BitcodeWriter.cpp revision 0da7f6c8201b27938d3b9f048d71fd784cd1df9a
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ReaderWriter_2_9_func.h"
15#include "ValueEnumerator.h"
16#include "llvm/ADT/Triple.h"
17#include "llvm/Bitcode/BitstreamWriter.h"
18#include "llvm/Bitcode/LLVMBitCodes.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DerivedTypes.h"
21#include "llvm/IR/InlineAsm.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/Module.h"
24#include "llvm/IR/Operator.h"
25#include "llvm/IR/ValueSymbolTable.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/Program.h"
29#include "llvm/Support/raw_ostream.h"
30#include <cctype>
31#include <map>
32using namespace llvm;
33
34/// These are manifest constants used by the bitcode writer. They do not need to
35/// be kept in sync with the reader, but need to be consistent within this file.
36enum {
37  CurVersion = 0,
38
39  // VALUE_SYMTAB_BLOCK abbrev id's.
40  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41  VST_ENTRY_7_ABBREV,
42  VST_ENTRY_6_ABBREV,
43  VST_BBENTRY_6_ABBREV,
44
45  // CONSTANTS_BLOCK abbrev id's.
46  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47  CONSTANTS_INTEGER_ABBREV,
48  CONSTANTS_CE_CAST_Abbrev,
49  CONSTANTS_NULL_Abbrev,
50
51  // FUNCTION_BLOCK abbrev id's.
52  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53  FUNCTION_INST_BINOP_ABBREV,
54  FUNCTION_INST_BINOP_FLAGS_ABBREV,
55  FUNCTION_INST_CAST_ABBREV,
56  FUNCTION_INST_RET_VOID_ABBREV,
57  FUNCTION_INST_RET_VAL_ABBREV,
58  FUNCTION_INST_UNREACHABLE_ABBREV
59};
60
61
62static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63  switch (Opcode) {
64  default: llvm_unreachable("Unknown cast instruction!");
65  case Instruction::Trunc   : return bitc::CAST_TRUNC;
66  case Instruction::ZExt    : return bitc::CAST_ZEXT;
67  case Instruction::SExt    : return bitc::CAST_SEXT;
68  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73  case Instruction::FPExt   : return bitc::CAST_FPEXT;
74  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76  case Instruction::BitCast : return bitc::CAST_BITCAST;
77  }
78}
79
80static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81  switch (Opcode) {
82  default: llvm_unreachable("Unknown binary instruction!");
83  case Instruction::Add:
84  case Instruction::FAdd: return bitc::BINOP_ADD;
85  case Instruction::Sub:
86  case Instruction::FSub: return bitc::BINOP_SUB;
87  case Instruction::Mul:
88  case Instruction::FMul: return bitc::BINOP_MUL;
89  case Instruction::UDiv: return bitc::BINOP_UDIV;
90  case Instruction::FDiv:
91  case Instruction::SDiv: return bitc::BINOP_SDIV;
92  case Instruction::URem: return bitc::BINOP_UREM;
93  case Instruction::FRem:
94  case Instruction::SRem: return bitc::BINOP_SREM;
95  case Instruction::Shl:  return bitc::BINOP_SHL;
96  case Instruction::LShr: return bitc::BINOP_LSHR;
97  case Instruction::AShr: return bitc::BINOP_ASHR;
98  case Instruction::And:  return bitc::BINOP_AND;
99  case Instruction::Or:   return bitc::BINOP_OR;
100  case Instruction::Xor:  return bitc::BINOP_XOR;
101  }
102}
103
104static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
105  switch (Op) {
106  default: llvm_unreachable("Unknown RMW operation!");
107  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
108  case AtomicRMWInst::Add: return bitc::RMW_ADD;
109  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
110  case AtomicRMWInst::And: return bitc::RMW_AND;
111  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
112  case AtomicRMWInst::Or: return bitc::RMW_OR;
113  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
114  case AtomicRMWInst::Max: return bitc::RMW_MAX;
115  case AtomicRMWInst::Min: return bitc::RMW_MIN;
116  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
117  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
118  }
119}
120
121static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
122  switch (Ordering) {
123  default: llvm_unreachable("Unknown atomic ordering");
124  case NotAtomic: return bitc::ORDERING_NOTATOMIC;
125  case Unordered: return bitc::ORDERING_UNORDERED;
126  case Monotonic: return bitc::ORDERING_MONOTONIC;
127  case Acquire: return bitc::ORDERING_ACQUIRE;
128  case Release: return bitc::ORDERING_RELEASE;
129  case AcquireRelease: return bitc::ORDERING_ACQREL;
130  case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
131  }
132}
133
134static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
135  switch (SynchScope) {
136  default: llvm_unreachable("Unknown synchronization scope");
137  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
138  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
139  }
140}
141
142static void WriteStringRecord(unsigned Code, StringRef Str,
143                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
144  SmallVector<unsigned, 64> Vals;
145
146  // Code: [strchar x N]
147  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
148    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
149      AbbrevToUse = 0;
150    Vals.push_back(Str[i]);
151  }
152
153  // Emit the finished record.
154  Stream.EmitRecord(Code, Vals, AbbrevToUse);
155}
156
157// Emit information about parameter attributes.
158static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE,
159                                BitstreamWriter &Stream) {
160  const std::vector<AttributeSet> &Attrs = VE.getAttributes();
161  if (Attrs.empty()) return;
162
163  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
164
165  SmallVector<uint64_t, 64> Record;
166  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
167    const AttributeSet &A = Attrs[i];
168    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
169      Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
170
171    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
172    Record.clear();
173  }
174
175  Stream.ExitBlock();
176}
177
178/// WriteTypeTable - Write out the type table for a module.
179static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE,
180                           BitstreamWriter &Stream) {
181  const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes();
182
183  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
184  SmallVector<uint64_t, 64> TypeVals;
185
186  // Abbrev for TYPE_CODE_POINTER.
187  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
188  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
189  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
190                            Log2_32_Ceil(VE.getTypes().size()+1)));
191  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
192  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
193
194  // Abbrev for TYPE_CODE_FUNCTION.
195  Abbv = new BitCodeAbbrev();
196  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
197  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
198  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
199  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
200  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
201                            Log2_32_Ceil(VE.getTypes().size()+1)));
202  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
203
204  // Abbrev for TYPE_CODE_STRUCT_ANON.
205  Abbv = new BitCodeAbbrev();
206  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
207  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
208  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
209  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
210                            Log2_32_Ceil(VE.getTypes().size()+1)));
211  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
212
213  // Abbrev for TYPE_CODE_STRUCT_NAME.
214  Abbv = new BitCodeAbbrev();
215  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
216  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
217  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
218  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
219
220  // Abbrev for TYPE_CODE_STRUCT_NAMED.
221  Abbv = new BitCodeAbbrev();
222  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
223  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
224  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
225  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
226                            Log2_32_Ceil(VE.getTypes().size()+1)));
227  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
228
229  // Abbrev for TYPE_CODE_ARRAY.
230  Abbv = new BitCodeAbbrev();
231  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
232  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
233  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
234                            Log2_32_Ceil(VE.getTypes().size()+1)));
235  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
236
237  // Emit an entry count so the reader can reserve space.
238  TypeVals.push_back(TypeList.size());
239  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
240  TypeVals.clear();
241
242  // Loop over all of the types, emitting each in turn.
243  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
244    Type *T = TypeList[i];
245    int AbbrevToUse = 0;
246    unsigned Code = 0;
247
248    switch (T->getTypeID()) {
249    default: llvm_unreachable("Unknown type!");
250    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
251    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
252    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
253    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
254    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
255    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
256    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
257    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
258    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
259    case Type::IntegerTyID:
260      // INTEGER: [width]
261      Code = bitc::TYPE_CODE_INTEGER;
262      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
263      break;
264    case Type::PointerTyID: {
265      PointerType *PTy = cast<PointerType>(T);
266      // POINTER: [pointee type, address space]
267      Code = bitc::TYPE_CODE_POINTER;
268      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
269      unsigned AddressSpace = PTy->getAddressSpace();
270      TypeVals.push_back(AddressSpace);
271      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
272      break;
273    }
274    case Type::FunctionTyID: {
275      FunctionType *FT = cast<FunctionType>(T);
276      // FUNCTION: [isvararg, attrid, retty, paramty x N]
277      Code = bitc::TYPE_CODE_FUNCTION_OLD;
278      TypeVals.push_back(FT->isVarArg());
279      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
280      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
281      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
282        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
283      AbbrevToUse = FunctionAbbrev;
284      break;
285    }
286    case Type::StructTyID: {
287      StructType *ST = cast<StructType>(T);
288      // STRUCT: [ispacked, eltty x N]
289      TypeVals.push_back(ST->isPacked());
290      // Output all of the element types.
291      for (StructType::element_iterator I = ST->element_begin(),
292           E = ST->element_end(); I != E; ++I)
293        TypeVals.push_back(VE.getTypeID(*I));
294
295      if (ST->isLiteral()) {
296        Code = bitc::TYPE_CODE_STRUCT_ANON;
297        AbbrevToUse = StructAnonAbbrev;
298      } else {
299        if (ST->isOpaque()) {
300          Code = bitc::TYPE_CODE_OPAQUE;
301        } else {
302          Code = bitc::TYPE_CODE_STRUCT_NAMED;
303          AbbrevToUse = StructNamedAbbrev;
304        }
305
306        // Emit the name if it is present.
307        if (!ST->getName().empty())
308          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
309                            StructNameAbbrev, Stream);
310      }
311      break;
312    }
313    case Type::ArrayTyID: {
314      ArrayType *AT = cast<ArrayType>(T);
315      // ARRAY: [numelts, eltty]
316      Code = bitc::TYPE_CODE_ARRAY;
317      TypeVals.push_back(AT->getNumElements());
318      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
319      AbbrevToUse = ArrayAbbrev;
320      break;
321    }
322    case Type::VectorTyID: {
323      VectorType *VT = cast<VectorType>(T);
324      // VECTOR [numelts, eltty]
325      Code = bitc::TYPE_CODE_VECTOR;
326      TypeVals.push_back(VT->getNumElements());
327      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
328      break;
329    }
330    }
331
332    // Emit the finished record.
333    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
334    TypeVals.clear();
335  }
336
337  Stream.ExitBlock();
338}
339
340static unsigned getEncodedLinkage(const GlobalValue *GV) {
341  switch (GV->getLinkage()) {
342  case GlobalValue::ExternalLinkage:                 return 0;
343  case GlobalValue::WeakAnyLinkage:                  return 1;
344  case GlobalValue::AppendingLinkage:                return 2;
345  case GlobalValue::InternalLinkage:                 return 3;
346  case GlobalValue::LinkOnceAnyLinkage:              return 4;
347  case GlobalValue::DLLImportLinkage:                return 5;
348  case GlobalValue::DLLExportLinkage:                return 6;
349  case GlobalValue::ExternalWeakLinkage:             return 7;
350  case GlobalValue::CommonLinkage:                   return 8;
351  case GlobalValue::PrivateLinkage:                  return 9;
352  case GlobalValue::WeakODRLinkage:                  return 10;
353  case GlobalValue::LinkOnceODRLinkage:              return 11;
354  case GlobalValue::AvailableExternallyLinkage:      return 12;
355  case GlobalValue::LinkerPrivateLinkage:            return 13;
356  case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
357  case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
358  }
359  llvm_unreachable("Invalid linkage");
360}
361
362static unsigned getEncodedVisibility(const GlobalValue *GV) {
363  switch (GV->getVisibility()) {
364  default: llvm_unreachable("Invalid visibility!");
365  case GlobalValue::DefaultVisibility:   return 0;
366  case GlobalValue::HiddenVisibility:    return 1;
367  case GlobalValue::ProtectedVisibility: return 2;
368  }
369}
370
371// Emit top-level description of module, including target triple, inline asm,
372// descriptors for global variables, and function prototype info.
373static void WriteModuleInfo(const Module *M,
374                            const llvm_2_9_func::ValueEnumerator &VE,
375                            BitstreamWriter &Stream) {
376  // Emit various pieces of data attached to a module.
377  if (!M->getTargetTriple().empty())
378    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
379                      0/*TODO*/, Stream);
380  if (!M->getDataLayout().empty())
381    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
382                      0/*TODO*/, Stream);
383  if (!M->getModuleInlineAsm().empty())
384    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
385                      0/*TODO*/, Stream);
386
387  // Emit information about sections and GC, computing how many there are. Also
388  // compute the maximum alignment value.
389  std::map<std::string, unsigned> SectionMap;
390  std::map<std::string, unsigned> GCMap;
391  unsigned MaxAlignment = 0;
392  unsigned MaxGlobalType = 0;
393  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
394       GV != E; ++GV) {
395    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
396    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
397
398    if (!GV->hasSection()) continue;
399    // Give section names unique ID's.
400    unsigned &Entry = SectionMap[GV->getSection()];
401    if (Entry != 0) continue;
402    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
403                      0/*TODO*/, Stream);
404    Entry = SectionMap.size();
405  }
406  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
407    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
408    if (F->hasSection()) {
409      // Give section names unique ID's.
410      unsigned &Entry = SectionMap[F->getSection()];
411      if (!Entry) {
412        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
413                          0/*TODO*/, Stream);
414        Entry = SectionMap.size();
415      }
416    }
417    if (F->hasGC()) {
418      // Same for GC names.
419      unsigned &Entry = GCMap[F->getGC()];
420      if (!Entry) {
421        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
422                          0/*TODO*/, Stream);
423        Entry = GCMap.size();
424      }
425    }
426  }
427
428  // Emit abbrev for globals, now that we know # sections and max alignment.
429  unsigned SimpleGVarAbbrev = 0;
430  if (!M->global_empty()) {
431    // Add an abbrev for common globals with no visibility or thread localness.
432    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
433    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
434    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
435                              Log2_32_Ceil(MaxGlobalType+1)));
436    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
437    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
438    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
439    if (MaxAlignment == 0)                                      // Alignment.
440      Abbv->Add(BitCodeAbbrevOp(0));
441    else {
442      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
443      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
444                               Log2_32_Ceil(MaxEncAlignment+1)));
445    }
446    if (SectionMap.empty())                                    // Section.
447      Abbv->Add(BitCodeAbbrevOp(0));
448    else
449      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
450                               Log2_32_Ceil(SectionMap.size()+1)));
451    // Don't bother emitting vis + thread local.
452    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
453  }
454
455  // Emit the global variable information.
456  SmallVector<unsigned, 64> Vals;
457  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
458       GV != E; ++GV) {
459    unsigned AbbrevToUse = 0;
460
461    // GLOBALVAR: [type, isconst, initid,
462    //             linkage, alignment, section, visibility, threadlocal,
463    //             unnamed_addr]
464    Vals.push_back(VE.getTypeID(GV->getType()));
465    Vals.push_back(GV->isConstant());
466    Vals.push_back(GV->isDeclaration() ? 0 :
467                   (VE.getValueID(GV->getInitializer()) + 1));
468    Vals.push_back(getEncodedLinkage(GV));
469    Vals.push_back(Log2_32(GV->getAlignment())+1);
470    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
471    if (GV->isThreadLocal() ||
472        GV->getVisibility() != GlobalValue::DefaultVisibility ||
473        GV->hasUnnamedAddr()) {
474      Vals.push_back(getEncodedVisibility(GV));
475      Vals.push_back(GV->isThreadLocal());
476      Vals.push_back(GV->hasUnnamedAddr());
477    } else {
478      AbbrevToUse = SimpleGVarAbbrev;
479    }
480
481    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
482    Vals.clear();
483  }
484
485  // Emit the function proto information.
486  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
487    // FUNCTION:  [type, callingconv, isproto, paramattr,
488    //             linkage, alignment, section, visibility, gc, unnamed_addr]
489    Vals.push_back(VE.getTypeID(F->getType()));
490    Vals.push_back(F->getCallingConv());
491    Vals.push_back(F->isDeclaration());
492    Vals.push_back(getEncodedLinkage(F));
493    Vals.push_back(VE.getAttributeID(F->getAttributes()));
494    Vals.push_back(Log2_32(F->getAlignment())+1);
495    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
496    Vals.push_back(getEncodedVisibility(F));
497    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
498    Vals.push_back(F->hasUnnamedAddr());
499
500    unsigned AbbrevToUse = 0;
501    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
502    Vals.clear();
503  }
504
505  // Emit the alias information.
506  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
507       AI != E; ++AI) {
508    Vals.push_back(VE.getTypeID(AI->getType()));
509    Vals.push_back(VE.getValueID(AI->getAliasee()));
510    Vals.push_back(getEncodedLinkage(AI));
511    Vals.push_back(getEncodedVisibility(AI));
512    unsigned AbbrevToUse = 0;
513    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
514    Vals.clear();
515  }
516}
517
518static uint64_t GetOptimizationFlags(const Value *V) {
519  uint64_t Flags = 0;
520
521  if (const OverflowingBinaryOperator *OBO =
522        dyn_cast<OverflowingBinaryOperator>(V)) {
523    if (OBO->hasNoSignedWrap())
524      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
525    if (OBO->hasNoUnsignedWrap())
526      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
527  } else if (const PossiblyExactOperator *PEO =
528               dyn_cast<PossiblyExactOperator>(V)) {
529    if (PEO->isExact())
530      Flags |= 1 << bitc::PEO_EXACT;
531  }
532
533  return Flags;
534}
535
536static void WriteMDNode(const MDNode *N,
537                        const llvm_2_9_func::ValueEnumerator &VE,
538                        BitstreamWriter &Stream,
539                        SmallVector<uint64_t, 64> &Record) {
540  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
541    if (N->getOperand(i)) {
542      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
543      Record.push_back(VE.getValueID(N->getOperand(i)));
544    } else {
545      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
546      Record.push_back(0);
547    }
548  }
549  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
550                                           bitc::METADATA_NODE;
551  Stream.EmitRecord(MDCode, Record, 0);
552  Record.clear();
553}
554
555static void WriteModuleMetadata(const Module *M,
556                                const llvm_2_9_func::ValueEnumerator &VE,
557                                BitstreamWriter &Stream) {
558  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getMDValues();
559  bool StartedMetadataBlock = false;
560  unsigned MDSAbbrev = 0;
561  SmallVector<uint64_t, 64> Record;
562  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
563
564    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
565      if (!N->isFunctionLocal() || !N->getFunction()) {
566        if (!StartedMetadataBlock) {
567          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
568          StartedMetadataBlock = true;
569        }
570        WriteMDNode(N, VE, Stream, Record);
571      }
572    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
573      if (!StartedMetadataBlock)  {
574        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
575
576        // Abbrev for METADATA_STRING.
577        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
578        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
579        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
580        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
581        MDSAbbrev = Stream.EmitAbbrev(Abbv);
582        StartedMetadataBlock = true;
583      }
584
585      // Code: [strchar x N]
586      Record.append(MDS->begin(), MDS->end());
587
588      // Emit the finished record.
589      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
590      Record.clear();
591    }
592  }
593
594  // Write named metadata.
595  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
596       E = M->named_metadata_end(); I != E; ++I) {
597    const NamedMDNode *NMD = I;
598    if (!StartedMetadataBlock)  {
599      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
600      StartedMetadataBlock = true;
601    }
602
603    // Write name.
604    StringRef Str = NMD->getName();
605    for (unsigned i = 0, e = Str.size(); i != e; ++i)
606      Record.push_back(Str[i]);
607    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
608    Record.clear();
609
610    // Write named metadata operands.
611    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
612      Record.push_back(VE.getValueID(NMD->getOperand(i)));
613    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
614    Record.clear();
615  }
616
617  if (StartedMetadataBlock)
618    Stream.ExitBlock();
619}
620
621static void WriteFunctionLocalMetadata(const Function &F,
622                                       const llvm_2_9_func::ValueEnumerator &VE,
623                                       BitstreamWriter &Stream) {
624  bool StartedMetadataBlock = false;
625  SmallVector<uint64_t, 64> Record;
626  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
627  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
628    if (const MDNode *N = Vals[i])
629      if (N->isFunctionLocal() && N->getFunction() == &F) {
630        if (!StartedMetadataBlock) {
631          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
632          StartedMetadataBlock = true;
633        }
634        WriteMDNode(N, VE, Stream, Record);
635      }
636
637  if (StartedMetadataBlock)
638    Stream.ExitBlock();
639}
640
641static void WriteMetadataAttachment(const Function &F,
642                                    const llvm_2_9_func::ValueEnumerator &VE,
643                                    BitstreamWriter &Stream) {
644  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
645
646  SmallVector<uint64_t, 64> Record;
647
648  // Write metadata attachments
649  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
650  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
651
652  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
653    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
654         I != E; ++I) {
655      MDs.clear();
656      I->getAllMetadataOtherThanDebugLoc(MDs);
657
658      // If no metadata, ignore instruction.
659      if (MDs.empty()) continue;
660
661      Record.push_back(VE.getInstructionID(I));
662
663      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
664        Record.push_back(MDs[i].first);
665        Record.push_back(VE.getValueID(MDs[i].second));
666      }
667      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
668      Record.clear();
669    }
670
671  Stream.ExitBlock();
672}
673
674static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
675  SmallVector<uint64_t, 64> Record;
676
677  // Write metadata kinds
678  // METADATA_KIND - [n x [id, name]]
679  SmallVector<StringRef, 4> Names;
680  M->getMDKindNames(Names);
681
682  if (Names.empty()) return;
683
684  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
685
686  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
687    Record.push_back(MDKindID);
688    StringRef KName = Names[MDKindID];
689    Record.append(KName.begin(), KName.end());
690
691    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
692    Record.clear();
693  }
694
695  Stream.ExitBlock();
696}
697
698static void WriteConstants(unsigned FirstVal, unsigned LastVal,
699                           const llvm_2_9_func::ValueEnumerator &VE,
700                           BitstreamWriter &Stream, bool isGlobal) {
701  if (FirstVal == LastVal) return;
702
703  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
704
705  unsigned AggregateAbbrev = 0;
706  unsigned String8Abbrev = 0;
707  unsigned CString7Abbrev = 0;
708  unsigned CString6Abbrev = 0;
709  // If this is a constant pool for the module, emit module-specific abbrevs.
710  if (isGlobal) {
711    // Abbrev for CST_CODE_AGGREGATE.
712    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
713    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
714    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
715    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
716    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
717
718    // Abbrev for CST_CODE_STRING.
719    Abbv = new BitCodeAbbrev();
720    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
721    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
722    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
723    String8Abbrev = Stream.EmitAbbrev(Abbv);
724    // Abbrev for CST_CODE_CSTRING.
725    Abbv = new BitCodeAbbrev();
726    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
727    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
728    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
729    CString7Abbrev = Stream.EmitAbbrev(Abbv);
730    // Abbrev for CST_CODE_CSTRING.
731    Abbv = new BitCodeAbbrev();
732    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
733    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
734    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
735    CString6Abbrev = Stream.EmitAbbrev(Abbv);
736  }
737
738  SmallVector<uint64_t, 64> Record;
739
740  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
741  Type *LastTy = 0;
742  for (unsigned i = FirstVal; i != LastVal; ++i) {
743    const Value *V = Vals[i].first;
744    // If we need to switch types, do so now.
745    if (V->getType() != LastTy) {
746      LastTy = V->getType();
747      Record.push_back(VE.getTypeID(LastTy));
748      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
749                        CONSTANTS_SETTYPE_ABBREV);
750      Record.clear();
751    }
752
753    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
754      Record.push_back(unsigned(IA->hasSideEffects()) |
755                       unsigned(IA->isAlignStack()) << 1);
756
757      // Add the asm string.
758      const std::string &AsmStr = IA->getAsmString();
759      Record.push_back(AsmStr.size());
760      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
761        Record.push_back(AsmStr[i]);
762
763      // Add the constraint string.
764      const std::string &ConstraintStr = IA->getConstraintString();
765      Record.push_back(ConstraintStr.size());
766      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
767        Record.push_back(ConstraintStr[i]);
768      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
769      Record.clear();
770      continue;
771    }
772    const Constant *C = cast<Constant>(V);
773    unsigned Code = -1U;
774    unsigned AbbrevToUse = 0;
775    if (C->isNullValue()) {
776      Code = bitc::CST_CODE_NULL;
777    } else if (isa<UndefValue>(C)) {
778      Code = bitc::CST_CODE_UNDEF;
779    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
780      if (IV->getBitWidth() <= 64) {
781        uint64_t V = IV->getSExtValue();
782        if ((int64_t)V >= 0)
783          Record.push_back(V << 1);
784        else
785          Record.push_back((-V << 1) | 1);
786        Code = bitc::CST_CODE_INTEGER;
787        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
788      } else {                             // Wide integers, > 64 bits in size.
789        // We have an arbitrary precision integer value to write whose
790        // bit width is > 64. However, in canonical unsigned integer
791        // format it is likely that the high bits are going to be zero.
792        // So, we only write the number of active words.
793        unsigned NWords = IV->getValue().getActiveWords();
794        const uint64_t *RawWords = IV->getValue().getRawData();
795        for (unsigned i = 0; i != NWords; ++i) {
796          int64_t V = RawWords[i];
797          if (V >= 0)
798            Record.push_back(V << 1);
799          else
800            Record.push_back((-V << 1) | 1);
801        }
802        Code = bitc::CST_CODE_WIDE_INTEGER;
803      }
804    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
805      Code = bitc::CST_CODE_FLOAT;
806      Type *Ty = CFP->getType();
807      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
808        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
809      } else if (Ty->isX86_FP80Ty()) {
810        // api needed to prevent premature destruction
811        // bits are not in the same order as a normal i80 APInt, compensate.
812        APInt api = CFP->getValueAPF().bitcastToAPInt();
813        const uint64_t *p = api.getRawData();
814        Record.push_back((p[1] << 48) | (p[0] >> 16));
815        Record.push_back(p[0] & 0xffffLL);
816      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
817        APInt api = CFP->getValueAPF().bitcastToAPInt();
818        const uint64_t *p = api.getRawData();
819        Record.push_back(p[0]);
820        Record.push_back(p[1]);
821      } else {
822        assert (0 && "Unknown FP type!");
823      }
824    } else if (isa<ConstantDataSequential>(C) &&
825               cast<ConstantDataSequential>(C)->isString()) {
826      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
827      // Emit constant strings specially.
828      unsigned NumElts = Str->getNumElements();
829      // If this is a null-terminated string, use the denser CSTRING encoding.
830      if (Str->isCString()) {
831        Code = bitc::CST_CODE_CSTRING;
832        --NumElts;  // Don't encode the null, which isn't allowed by char6.
833      } else {
834        Code = bitc::CST_CODE_STRING;
835        AbbrevToUse = String8Abbrev;
836      }
837      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
838      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
839      for (unsigned i = 0; i != NumElts; ++i) {
840        unsigned char V = Str->getElementAsInteger(i);
841        Record.push_back(V);
842        isCStr7 &= (V & 128) == 0;
843        if (isCStrChar6)
844          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
845      }
846
847      if (isCStrChar6)
848        AbbrevToUse = CString6Abbrev;
849      else if (isCStr7)
850        AbbrevToUse = CString7Abbrev;
851    } else if (const ConstantDataSequential *CDS =
852                  dyn_cast<ConstantDataSequential>(C)) {
853      // We must replace ConstantDataSequential's representation with the
854      // legacy ConstantArray/ConstantVector/ConstantStruct version.
855      // ValueEnumerator is similarly modified to mark the appropriate
856      // Constants as used (so they are emitted).
857      Code = bitc::CST_CODE_AGGREGATE;
858      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
859        Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
860      AbbrevToUse = AggregateAbbrev;
861    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
862               isa<ConstantVector>(C)) {
863      Code = bitc::CST_CODE_AGGREGATE;
864      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
865        Record.push_back(VE.getValueID(C->getOperand(i)));
866      AbbrevToUse = AggregateAbbrev;
867    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
868      switch (CE->getOpcode()) {
869      default:
870        if (Instruction::isCast(CE->getOpcode())) {
871          Code = bitc::CST_CODE_CE_CAST;
872          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
873          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
874          Record.push_back(VE.getValueID(C->getOperand(0)));
875          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
876        } else {
877          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
878          Code = bitc::CST_CODE_CE_BINOP;
879          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
880          Record.push_back(VE.getValueID(C->getOperand(0)));
881          Record.push_back(VE.getValueID(C->getOperand(1)));
882          uint64_t Flags = GetOptimizationFlags(CE);
883          if (Flags != 0)
884            Record.push_back(Flags);
885        }
886        break;
887      case Instruction::GetElementPtr:
888        Code = bitc::CST_CODE_CE_GEP;
889        if (cast<GEPOperator>(C)->isInBounds())
890          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
891        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
892          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
893          Record.push_back(VE.getValueID(C->getOperand(i)));
894        }
895        break;
896      case Instruction::Select:
897        Code = bitc::CST_CODE_CE_SELECT;
898        Record.push_back(VE.getValueID(C->getOperand(0)));
899        Record.push_back(VE.getValueID(C->getOperand(1)));
900        Record.push_back(VE.getValueID(C->getOperand(2)));
901        break;
902      case Instruction::ExtractElement:
903        Code = bitc::CST_CODE_CE_EXTRACTELT;
904        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
905        Record.push_back(VE.getValueID(C->getOperand(0)));
906        Record.push_back(VE.getValueID(C->getOperand(1)));
907        break;
908      case Instruction::InsertElement:
909        Code = bitc::CST_CODE_CE_INSERTELT;
910        Record.push_back(VE.getValueID(C->getOperand(0)));
911        Record.push_back(VE.getValueID(C->getOperand(1)));
912        Record.push_back(VE.getValueID(C->getOperand(2)));
913        break;
914      case Instruction::ShuffleVector:
915        // If the return type and argument types are the same, this is a
916        // standard shufflevector instruction.  If the types are different,
917        // then the shuffle is widening or truncating the input vectors, and
918        // the argument type must also be encoded.
919        if (C->getType() == C->getOperand(0)->getType()) {
920          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
921        } else {
922          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
923          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
924        }
925        Record.push_back(VE.getValueID(C->getOperand(0)));
926        Record.push_back(VE.getValueID(C->getOperand(1)));
927        Record.push_back(VE.getValueID(C->getOperand(2)));
928        break;
929      case Instruction::ICmp:
930      case Instruction::FCmp:
931        Code = bitc::CST_CODE_CE_CMP;
932        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
933        Record.push_back(VE.getValueID(C->getOperand(0)));
934        Record.push_back(VE.getValueID(C->getOperand(1)));
935        Record.push_back(CE->getPredicate());
936        break;
937      }
938    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
939      Code = bitc::CST_CODE_BLOCKADDRESS;
940      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
941      Record.push_back(VE.getValueID(BA->getFunction()));
942      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
943    } else {
944#ifndef NDEBUG
945      C->dump();
946#endif
947      llvm_unreachable("Unknown constant!");
948    }
949    Stream.EmitRecord(Code, Record, AbbrevToUse);
950    Record.clear();
951  }
952
953  Stream.ExitBlock();
954}
955
956static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE,
957                                 BitstreamWriter &Stream) {
958  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
959
960  // Find the first constant to emit, which is the first non-globalvalue value.
961  // We know globalvalues have been emitted by WriteModuleInfo.
962  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
963    if (!isa<GlobalValue>(Vals[i].first)) {
964      WriteConstants(i, Vals.size(), VE, Stream, true);
965      return;
966    }
967  }
968}
969
970/// PushValueAndType - The file has to encode both the value and type id for
971/// many values, because we need to know what type to create for forward
972/// references.  However, most operands are not forward references, so this type
973/// field is not needed.
974///
975/// This function adds V's value ID to Vals.  If the value ID is higher than the
976/// instruction ID, then it is a forward reference, and it also includes the
977/// type ID.
978static bool PushValueAndType(const Value *V, unsigned InstID,
979                             SmallVector<unsigned, 64> &Vals,
980                             llvm_2_9_func::ValueEnumerator &VE) {
981  unsigned ValID = VE.getValueID(V);
982  Vals.push_back(ValID);
983  if (ValID >= InstID) {
984    Vals.push_back(VE.getTypeID(V->getType()));
985    return true;
986  }
987  return false;
988}
989
990/// WriteInstruction - Emit an instruction to the specified stream.
991static void WriteInstruction(const Instruction &I, unsigned InstID,
992                             llvm_2_9_func::ValueEnumerator &VE,
993                             BitstreamWriter &Stream,
994                             SmallVector<unsigned, 64> &Vals) {
995  unsigned Code = 0;
996  unsigned AbbrevToUse = 0;
997  VE.setInstructionID(&I);
998  switch (I.getOpcode()) {
999  default:
1000    if (Instruction::isCast(I.getOpcode())) {
1001      Code = bitc::FUNC_CODE_INST_CAST;
1002      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1003        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1004      Vals.push_back(VE.getTypeID(I.getType()));
1005      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1006    } else {
1007      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1008      Code = bitc::FUNC_CODE_INST_BINOP;
1009      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1010        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1011      Vals.push_back(VE.getValueID(I.getOperand(1)));
1012      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1013      uint64_t Flags = GetOptimizationFlags(&I);
1014      if (Flags != 0) {
1015        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1016          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1017        Vals.push_back(Flags);
1018      }
1019    }
1020    break;
1021
1022  case Instruction::GetElementPtr:
1023    Code = bitc::FUNC_CODE_INST_GEP;
1024    if (cast<GEPOperator>(&I)->isInBounds())
1025      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1026    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1027      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1028    break;
1029  case Instruction::ExtractValue: {
1030    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1031    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1032    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1033    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1034      Vals.push_back(*i);
1035    break;
1036  }
1037  case Instruction::InsertValue: {
1038    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1039    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1040    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1041    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1042    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1043      Vals.push_back(*i);
1044    break;
1045  }
1046  case Instruction::Select:
1047    Code = bitc::FUNC_CODE_INST_VSELECT;
1048    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1049    Vals.push_back(VE.getValueID(I.getOperand(2)));
1050    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1051    break;
1052  case Instruction::ExtractElement:
1053    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1054    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1055    Vals.push_back(VE.getValueID(I.getOperand(1)));
1056    break;
1057  case Instruction::InsertElement:
1058    Code = bitc::FUNC_CODE_INST_INSERTELT;
1059    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1060    Vals.push_back(VE.getValueID(I.getOperand(1)));
1061    Vals.push_back(VE.getValueID(I.getOperand(2)));
1062    break;
1063  case Instruction::ShuffleVector:
1064    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1065    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1066    Vals.push_back(VE.getValueID(I.getOperand(1)));
1067    Vals.push_back(VE.getValueID(I.getOperand(2)));
1068    break;
1069  case Instruction::ICmp:
1070  case Instruction::FCmp:
1071    // compare returning Int1Ty or vector of Int1Ty
1072    Code = bitc::FUNC_CODE_INST_CMP2;
1073    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1074    Vals.push_back(VE.getValueID(I.getOperand(1)));
1075    Vals.push_back(cast<CmpInst>(I).getPredicate());
1076    break;
1077
1078  case Instruction::Ret:
1079    {
1080      Code = bitc::FUNC_CODE_INST_RET;
1081      unsigned NumOperands = I.getNumOperands();
1082      if (NumOperands == 0)
1083        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1084      else if (NumOperands == 1) {
1085        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1086          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1087      } else {
1088        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1089          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1090      }
1091    }
1092    break;
1093  case Instruction::Br:
1094    {
1095      Code = bitc::FUNC_CODE_INST_BR;
1096      const BranchInst &II = cast<BranchInst>(I);
1097      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1098      if (II.isConditional()) {
1099        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1100        Vals.push_back(VE.getValueID(II.getCondition()));
1101      }
1102    }
1103    break;
1104  case Instruction::Switch:
1105    {
1106      Code = bitc::FUNC_CODE_INST_SWITCH;
1107      const SwitchInst &SI = cast<SwitchInst>(I);
1108
1109      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1110      Vals.push_back(VE.getValueID(SI.getCondition()));
1111      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1112      for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1113           i != e; ++i) {
1114        const IntegersSubset& CaseRanges = i.getCaseValueEx();
1115
1116        if (CaseRanges.isSingleNumber()) {
1117          Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(0).toConstantInt()));
1118          Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1119        } else if (CaseRanges.isSingleNumbersOnly()) {
1120          for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1121               ri != rn; ++ri) {
1122            Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(ri).toConstantInt()));
1123            Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1124          }
1125        } else {
1126          llvm_unreachable("Not single number?");
1127        }
1128      }
1129    }
1130    break;
1131  case Instruction::IndirectBr:
1132    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1133    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1134    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1135      Vals.push_back(VE.getValueID(I.getOperand(i)));
1136    break;
1137
1138  case Instruction::Invoke: {
1139    const InvokeInst *II = cast<InvokeInst>(&I);
1140    const Value *Callee(II->getCalledValue());
1141    PointerType *PTy = cast<PointerType>(Callee->getType());
1142    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1143    Code = bitc::FUNC_CODE_INST_INVOKE;
1144
1145    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1146    Vals.push_back(II->getCallingConv());
1147    Vals.push_back(VE.getValueID(II->getNormalDest()));
1148    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1149    PushValueAndType(Callee, InstID, Vals, VE);
1150
1151    // Emit value #'s for the fixed parameters.
1152    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1153      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1154
1155    // Emit type/value pairs for varargs params.
1156    if (FTy->isVarArg()) {
1157      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1158           i != e; ++i)
1159        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1160    }
1161    break;
1162  }
1163  case Instruction::Resume:
1164    Code = bitc::FUNC_CODE_INST_RESUME;
1165    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1166    break;
1167  case Instruction::Unreachable:
1168    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1169    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1170    break;
1171
1172  case Instruction::PHI: {
1173    const PHINode &PN = cast<PHINode>(I);
1174    Code = bitc::FUNC_CODE_INST_PHI;
1175    Vals.push_back(VE.getTypeID(PN.getType()));
1176    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1177      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1178      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1179    }
1180    break;
1181  }
1182
1183  case Instruction::LandingPad: {
1184    const LandingPadInst &LP = cast<LandingPadInst>(I);
1185    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1186    Vals.push_back(VE.getTypeID(LP.getType()));
1187    PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1188    Vals.push_back(LP.isCleanup());
1189    Vals.push_back(LP.getNumClauses());
1190    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1191      if (LP.isCatch(I))
1192        Vals.push_back(LandingPadInst::Catch);
1193      else
1194        Vals.push_back(LandingPadInst::Filter);
1195      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1196    }
1197    break;
1198  }
1199
1200  case Instruction::Alloca:
1201    Code = bitc::FUNC_CODE_INST_ALLOCA;
1202    Vals.push_back(VE.getTypeID(I.getType()));
1203    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1204    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1205    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1206    break;
1207
1208  case Instruction::Load:
1209    if (cast<LoadInst>(I).isAtomic()) {
1210      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1211      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1212    } else {
1213      Code = bitc::FUNC_CODE_INST_LOAD;
1214      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1215        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1216    }
1217    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1218    Vals.push_back(cast<LoadInst>(I).isVolatile());
1219    if (cast<LoadInst>(I).isAtomic()) {
1220      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1221      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1222    }
1223    break;
1224  case Instruction::Store:
1225    if (cast<StoreInst>(I).isAtomic())
1226      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1227    else
1228      Code = bitc::FUNC_CODE_INST_STORE;
1229    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1230    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1231    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1232    Vals.push_back(cast<StoreInst>(I).isVolatile());
1233    if (cast<StoreInst>(I).isAtomic()) {
1234      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1235      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1236    }
1237    break;
1238  case Instruction::AtomicCmpXchg:
1239    Code = bitc::FUNC_CODE_INST_CMPXCHG;
1240    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1241    Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1242    Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1243    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1244    Vals.push_back(GetEncodedOrdering(
1245                     cast<AtomicCmpXchgInst>(I).getOrdering()));
1246    Vals.push_back(GetEncodedSynchScope(
1247                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
1248    break;
1249  case Instruction::AtomicRMW:
1250    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1251    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1252    Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1253    Vals.push_back(GetEncodedRMWOperation(
1254                     cast<AtomicRMWInst>(I).getOperation()));
1255    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1256    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1257    Vals.push_back(GetEncodedSynchScope(
1258                     cast<AtomicRMWInst>(I).getSynchScope()));
1259    break;
1260  case Instruction::Fence:
1261    Code = bitc::FUNC_CODE_INST_FENCE;
1262    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1263    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1264    break;
1265  case Instruction::Call: {
1266    const CallInst &CI = cast<CallInst>(I);
1267    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1268    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1269
1270    Code = bitc::FUNC_CODE_INST_CALL;
1271
1272    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1273    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1274    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1275
1276    // Emit value #'s for the fixed parameters.
1277    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1278      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1279
1280    // Emit type/value pairs for varargs params.
1281    if (FTy->isVarArg()) {
1282      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1283           i != e; ++i)
1284        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1285    }
1286    break;
1287  }
1288  case Instruction::VAArg:
1289    Code = bitc::FUNC_CODE_INST_VAARG;
1290    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1291    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1292    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1293    break;
1294  }
1295
1296  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1297  Vals.clear();
1298}
1299
1300// Emit names for globals/functions etc.
1301static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1302                                  const llvm_2_9_func::ValueEnumerator &VE,
1303                                  BitstreamWriter &Stream) {
1304  if (VST.empty()) return;
1305  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1306
1307  // FIXME: Set up the abbrev, we know how many values there are!
1308  // FIXME: We know if the type names can use 7-bit ascii.
1309  SmallVector<unsigned, 64> NameVals;
1310
1311  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1312       SI != SE; ++SI) {
1313
1314    const ValueName &Name = *SI;
1315
1316    // Figure out the encoding to use for the name.
1317    bool is7Bit = true;
1318    bool isChar6 = true;
1319    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1320         C != E; ++C) {
1321      if (isChar6)
1322        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1323      if ((unsigned char)*C & 128) {
1324        is7Bit = false;
1325        break;  // don't bother scanning the rest.
1326      }
1327    }
1328
1329    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1330
1331    // VST_ENTRY:   [valueid, namechar x N]
1332    // VST_BBENTRY: [bbid, namechar x N]
1333    unsigned Code;
1334    if (isa<BasicBlock>(SI->getValue())) {
1335      Code = bitc::VST_CODE_BBENTRY;
1336      if (isChar6)
1337        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1338    } else {
1339      Code = bitc::VST_CODE_ENTRY;
1340      if (isChar6)
1341        AbbrevToUse = VST_ENTRY_6_ABBREV;
1342      else if (is7Bit)
1343        AbbrevToUse = VST_ENTRY_7_ABBREV;
1344    }
1345
1346    NameVals.push_back(VE.getValueID(SI->getValue()));
1347    for (const char *P = Name.getKeyData(),
1348         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1349      NameVals.push_back((unsigned char)*P);
1350
1351    // Emit the finished record.
1352    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1353    NameVals.clear();
1354  }
1355  Stream.ExitBlock();
1356}
1357
1358/// WriteFunction - Emit a function body to the module stream.
1359static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE,
1360                          BitstreamWriter &Stream) {
1361  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1362  VE.incorporateFunction(F);
1363
1364  SmallVector<unsigned, 64> Vals;
1365
1366  // Emit the number of basic blocks, so the reader can create them ahead of
1367  // time.
1368  Vals.push_back(VE.getBasicBlocks().size());
1369  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1370  Vals.clear();
1371
1372  // If there are function-local constants, emit them now.
1373  unsigned CstStart, CstEnd;
1374  VE.getFunctionConstantRange(CstStart, CstEnd);
1375  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1376
1377  // If there is function-local metadata, emit it now.
1378  WriteFunctionLocalMetadata(F, VE, Stream);
1379
1380  // Keep a running idea of what the instruction ID is.
1381  unsigned InstID = CstEnd;
1382
1383  bool NeedsMetadataAttachment = false;
1384
1385  DebugLoc LastDL;
1386
1387  // Finally, emit all the instructions, in order.
1388  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1389    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1390         I != E; ++I) {
1391      WriteInstruction(*I, InstID, VE, Stream, Vals);
1392
1393      if (!I->getType()->isVoidTy())
1394        ++InstID;
1395
1396      // If the instruction has metadata, write a metadata attachment later.
1397      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1398
1399      // If the instruction has a debug location, emit it.
1400      DebugLoc DL = I->getDebugLoc();
1401      if (DL.isUnknown()) {
1402        // nothing todo.
1403      } else if (DL == LastDL) {
1404        // Just repeat the same debug loc as last time.
1405        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1406      } else {
1407        MDNode *Scope, *IA;
1408        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1409
1410        Vals.push_back(DL.getLine());
1411        Vals.push_back(DL.getCol());
1412        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1413        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1414        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1415        Vals.clear();
1416
1417        LastDL = DL;
1418      }
1419    }
1420
1421  // Emit names for all the instructions etc.
1422  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1423
1424  if (NeedsMetadataAttachment)
1425    WriteMetadataAttachment(F, VE, Stream);
1426  VE.purgeFunction();
1427  Stream.ExitBlock();
1428}
1429
1430// Emit blockinfo, which defines the standard abbreviations etc.
1431static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE,
1432                           BitstreamWriter &Stream) {
1433  // We only want to emit block info records for blocks that have multiple
1434  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1435  // blocks can defined their abbrevs inline.
1436  Stream.EnterBlockInfoBlock(2);
1437
1438  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1439    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1440    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1441    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1442    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1443    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1444    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1445                                   Abbv) != VST_ENTRY_8_ABBREV)
1446      llvm_unreachable("Unexpected abbrev ordering!");
1447  }
1448
1449  { // 7-bit fixed width VST_ENTRY strings.
1450    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1451    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1452    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1453    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1454    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1455    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1456                                   Abbv) != VST_ENTRY_7_ABBREV)
1457      llvm_unreachable("Unexpected abbrev ordering!");
1458  }
1459  { // 6-bit char6 VST_ENTRY strings.
1460    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1461    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1462    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1463    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1464    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1465    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1466                                   Abbv) != VST_ENTRY_6_ABBREV)
1467      llvm_unreachable("Unexpected abbrev ordering!");
1468  }
1469  { // 6-bit char6 VST_BBENTRY strings.
1470    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1471    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1472    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1473    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1474    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1475    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1476                                   Abbv) != VST_BBENTRY_6_ABBREV)
1477      llvm_unreachable("Unexpected abbrev ordering!");
1478  }
1479
1480
1481
1482  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1483    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1484    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1485    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1486                              Log2_32_Ceil(VE.getTypes().size()+1)));
1487    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1488                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1489      llvm_unreachable("Unexpected abbrev ordering!");
1490  }
1491
1492  { // INTEGER abbrev for CONSTANTS_BLOCK.
1493    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1494    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1495    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1496    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1497                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1498      llvm_unreachable("Unexpected abbrev ordering!");
1499  }
1500
1501  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1502    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1503    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1504    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1505    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1506                              Log2_32_Ceil(VE.getTypes().size()+1)));
1507    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1508
1509    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1510                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1511      llvm_unreachable("Unexpected abbrev ordering!");
1512  }
1513  { // NULL abbrev for CONSTANTS_BLOCK.
1514    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1515    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1516    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1517                                   Abbv) != CONSTANTS_NULL_Abbrev)
1518      llvm_unreachable("Unexpected abbrev ordering!");
1519  }
1520
1521  // FIXME: This should only use space for first class types!
1522
1523  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1524    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1525    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1526    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1527    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1528    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1529    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1530                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1531      llvm_unreachable("Unexpected abbrev ordering!");
1532  }
1533  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1534    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1535    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1536    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1537    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1538    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1539    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1540                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1541      llvm_unreachable("Unexpected abbrev ordering!");
1542  }
1543  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1544    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1545    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1546    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1547    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1548    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1549    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1550    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1551                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1552      llvm_unreachable("Unexpected abbrev ordering!");
1553  }
1554  { // INST_CAST abbrev for FUNCTION_BLOCK.
1555    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1556    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1557    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1558    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1559                              Log2_32_Ceil(VE.getTypes().size()+1)));
1560    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1561    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1562                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1563      llvm_unreachable("Unexpected abbrev ordering!");
1564  }
1565
1566  { // INST_RET abbrev for FUNCTION_BLOCK.
1567    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1568    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1569    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1570                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1571      llvm_unreachable("Unexpected abbrev ordering!");
1572  }
1573  { // INST_RET abbrev for FUNCTION_BLOCK.
1574    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1575    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1576    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1577    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1578                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1579      llvm_unreachable("Unexpected abbrev ordering!");
1580  }
1581  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1582    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1583    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1584    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1585                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1586      llvm_unreachable("Unexpected abbrev ordering!");
1587  }
1588
1589  Stream.ExitBlock();
1590}
1591
1592
1593/// WriteModule - Emit the specified module to the bitstream.
1594static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1595  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1596
1597  // Emit the version number if it is non-zero.
1598  if (CurVersion) {
1599    SmallVector<unsigned, 1> Vals;
1600    Vals.push_back(CurVersion);
1601    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1602  }
1603
1604  // Analyze the module, enumerating globals, functions, etc.
1605  llvm_2_9_func::ValueEnumerator VE(M);
1606
1607  // Emit blockinfo, which defines the standard abbreviations etc.
1608  WriteBlockInfo(VE, Stream);
1609
1610  // Emit information about parameter attributes.
1611  WriteAttributeTable(VE, Stream);
1612
1613  // Emit information describing all of the types in the module.
1614  WriteTypeTable(VE, Stream);
1615
1616  // Emit top-level description of module, including target triple, inline asm,
1617  // descriptors for global variables, and function prototype info.
1618  WriteModuleInfo(M, VE, Stream);
1619
1620  // Emit constants.
1621  WriteModuleConstants(VE, Stream);
1622
1623  // Emit metadata.
1624  WriteModuleMetadata(M, VE, Stream);
1625
1626  // Emit function bodies.
1627  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1628    if (!F->isDeclaration())
1629      WriteFunction(*F, VE, Stream);
1630
1631  // Emit metadata.
1632  WriteModuleMetadataStore(M, Stream);
1633
1634  // Emit names for globals/functions etc.
1635  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1636
1637  Stream.ExitBlock();
1638}
1639
1640/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1641/// header and trailer to make it compatible with the system archiver.  To do
1642/// this we emit the following header, and then emit a trailer that pads the
1643/// file out to be a multiple of 16 bytes.
1644///
1645/// struct bc_header {
1646///   uint32_t Magic;         // 0x0B17C0DE
1647///   uint32_t Version;       // Version, currently always 0.
1648///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1649///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1650///   uint32_t CPUType;       // CPU specifier.
1651///   ... potentially more later ...
1652/// };
1653enum {
1654  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1655  DarwinBCHeaderSize = 5*4
1656};
1657
1658static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1659                               uint32_t &Position) {
1660  Buffer[Position + 0] = (unsigned char) (Value >>  0);
1661  Buffer[Position + 1] = (unsigned char) (Value >>  8);
1662  Buffer[Position + 2] = (unsigned char) (Value >> 16);
1663  Buffer[Position + 3] = (unsigned char) (Value >> 24);
1664  Position += 4;
1665}
1666
1667static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1668                                         const Triple &TT) {
1669  unsigned CPUType = ~0U;
1670
1671  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1672  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1673  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1674  // specific constants here because they are implicitly part of the Darwin ABI.
1675  enum {
1676    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1677    DARWIN_CPU_TYPE_X86        = 7,
1678    DARWIN_CPU_TYPE_ARM        = 12,
1679    DARWIN_CPU_TYPE_POWERPC    = 18
1680  };
1681
1682  Triple::ArchType Arch = TT.getArch();
1683  if (Arch == Triple::x86_64)
1684    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1685  else if (Arch == Triple::x86)
1686    CPUType = DARWIN_CPU_TYPE_X86;
1687  else if (Arch == Triple::ppc)
1688    CPUType = DARWIN_CPU_TYPE_POWERPC;
1689  else if (Arch == Triple::ppc64)
1690    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1691  else if (Arch == Triple::arm || Arch == Triple::thumb)
1692    CPUType = DARWIN_CPU_TYPE_ARM;
1693
1694  // Traditional Bitcode starts after header.
1695  assert(Buffer.size() >= DarwinBCHeaderSize &&
1696         "Expected header size to be reserved");
1697  unsigned BCOffset = DarwinBCHeaderSize;
1698  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1699
1700  // Write the magic and version.
1701  unsigned Position = 0;
1702  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1703  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1704  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1705  WriteInt32ToBuffer(BCSize     , Buffer, Position);
1706  WriteInt32ToBuffer(CPUType    , Buffer, Position);
1707
1708  // If the file is not a multiple of 16 bytes, insert dummy padding.
1709  while (Buffer.size() & 15)
1710    Buffer.push_back(0);
1711}
1712
1713/// WriteBitcodeToFile - Write the specified module to the specified output
1714/// stream.
1715void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1716  SmallVector<char, 1024> Buffer;
1717  Buffer.reserve(256*1024);
1718
1719  // If this is darwin or another generic macho target, reserve space for the
1720  // header.
1721  Triple TT(M->getTargetTriple());
1722  if (TT.isOSDarwin())
1723    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1724
1725  // Emit the module into the buffer.
1726  {
1727    BitstreamWriter Stream(Buffer);
1728
1729    // Emit the file header.
1730    Stream.Emit((unsigned)'B', 8);
1731    Stream.Emit((unsigned)'C', 8);
1732    Stream.Emit(0x0, 4);
1733    Stream.Emit(0xC, 4);
1734    Stream.Emit(0xE, 4);
1735    Stream.Emit(0xD, 4);
1736
1737    // Emit the module.
1738    WriteModule(M, Stream);
1739  }
1740
1741  if (TT.isOSDarwin())
1742    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1743
1744  // Write the generated bitstream to "Out".
1745  Out.write((char*)&Buffer.front(), Buffer.size());
1746}
1747