BitcodeWriter.cpp revision 8f093e05e28046b6fc74175b66a06152f72e0c66
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ReaderWriter_2_9.h"
15#include "legacy_bitcode.h"
16#include "ValueEnumerator.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/Bitcode/BitstreamWriter.h"
19#include "llvm/Bitcode/LLVMBitCodes.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DebugInfoMetadata.h"
22#include "llvm/IR/DerivedTypes.h"
23#include "llvm/IR/InlineAsm.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Module.h"
26#include "llvm/IR/Operator.h"
27#include "llvm/IR/ValueSymbolTable.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/Program.h"
31#include "llvm/Support/raw_ostream.h"
32#include <cctype>
33#include <map>
34using namespace llvm;
35
36// Redefine older bitcode opcodes for use here. Note that these come from
37// LLVM 2.7 (which is what HC shipped with).
38#define METADATA_NODE_2_7             2
39#define METADATA_FN_NODE_2_7          3
40#define METADATA_NAMED_NODE_2_7       5
41#define METADATA_ATTACHMENT_2_7       7
42#define FUNC_CODE_INST_CALL_2_7       22
43#define FUNC_CODE_DEBUG_LOC_2_7       32
44
45// Redefine older bitcode opcodes for use here. Note that these come from
46// LLVM 2.7 - 3.0.
47#define TYPE_BLOCK_ID_OLD_3_0 10
48#define TYPE_SYMTAB_BLOCK_ID_OLD_3_0 13
49#define TYPE_CODE_STRUCT_OLD_3_0 10
50
51/// These are manifest constants used by the bitcode writer. They do not need to
52/// be kept in sync with the reader, but need to be consistent within this file.
53enum {
54  CurVersion = 0,
55
56  // VALUE_SYMTAB_BLOCK abbrev id's.
57  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58  VST_ENTRY_7_ABBREV,
59  VST_ENTRY_6_ABBREV,
60  VST_BBENTRY_6_ABBREV,
61
62  // CONSTANTS_BLOCK abbrev id's.
63  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
64  CONSTANTS_INTEGER_ABBREV,
65  CONSTANTS_CE_CAST_Abbrev,
66  CONSTANTS_NULL_Abbrev,
67
68  // FUNCTION_BLOCK abbrev id's.
69  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
70  FUNCTION_INST_BINOP_ABBREV,
71  FUNCTION_INST_BINOP_FLAGS_ABBREV,
72  FUNCTION_INST_CAST_ABBREV,
73  FUNCTION_INST_RET_VOID_ABBREV,
74  FUNCTION_INST_RET_VAL_ABBREV,
75  FUNCTION_INST_UNREACHABLE_ABBREV
76};
77
78static unsigned GetEncodedCastOpcode(unsigned Opcode) {
79  switch (Opcode) {
80  default: llvm_unreachable("Unknown cast instruction!");
81  case Instruction::Trunc   : return bitc::CAST_TRUNC;
82  case Instruction::ZExt    : return bitc::CAST_ZEXT;
83  case Instruction::SExt    : return bitc::CAST_SEXT;
84  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
85  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
86  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
87  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
88  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
89  case Instruction::FPExt   : return bitc::CAST_FPEXT;
90  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
91  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
92  case Instruction::BitCast : return bitc::CAST_BITCAST;
93  }
94}
95
96static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
97  switch (Opcode) {
98  default: llvm_unreachable("Unknown binary instruction!");
99  case Instruction::Add:
100  case Instruction::FAdd: return bitc::BINOP_ADD;
101  case Instruction::Sub:
102  case Instruction::FSub: return bitc::BINOP_SUB;
103  case Instruction::Mul:
104  case Instruction::FMul: return bitc::BINOP_MUL;
105  case Instruction::UDiv: return bitc::BINOP_UDIV;
106  case Instruction::FDiv:
107  case Instruction::SDiv: return bitc::BINOP_SDIV;
108  case Instruction::URem: return bitc::BINOP_UREM;
109  case Instruction::FRem:
110  case Instruction::SRem: return bitc::BINOP_SREM;
111  case Instruction::Shl:  return bitc::BINOP_SHL;
112  case Instruction::LShr: return bitc::BINOP_LSHR;
113  case Instruction::AShr: return bitc::BINOP_ASHR;
114  case Instruction::And:  return bitc::BINOP_AND;
115  case Instruction::Or:   return bitc::BINOP_OR;
116  case Instruction::Xor:  return bitc::BINOP_XOR;
117  }
118}
119
120static void WriteStringRecord(unsigned Code, StringRef Str,
121                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
122  SmallVector<unsigned, 64> Vals;
123
124  // Code: [strchar x N]
125  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
126    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
127      AbbrevToUse = 0;
128    Vals.push_back(Str[i]);
129  }
130
131  // Emit the finished record.
132  Stream.EmitRecord(Code, Vals, AbbrevToUse);
133}
134
135// Emit information about parameter attributes.
136static void WriteAttributeTable(const llvm_2_9::ValueEnumerator &VE,
137                                BitstreamWriter &Stream) {
138  const std::vector<AttributeSet> &Attrs = VE.getAttributes();
139  if (Attrs.empty()) return;
140
141  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
142
143  SmallVector<uint64_t, 64> Record;
144  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
145    const AttributeSet &A = Attrs[i];
146    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
147      Record.push_back(A.getSlotIndex(i));
148      Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
149    }
150
151    // This needs to use the 3.2 entry type
152    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
153    Record.clear();
154  }
155
156  Stream.ExitBlock();
157}
158
159static void WriteTypeSymbolTable(const llvm_2_9::ValueEnumerator &VE,
160                                 BitstreamWriter &Stream) {
161  const llvm_2_9::ValueEnumerator::TypeList &TypeList = VE.getTypes();
162  Stream.EnterSubblock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0, 3);
163
164  // 7-bit fixed width VST_CODE_ENTRY strings.
165  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
166  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
167  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
168                            Log2_32_Ceil(VE.getTypes().size()+1)));
169  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
170  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
171  unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
172
173  SmallVector<unsigned, 64> NameVals;
174
175  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
176    Type *T = TypeList[i];
177
178    switch (T->getTypeID()) {
179    case Type::StructTyID: {
180      StructType *ST = cast<StructType>(T);
181      if (ST->isLiteral()) {
182        // Skip anonymous struct definitions in type symbol table
183        // FIXME(srhines)
184        break;
185      }
186
187      // TST_ENTRY: [typeid, namechar x N]
188      NameVals.push_back(i);
189
190      const std::string &Str = ST->getName();
191      bool is7Bit = true;
192      for (unsigned i = 0, e = Str.size(); i != e; ++i) {
193        NameVals.push_back((unsigned char)Str[i]);
194        if (Str[i] & 128)
195          is7Bit = false;
196      }
197
198      // Emit the finished record.
199      Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
200      NameVals.clear();
201
202      break;
203    }
204    default: break;
205    }
206  }
207
208  Stream.ExitBlock();
209}
210
211/// WriteTypeTable - Write out the type table for a module.
212static void WriteTypeTable(const llvm_2_9::ValueEnumerator &VE,
213                           BitstreamWriter &Stream) {
214  const llvm_2_9::ValueEnumerator::TypeList &TypeList = VE.getTypes();
215
216  Stream.EnterSubblock(TYPE_BLOCK_ID_OLD_3_0, 4 /*count from # abbrevs */);
217  SmallVector<uint64_t, 64> TypeVals;
218
219  uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
220
221  // Abbrev for TYPE_CODE_POINTER.
222  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
223  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
224  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
225  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
226  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
227
228  // Abbrev for TYPE_CODE_FUNCTION.
229  Abbv = new BitCodeAbbrev();
230  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
231  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
232  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
233  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
234  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
235  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
236
237
238  // Abbrev for TYPE_CODE_STRUCT.
239  Abbv = new BitCodeAbbrev();
240  Abbv->Add(BitCodeAbbrevOp(TYPE_CODE_STRUCT_OLD_3_0));
241  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
242  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
243  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
244  unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
245
246  // Abbrev for TYPE_CODE_ARRAY.
247  Abbv = new BitCodeAbbrev();
248  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
249  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
250  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
251
252  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
253
254  // Emit an entry count so the reader can reserve space.
255  TypeVals.push_back(TypeList.size());
256  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
257  TypeVals.clear();
258
259  // Loop over all of the types, emitting each in turn.
260  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
261    Type *T = TypeList[i];
262    int AbbrevToUse = 0;
263    unsigned Code = 0;
264
265    switch (T->getTypeID()) {
266    default: llvm_unreachable("Unknown type!");
267    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
268    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
269    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
270    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
271    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
272    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
273    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
274    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
275    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
276    case Type::IntegerTyID:
277      // INTEGER: [width]
278      Code = bitc::TYPE_CODE_INTEGER;
279      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
280      break;
281    case Type::PointerTyID: {
282      PointerType *PTy = cast<PointerType>(T);
283      // POINTER: [pointee type, address space]
284      Code = bitc::TYPE_CODE_POINTER;
285      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
286      unsigned AddressSpace = PTy->getAddressSpace();
287      TypeVals.push_back(AddressSpace);
288      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
289      break;
290    }
291    case Type::FunctionTyID: {
292      FunctionType *FT = cast<FunctionType>(T);
293      // FUNCTION: [isvararg, attrid, retty, paramty x N]
294      Code = bitc::TYPE_CODE_FUNCTION_OLD;
295      TypeVals.push_back(FT->isVarArg());
296      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
297      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
298      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
299        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
300      AbbrevToUse = FunctionAbbrev;
301      break;
302    }
303    case Type::StructTyID: {
304      StructType *ST = cast<StructType>(T);
305      // STRUCT: [ispacked, eltty x N]
306      TypeVals.push_back(ST->isPacked());
307      // Output all of the element types.
308      for (StructType::element_iterator I = ST->element_begin(),
309           E = ST->element_end(); I != E; ++I)
310        TypeVals.push_back(VE.getTypeID(*I));
311      Code = TYPE_CODE_STRUCT_OLD_3_0;
312      AbbrevToUse = StructAbbrev;
313      break;
314    }
315    case Type::ArrayTyID: {
316      ArrayType *AT = cast<ArrayType>(T);
317      // ARRAY: [numelts, eltty]
318      Code = bitc::TYPE_CODE_ARRAY;
319      TypeVals.push_back(AT->getNumElements());
320      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
321      AbbrevToUse = ArrayAbbrev;
322      break;
323    }
324    case Type::VectorTyID: {
325      VectorType *VT = cast<VectorType>(T);
326      // VECTOR [numelts, eltty]
327      Code = bitc::TYPE_CODE_VECTOR;
328      TypeVals.push_back(VT->getNumElements());
329      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
330      break;
331    }
332    }
333
334    // Emit the finished record.
335    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
336    TypeVals.clear();
337  }
338
339  Stream.ExitBlock();
340
341  WriteTypeSymbolTable(VE, Stream);
342}
343
344static unsigned getEncodedLinkage(const GlobalValue &GV) {
345  switch (GV.getLinkage()) {
346  case GlobalValue::ExternalLinkage:
347    return 0;
348  case GlobalValue::WeakAnyLinkage:
349    return 1;
350  case GlobalValue::AppendingLinkage:
351    return 2;
352  case GlobalValue::InternalLinkage:
353    return 3;
354  case GlobalValue::LinkOnceAnyLinkage:
355    return 4;
356  case GlobalValue::ExternalWeakLinkage:
357    return 7;
358  case GlobalValue::CommonLinkage:
359    return 8;
360  case GlobalValue::PrivateLinkage:
361    return 9;
362  case GlobalValue::WeakODRLinkage:
363    return 10;
364  case GlobalValue::LinkOnceODRLinkage:
365    return 11;
366  case GlobalValue::AvailableExternallyLinkage:
367    return 12;
368  }
369  llvm_unreachable("Invalid linkage");
370}
371
372static unsigned getEncodedVisibility(const GlobalValue &GV) {
373  switch (GV.getVisibility()) {
374  case GlobalValue::DefaultVisibility:   return 0;
375  case GlobalValue::HiddenVisibility:    return 1;
376  case GlobalValue::ProtectedVisibility: return 2;
377  }
378  llvm_unreachable("Invalid visibility");
379}
380
381// Emit top-level description of module, including target triple, inline asm,
382// descriptors for global variables, and function prototype info.
383static void WriteModuleInfo(const Module *M,
384                            const llvm_2_9::ValueEnumerator &VE,
385                            BitstreamWriter &Stream) {
386  // Emit various pieces of data attached to a module.
387  if (!M->getTargetTriple().empty())
388    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
389                      0/*TODO*/, Stream);
390  const std::string &DL = M->getDataLayoutStr();
391  if (!DL.empty())
392    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
393  if (!M->getModuleInlineAsm().empty())
394    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
395                      0/*TODO*/, Stream);
396
397  // Emit information about sections and GC, computing how many there are. Also
398  // compute the maximum alignment value.
399  std::map<std::string, unsigned> SectionMap;
400  std::map<std::string, unsigned> GCMap;
401  unsigned MaxAlignment = 0;
402  unsigned MaxGlobalType = 0;
403  for (const GlobalValue &GV : M->globals()) {
404    MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
405    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
406    if (GV.hasSection()) {
407      // Give section names unique ID's.
408      unsigned &Entry = SectionMap[GV.getSection()];
409      if (!Entry) {
410        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
411                          0/*TODO*/, Stream);
412        Entry = SectionMap.size();
413      }
414    }
415  }
416  for (const Function &F : *M) {
417    MaxAlignment = std::max(MaxAlignment, F.getAlignment());
418    if (F.hasSection()) {
419      // Give section names unique ID's.
420      unsigned &Entry = SectionMap[F.getSection()];
421      if (!Entry) {
422        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
423                          0/*TODO*/, Stream);
424        Entry = SectionMap.size();
425      }
426    }
427    if (F.hasGC()) {
428      // Same for GC names.
429      unsigned &Entry = GCMap[F.getGC()];
430      if (!Entry) {
431        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
432                          0/*TODO*/, Stream);
433        Entry = GCMap.size();
434      }
435    }
436  }
437
438  // Emit abbrev for globals, now that we know # sections and max alignment.
439  unsigned SimpleGVarAbbrev = 0;
440  if (!M->global_empty()) {
441    // Add an abbrev for common globals with no visibility or thread localness.
442    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
443    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
444    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
445                              Log2_32_Ceil(MaxGlobalType+1)));
446    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
447    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
448    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
449    if (MaxAlignment == 0)                                      // Alignment.
450      Abbv->Add(BitCodeAbbrevOp(0));
451    else {
452      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
453      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
454                               Log2_32_Ceil(MaxEncAlignment+1)));
455    }
456    if (SectionMap.empty())                                    // Section.
457      Abbv->Add(BitCodeAbbrevOp(0));
458    else
459      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
460                               Log2_32_Ceil(SectionMap.size()+1)));
461    // Don't bother emitting vis + thread local.
462    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
463  }
464
465  // Emit the global variable information.
466  SmallVector<unsigned, 64> Vals;
467  for (const GlobalVariable &GV : M->globals()) {
468    unsigned AbbrevToUse = 0;
469
470    // GLOBALVAR: [type, isconst, initid,
471    //             linkage, alignment, section, visibility, threadlocal,
472    //             unnamed_addr]
473    Vals.push_back(VE.getTypeID(GV.getType()));
474    Vals.push_back(GV.isConstant());
475    Vals.push_back(GV.isDeclaration() ? 0 :
476                   (VE.getValueID(GV.getInitializer()) + 1));
477    Vals.push_back(getEncodedLinkage(GV));
478    Vals.push_back(Log2_32(GV.getAlignment())+1);
479    Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
480    if (GV.isThreadLocal() ||
481        GV.getVisibility() != GlobalValue::DefaultVisibility ||
482        GV.hasUnnamedAddr()) {
483      Vals.push_back(getEncodedVisibility(GV));
484      Vals.push_back(GV.isThreadLocal());
485      Vals.push_back(GV.hasUnnamedAddr());
486    } else {
487      AbbrevToUse = SimpleGVarAbbrev;
488    }
489
490    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
491    Vals.clear();
492  }
493
494  // Emit the function proto information.
495  for (const Function &F : *M) {
496    // FUNCTION:  [type, callingconv, isproto, paramattr,
497    //             linkage, alignment, section, visibility, gc, unnamed_addr]
498    Vals.push_back(VE.getTypeID(F.getType()));
499    Vals.push_back(F.getCallingConv());
500    Vals.push_back(F.isDeclaration());
501    Vals.push_back(getEncodedLinkage(F));
502    Vals.push_back(VE.getAttributeID(F.getAttributes()));
503    Vals.push_back(Log2_32(F.getAlignment())+1);
504    Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
505    Vals.push_back(getEncodedVisibility(F));
506    Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
507    Vals.push_back(F.hasUnnamedAddr());
508
509    unsigned AbbrevToUse = 0;
510    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
511    Vals.clear();
512  }
513
514  // Emit the alias information.
515  for (const GlobalAlias &A : M->aliases()) {
516    Vals.push_back(VE.getTypeID(A.getType()));
517    Vals.push_back(VE.getValueID(A.getAliasee()));
518    Vals.push_back(getEncodedLinkage(A));
519    Vals.push_back(getEncodedVisibility(A));
520    unsigned AbbrevToUse = 0;
521    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
522    Vals.clear();
523  }
524}
525
526static uint64_t GetOptimizationFlags(const Value *V) {
527  uint64_t Flags = 0;
528
529  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
530    if (OBO->hasNoSignedWrap())
531      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
532    if (OBO->hasNoUnsignedWrap())
533      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
534  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
535    if (PEO->isExact())
536      Flags |= 1 << bitc::PEO_EXACT;
537  }
538
539  return Flags;
540}
541
542static void WriteValueAsMetadata(const ValueAsMetadata *MD,
543                                 const llvm_2_9::ValueEnumerator &VE,
544                                 BitstreamWriter &Stream,
545                                 SmallVectorImpl<uint64_t> &Record) {
546  // Mimic an MDNode with a value as one operand.
547  Value *V = MD->getValue();
548  Record.push_back(VE.getTypeID(V->getType()));
549  Record.push_back(VE.getValueID(V));
550  Stream.EmitRecord(METADATA_NODE_2_7, Record, 0);
551  Record.clear();
552}
553
554static void WriteMDTuple(const MDTuple *N, const llvm_2_9::ValueEnumerator &VE,
555                         BitstreamWriter &Stream,
556                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
557  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
558    Metadata *MD = N->getOperand(i);
559    assert(!(MD && isa<LocalAsMetadata>(MD)) &&
560           "Unexpected function-local metadata");
561    if (!MD) {
562      // TODO(srhines): I don't believe this case can exist for RS.
563      Record.push_back(VE.getTypeID(llvm::Type::getVoidTy(N->getContext())));
564      Record.push_back(0);
565    } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
566      Record.push_back(VE.getTypeID(MDC->getType()));
567      Record.push_back(VE.getValueID(MDC->getValue()));
568    } else {
569      Record.push_back(VE.getTypeID(
570          llvm::Type::getMetadataTy(N->getContext())));
571      Record.push_back(VE.getMetadataID(MD));
572    }
573  }
574  Stream.EmitRecord(METADATA_NODE_2_7, Record, Abbrev);
575  Record.clear();
576}
577
578/*static void WriteMDLocation(const MDLocation *N, const llvm_2_9::ValueEnumerator &VE,
579                            BitstreamWriter &Stream,
580                            SmallVectorImpl<uint64_t> &Record,
581                            unsigned Abbrev) {
582  Record.push_back(N->isDistinct());
583  Record.push_back(N->getLine());
584  Record.push_back(N->getColumn());
585  Record.push_back(VE.getMetadataID(N->getScope()));
586  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
587
588  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
589  Record.clear();
590}
591
592static void WriteGenericDebugNode(const GenericDebugNode *,
593                                  const llvm_2_9::ValueEnumerator &, BitstreamWriter &,
594                                  SmallVectorImpl<uint64_t> &, unsigned) {
595  llvm_unreachable("unimplemented");
596}*/
597
598static void WriteModuleMetadata(const Module *M,
599                                const llvm_2_9::ValueEnumerator &VE,
600                                BitstreamWriter &Stream) {
601  const auto &MDs = VE.getMDs();
602  if (MDs.empty() && M->named_metadata_empty())
603    return;
604
605  // RenderScript files *ALWAYS* have metadata!
606  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
607
608  unsigned MDSAbbrev = 0;
609  if (VE.hasMDString()) {
610    // Abbrev for METADATA_STRING.
611    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
612    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
613    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
614    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
615    MDSAbbrev = Stream.EmitAbbrev(Abbv);
616  }
617
618  unsigned MDLocationAbbrev = 0;
619  if (VE.hasDILocation()) {
620    // TODO(srhines): Should be unreachable for RenderScript.
621    // Abbrev for METADATA_LOCATION.
622    //
623    // Assume the column is usually under 128, and always output the inlined-at
624    // location (it's never more expensive than building an array size 1).
625    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
626    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
627    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
628    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
629    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
630    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
631    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
632    MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
633  }
634
635  unsigned NameAbbrev = 0;
636  if (!M->named_metadata_empty()) {
637    // Abbrev for METADATA_NAME.
638    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
639    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
640    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
641    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
642    NameAbbrev = Stream.EmitAbbrev(Abbv);
643  }
644
645  unsigned MDTupleAbbrev = 0;
646  //unsigned GenericDebugNodeAbbrev = 0;
647  SmallVector<uint64_t, 64> Record;
648  for (const Metadata *MD : MDs) {
649    if (const MDNode *N = dyn_cast<MDNode>(MD)) {
650      switch (N->getMetadataID()) {
651      default:
652        llvm_unreachable("Invalid MDNode subclass");
653#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)
654#define HANDLE_MDNODE_LEAF(CLASS)                                              \
655  case Metadata::CLASS##Kind:                                                  \
656    Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
657    continue;
658#include "llvm/IR/Metadata.def"
659      }
660    }
661    if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
662      WriteValueAsMetadata(MDC, VE, Stream, Record);
663      continue;
664    }
665    const MDString *MDS = cast<MDString>(MD);
666    // Code: [strchar x N]
667    Record.append(MDS->bytes_begin(), MDS->bytes_end());
668
669    // Emit the finished record.
670    Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
671    Record.clear();
672  }
673
674  // Write named metadata.
675  for (const NamedMDNode &NMD : M->named_metadata()) {
676    // Write name.
677    StringRef Str = NMD.getName();
678    Record.append(Str.bytes_begin(), Str.bytes_end());
679    Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
680    Record.clear();
681
682    // Write named metadata operands.
683    for (const MDNode *N : NMD.operands())
684      Record.push_back(VE.getMetadataID(N));
685    Stream.EmitRecord(METADATA_NAMED_NODE_2_7, Record, 0);
686    Record.clear();
687  }
688
689  Stream.ExitBlock();
690}
691
692static void WriteFunctionLocalMetadata(const Function &F,
693                                       const llvm_2_9::ValueEnumerator &VE,
694                                       BitstreamWriter &Stream) {
695  bool StartedMetadataBlock = false;
696  SmallVector<uint64_t, 64> Record;
697  const SmallVectorImpl<const LocalAsMetadata *> &MDs =
698      VE.getFunctionLocalMDs();
699  for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
700    assert(MDs[i] && "Expected valid function-local metadata");
701    if (!StartedMetadataBlock) {
702      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
703      StartedMetadataBlock = true;
704    }
705    WriteValueAsMetadata(MDs[i], VE, Stream, Record);
706  }
707
708  if (StartedMetadataBlock)
709    Stream.ExitBlock();
710}
711
712static void WriteMetadataAttachment(const Function &F,
713                                    const llvm_2_9::ValueEnumerator &VE,
714                                    BitstreamWriter &Stream) {
715  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
716
717  SmallVector<uint64_t, 64> Record;
718
719  // Write metadata attachments
720  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
721  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
722
723  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
724    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
725         I != E; ++I) {
726      MDs.clear();
727      I->getAllMetadataOtherThanDebugLoc(MDs);
728
729      // If no metadata, ignore instruction.
730      if (MDs.empty()) continue;
731
732      Record.push_back(VE.getInstructionID(&*I));
733
734      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
735        Record.push_back(MDs[i].first);
736        Record.push_back(VE.getMetadataID(MDs[i].second));
737      }
738      Stream.EmitRecord(METADATA_ATTACHMENT_2_7, Record, 0);
739      Record.clear();
740    }
741
742  Stream.ExitBlock();
743}
744
745static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
746  SmallVector<uint64_t, 64> Record;
747
748  // Write metadata kinds
749  // METADATA_KIND - [n x [id, name]]
750  SmallVector<StringRef, 4> Names;
751  M->getMDKindNames(Names);
752
753  if (Names.empty()) return;
754
755  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
756
757  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
758    Record.push_back(MDKindID);
759    StringRef KName = Names[MDKindID];
760    Record.append(KName.begin(), KName.end());
761
762    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
763    Record.clear();
764  }
765
766  Stream.ExitBlock();
767}
768
769static void WriteConstants(unsigned FirstVal, unsigned LastVal,
770                           const llvm_2_9::ValueEnumerator &VE,
771                           BitstreamWriter &Stream, bool isGlobal) {
772  if (FirstVal == LastVal) return;
773
774  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
775
776  unsigned AggregateAbbrev = 0;
777  unsigned String8Abbrev = 0;
778  unsigned CString7Abbrev = 0;
779  unsigned CString6Abbrev = 0;
780  // If this is a constant pool for the module, emit module-specific abbrevs.
781  if (isGlobal) {
782    // Abbrev for CST_CODE_AGGREGATE.
783    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
784    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
785    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
786    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
787    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
788
789    // Abbrev for CST_CODE_STRING.
790    Abbv = new BitCodeAbbrev();
791    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
792    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
793    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
794    String8Abbrev = Stream.EmitAbbrev(Abbv);
795    // Abbrev for CST_CODE_CSTRING.
796    Abbv = new BitCodeAbbrev();
797    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
798    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
799    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
800    CString7Abbrev = Stream.EmitAbbrev(Abbv);
801    // Abbrev for CST_CODE_CSTRING.
802    Abbv = new BitCodeAbbrev();
803    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
804    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
805    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
806    CString6Abbrev = Stream.EmitAbbrev(Abbv);
807  }
808
809  SmallVector<uint64_t, 64> Record;
810
811  const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getValues();
812  Type *LastTy = nullptr;
813  for (unsigned i = FirstVal; i != LastVal; ++i) {
814    const Value *V = Vals[i].first;
815    // If we need to switch types, do so now.
816    if (V->getType() != LastTy) {
817      LastTy = V->getType();
818      Record.push_back(VE.getTypeID(LastTy));
819      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
820                        CONSTANTS_SETTYPE_ABBREV);
821      Record.clear();
822    }
823
824    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
825      Record.push_back(unsigned(IA->hasSideEffects()) |
826                       unsigned(IA->isAlignStack()) << 1);
827
828      // Add the asm string.
829      const std::string &AsmStr = IA->getAsmString();
830      Record.push_back(AsmStr.size());
831      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
832        Record.push_back(AsmStr[i]);
833
834      // Add the constraint string.
835      const std::string &ConstraintStr = IA->getConstraintString();
836      Record.push_back(ConstraintStr.size());
837      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
838        Record.push_back(ConstraintStr[i]);
839      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
840      Record.clear();
841      continue;
842    }
843    const Constant *C = cast<Constant>(V);
844    unsigned Code = -1U;
845    unsigned AbbrevToUse = 0;
846    if (C->isNullValue()) {
847      Code = bitc::CST_CODE_NULL;
848    } else if (isa<UndefValue>(C)) {
849      Code = bitc::CST_CODE_UNDEF;
850    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
851      if (IV->getBitWidth() <= 64) {
852        uint64_t V = IV->getSExtValue();
853        if ((int64_t)V >= 0)
854          Record.push_back(V << 1);
855        else
856          Record.push_back((-V << 1) | 1);
857        Code = bitc::CST_CODE_INTEGER;
858        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
859      } else {                             // Wide integers, > 64 bits in size.
860        // We have an arbitrary precision integer value to write whose
861        // bit width is > 64. However, in canonical unsigned integer
862        // format it is likely that the high bits are going to be zero.
863        // So, we only write the number of active words.
864        unsigned NWords = IV->getValue().getActiveWords();
865        const uint64_t *RawWords = IV->getValue().getRawData();
866        for (unsigned i = 0; i != NWords; ++i) {
867          int64_t V = RawWords[i];
868          if (V >= 0)
869            Record.push_back(V << 1);
870          else
871            Record.push_back((-V << 1) | 1);
872        }
873        Code = bitc::CST_CODE_WIDE_INTEGER;
874      }
875    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
876      Code = bitc::CST_CODE_FLOAT;
877      Type *Ty = CFP->getType();
878      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
879        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
880      } else if (Ty->isX86_FP80Ty()) {
881        // api needed to prevent premature destruction
882        // bits are not in the same order as a normal i80 APInt, compensate.
883        APInt api = CFP->getValueAPF().bitcastToAPInt();
884        const uint64_t *p = api.getRawData();
885        Record.push_back((p[1] << 48) | (p[0] >> 16));
886        Record.push_back(p[0] & 0xffffLL);
887      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
888        APInt api = CFP->getValueAPF().bitcastToAPInt();
889        const uint64_t *p = api.getRawData();
890        Record.push_back(p[0]);
891        Record.push_back(p[1]);
892      } else {
893        assert (0 && "Unknown FP type!");
894      }
895    } else if (isa<ConstantDataSequential>(C) &&
896               cast<ConstantDataSequential>(C)->isString()) {
897      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
898      // Emit constant strings specially.
899      unsigned NumElts = Str->getNumElements();
900      // If this is a null-terminated string, use the denser CSTRING encoding.
901      if (Str->isCString()) {
902        Code = bitc::CST_CODE_CSTRING;
903        --NumElts;  // Don't encode the null, which isn't allowed by char6.
904      } else {
905        Code = bitc::CST_CODE_STRING;
906        AbbrevToUse = String8Abbrev;
907      }
908      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
909      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
910      for (unsigned i = 0; i != NumElts; ++i) {
911        unsigned char V = Str->getElementAsInteger(i);
912        Record.push_back(V);
913        isCStr7 &= (V & 128) == 0;
914        if (isCStrChar6)
915          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
916      }
917
918      if (isCStrChar6)
919        AbbrevToUse = CString6Abbrev;
920      else if (isCStr7)
921        AbbrevToUse = CString7Abbrev;
922    } else if (const ConstantDataSequential *CDS =
923                  dyn_cast<ConstantDataSequential>(C)) {
924      // We must replace ConstantDataSequential's representation with the
925      // legacy ConstantArray/ConstantVector/ConstantStruct version.
926      // ValueEnumerator is similarly modified to mark the appropriate
927      // Constants as used (so they are emitted).
928      Code = bitc::CST_CODE_AGGREGATE;
929      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
930        Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
931      AbbrevToUse = AggregateAbbrev;
932    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
933               isa<ConstantVector>(C)) {
934      Code = bitc::CST_CODE_AGGREGATE;
935      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
936        Record.push_back(VE.getValueID(C->getOperand(i)));
937      AbbrevToUse = AggregateAbbrev;
938    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
939      switch (CE->getOpcode()) {
940      default:
941        if (Instruction::isCast(CE->getOpcode())) {
942          Code = bitc::CST_CODE_CE_CAST;
943          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
944          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
945          Record.push_back(VE.getValueID(C->getOperand(0)));
946          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
947        } else {
948          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
949          Code = bitc::CST_CODE_CE_BINOP;
950          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
951          Record.push_back(VE.getValueID(C->getOperand(0)));
952          Record.push_back(VE.getValueID(C->getOperand(1)));
953          uint64_t Flags = GetOptimizationFlags(CE);
954          if (Flags != 0)
955            Record.push_back(Flags);
956        }
957        break;
958      case Instruction::GetElementPtr:
959        Code = bitc::CST_CODE_CE_GEP;
960        if (cast<GEPOperator>(C)->isInBounds())
961          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
962        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
963          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
964          Record.push_back(VE.getValueID(C->getOperand(i)));
965        }
966        break;
967      case Instruction::Select:
968        Code = bitc::CST_CODE_CE_SELECT;
969        Record.push_back(VE.getValueID(C->getOperand(0)));
970        Record.push_back(VE.getValueID(C->getOperand(1)));
971        Record.push_back(VE.getValueID(C->getOperand(2)));
972        break;
973      case Instruction::ExtractElement:
974        Code = bitc::CST_CODE_CE_EXTRACTELT;
975        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
976        Record.push_back(VE.getValueID(C->getOperand(0)));
977        Record.push_back(VE.getValueID(C->getOperand(1)));
978        break;
979      case Instruction::InsertElement:
980        Code = bitc::CST_CODE_CE_INSERTELT;
981        Record.push_back(VE.getValueID(C->getOperand(0)));
982        Record.push_back(VE.getValueID(C->getOperand(1)));
983        Record.push_back(VE.getValueID(C->getOperand(2)));
984        break;
985      case Instruction::ShuffleVector:
986        // If the return type and argument types are the same, this is a
987        // standard shufflevector instruction.  If the types are different,
988        // then the shuffle is widening or truncating the input vectors, and
989        // the argument type must also be encoded.
990        if (C->getType() == C->getOperand(0)->getType()) {
991          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
992        } else {
993          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
994          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
995        }
996        Record.push_back(VE.getValueID(C->getOperand(0)));
997        Record.push_back(VE.getValueID(C->getOperand(1)));
998        Record.push_back(VE.getValueID(C->getOperand(2)));
999        break;
1000      case Instruction::ICmp:
1001      case Instruction::FCmp:
1002        Code = bitc::CST_CODE_CE_CMP;
1003        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1004        Record.push_back(VE.getValueID(C->getOperand(0)));
1005        Record.push_back(VE.getValueID(C->getOperand(1)));
1006        Record.push_back(CE->getPredicate());
1007        break;
1008      }
1009    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1010      Code = bitc::CST_CODE_BLOCKADDRESS;
1011      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1012      Record.push_back(VE.getValueID(BA->getFunction()));
1013      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1014    } else {
1015#ifndef NDEBUG
1016      C->dump();
1017#endif
1018      llvm_unreachable("Unknown constant!");
1019    }
1020    Stream.EmitRecord(Code, Record, AbbrevToUse);
1021    Record.clear();
1022  }
1023
1024  Stream.ExitBlock();
1025}
1026
1027static void WriteModuleConstants(const llvm_2_9::ValueEnumerator &VE,
1028                                 BitstreamWriter &Stream) {
1029  const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getValues();
1030
1031  // Find the first constant to emit, which is the first non-globalvalue value.
1032  // We know globalvalues have been emitted by WriteModuleInfo.
1033  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1034    if (!isa<GlobalValue>(Vals[i].first)) {
1035      WriteConstants(i, Vals.size(), VE, Stream, true);
1036      return;
1037    }
1038  }
1039}
1040
1041/// PushValueAndType - The file has to encode both the value and type id for
1042/// many values, because we need to know what type to create for forward
1043/// references.  However, most operands are not forward references, so this type
1044/// field is not needed.
1045///
1046/// This function adds V's value ID to Vals.  If the value ID is higher than the
1047/// instruction ID, then it is a forward reference, and it also includes the
1048/// type ID.
1049static bool PushValueAndType(const Value *V, unsigned InstID,
1050                             SmallVector<unsigned, 64> &Vals,
1051                             llvm_2_9::ValueEnumerator &VE) {
1052  unsigned ValID = VE.getValueID(V);
1053  Vals.push_back(ValID);
1054  if (ValID >= InstID) {
1055    Vals.push_back(VE.getTypeID(V->getType()));
1056    return true;
1057  }
1058  return false;
1059}
1060
1061/// WriteInstruction - Emit an instruction to the specified stream.
1062static void WriteInstruction(const Instruction &I, unsigned InstID,
1063                             llvm_2_9::ValueEnumerator &VE,
1064                             BitstreamWriter &Stream,
1065                             SmallVector<unsigned, 64> &Vals) {
1066  unsigned Code = 0;
1067  unsigned AbbrevToUse = 0;
1068  VE.setInstructionID(&I);
1069  switch (I.getOpcode()) {
1070  default:
1071    if (Instruction::isCast(I.getOpcode())) {
1072      Code = bitc::FUNC_CODE_INST_CAST;
1073      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1074        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1075      Vals.push_back(VE.getTypeID(I.getType()));
1076      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1077    } else {
1078      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1079      Code = bitc::FUNC_CODE_INST_BINOP;
1080      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1081        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1082      Vals.push_back(VE.getValueID(I.getOperand(1)));
1083      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1084      uint64_t Flags = GetOptimizationFlags(&I);
1085      if (Flags != 0) {
1086        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1087          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1088        Vals.push_back(Flags);
1089      }
1090    }
1091    break;
1092
1093  case Instruction::GetElementPtr:
1094    Code = bitc::FUNC_CODE_INST_GEP_OLD;
1095    if (cast<GEPOperator>(&I)->isInBounds())
1096      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
1097    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1098      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1099    break;
1100  case Instruction::ExtractValue: {
1101    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1102    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1103    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1104    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1105      Vals.push_back(*i);
1106    break;
1107  }
1108  case Instruction::InsertValue: {
1109    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1110    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1111    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1112    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1113    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1114      Vals.push_back(*i);
1115    break;
1116  }
1117  case Instruction::Select:
1118    Code = bitc::FUNC_CODE_INST_VSELECT;
1119    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1120    Vals.push_back(VE.getValueID(I.getOperand(2)));
1121    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1122    break;
1123  case Instruction::ExtractElement:
1124    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1125    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1126    Vals.push_back(VE.getValueID(I.getOperand(1)));
1127    break;
1128  case Instruction::InsertElement:
1129    Code = bitc::FUNC_CODE_INST_INSERTELT;
1130    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1131    Vals.push_back(VE.getValueID(I.getOperand(1)));
1132    Vals.push_back(VE.getValueID(I.getOperand(2)));
1133    break;
1134  case Instruction::ShuffleVector:
1135    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1136    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1137    Vals.push_back(VE.getValueID(I.getOperand(1)));
1138    Vals.push_back(VE.getValueID(I.getOperand(2)));
1139    break;
1140  case Instruction::ICmp:
1141  case Instruction::FCmp:
1142    // compare returning Int1Ty or vector of Int1Ty
1143    Code = bitc::FUNC_CODE_INST_CMP2;
1144    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1145    Vals.push_back(VE.getValueID(I.getOperand(1)));
1146    Vals.push_back(cast<CmpInst>(I).getPredicate());
1147    break;
1148
1149  case Instruction::Ret:
1150    {
1151      Code = bitc::FUNC_CODE_INST_RET;
1152      unsigned NumOperands = I.getNumOperands();
1153      if (NumOperands == 0)
1154        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1155      else if (NumOperands == 1) {
1156        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1157          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1158      } else {
1159        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1160          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1161      }
1162    }
1163    break;
1164  case Instruction::Br:
1165    {
1166      Code = bitc::FUNC_CODE_INST_BR;
1167      const BranchInst &II = cast<BranchInst>(I);
1168      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1169      if (II.isConditional()) {
1170        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1171        Vals.push_back(VE.getValueID(II.getCondition()));
1172      }
1173    }
1174    break;
1175  case Instruction::Switch:
1176    {
1177      Code = bitc::FUNC_CODE_INST_SWITCH;
1178      const SwitchInst &SI = cast<SwitchInst>(I);
1179      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1180      Vals.push_back(VE.getValueID(SI.getCondition()));
1181      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1182      for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1183           i != e; ++i) {
1184        Vals.push_back(VE.getValueID(i.getCaseValue()));
1185        Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1186      }
1187    }
1188    break;
1189  case Instruction::IndirectBr:
1190    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1191    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1192    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1193      Vals.push_back(VE.getValueID(I.getOperand(i)));
1194    break;
1195
1196  case Instruction::Invoke: {
1197    const InvokeInst *II = cast<InvokeInst>(&I);
1198    const Value *Callee(II->getCalledValue());
1199    PointerType *PTy = cast<PointerType>(Callee->getType());
1200    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1201    Code = bitc::FUNC_CODE_INST_INVOKE;
1202
1203    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1204    Vals.push_back(II->getCallingConv());
1205    Vals.push_back(VE.getValueID(II->getNormalDest()));
1206    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1207    PushValueAndType(Callee, InstID, Vals, VE);
1208
1209    // Emit value #'s for the fixed parameters.
1210    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1211      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1212
1213    // Emit type/value pairs for varargs params.
1214    if (FTy->isVarArg()) {
1215      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1216           i != e; ++i)
1217        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1218    }
1219    break;
1220  }
1221  case Instruction::Unreachable:
1222    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1223    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1224    break;
1225
1226  case Instruction::PHI: {
1227    const PHINode &PN = cast<PHINode>(I);
1228    Code = bitc::FUNC_CODE_INST_PHI;
1229    Vals.push_back(VE.getTypeID(PN.getType()));
1230    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1231      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1232      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1233    }
1234    break;
1235  }
1236
1237  case Instruction::Alloca:
1238    Code = bitc::FUNC_CODE_INST_ALLOCA;
1239    Vals.push_back(VE.getTypeID(I.getType()));
1240    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1241    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1242    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1243    break;
1244
1245  case Instruction::Load:
1246    Code = bitc::FUNC_CODE_INST_LOAD;
1247    if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1248      AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1249
1250    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1251    Vals.push_back(cast<LoadInst>(I).isVolatile());
1252    break;
1253  case Instruction::Store:
1254    Code = bitc::FUNC_CODE_INST_STORE_OLD;
1255    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1256    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1257    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1258    Vals.push_back(cast<StoreInst>(I).isVolatile());
1259    break;
1260  case Instruction::Call: {
1261    const CallInst &CI = cast<CallInst>(I);
1262    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1263    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1264
1265    Code = FUNC_CODE_INST_CALL_2_7;
1266
1267    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1268    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1269    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1270
1271    // Emit value #'s for the fixed parameters.
1272    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1273      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1274
1275    // Emit type/value pairs for varargs params.
1276    if (FTy->isVarArg()) {
1277      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1278           i != e; ++i)
1279        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1280    }
1281    break;
1282  }
1283  case Instruction::VAArg:
1284    Code = bitc::FUNC_CODE_INST_VAARG;
1285    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1286    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1287    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1288    break;
1289  }
1290
1291  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1292  Vals.clear();
1293}
1294
1295// Emit names for globals/functions etc.
1296static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1297                                  const llvm_2_9::ValueEnumerator &VE,
1298                                  BitstreamWriter &Stream) {
1299  if (VST.empty()) return;
1300  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1301
1302  // FIXME: Set up the abbrev, we know how many values there are!
1303  // FIXME: We know if the type names can use 7-bit ascii.
1304  SmallVector<unsigned, 64> NameVals;
1305
1306  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1307       SI != SE; ++SI) {
1308
1309    const ValueName &Name = *SI;
1310
1311    // Figure out the encoding to use for the name.
1312    bool is7Bit = true;
1313    bool isChar6 = true;
1314    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1315         C != E; ++C) {
1316      if (isChar6)
1317        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1318      if ((unsigned char)*C & 128) {
1319        is7Bit = false;
1320        break;  // don't bother scanning the rest.
1321      }
1322    }
1323
1324    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1325
1326    // VST_ENTRY:   [valueid, namechar x N]
1327    // VST_BBENTRY: [bbid, namechar x N]
1328    unsigned Code;
1329    if (isa<BasicBlock>(SI->getValue())) {
1330      Code = bitc::VST_CODE_BBENTRY;
1331      if (isChar6)
1332        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1333    } else {
1334      Code = bitc::VST_CODE_ENTRY;
1335      if (isChar6)
1336        AbbrevToUse = VST_ENTRY_6_ABBREV;
1337      else if (is7Bit)
1338        AbbrevToUse = VST_ENTRY_7_ABBREV;
1339    }
1340
1341    NameVals.push_back(VE.getValueID(SI->getValue()));
1342    for (const char *P = Name.getKeyData(),
1343         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1344      NameVals.push_back((unsigned char)*P);
1345
1346    // Emit the finished record.
1347    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1348    NameVals.clear();
1349  }
1350  Stream.ExitBlock();
1351}
1352
1353/// WriteFunction - Emit a function body to the module stream.
1354static void WriteFunction(const Function &F, llvm_2_9::ValueEnumerator &VE,
1355                          BitstreamWriter &Stream) {
1356  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1357  VE.incorporateFunction(F);
1358
1359  SmallVector<unsigned, 64> Vals;
1360
1361  // Emit the number of basic blocks, so the reader can create them ahead of
1362  // time.
1363  Vals.push_back(VE.getBasicBlocks().size());
1364  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1365  Vals.clear();
1366
1367  // If there are function-local constants, emit them now.
1368  unsigned CstStart, CstEnd;
1369  VE.getFunctionConstantRange(CstStart, CstEnd);
1370  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1371
1372  // If there is function-local metadata, emit it now.
1373  WriteFunctionLocalMetadata(F, VE, Stream);
1374
1375  // Keep a running idea of what the instruction ID is.
1376  unsigned InstID = CstEnd;
1377
1378  bool NeedsMetadataAttachment = false;
1379
1380  DILocation *LastDL = nullptr;;
1381
1382  // Finally, emit all the instructions, in order.
1383  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1384    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1385         I != E; ++I) {
1386      WriteInstruction(*I, InstID, VE, Stream, Vals);
1387
1388      if (!I->getType()->isVoidTy())
1389        ++InstID;
1390
1391      // If the instruction has metadata, write a metadata attachment later.
1392      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1393
1394      // If the instruction has a debug location, emit it.
1395      DILocation *DL = I->getDebugLoc();
1396      if (!DL)
1397        continue;
1398
1399      if (DL == LastDL) {
1400        // Just repeat the same debug loc as last time.
1401        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1402        continue;
1403      }
1404
1405      Vals.push_back(DL->getLine());
1406      Vals.push_back(DL->getColumn());
1407      Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
1408      Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
1409      Stream.EmitRecord(FUNC_CODE_DEBUG_LOC_2_7, Vals);
1410      Vals.clear();
1411
1412      LastDL = DL;
1413    }
1414
1415  // Emit names for all the instructions etc.
1416  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1417
1418  if (NeedsMetadataAttachment)
1419    WriteMetadataAttachment(F, VE, Stream);
1420  VE.purgeFunction();
1421  Stream.ExitBlock();
1422}
1423
1424// Emit blockinfo, which defines the standard abbreviations etc.
1425static void WriteBlockInfo(const llvm_2_9::ValueEnumerator &VE,
1426                           BitstreamWriter &Stream) {
1427  // We only want to emit block info records for blocks that have multiple
1428  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1429  // blocks can defined their abbrevs inline.
1430  Stream.EnterBlockInfoBlock(2);
1431
1432  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1433    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1434    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1435    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1436    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1437    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1438    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1439                                   Abbv) != VST_ENTRY_8_ABBREV)
1440      llvm_unreachable("Unexpected abbrev ordering!");
1441  }
1442
1443  { // 7-bit fixed width VST_ENTRY strings.
1444    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1445    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1446    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1447    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1448    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1449    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1450                                   Abbv) != VST_ENTRY_7_ABBREV)
1451      llvm_unreachable("Unexpected abbrev ordering!");
1452  }
1453  { // 6-bit char6 VST_ENTRY strings.
1454    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1455    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1456    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1457    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1458    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1459    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1460                                   Abbv) != VST_ENTRY_6_ABBREV)
1461      llvm_unreachable("Unexpected abbrev ordering!");
1462  }
1463  { // 6-bit char6 VST_BBENTRY strings.
1464    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1465    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1466    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1467    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1468    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1469    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1470                                   Abbv) != VST_BBENTRY_6_ABBREV)
1471      llvm_unreachable("Unexpected abbrev ordering!");
1472  }
1473
1474
1475
1476  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1477    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1478    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1479    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1480                              Log2_32_Ceil(VE.getTypes().size()+1)));
1481    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1482                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1483      llvm_unreachable("Unexpected abbrev ordering!");
1484  }
1485
1486  { // INTEGER abbrev for CONSTANTS_BLOCK.
1487    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1488    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1489    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1490    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1491                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1492      llvm_unreachable("Unexpected abbrev ordering!");
1493  }
1494
1495  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1496    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1497    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1498    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1499    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1500                              Log2_32_Ceil(VE.getTypes().size()+1)));
1501    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1502
1503    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1504                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1505      llvm_unreachable("Unexpected abbrev ordering!");
1506  }
1507  { // NULL abbrev for CONSTANTS_BLOCK.
1508    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1509    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1510    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1511                                   Abbv) != CONSTANTS_NULL_Abbrev)
1512      llvm_unreachable("Unexpected abbrev ordering!");
1513  }
1514
1515  // FIXME: This should only use space for first class types!
1516
1517  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1518    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1519    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1520    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1521    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1522    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1523    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1524                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1525      llvm_unreachable("Unexpected abbrev ordering!");
1526  }
1527  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1528    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1529    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1530    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1531    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1532    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1533    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1534                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1535      llvm_unreachable("Unexpected abbrev ordering!");
1536  }
1537  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1538    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1539    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1540    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1541    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1542    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1543    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1544    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1545                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1546      llvm_unreachable("Unexpected abbrev ordering!");
1547  }
1548  { // INST_CAST abbrev for FUNCTION_BLOCK.
1549    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1550    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1551    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1552    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1553                              Log2_32_Ceil(VE.getTypes().size()+1)));
1554    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1555    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1556                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1557      llvm_unreachable("Unexpected abbrev ordering!");
1558  }
1559
1560  { // INST_RET abbrev for FUNCTION_BLOCK.
1561    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1562    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1563    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1564                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1565      llvm_unreachable("Unexpected abbrev ordering!");
1566  }
1567  { // INST_RET abbrev for FUNCTION_BLOCK.
1568    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1569    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1570    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1571    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1572                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1573      llvm_unreachable("Unexpected abbrev ordering!");
1574  }
1575  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1576    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1577    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1578    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1579                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1580      llvm_unreachable("Unexpected abbrev ordering!");
1581  }
1582
1583  Stream.ExitBlock();
1584}
1585
1586/// WriteModule - Emit the specified module to the bitstream.
1587static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1588  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1589
1590  // Emit the version number if it is non-zero.
1591  if (CurVersion) {
1592    SmallVector<unsigned, 1> Vals;
1593    Vals.push_back(CurVersion);
1594    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1595  }
1596
1597  // Analyze the module, enumerating globals, functions, etc.
1598  llvm_2_9::ValueEnumerator VE(*M);
1599
1600  // Emit blockinfo, which defines the standard abbreviations etc.
1601  WriteBlockInfo(VE, Stream);
1602
1603  // Emit information about parameter attributes.
1604  WriteAttributeTable(VE, Stream);
1605
1606  // Emit information describing all of the types in the module.
1607  WriteTypeTable(VE, Stream);
1608
1609  // Emit top-level description of module, including target triple, inline asm,
1610  // descriptors for global variables, and function prototype info.
1611  WriteModuleInfo(M, VE, Stream);
1612
1613  // Emit constants.
1614  WriteModuleConstants(VE, Stream);
1615
1616  // Emit metadata.
1617  WriteModuleMetadata(M, VE, Stream);
1618
1619  // Emit function bodies.
1620  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1621    if (!F->isDeclaration())
1622      WriteFunction(*F, VE, Stream);
1623
1624  // Emit metadata.
1625  WriteModuleMetadataStore(M, Stream);
1626
1627  // Emit names for globals/functions etc.
1628  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1629
1630  Stream.ExitBlock();
1631}
1632
1633/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1634/// header and trailer to make it compatible with the system archiver.  To do
1635/// this we emit the following header, and then emit a trailer that pads the
1636/// file out to be a multiple of 16 bytes.
1637///
1638/// struct bc_header {
1639///   uint32_t Magic;         // 0x0B17C0DE
1640///   uint32_t Version;       // Version, currently always 0.
1641///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1642///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1643///   uint32_t CPUType;       // CPU specifier.
1644///   ... potentially more later ...
1645/// };
1646enum {
1647  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1648  DarwinBCHeaderSize = 5*4
1649};
1650
1651static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1652                               uint32_t &Position) {
1653  Buffer[Position + 0] = (unsigned char) (Value >>  0);
1654  Buffer[Position + 1] = (unsigned char) (Value >>  8);
1655  Buffer[Position + 2] = (unsigned char) (Value >> 16);
1656  Buffer[Position + 3] = (unsigned char) (Value >> 24);
1657  Position += 4;
1658}
1659
1660static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1661                                         const Triple &TT) {
1662  unsigned CPUType = ~0U;
1663
1664  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1665  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1666  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1667  // specific constants here because they are implicitly part of the Darwin ABI.
1668  enum {
1669    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1670    DARWIN_CPU_TYPE_X86        = 7,
1671    DARWIN_CPU_TYPE_ARM        = 12,
1672    DARWIN_CPU_TYPE_POWERPC    = 18
1673  };
1674
1675  Triple::ArchType Arch = TT.getArch();
1676  if (Arch == Triple::x86_64)
1677    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1678  else if (Arch == Triple::x86)
1679    CPUType = DARWIN_CPU_TYPE_X86;
1680  else if (Arch == Triple::ppc)
1681    CPUType = DARWIN_CPU_TYPE_POWERPC;
1682  else if (Arch == Triple::ppc64)
1683    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1684  else if (Arch == Triple::arm || Arch == Triple::thumb)
1685    CPUType = DARWIN_CPU_TYPE_ARM;
1686
1687  // Traditional Bitcode starts after header.
1688  assert(Buffer.size() >= DarwinBCHeaderSize &&
1689         "Expected header size to be reserved");
1690  unsigned BCOffset = DarwinBCHeaderSize;
1691  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1692
1693  // Write the magic and version.
1694  unsigned Position = 0;
1695  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1696  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1697  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1698  WriteInt32ToBuffer(BCSize     , Buffer, Position);
1699  WriteInt32ToBuffer(CPUType    , Buffer, Position);
1700
1701  // If the file is not a multiple of 16 bytes, insert dummy padding.
1702  while (Buffer.size() & 15)
1703    Buffer.push_back(0);
1704}
1705
1706/// WriteBitcodeToFile - Write the specified module to the specified output
1707/// stream.
1708void llvm_2_9::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1709  SmallVector<char, 1024> Buffer;
1710  Buffer.reserve(256*1024);
1711
1712  // If this is darwin or another generic macho target, reserve space for the
1713  // header.
1714  Triple TT(M->getTargetTriple());
1715  if (TT.isOSDarwin())
1716    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1717
1718  // Emit the module into the buffer.
1719  {
1720    BitstreamWriter Stream(Buffer);
1721
1722    // Emit the file header.
1723    Stream.Emit((unsigned)'B', 8);
1724    Stream.Emit((unsigned)'C', 8);
1725    Stream.Emit(0x0, 4);
1726    Stream.Emit(0xC, 4);
1727    Stream.Emit(0xE, 4);
1728    Stream.Emit(0xD, 4);
1729
1730    // Emit the module.
1731    WriteModule(M, Stream);
1732  }
1733
1734  if (TT.isOSDarwin())
1735    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1736
1737  // Write the generated bitstream to "Out".
1738  Out.write((char*)&Buffer.front(), Buffer.size());
1739}
1740