BitcodeWriter.cpp revision ee4016d1247d3fbe50822de279d3da273d8aef4c
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ReaderWriter_2_9_func.h"
15#include "legacy_bitcode.h"
16#include "ValueEnumerator.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/Bitcode/BitstreamWriter.h"
19#include "llvm/Bitcode/LLVMBitCodes.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/InlineAsm.h"
23#include "llvm/IR/Instructions.h"
24#include "llvm/IR/Module.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/ValueSymbolTable.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/Program.h"
30#include "llvm/Support/raw_ostream.h"
31#include <cctype>
32#include <map>
33using namespace llvm;
34
35/// These are manifest constants used by the bitcode writer. They do not need to
36/// be kept in sync with the reader, but need to be consistent within this file.
37enum {
38  CurVersion = 0,
39
40  // VALUE_SYMTAB_BLOCK abbrev id's.
41  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42  VST_ENTRY_7_ABBREV,
43  VST_ENTRY_6_ABBREV,
44  VST_BBENTRY_6_ABBREV,
45
46  // CONSTANTS_BLOCK abbrev id's.
47  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48  CONSTANTS_INTEGER_ABBREV,
49  CONSTANTS_CE_CAST_Abbrev,
50  CONSTANTS_NULL_Abbrev,
51
52  // FUNCTION_BLOCK abbrev id's.
53  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54  FUNCTION_INST_BINOP_ABBREV,
55  FUNCTION_INST_BINOP_FLAGS_ABBREV,
56  FUNCTION_INST_CAST_ABBREV,
57  FUNCTION_INST_RET_VOID_ABBREV,
58  FUNCTION_INST_RET_VAL_ABBREV,
59  FUNCTION_INST_UNREACHABLE_ABBREV
60};
61
62
63static unsigned GetEncodedCastOpcode(unsigned Opcode) {
64  switch (Opcode) {
65  default: llvm_unreachable("Unknown cast instruction!");
66  case Instruction::Trunc   : return bitc::CAST_TRUNC;
67  case Instruction::ZExt    : return bitc::CAST_ZEXT;
68  case Instruction::SExt    : return bitc::CAST_SEXT;
69  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
70  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
71  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
72  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
73  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74  case Instruction::FPExt   : return bitc::CAST_FPEXT;
75  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77  case Instruction::BitCast : return bitc::CAST_BITCAST;
78  }
79}
80
81static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82  switch (Opcode) {
83  default: llvm_unreachable("Unknown binary instruction!");
84  case Instruction::Add:
85  case Instruction::FAdd: return bitc::BINOP_ADD;
86  case Instruction::Sub:
87  case Instruction::FSub: return bitc::BINOP_SUB;
88  case Instruction::Mul:
89  case Instruction::FMul: return bitc::BINOP_MUL;
90  case Instruction::UDiv: return bitc::BINOP_UDIV;
91  case Instruction::FDiv:
92  case Instruction::SDiv: return bitc::BINOP_SDIV;
93  case Instruction::URem: return bitc::BINOP_UREM;
94  case Instruction::FRem:
95  case Instruction::SRem: return bitc::BINOP_SREM;
96  case Instruction::Shl:  return bitc::BINOP_SHL;
97  case Instruction::LShr: return bitc::BINOP_LSHR;
98  case Instruction::AShr: return bitc::BINOP_ASHR;
99  case Instruction::And:  return bitc::BINOP_AND;
100  case Instruction::Or:   return bitc::BINOP_OR;
101  case Instruction::Xor:  return bitc::BINOP_XOR;
102  }
103}
104
105static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106  switch (Op) {
107  default: llvm_unreachable("Unknown RMW operation!");
108  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109  case AtomicRMWInst::Add: return bitc::RMW_ADD;
110  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111  case AtomicRMWInst::And: return bitc::RMW_AND;
112  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113  case AtomicRMWInst::Or: return bitc::RMW_OR;
114  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115  case AtomicRMWInst::Max: return bitc::RMW_MAX;
116  case AtomicRMWInst::Min: return bitc::RMW_MIN;
117  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119  }
120}
121
122static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123  switch (Ordering) {
124  default: llvm_unreachable("Unknown atomic ordering");
125  case NotAtomic: return bitc::ORDERING_NOTATOMIC;
126  case Unordered: return bitc::ORDERING_UNORDERED;
127  case Monotonic: return bitc::ORDERING_MONOTONIC;
128  case Acquire: return bitc::ORDERING_ACQUIRE;
129  case Release: return bitc::ORDERING_RELEASE;
130  case AcquireRelease: return bitc::ORDERING_ACQREL;
131  case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
132  }
133}
134
135static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136  switch (SynchScope) {
137  default: llvm_unreachable("Unknown synchronization scope");
138  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
139  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
140  }
141}
142
143static void WriteStringRecord(unsigned Code, StringRef Str,
144                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
145  SmallVector<unsigned, 64> Vals;
146
147  // Code: [strchar x N]
148  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150      AbbrevToUse = 0;
151    Vals.push_back(Str[i]);
152  }
153
154  // Emit the finished record.
155  Stream.EmitRecord(Code, Vals, AbbrevToUse);
156}
157
158// Emit information about parameter attributes.
159static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE,
160                                BitstreamWriter &Stream) {
161  const std::vector<AttributeSet> &Attrs = VE.getAttributes();
162  if (Attrs.empty()) return;
163
164  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
165
166  SmallVector<uint64_t, 64> Record;
167  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
168    const AttributeSet &A = Attrs[i];
169    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
170      Record.push_back(A.getSlotIndex(i));
171      Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
172    }
173
174    // This needs to use the 3.2 entry type
175    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
176    Record.clear();
177  }
178
179  Stream.ExitBlock();
180}
181
182/// WriteTypeTable - Write out the type table for a module.
183static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE,
184                           BitstreamWriter &Stream) {
185  const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes();
186
187  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
188  SmallVector<uint64_t, 64> TypeVals;
189
190  // Abbrev for TYPE_CODE_POINTER.
191  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
192  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
193  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
194                            Log2_32_Ceil(VE.getTypes().size()+1)));
195  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
196  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
197
198  // Abbrev for TYPE_CODE_FUNCTION.
199  Abbv = new BitCodeAbbrev();
200  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
201  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
202  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
203  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
204  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
205                            Log2_32_Ceil(VE.getTypes().size()+1)));
206  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
207
208  // Abbrev for TYPE_CODE_STRUCT_ANON.
209  Abbv = new BitCodeAbbrev();
210  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
211  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
212  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
213  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
214                            Log2_32_Ceil(VE.getTypes().size()+1)));
215  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
216
217  // Abbrev for TYPE_CODE_STRUCT_NAME.
218  Abbv = new BitCodeAbbrev();
219  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
220  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
221  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
222  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
223
224  // Abbrev for TYPE_CODE_STRUCT_NAMED.
225  Abbv = new BitCodeAbbrev();
226  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
227  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
228  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
229  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
230                            Log2_32_Ceil(VE.getTypes().size()+1)));
231  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
232
233  // Abbrev for TYPE_CODE_ARRAY.
234  Abbv = new BitCodeAbbrev();
235  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
236  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
237  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
238                            Log2_32_Ceil(VE.getTypes().size()+1)));
239  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
240
241  // Emit an entry count so the reader can reserve space.
242  TypeVals.push_back(TypeList.size());
243  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
244  TypeVals.clear();
245
246  // Loop over all of the types, emitting each in turn.
247  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
248    Type *T = TypeList[i];
249    int AbbrevToUse = 0;
250    unsigned Code = 0;
251
252    switch (T->getTypeID()) {
253    default: llvm_unreachable("Unknown type!");
254    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
255    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
256    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
257    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
258    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
259    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
260    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
261    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
262    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
263    case Type::IntegerTyID:
264      // INTEGER: [width]
265      Code = bitc::TYPE_CODE_INTEGER;
266      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
267      break;
268    case Type::PointerTyID: {
269      PointerType *PTy = cast<PointerType>(T);
270      // POINTER: [pointee type, address space]
271      Code = bitc::TYPE_CODE_POINTER;
272      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
273      unsigned AddressSpace = PTy->getAddressSpace();
274      TypeVals.push_back(AddressSpace);
275      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
276      break;
277    }
278    case Type::FunctionTyID: {
279      FunctionType *FT = cast<FunctionType>(T);
280      // FUNCTION: [isvararg, attrid, retty, paramty x N]
281      Code = bitc::TYPE_CODE_FUNCTION_OLD;
282      TypeVals.push_back(FT->isVarArg());
283      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
284      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
285      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
286        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
287      AbbrevToUse = FunctionAbbrev;
288      break;
289    }
290    case Type::StructTyID: {
291      StructType *ST = cast<StructType>(T);
292      // STRUCT: [ispacked, eltty x N]
293      TypeVals.push_back(ST->isPacked());
294      // Output all of the element types.
295      for (StructType::element_iterator I = ST->element_begin(),
296           E = ST->element_end(); I != E; ++I)
297        TypeVals.push_back(VE.getTypeID(*I));
298
299      if (ST->isLiteral()) {
300        Code = bitc::TYPE_CODE_STRUCT_ANON;
301        AbbrevToUse = StructAnonAbbrev;
302      } else {
303        if (ST->isOpaque()) {
304          Code = bitc::TYPE_CODE_OPAQUE;
305        } else {
306          Code = bitc::TYPE_CODE_STRUCT_NAMED;
307          AbbrevToUse = StructNamedAbbrev;
308        }
309
310        // Emit the name if it is present.
311        if (!ST->getName().empty())
312          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
313                            StructNameAbbrev, Stream);
314      }
315      break;
316    }
317    case Type::ArrayTyID: {
318      ArrayType *AT = cast<ArrayType>(T);
319      // ARRAY: [numelts, eltty]
320      Code = bitc::TYPE_CODE_ARRAY;
321      TypeVals.push_back(AT->getNumElements());
322      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
323      AbbrevToUse = ArrayAbbrev;
324      break;
325    }
326    case Type::VectorTyID: {
327      VectorType *VT = cast<VectorType>(T);
328      // VECTOR [numelts, eltty]
329      Code = bitc::TYPE_CODE_VECTOR;
330      TypeVals.push_back(VT->getNumElements());
331      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
332      break;
333    }
334    }
335
336    // Emit the finished record.
337    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
338    TypeVals.clear();
339  }
340
341  Stream.ExitBlock();
342}
343
344static unsigned getEncodedLinkage(const GlobalValue *GV) {
345  switch (GV->getLinkage()) {
346  case GlobalValue::ExternalLinkage:                 return 0;
347  case GlobalValue::WeakAnyLinkage:                  return 1;
348  case GlobalValue::AppendingLinkage:                return 2;
349  case GlobalValue::InternalLinkage:                 return 3;
350  case GlobalValue::LinkOnceAnyLinkage:              return 4;
351  case GlobalValue::ExternalWeakLinkage:             return 7;
352  case GlobalValue::CommonLinkage:                   return 8;
353  case GlobalValue::PrivateLinkage:                  return 9;
354  case GlobalValue::WeakODRLinkage:                  return 10;
355  case GlobalValue::LinkOnceODRLinkage:              return 11;
356  case GlobalValue::AvailableExternallyLinkage:      return 12;
357  }
358  llvm_unreachable("Invalid linkage");
359}
360
361static unsigned getEncodedVisibility(const GlobalValue *GV) {
362  switch (GV->getVisibility()) {
363  default: llvm_unreachable("Invalid visibility!");
364  case GlobalValue::DefaultVisibility:   return 0;
365  case GlobalValue::HiddenVisibility:    return 1;
366  case GlobalValue::ProtectedVisibility: return 2;
367  }
368}
369
370// Emit top-level description of module, including target triple, inline asm,
371// descriptors for global variables, and function prototype info.
372static void WriteModuleInfo(const Module *M,
373                            const llvm_2_9_func::ValueEnumerator &VE,
374                            BitstreamWriter &Stream) {
375  // Emit various pieces of data attached to a module.
376  if (!M->getTargetTriple().empty())
377    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
378                      0/*TODO*/, Stream);
379  if (M->getDataLayout() != nullptr)
380    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout()->getStringRepresentation(),
381                      0/*TODO*/, Stream);
382  if (!M->getModuleInlineAsm().empty())
383    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
384                      0/*TODO*/, Stream);
385
386  // Emit information about sections and GC, computing how many there are. Also
387  // compute the maximum alignment value.
388  std::map<std::string, unsigned> SectionMap;
389  std::map<std::string, unsigned> GCMap;
390  unsigned MaxAlignment = 0;
391  unsigned MaxGlobalType = 0;
392  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
393       GV != E; ++GV) {
394    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
395    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
396
397    if (!GV->hasSection()) continue;
398    // Give section names unique ID's.
399    unsigned &Entry = SectionMap[GV->getSection()];
400    if (Entry != 0) continue;
401    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
402                      0/*TODO*/, Stream);
403    Entry = SectionMap.size();
404  }
405  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
406    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
407    if (F->hasSection()) {
408      // Give section names unique ID's.
409      unsigned &Entry = SectionMap[F->getSection()];
410      if (!Entry) {
411        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
412                          0/*TODO*/, Stream);
413        Entry = SectionMap.size();
414      }
415    }
416    if (F->hasGC()) {
417      // Same for GC names.
418      unsigned &Entry = GCMap[F->getGC()];
419      if (!Entry) {
420        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
421                          0/*TODO*/, Stream);
422        Entry = GCMap.size();
423      }
424    }
425  }
426
427  // Emit abbrev for globals, now that we know # sections and max alignment.
428  unsigned SimpleGVarAbbrev = 0;
429  if (!M->global_empty()) {
430    // Add an abbrev for common globals with no visibility or thread localness.
431    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
432    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
433    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
434                              Log2_32_Ceil(MaxGlobalType+1)));
435    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
436    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
437    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
438    if (MaxAlignment == 0)                                      // Alignment.
439      Abbv->Add(BitCodeAbbrevOp(0));
440    else {
441      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
442      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
443                               Log2_32_Ceil(MaxEncAlignment+1)));
444    }
445    if (SectionMap.empty())                                    // Section.
446      Abbv->Add(BitCodeAbbrevOp(0));
447    else
448      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
449                               Log2_32_Ceil(SectionMap.size()+1)));
450    // Don't bother emitting vis + thread local.
451    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
452  }
453
454  // Emit the global variable information.
455  SmallVector<unsigned, 64> Vals;
456  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
457       GV != E; ++GV) {
458    unsigned AbbrevToUse = 0;
459
460    // GLOBALVAR: [type, isconst, initid,
461    //             linkage, alignment, section, visibility, threadlocal,
462    //             unnamed_addr]
463    Vals.push_back(VE.getTypeID(GV->getType()));
464    Vals.push_back(GV->isConstant());
465    Vals.push_back(GV->isDeclaration() ? 0 :
466                   (VE.getValueID(GV->getInitializer()) + 1));
467    Vals.push_back(getEncodedLinkage(GV));
468    Vals.push_back(Log2_32(GV->getAlignment())+1);
469    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
470    if (GV->isThreadLocal() ||
471        GV->getVisibility() != GlobalValue::DefaultVisibility ||
472        GV->hasUnnamedAddr()) {
473      Vals.push_back(getEncodedVisibility(GV));
474      Vals.push_back(GV->isThreadLocal());
475      Vals.push_back(GV->hasUnnamedAddr());
476    } else {
477      AbbrevToUse = SimpleGVarAbbrev;
478    }
479
480    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
481    Vals.clear();
482  }
483
484  // Emit the function proto information.
485  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
486    // FUNCTION:  [type, callingconv, isproto, paramattr,
487    //             linkage, alignment, section, visibility, gc, unnamed_addr]
488    Vals.push_back(VE.getTypeID(F->getType()));
489    Vals.push_back(F->getCallingConv());
490    Vals.push_back(F->isDeclaration());
491    Vals.push_back(getEncodedLinkage(F));
492    Vals.push_back(VE.getAttributeID(F->getAttributes()));
493    Vals.push_back(Log2_32(F->getAlignment())+1);
494    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
495    Vals.push_back(getEncodedVisibility(F));
496    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
497    Vals.push_back(F->hasUnnamedAddr());
498
499    unsigned AbbrevToUse = 0;
500    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
501    Vals.clear();
502  }
503
504  // Emit the alias information.
505  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
506       AI != E; ++AI) {
507    Vals.push_back(VE.getTypeID(AI->getType()));
508    Vals.push_back(VE.getValueID(AI->getAliasee()));
509    Vals.push_back(getEncodedLinkage(AI));
510    Vals.push_back(getEncodedVisibility(AI));
511    unsigned AbbrevToUse = 0;
512    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
513    Vals.clear();
514  }
515}
516
517static uint64_t GetOptimizationFlags(const Value *V) {
518  uint64_t Flags = 0;
519
520  if (const OverflowingBinaryOperator *OBO =
521        dyn_cast<OverflowingBinaryOperator>(V)) {
522    if (OBO->hasNoSignedWrap())
523      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
524    if (OBO->hasNoUnsignedWrap())
525      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
526  } else if (const PossiblyExactOperator *PEO =
527               dyn_cast<PossiblyExactOperator>(V)) {
528    if (PEO->isExact())
529      Flags |= 1 << bitc::PEO_EXACT;
530  }
531
532  return Flags;
533}
534
535static void WriteMDNode(const MDNode *N,
536                        const llvm_2_9_func::ValueEnumerator &VE,
537                        BitstreamWriter &Stream,
538                        SmallVector<uint64_t, 64> &Record) {
539  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
540    if (N->getOperand(i)) {
541      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
542      Record.push_back(VE.getValueID(N->getOperand(i)));
543    } else {
544      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
545      Record.push_back(0);
546    }
547  }
548  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
549                                           bitc::METADATA_NODE;
550  Stream.EmitRecord(MDCode, Record, 0);
551  Record.clear();
552}
553
554static void WriteModuleMetadata(const Module *M,
555                                const llvm_2_9_func::ValueEnumerator &VE,
556                                BitstreamWriter &Stream) {
557  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getMDValues();
558  bool StartedMetadataBlock = false;
559  unsigned MDSAbbrev = 0;
560  SmallVector<uint64_t, 64> Record;
561  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
562
563    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
564      if (!N->isFunctionLocal() || !N->getFunction()) {
565        if (!StartedMetadataBlock) {
566          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
567          StartedMetadataBlock = true;
568        }
569        WriteMDNode(N, VE, Stream, Record);
570      }
571    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
572      if (!StartedMetadataBlock)  {
573        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
574
575        // Abbrev for METADATA_STRING.
576        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
577        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
578        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
579        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
580        MDSAbbrev = Stream.EmitAbbrev(Abbv);
581        StartedMetadataBlock = true;
582      }
583
584      // Code: [strchar x N]
585      Record.append(MDS->begin(), MDS->end());
586
587      // Emit the finished record.
588      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
589      Record.clear();
590    }
591  }
592
593  // Write named metadata.
594  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
595       E = M->named_metadata_end(); I != E; ++I) {
596    const NamedMDNode *NMD = I;
597    if (!StartedMetadataBlock)  {
598      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
599      StartedMetadataBlock = true;
600    }
601
602    // Write name.
603    StringRef Str = NMD->getName();
604    for (unsigned i = 0, e = Str.size(); i != e; ++i)
605      Record.push_back(Str[i]);
606    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
607    Record.clear();
608
609    // Write named metadata operands.
610    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
611      Record.push_back(VE.getValueID(NMD->getOperand(i)));
612    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
613    Record.clear();
614  }
615
616  if (StartedMetadataBlock)
617    Stream.ExitBlock();
618}
619
620static void WriteFunctionLocalMetadata(const Function &F,
621                                       const llvm_2_9_func::ValueEnumerator &VE,
622                                       BitstreamWriter &Stream) {
623  bool StartedMetadataBlock = false;
624  SmallVector<uint64_t, 64> Record;
625  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
626  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
627    if (const MDNode *N = Vals[i])
628      if (N->isFunctionLocal() && N->getFunction() == &F) {
629        if (!StartedMetadataBlock) {
630          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
631          StartedMetadataBlock = true;
632        }
633        WriteMDNode(N, VE, Stream, Record);
634      }
635
636  if (StartedMetadataBlock)
637    Stream.ExitBlock();
638}
639
640static void WriteMetadataAttachment(const Function &F,
641                                    const llvm_2_9_func::ValueEnumerator &VE,
642                                    BitstreamWriter &Stream) {
643  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
644
645  SmallVector<uint64_t, 64> Record;
646
647  // Write metadata attachments
648  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
649  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
650
651  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
652    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
653         I != E; ++I) {
654      MDs.clear();
655      I->getAllMetadataOtherThanDebugLoc(MDs);
656
657      // If no metadata, ignore instruction.
658      if (MDs.empty()) continue;
659
660      Record.push_back(VE.getInstructionID(I));
661
662      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
663        Record.push_back(MDs[i].first);
664        Record.push_back(VE.getValueID(MDs[i].second));
665      }
666      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
667      Record.clear();
668    }
669
670  Stream.ExitBlock();
671}
672
673static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
674  SmallVector<uint64_t, 64> Record;
675
676  // Write metadata kinds
677  // METADATA_KIND - [n x [id, name]]
678  SmallVector<StringRef, 4> Names;
679  M->getMDKindNames(Names);
680
681  if (Names.empty()) return;
682
683  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
684
685  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
686    Record.push_back(MDKindID);
687    StringRef KName = Names[MDKindID];
688    Record.append(KName.begin(), KName.end());
689
690    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
691    Record.clear();
692  }
693
694  Stream.ExitBlock();
695}
696
697static void WriteConstants(unsigned FirstVal, unsigned LastVal,
698                           const llvm_2_9_func::ValueEnumerator &VE,
699                           BitstreamWriter &Stream, bool isGlobal) {
700  if (FirstVal == LastVal) return;
701
702  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
703
704  unsigned AggregateAbbrev = 0;
705  unsigned String8Abbrev = 0;
706  unsigned CString7Abbrev = 0;
707  unsigned CString6Abbrev = 0;
708  // If this is a constant pool for the module, emit module-specific abbrevs.
709  if (isGlobal) {
710    // Abbrev for CST_CODE_AGGREGATE.
711    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
712    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
713    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
714    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
715    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
716
717    // Abbrev for CST_CODE_STRING.
718    Abbv = new BitCodeAbbrev();
719    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
720    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
721    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
722    String8Abbrev = Stream.EmitAbbrev(Abbv);
723    // Abbrev for CST_CODE_CSTRING.
724    Abbv = new BitCodeAbbrev();
725    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
726    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
727    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
728    CString7Abbrev = Stream.EmitAbbrev(Abbv);
729    // Abbrev for CST_CODE_CSTRING.
730    Abbv = new BitCodeAbbrev();
731    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
732    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
733    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
734    CString6Abbrev = Stream.EmitAbbrev(Abbv);
735  }
736
737  SmallVector<uint64_t, 64> Record;
738
739  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
740  Type *LastTy = 0;
741  for (unsigned i = FirstVal; i != LastVal; ++i) {
742    const Value *V = Vals[i].first;
743    // If we need to switch types, do so now.
744    if (V->getType() != LastTy) {
745      LastTy = V->getType();
746      Record.push_back(VE.getTypeID(LastTy));
747      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
748                        CONSTANTS_SETTYPE_ABBREV);
749      Record.clear();
750    }
751
752    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
753      Record.push_back(unsigned(IA->hasSideEffects()) |
754                       unsigned(IA->isAlignStack()) << 1);
755
756      // Add the asm string.
757      const std::string &AsmStr = IA->getAsmString();
758      Record.push_back(AsmStr.size());
759      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
760        Record.push_back(AsmStr[i]);
761
762      // Add the constraint string.
763      const std::string &ConstraintStr = IA->getConstraintString();
764      Record.push_back(ConstraintStr.size());
765      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
766        Record.push_back(ConstraintStr[i]);
767      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
768      Record.clear();
769      continue;
770    }
771    const Constant *C = cast<Constant>(V);
772    unsigned Code = -1U;
773    unsigned AbbrevToUse = 0;
774    if (C->isNullValue()) {
775      Code = bitc::CST_CODE_NULL;
776    } else if (isa<UndefValue>(C)) {
777      Code = bitc::CST_CODE_UNDEF;
778    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
779      if (IV->getBitWidth() <= 64) {
780        uint64_t V = IV->getSExtValue();
781        if ((int64_t)V >= 0)
782          Record.push_back(V << 1);
783        else
784          Record.push_back((-V << 1) | 1);
785        Code = bitc::CST_CODE_INTEGER;
786        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
787      } else {                             // Wide integers, > 64 bits in size.
788        // We have an arbitrary precision integer value to write whose
789        // bit width is > 64. However, in canonical unsigned integer
790        // format it is likely that the high bits are going to be zero.
791        // So, we only write the number of active words.
792        unsigned NWords = IV->getValue().getActiveWords();
793        const uint64_t *RawWords = IV->getValue().getRawData();
794        for (unsigned i = 0; i != NWords; ++i) {
795          int64_t V = RawWords[i];
796          if (V >= 0)
797            Record.push_back(V << 1);
798          else
799            Record.push_back((-V << 1) | 1);
800        }
801        Code = bitc::CST_CODE_WIDE_INTEGER;
802      }
803    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
804      Code = bitc::CST_CODE_FLOAT;
805      Type *Ty = CFP->getType();
806      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
807        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
808      } else if (Ty->isX86_FP80Ty()) {
809        // api needed to prevent premature destruction
810        // bits are not in the same order as a normal i80 APInt, compensate.
811        APInt api = CFP->getValueAPF().bitcastToAPInt();
812        const uint64_t *p = api.getRawData();
813        Record.push_back((p[1] << 48) | (p[0] >> 16));
814        Record.push_back(p[0] & 0xffffLL);
815      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
816        APInt api = CFP->getValueAPF().bitcastToAPInt();
817        const uint64_t *p = api.getRawData();
818        Record.push_back(p[0]);
819        Record.push_back(p[1]);
820      } else {
821        assert (0 && "Unknown FP type!");
822      }
823    } else if (isa<ConstantDataSequential>(C) &&
824               cast<ConstantDataSequential>(C)->isString()) {
825      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
826      // Emit constant strings specially.
827      unsigned NumElts = Str->getNumElements();
828      // If this is a null-terminated string, use the denser CSTRING encoding.
829      if (Str->isCString()) {
830        Code = bitc::CST_CODE_CSTRING;
831        --NumElts;  // Don't encode the null, which isn't allowed by char6.
832      } else {
833        Code = bitc::CST_CODE_STRING;
834        AbbrevToUse = String8Abbrev;
835      }
836      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
837      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
838      for (unsigned i = 0; i != NumElts; ++i) {
839        unsigned char V = Str->getElementAsInteger(i);
840        Record.push_back(V);
841        isCStr7 &= (V & 128) == 0;
842        if (isCStrChar6)
843          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
844      }
845
846      if (isCStrChar6)
847        AbbrevToUse = CString6Abbrev;
848      else if (isCStr7)
849        AbbrevToUse = CString7Abbrev;
850    } else if (const ConstantDataSequential *CDS =
851                  dyn_cast<ConstantDataSequential>(C)) {
852      // We must replace ConstantDataSequential's representation with the
853      // legacy ConstantArray/ConstantVector/ConstantStruct version.
854      // ValueEnumerator is similarly modified to mark the appropriate
855      // Constants as used (so they are emitted).
856      Code = bitc::CST_CODE_AGGREGATE;
857      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
858        Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
859      AbbrevToUse = AggregateAbbrev;
860    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
861               isa<ConstantVector>(C)) {
862      Code = bitc::CST_CODE_AGGREGATE;
863      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
864        Record.push_back(VE.getValueID(C->getOperand(i)));
865      AbbrevToUse = AggregateAbbrev;
866    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
867      switch (CE->getOpcode()) {
868      default:
869        if (Instruction::isCast(CE->getOpcode())) {
870          Code = bitc::CST_CODE_CE_CAST;
871          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
872          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
873          Record.push_back(VE.getValueID(C->getOperand(0)));
874          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
875        } else {
876          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
877          Code = bitc::CST_CODE_CE_BINOP;
878          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
879          Record.push_back(VE.getValueID(C->getOperand(0)));
880          Record.push_back(VE.getValueID(C->getOperand(1)));
881          uint64_t Flags = GetOptimizationFlags(CE);
882          if (Flags != 0)
883            Record.push_back(Flags);
884        }
885        break;
886      case Instruction::GetElementPtr:
887        Code = bitc::CST_CODE_CE_GEP;
888        if (cast<GEPOperator>(C)->isInBounds())
889          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
890        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
891          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
892          Record.push_back(VE.getValueID(C->getOperand(i)));
893        }
894        break;
895      case Instruction::Select:
896        Code = bitc::CST_CODE_CE_SELECT;
897        Record.push_back(VE.getValueID(C->getOperand(0)));
898        Record.push_back(VE.getValueID(C->getOperand(1)));
899        Record.push_back(VE.getValueID(C->getOperand(2)));
900        break;
901      case Instruction::ExtractElement:
902        Code = bitc::CST_CODE_CE_EXTRACTELT;
903        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
904        Record.push_back(VE.getValueID(C->getOperand(0)));
905        Record.push_back(VE.getValueID(C->getOperand(1)));
906        break;
907      case Instruction::InsertElement:
908        Code = bitc::CST_CODE_CE_INSERTELT;
909        Record.push_back(VE.getValueID(C->getOperand(0)));
910        Record.push_back(VE.getValueID(C->getOperand(1)));
911        Record.push_back(VE.getValueID(C->getOperand(2)));
912        break;
913      case Instruction::ShuffleVector:
914        // If the return type and argument types are the same, this is a
915        // standard shufflevector instruction.  If the types are different,
916        // then the shuffle is widening or truncating the input vectors, and
917        // the argument type must also be encoded.
918        if (C->getType() == C->getOperand(0)->getType()) {
919          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
920        } else {
921          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
922          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
923        }
924        Record.push_back(VE.getValueID(C->getOperand(0)));
925        Record.push_back(VE.getValueID(C->getOperand(1)));
926        Record.push_back(VE.getValueID(C->getOperand(2)));
927        break;
928      case Instruction::ICmp:
929      case Instruction::FCmp:
930        Code = bitc::CST_CODE_CE_CMP;
931        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
932        Record.push_back(VE.getValueID(C->getOperand(0)));
933        Record.push_back(VE.getValueID(C->getOperand(1)));
934        Record.push_back(CE->getPredicate());
935        break;
936      }
937    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
938      Code = bitc::CST_CODE_BLOCKADDRESS;
939      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
940      Record.push_back(VE.getValueID(BA->getFunction()));
941      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
942    } else {
943#ifndef NDEBUG
944      C->dump();
945#endif
946      llvm_unreachable("Unknown constant!");
947    }
948    Stream.EmitRecord(Code, Record, AbbrevToUse);
949    Record.clear();
950  }
951
952  Stream.ExitBlock();
953}
954
955static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE,
956                                 BitstreamWriter &Stream) {
957  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
958
959  // Find the first constant to emit, which is the first non-globalvalue value.
960  // We know globalvalues have been emitted by WriteModuleInfo.
961  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
962    if (!isa<GlobalValue>(Vals[i].first)) {
963      WriteConstants(i, Vals.size(), VE, Stream, true);
964      return;
965    }
966  }
967}
968
969/// PushValueAndType - The file has to encode both the value and type id for
970/// many values, because we need to know what type to create for forward
971/// references.  However, most operands are not forward references, so this type
972/// field is not needed.
973///
974/// This function adds V's value ID to Vals.  If the value ID is higher than the
975/// instruction ID, then it is a forward reference, and it also includes the
976/// type ID.
977static bool PushValueAndType(const Value *V, unsigned InstID,
978                             SmallVector<unsigned, 64> &Vals,
979                             llvm_2_9_func::ValueEnumerator &VE) {
980  unsigned ValID = VE.getValueID(V);
981  Vals.push_back(ValID);
982  if (ValID >= InstID) {
983    Vals.push_back(VE.getTypeID(V->getType()));
984    return true;
985  }
986  return false;
987}
988
989/// WriteInstruction - Emit an instruction to the specified stream.
990static void WriteInstruction(const Instruction &I, unsigned InstID,
991                             llvm_2_9_func::ValueEnumerator &VE,
992                             BitstreamWriter &Stream,
993                             SmallVector<unsigned, 64> &Vals) {
994  unsigned Code = 0;
995  unsigned AbbrevToUse = 0;
996  VE.setInstructionID(&I);
997  switch (I.getOpcode()) {
998  default:
999    if (Instruction::isCast(I.getOpcode())) {
1000      Code = bitc::FUNC_CODE_INST_CAST;
1001      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1002        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1003      Vals.push_back(VE.getTypeID(I.getType()));
1004      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1005    } else {
1006      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1007      Code = bitc::FUNC_CODE_INST_BINOP;
1008      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1009        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1010      Vals.push_back(VE.getValueID(I.getOperand(1)));
1011      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1012      uint64_t Flags = GetOptimizationFlags(&I);
1013      if (Flags != 0) {
1014        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1015          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1016        Vals.push_back(Flags);
1017      }
1018    }
1019    break;
1020
1021  case Instruction::GetElementPtr:
1022    Code = bitc::FUNC_CODE_INST_GEP;
1023    if (cast<GEPOperator>(&I)->isInBounds())
1024      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1025    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1026      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1027    break;
1028  case Instruction::ExtractValue: {
1029    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1030    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1031    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1032    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1033      Vals.push_back(*i);
1034    break;
1035  }
1036  case Instruction::InsertValue: {
1037    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1038    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1039    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1040    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1041    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1042      Vals.push_back(*i);
1043    break;
1044  }
1045  case Instruction::Select:
1046    Code = bitc::FUNC_CODE_INST_VSELECT;
1047    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1048    Vals.push_back(VE.getValueID(I.getOperand(2)));
1049    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1050    break;
1051  case Instruction::ExtractElement:
1052    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1053    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1054    Vals.push_back(VE.getValueID(I.getOperand(1)));
1055    break;
1056  case Instruction::InsertElement:
1057    Code = bitc::FUNC_CODE_INST_INSERTELT;
1058    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1059    Vals.push_back(VE.getValueID(I.getOperand(1)));
1060    Vals.push_back(VE.getValueID(I.getOperand(2)));
1061    break;
1062  case Instruction::ShuffleVector:
1063    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1064    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1065    Vals.push_back(VE.getValueID(I.getOperand(1)));
1066    Vals.push_back(VE.getValueID(I.getOperand(2)));
1067    break;
1068  case Instruction::ICmp:
1069  case Instruction::FCmp:
1070    // compare returning Int1Ty or vector of Int1Ty
1071    Code = bitc::FUNC_CODE_INST_CMP2;
1072    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1073    Vals.push_back(VE.getValueID(I.getOperand(1)));
1074    Vals.push_back(cast<CmpInst>(I).getPredicate());
1075    break;
1076
1077  case Instruction::Ret:
1078    {
1079      Code = bitc::FUNC_CODE_INST_RET;
1080      unsigned NumOperands = I.getNumOperands();
1081      if (NumOperands == 0)
1082        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1083      else if (NumOperands == 1) {
1084        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1085          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1086      } else {
1087        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1088          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1089      }
1090    }
1091    break;
1092  case Instruction::Br:
1093    {
1094      Code = bitc::FUNC_CODE_INST_BR;
1095      const BranchInst &II = cast<BranchInst>(I);
1096      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1097      if (II.isConditional()) {
1098        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1099        Vals.push_back(VE.getValueID(II.getCondition()));
1100      }
1101    }
1102    break;
1103  case Instruction::Switch:
1104    {
1105      Code = bitc::FUNC_CODE_INST_SWITCH;
1106      const SwitchInst &SI = cast<SwitchInst>(I);
1107
1108      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1109      Vals.push_back(VE.getValueID(SI.getCondition()));
1110      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1111      for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1112           i != e; ++i) {
1113          Vals.push_back(VE.getValueID(i.getCaseValue()));
1114          Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1115      }
1116    }
1117    break;
1118  case Instruction::IndirectBr:
1119    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1120    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1121    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1122      Vals.push_back(VE.getValueID(I.getOperand(i)));
1123    break;
1124
1125  case Instruction::Invoke: {
1126    const InvokeInst *II = cast<InvokeInst>(&I);
1127    const Value *Callee(II->getCalledValue());
1128    PointerType *PTy = cast<PointerType>(Callee->getType());
1129    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1130    Code = bitc::FUNC_CODE_INST_INVOKE;
1131
1132    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1133    Vals.push_back(II->getCallingConv());
1134    Vals.push_back(VE.getValueID(II->getNormalDest()));
1135    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1136    PushValueAndType(Callee, InstID, Vals, VE);
1137
1138    // Emit value #'s for the fixed parameters.
1139    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1140      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1141
1142    // Emit type/value pairs for varargs params.
1143    if (FTy->isVarArg()) {
1144      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1145           i != e; ++i)
1146        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1147    }
1148    break;
1149  }
1150  case Instruction::Resume:
1151    Code = bitc::FUNC_CODE_INST_RESUME;
1152    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1153    break;
1154  case Instruction::Unreachable:
1155    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1156    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1157    break;
1158
1159  case Instruction::PHI: {
1160    const PHINode &PN = cast<PHINode>(I);
1161    Code = bitc::FUNC_CODE_INST_PHI;
1162    Vals.push_back(VE.getTypeID(PN.getType()));
1163    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1164      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1165      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1166    }
1167    break;
1168  }
1169
1170  case Instruction::LandingPad: {
1171    const LandingPadInst &LP = cast<LandingPadInst>(I);
1172    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1173    Vals.push_back(VE.getTypeID(LP.getType()));
1174    PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1175    Vals.push_back(LP.isCleanup());
1176    Vals.push_back(LP.getNumClauses());
1177    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1178      if (LP.isCatch(I))
1179        Vals.push_back(LandingPadInst::Catch);
1180      else
1181        Vals.push_back(LandingPadInst::Filter);
1182      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1183    }
1184    break;
1185  }
1186
1187  case Instruction::Alloca:
1188    Code = bitc::FUNC_CODE_INST_ALLOCA;
1189    Vals.push_back(VE.getTypeID(I.getType()));
1190    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1191    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1192    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1193    break;
1194
1195  case Instruction::Load:
1196    if (cast<LoadInst>(I).isAtomic()) {
1197      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1198      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1199    } else {
1200      Code = bitc::FUNC_CODE_INST_LOAD;
1201      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1202        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1203    }
1204    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1205    Vals.push_back(cast<LoadInst>(I).isVolatile());
1206    if (cast<LoadInst>(I).isAtomic()) {
1207      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1208      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1209    }
1210    break;
1211  case Instruction::Store:
1212    if (cast<StoreInst>(I).isAtomic())
1213      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1214    else
1215      Code = bitc::FUNC_CODE_INST_STORE;
1216    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1217    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1218    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1219    Vals.push_back(cast<StoreInst>(I).isVolatile());
1220    if (cast<StoreInst>(I).isAtomic()) {
1221      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1222      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1223    }
1224    break;
1225  case Instruction::AtomicCmpXchg:
1226    Code = bitc::FUNC_CODE_INST_CMPXCHG;
1227    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1228    Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1229    Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1230    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1231    Vals.push_back(GetEncodedOrdering(
1232                     cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1233    Vals.push_back(GetEncodedSynchScope(
1234                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
1235    break;
1236  case Instruction::AtomicRMW:
1237    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1238    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1239    Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1240    Vals.push_back(GetEncodedRMWOperation(
1241                     cast<AtomicRMWInst>(I).getOperation()));
1242    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1243    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1244    Vals.push_back(GetEncodedSynchScope(
1245                     cast<AtomicRMWInst>(I).getSynchScope()));
1246    break;
1247  case Instruction::Fence:
1248    Code = bitc::FUNC_CODE_INST_FENCE;
1249    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1250    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1251    break;
1252  case Instruction::Call: {
1253    const CallInst &CI = cast<CallInst>(I);
1254    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1255    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1256
1257    Code = bitc::FUNC_CODE_INST_CALL;
1258
1259    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1260    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1261    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1262
1263    // Emit value #'s for the fixed parameters.
1264    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1265      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1266
1267    // Emit type/value pairs for varargs params.
1268    if (FTy->isVarArg()) {
1269      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1270           i != e; ++i)
1271        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1272    }
1273    break;
1274  }
1275  case Instruction::VAArg:
1276    Code = bitc::FUNC_CODE_INST_VAARG;
1277    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1278    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1279    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1280    break;
1281  }
1282
1283  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1284  Vals.clear();
1285}
1286
1287// Emit names for globals/functions etc.
1288static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1289                                  const llvm_2_9_func::ValueEnumerator &VE,
1290                                  BitstreamWriter &Stream) {
1291  if (VST.empty()) return;
1292  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1293
1294  // FIXME: Set up the abbrev, we know how many values there are!
1295  // FIXME: We know if the type names can use 7-bit ascii.
1296  SmallVector<unsigned, 64> NameVals;
1297
1298  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1299       SI != SE; ++SI) {
1300
1301    const ValueName &Name = *SI;
1302
1303    // Figure out the encoding to use for the name.
1304    bool is7Bit = true;
1305    bool isChar6 = true;
1306    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1307         C != E; ++C) {
1308      if (isChar6)
1309        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1310      if ((unsigned char)*C & 128) {
1311        is7Bit = false;
1312        break;  // don't bother scanning the rest.
1313      }
1314    }
1315
1316    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1317
1318    // VST_ENTRY:   [valueid, namechar x N]
1319    // VST_BBENTRY: [bbid, namechar x N]
1320    unsigned Code;
1321    if (isa<BasicBlock>(SI->getValue())) {
1322      Code = bitc::VST_CODE_BBENTRY;
1323      if (isChar6)
1324        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1325    } else {
1326      Code = bitc::VST_CODE_ENTRY;
1327      if (isChar6)
1328        AbbrevToUse = VST_ENTRY_6_ABBREV;
1329      else if (is7Bit)
1330        AbbrevToUse = VST_ENTRY_7_ABBREV;
1331    }
1332
1333    NameVals.push_back(VE.getValueID(SI->getValue()));
1334    for (const char *P = Name.getKeyData(),
1335         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1336      NameVals.push_back((unsigned char)*P);
1337
1338    // Emit the finished record.
1339    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1340    NameVals.clear();
1341  }
1342  Stream.ExitBlock();
1343}
1344
1345/// WriteFunction - Emit a function body to the module stream.
1346static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE,
1347                          BitstreamWriter &Stream) {
1348  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1349  VE.incorporateFunction(F);
1350
1351  SmallVector<unsigned, 64> Vals;
1352
1353  // Emit the number of basic blocks, so the reader can create them ahead of
1354  // time.
1355  Vals.push_back(VE.getBasicBlocks().size());
1356  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1357  Vals.clear();
1358
1359  // If there are function-local constants, emit them now.
1360  unsigned CstStart, CstEnd;
1361  VE.getFunctionConstantRange(CstStart, CstEnd);
1362  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1363
1364  // If there is function-local metadata, emit it now.
1365  WriteFunctionLocalMetadata(F, VE, Stream);
1366
1367  // Keep a running idea of what the instruction ID is.
1368  unsigned InstID = CstEnd;
1369
1370  bool NeedsMetadataAttachment = false;
1371
1372  DebugLoc LastDL;
1373
1374  // Finally, emit all the instructions, in order.
1375  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1376    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1377         I != E; ++I) {
1378      WriteInstruction(*I, InstID, VE, Stream, Vals);
1379
1380      if (!I->getType()->isVoidTy())
1381        ++InstID;
1382
1383      // If the instruction has metadata, write a metadata attachment later.
1384      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1385
1386      // If the instruction has a debug location, emit it.
1387      DebugLoc DL = I->getDebugLoc();
1388      if (DL.isUnknown()) {
1389        // nothing todo.
1390      } else if (DL == LastDL) {
1391        // Just repeat the same debug loc as last time.
1392        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1393      } else {
1394        MDNode *Scope, *IA;
1395        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1396
1397        Vals.push_back(DL.getLine());
1398        Vals.push_back(DL.getCol());
1399        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1400        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1401        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1402        Vals.clear();
1403
1404        LastDL = DL;
1405      }
1406    }
1407
1408  // Emit names for all the instructions etc.
1409  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1410
1411  if (NeedsMetadataAttachment)
1412    WriteMetadataAttachment(F, VE, Stream);
1413  VE.purgeFunction();
1414  Stream.ExitBlock();
1415}
1416
1417// Emit blockinfo, which defines the standard abbreviations etc.
1418static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE,
1419                           BitstreamWriter &Stream) {
1420  // We only want to emit block info records for blocks that have multiple
1421  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1422  // blocks can defined their abbrevs inline.
1423  Stream.EnterBlockInfoBlock(2);
1424
1425  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1426    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1427    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1428    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1429    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1430    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1431    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1432                                   Abbv) != VST_ENTRY_8_ABBREV)
1433      llvm_unreachable("Unexpected abbrev ordering!");
1434  }
1435
1436  { // 7-bit fixed width VST_ENTRY strings.
1437    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1438    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1439    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1440    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1441    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1442    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1443                                   Abbv) != VST_ENTRY_7_ABBREV)
1444      llvm_unreachable("Unexpected abbrev ordering!");
1445  }
1446  { // 6-bit char6 VST_ENTRY strings.
1447    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1448    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1449    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1450    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1451    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1452    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1453                                   Abbv) != VST_ENTRY_6_ABBREV)
1454      llvm_unreachable("Unexpected abbrev ordering!");
1455  }
1456  { // 6-bit char6 VST_BBENTRY strings.
1457    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1458    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1459    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1460    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1461    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1462    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1463                                   Abbv) != VST_BBENTRY_6_ABBREV)
1464      llvm_unreachable("Unexpected abbrev ordering!");
1465  }
1466
1467
1468
1469  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1470    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1471    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1472    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1473                              Log2_32_Ceil(VE.getTypes().size()+1)));
1474    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1475                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1476      llvm_unreachable("Unexpected abbrev ordering!");
1477  }
1478
1479  { // INTEGER abbrev for CONSTANTS_BLOCK.
1480    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1481    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1482    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1483    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1484                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1485      llvm_unreachable("Unexpected abbrev ordering!");
1486  }
1487
1488  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1489    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1490    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1491    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1492    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1493                              Log2_32_Ceil(VE.getTypes().size()+1)));
1494    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1495
1496    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1497                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1498      llvm_unreachable("Unexpected abbrev ordering!");
1499  }
1500  { // NULL abbrev for CONSTANTS_BLOCK.
1501    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1502    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1503    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1504                                   Abbv) != CONSTANTS_NULL_Abbrev)
1505      llvm_unreachable("Unexpected abbrev ordering!");
1506  }
1507
1508  // FIXME: This should only use space for first class types!
1509
1510  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1511    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1512    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1513    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1514    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1515    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1516    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1517                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1518      llvm_unreachable("Unexpected abbrev ordering!");
1519  }
1520  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1521    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1522    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1523    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1524    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1525    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1526    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1527                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1528      llvm_unreachable("Unexpected abbrev ordering!");
1529  }
1530  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1531    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1532    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1533    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1534    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1535    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1536    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1537    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1538                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1539      llvm_unreachable("Unexpected abbrev ordering!");
1540  }
1541  { // INST_CAST abbrev for FUNCTION_BLOCK.
1542    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1543    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1544    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1545    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1546                              Log2_32_Ceil(VE.getTypes().size()+1)));
1547    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1548    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1549                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1550      llvm_unreachable("Unexpected abbrev ordering!");
1551  }
1552
1553  { // INST_RET abbrev for FUNCTION_BLOCK.
1554    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1555    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1556    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1557                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1558      llvm_unreachable("Unexpected abbrev ordering!");
1559  }
1560  { // INST_RET abbrev for FUNCTION_BLOCK.
1561    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1562    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1563    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1564    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1565                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1566      llvm_unreachable("Unexpected abbrev ordering!");
1567  }
1568  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1569    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1570    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1571    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1572                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1573      llvm_unreachable("Unexpected abbrev ordering!");
1574  }
1575
1576  Stream.ExitBlock();
1577}
1578
1579
1580/// WriteModule - Emit the specified module to the bitstream.
1581static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1582  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1583
1584  // Emit the version number if it is non-zero.
1585  if (CurVersion) {
1586    SmallVector<unsigned, 1> Vals;
1587    Vals.push_back(CurVersion);
1588    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1589  }
1590
1591  // Analyze the module, enumerating globals, functions, etc.
1592  llvm_2_9_func::ValueEnumerator VE(M);
1593
1594  // Emit blockinfo, which defines the standard abbreviations etc.
1595  WriteBlockInfo(VE, Stream);
1596
1597  // Emit information about parameter attributes.
1598  WriteAttributeTable(VE, Stream);
1599
1600  // Emit information describing all of the types in the module.
1601  WriteTypeTable(VE, Stream);
1602
1603  // Emit top-level description of module, including target triple, inline asm,
1604  // descriptors for global variables, and function prototype info.
1605  WriteModuleInfo(M, VE, Stream);
1606
1607  // Emit constants.
1608  WriteModuleConstants(VE, Stream);
1609
1610  // Emit metadata.
1611  WriteModuleMetadata(M, VE, Stream);
1612
1613  // Emit function bodies.
1614  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1615    if (!F->isDeclaration())
1616      WriteFunction(*F, VE, Stream);
1617
1618  // Emit metadata.
1619  WriteModuleMetadataStore(M, Stream);
1620
1621  // Emit names for globals/functions etc.
1622  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1623
1624  Stream.ExitBlock();
1625}
1626
1627/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1628/// header and trailer to make it compatible with the system archiver.  To do
1629/// this we emit the following header, and then emit a trailer that pads the
1630/// file out to be a multiple of 16 bytes.
1631///
1632/// struct bc_header {
1633///   uint32_t Magic;         // 0x0B17C0DE
1634///   uint32_t Version;       // Version, currently always 0.
1635///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1636///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1637///   uint32_t CPUType;       // CPU specifier.
1638///   ... potentially more later ...
1639/// };
1640enum {
1641  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1642  DarwinBCHeaderSize = 5*4
1643};
1644
1645static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1646                               uint32_t &Position) {
1647  Buffer[Position + 0] = (unsigned char) (Value >>  0);
1648  Buffer[Position + 1] = (unsigned char) (Value >>  8);
1649  Buffer[Position + 2] = (unsigned char) (Value >> 16);
1650  Buffer[Position + 3] = (unsigned char) (Value >> 24);
1651  Position += 4;
1652}
1653
1654static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1655                                         const Triple &TT) {
1656  unsigned CPUType = ~0U;
1657
1658  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1659  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1660  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1661  // specific constants here because they are implicitly part of the Darwin ABI.
1662  enum {
1663    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1664    DARWIN_CPU_TYPE_X86        = 7,
1665    DARWIN_CPU_TYPE_ARM        = 12,
1666    DARWIN_CPU_TYPE_POWERPC    = 18
1667  };
1668
1669  Triple::ArchType Arch = TT.getArch();
1670  if (Arch == Triple::x86_64)
1671    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1672  else if (Arch == Triple::x86)
1673    CPUType = DARWIN_CPU_TYPE_X86;
1674  else if (Arch == Triple::ppc)
1675    CPUType = DARWIN_CPU_TYPE_POWERPC;
1676  else if (Arch == Triple::ppc64)
1677    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1678  else if (Arch == Triple::arm || Arch == Triple::thumb)
1679    CPUType = DARWIN_CPU_TYPE_ARM;
1680
1681  // Traditional Bitcode starts after header.
1682  assert(Buffer.size() >= DarwinBCHeaderSize &&
1683         "Expected header size to be reserved");
1684  unsigned BCOffset = DarwinBCHeaderSize;
1685  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1686
1687  // Write the magic and version.
1688  unsigned Position = 0;
1689  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1690  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1691  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1692  WriteInt32ToBuffer(BCSize     , Buffer, Position);
1693  WriteInt32ToBuffer(CPUType    , Buffer, Position);
1694
1695  // If the file is not a multiple of 16 bytes, insert dummy padding.
1696  while (Buffer.size() & 15)
1697    Buffer.push_back(0);
1698}
1699
1700/// WriteBitcodeToFile - Write the specified module to the specified output
1701/// stream.
1702void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1703  SmallVector<char, 1024> Buffer;
1704  Buffer.reserve(256*1024);
1705
1706  // If this is darwin or another generic macho target, reserve space for the
1707  // header.
1708  Triple TT(M->getTargetTriple());
1709  if (TT.isOSDarwin())
1710    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1711
1712  // Emit the module into the buffer.
1713  {
1714    BitstreamWriter Stream(Buffer);
1715
1716    // Emit the file header.
1717    Stream.Emit((unsigned)'B', 8);
1718    Stream.Emit((unsigned)'C', 8);
1719    Stream.Emit(0x0, 4);
1720    Stream.Emit(0xC, 4);
1721    Stream.Emit(0xE, 4);
1722    Stream.Emit(0xD, 4);
1723
1724    // Emit the module.
1725    WriteModule(M, Stream);
1726  }
1727
1728  if (TT.isOSDarwin())
1729    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1730
1731  // Write the generated bitstream to "Out".
1732  Out.write((char*)&Buffer.front(), Buffer.size());
1733}
1734