BitcodeWriter.cpp revision 9b044ec938fd56355012851890c63974c8042c9f
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ReaderWriter_2_9_func.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/ADT/Triple.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Support/Program.h"
30#include <cctype>
31#include <map>
32using namespace llvm;
33
34/// These are manifest constants used by the bitcode writer. They do not need to
35/// be kept in sync with the reader, but need to be consistent within this file.
36enum {
37  CurVersion = 0,
38
39  // VALUE_SYMTAB_BLOCK abbrev id's.
40  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41  VST_ENTRY_7_ABBREV,
42  VST_ENTRY_6_ABBREV,
43  VST_BBENTRY_6_ABBREV,
44
45  // CONSTANTS_BLOCK abbrev id's.
46  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47  CONSTANTS_INTEGER_ABBREV,
48  CONSTANTS_CE_CAST_Abbrev,
49  CONSTANTS_NULL_Abbrev,
50
51  // FUNCTION_BLOCK abbrev id's.
52  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53  FUNCTION_INST_BINOP_ABBREV,
54  FUNCTION_INST_BINOP_FLAGS_ABBREV,
55  FUNCTION_INST_CAST_ABBREV,
56  FUNCTION_INST_RET_VOID_ABBREV,
57  FUNCTION_INST_RET_VAL_ABBREV,
58  FUNCTION_INST_UNREACHABLE_ABBREV
59};
60
61static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62  switch (Opcode) {
63  default: llvm_unreachable("Unknown cast instruction!");
64  case Instruction::Trunc   : return bitc::CAST_TRUNC;
65  case Instruction::ZExt    : return bitc::CAST_ZEXT;
66  case Instruction::SExt    : return bitc::CAST_SEXT;
67  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
68  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
69  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
70  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
71  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72  case Instruction::FPExt   : return bitc::CAST_FPEXT;
73  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75  case Instruction::BitCast : return bitc::CAST_BITCAST;
76  }
77}
78
79static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
80  switch (Opcode) {
81  default: llvm_unreachable("Unknown binary instruction!");
82  case Instruction::Add:
83  case Instruction::FAdd: return bitc::BINOP_ADD;
84  case Instruction::Sub:
85  case Instruction::FSub: return bitc::BINOP_SUB;
86  case Instruction::Mul:
87  case Instruction::FMul: return bitc::BINOP_MUL;
88  case Instruction::UDiv: return bitc::BINOP_UDIV;
89  case Instruction::FDiv:
90  case Instruction::SDiv: return bitc::BINOP_SDIV;
91  case Instruction::URem: return bitc::BINOP_UREM;
92  case Instruction::FRem:
93  case Instruction::SRem: return bitc::BINOP_SREM;
94  case Instruction::Shl:  return bitc::BINOP_SHL;
95  case Instruction::LShr: return bitc::BINOP_LSHR;
96  case Instruction::AShr: return bitc::BINOP_ASHR;
97  case Instruction::And:  return bitc::BINOP_AND;
98  case Instruction::Or:   return bitc::BINOP_OR;
99  case Instruction::Xor:  return bitc::BINOP_XOR;
100  }
101}
102
103static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
104  switch (Op) {
105  default: llvm_unreachable("Unknown RMW operation!");
106  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
107  case AtomicRMWInst::Add: return bitc::RMW_ADD;
108  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
109  case AtomicRMWInst::And: return bitc::RMW_AND;
110  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
111  case AtomicRMWInst::Or: return bitc::RMW_OR;
112  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
113  case AtomicRMWInst::Max: return bitc::RMW_MAX;
114  case AtomicRMWInst::Min: return bitc::RMW_MIN;
115  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
116  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
117  }
118}
119
120static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
121  switch (Ordering) {
122  default: llvm_unreachable("Unknown atomic ordering");
123  case NotAtomic: return bitc::ORDERING_NOTATOMIC;
124  case Unordered: return bitc::ORDERING_UNORDERED;
125  case Monotonic: return bitc::ORDERING_MONOTONIC;
126  case Acquire: return bitc::ORDERING_ACQUIRE;
127  case Release: return bitc::ORDERING_RELEASE;
128  case AcquireRelease: return bitc::ORDERING_ACQREL;
129  case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
130  }
131}
132
133static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
134  switch (SynchScope) {
135  default: llvm_unreachable("Unknown synchronization scope");
136  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
137  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
138  }
139}
140
141static void WriteStringRecord(unsigned Code, StringRef Str,
142                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
143  SmallVector<unsigned, 64> Vals;
144
145  // Code: [strchar x N]
146  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
147    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
148      AbbrevToUse = 0;
149    Vals.push_back(Str[i]);
150  }
151
152  // Emit the finished record.
153  Stream.EmitRecord(Code, Vals, AbbrevToUse);
154}
155
156// Emit information about parameter attributes.
157static void WriteAttributeTable(const ValueEnumerator &VE,
158                                BitstreamWriter &Stream) {
159  const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
160  if (Attrs.empty()) return;
161
162  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
163
164  SmallVector<uint64_t, 64> Record;
165  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
166    const AttrListPtr &A = Attrs[i];
167    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
168      const AttributeWithIndex &PAWI = A.getSlot(i);
169      Record.push_back(PAWI.Index);
170
171      // FIXME: remove in LLVM 3.0
172      // Store the alignment in the bitcode as a 16-bit raw value instead of a
173      // 5-bit log2 encoded value. Shift the bits above the alignment up by
174      // 11 bits.
175      uint64_t FauxAttr = PAWI.Attrs & 0xffff;
176      if (PAWI.Attrs & Attribute::Alignment)
177        FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
178      FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
179
180      Record.push_back(FauxAttr);
181    }
182
183    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
184    Record.clear();
185  }
186
187  Stream.ExitBlock();
188}
189
190/// WriteTypeTable - Write out the type table for a module.
191static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
192  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
193
194  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
195  SmallVector<uint64_t, 64> TypeVals;
196
197  // Abbrev for TYPE_CODE_POINTER.
198  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
199  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
200  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
201                            Log2_32_Ceil(VE.getTypes().size()+1)));
202  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
203  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
204
205  // Abbrev for TYPE_CODE_FUNCTION.
206  Abbv = new BitCodeAbbrev();
207  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
208  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
209  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
210  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
211  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
212                            Log2_32_Ceil(VE.getTypes().size()+1)));
213  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
214
215  // Abbrev for TYPE_CODE_STRUCT_ANON.
216  Abbv = new BitCodeAbbrev();
217  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
218  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
219  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
220  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
221                            Log2_32_Ceil(VE.getTypes().size()+1)));
222  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
223
224  // Abbrev for TYPE_CODE_STRUCT_NAME.
225  Abbv = new BitCodeAbbrev();
226  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
227  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
228  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
229  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
230
231  // Abbrev for TYPE_CODE_STRUCT_NAMED.
232  Abbv = new BitCodeAbbrev();
233  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
234  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
235  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
236  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
237                            Log2_32_Ceil(VE.getTypes().size()+1)));
238  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
239
240  // Abbrev for TYPE_CODE_ARRAY.
241  Abbv = new BitCodeAbbrev();
242  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
243  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
244  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
245                            Log2_32_Ceil(VE.getTypes().size()+1)));
246  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
247
248  // Emit an entry count so the reader can reserve space.
249  TypeVals.push_back(TypeList.size());
250  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
251  TypeVals.clear();
252
253  // Loop over all of the types, emitting each in turn.
254  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
255    Type *T = TypeList[i];
256    int AbbrevToUse = 0;
257    unsigned Code = 0;
258
259    switch (T->getTypeID()) {
260    default: llvm_unreachable("Unknown type!");
261    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
262    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
263    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
264    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
265    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
266    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
267    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
268    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
269    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
270    case Type::IntegerTyID:
271      // INTEGER: [width]
272      Code = bitc::TYPE_CODE_INTEGER;
273      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
274      break;
275    case Type::PointerTyID: {
276      PointerType *PTy = cast<PointerType>(T);
277      // POINTER: [pointee type, address space]
278      Code = bitc::TYPE_CODE_POINTER;
279      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
280      unsigned AddressSpace = PTy->getAddressSpace();
281      TypeVals.push_back(AddressSpace);
282      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
283      break;
284    }
285    case Type::FunctionTyID: {
286      FunctionType *FT = cast<FunctionType>(T);
287      // FUNCTION: [isvararg, attrid, retty, paramty x N]
288      Code = bitc::TYPE_CODE_FUNCTION_OLD;
289      TypeVals.push_back(FT->isVarArg());
290      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
291      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
292      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
293        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
294      AbbrevToUse = FunctionAbbrev;
295      break;
296    }
297    case Type::StructTyID: {
298      StructType *ST = cast<StructType>(T);
299      // STRUCT: [ispacked, eltty x N]
300      TypeVals.push_back(ST->isPacked());
301      // Output all of the element types.
302      for (StructType::element_iterator I = ST->element_begin(),
303           E = ST->element_end(); I != E; ++I)
304        TypeVals.push_back(VE.getTypeID(*I));
305
306      if (ST->isLiteral()) {
307        Code = bitc::TYPE_CODE_STRUCT_ANON;
308        AbbrevToUse = StructAnonAbbrev;
309      } else {
310        if (ST->isOpaque()) {
311          Code = bitc::TYPE_CODE_OPAQUE;
312        } else {
313          Code = bitc::TYPE_CODE_STRUCT_NAMED;
314          AbbrevToUse = StructNamedAbbrev;
315        }
316
317        // Emit the name if it is present.
318        if (!ST->getName().empty())
319          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
320                            StructNameAbbrev, Stream);
321      }
322      break;
323    }
324    case Type::ArrayTyID: {
325      ArrayType *AT = cast<ArrayType>(T);
326      // ARRAY: [numelts, eltty]
327      Code = bitc::TYPE_CODE_ARRAY;
328      TypeVals.push_back(AT->getNumElements());
329      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
330      AbbrevToUse = ArrayAbbrev;
331      break;
332    }
333    case Type::VectorTyID: {
334      VectorType *VT = cast<VectorType>(T);
335      // VECTOR [numelts, eltty]
336      Code = bitc::TYPE_CODE_VECTOR;
337      TypeVals.push_back(VT->getNumElements());
338      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
339      break;
340    }
341    }
342
343    // Emit the finished record.
344    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
345    TypeVals.clear();
346  }
347
348  Stream.ExitBlock();
349}
350
351static unsigned getEncodedLinkage(const GlobalValue *GV) {
352  switch (GV->getLinkage()) {
353  default: llvm_unreachable("Invalid linkage!");
354  case GlobalValue::ExternalLinkage:                 return 0;
355  case GlobalValue::WeakAnyLinkage:                  return 1;
356  case GlobalValue::AppendingLinkage:                return 2;
357  case GlobalValue::InternalLinkage:                 return 3;
358  case GlobalValue::LinkOnceAnyLinkage:              return 4;
359  case GlobalValue::DLLImportLinkage:                return 5;
360  case GlobalValue::DLLExportLinkage:                return 6;
361  case GlobalValue::ExternalWeakLinkage:             return 7;
362  case GlobalValue::CommonLinkage:                   return 8;
363  case GlobalValue::PrivateLinkage:                  return 9;
364  case GlobalValue::WeakODRLinkage:                  return 10;
365  case GlobalValue::LinkOnceODRLinkage:              return 11;
366  case GlobalValue::AvailableExternallyLinkage:      return 12;
367  case GlobalValue::LinkerPrivateLinkage:            return 13;
368  case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
369  case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15;
370  }
371}
372
373static unsigned getEncodedVisibility(const GlobalValue *GV) {
374  switch (GV->getVisibility()) {
375  default: llvm_unreachable("Invalid visibility!");
376  case GlobalValue::DefaultVisibility:   return 0;
377  case GlobalValue::HiddenVisibility:    return 1;
378  case GlobalValue::ProtectedVisibility: return 2;
379  }
380}
381
382// Emit top-level description of module, including target triple, inline asm,
383// descriptors for global variables, and function prototype info.
384static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
385                            BitstreamWriter &Stream) {
386  // Emit the list of dependent libraries for the Module.
387  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
388    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
389
390  // Emit various pieces of data attached to a module.
391  if (!M->getTargetTriple().empty())
392    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
393                      0/*TODO*/, Stream);
394  if (!M->getDataLayout().empty())
395    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
396                      0/*TODO*/, Stream);
397  if (!M->getModuleInlineAsm().empty())
398    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
399                      0/*TODO*/, Stream);
400
401  // Emit information about sections and GC, computing how many there are. Also
402  // compute the maximum alignment value.
403  std::map<std::string, unsigned> SectionMap;
404  std::map<std::string, unsigned> GCMap;
405  unsigned MaxAlignment = 0;
406  unsigned MaxGlobalType = 0;
407  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
408       GV != E; ++GV) {
409    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
410    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
411    if (GV->hasSection()) {
412      // Give section names unique ID's.
413      unsigned &Entry = SectionMap[GV->getSection()];
414      if (!Entry) {
415        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
416                          0/*TODO*/, Stream);
417        Entry = SectionMap.size();
418      }
419    }
420  }
421  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
422    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
423    if (F->hasSection()) {
424      // Give section names unique ID's.
425      unsigned &Entry = SectionMap[F->getSection()];
426      if (!Entry) {
427        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
428                          0/*TODO*/, Stream);
429        Entry = SectionMap.size();
430      }
431    }
432    if (F->hasGC()) {
433      // Same for GC names.
434      unsigned &Entry = GCMap[F->getGC()];
435      if (!Entry) {
436        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
437                          0/*TODO*/, Stream);
438        Entry = GCMap.size();
439      }
440    }
441  }
442
443  // Emit abbrev for globals, now that we know # sections and max alignment.
444  unsigned SimpleGVarAbbrev = 0;
445  if (!M->global_empty()) {
446    // Add an abbrev for common globals with no visibility or thread localness.
447    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
448    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
449    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
450                              Log2_32_Ceil(MaxGlobalType+1)));
451    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
452    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
453    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
454    if (MaxAlignment == 0)                                      // Alignment.
455      Abbv->Add(BitCodeAbbrevOp(0));
456    else {
457      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
458      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
459                               Log2_32_Ceil(MaxEncAlignment+1)));
460    }
461    if (SectionMap.empty())                                    // Section.
462      Abbv->Add(BitCodeAbbrevOp(0));
463    else
464      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
465                               Log2_32_Ceil(SectionMap.size()+1)));
466    // Don't bother emitting vis + thread local.
467    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
468  }
469
470  // Emit the global variable information.
471  SmallVector<unsigned, 64> Vals;
472  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
473       GV != E; ++GV) {
474    unsigned AbbrevToUse = 0;
475
476    // GLOBALVAR: [type, isconst, initid,
477    //             linkage, alignment, section, visibility, threadlocal,
478    //             unnamed_addr]
479    Vals.push_back(VE.getTypeID(GV->getType()));
480    Vals.push_back(GV->isConstant());
481    Vals.push_back(GV->isDeclaration() ? 0 :
482                   (VE.getValueID(GV->getInitializer()) + 1));
483    Vals.push_back(getEncodedLinkage(GV));
484    Vals.push_back(Log2_32(GV->getAlignment())+1);
485    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
486    if (GV->isThreadLocal() ||
487        GV->getVisibility() != GlobalValue::DefaultVisibility ||
488        GV->hasUnnamedAddr()) {
489      Vals.push_back(getEncodedVisibility(GV));
490      Vals.push_back(GV->isThreadLocal());
491      Vals.push_back(GV->hasUnnamedAddr());
492    } else {
493      AbbrevToUse = SimpleGVarAbbrev;
494    }
495
496    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
497    Vals.clear();
498  }
499
500  // Emit the function proto information.
501  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
502    // FUNCTION:  [type, callingconv, isproto, paramattr,
503    //             linkage, alignment, section, visibility, gc, unnamed_addr]
504    Vals.push_back(VE.getTypeID(F->getType()));
505    Vals.push_back(F->getCallingConv());
506    Vals.push_back(F->isDeclaration());
507    Vals.push_back(getEncodedLinkage(F));
508    Vals.push_back(VE.getAttributeID(F->getAttributes()));
509    Vals.push_back(Log2_32(F->getAlignment())+1);
510    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
511    Vals.push_back(getEncodedVisibility(F));
512    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
513    Vals.push_back(F->hasUnnamedAddr());
514
515    unsigned AbbrevToUse = 0;
516    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
517    Vals.clear();
518  }
519
520  // Emit the alias information.
521  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
522       AI != E; ++AI) {
523    Vals.push_back(VE.getTypeID(AI->getType()));
524    Vals.push_back(VE.getValueID(AI->getAliasee()));
525    Vals.push_back(getEncodedLinkage(AI));
526    Vals.push_back(getEncodedVisibility(AI));
527    unsigned AbbrevToUse = 0;
528    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
529    Vals.clear();
530  }
531}
532
533static uint64_t GetOptimizationFlags(const Value *V) {
534  uint64_t Flags = 0;
535
536  if (const OverflowingBinaryOperator *OBO =
537        dyn_cast<OverflowingBinaryOperator>(V)) {
538    if (OBO->hasNoSignedWrap())
539      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
540    if (OBO->hasNoUnsignedWrap())
541      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
542  } else if (const PossiblyExactOperator *PEO =
543               dyn_cast<PossiblyExactOperator>(V)) {
544    if (PEO->isExact())
545      Flags |= 1 << bitc::PEO_EXACT;
546  }
547
548  return Flags;
549}
550
551static void WriteMDNode(const MDNode *N,
552                        const ValueEnumerator &VE,
553                        BitstreamWriter &Stream,
554                        SmallVector<uint64_t, 64> &Record) {
555  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
556    if (N->getOperand(i)) {
557      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
558      Record.push_back(VE.getValueID(N->getOperand(i)));
559    } else {
560      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
561      Record.push_back(0);
562    }
563  }
564  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
565                                           bitc::METADATA_NODE;
566  Stream.EmitRecord(MDCode, Record, 0);
567  Record.clear();
568}
569
570static void WriteModuleMetadata(const Module *M,
571                                const ValueEnumerator &VE,
572                                BitstreamWriter &Stream) {
573  const ValueEnumerator::ValueList &Vals = VE.getMDValues();
574  bool StartedMetadataBlock = false;
575  unsigned MDSAbbrev = 0;
576  SmallVector<uint64_t, 64> Record;
577  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
578
579    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
580      if (!N->isFunctionLocal() || !N->getFunction()) {
581        if (!StartedMetadataBlock) {
582          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
583          StartedMetadataBlock = true;
584        }
585        WriteMDNode(N, VE, Stream, Record);
586      }
587    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
588      if (!StartedMetadataBlock)  {
589        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
590
591        // Abbrev for METADATA_STRING.
592        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
593        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
594        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
595        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
596        MDSAbbrev = Stream.EmitAbbrev(Abbv);
597        StartedMetadataBlock = true;
598      }
599
600      // Code: [strchar x N]
601      Record.append(MDS->begin(), MDS->end());
602
603      // Emit the finished record.
604      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
605      Record.clear();
606    }
607  }
608
609  // Write named metadata.
610  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
611       E = M->named_metadata_end(); I != E; ++I) {
612    const NamedMDNode *NMD = I;
613    if (!StartedMetadataBlock)  {
614      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
615      StartedMetadataBlock = true;
616    }
617
618    // Write name.
619    StringRef Str = NMD->getName();
620    for (unsigned i = 0, e = Str.size(); i != e; ++i)
621      Record.push_back(Str[i]);
622    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
623    Record.clear();
624
625    // Write named metadata operands.
626    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
627      Record.push_back(VE.getValueID(NMD->getOperand(i)));
628    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
629    Record.clear();
630  }
631
632  if (StartedMetadataBlock)
633    Stream.ExitBlock();
634}
635
636static void WriteFunctionLocalMetadata(const Function &F,
637                                       const ValueEnumerator &VE,
638                                       BitstreamWriter &Stream) {
639  bool StartedMetadataBlock = false;
640  SmallVector<uint64_t, 64> Record;
641  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
642  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
643    if (const MDNode *N = Vals[i])
644      if (N->isFunctionLocal() && N->getFunction() == &F) {
645        if (!StartedMetadataBlock) {
646          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
647          StartedMetadataBlock = true;
648        }
649        WriteMDNode(N, VE, Stream, Record);
650      }
651
652  if (StartedMetadataBlock)
653    Stream.ExitBlock();
654}
655
656static void WriteMetadataAttachment(const Function &F,
657                                    const ValueEnumerator &VE,
658                                    BitstreamWriter &Stream) {
659  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
660
661  SmallVector<uint64_t, 64> Record;
662
663  // Write metadata attachments
664  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
665  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
666
667  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
668    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
669         I != E; ++I) {
670      MDs.clear();
671      I->getAllMetadataOtherThanDebugLoc(MDs);
672
673      // If no metadata, ignore instruction.
674      if (MDs.empty()) continue;
675
676      Record.push_back(VE.getInstructionID(I));
677
678      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
679        Record.push_back(MDs[i].first);
680        Record.push_back(VE.getValueID(MDs[i].second));
681      }
682      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
683      Record.clear();
684    }
685
686  Stream.ExitBlock();
687}
688
689static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
690  SmallVector<uint64_t, 64> Record;
691
692  // Write metadata kinds
693  // METADATA_KIND - [n x [id, name]]
694  SmallVector<StringRef, 4> Names;
695  M->getMDKindNames(Names);
696
697  if (Names.empty()) return;
698
699  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
700
701  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
702    Record.push_back(MDKindID);
703    StringRef KName = Names[MDKindID];
704    Record.append(KName.begin(), KName.end());
705
706    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
707    Record.clear();
708  }
709
710  Stream.ExitBlock();
711}
712
713static void WriteConstants(unsigned FirstVal, unsigned LastVal,
714                           const ValueEnumerator &VE,
715                           BitstreamWriter &Stream, bool isGlobal) {
716  if (FirstVal == LastVal) return;
717
718  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
719
720  unsigned AggregateAbbrev = 0;
721  unsigned String8Abbrev = 0;
722  unsigned CString7Abbrev = 0;
723  unsigned CString6Abbrev = 0;
724  // If this is a constant pool for the module, emit module-specific abbrevs.
725  if (isGlobal) {
726    // Abbrev for CST_CODE_AGGREGATE.
727    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
728    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
729    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
730    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
731    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
732
733    // Abbrev for CST_CODE_STRING.
734    Abbv = new BitCodeAbbrev();
735    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
736    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
737    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
738    String8Abbrev = Stream.EmitAbbrev(Abbv);
739    // Abbrev for CST_CODE_CSTRING.
740    Abbv = new BitCodeAbbrev();
741    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
742    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
743    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
744    CString7Abbrev = Stream.EmitAbbrev(Abbv);
745    // Abbrev for CST_CODE_CSTRING.
746    Abbv = new BitCodeAbbrev();
747    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
748    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
749    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
750    CString6Abbrev = Stream.EmitAbbrev(Abbv);
751  }
752
753  SmallVector<uint64_t, 64> Record;
754
755  const ValueEnumerator::ValueList &Vals = VE.getValues();
756  Type *LastTy = 0;
757  for (unsigned i = FirstVal; i != LastVal; ++i) {
758    const Value *V = Vals[i].first;
759    // If we need to switch types, do so now.
760    if (V->getType() != LastTy) {
761      LastTy = V->getType();
762      Record.push_back(VE.getTypeID(LastTy));
763      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
764                        CONSTANTS_SETTYPE_ABBREV);
765      Record.clear();
766    }
767
768    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
769      Record.push_back(unsigned(IA->hasSideEffects()) |
770                       unsigned(IA->isAlignStack()) << 1);
771
772      // Add the asm string.
773      const std::string &AsmStr = IA->getAsmString();
774      Record.push_back(AsmStr.size());
775      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
776        Record.push_back(AsmStr[i]);
777
778      // Add the constraint string.
779      const std::string &ConstraintStr = IA->getConstraintString();
780      Record.push_back(ConstraintStr.size());
781      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
782        Record.push_back(ConstraintStr[i]);
783      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
784      Record.clear();
785      continue;
786    }
787    const Constant *C = cast<Constant>(V);
788    unsigned Code = -1U;
789    unsigned AbbrevToUse = 0;
790    if (C->isNullValue()) {
791      Code = bitc::CST_CODE_NULL;
792    } else if (isa<UndefValue>(C)) {
793      Code = bitc::CST_CODE_UNDEF;
794    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
795      if (IV->getBitWidth() <= 64) {
796        uint64_t V = IV->getSExtValue();
797        if ((int64_t)V >= 0)
798          Record.push_back(V << 1);
799        else
800          Record.push_back((-V << 1) | 1);
801        Code = bitc::CST_CODE_INTEGER;
802        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
803      } else {                             // Wide integers, > 64 bits in size.
804        // We have an arbitrary precision integer value to write whose
805        // bit width is > 64. However, in canonical unsigned integer
806        // format it is likely that the high bits are going to be zero.
807        // So, we only write the number of active words.
808        unsigned NWords = IV->getValue().getActiveWords();
809        const uint64_t *RawWords = IV->getValue().getRawData();
810        for (unsigned i = 0; i != NWords; ++i) {
811          int64_t V = RawWords[i];
812          if (V >= 0)
813            Record.push_back(V << 1);
814          else
815            Record.push_back((-V << 1) | 1);
816        }
817        Code = bitc::CST_CODE_WIDE_INTEGER;
818      }
819    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
820      Code = bitc::CST_CODE_FLOAT;
821      Type *Ty = CFP->getType();
822      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
823        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
824      } else if (Ty->isX86_FP80Ty()) {
825        // api needed to prevent premature destruction
826        // bits are not in the same order as a normal i80 APInt, compensate.
827        APInt api = CFP->getValueAPF().bitcastToAPInt();
828        const uint64_t *p = api.getRawData();
829        Record.push_back((p[1] << 48) | (p[0] >> 16));
830        Record.push_back(p[0] & 0xffffLL);
831      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
832        APInt api = CFP->getValueAPF().bitcastToAPInt();
833        const uint64_t *p = api.getRawData();
834        Record.push_back(p[0]);
835        Record.push_back(p[1]);
836      } else {
837        assert (0 && "Unknown FP type!");
838      }
839    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
840      const ConstantArray *CA = cast<ConstantArray>(C);
841      // Emit constant strings specially.
842      unsigned NumOps = CA->getNumOperands();
843      // If this is a null-terminated string, use the denser CSTRING encoding.
844      if (CA->getOperand(NumOps-1)->isNullValue()) {
845        Code = bitc::CST_CODE_CSTRING;
846        --NumOps;  // Don't encode the null, which isn't allowed by char6.
847      } else {
848        Code = bitc::CST_CODE_STRING;
849        AbbrevToUse = String8Abbrev;
850      }
851      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
852      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
853      for (unsigned i = 0; i != NumOps; ++i) {
854        unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
855        Record.push_back(V);
856        isCStr7 &= (V & 128) == 0;
857        if (isCStrChar6)
858          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
859      }
860
861      if (isCStrChar6)
862        AbbrevToUse = CString6Abbrev;
863      else if (isCStr7)
864        AbbrevToUse = CString7Abbrev;
865    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
866               isa<ConstantVector>(V)) {
867      Code = bitc::CST_CODE_AGGREGATE;
868      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
869        Record.push_back(VE.getValueID(C->getOperand(i)));
870      AbbrevToUse = AggregateAbbrev;
871    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
872      switch (CE->getOpcode()) {
873      default:
874        if (Instruction::isCast(CE->getOpcode())) {
875          Code = bitc::CST_CODE_CE_CAST;
876          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
877          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
878          Record.push_back(VE.getValueID(C->getOperand(0)));
879          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
880        } else {
881          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
882          Code = bitc::CST_CODE_CE_BINOP;
883          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
884          Record.push_back(VE.getValueID(C->getOperand(0)));
885          Record.push_back(VE.getValueID(C->getOperand(1)));
886          uint64_t Flags = GetOptimizationFlags(CE);
887          if (Flags != 0)
888            Record.push_back(Flags);
889        }
890        break;
891      case Instruction::GetElementPtr:
892        Code = bitc::CST_CODE_CE_GEP;
893        if (cast<GEPOperator>(C)->isInBounds())
894          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
895        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
896          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
897          Record.push_back(VE.getValueID(C->getOperand(i)));
898        }
899        break;
900      case Instruction::Select:
901        Code = bitc::CST_CODE_CE_SELECT;
902        Record.push_back(VE.getValueID(C->getOperand(0)));
903        Record.push_back(VE.getValueID(C->getOperand(1)));
904        Record.push_back(VE.getValueID(C->getOperand(2)));
905        break;
906      case Instruction::ExtractElement:
907        Code = bitc::CST_CODE_CE_EXTRACTELT;
908        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
909        Record.push_back(VE.getValueID(C->getOperand(0)));
910        Record.push_back(VE.getValueID(C->getOperand(1)));
911        break;
912      case Instruction::InsertElement:
913        Code = bitc::CST_CODE_CE_INSERTELT;
914        Record.push_back(VE.getValueID(C->getOperand(0)));
915        Record.push_back(VE.getValueID(C->getOperand(1)));
916        Record.push_back(VE.getValueID(C->getOperand(2)));
917        break;
918      case Instruction::ShuffleVector:
919        // If the return type and argument types are the same, this is a
920        // standard shufflevector instruction.  If the types are different,
921        // then the shuffle is widening or truncating the input vectors, and
922        // the argument type must also be encoded.
923        if (C->getType() == C->getOperand(0)->getType()) {
924          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
925        } else {
926          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
927          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
928        }
929        Record.push_back(VE.getValueID(C->getOperand(0)));
930        Record.push_back(VE.getValueID(C->getOperand(1)));
931        Record.push_back(VE.getValueID(C->getOperand(2)));
932        break;
933      case Instruction::ICmp:
934      case Instruction::FCmp:
935        Code = bitc::CST_CODE_CE_CMP;
936        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
937        Record.push_back(VE.getValueID(C->getOperand(0)));
938        Record.push_back(VE.getValueID(C->getOperand(1)));
939        Record.push_back(CE->getPredicate());
940        break;
941      }
942    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
943      Code = bitc::CST_CODE_BLOCKADDRESS;
944      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
945      Record.push_back(VE.getValueID(BA->getFunction()));
946      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
947    } else {
948#ifndef NDEBUG
949      C->dump();
950#endif
951      llvm_unreachable("Unknown constant!");
952    }
953    Stream.EmitRecord(Code, Record, AbbrevToUse);
954    Record.clear();
955  }
956
957  Stream.ExitBlock();
958}
959
960static void WriteModuleConstants(const ValueEnumerator &VE,
961                                 BitstreamWriter &Stream) {
962  const ValueEnumerator::ValueList &Vals = VE.getValues();
963
964  // Find the first constant to emit, which is the first non-globalvalue value.
965  // We know globalvalues have been emitted by WriteModuleInfo.
966  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
967    if (!isa<GlobalValue>(Vals[i].first)) {
968      WriteConstants(i, Vals.size(), VE, Stream, true);
969      return;
970    }
971  }
972}
973
974/// PushValueAndType - The file has to encode both the value and type id for
975/// many values, because we need to know what type to create for forward
976/// references.  However, most operands are not forward references, so this type
977/// field is not needed.
978///
979/// This function adds V's value ID to Vals.  If the value ID is higher than the
980/// instruction ID, then it is a forward reference, and it also includes the
981/// type ID.
982static bool PushValueAndType(const Value *V, unsigned InstID,
983                             SmallVector<unsigned, 64> &Vals,
984                             ValueEnumerator &VE) {
985  unsigned ValID = VE.getValueID(V);
986  Vals.push_back(ValID);
987  if (ValID >= InstID) {
988    Vals.push_back(VE.getTypeID(V->getType()));
989    return true;
990  }
991  return false;
992}
993
994/// WriteInstruction - Emit an instruction to the specified stream.
995static void WriteInstruction(const Instruction &I, unsigned InstID,
996                             ValueEnumerator &VE, BitstreamWriter &Stream,
997                             SmallVector<unsigned, 64> &Vals) {
998  unsigned Code = 0;
999  unsigned AbbrevToUse = 0;
1000  VE.setInstructionID(&I);
1001  switch (I.getOpcode()) {
1002  default:
1003    if (Instruction::isCast(I.getOpcode())) {
1004      Code = bitc::FUNC_CODE_INST_CAST;
1005      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1006        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1007      Vals.push_back(VE.getTypeID(I.getType()));
1008      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1009    } else {
1010      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1011      Code = bitc::FUNC_CODE_INST_BINOP;
1012      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1013        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1014      Vals.push_back(VE.getValueID(I.getOperand(1)));
1015      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1016      uint64_t Flags = GetOptimizationFlags(&I);
1017      if (Flags != 0) {
1018        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1019          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1020        Vals.push_back(Flags);
1021      }
1022    }
1023    break;
1024
1025  case Instruction::GetElementPtr:
1026    Code = bitc::FUNC_CODE_INST_GEP;
1027    if (cast<GEPOperator>(&I)->isInBounds())
1028      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1029    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1030      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1031    break;
1032  case Instruction::ExtractValue: {
1033    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1034    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1035    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1036    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1037      Vals.push_back(*i);
1038    break;
1039  }
1040  case Instruction::InsertValue: {
1041    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1042    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1043    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1044    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1045    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1046      Vals.push_back(*i);
1047    break;
1048  }
1049  case Instruction::Select:
1050    Code = bitc::FUNC_CODE_INST_VSELECT;
1051    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1052    Vals.push_back(VE.getValueID(I.getOperand(2)));
1053    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1054    break;
1055  case Instruction::ExtractElement:
1056    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1057    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1058    Vals.push_back(VE.getValueID(I.getOperand(1)));
1059    break;
1060  case Instruction::InsertElement:
1061    Code = bitc::FUNC_CODE_INST_INSERTELT;
1062    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1063    Vals.push_back(VE.getValueID(I.getOperand(1)));
1064    Vals.push_back(VE.getValueID(I.getOperand(2)));
1065    break;
1066  case Instruction::ShuffleVector:
1067    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1068    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1069    Vals.push_back(VE.getValueID(I.getOperand(1)));
1070    Vals.push_back(VE.getValueID(I.getOperand(2)));
1071    break;
1072  case Instruction::ICmp:
1073  case Instruction::FCmp:
1074    // compare returning Int1Ty or vector of Int1Ty
1075    Code = bitc::FUNC_CODE_INST_CMP2;
1076    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1077    Vals.push_back(VE.getValueID(I.getOperand(1)));
1078    Vals.push_back(cast<CmpInst>(I).getPredicate());
1079    break;
1080
1081  case Instruction::Ret:
1082    {
1083      Code = bitc::FUNC_CODE_INST_RET;
1084      unsigned NumOperands = I.getNumOperands();
1085      if (NumOperands == 0)
1086        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1087      else if (NumOperands == 1) {
1088        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1089          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1090      } else {
1091        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1092          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1093      }
1094    }
1095    break;
1096  case Instruction::Br:
1097    {
1098      Code = bitc::FUNC_CODE_INST_BR;
1099      BranchInst &II = cast<BranchInst>(I);
1100      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1101      if (II.isConditional()) {
1102        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1103        Vals.push_back(VE.getValueID(II.getCondition()));
1104      }
1105    }
1106    break;
1107  case Instruction::Switch:
1108    Code = bitc::FUNC_CODE_INST_SWITCH;
1109    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1110    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1111      Vals.push_back(VE.getValueID(I.getOperand(i)));
1112    break;
1113  case Instruction::IndirectBr:
1114    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1115    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1116    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1117      Vals.push_back(VE.getValueID(I.getOperand(i)));
1118    break;
1119
1120  case Instruction::Invoke: {
1121    const InvokeInst *II = cast<InvokeInst>(&I);
1122    const Value *Callee(II->getCalledValue());
1123    PointerType *PTy = cast<PointerType>(Callee->getType());
1124    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1125    Code = bitc::FUNC_CODE_INST_INVOKE;
1126
1127    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1128    Vals.push_back(II->getCallingConv());
1129    Vals.push_back(VE.getValueID(II->getNormalDest()));
1130    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1131    PushValueAndType(Callee, InstID, Vals, VE);
1132
1133    // Emit value #'s for the fixed parameters.
1134    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1135      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1136
1137    // Emit type/value pairs for varargs params.
1138    if (FTy->isVarArg()) {
1139      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1140           i != e; ++i)
1141        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1142    }
1143    break;
1144  }
1145  case Instruction::Resume:
1146    Code = bitc::FUNC_CODE_INST_RESUME;
1147    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1148    break;
1149  case Instruction::Unwind:
1150    Code = bitc::FUNC_CODE_INST_UNWIND;
1151    break;
1152  case Instruction::Unreachable:
1153    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1154    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1155    break;
1156
1157  case Instruction::PHI: {
1158    const PHINode &PN = cast<PHINode>(I);
1159    Code = bitc::FUNC_CODE_INST_PHI;
1160    Vals.push_back(VE.getTypeID(PN.getType()));
1161    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1162      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1163      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1164    }
1165    break;
1166  }
1167
1168  case Instruction::LandingPad: {
1169    const LandingPadInst &LP = cast<LandingPadInst>(I);
1170    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1171    Vals.push_back(VE.getTypeID(LP.getType()));
1172    PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1173    Vals.push_back(LP.isCleanup());
1174    Vals.push_back(LP.getNumClauses());
1175    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1176      if (LP.isCatch(I))
1177        Vals.push_back(LandingPadInst::Catch);
1178      else
1179        Vals.push_back(LandingPadInst::Filter);
1180      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1181    }
1182    break;
1183  }
1184
1185  case Instruction::Alloca:
1186    Code = bitc::FUNC_CODE_INST_ALLOCA;
1187    Vals.push_back(VE.getTypeID(I.getType()));
1188    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1189    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1190    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1191    break;
1192
1193  case Instruction::Load:
1194    if (cast<LoadInst>(I).isAtomic()) {
1195      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1196      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1197    } else {
1198      Code = bitc::FUNC_CODE_INST_LOAD;
1199      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1200        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1201    }
1202    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1203    Vals.push_back(cast<LoadInst>(I).isVolatile());
1204    if (cast<LoadInst>(I).isAtomic()) {
1205      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1206      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1207    }
1208    break;
1209  case Instruction::Store:
1210    if (cast<StoreInst>(I).isAtomic())
1211      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1212    else
1213      Code = bitc::FUNC_CODE_INST_STORE;
1214    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1215    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1216    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1217    Vals.push_back(cast<StoreInst>(I).isVolatile());
1218    if (cast<StoreInst>(I).isAtomic()) {
1219      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1220      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1221    }
1222    break;
1223  case Instruction::AtomicCmpXchg:
1224    Code = bitc::FUNC_CODE_INST_CMPXCHG;
1225    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1226    Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1227    Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1228    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1229    Vals.push_back(GetEncodedOrdering(
1230                     cast<AtomicCmpXchgInst>(I).getOrdering()));
1231    Vals.push_back(GetEncodedSynchScope(
1232                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
1233    break;
1234  case Instruction::AtomicRMW:
1235    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1236    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1237    Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1238    Vals.push_back(GetEncodedRMWOperation(
1239                     cast<AtomicRMWInst>(I).getOperation()));
1240    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1241    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1242    Vals.push_back(GetEncodedSynchScope(
1243                     cast<AtomicRMWInst>(I).getSynchScope()));
1244    break;
1245  case Instruction::Fence:
1246    Code = bitc::FUNC_CODE_INST_FENCE;
1247    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1248    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1249    break;
1250  case Instruction::Call: {
1251    const CallInst &CI = cast<CallInst>(I);
1252    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1253    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1254
1255    Code = bitc::FUNC_CODE_INST_CALL;
1256
1257    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1258    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1259    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1260
1261    // Emit value #'s for the fixed parameters.
1262    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1263      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1264
1265    // Emit type/value pairs for varargs params.
1266    if (FTy->isVarArg()) {
1267      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1268           i != e; ++i)
1269        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1270    }
1271    break;
1272  }
1273  case Instruction::VAArg:
1274    Code = bitc::FUNC_CODE_INST_VAARG;
1275    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1276    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1277    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1278    break;
1279  }
1280
1281  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1282  Vals.clear();
1283}
1284
1285// Emit names for globals/functions etc.
1286static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1287                                  const ValueEnumerator &VE,
1288                                  BitstreamWriter &Stream) {
1289  if (VST.empty()) return;
1290  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1291
1292  // FIXME: Set up the abbrev, we know how many values there are!
1293  // FIXME: We know if the type names can use 7-bit ascii.
1294  SmallVector<unsigned, 64> NameVals;
1295
1296  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1297       SI != SE; ++SI) {
1298
1299    const ValueName &Name = *SI;
1300
1301    // Figure out the encoding to use for the name.
1302    bool is7Bit = true;
1303    bool isChar6 = true;
1304    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1305         C != E; ++C) {
1306      if (isChar6)
1307        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1308      if ((unsigned char)*C & 128) {
1309        is7Bit = false;
1310        break;  // don't bother scanning the rest.
1311      }
1312    }
1313
1314    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1315
1316    // VST_ENTRY:   [valueid, namechar x N]
1317    // VST_BBENTRY: [bbid, namechar x N]
1318    unsigned Code;
1319    if (isa<BasicBlock>(SI->getValue())) {
1320      Code = bitc::VST_CODE_BBENTRY;
1321      if (isChar6)
1322        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1323    } else {
1324      Code = bitc::VST_CODE_ENTRY;
1325      if (isChar6)
1326        AbbrevToUse = VST_ENTRY_6_ABBREV;
1327      else if (is7Bit)
1328        AbbrevToUse = VST_ENTRY_7_ABBREV;
1329    }
1330
1331    NameVals.push_back(VE.getValueID(SI->getValue()));
1332    for (const char *P = Name.getKeyData(),
1333         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1334      NameVals.push_back((unsigned char)*P);
1335
1336    // Emit the finished record.
1337    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1338    NameVals.clear();
1339  }
1340  Stream.ExitBlock();
1341}
1342
1343/// WriteFunction - Emit a function body to the module stream.
1344static void WriteFunction(const Function &F, ValueEnumerator &VE,
1345                          BitstreamWriter &Stream) {
1346  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1347  VE.incorporateFunction(F);
1348
1349  SmallVector<unsigned, 64> Vals;
1350
1351  // Emit the number of basic blocks, so the reader can create them ahead of
1352  // time.
1353  Vals.push_back(VE.getBasicBlocks().size());
1354  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1355  Vals.clear();
1356
1357  // If there are function-local constants, emit them now.
1358  unsigned CstStart, CstEnd;
1359  VE.getFunctionConstantRange(CstStart, CstEnd);
1360  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1361
1362  // If there is function-local metadata, emit it now.
1363  WriteFunctionLocalMetadata(F, VE, Stream);
1364
1365  // Keep a running idea of what the instruction ID is.
1366  unsigned InstID = CstEnd;
1367
1368  bool NeedsMetadataAttachment = false;
1369
1370  DebugLoc LastDL;
1371
1372  // Finally, emit all the instructions, in order.
1373  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1374    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1375         I != E; ++I) {
1376      WriteInstruction(*I, InstID, VE, Stream, Vals);
1377
1378      if (!I->getType()->isVoidTy())
1379        ++InstID;
1380
1381      // If the instruction has metadata, write a metadata attachment later.
1382      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1383
1384      // If the instruction has a debug location, emit it.
1385      DebugLoc DL = I->getDebugLoc();
1386      if (DL.isUnknown()) {
1387        // nothing todo.
1388      } else if (DL == LastDL) {
1389        // Just repeat the same debug loc as last time.
1390        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1391      } else {
1392        MDNode *Scope, *IA;
1393        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1394
1395        Vals.push_back(DL.getLine());
1396        Vals.push_back(DL.getCol());
1397        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1398        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1399        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1400        Vals.clear();
1401
1402        LastDL = DL;
1403      }
1404    }
1405
1406  // Emit names for all the instructions etc.
1407  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1408
1409  if (NeedsMetadataAttachment)
1410    WriteMetadataAttachment(F, VE, Stream);
1411  VE.purgeFunction();
1412  Stream.ExitBlock();
1413}
1414
1415// Emit blockinfo, which defines the standard abbreviations etc.
1416static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1417  // We only want to emit block info records for blocks that have multiple
1418  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1419  // blocks can defined their abbrevs inline.
1420  Stream.EnterBlockInfoBlock(2);
1421
1422  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1423    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1424    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1425    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1426    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1427    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1428    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1429                                   Abbv) != VST_ENTRY_8_ABBREV)
1430      llvm_unreachable("Unexpected abbrev ordering!");
1431  }
1432
1433  { // 7-bit fixed width VST_ENTRY strings.
1434    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1435    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1436    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1437    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1438    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1439    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1440                                   Abbv) != VST_ENTRY_7_ABBREV)
1441      llvm_unreachable("Unexpected abbrev ordering!");
1442  }
1443  { // 6-bit char6 VST_ENTRY strings.
1444    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1445    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1446    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1447    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1448    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1449    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1450                                   Abbv) != VST_ENTRY_6_ABBREV)
1451      llvm_unreachable("Unexpected abbrev ordering!");
1452  }
1453  { // 6-bit char6 VST_BBENTRY strings.
1454    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1455    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1456    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1457    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1458    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1459    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1460                                   Abbv) != VST_BBENTRY_6_ABBREV)
1461      llvm_unreachable("Unexpected abbrev ordering!");
1462  }
1463
1464
1465
1466  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1467    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1468    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1469    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1470                              Log2_32_Ceil(VE.getTypes().size()+1)));
1471    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1472                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1473      llvm_unreachable("Unexpected abbrev ordering!");
1474  }
1475
1476  { // INTEGER abbrev for CONSTANTS_BLOCK.
1477    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1478    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1479    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1480    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1481                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1482      llvm_unreachable("Unexpected abbrev ordering!");
1483  }
1484
1485  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1486    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1487    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1488    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1489    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1490                              Log2_32_Ceil(VE.getTypes().size()+1)));
1491    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1492
1493    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1494                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1495      llvm_unreachable("Unexpected abbrev ordering!");
1496  }
1497  { // NULL abbrev for CONSTANTS_BLOCK.
1498    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1499    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1500    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1501                                   Abbv) != CONSTANTS_NULL_Abbrev)
1502      llvm_unreachable("Unexpected abbrev ordering!");
1503  }
1504
1505  // FIXME: This should only use space for first class types!
1506
1507  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1508    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1509    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1510    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1511    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1512    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1513    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1514                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1515      llvm_unreachable("Unexpected abbrev ordering!");
1516  }
1517  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1518    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1519    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1520    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1521    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1522    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1523    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1524                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1525      llvm_unreachable("Unexpected abbrev ordering!");
1526  }
1527  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1528    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1529    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1530    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1531    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1532    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1533    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1534    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1535                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1536      llvm_unreachable("Unexpected abbrev ordering!");
1537  }
1538  { // INST_CAST abbrev for FUNCTION_BLOCK.
1539    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1540    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1541    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1542    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1543                              Log2_32_Ceil(VE.getTypes().size()+1)));
1544    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1545    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1546                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1547      llvm_unreachable("Unexpected abbrev ordering!");
1548  }
1549
1550  { // INST_RET abbrev for FUNCTION_BLOCK.
1551    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1552    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1553    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1554                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1555      llvm_unreachable("Unexpected abbrev ordering!");
1556  }
1557  { // INST_RET abbrev for FUNCTION_BLOCK.
1558    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1559    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1560    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1561    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1562                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1563      llvm_unreachable("Unexpected abbrev ordering!");
1564  }
1565  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1566    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1567    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1568    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1569                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1570      llvm_unreachable("Unexpected abbrev ordering!");
1571  }
1572
1573  Stream.ExitBlock();
1574}
1575
1576
1577/// WriteModule - Emit the specified module to the bitstream.
1578static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1579  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1580
1581  // Emit the version number if it is non-zero.
1582  if (CurVersion) {
1583    SmallVector<unsigned, 1> Vals;
1584    Vals.push_back(CurVersion);
1585    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1586  }
1587
1588  // Analyze the module, enumerating globals, functions, etc.
1589  ValueEnumerator VE(M);
1590
1591  // Emit blockinfo, which defines the standard abbreviations etc.
1592  WriteBlockInfo(VE, Stream);
1593
1594  // Emit information about parameter attributes.
1595  WriteAttributeTable(VE, Stream);
1596
1597  // Emit information describing all of the types in the module.
1598  WriteTypeTable(VE, Stream);
1599
1600  // Emit top-level description of module, including target triple, inline asm,
1601  // descriptors for global variables, and function prototype info.
1602  WriteModuleInfo(M, VE, Stream);
1603
1604  // Emit constants.
1605  WriteModuleConstants(VE, Stream);
1606
1607  // Emit metadata.
1608  WriteModuleMetadata(M, VE, Stream);
1609
1610  // Emit function bodies.
1611  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1612    if (!F->isDeclaration())
1613      WriteFunction(*F, VE, Stream);
1614
1615  // Emit metadata.
1616  WriteModuleMetadataStore(M, Stream);
1617
1618  // Emit names for globals/functions etc.
1619  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1620
1621  Stream.ExitBlock();
1622}
1623
1624/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1625/// header and trailer to make it compatible with the system archiver.  To do
1626/// this we emit the following header, and then emit a trailer that pads the
1627/// file out to be a multiple of 16 bytes.
1628///
1629/// struct bc_header {
1630///   uint32_t Magic;         // 0x0B17C0DE
1631///   uint32_t Version;       // Version, currently always 0.
1632///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1633///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1634///   uint32_t CPUType;       // CPU specifier.
1635///   ... potentially more later ...
1636/// };
1637enum {
1638  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1639  DarwinBCHeaderSize = 5*4
1640};
1641
1642static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) {
1643  unsigned CPUType = ~0U;
1644
1645  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1646  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1647  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1648  // specific constants here because they are implicitly part of the Darwin ABI.
1649  enum {
1650    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1651    DARWIN_CPU_TYPE_X86        = 7,
1652    DARWIN_CPU_TYPE_ARM        = 12,
1653    DARWIN_CPU_TYPE_POWERPC    = 18
1654  };
1655
1656  Triple::ArchType Arch = TT.getArch();
1657  if (Arch == Triple::x86_64)
1658    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1659  else if (Arch == Triple::x86)
1660    CPUType = DARWIN_CPU_TYPE_X86;
1661  else if (Arch == Triple::ppc)
1662    CPUType = DARWIN_CPU_TYPE_POWERPC;
1663  else if (Arch == Triple::ppc64)
1664    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1665  else if (Arch == Triple::arm || Arch == Triple::thumb)
1666    CPUType = DARWIN_CPU_TYPE_ARM;
1667
1668  // Traditional Bitcode starts after header.
1669  unsigned BCOffset = DarwinBCHeaderSize;
1670
1671  Stream.Emit(0x0B17C0DE, 32);
1672  Stream.Emit(0         , 32);  // Version.
1673  Stream.Emit(BCOffset  , 32);
1674  Stream.Emit(0         , 32);  // Filled in later.
1675  Stream.Emit(CPUType   , 32);
1676}
1677
1678/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1679/// finalize the header.
1680static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1681  // Update the size field in the header.
1682  Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1683
1684  // If the file is not a multiple of 16 bytes, insert dummy padding.
1685  while (BufferSize & 15) {
1686    Stream.Emit(0, 8);
1687    ++BufferSize;
1688  }
1689}
1690
1691
1692/// WriteBitcodeToFile - Write the specified module to the specified output
1693/// stream.
1694void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1695  std::vector<unsigned char> Buffer;
1696  BitstreamWriter Stream(Buffer);
1697
1698  Buffer.reserve(256*1024);
1699
1700  WriteBitcodeToStream( M, Stream );
1701
1702  // Write the generated bitstream to "Out".
1703  Out.write((char*)&Buffer.front(), Buffer.size());
1704}
1705
1706/// WriteBitcodeToStream - Write the specified module to the specified output
1707/// stream.
1708void llvm_2_9_func::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1709  // If this is darwin or another generic macho target, emit a file header and
1710  // trailer if needed.
1711  Triple TT(M->getTargetTriple());
1712  if (TT.isOSDarwin())
1713    EmitDarwinBCHeader(Stream, TT);
1714
1715  // Emit the file header.
1716  Stream.Emit((unsigned)'B', 8);
1717  Stream.Emit((unsigned)'C', 8);
1718  Stream.Emit(0x0, 4);
1719  Stream.Emit(0xC, 4);
1720  Stream.Emit(0xE, 4);
1721  Stream.Emit(0xD, 4);
1722
1723  // Emit the module.
1724  WriteModule(M, Stream);
1725
1726  if (TT.isOSDarwin())
1727    EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1728}
1729