DisplayList.cpp revision e361ad7ab15fcf4919a56a6293689d968ee8dcff
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_VIEW
18
19#include <SkCanvas.h>
20#include <algorithm>
21
22#include <utils/Trace.h>
23
24#include "Debug.h"
25#include "DisplayList.h"
26#include "DisplayListOp.h"
27#include "DisplayListLogBuffer.h"
28
29namespace android {
30namespace uirenderer {
31
32void DisplayList::outputLogBuffer(int fd) {
33    DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
34    if (logBuffer.isEmpty()) {
35        return;
36    }
37
38    FILE *file = fdopen(fd, "a");
39
40    fprintf(file, "\nRecent DisplayList operations\n");
41    logBuffer.outputCommands(file);
42
43    String8 cachesLog;
44    Caches::getInstance().dumpMemoryUsage(cachesLog);
45    fprintf(file, "\nCaches:\n%s", cachesLog.string());
46    fprintf(file, "\n");
47
48    fflush(file);
49}
50
51DisplayList::DisplayList() :
52        mDisplayListData(0), mDestroyed(false), mTransformMatrix(NULL), mTransformCamera(NULL),
53        mTransformMatrix3D(NULL), mStaticMatrix(NULL), mAnimationMatrix(NULL) {
54
55    mLeft = 0;
56    mTop = 0;
57    mRight = 0;
58    mBottom = 0;
59    mClipToBounds = true;
60    mIsolatedZVolume = true;
61    mProjectBackwards = false;
62    mProjectionReceiver = false;
63    mOutline.rewind();
64    mClipToOutline = false;
65    mCastsShadow = false;
66    mUsesGlobalCamera = false;
67    mAlpha = 1;
68    mHasOverlappingRendering = true;
69    mTranslationX = 0;
70    mTranslationY = 0;
71    mTranslationZ = 0;
72    mRotation = 0;
73    mRotationX = 0;
74    mRotationY= 0;
75    mScaleX = 1;
76    mScaleY = 1;
77    mPivotX = 0;
78    mPivotY = 0;
79    mCameraDistance = 0;
80    mMatrixDirty = false;
81    mMatrixFlags = 0;
82    mPrevWidth = -1;
83    mPrevHeight = -1;
84    mWidth = 0;
85    mHeight = 0;
86    mPivotExplicitlySet = false;
87    mCaching = false;
88}
89
90DisplayList::~DisplayList() {
91    LOG_ALWAYS_FATAL_IF(mDestroyed, "Double destroyed DisplayList %p", this);
92
93    mDestroyed = true;
94    delete mDisplayListData;
95    delete mTransformMatrix;
96    delete mTransformCamera;
97    delete mTransformMatrix3D;
98    delete mStaticMatrix;
99    delete mAnimationMatrix;
100}
101
102void DisplayList::destroyDisplayListDeferred(DisplayList* displayList) {
103    if (displayList) {
104        DISPLAY_LIST_LOGD("Deferring display list destruction");
105        Caches::getInstance().deleteDisplayListDeferred(displayList);
106    }
107}
108
109void DisplayList::setData(DisplayListData* data) {
110    delete mDisplayListData;
111    mDisplayListData = data;
112    if (mDisplayListData) {
113        Caches::getInstance().registerFunctors(mDisplayListData->functorCount);
114    }
115}
116
117/**
118 * This function is a simplified version of replay(), where we simply retrieve and log the
119 * display list. This function should remain in sync with the replay() function.
120 */
121void DisplayList::output(uint32_t level) {
122    ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this,
123            mName.string(), isRenderable());
124    ALOGD("%*s%s %d", level * 2, "", "Save",
125            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
126
127    outputViewProperties(level);
128    int flags = DisplayListOp::kOpLogFlag_Recurse;
129    for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
130        mDisplayListData->displayListOps[i]->output(level, flags);
131    }
132
133    ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, mName.string());
134}
135
136float DisplayList::getPivotX() {
137    updateMatrix();
138    return mPivotX;
139}
140
141float DisplayList::getPivotY() {
142    updateMatrix();
143    return mPivotY;
144}
145
146void DisplayList::updateMatrix() {
147    if (mMatrixDirty) {
148        // NOTE: mTransformMatrix won't be up to date if a DisplayList goes from a complex transform
149        // to a pure translate. This is safe because the matrix isn't read in pure translate cases.
150        if (mMatrixFlags && mMatrixFlags != TRANSLATION) {
151            if (!mTransformMatrix) {
152                // only allocate a matrix if we have a complex transform
153                mTransformMatrix = new Matrix4();
154            }
155            if (!mPivotExplicitlySet) {
156                if (mWidth != mPrevWidth || mHeight != mPrevHeight) {
157                    mPrevWidth = mWidth;
158                    mPrevHeight = mHeight;
159                    mPivotX = mPrevWidth / 2.0f;
160                    mPivotY = mPrevHeight / 2.0f;
161                }
162            }
163
164            if ((mMatrixFlags & ROTATION_3D) == 0) {
165                mTransformMatrix->loadTranslate(
166                        mPivotX + mTranslationX,
167                        mPivotY + mTranslationY,
168                        0);
169                mTransformMatrix->rotate(mRotation, 0, 0, 1);
170                mTransformMatrix->scale(mScaleX, mScaleY, 1);
171                mTransformMatrix->translate(-mPivotX, -mPivotY);
172            } else {
173                if (!mTransformCamera) {
174                    mTransformCamera = new Sk3DView();
175                    mTransformMatrix3D = new SkMatrix();
176                }
177                SkMatrix transformMatrix;
178                transformMatrix.reset();
179                mTransformCamera->save();
180                transformMatrix.preScale(mScaleX, mScaleY, mPivotX, mPivotY);
181                mTransformCamera->rotateX(mRotationX);
182                mTransformCamera->rotateY(mRotationY);
183                mTransformCamera->rotateZ(-mRotation);
184                mTransformCamera->getMatrix(mTransformMatrix3D);
185                mTransformMatrix3D->preTranslate(-mPivotX, -mPivotY);
186                mTransformMatrix3D->postTranslate(mPivotX + mTranslationX,
187                        mPivotY + mTranslationY);
188                transformMatrix.postConcat(*mTransformMatrix3D);
189                mTransformCamera->restore();
190
191                mTransformMatrix->load(transformMatrix);
192            }
193        }
194        mMatrixDirty = false;
195    }
196}
197
198void DisplayList::outputViewProperties(const int level) {
199    updateMatrix();
200    if (mLeft != 0 || mTop != 0) {
201        ALOGD("%*sTranslate (left, top) %d, %d", level * 2, "", mLeft, mTop);
202    }
203    if (mStaticMatrix) {
204        ALOGD("%*sConcatMatrix (static) %p: " SK_MATRIX_STRING,
205                level * 2, "", mStaticMatrix, SK_MATRIX_ARGS(mStaticMatrix));
206    }
207    if (mAnimationMatrix) {
208        ALOGD("%*sConcatMatrix (animation) %p: " SK_MATRIX_STRING,
209                level * 2, "", mAnimationMatrix, SK_MATRIX_ARGS(mAnimationMatrix));
210    }
211    if (mMatrixFlags != 0) {
212        if (mMatrixFlags == TRANSLATION) {
213            ALOGD("%*sTranslate %.2f, %.2f, %.2f",
214                    level * 2, "", mTranslationX, mTranslationY, mTranslationZ);
215        } else {
216            ALOGD("%*sConcatMatrix %p: " MATRIX_4_STRING,
217                    level * 2, "", mTransformMatrix, MATRIX_4_ARGS(mTransformMatrix));
218        }
219    }
220
221    bool clipToBoundsNeeded = mCaching ? false : mClipToBounds;
222    if (mAlpha < 1) {
223        if (mCaching) {
224            ALOGD("%*sSetOverrideLayerAlpha %.2f", level * 2, "", mAlpha);
225        } else if (!mHasOverlappingRendering) {
226            ALOGD("%*sScaleAlpha %.2f", level * 2, "", mAlpha);
227        } else {
228            int flags = SkCanvas::kHasAlphaLayer_SaveFlag;
229            if (clipToBoundsNeeded) {
230                flags |= SkCanvas::kClipToLayer_SaveFlag;
231                clipToBoundsNeeded = false; // clipping done by save layer
232            }
233            ALOGD("%*sSaveLayerAlpha %.2f, %.2f, %.2f, %.2f, %d, 0x%x", level * 2, "",
234                    (float) 0, (float) 0, (float) mRight - mLeft, (float) mBottom - mTop,
235                    (int)(mAlpha * 255), flags);
236        }
237    }
238    if (clipToBoundsNeeded) {
239        ALOGD("%*sClipRect %.2f, %.2f, %.2f, %.2f", level * 2, "", 0.0f, 0.0f,
240                (float) mRight - mLeft, (float) mBottom - mTop);
241    }
242}
243
244/*
245 * For property operations, we pass a savecount of 0, since the operations aren't part of the
246 * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
247 * base saveCount (i.e., how RestoreToCount uses saveCount + mCount)
248 */
249#define PROPERTY_SAVECOUNT 0
250
251template <class T>
252void DisplayList::setViewProperties(OpenGLRenderer& renderer, T& handler,
253        const int level) {
254#if DEBUG_DISPLAY_LIST
255    outputViewProperties(level);
256#endif
257    updateMatrix();
258    if (mLeft != 0 || mTop != 0) {
259        renderer.translate(mLeft, mTop);
260    }
261    if (mStaticMatrix) {
262        renderer.concatMatrix(mStaticMatrix);
263    } else if (mAnimationMatrix) {
264        renderer.concatMatrix(mAnimationMatrix);
265    }
266    if (mMatrixFlags != 0) {
267        if (mMatrixFlags == TRANSLATION) {
268            renderer.translate(mTranslationX, mTranslationY);
269        } else {
270            renderer.concatMatrix(*mTransformMatrix);
271        }
272    }
273    bool clipToBoundsNeeded = mCaching ? false : mClipToBounds;
274    if (mAlpha < 1) {
275        if (mCaching) {
276            renderer.setOverrideLayerAlpha(mAlpha);
277        } else if (!mHasOverlappingRendering) {
278            renderer.scaleAlpha(mAlpha);
279        } else {
280            // TODO: should be able to store the size of a DL at record time and not
281            // have to pass it into this call. In fact, this information might be in the
282            // location/size info that we store with the new native transform data.
283            int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag;
284            if (clipToBoundsNeeded) {
285                saveFlags |= SkCanvas::kClipToLayer_SaveFlag;
286                clipToBoundsNeeded = false; // clipping done by saveLayer
287            }
288
289            SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
290                    0, 0, mRight - mLeft, mBottom - mTop, mAlpha * 255, saveFlags);
291            handler(op, PROPERTY_SAVECOUNT, mClipToBounds);
292        }
293    }
294    if (clipToBoundsNeeded) {
295        ClipRectOp* op = new (handler.allocator()) ClipRectOp(0, 0,
296                mRight - mLeft, mBottom - mTop, SkRegion::kIntersect_Op);
297        handler(op, PROPERTY_SAVECOUNT, mClipToBounds);
298    }
299    if (CC_UNLIKELY(mClipToOutline && !mOutline.isEmpty())) {
300        ClipPathOp* op = new (handler.allocator()) ClipPathOp(&mOutline, SkRegion::kIntersect_Op);
301        handler(op, PROPERTY_SAVECOUNT, mClipToBounds);
302    }
303}
304
305/**
306 * Apply property-based transformations to input matrix
307 */
308void DisplayList::applyViewPropertyTransforms(mat4& matrix) {
309    if (mLeft != 0 || mTop != 0) {
310        matrix.translate(mLeft, mTop);
311    }
312    if (mStaticMatrix) {
313        mat4 stat(*mStaticMatrix);
314        matrix.multiply(stat);
315    } else if (mAnimationMatrix) {
316        mat4 anim(*mAnimationMatrix);
317        matrix.multiply(anim);
318    }
319    if (mMatrixFlags != 0) {
320        updateMatrix();
321        if (mMatrixFlags == TRANSLATION) {
322            matrix.translate(mTranslationX, mTranslationY, mTranslationZ);
323        } else {
324            matrix.multiply(*mTransformMatrix);
325        }
326    }
327}
328
329/**
330 * Organizes the DisplayList hierarchy to prepare for Z-based draw order.
331 *
332 * This should be called before a call to defer() or drawDisplayList()
333 *
334 * Each DisplayList that serves as a 3d root builds its list of composited children,
335 * which are flagged to not draw in the standard draw loop.
336 */
337void DisplayList::computeOrdering() {
338    ATRACE_CALL();
339    m3dNodes.clear();
340    mProjectedNodes.clear();
341
342    // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
343    // transform properties are applied correctly to top level children
344    if (mDisplayListData == NULL) return;
345    for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
346        DrawDisplayListOp* childOp = mDisplayListData->children[i];
347        childOp->mDisplayList->computeOrderingImpl(childOp,
348                &m3dNodes, &mat4::identity(),
349                &mProjectedNodes, &mat4::identity());
350    }
351}
352
353void DisplayList::computeOrderingImpl(
354        DrawDisplayListOp* opState,
355        Vector<ZDrawDisplayListOpPair>* compositedChildrenOf3dRoot,
356        const mat4* transformFrom3dRoot,
357        Vector<DrawDisplayListOp*>* compositedChildrenOfProjectionSurface,
358        const mat4* transformFromProjectionSurface) {
359    m3dNodes.clear();
360    mProjectedNodes.clear();
361    if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return;
362
363    // TODO: should avoid this calculation in most cases
364    // TODO: just calculate single matrix, down to all leaf composited elements
365    Matrix4 localTransformFrom3dRoot(*transformFrom3dRoot);
366    localTransformFrom3dRoot.multiply(opState->mTransformFromParent);
367    Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
368    localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);
369
370    if (mTranslationZ != 0.0f) { // TODO: other signals for 3d compositing, such as custom matrix4
371        // composited 3d layer, flag for out of order draw and save matrix...
372        opState->mSkipInOrderDraw = true;
373        opState->mTransformFromCompositingAncestor.load(localTransformFrom3dRoot);
374
375        // ... and insert into current 3d root, keyed with pivot z for later sorting
376        Vector3 pivot(mPivotX, mPivotY, 0.0f);
377        mat4 totalTransform(localTransformFrom3dRoot);
378        applyViewPropertyTransforms(totalTransform);
379        totalTransform.mapPoint3d(pivot);
380        compositedChildrenOf3dRoot->add(ZDrawDisplayListOpPair(pivot.z, opState));
381    } else if (mProjectBackwards) {
382        // composited projectee, flag for out of order draw, save matrix, and store in proj surface
383        opState->mSkipInOrderDraw = true;
384        opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
385        compositedChildrenOfProjectionSurface->add(opState);
386    } else {
387        // standard in order draw
388        opState->mSkipInOrderDraw = false;
389    }
390
391    if (mDisplayListData->children.size() > 0) {
392        if (mIsolatedZVolume) {
393            // create a new 3d space for descendents by collecting them
394            compositedChildrenOf3dRoot = &m3dNodes;
395            transformFrom3dRoot = &mat4::identity();
396        } else {
397            applyViewPropertyTransforms(localTransformFrom3dRoot);
398            transformFrom3dRoot = &localTransformFrom3dRoot;
399        }
400
401        const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
402        bool haveAppliedPropertiesToProjection = false;
403        for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
404            DrawDisplayListOp* childOp = mDisplayListData->children[i];
405            DisplayList* child = childOp->mDisplayList;
406
407            Vector<DrawDisplayListOp*>* projectionChildren = NULL;
408            const mat4* projectionTransform = NULL;
409            if (isProjectionReceiver && !child->mProjectBackwards) {
410                // if receiving projections, collect projecting descendent
411
412                // Note that if a direct descendent is projecting backwards, we pass it's
413                // grandparent projection collection, since it shouldn't project onto it's
414                // parent, where it will already be drawing.
415                projectionChildren = &mProjectedNodes;
416                projectionTransform = &mat4::identity();
417            } else {
418                if (!haveAppliedPropertiesToProjection) {
419                    applyViewPropertyTransforms(localTransformFromProjectionSurface);
420                    haveAppliedPropertiesToProjection = true;
421                }
422                projectionChildren = compositedChildrenOfProjectionSurface;
423                projectionTransform = &localTransformFromProjectionSurface;
424            }
425            child->computeOrderingImpl(childOp,
426                    compositedChildrenOf3dRoot, transformFrom3dRoot,
427                    projectionChildren, projectionTransform);
428        }
429    }
430
431}
432
433class DeferOperationHandler {
434public:
435    DeferOperationHandler(DeferStateStruct& deferStruct, int level)
436        : mDeferStruct(deferStruct), mLevel(level) {}
437    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
438        operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
439    }
440    inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
441
442private:
443    DeferStateStruct& mDeferStruct;
444    const int mLevel;
445};
446
447void DisplayList::defer(DeferStateStruct& deferStruct, const int level) {
448    DeferOperationHandler handler(deferStruct, level);
449    iterate<DeferOperationHandler>(deferStruct.mRenderer, handler, level);
450}
451
452class ReplayOperationHandler {
453public:
454    ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
455        : mReplayStruct(replayStruct), mLevel(level) {}
456    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
457#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
458        mReplayStruct.mRenderer.eventMark(operation->name());
459#endif
460        operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
461    }
462    inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
463
464private:
465    ReplayStateStruct& mReplayStruct;
466    const int mLevel;
467};
468
469void DisplayList::replay(ReplayStateStruct& replayStruct, const int level) {
470    ReplayOperationHandler handler(replayStruct, level);
471
472    replayStruct.mRenderer.startMark(mName.string());
473    iterate<ReplayOperationHandler>(replayStruct.mRenderer, handler, level);
474    replayStruct.mRenderer.endMark();
475
476    DISPLAY_LIST_LOGD("%*sDone (%p, %s), returning %d", level * 2, "", this, mName.string(),
477            replayStruct.mDrawGlStatus);
478}
479
480#define SHADOW_DELTA 0.1f
481
482template <class T>
483void DisplayList::iterate3dChildren(ChildrenSelectMode mode, OpenGLRenderer& renderer,
484        T& handler, const int level) {
485    if (m3dNodes.size() == 0 ||
486            (mode == kNegativeZChildren && m3dNodes[0].key > 0.0f) ||
487            (mode == kPositiveZChildren && m3dNodes[m3dNodes.size() - 1].key < 0.0f)) {
488        // no 3d children to draw
489        return;
490    }
491
492    int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
493    LinearAllocator& alloc = handler.allocator();
494    ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, mWidth, mHeight,
495            SkRegion::kIntersect_Op); // clip to 3d root bounds
496    handler(clipOp, PROPERTY_SAVECOUNT, mClipToBounds);
497
498    /**
499     * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
500     * with very similar Z heights to draw together.
501     *
502     * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
503     * underneath both, and neither's shadow is drawn on top of the other.
504     */
505    const size_t nonNegativeIndex = findNonNegativeIndex(m3dNodes);
506    size_t drawIndex, shadowIndex, endIndex;
507    if (mode == kNegativeZChildren) {
508        drawIndex = 0;
509        endIndex = nonNegativeIndex;
510        shadowIndex = endIndex; // draw no shadows
511    } else {
512        drawIndex = nonNegativeIndex;
513        endIndex = m3dNodes.size();
514        shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
515    }
516    float lastCasterZ = 0.0f;
517    while (shadowIndex < endIndex || drawIndex < endIndex) {
518        if (shadowIndex < endIndex) {
519            DrawDisplayListOp* casterOp = m3dNodes[shadowIndex].value;
520            DisplayList* caster = casterOp->mDisplayList;
521            const float casterZ = m3dNodes[shadowIndex].key;
522            // attempt to render the shadow if the caster about to be drawn is its caster,
523            // OR if its caster's Z value is similar to the previous potential caster
524            if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
525
526                if (caster->mCastsShadow && caster->mAlpha > 0.0f) {
527                    mat4 shadowMatrix(casterOp->mTransformFromCompositingAncestor);
528                    caster->applyViewPropertyTransforms(shadowMatrix);
529
530                    DisplayListOp* shadowOp  = new (alloc) DrawShadowOp(shadowMatrix,
531                            caster->mAlpha, &(caster->mOutline), caster->mWidth, caster->mHeight);
532                    handler(shadowOp, PROPERTY_SAVECOUNT, mClipToBounds);
533                }
534
535                lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
536                shadowIndex++;
537                continue;
538            }
539        }
540
541        // only the actual child DL draw needs to be in save/restore,
542        // since it modifies the renderer's matrix
543        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
544
545        DrawDisplayListOp* childOp = m3dNodes[drawIndex].value;
546        DisplayList* child = childOp->mDisplayList;
547
548        renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
549        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
550        handler(childOp, renderer.getSaveCount() - 1, mClipToBounds);
551        childOp->mSkipInOrderDraw = true;
552
553        renderer.restoreToCount(restoreTo);
554        drawIndex++;
555    }
556    handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, mClipToBounds);
557}
558
559template <class T>
560void DisplayList::iterateProjectedChildren(OpenGLRenderer& renderer, T& handler, const int level) {
561    int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
562    LinearAllocator& alloc = handler.allocator();
563    ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, mWidth, mHeight,
564            SkRegion::kReplace_Op); // clip to projection surface root bounds
565    handler(clipOp, PROPERTY_SAVECOUNT, mClipToBounds);
566
567    for (size_t i = 0; i < mProjectedNodes.size(); i++) {
568        DrawDisplayListOp* childOp = mProjectedNodes[i];
569
570        // matrix save, concat, and restore can be done safely without allocating operations
571        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
572        renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
573        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
574        handler(childOp, renderer.getSaveCount() - 1, mClipToBounds);
575        childOp->mSkipInOrderDraw = true;
576        renderer.restoreToCount(restoreTo);
577    }
578    handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, mClipToBounds);
579}
580
581/**
582 * This function serves both defer and replay modes, and will organize the displayList's component
583 * operations for a single frame:
584 *
585 * Every 'simple' state operation that affects just the matrix and alpha (or other factors of
586 * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
587 * defer logic) and operations in displayListOps are issued through the 'handler' which handles the
588 * defer vs replay logic, per operation
589 */
590template <class T>
591void DisplayList::iterate(OpenGLRenderer& renderer, T& handler, const int level) {
592    if (CC_UNLIKELY(mDestroyed)) { // temporary debug logging
593        ALOGW("Error: %s is drawing after destruction", getName());
594        CRASH();
595    }
596    if (mDisplayListData->isEmpty() || mAlpha <= 0) {
597        DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, mName.string());
598        return;
599    }
600
601#if DEBUG_DISPLAY_LIST
602    Rect* clipRect = renderer.getClipRect();
603    DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), clipRect: %.0f, %.0f, %.0f, %.0f",
604            level * 2, "", this, mName.string(), clipRect->left, clipRect->top,
605            clipRect->right, clipRect->bottom);
606#endif
607
608    LinearAllocator& alloc = handler.allocator();
609    int restoreTo = renderer.getSaveCount();
610    handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
611            PROPERTY_SAVECOUNT, mClipToBounds);
612
613    DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
614            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);
615
616    setViewProperties<T>(renderer, handler, level + 1);
617
618    bool quickRejected = mClipToBounds && renderer.quickRejectConservative(0, 0, mWidth, mHeight);
619    if (!quickRejected) {
620        // Z sort 3d children (stable-ness makes z compare fall back to standard drawing order)
621        std::stable_sort(m3dNodes.begin(), m3dNodes.end());
622
623        // for 3d root, draw children with negative z values
624        iterate3dChildren(kNegativeZChildren, renderer, handler, level);
625
626        DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
627        const int saveCountOffset = renderer.getSaveCount() - 1;
628        const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
629        for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
630            DisplayListOp *op = mDisplayListData->displayListOps[i];
631
632#if DEBUG_DISPLAY_LIST
633            op->output(level + 1);
634#endif
635
636            logBuffer.writeCommand(level, op->name());
637            handler(op, saveCountOffset, mClipToBounds);
638
639            if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) {
640                iterateProjectedChildren(renderer, handler, level);
641            }
642        }
643
644        // for 3d root, draw children with positive z values
645        iterate3dChildren(kPositiveZChildren, renderer, handler, level);
646    }
647
648    DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
649    handler(new (alloc) RestoreToCountOp(restoreTo),
650            PROPERTY_SAVECOUNT, mClipToBounds);
651    renderer.setOverrideLayerAlpha(1.0f);
652}
653
654void DisplayListData::cleanupResources() {
655    Caches& caches = Caches::getInstance();
656    caches.unregisterFunctors(functorCount);
657    caches.resourceCache.lock();
658
659    for (size_t i = 0; i < bitmapResources.size(); i++) {
660        caches.resourceCache.decrementRefcountLocked(bitmapResources.itemAt(i));
661    }
662
663    for (size_t i = 0; i < ownedBitmapResources.size(); i++) {
664        const SkBitmap* bitmap = ownedBitmapResources.itemAt(i);
665        caches.resourceCache.decrementRefcountLocked(bitmap);
666        caches.resourceCache.destructorLocked(bitmap);
667    }
668
669    for (size_t i = 0; i < patchResources.size(); i++) {
670        caches.resourceCache.decrementRefcountLocked(patchResources.itemAt(i));
671    }
672
673    for (size_t i = 0; i < shaders.size(); i++) {
674        caches.resourceCache.decrementRefcountLocked(shaders.itemAt(i));
675        caches.resourceCache.destructorLocked(shaders.itemAt(i));
676    }
677
678    for (size_t i = 0; i < sourcePaths.size(); i++) {
679        caches.resourceCache.decrementRefcountLocked(sourcePaths.itemAt(i));
680    }
681
682    for (size_t i = 0; i < layers.size(); i++) {
683        caches.resourceCache.decrementRefcountLocked(layers.itemAt(i));
684    }
685
686    caches.resourceCache.unlock();
687
688    for (size_t i = 0; i < paints.size(); i++) {
689        delete paints.itemAt(i);
690    }
691
692    for (size_t i = 0; i < regions.size(); i++) {
693        delete regions.itemAt(i);
694    }
695
696    for (size_t i = 0; i < paths.size(); i++) {
697        delete paths.itemAt(i);
698    }
699
700    for (size_t i = 0; i < matrices.size(); i++) {
701        delete matrices.itemAt(i);
702    }
703
704    bitmapResources.clear();
705    ownedBitmapResources.clear();
706    patchResources.clear();
707    shaders.clear();
708    sourcePaths.clear();
709    paints.clear();
710    regions.clear();
711    paths.clear();
712    matrices.clear();
713    layers.clear();
714}
715
716}; // namespace uirenderer
717}; // namespace android
718