RenderNode.cpp revision 1e19674107e1aa2224c2b8c7d12bfa057efe80ea
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_VIEW
18#define LOG_TAG "OpenGLRenderer"
19
20#include "RenderNode.h"
21
22#include <algorithm>
23#include <string>
24
25#include <SkCanvas.h>
26#include <algorithm>
27
28#include <utils/Trace.h>
29
30#include "DamageAccumulator.h"
31#include "Debug.h"
32#include "DisplayListOp.h"
33#include "DisplayListLogBuffer.h"
34#include "LayerRenderer.h"
35#include "OpenGLRenderer.h"
36#include "utils/MathUtils.h"
37#include "renderthread/CanvasContext.h"
38
39namespace android {
40namespace uirenderer {
41
42void RenderNode::outputLogBuffer(int fd) {
43    DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
44    if (logBuffer.isEmpty()) {
45        return;
46    }
47
48    FILE *file = fdopen(fd, "a");
49
50    fprintf(file, "\nRecent DisplayList operations\n");
51    logBuffer.outputCommands(file);
52
53    String8 cachesLog;
54    Caches::getInstance().dumpMemoryUsage(cachesLog);
55    fprintf(file, "\nCaches:\n%s", cachesLog.string());
56    fprintf(file, "\n");
57
58    fflush(file);
59}
60
61void RenderNode::debugDumpLayers(const char* prefix) {
62    if (mLayer) {
63        ALOGD("%sNode %p (%s) has layer %p (fbo = %u, wasBuildLayered = %s)",
64                prefix, this, getName(), mLayer, mLayer->getFbo(),
65                mLayer->wasBuildLayered ? "true" : "false");
66    }
67    if (mDisplayListData) {
68        for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
69            mDisplayListData->children()[i]->mRenderNode->debugDumpLayers(prefix);
70        }
71    }
72}
73
74RenderNode::RenderNode()
75        : mDirtyPropertyFields(0)
76        , mNeedsDisplayListDataSync(false)
77        , mDisplayListData(0)
78        , mStagingDisplayListData(0)
79        , mAnimatorManager(*this)
80        , mLayer(0)
81        , mParentCount(0) {
82}
83
84RenderNode::~RenderNode() {
85    deleteDisplayListData();
86    delete mStagingDisplayListData;
87    LayerRenderer::destroyLayerDeferred(mLayer);
88}
89
90void RenderNode::setStagingDisplayList(DisplayListData* data) {
91    mNeedsDisplayListDataSync = true;
92    delete mStagingDisplayListData;
93    mStagingDisplayListData = data;
94    if (mStagingDisplayListData) {
95        Caches::getInstance().registerFunctors(mStagingDisplayListData->functors.size());
96    }
97}
98
99/**
100 * This function is a simplified version of replay(), where we simply retrieve and log the
101 * display list. This function should remain in sync with the replay() function.
102 */
103void RenderNode::output(uint32_t level) {
104    ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this,
105            getName(), isRenderable());
106    ALOGD("%*s%s %d", level * 2, "", "Save",
107            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
108
109    properties().debugOutputProperties(level);
110    int flags = DisplayListOp::kOpLogFlag_Recurse;
111    if (mDisplayListData) {
112        // TODO: consider printing the chunk boundaries here
113        for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
114            mDisplayListData->displayListOps[i]->output(level, flags);
115        }
116    }
117
118    ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName());
119}
120
121int RenderNode::getDebugSize() {
122    int size = sizeof(RenderNode);
123    if (mStagingDisplayListData) {
124        size += mStagingDisplayListData->getUsedSize();
125    }
126    if (mDisplayListData && mDisplayListData != mStagingDisplayListData) {
127        size += mDisplayListData->getUsedSize();
128    }
129    return size;
130}
131
132void RenderNode::prepareTree(TreeInfo& info) {
133    ATRACE_CALL();
134    LOG_ALWAYS_FATAL_IF(!info.damageAccumulator, "DamageAccumulator missing");
135
136    prepareTreeImpl(info);
137}
138
139void RenderNode::addAnimator(const sp<BaseRenderNodeAnimator>& animator) {
140    mAnimatorManager.addAnimator(animator);
141}
142
143void RenderNode::damageSelf(TreeInfo& info) {
144    if (isRenderable()) {
145        if (properties().getClipDamageToBounds()) {
146            info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight());
147        } else {
148            // Hope this is big enough?
149            // TODO: Get this from the display list ops or something
150            info.damageAccumulator->dirty(INT_MIN, INT_MIN, INT_MAX, INT_MAX);
151        }
152    }
153}
154
155void RenderNode::prepareLayer(TreeInfo& info, uint32_t dirtyMask) {
156    LayerType layerType = properties().layerProperties().type();
157    if (CC_UNLIKELY(layerType == kLayerTypeRenderLayer)) {
158        // Damage applied so far needs to affect our parent, but does not require
159        // the layer to be updated. So we pop/push here to clear out the current
160        // damage and get a clean state for display list or children updates to
161        // affect, which will require the layer to be updated
162        info.damageAccumulator->popTransform();
163        info.damageAccumulator->pushTransform(this);
164        if (dirtyMask & DISPLAY_LIST) {
165            damageSelf(info);
166        }
167    }
168}
169
170void RenderNode::pushLayerUpdate(TreeInfo& info) {
171    LayerType layerType = properties().layerProperties().type();
172    // If we are not a layer OR we cannot be rendered (eg, view was detached)
173    // we need to destroy any Layers we may have had previously
174    if (CC_LIKELY(layerType != kLayerTypeRenderLayer) || CC_UNLIKELY(!isRenderable())) {
175        if (CC_UNLIKELY(mLayer)) {
176            LayerRenderer::destroyLayer(mLayer);
177            mLayer = NULL;
178        }
179        return;
180    }
181
182    bool transformUpdateNeeded = false;
183    if (!mLayer) {
184        mLayer = LayerRenderer::createRenderLayer(info.renderState, getWidth(), getHeight());
185        applyLayerPropertiesToLayer(info);
186        damageSelf(info);
187        transformUpdateNeeded = true;
188    } else if (mLayer->layer.getWidth() != getWidth() || mLayer->layer.getHeight() != getHeight()) {
189        if (!LayerRenderer::resizeLayer(mLayer, getWidth(), getHeight())) {
190            LayerRenderer::destroyLayer(mLayer);
191            mLayer = 0;
192        }
193        damageSelf(info);
194        transformUpdateNeeded = true;
195    }
196
197    SkRect dirty;
198    info.damageAccumulator->peekAtDirty(&dirty);
199
200    if (!mLayer) {
201        if (info.errorHandler) {
202            std::string msg = "Unable to create layer for ";
203            msg += getName();
204            info.errorHandler->onError(msg);
205        }
206        return;
207    }
208
209    if (transformUpdateNeeded) {
210        // update the transform in window of the layer to reset its origin wrt light source position
211        Matrix4 windowTransform;
212        info.damageAccumulator->computeCurrentTransform(&windowTransform);
213        mLayer->setWindowTransform(windowTransform);
214    }
215
216    if (dirty.intersect(0, 0, getWidth(), getHeight())) {
217        dirty.roundOut();
218        mLayer->updateDeferred(this, dirty.fLeft, dirty.fTop, dirty.fRight, dirty.fBottom);
219    }
220    // This is not inside the above if because we may have called
221    // updateDeferred on a previous prepare pass that didn't have a renderer
222    if (info.renderer && mLayer->deferredUpdateScheduled) {
223        info.renderer->pushLayerUpdate(mLayer);
224    }
225
226    if (CC_UNLIKELY(info.canvasContext)) {
227        // If canvasContext is not null that means there are prefetched layers
228        // that need to be accounted for. That might be us, so tell CanvasContext
229        // that this layer is in the tree and should not be destroyed.
230        info.canvasContext->markLayerInUse(this);
231    }
232}
233
234void RenderNode::prepareTreeImpl(TreeInfo& info) {
235    info.damageAccumulator->pushTransform(this);
236
237    if (info.mode == TreeInfo::MODE_FULL) {
238        pushStagingPropertiesChanges(info);
239    }
240    uint32_t animatorDirtyMask = 0;
241    if (CC_LIKELY(info.runAnimations)) {
242        animatorDirtyMask = mAnimatorManager.animate(info);
243    }
244    prepareLayer(info, animatorDirtyMask);
245    if (info.mode == TreeInfo::MODE_FULL) {
246        pushStagingDisplayListChanges(info);
247    }
248    prepareSubTree(info, mDisplayListData);
249    pushLayerUpdate(info);
250
251    info.damageAccumulator->popTransform();
252}
253
254void RenderNode::pushStagingPropertiesChanges(TreeInfo& info) {
255    // Push the animators first so that setupStartValueIfNecessary() is called
256    // before properties() is trampled by stagingProperties(), as they are
257    // required by some animators.
258    if (CC_LIKELY(info.runAnimations)) {
259        mAnimatorManager.pushStaging();
260    }
261    if (mDirtyPropertyFields) {
262        mDirtyPropertyFields = 0;
263        damageSelf(info);
264        info.damageAccumulator->popTransform();
265        mProperties = mStagingProperties;
266        applyLayerPropertiesToLayer(info);
267        // We could try to be clever and only re-damage if the matrix changed.
268        // However, we don't need to worry about that. The cost of over-damaging
269        // here is only going to be a single additional map rect of this node
270        // plus a rect join(). The parent's transform (and up) will only be
271        // performed once.
272        info.damageAccumulator->pushTransform(this);
273        damageSelf(info);
274    }
275}
276
277void RenderNode::applyLayerPropertiesToLayer(TreeInfo& info) {
278    if (CC_LIKELY(!mLayer)) return;
279
280    const LayerProperties& props = properties().layerProperties();
281    mLayer->setAlpha(props.alpha(), props.xferMode());
282    mLayer->setColorFilter(props.colorFilter());
283    mLayer->setBlend(props.needsBlending());
284}
285
286void RenderNode::pushStagingDisplayListChanges(TreeInfo& info) {
287    if (mNeedsDisplayListDataSync) {
288        mNeedsDisplayListDataSync = false;
289        // Make sure we inc first so that we don't fluctuate between 0 and 1,
290        // which would thrash the layer cache
291        if (mStagingDisplayListData) {
292            for (size_t i = 0; i < mStagingDisplayListData->children().size(); i++) {
293                mStagingDisplayListData->children()[i]->mRenderNode->incParentRefCount();
294            }
295        }
296        deleteDisplayListData();
297        mDisplayListData = mStagingDisplayListData;
298        mStagingDisplayListData = NULL;
299        if (mDisplayListData) {
300            for (size_t i = 0; i < mDisplayListData->functors.size(); i++) {
301                (*mDisplayListData->functors[i])(DrawGlInfo::kModeSync, NULL);
302            }
303        }
304        damageSelf(info);
305    }
306}
307
308void RenderNode::deleteDisplayListData() {
309    if (mDisplayListData) {
310        for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
311            mDisplayListData->children()[i]->mRenderNode->decParentRefCount();
312        }
313    }
314    delete mDisplayListData;
315    mDisplayListData = NULL;
316}
317
318void RenderNode::prepareSubTree(TreeInfo& info, DisplayListData* subtree) {
319    if (subtree) {
320        TextureCache& cache = Caches::getInstance().textureCache;
321        info.out.hasFunctors |= subtree->functors.size();
322        // TODO: Fix ownedBitmapResources to not require disabling prepareTextures
323        // and thus falling out of async drawing path.
324        if (subtree->ownedBitmapResources.size()) {
325            info.prepareTextures = false;
326        }
327        for (size_t i = 0; info.prepareTextures && i < subtree->bitmapResources.size(); i++) {
328            info.prepareTextures = cache.prefetchAndMarkInUse(subtree->bitmapResources[i]);
329        }
330        for (size_t i = 0; i < subtree->children().size(); i++) {
331            DrawRenderNodeOp* op = subtree->children()[i];
332            RenderNode* childNode = op->mRenderNode;
333            info.damageAccumulator->pushTransform(&op->mTransformFromParent);
334            childNode->prepareTreeImpl(info);
335            info.damageAccumulator->popTransform();
336        }
337    }
338}
339
340void RenderNode::destroyHardwareResources() {
341    if (mLayer) {
342        LayerRenderer::destroyLayer(mLayer);
343        mLayer = NULL;
344    }
345    if (mDisplayListData) {
346        for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
347            mDisplayListData->children()[i]->mRenderNode->destroyHardwareResources();
348        }
349        if (mNeedsDisplayListDataSync) {
350            // Next prepare tree we are going to push a new display list, so we can
351            // drop our current one now
352            deleteDisplayListData();
353        }
354    }
355}
356
357void RenderNode::decParentRefCount() {
358    LOG_ALWAYS_FATAL_IF(!mParentCount, "already 0!");
359    mParentCount--;
360    if (!mParentCount) {
361        // If a child of ours is being attached to our parent then this will incorrectly
362        // destroy its hardware resources. However, this situation is highly unlikely
363        // and the failure is "just" that the layer is re-created, so this should
364        // be safe enough
365        destroyHardwareResources();
366    }
367}
368
369/*
370 * For property operations, we pass a savecount of 0, since the operations aren't part of the
371 * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
372 * base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount())
373 */
374#define PROPERTY_SAVECOUNT 0
375
376template <class T>
377void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) {
378#if DEBUG_DISPLAY_LIST
379    properties().debugOutputProperties(handler.level() + 1);
380#endif
381    if (properties().getLeft() != 0 || properties().getTop() != 0) {
382        renderer.translate(properties().getLeft(), properties().getTop());
383    }
384    if (properties().getStaticMatrix()) {
385        renderer.concatMatrix(*properties().getStaticMatrix());
386    } else if (properties().getAnimationMatrix()) {
387        renderer.concatMatrix(*properties().getAnimationMatrix());
388    }
389    if (properties().hasTransformMatrix()) {
390        if (properties().isTransformTranslateOnly()) {
391            renderer.translate(properties().getTranslationX(), properties().getTranslationY());
392        } else {
393            renderer.concatMatrix(*properties().getTransformMatrix());
394        }
395    }
396    const bool isLayer = properties().layerProperties().type() != kLayerTypeNone;
397    int clipFlags = properties().getClippingFlags();
398    if (properties().getAlpha() < 1) {
399        if (isLayer) {
400            clipFlags &= ~CLIP_TO_BOUNDS; // bounds clipping done by layer
401
402            renderer.setOverrideLayerAlpha(properties().getAlpha());
403        } else if (!properties().getHasOverlappingRendering()) {
404            renderer.scaleAlpha(properties().getAlpha());
405        } else {
406            Rect layerBounds(0, 0, getWidth(), getHeight());
407            int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag;
408            if (clipFlags) {
409                saveFlags |= SkCanvas::kClipToLayer_SaveFlag;
410                properties().getClippingRectForFlags(clipFlags, &layerBounds);
411                clipFlags = 0; // all clipping done by saveLayer
412            }
413
414            SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
415                    layerBounds.left, layerBounds.top, layerBounds.right, layerBounds.bottom,
416                    properties().getAlpha() * 255, saveFlags);
417            handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
418        }
419    }
420    if (clipFlags) {
421        Rect clipRect;
422        properties().getClippingRectForFlags(clipFlags, &clipRect);
423        ClipRectOp* op = new (handler.allocator()) ClipRectOp(
424                clipRect.left, clipRect.top, clipRect.right, clipRect.bottom,
425                SkRegion::kIntersect_Op);
426        handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
427    }
428
429    // TODO: support nesting round rect clips
430    if (mProperties.getRevealClip().willClip()) {
431        Rect bounds;
432        mProperties.getRevealClip().getBounds(&bounds);
433        renderer.setClippingRoundRect(handler.allocator(), bounds, mProperties.getRevealClip().getRadius());
434    } else if (mProperties.getOutline().willClip()) {
435        renderer.setClippingOutline(handler.allocator(), &(mProperties.getOutline()));
436    }
437}
438
439/**
440 * Apply property-based transformations to input matrix
441 *
442 * If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
443 * matrix computation instead of the Skia 3x3 matrix + camera hackery.
444 */
445void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) const {
446    if (properties().getLeft() != 0 || properties().getTop() != 0) {
447        matrix.translate(properties().getLeft(), properties().getTop());
448    }
449    if (properties().getStaticMatrix()) {
450        mat4 stat(*properties().getStaticMatrix());
451        matrix.multiply(stat);
452    } else if (properties().getAnimationMatrix()) {
453        mat4 anim(*properties().getAnimationMatrix());
454        matrix.multiply(anim);
455    }
456
457    bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ());
458    if (properties().hasTransformMatrix() || applyTranslationZ) {
459        if (properties().isTransformTranslateOnly()) {
460            matrix.translate(properties().getTranslationX(), properties().getTranslationY(),
461                    true3dTransform ? properties().getZ() : 0.0f);
462        } else {
463            if (!true3dTransform) {
464                matrix.multiply(*properties().getTransformMatrix());
465            } else {
466                mat4 true3dMat;
467                true3dMat.loadTranslate(
468                        properties().getPivotX() + properties().getTranslationX(),
469                        properties().getPivotY() + properties().getTranslationY(),
470                        properties().getZ());
471                true3dMat.rotate(properties().getRotationX(), 1, 0, 0);
472                true3dMat.rotate(properties().getRotationY(), 0, 1, 0);
473                true3dMat.rotate(properties().getRotation(), 0, 0, 1);
474                true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1);
475                true3dMat.translate(-properties().getPivotX(), -properties().getPivotY());
476
477                matrix.multiply(true3dMat);
478            }
479        }
480    }
481}
482
483/**
484 * Organizes the DisplayList hierarchy to prepare for background projection reordering.
485 *
486 * This should be called before a call to defer() or drawDisplayList()
487 *
488 * Each DisplayList that serves as a 3d root builds its list of composited children,
489 * which are flagged to not draw in the standard draw loop.
490 */
491void RenderNode::computeOrdering() {
492    ATRACE_CALL();
493    mProjectedNodes.clear();
494
495    // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
496    // transform properties are applied correctly to top level children
497    if (mDisplayListData == NULL) return;
498    for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
499        DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
500        childOp->mRenderNode->computeOrderingImpl(childOp,
501                properties().getOutline().getPath(), &mProjectedNodes, &mat4::identity());
502    }
503}
504
505void RenderNode::computeOrderingImpl(
506        DrawRenderNodeOp* opState,
507        const SkPath* outlineOfProjectionSurface,
508        Vector<DrawRenderNodeOp*>* compositedChildrenOfProjectionSurface,
509        const mat4* transformFromProjectionSurface) {
510    mProjectedNodes.clear();
511    if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return;
512
513    // TODO: should avoid this calculation in most cases
514    // TODO: just calculate single matrix, down to all leaf composited elements
515    Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
516    localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);
517
518    if (properties().getProjectBackwards()) {
519        // composited projectee, flag for out of order draw, save matrix, and store in proj surface
520        opState->mSkipInOrderDraw = true;
521        opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
522        compositedChildrenOfProjectionSurface->add(opState);
523    } else {
524        // standard in order draw
525        opState->mSkipInOrderDraw = false;
526    }
527
528    if (mDisplayListData->children().size() > 0) {
529        const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
530        bool haveAppliedPropertiesToProjection = false;
531        for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
532            DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
533            RenderNode* child = childOp->mRenderNode;
534
535            const SkPath* projectionOutline = NULL;
536            Vector<DrawRenderNodeOp*>* projectionChildren = NULL;
537            const mat4* projectionTransform = NULL;
538            if (isProjectionReceiver && !child->properties().getProjectBackwards()) {
539                // if receiving projections, collect projecting descendent
540
541                // Note that if a direct descendent is projecting backwards, we pass it's
542                // grandparent projection collection, since it shouldn't project onto it's
543                // parent, where it will already be drawing.
544                projectionOutline = properties().getOutline().getPath();
545                projectionChildren = &mProjectedNodes;
546                projectionTransform = &mat4::identity();
547            } else {
548                if (!haveAppliedPropertiesToProjection) {
549                    applyViewPropertyTransforms(localTransformFromProjectionSurface);
550                    haveAppliedPropertiesToProjection = true;
551                }
552                projectionOutline = outlineOfProjectionSurface;
553                projectionChildren = compositedChildrenOfProjectionSurface;
554                projectionTransform = &localTransformFromProjectionSurface;
555            }
556            child->computeOrderingImpl(childOp,
557                    projectionOutline, projectionChildren, projectionTransform);
558        }
559    }
560}
561
562class DeferOperationHandler {
563public:
564    DeferOperationHandler(DeferStateStruct& deferStruct, int level)
565        : mDeferStruct(deferStruct), mLevel(level) {}
566    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
567        operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
568    }
569    inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
570    inline void startMark(const char* name) {} // do nothing
571    inline void endMark() {}
572    inline int level() { return mLevel; }
573    inline int replayFlags() { return mDeferStruct.mReplayFlags; }
574    inline SkPath* allocPathForFrame() { return mDeferStruct.allocPathForFrame(); }
575
576private:
577    DeferStateStruct& mDeferStruct;
578    const int mLevel;
579};
580
581void RenderNode::defer(DeferStateStruct& deferStruct, const int level) {
582    DeferOperationHandler handler(deferStruct, level);
583    issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler);
584}
585
586class ReplayOperationHandler {
587public:
588    ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
589        : mReplayStruct(replayStruct), mLevel(level) {}
590    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
591#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
592        mReplayStruct.mRenderer.eventMark(operation->name());
593#endif
594        operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
595    }
596    inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
597    inline void startMark(const char* name) {
598        mReplayStruct.mRenderer.startMark(name);
599    }
600    inline void endMark() {
601        mReplayStruct.mRenderer.endMark();
602    }
603    inline int level() { return mLevel; }
604    inline int replayFlags() { return mReplayStruct.mReplayFlags; }
605    inline SkPath* allocPathForFrame() { return mReplayStruct.allocPathForFrame(); }
606
607private:
608    ReplayStateStruct& mReplayStruct;
609    const int mLevel;
610};
611
612void RenderNode::replay(ReplayStateStruct& replayStruct, const int level) {
613    ReplayOperationHandler handler(replayStruct, level);
614    issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler);
615}
616
617void RenderNode::buildZSortedChildList(const DisplayListData::Chunk& chunk,
618        Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes) {
619    if (chunk.beginChildIndex == chunk.endChildIndex) return;
620
621    for (unsigned int i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) {
622        DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
623        RenderNode* child = childOp->mRenderNode;
624        float childZ = child->properties().getZ();
625
626        if (!MathUtils::isZero(childZ) && chunk.reorderChildren) {
627            zTranslatedNodes.add(ZDrawRenderNodeOpPair(childZ, childOp));
628            childOp->mSkipInOrderDraw = true;
629        } else if (!child->properties().getProjectBackwards()) {
630            // regular, in order drawing DisplayList
631            childOp->mSkipInOrderDraw = false;
632        }
633    }
634
635    // Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order)
636    std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end());
637}
638
639template <class T>
640void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) {
641    if (properties().getAlpha() <= 0.0f
642            || properties().getOutline().getAlpha() <= 0.0f
643            || !properties().getOutline().getPath()) {
644        // no shadow to draw
645        return;
646    }
647
648    mat4 shadowMatrixXY(transformFromParent);
649    applyViewPropertyTransforms(shadowMatrixXY);
650
651    // Z matrix needs actual 3d transformation, so mapped z values will be correct
652    mat4 shadowMatrixZ(transformFromParent);
653    applyViewPropertyTransforms(shadowMatrixZ, true);
654
655    const SkPath* casterOutlinePath = properties().getOutline().getPath();
656    const SkPath* revealClipPath = properties().getRevealClip().getPath();
657    if (revealClipPath && revealClipPath->isEmpty()) return;
658
659    float casterAlpha = properties().getAlpha() * properties().getOutline().getAlpha();
660
661    const SkPath* outlinePath = casterOutlinePath;
662    if (revealClipPath) {
663        // if we can't simply use the caster's path directly, create a temporary one
664        SkPath* frameAllocatedPath = handler.allocPathForFrame();
665
666        // intersect the outline with the convex reveal clip
667        Op(*casterOutlinePath, *revealClipPath, kIntersect_PathOp, frameAllocatedPath);
668        outlinePath = frameAllocatedPath;
669    }
670
671    DisplayListOp* shadowOp  = new (handler.allocator()) DrawShadowOp(
672            shadowMatrixXY, shadowMatrixZ, casterAlpha, outlinePath);
673    handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
674}
675
676#define SHADOW_DELTA 0.1f
677
678template <class T>
679void RenderNode::issueOperationsOf3dChildren(ChildrenSelectMode mode,
680        const Matrix4& initialTransform, const Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes,
681        OpenGLRenderer& renderer, T& handler) {
682    const int size = zTranslatedNodes.size();
683    if (size == 0
684            || (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f)
685            || (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) {
686        // no 3d children to draw
687        return;
688    }
689
690    // Apply the base transform of the parent of the 3d children. This isolates
691    // 3d children of the current chunk from transformations made in previous chunks.
692    int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
693    renderer.setMatrix(initialTransform);
694
695    /**
696     * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
697     * with very similar Z heights to draw together.
698     *
699     * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
700     * underneath both, and neither's shadow is drawn on top of the other.
701     */
702    const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
703    size_t drawIndex, shadowIndex, endIndex;
704    if (mode == kNegativeZChildren) {
705        drawIndex = 0;
706        endIndex = nonNegativeIndex;
707        shadowIndex = endIndex; // draw no shadows
708    } else {
709        drawIndex = nonNegativeIndex;
710        endIndex = size;
711        shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
712    }
713
714    DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "",
715            endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive");
716
717    float lastCasterZ = 0.0f;
718    while (shadowIndex < endIndex || drawIndex < endIndex) {
719        if (shadowIndex < endIndex) {
720            DrawRenderNodeOp* casterOp = zTranslatedNodes[shadowIndex].value;
721            RenderNode* caster = casterOp->mRenderNode;
722            const float casterZ = zTranslatedNodes[shadowIndex].key;
723            // attempt to render the shadow if the caster about to be drawn is its caster,
724            // OR if its caster's Z value is similar to the previous potential caster
725            if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
726                caster->issueDrawShadowOperation(casterOp->mTransformFromParent, handler);
727
728                lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
729                shadowIndex++;
730                continue;
731            }
732        }
733
734        // only the actual child DL draw needs to be in save/restore,
735        // since it modifies the renderer's matrix
736        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
737
738        DrawRenderNodeOp* childOp = zTranslatedNodes[drawIndex].value;
739
740        renderer.concatMatrix(childOp->mTransformFromParent);
741        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
742        handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
743        childOp->mSkipInOrderDraw = true;
744
745        renderer.restoreToCount(restoreTo);
746        drawIndex++;
747    }
748    renderer.restoreToCount(rootRestoreTo);
749}
750
751template <class T>
752void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) {
753    DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size());
754    const SkPath* projectionReceiverOutline = properties().getOutline().getPath();
755    int restoreTo = renderer.getSaveCount();
756
757    LinearAllocator& alloc = handler.allocator();
758    handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
759            PROPERTY_SAVECOUNT, properties().getClipToBounds());
760
761    // Transform renderer to match background we're projecting onto
762    // (by offsetting canvas by translationX/Y of background rendernode, since only those are set)
763    const DisplayListOp* op =
764            (mDisplayListData->displayListOps[mDisplayListData->projectionReceiveIndex]);
765    const DrawRenderNodeOp* backgroundOp = reinterpret_cast<const DrawRenderNodeOp*>(op);
766    const RenderProperties& backgroundProps = backgroundOp->mRenderNode->properties();
767    renderer.translate(backgroundProps.getTranslationX(), backgroundProps.getTranslationY());
768
769    // If the projection reciever has an outline, we mask each of the projected rendernodes to it
770    // Either with clipRect, or special saveLayer masking
771    if (projectionReceiverOutline != NULL) {
772        const SkRect& outlineBounds = projectionReceiverOutline->getBounds();
773        if (projectionReceiverOutline->isRect(NULL)) {
774            // mask to the rect outline simply with clipRect
775            ClipRectOp* clipOp = new (alloc) ClipRectOp(
776                    outlineBounds.left(), outlineBounds.top(),
777                    outlineBounds.right(), outlineBounds.bottom(), SkRegion::kIntersect_Op);
778            handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
779        } else {
780            // wrap the projected RenderNodes with a SaveLayer that will mask to the outline
781            SaveLayerOp* op = new (alloc) SaveLayerOp(
782                    outlineBounds.left(), outlineBounds.top(),
783                    outlineBounds.right(), outlineBounds.bottom(),
784                    255, SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag | SkCanvas::kARGB_ClipLayer_SaveFlag);
785            op->setMask(projectionReceiverOutline);
786            handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
787
788            /* TODO: add optimizations here to take advantage of placement/size of projected
789             * children (which may shrink saveLayer area significantly). This is dependent on
790             * passing actual drawing/dirtying bounds of projected content down to native.
791             */
792        }
793    }
794
795    // draw projected nodes
796    for (size_t i = 0; i < mProjectedNodes.size(); i++) {
797        DrawRenderNodeOp* childOp = mProjectedNodes[i];
798
799        // matrix save, concat, and restore can be done safely without allocating operations
800        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
801        renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
802        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
803        handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
804        childOp->mSkipInOrderDraw = true;
805        renderer.restoreToCount(restoreTo);
806    }
807
808    if (projectionReceiverOutline != NULL) {
809        handler(new (alloc) RestoreToCountOp(restoreTo),
810                PROPERTY_SAVECOUNT, properties().getClipToBounds());
811    }
812}
813
814/**
815 * This function serves both defer and replay modes, and will organize the displayList's component
816 * operations for a single frame:
817 *
818 * Every 'simple' state operation that affects just the matrix and alpha (or other factors of
819 * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
820 * defer logic) and operations in displayListOps are issued through the 'handler' which handles the
821 * defer vs replay logic, per operation
822 */
823template <class T>
824void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) {
825    const int level = handler.level();
826    if (mDisplayListData->isEmpty()) {
827        DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, getName());
828        return;
829    }
830
831    const bool drawLayer = (mLayer && (&renderer != mLayer->renderer));
832    // If we are updating the contents of mLayer, we don't want to apply any of
833    // the RenderNode's properties to this issueOperations pass. Those will all
834    // be applied when the layer is drawn, aka when this is true.
835    const bool useViewProperties = (!mLayer || drawLayer);
836    if (useViewProperties) {
837        const Outline& outline = properties().getOutline();
838        if (properties().getAlpha() <= 0 || (outline.getShouldClip() && outline.isEmpty())) {
839            DISPLAY_LIST_LOGD("%*sRejected display list (%p, %s)", level * 2, "", this, getName());
840            return;
841        }
842    }
843
844    handler.startMark(getName());
845
846#if DEBUG_DISPLAY_LIST
847    const Rect& clipRect = renderer.getLocalClipBounds();
848    DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f",
849            level * 2, "", this, getName(),
850            clipRect.left, clipRect.top, clipRect.right, clipRect.bottom);
851#endif
852
853    LinearAllocator& alloc = handler.allocator();
854    int restoreTo = renderer.getSaveCount();
855    handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
856            PROPERTY_SAVECOUNT, properties().getClipToBounds());
857
858    DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
859            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);
860
861    if (useViewProperties) {
862        setViewProperties<T>(renderer, handler);
863    }
864
865    bool quickRejected = properties().getClipToBounds()
866            && renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight());
867    if (!quickRejected) {
868        Matrix4 initialTransform(*(renderer.currentTransform()));
869
870        if (drawLayer) {
871            handler(new (alloc) DrawLayerOp(mLayer, 0, 0),
872                    renderer.getSaveCount() - 1, properties().getClipToBounds());
873        } else {
874            const int saveCountOffset = renderer.getSaveCount() - 1;
875            const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
876            DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
877            for (size_t chunkIndex = 0; chunkIndex < mDisplayListData->getChunks().size(); chunkIndex++) {
878                const DisplayListData::Chunk& chunk = mDisplayListData->getChunks()[chunkIndex];
879
880                Vector<ZDrawRenderNodeOpPair> zTranslatedNodes;
881                buildZSortedChildList(chunk, zTranslatedNodes);
882
883                issueOperationsOf3dChildren(kNegativeZChildren,
884                        initialTransform, zTranslatedNodes, renderer, handler);
885
886
887                for (size_t opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) {
888                    DisplayListOp *op = mDisplayListData->displayListOps[opIndex];
889#if DEBUG_DISPLAY_LIST
890                    op->output(level + 1);
891#endif
892                    logBuffer.writeCommand(level, op->name());
893                    handler(op, saveCountOffset, properties().getClipToBounds());
894
895                    if (CC_UNLIKELY(!mProjectedNodes.isEmpty() && projectionReceiveIndex >= 0 &&
896                        opIndex == static_cast<size_t>(projectionReceiveIndex))) {
897                        issueOperationsOfProjectedChildren(renderer, handler);
898                    }
899                }
900
901                issueOperationsOf3dChildren(kPositiveZChildren,
902                        initialTransform, zTranslatedNodes, renderer, handler);
903            }
904        }
905    }
906
907    DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
908    handler(new (alloc) RestoreToCountOp(restoreTo),
909            PROPERTY_SAVECOUNT, properties().getClipToBounds());
910    renderer.setOverrideLayerAlpha(1.0f);
911
912    DISPLAY_LIST_LOGD("%*sDone (%p, %s)", level * 2, "", this, getName());
913    handler.endMark();
914}
915
916} /* namespace uirenderer */
917} /* namespace android */
918