have to pass it into this call. In fact, this information might be in the
282            // location/size info that we store with the new native transform data.
283            int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag;
284            if (clipToBoundsNeeded) {
285                saveFlags |= SkCanvas::kClipToLayer_SaveFlag;
286                clipToBoundsNeeded = false; // clipping done by saveLayer
287            }
288
289            SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
290                    0, 0, mRight - mLeft, mBottom - mTop, mAlpha * 255, saveFlags);
291            handler(op, PROPERTY_SAVECOUNT, mClipToBounds);
292        }
293    }
294    if (clipToBoundsNeeded) {
295        ClipRectOp* op = new (handler.allocator()) ClipRectOp(0, 0,
296                mRight - mLeft, mBottom - mTop, SkRegion::kIntersect_Op);
297        handler(op, PROPERTY_SAVECOUNT, mClipToBounds);
298    }
299    if (CC_UNLIKELY(mClipToOutline && !mOutline.isEmpty())) {
300        ClipPathOp* op = new (handler.allocator()) ClipPathOp(&mOutline, SkRegion::kIntersect_Op);
301        handler(op, PROPERTY_SAVECOUNT, mClipToBounds);
302    }
303}
304
305/**
306 * Apply property-based transformations to input matrix
307 *
308 * If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
309 * matrix computation instead of the Skia 3x3 matrix + camera hackery.
310 */
311void DisplayList::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) {
312    if (mLeft != 0 || mTop != 0) {
313        matrix.translate(mLeft, mTop);
314    }
315    if (mStaticMatrix) {
316        mat4 stat(*mStaticMatrix);
317        matrix.multiply(stat);
318    } else if (mAnimationMatrix) {
319        mat4 anim(*mAnimationMatrix);
320        matrix.multiply(anim);
321    }
322    if (mMatrixFlags != 0) {
323        updateMatrix();
324        if (mMatrixFlags == TRANSLATION) {
325            matrix.translate(mTranslationX, mTranslationY,
326                    true3dTransform ? mTranslationZ : 0.0f);
327        } else {
328            if (!true3dTransform) {
329                matrix.multiply(*mTransformMatrix);
330            } else {
331                mat4 true3dMat;
332                true3dMat.loadTranslate(
333                        mPivotX + mTranslationX,
334                        mPivotY + mTranslationY,
335                        mTranslationZ);
336                true3dMat.rotate(mRotationX, 1, 0, 0);
337                true3dMat.rotate(mRotationY, 0, 1, 0);
338                true3dMat.rotate(mRotation, 0, 0, 1);
339                true3dMat.scale(mScaleX, mScaleY, 1);
340                true3dMat.translate(-mPivotX, -mPivotY);
341
342                matrix.multiply(true3dMat);
343            }
344        }
345    }
346}
347
348/**
349 * Organizes the DisplayList hierarchy to prepare for background projection reordering.
350 *
351 * This should be called before a call to defer() or drawDisplayList()
352 *
353 * Each DisplayList that serves as a 3d root builds its list of composited children,
354 * which are flagged to not draw in the standard draw loop.
355 */
356void DisplayList::computeOrdering() {
357    ATRACE_CALL();
358    mProjectedNodes.clear();
359
360    // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
361    // transform properties are applied correctly to top level children
362    if (mDisplayListData == NULL) return;
363    for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
364        DrawDisplayListOp* childOp = mDisplayListData->children[i];
365        childOp->mDisplayList->computeOrderingImpl(childOp,
366                &mProjectedNodes, &mat4::identity());
367    }
368}
369
370void DisplayList::computeOrderingImpl(
371        DrawDisplayListOp* opState,
372        Vector<DrawDisplayListOp*>* compositedChildrenOfProjectionSurface,
373        const mat4* transformFromProjectionSurface) {
374    mProjectedNodes.clear();
375    if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return;
376
377    // TODO: should avoid this calculation in most cases
378    // TODO: just calculate single matrix, down to all leaf composited elements
379    Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
380    localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);
381
382    if (mProjectBackwards) {
383        // composited projectee, flag for out of order draw, save matrix, and store in proj surface
384        opState->mSkipInOrderDraw = true;
385        opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
386        compositedChildrenOfProjectionSurface->add(opState);
387    } else {
388        // standard in order draw
389        opState->mSkipInOrderDraw = false;
390    }
391
392    if (mDisplayListData->children.size() > 0) {
393        const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
394        bool haveAppliedPropertiesToProjection = false;
395        for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
396            DrawDisplayListOp* childOp = mDisplayListData->children[i];
397            DisplayList* child = childOp->mDisplayList;
398
399            Vector<DrawDisplayListOp*>* projectionChildren = NULL;
400            const mat4* projectionTransform = NULL;
401            if (isProjectionReceiver && !child->mProjectBackwards) {
402                // if receiving projections, collect projecting descendent
403
404                // Note that if a direct descendent is projecting backwards, we pass it's
405                // grandparent projection collection, since it shouldn't project onto it's
406                // parent, where it will already be drawing.
407                projectionChildren = &mProjectedNodes;
408                projectionTransform = &mat4::identity();
409            } else {
410                if (!haveAppliedPropertiesToProjection) {
411                    applyViewPropertyTransforms(localTransformFromProjectionSurface);
412                    haveAppliedPropertiesToProjection = true;
413                }
414                projectionChildren = compositedChildrenOfProjectionSurface;
415                projectionTransform = &localTransformFromProjectionSurface;
416            }
417            child->computeOrderingImpl(childOp, projectionChildren, projectionTransform);
418        }
419    }
420
421}
422
423class DeferOperationHandler {
424public:
425    DeferOperationHandler(DeferStateStruct& deferStruct, int level)
426        : mDeferStruct(deferStruct), mLevel(level) {}
427    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
428        operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
429    }
430    inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
431
432private:
433    DeferStateStruct& mDeferStruct;
434    const int mLevel;
435};
436
437void DisplayList::defer(DeferStateStruct& deferStruct, const int level) {
438    DeferOperationHandler handler(deferStruct, level);
439    iterate<DeferOperationHandler>(deferStruct.mRenderer, handler, level);
440}
441
442class ReplayOperationHandler {
443public:
444    ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
445        : mReplayStruct(replayStruct), mLevel(level) {}
446    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
447#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
448        mReplayStruct.mRenderer.eventMark(operation->name());
449#endif
450        operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
451    }
452    inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
453
454private:
455    ReplayStateStruct& mReplayStruct;
456    const int mLevel;
457};
458
459void DisplayList::replay(ReplayStateStruct& replayStruct, const int level) {
460    ReplayOperationHandler handler(replayStruct, level);
461
462    replayStruct.mRenderer.startMark(mName.string());
463    iterate<ReplayOperationHandler>(replayStruct.mRenderer, handler, level);
464    replayStruct.mRenderer.endMark();
465
466    DISPLAY_LIST_LOGD("%*sDone (%p, %s), returning %d", level * 2, "", this, mName.string(),
467            replayStruct.mDrawGlStatus);
468}
469
470void DisplayList::buildZSortedChildList(Vector<ZDrawDisplayListOpPair>& zTranslatedNodes) {
471    if (mDisplayListData == NULL || mDisplayListData->children.size() == 0) return;
472
473    for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
474        DrawDisplayListOp* childOp = mDisplayListData->children[i];
475        DisplayList* child = childOp->mDisplayList;
476        float childZ = child->mTranslationZ;
477
478        if (childZ != 0.0f) {
479            zTranslatedNodes.add(ZDrawDisplayListOpPair(childZ, childOp));
480            childOp->mSkipInOrderDraw = true;
481        } else if (!child->mProjectBackwards) {
482            // regular, in order drawing DisplayList
483            childOp->mSkipInOrderDraw = false;
484        }
485    }
486
487    // Z sort 3d children (stable-ness makes z compare fall back to standard drawing order)
488    std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end());
489}
490
491#define SHADOW_DELTA 0.1f
492
493template <class T>
494void DisplayList::iterate3dChildren(const Vector<ZDrawDisplayListOpPair>& zTranslatedNodes,
495        ChildrenSelectMode mode, OpenGLRenderer& renderer, T& handler) {
496    const int size = zTranslatedNodes.size();
497    if (size == 0
498            || (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f)
499            || (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) {
500        // no 3d children to draw
501        return;
502    }
503
504    int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
505    LinearAllocator& alloc = handler.allocator();
506    ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, mWidth, mHeight,
507            SkRegion::kIntersect_Op); // clip to 3d root bounds
508    handler(clipOp, PROPERTY_SAVECOUNT, mClipToBounds);
509
510    /**
511     * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
512     * with very similar Z heights to draw together.
513     *
514     * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
515     * underneath both, and neither's shadow is drawn on top of the other.
516     */
517    const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
518    size_t drawIndex, shadowIndex, endIndex;
519    if (mode == kNegativeZChildren) {
520        drawIndex = 0;
521        endIndex = nonNegativeIndex;
522        shadowIndex = endIndex; // draw no shadows
523    } else {
524        drawIndex = nonNegativeIndex;
525        endIndex = size;
526        shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
527    }
528    float lastCasterZ = 0.0f;
529    while (shadowIndex < endIndex || drawIndex < endIndex) {
530        if (shadowIndex < endIndex) {
531            DrawDisplayListOp* casterOp = zTranslatedNodes[shadowIndex].value;
532            DisplayList* caster = casterOp->mDisplayList;
533            const float casterZ = zTranslatedNodes[shadowIndex].key;
534            // attempt to render the shadow if the caster about to be drawn is its caster,
535            // OR if its caster's Z value is similar to the previous potential caster
536            if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
537
538                if (caster->mCastsShadow && caster->mAlpha > 0.0f) {
539                    mat4 shadowMatrixXY(casterOp->mTransformFromParent);
540                    caster->applyViewPropertyTransforms(shadowMatrixXY);
541
542                    // Z matrix needs actual 3d transformation, so mapped z values will be correct
543                    mat4 shadowMatrixZ(casterOp->mTransformFromParent);
544                    caster->applyViewPropertyTransforms(shadowMatrixZ, true);
545
546                    DisplayListOp* shadowOp  = new (alloc) DrawShadowOp(
547                            shadowMatrixXY, shadowMatrixZ,
548                            caster->mAlpha, &(caster->mOutline), caster->mWidth, caster->mHeight);
549                    handler(shadowOp, PROPERTY_SAVECOUNT, mClipToBounds);
550                }
551
552                lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
553                shadowIndex++;
554                continue;
555            }
556        }
557
558        // only the actual child DL draw needs to be in save/restore,
559        // since it modifies the renderer's matrix
560        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
561
562        DrawDisplayListOp* childOp = zTranslatedNodes[drawIndex].value;
563        DisplayList* child = childOp->mDisplayList;
564
565        renderer.concatMatrix(childOp->mTransformFromParent);
566        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
567        handler(childOp, renderer.getSaveCount() - 1, mClipToBounds);
568        childOp->mSkipInOrderDraw = true;
569
570        renderer.restoreToCount(restoreTo);
571        drawIndex++;
572    }
573    handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, mClipToBounds);
574}
575
576template <class T>
577void DisplayList::iterateProjectedChildren(OpenGLRenderer& renderer, T& handler, const int level) {
578    int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
579    LinearAllocator& alloc = handler.allocator();
580    ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, mWidth, mHeight,
581            SkRegion::kReplace_Op); // clip to projection surface root bounds
582    handler(clipOp, PROPERTY_SAVECOUNT, mClipToBounds);
583
584    for (size_t i = 0; i < mProjectedNodes.size(); i++) {
585        DrawDisplayListOp* childOp = mProjectedNodes[i];
586
587        // matrix save, concat, and restore can be done safely without allocating operations
588        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
589        renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
590        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
591        handler(childOp, renderer.getSaveCount() - 1, mClipToBounds);
592        childOp->mSkipInOrderDraw = true;
593        renderer.restoreToCount(restoreTo);
594    }
595    handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, mClipToBounds);
596}
597
598/**
599 * This function serves both defer and replay modes, and will organize the displayList's component
600 * operations for a single frame:
601 *
602 * Every 'simple' state operation that affects just the matrix and alpha (or other factors of
603 * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
604 * defer logic) and operations in displayListOps are issued through the 'handler' which handles the
605 * defer vs replay logic, per operation
606 */
607template <class T>
608void DisplayList::iterate(OpenGLRenderer& renderer, T& handler, const int level) {
609    if (CC_UNLIKELY(mDestroyed)) { // temporary debug logging
610        ALOGW("Error: %s is drawing after destruction", getName());
611        CRASH();
612    }
613    if (mDisplayListData->isEmpty() || mAlpha <= 0) {
614        DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, mName.string());
615        return;
616    }
617
618#if DEBUG_DISPLAY_LIST
619    Rect* clipRect = renderer.getClipRect();
620    DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), clipRect: %.0f, %.0f, %.0f, %.0f",
621            level * 2, "", this, mName.string(), clipRect->left, clipRect->top,
622            clipRect->right, clipRect->bottom);
623#endif
624
625    LinearAllocator& alloc = handler.allocator();
626    int restoreTo = renderer.getSaveCount();
627    handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
628            PROPERTY_SAVECOUNT, mClipToBounds);
629
630    DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
631            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);
632
633    setViewProperties<T>(renderer, handler, level + 1);
634
635    bool quickRejected = mClipToBounds && renderer.quickRejectConservative(0, 0, mWidth, mHeight);
636    if (!quickRejected) {
637        Vector<ZDrawDisplayListOpPair> zTranslatedNodes;
638        buildZSortedChildList(zTranslatedNodes);
639
640        // for 3d root, draw children with negative z values
641        iterate3dChildren(zTranslatedNodes, kNegativeZChildren, renderer, handler);
642
643        DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
644        const int saveCountOffset = renderer.getSaveCount() - 1;
645        const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
646        for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
647            DisplayListOp *op = mDisplayListData->displayListOps[i];
648
649#if DEBUG_DISPLAY_LIST
650            op->output(level + 1);
651#endif
652
653            logBuffer.writeCommand(level, op->name());
654            handler(op, saveCountOffset, mClipToBounds);
655
656            if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) {
657                iterateProjectedChildren(renderer, handler, level);
658            }
659        }
660
661        // for 3d root, draw children with positive z values
662        iterate3dChildren(zTranslatedNodes, kPositiveZChildren, renderer, handler);
663    }
664
665    DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
666    handler(new (alloc) RestoreToCountOp(restoreTo),
667            PROPERTY_SAVECOUNT, mClipToBounds);
668    renderer.setOverrideLayerAlpha(1.0f);
669}
670
671void DisplayListData::cleanupResources() {
672    Caches& caches = Caches::getInstance();
673    caches.unregisterFunctors(functorCount);
674    caches.resourceCache.lock();
675
676    for (size_t i = 0; i < bitmapResources.size(); i++) {
677        caches.resourceCache.decrementRefcountLocked(bitmapResources.itemAt(i));
678    }
679
680    for (size_t i = 0; i < ownedBitmapResources.size(); i++) {
681        const SkBitmap* bitmap = ownedBitmapResources.itemAt(i);
682        caches.resourceCache.decrementRefcountLocked(bitmap);
683        caches.resourceCache.destructorLocked(bitmap);
684    }
685
686    for (size_t i = 0; i < patchResources.size(); i++) {
687        caches.resourceCache.decrementRefcountLocked(patchResources.itemAt(i));
688    }
689
690    for (size_t i = 0; i < shaders.size(); i++) {
691        caches.resourceCache.decrementRefcountLocked(shaders.itemAt(i));
692        caches.resourceCache.destructorLocked(shaders.itemAt(i));
693    }
694
695    for (size_t i = 0; i < sourcePaths.size(); i++) {
696        caches.resourceCache.decrementRefcountLocked(sourcePaths.itemAt(i));
697    }
698
699    for (size_t i = 0; i < layers.size(); i++) {
700        caches.resourceCache.decrementRefcountLocked(layers.itemAt(i));
701    }
702
703    caches.resourceCache.unlock();
704
705    for (size_t i = 0; i < paints.size(); i++) {
706        delete paints.itemAt(i);
707    }
708
709    for (size_t i = 0; i < regions.size(); i++) {
710        delete regions.itemAt(i);
711    }
712
713    for (size_t i = 0; i < paths.size(); i++) {
714        delete paths.itemAt(i);
715    }
716
717    for (size_t i = 0; i < matrices.size(); i++) {
718        delete matrices.itemAt(i);
719    }
720
721    bitmapResources.clear();
722    ownedBitmapResources.clear();
723    patchResources.clear();
724    shaders.clear();
725    sourcePaths.clear();
726    paints.clear();
727    regions.clear();
728    paths.clear();
729    matrices.clear();
730    layers.clear();
731}
732
733}; // namespace uirenderer
734}; // namespace android
735