BitcodeWriter.cpp revision 8bb06b7c40b14ce2dae414b0aa034e9b23b278c9
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ReaderWriter_3_2.h"
15#include "legacy_bitcode.h"
16#include "ValueEnumerator.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/Bitcode/BitstreamWriter.h"
19#include "llvm/Bitcode/LLVMBitCodes.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/InlineAsm.h"
23#include "llvm/IR/Instructions.h"
24#include "llvm/IR/Module.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/ValueSymbolTable.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/Program.h"
31#include "llvm/Support/raw_ostream.h"
32#include <cctype>
33#include <map>
34using namespace llvm;
35
36static cl::opt<bool>
37EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
38                              cl::desc("Turn on experimental support for "
39                                       "use-list order preservation."),
40                              cl::init(false), cl::Hidden);
41
42/// These are manifest constants used by the bitcode writer. They do not need to
43/// be kept in sync with the reader, but need to be consistent within this file.
44enum {
45  CurVersion = 0,
46
47  // VALUE_SYMTAB_BLOCK abbrev id's.
48  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
49  VST_ENTRY_7_ABBREV,
50  VST_ENTRY_6_ABBREV,
51  VST_BBENTRY_6_ABBREV,
52
53  // CONSTANTS_BLOCK abbrev id's.
54  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
55  CONSTANTS_INTEGER_ABBREV,
56  CONSTANTS_CE_CAST_Abbrev,
57  CONSTANTS_NULL_Abbrev,
58
59  // FUNCTION_BLOCK abbrev id's.
60  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
61  FUNCTION_INST_BINOP_ABBREV,
62  FUNCTION_INST_BINOP_FLAGS_ABBREV,
63  FUNCTION_INST_CAST_ABBREV,
64  FUNCTION_INST_RET_VOID_ABBREV,
65  FUNCTION_INST_RET_VAL_ABBREV,
66  FUNCTION_INST_UNREACHABLE_ABBREV,
67
68  // SwitchInst Magic
69  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
70};
71
72static unsigned GetEncodedCastOpcode(unsigned Opcode) {
73  switch (Opcode) {
74  default: llvm_unreachable("Unknown cast instruction!");
75  case Instruction::Trunc   : return bitc::CAST_TRUNC;
76  case Instruction::ZExt    : return bitc::CAST_ZEXT;
77  case Instruction::SExt    : return bitc::CAST_SEXT;
78  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
79  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
80  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
81  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
82  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
83  case Instruction::FPExt   : return bitc::CAST_FPEXT;
84  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
85  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
86  case Instruction::BitCast : return bitc::CAST_BITCAST;
87  }
88}
89
90static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
91  switch (Opcode) {
92  default: llvm_unreachable("Unknown binary instruction!");
93  case Instruction::Add:
94  case Instruction::FAdd: return bitc::BINOP_ADD;
95  case Instruction::Sub:
96  case Instruction::FSub: return bitc::BINOP_SUB;
97  case Instruction::Mul:
98  case Instruction::FMul: return bitc::BINOP_MUL;
99  case Instruction::UDiv: return bitc::BINOP_UDIV;
100  case Instruction::FDiv:
101  case Instruction::SDiv: return bitc::BINOP_SDIV;
102  case Instruction::URem: return bitc::BINOP_UREM;
103  case Instruction::FRem:
104  case Instruction::SRem: return bitc::BINOP_SREM;
105  case Instruction::Shl:  return bitc::BINOP_SHL;
106  case Instruction::LShr: return bitc::BINOP_LSHR;
107  case Instruction::AShr: return bitc::BINOP_ASHR;
108  case Instruction::And:  return bitc::BINOP_AND;
109  case Instruction::Or:   return bitc::BINOP_OR;
110  case Instruction::Xor:  return bitc::BINOP_XOR;
111  }
112}
113
114static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
115  switch (Op) {
116  default: llvm_unreachable("Unknown RMW operation!");
117  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
118  case AtomicRMWInst::Add: return bitc::RMW_ADD;
119  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
120  case AtomicRMWInst::And: return bitc::RMW_AND;
121  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
122  case AtomicRMWInst::Or: return bitc::RMW_OR;
123  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
124  case AtomicRMWInst::Max: return bitc::RMW_MAX;
125  case AtomicRMWInst::Min: return bitc::RMW_MIN;
126  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
127  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
128  }
129}
130
131static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
132  switch (Ordering) {
133  case NotAtomic: return bitc::ORDERING_NOTATOMIC;
134  case Unordered: return bitc::ORDERING_UNORDERED;
135  case Monotonic: return bitc::ORDERING_MONOTONIC;
136  case Acquire: return bitc::ORDERING_ACQUIRE;
137  case Release: return bitc::ORDERING_RELEASE;
138  case AcquireRelease: return bitc::ORDERING_ACQREL;
139  case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
140  }
141  llvm_unreachable("Invalid ordering");
142}
143
144static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
145  switch (SynchScope) {
146  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
147  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
148  }
149  llvm_unreachable("Invalid synch scope");
150}
151
152static void WriteStringRecord(unsigned Code, StringRef Str,
153                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
154  SmallVector<unsigned, 64> Vals;
155
156  // Code: [strchar x N]
157  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
158    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
159      AbbrevToUse = 0;
160    Vals.push_back(Str[i]);
161  }
162
163  // Emit the finished record.
164  Stream.EmitRecord(Code, Vals, AbbrevToUse);
165}
166
167// Emit information about parameter attributes.
168static void WriteAttributeTable(const llvm_3_2::ValueEnumerator &VE,
169                                BitstreamWriter &Stream) {
170  const std::vector<AttributeSet> &Attrs = VE.getAttributes();
171  if (Attrs.empty()) return;
172
173  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
174
175  SmallVector<uint64_t, 64> Record;
176  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
177    const AttributeSet &A = Attrs[i];
178    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
179      Record.push_back(A.getSlotIndex(i));
180      Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
181    }
182
183    // This needs to use the 3.2 entry type
184    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
185    Record.clear();
186  }
187
188  Stream.ExitBlock();
189}
190
191/// WriteTypeTable - Write out the type table for a module.
192static void WriteTypeTable(const llvm_3_2::ValueEnumerator &VE,
193                           BitstreamWriter &Stream) {
194  const llvm_3_2::ValueEnumerator::TypeList &TypeList = VE.getTypes();
195
196  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
197  SmallVector<uint64_t, 64> TypeVals;
198
199  uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
200
201  // Abbrev for TYPE_CODE_POINTER.
202  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
203  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
204  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
205  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
206  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
207
208  // Abbrev for TYPE_CODE_FUNCTION.
209  Abbv = new BitCodeAbbrev();
210  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
211  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
212  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
213  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
214
215  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
216
217  // Abbrev for TYPE_CODE_STRUCT_ANON.
218  Abbv = new BitCodeAbbrev();
219  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
220  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
221  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
222  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
223
224  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
225
226  // Abbrev for TYPE_CODE_STRUCT_NAME.
227  Abbv = new BitCodeAbbrev();
228  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
229  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
230  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
231  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
232
233  // Abbrev for TYPE_CODE_STRUCT_NAMED.
234  Abbv = new BitCodeAbbrev();
235  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
236  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
237  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
238  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
239
240  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
241
242  // Abbrev for TYPE_CODE_ARRAY.
243  Abbv = new BitCodeAbbrev();
244  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
245  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
246  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
247
248  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
249
250  // Emit an entry count so the reader can reserve space.
251  TypeVals.push_back(TypeList.size());
252  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
253  TypeVals.clear();
254
255  // Loop over all of the types, emitting each in turn.
256  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
257    Type *T = TypeList[i];
258    int AbbrevToUse = 0;
259    unsigned Code = 0;
260
261    switch (T->getTypeID()) {
262    default: llvm_unreachable("Unknown type!");
263    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
264    case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
265    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
266    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
267    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
268    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
269    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
270    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
271    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
272    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
273    case Type::IntegerTyID:
274      // INTEGER: [width]
275      Code = bitc::TYPE_CODE_INTEGER;
276      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
277      break;
278    case Type::PointerTyID: {
279      PointerType *PTy = cast<PointerType>(T);
280      // POINTER: [pointee type, address space]
281      Code = bitc::TYPE_CODE_POINTER;
282      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
283      unsigned AddressSpace = PTy->getAddressSpace();
284      TypeVals.push_back(AddressSpace);
285      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
286      break;
287    }
288    case Type::FunctionTyID: {
289      FunctionType *FT = cast<FunctionType>(T);
290      // FUNCTION: [isvararg, retty, paramty x N]
291      Code = bitc::TYPE_CODE_FUNCTION;
292      TypeVals.push_back(FT->isVarArg());
293      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
294      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
295        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
296      AbbrevToUse = FunctionAbbrev;
297      break;
298    }
299    case Type::StructTyID: {
300      StructType *ST = cast<StructType>(T);
301      // STRUCT: [ispacked, eltty x N]
302      TypeVals.push_back(ST->isPacked());
303      // Output all of the element types.
304      for (StructType::element_iterator I = ST->element_begin(),
305           E = ST->element_end(); I != E; ++I)
306        TypeVals.push_back(VE.getTypeID(*I));
307
308      if (ST->isLiteral()) {
309        Code = bitc::TYPE_CODE_STRUCT_ANON;
310        AbbrevToUse = StructAnonAbbrev;
311      } else {
312        if (ST->isOpaque()) {
313          Code = bitc::TYPE_CODE_OPAQUE;
314        } else {
315          Code = bitc::TYPE_CODE_STRUCT_NAMED;
316          AbbrevToUse = StructNamedAbbrev;
317        }
318
319        // Emit the name if it is present.
320        if (!ST->getName().empty())
321          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
322                            StructNameAbbrev, Stream);
323      }
324      break;
325    }
326    case Type::ArrayTyID: {
327      ArrayType *AT = cast<ArrayType>(T);
328      // ARRAY: [numelts, eltty]
329      Code = bitc::TYPE_CODE_ARRAY;
330      TypeVals.push_back(AT->getNumElements());
331      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
332      AbbrevToUse = ArrayAbbrev;
333      break;
334    }
335    case Type::VectorTyID: {
336      VectorType *VT = cast<VectorType>(T);
337      // VECTOR [numelts, eltty]
338      Code = bitc::TYPE_CODE_VECTOR;
339      TypeVals.push_back(VT->getNumElements());
340      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
341      break;
342    }
343    }
344
345    // Emit the finished record.
346    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
347    TypeVals.clear();
348  }
349
350  Stream.ExitBlock();
351}
352
353static unsigned getEncodedLinkage(const GlobalValue *GV) {
354  switch (GV->getLinkage()) {
355  case GlobalValue::ExternalLinkage:                 return 0;
356  case GlobalValue::WeakAnyLinkage:                  return 1;
357  case GlobalValue::AppendingLinkage:                return 2;
358  case GlobalValue::InternalLinkage:                 return 3;
359  case GlobalValue::LinkOnceAnyLinkage:              return 4;
360  case GlobalValue::DLLImportLinkage:                return 5;
361  case GlobalValue::DLLExportLinkage:                return 6;
362  case GlobalValue::ExternalWeakLinkage:             return 7;
363  case GlobalValue::CommonLinkage:                   return 8;
364  case GlobalValue::PrivateLinkage:                  return 9;
365  case GlobalValue::WeakODRLinkage:                  return 10;
366  case GlobalValue::LinkOnceODRLinkage:              return 11;
367  case GlobalValue::AvailableExternallyLinkage:      return 12;
368  case GlobalValue::LinkerPrivateLinkage:            return 13;
369  case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
370  case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
371  }
372  llvm_unreachable("Invalid linkage");
373}
374
375static unsigned getEncodedVisibility(const GlobalValue *GV) {
376  switch (GV->getVisibility()) {
377  case GlobalValue::DefaultVisibility:   return 0;
378  case GlobalValue::HiddenVisibility:    return 1;
379  case GlobalValue::ProtectedVisibility: return 2;
380  }
381  llvm_unreachable("Invalid visibility");
382}
383
384static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
385  switch (GV->getThreadLocalMode()) {
386    case GlobalVariable::NotThreadLocal:         return 0;
387    case GlobalVariable::GeneralDynamicTLSModel: return 1;
388    case GlobalVariable::LocalDynamicTLSModel:   return 2;
389    case GlobalVariable::InitialExecTLSModel:    return 3;
390    case GlobalVariable::LocalExecTLSModel:      return 4;
391  }
392  llvm_unreachable("Invalid TLS model");
393}
394
395// Emit top-level description of module, including target triple, inline asm,
396// descriptors for global variables, and function prototype info.
397static void WriteModuleInfo(const Module *M,
398                            const llvm_3_2::ValueEnumerator &VE,
399                            BitstreamWriter &Stream) {
400  // Emit various pieces of data attached to a module.
401  if (!M->getTargetTriple().empty())
402    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
403                      0/*TODO*/, Stream);
404  if (!M->getDataLayout().empty())
405    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
406                      0/*TODO*/, Stream);
407  if (!M->getModuleInlineAsm().empty())
408    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
409                      0/*TODO*/, Stream);
410
411  // Emit information about sections and GC, computing how many there are. Also
412  // compute the maximum alignment value.
413  std::map<std::string, unsigned> SectionMap;
414  std::map<std::string, unsigned> GCMap;
415  unsigned MaxAlignment = 0;
416  unsigned MaxGlobalType = 0;
417  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
418       GV != E; ++GV) {
419    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
420    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
421    if (GV->hasSection()) {
422      // Give section names unique ID's.
423      unsigned &Entry = SectionMap[GV->getSection()];
424      if (!Entry) {
425        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
426                          0/*TODO*/, Stream);
427        Entry = SectionMap.size();
428      }
429    }
430  }
431  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
432    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
433    if (F->hasSection()) {
434      // Give section names unique ID's.
435      unsigned &Entry = SectionMap[F->getSection()];
436      if (!Entry) {
437        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
438                          0/*TODO*/, Stream);
439        Entry = SectionMap.size();
440      }
441    }
442    if (F->hasGC()) {
443      // Same for GC names.
444      unsigned &Entry = GCMap[F->getGC()];
445      if (!Entry) {
446        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
447                          0/*TODO*/, Stream);
448        Entry = GCMap.size();
449      }
450    }
451  }
452
453  // Emit abbrev for globals, now that we know # sections and max alignment.
454  unsigned SimpleGVarAbbrev = 0;
455  if (!M->global_empty()) {
456    // Add an abbrev for common globals with no visibility or thread localness.
457    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
458    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
459    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
460                              Log2_32_Ceil(MaxGlobalType+1)));
461    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
462    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
463    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
464    if (MaxAlignment == 0)                                      // Alignment.
465      Abbv->Add(BitCodeAbbrevOp(0));
466    else {
467      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
468      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
469                               Log2_32_Ceil(MaxEncAlignment+1)));
470    }
471    if (SectionMap.empty())                                    // Section.
472      Abbv->Add(BitCodeAbbrevOp(0));
473    else
474      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
475                               Log2_32_Ceil(SectionMap.size()+1)));
476    // Don't bother emitting vis + thread local.
477    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
478  }
479
480  // Emit the global variable information.
481  SmallVector<unsigned, 64> Vals;
482  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
483       GV != E; ++GV) {
484    unsigned AbbrevToUse = 0;
485
486    // GLOBALVAR: [type, isconst, initid,
487    //             linkage, alignment, section, visibility, threadlocal,
488    //             unnamed_addr]
489    Vals.push_back(VE.getTypeID(GV->getType()));
490    Vals.push_back(GV->isConstant());
491    Vals.push_back(GV->isDeclaration() ? 0 :
492                   (VE.getValueID(GV->getInitializer()) + 1));
493    Vals.push_back(getEncodedLinkage(GV));
494    Vals.push_back(Log2_32(GV->getAlignment())+1);
495    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
496    if (GV->isThreadLocal() ||
497        GV->getVisibility() != GlobalValue::DefaultVisibility ||
498        GV->hasUnnamedAddr() || GV->isExternallyInitialized()) {
499      Vals.push_back(getEncodedVisibility(GV));
500      Vals.push_back(getEncodedThreadLocalMode(GV));
501      Vals.push_back(GV->hasUnnamedAddr());
502      Vals.push_back(GV->isExternallyInitialized());
503    } else {
504      AbbrevToUse = SimpleGVarAbbrev;
505    }
506
507    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
508    Vals.clear();
509  }
510
511  // Emit the function proto information.
512  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
513    // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
514    //             section, visibility, gc, unnamed_addr]
515    Vals.push_back(VE.getTypeID(F->getType()));
516    Vals.push_back(F->getCallingConv());
517    Vals.push_back(F->isDeclaration());
518    Vals.push_back(getEncodedLinkage(F));
519    Vals.push_back(VE.getAttributeID(F->getAttributes()));
520    Vals.push_back(Log2_32(F->getAlignment())+1);
521    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
522    Vals.push_back(getEncodedVisibility(F));
523    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
524    Vals.push_back(F->hasUnnamedAddr());
525
526    unsigned AbbrevToUse = 0;
527    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
528    Vals.clear();
529  }
530
531  // Emit the alias information.
532  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
533       AI != E; ++AI) {
534    // ALIAS: [alias type, aliasee val#, linkage, visibility]
535    Vals.push_back(VE.getTypeID(AI->getType()));
536    Vals.push_back(VE.getValueID(AI->getAliasee()));
537    Vals.push_back(getEncodedLinkage(AI));
538    Vals.push_back(getEncodedVisibility(AI));
539    unsigned AbbrevToUse = 0;
540    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
541    Vals.clear();
542  }
543}
544
545static uint64_t GetOptimizationFlags(const Value *V) {
546  uint64_t Flags = 0;
547
548  if (const OverflowingBinaryOperator *OBO =
549        dyn_cast<OverflowingBinaryOperator>(V)) {
550    if (OBO->hasNoSignedWrap())
551      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
552    if (OBO->hasNoUnsignedWrap())
553      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
554  } else if (const PossiblyExactOperator *PEO =
555               dyn_cast<PossiblyExactOperator>(V)) {
556    if (PEO->isExact())
557      Flags |= 1 << bitc::PEO_EXACT;
558  } else if (const FPMathOperator *FPMO =
559             dyn_cast<const FPMathOperator>(V)) {
560    // FIXME(srhines): We don't handle fast math in llvm-rs-cc today.
561    if (false) {
562      if (FPMO->hasUnsafeAlgebra())
563        Flags |= FastMathFlags::UnsafeAlgebra;
564      if (FPMO->hasNoNaNs())
565        Flags |= FastMathFlags::NoNaNs;
566      if (FPMO->hasNoInfs())
567        Flags |= FastMathFlags::NoInfs;
568      if (FPMO->hasNoSignedZeros())
569        Flags |= FastMathFlags::NoSignedZeros;
570      if (FPMO->hasAllowReciprocal())
571        Flags |= FastMathFlags::AllowReciprocal;
572    }
573  }
574
575  return Flags;
576}
577
578static void WriteMDNode(const MDNode *N,
579                        const llvm_3_2::ValueEnumerator &VE,
580                        BitstreamWriter &Stream,
581                        SmallVector<uint64_t, 64> &Record) {
582  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
583    if (N->getOperand(i)) {
584      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
585      Record.push_back(VE.getValueID(N->getOperand(i)));
586    } else {
587      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
588      Record.push_back(0);
589    }
590  }
591  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
592                                           bitc::METADATA_NODE;
593  Stream.EmitRecord(MDCode, Record, 0);
594  Record.clear();
595}
596
597static void WriteModuleMetadata(const Module *M,
598                                const llvm_3_2::ValueEnumerator &VE,
599                                BitstreamWriter &Stream) {
600  const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getMDValues();
601  bool StartedMetadataBlock = false;
602  unsigned MDSAbbrev = 0;
603  SmallVector<uint64_t, 64> Record;
604  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
605
606    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
607      if (!N->isFunctionLocal() || !N->getFunction()) {
608        if (!StartedMetadataBlock) {
609          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
610          StartedMetadataBlock = true;
611        }
612        WriteMDNode(N, VE, Stream, Record);
613      }
614    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
615      if (!StartedMetadataBlock)  {
616        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
617
618        // Abbrev for METADATA_STRING.
619        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
620        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
621        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
622        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
623        MDSAbbrev = Stream.EmitAbbrev(Abbv);
624        StartedMetadataBlock = true;
625      }
626
627      // Code: [strchar x N]
628      Record.append(MDS->begin(), MDS->end());
629
630      // Emit the finished record.
631      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
632      Record.clear();
633    }
634  }
635
636  // Write named metadata.
637  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
638       E = M->named_metadata_end(); I != E; ++I) {
639    const NamedMDNode *NMD = I;
640    if (!StartedMetadataBlock)  {
641      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
642      StartedMetadataBlock = true;
643    }
644
645    // Write name.
646    StringRef Str = NMD->getName();
647    for (unsigned i = 0, e = Str.size(); i != e; ++i)
648      Record.push_back(Str[i]);
649    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
650    Record.clear();
651
652    // Write named metadata operands.
653    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
654      Record.push_back(VE.getValueID(NMD->getOperand(i)));
655    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
656    Record.clear();
657  }
658
659  if (StartedMetadataBlock)
660    Stream.ExitBlock();
661}
662
663static void WriteFunctionLocalMetadata(const Function &F,
664                                       const llvm_3_2::ValueEnumerator &VE,
665                                       BitstreamWriter &Stream) {
666  bool StartedMetadataBlock = false;
667  SmallVector<uint64_t, 64> Record;
668  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
669  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
670    if (const MDNode *N = Vals[i])
671      if (N->isFunctionLocal() && N->getFunction() == &F) {
672        if (!StartedMetadataBlock) {
673          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
674          StartedMetadataBlock = true;
675        }
676        WriteMDNode(N, VE, Stream, Record);
677      }
678
679  if (StartedMetadataBlock)
680    Stream.ExitBlock();
681}
682
683static void WriteMetadataAttachment(const Function &F,
684                                    const llvm_3_2::ValueEnumerator &VE,
685                                    BitstreamWriter &Stream) {
686  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
687
688  SmallVector<uint64_t, 64> Record;
689
690  // Write metadata attachments
691  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
692  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
693
694  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
695    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
696         I != E; ++I) {
697      MDs.clear();
698      I->getAllMetadataOtherThanDebugLoc(MDs);
699
700      // If no metadata, ignore instruction.
701      if (MDs.empty()) continue;
702
703      Record.push_back(VE.getInstructionID(I));
704
705      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
706        Record.push_back(MDs[i].first);
707        Record.push_back(VE.getValueID(MDs[i].second));
708      }
709      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
710      Record.clear();
711    }
712
713  Stream.ExitBlock();
714}
715
716static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
717  SmallVector<uint64_t, 64> Record;
718
719  // Write metadata kinds
720  // METADATA_KIND - [n x [id, name]]
721  SmallVector<StringRef, 4> Names;
722  M->getMDKindNames(Names);
723
724  if (Names.empty()) return;
725
726  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
727
728  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
729    Record.push_back(MDKindID);
730    StringRef KName = Names[MDKindID];
731    Record.append(KName.begin(), KName.end());
732
733    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
734    Record.clear();
735  }
736
737  Stream.ExitBlock();
738}
739
740static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals,
741                      unsigned &Code, unsigned &AbbrevToUse, const APInt &Val,
742                      bool EmitSizeForWideNumbers = false
743                      ) {
744  if (Val.getBitWidth() <= 64) {
745    uint64_t V = Val.getSExtValue();
746    if ((int64_t)V >= 0)
747      Vals.push_back(V << 1);
748    else
749      Vals.push_back((-V << 1) | 1);
750    Code = bitc::CST_CODE_INTEGER;
751    AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
752  } else {
753    // Wide integers, > 64 bits in size.
754    // We have an arbitrary precision integer value to write whose
755    // bit width is > 64. However, in canonical unsigned integer
756    // format it is likely that the high bits are going to be zero.
757    // So, we only write the number of active words.
758    unsigned NWords = Val.getActiveWords();
759
760    if (EmitSizeForWideNumbers)
761      Vals.push_back(NWords);
762
763    const uint64_t *RawWords = Val.getRawData();
764    for (unsigned i = 0; i != NWords; ++i) {
765      int64_t V = RawWords[i];
766      if (V >= 0)
767        Vals.push_back(V << 1);
768      else
769        Vals.push_back((-V << 1) | 1);
770    }
771    Code = bitc::CST_CODE_WIDE_INTEGER;
772  }
773}
774
775static void WriteConstants(unsigned FirstVal, unsigned LastVal,
776                           const llvm_3_2::ValueEnumerator &VE,
777                           BitstreamWriter &Stream, bool isGlobal) {
778  if (FirstVal == LastVal) return;
779
780  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
781
782  unsigned AggregateAbbrev = 0;
783  unsigned String8Abbrev = 0;
784  unsigned CString7Abbrev = 0;
785  unsigned CString6Abbrev = 0;
786  // If this is a constant pool for the module, emit module-specific abbrevs.
787  if (isGlobal) {
788    // Abbrev for CST_CODE_AGGREGATE.
789    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
790    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
791    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
792    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
793    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
794
795    // Abbrev for CST_CODE_STRING.
796    Abbv = new BitCodeAbbrev();
797    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
798    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
799    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
800    String8Abbrev = Stream.EmitAbbrev(Abbv);
801    // Abbrev for CST_CODE_CSTRING.
802    Abbv = new BitCodeAbbrev();
803    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
804    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
805    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
806    CString7Abbrev = Stream.EmitAbbrev(Abbv);
807    // Abbrev for CST_CODE_CSTRING.
808    Abbv = new BitCodeAbbrev();
809    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
810    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
811    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
812    CString6Abbrev = Stream.EmitAbbrev(Abbv);
813  }
814
815  SmallVector<uint64_t, 64> Record;
816
817  const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
818  Type *LastTy = 0;
819  for (unsigned i = FirstVal; i != LastVal; ++i) {
820    const Value *V = Vals[i].first;
821    // If we need to switch types, do so now.
822    if (V->getType() != LastTy) {
823      LastTy = V->getType();
824      Record.push_back(VE.getTypeID(LastTy));
825      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
826                        CONSTANTS_SETTYPE_ABBREV);
827      Record.clear();
828    }
829
830    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
831      Record.push_back(unsigned(IA->hasSideEffects()) |
832                       unsigned(IA->isAlignStack()) << 1 |
833                       unsigned(IA->getDialect()&1) << 2);
834
835      // Add the asm string.
836      const std::string &AsmStr = IA->getAsmString();
837      Record.push_back(AsmStr.size());
838      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
839        Record.push_back(AsmStr[i]);
840
841      // Add the constraint string.
842      const std::string &ConstraintStr = IA->getConstraintString();
843      Record.push_back(ConstraintStr.size());
844      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
845        Record.push_back(ConstraintStr[i]);
846      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
847      Record.clear();
848      continue;
849    }
850    const Constant *C = cast<Constant>(V);
851    unsigned Code = -1U;
852    unsigned AbbrevToUse = 0;
853    if (C->isNullValue()) {
854      Code = bitc::CST_CODE_NULL;
855    } else if (isa<UndefValue>(C)) {
856      Code = bitc::CST_CODE_UNDEF;
857    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
858      EmitAPInt(Record, Code, AbbrevToUse, IV->getValue());
859    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
860      Code = bitc::CST_CODE_FLOAT;
861      Type *Ty = CFP->getType();
862      if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
863        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
864      } else if (Ty->isX86_FP80Ty()) {
865        // api needed to prevent premature destruction
866        // bits are not in the same order as a normal i80 APInt, compensate.
867        APInt api = CFP->getValueAPF().bitcastToAPInt();
868        const uint64_t *p = api.getRawData();
869        Record.push_back((p[1] << 48) | (p[0] >> 16));
870        Record.push_back(p[0] & 0xffffLL);
871      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
872        APInt api = CFP->getValueAPF().bitcastToAPInt();
873        const uint64_t *p = api.getRawData();
874        Record.push_back(p[0]);
875        Record.push_back(p[1]);
876      } else {
877        assert (0 && "Unknown FP type!");
878      }
879    } else if (isa<ConstantDataSequential>(C) &&
880               cast<ConstantDataSequential>(C)->isString()) {
881      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
882      // Emit constant strings specially.
883      unsigned NumElts = Str->getNumElements();
884      // If this is a null-terminated string, use the denser CSTRING encoding.
885      if (Str->isCString()) {
886        Code = bitc::CST_CODE_CSTRING;
887        --NumElts;  // Don't encode the null, which isn't allowed by char6.
888      } else {
889        Code = bitc::CST_CODE_STRING;
890        AbbrevToUse = String8Abbrev;
891      }
892      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
893      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
894      for (unsigned i = 0; i != NumElts; ++i) {
895        unsigned char V = Str->getElementAsInteger(i);
896        Record.push_back(V);
897        isCStr7 &= (V & 128) == 0;
898        if (isCStrChar6)
899          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
900      }
901
902      if (isCStrChar6)
903        AbbrevToUse = CString6Abbrev;
904      else if (isCStr7)
905        AbbrevToUse = CString7Abbrev;
906    } else if (const ConstantDataSequential *CDS =
907                  dyn_cast<ConstantDataSequential>(C)) {
908      Code = bitc::CST_CODE_DATA;
909      Type *EltTy = CDS->getType()->getElementType();
910      if (isa<IntegerType>(EltTy)) {
911        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
912          Record.push_back(CDS->getElementAsInteger(i));
913      } else if (EltTy->isFloatTy()) {
914        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
915          union { float F; uint32_t I; };
916          F = CDS->getElementAsFloat(i);
917          Record.push_back(I);
918        }
919      } else {
920        assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
921        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
922          union { double F; uint64_t I; };
923          F = CDS->getElementAsDouble(i);
924          Record.push_back(I);
925        }
926      }
927    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
928               isa<ConstantVector>(C)) {
929      Code = bitc::CST_CODE_AGGREGATE;
930      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
931        Record.push_back(VE.getValueID(C->getOperand(i)));
932      AbbrevToUse = AggregateAbbrev;
933    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
934      switch (CE->getOpcode()) {
935      default:
936        if (Instruction::isCast(CE->getOpcode())) {
937          Code = bitc::CST_CODE_CE_CAST;
938          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
939          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
940          Record.push_back(VE.getValueID(C->getOperand(0)));
941          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
942        } else {
943          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
944          Code = bitc::CST_CODE_CE_BINOP;
945          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
946          Record.push_back(VE.getValueID(C->getOperand(0)));
947          Record.push_back(VE.getValueID(C->getOperand(1)));
948          uint64_t Flags = GetOptimizationFlags(CE);
949          if (Flags != 0)
950            Record.push_back(Flags);
951        }
952        break;
953      case Instruction::GetElementPtr:
954        Code = bitc::CST_CODE_CE_GEP;
955        if (cast<GEPOperator>(C)->isInBounds())
956          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
957        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
958          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
959          Record.push_back(VE.getValueID(C->getOperand(i)));
960        }
961        break;
962      case Instruction::Select:
963        Code = bitc::CST_CODE_CE_SELECT;
964        Record.push_back(VE.getValueID(C->getOperand(0)));
965        Record.push_back(VE.getValueID(C->getOperand(1)));
966        Record.push_back(VE.getValueID(C->getOperand(2)));
967        break;
968      case Instruction::ExtractElement:
969        Code = bitc::CST_CODE_CE_EXTRACTELT;
970        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
971        Record.push_back(VE.getValueID(C->getOperand(0)));
972        Record.push_back(VE.getValueID(C->getOperand(1)));
973        break;
974      case Instruction::InsertElement:
975        Code = bitc::CST_CODE_CE_INSERTELT;
976        Record.push_back(VE.getValueID(C->getOperand(0)));
977        Record.push_back(VE.getValueID(C->getOperand(1)));
978        Record.push_back(VE.getValueID(C->getOperand(2)));
979        break;
980      case Instruction::ShuffleVector:
981        // If the return type and argument types are the same, this is a
982        // standard shufflevector instruction.  If the types are different,
983        // then the shuffle is widening or truncating the input vectors, and
984        // the argument type must also be encoded.
985        if (C->getType() == C->getOperand(0)->getType()) {
986          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
987        } else {
988          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
989          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
990        }
991        Record.push_back(VE.getValueID(C->getOperand(0)));
992        Record.push_back(VE.getValueID(C->getOperand(1)));
993        Record.push_back(VE.getValueID(C->getOperand(2)));
994        break;
995      case Instruction::ICmp:
996      case Instruction::FCmp:
997        Code = bitc::CST_CODE_CE_CMP;
998        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
999        Record.push_back(VE.getValueID(C->getOperand(0)));
1000        Record.push_back(VE.getValueID(C->getOperand(1)));
1001        Record.push_back(CE->getPredicate());
1002        break;
1003      }
1004    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1005      Code = bitc::CST_CODE_BLOCKADDRESS;
1006      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1007      Record.push_back(VE.getValueID(BA->getFunction()));
1008      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1009    } else {
1010#ifndef NDEBUG
1011      C->dump();
1012#endif
1013      llvm_unreachable("Unknown constant!");
1014    }
1015    Stream.EmitRecord(Code, Record, AbbrevToUse);
1016    Record.clear();
1017  }
1018
1019  Stream.ExitBlock();
1020}
1021
1022static void WriteModuleConstants(const llvm_3_2::ValueEnumerator &VE,
1023                                 BitstreamWriter &Stream) {
1024  const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
1025
1026  // Find the first constant to emit, which is the first non-globalvalue value.
1027  // We know globalvalues have been emitted by WriteModuleInfo.
1028  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1029    if (!isa<GlobalValue>(Vals[i].first)) {
1030      WriteConstants(i, Vals.size(), VE, Stream, true);
1031      return;
1032    }
1033  }
1034}
1035
1036/// PushValueAndType - The file has to encode both the value and type id for
1037/// many values, because we need to know what type to create for forward
1038/// references.  However, most operands are not forward references, so this type
1039/// field is not needed.
1040///
1041/// This function adds V's value ID to Vals.  If the value ID is higher than the
1042/// instruction ID, then it is a forward reference, and it also includes the
1043/// type ID.
1044static bool PushValueAndType(const Value *V, unsigned InstID,
1045                             SmallVector<unsigned, 64> &Vals,
1046                             llvm_3_2::ValueEnumerator &VE) {
1047  unsigned ValID = VE.getValueID(V);
1048  Vals.push_back(ValID);
1049  if (ValID >= InstID) {
1050    Vals.push_back(VE.getTypeID(V->getType()));
1051    return true;
1052  }
1053  return false;
1054}
1055
1056/// WriteInstruction - Emit an instruction to the specified stream.
1057static void WriteInstruction(const Instruction &I, unsigned InstID,
1058                             llvm_3_2::ValueEnumerator &VE,
1059                             BitstreamWriter &Stream,
1060                             SmallVector<unsigned, 64> &Vals) {
1061  unsigned Code = 0;
1062  unsigned AbbrevToUse = 0;
1063  VE.setInstructionID(&I);
1064  switch (I.getOpcode()) {
1065  default:
1066    if (Instruction::isCast(I.getOpcode())) {
1067      Code = bitc::FUNC_CODE_INST_CAST;
1068      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1069        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1070      Vals.push_back(VE.getTypeID(I.getType()));
1071      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1072    } else {
1073      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1074      Code = bitc::FUNC_CODE_INST_BINOP;
1075      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1076        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1077      Vals.push_back(VE.getValueID(I.getOperand(1)));
1078      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1079      uint64_t Flags = GetOptimizationFlags(&I);
1080      if (Flags != 0) {
1081        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1082          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1083        Vals.push_back(Flags);
1084      }
1085    }
1086    break;
1087
1088  case Instruction::GetElementPtr:
1089    Code = bitc::FUNC_CODE_INST_GEP;
1090    if (cast<GEPOperator>(&I)->isInBounds())
1091      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1092    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1093      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1094    break;
1095  case Instruction::ExtractValue: {
1096    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1097    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1098    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1099    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1100      Vals.push_back(*i);
1101    break;
1102  }
1103  case Instruction::InsertValue: {
1104    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1105    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1106    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1107    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1108    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1109      Vals.push_back(*i);
1110    break;
1111  }
1112  case Instruction::Select:
1113    Code = bitc::FUNC_CODE_INST_VSELECT;
1114    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1115    Vals.push_back(VE.getValueID(I.getOperand(2)));
1116    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1117    break;
1118  case Instruction::ExtractElement:
1119    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1120    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1121    Vals.push_back(VE.getValueID(I.getOperand(1)));
1122    break;
1123  case Instruction::InsertElement:
1124    Code = bitc::FUNC_CODE_INST_INSERTELT;
1125    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1126    Vals.push_back(VE.getValueID(I.getOperand(1)));
1127    Vals.push_back(VE.getValueID(I.getOperand(2)));
1128    break;
1129  case Instruction::ShuffleVector:
1130    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1131    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1132    Vals.push_back(VE.getValueID(I.getOperand(1)));
1133    Vals.push_back(VE.getValueID(I.getOperand(2)));
1134    break;
1135  case Instruction::ICmp:
1136  case Instruction::FCmp:
1137    // compare returning Int1Ty or vector of Int1Ty
1138    Code = bitc::FUNC_CODE_INST_CMP2;
1139    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1140    Vals.push_back(VE.getValueID(I.getOperand(1)));
1141    Vals.push_back(cast<CmpInst>(I).getPredicate());
1142    break;
1143
1144  case Instruction::Ret:
1145    {
1146      Code = bitc::FUNC_CODE_INST_RET;
1147      unsigned NumOperands = I.getNumOperands();
1148      if (NumOperands == 0)
1149        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1150      else if (NumOperands == 1) {
1151        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1152          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1153      } else {
1154        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1155          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1156      }
1157    }
1158    break;
1159  case Instruction::Br:
1160    {
1161      Code = bitc::FUNC_CODE_INST_BR;
1162      const BranchInst &II = cast<BranchInst>(I);
1163      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1164      if (II.isConditional()) {
1165        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1166        Vals.push_back(VE.getValueID(II.getCondition()));
1167      }
1168    }
1169    break;
1170  case Instruction::Switch:
1171    {
1172      // Redefine Vals, since here we need to use 64 bit values
1173      // explicitly to store large APInt numbers.
1174      SmallVector<uint64_t, 128> Vals64;
1175
1176      Code = bitc::FUNC_CODE_INST_SWITCH;
1177      const SwitchInst &SI = cast<SwitchInst>(I);
1178
1179      uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16);
1180      Vals64.push_back(SwitchRecordHeader);
1181
1182      Vals64.push_back(VE.getTypeID(SI.getCondition()->getType()));
1183      Vals64.push_back(VE.getValueID(SI.getCondition()));
1184      Vals64.push_back(VE.getValueID(SI.getDefaultDest()));
1185      Vals64.push_back(SI.getNumCases());
1186      for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1187           i != e; ++i) {
1188        const IntegersSubset& CaseRanges = i.getCaseValueEx();
1189        unsigned Code, Abbrev; // will unused.
1190
1191        if (CaseRanges.isSingleNumber()) {
1192          Vals64.push_back(1/*NumItems = 1*/);
1193          Vals64.push_back(true/*IsSingleNumber = true*/);
1194          EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true);
1195        } else {
1196
1197          Vals64.push_back(CaseRanges.getNumItems());
1198
1199          if (CaseRanges.isSingleNumbersOnly()) {
1200            for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1201                 ri != rn; ++ri) {
1202
1203              Vals64.push_back(true/*IsSingleNumber = true*/);
1204
1205              EmitAPInt(Vals64, Code, Abbrev,
1206                        CaseRanges.getSingleNumber(ri), true);
1207            }
1208          } else
1209            for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1210                 ri != rn; ++ri) {
1211              IntegersSubset::Range r = CaseRanges.getItem(ri);
1212              bool IsSingleNumber = CaseRanges.isSingleNumber(ri);
1213
1214              Vals64.push_back(IsSingleNumber);
1215
1216              EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true);
1217              if (!IsSingleNumber)
1218                EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true);
1219            }
1220        }
1221        Vals64.push_back(VE.getValueID(i.getCaseSuccessor()));
1222      }
1223
1224      Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1225
1226      // Also do expected action - clear external Vals collection:
1227      Vals.clear();
1228      return;
1229    }
1230    break;
1231  case Instruction::IndirectBr:
1232    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1233    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1234    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1235      Vals.push_back(VE.getValueID(I.getOperand(i)));
1236    break;
1237
1238  case Instruction::Invoke: {
1239    const InvokeInst *II = cast<InvokeInst>(&I);
1240    const Value *Callee(II->getCalledValue());
1241    PointerType *PTy = cast<PointerType>(Callee->getType());
1242    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1243    Code = bitc::FUNC_CODE_INST_INVOKE;
1244
1245    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1246    Vals.push_back(II->getCallingConv());
1247    Vals.push_back(VE.getValueID(II->getNormalDest()));
1248    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1249    PushValueAndType(Callee, InstID, Vals, VE);
1250
1251    // Emit value #'s for the fixed parameters.
1252    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1253      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1254
1255    // Emit type/value pairs for varargs params.
1256    if (FTy->isVarArg()) {
1257      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1258           i != e; ++i)
1259        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1260    }
1261    break;
1262  }
1263  case Instruction::Resume:
1264    Code = bitc::FUNC_CODE_INST_RESUME;
1265    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1266    break;
1267  case Instruction::Unreachable:
1268    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1269    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1270    break;
1271
1272  case Instruction::PHI: {
1273    const PHINode &PN = cast<PHINode>(I);
1274    Code = bitc::FUNC_CODE_INST_PHI;
1275    Vals.push_back(VE.getTypeID(PN.getType()));
1276    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1277      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1278      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1279    }
1280    break;
1281  }
1282
1283  case Instruction::LandingPad: {
1284    const LandingPadInst &LP = cast<LandingPadInst>(I);
1285    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1286    Vals.push_back(VE.getTypeID(LP.getType()));
1287    PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1288    Vals.push_back(LP.isCleanup());
1289    Vals.push_back(LP.getNumClauses());
1290    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1291      if (LP.isCatch(I))
1292        Vals.push_back(LandingPadInst::Catch);
1293      else
1294        Vals.push_back(LandingPadInst::Filter);
1295      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1296    }
1297    break;
1298  }
1299
1300  case Instruction::Alloca:
1301    Code = bitc::FUNC_CODE_INST_ALLOCA;
1302    Vals.push_back(VE.getTypeID(I.getType()));
1303    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1304    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1305    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1306    break;
1307
1308  case Instruction::Load:
1309    if (cast<LoadInst>(I).isAtomic()) {
1310      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1311      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1312    } else {
1313      Code = bitc::FUNC_CODE_INST_LOAD;
1314      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1315        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1316    }
1317    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1318    Vals.push_back(cast<LoadInst>(I).isVolatile());
1319    if (cast<LoadInst>(I).isAtomic()) {
1320      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1321      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1322    }
1323    break;
1324  case Instruction::Store:
1325    if (cast<StoreInst>(I).isAtomic())
1326      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1327    else
1328      Code = bitc::FUNC_CODE_INST_STORE;
1329    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1330    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1331    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1332    Vals.push_back(cast<StoreInst>(I).isVolatile());
1333    if (cast<StoreInst>(I).isAtomic()) {
1334      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1335      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1336    }
1337    break;
1338  case Instruction::AtomicCmpXchg:
1339    Code = bitc::FUNC_CODE_INST_CMPXCHG;
1340    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1341    Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1342    Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1343    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1344    Vals.push_back(GetEncodedOrdering(
1345                     cast<AtomicCmpXchgInst>(I).getOrdering()));
1346    Vals.push_back(GetEncodedSynchScope(
1347                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
1348    break;
1349  case Instruction::AtomicRMW:
1350    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1351    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1352    Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1353    Vals.push_back(GetEncodedRMWOperation(
1354                     cast<AtomicRMWInst>(I).getOperation()));
1355    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1356    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1357    Vals.push_back(GetEncodedSynchScope(
1358                     cast<AtomicRMWInst>(I).getSynchScope()));
1359    break;
1360  case Instruction::Fence:
1361    Code = bitc::FUNC_CODE_INST_FENCE;
1362    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1363    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1364    break;
1365  case Instruction::Call: {
1366    const CallInst &CI = cast<CallInst>(I);
1367    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1368    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1369
1370    Code = bitc::FUNC_CODE_INST_CALL;
1371
1372    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1373    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1374    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1375
1376    // Emit value #'s for the fixed parameters.
1377    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1378      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1379
1380    // Emit type/value pairs for varargs params.
1381    if (FTy->isVarArg()) {
1382      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1383           i != e; ++i)
1384        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1385    }
1386    break;
1387  }
1388  case Instruction::VAArg:
1389    Code = bitc::FUNC_CODE_INST_VAARG;
1390    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1391    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1392    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1393    break;
1394  }
1395
1396  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1397  Vals.clear();
1398}
1399
1400// Emit names for globals/functions etc.
1401static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1402                                  const llvm_3_2::ValueEnumerator &VE,
1403                                  BitstreamWriter &Stream) {
1404  if (VST.empty()) return;
1405  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1406
1407  // FIXME: Set up the abbrev, we know how many values there are!
1408  // FIXME: We know if the type names can use 7-bit ascii.
1409  SmallVector<unsigned, 64> NameVals;
1410
1411  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1412       SI != SE; ++SI) {
1413
1414    const ValueName &Name = *SI;
1415
1416    // Figure out the encoding to use for the name.
1417    bool is7Bit = true;
1418    bool isChar6 = true;
1419    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1420         C != E; ++C) {
1421      if (isChar6)
1422        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1423      if ((unsigned char)*C & 128) {
1424        is7Bit = false;
1425        break;  // don't bother scanning the rest.
1426      }
1427    }
1428
1429    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1430
1431    // VST_ENTRY:   [valueid, namechar x N]
1432    // VST_BBENTRY: [bbid, namechar x N]
1433    unsigned Code;
1434    if (isa<BasicBlock>(SI->getValue())) {
1435      Code = bitc::VST_CODE_BBENTRY;
1436      if (isChar6)
1437        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1438    } else {
1439      Code = bitc::VST_CODE_ENTRY;
1440      if (isChar6)
1441        AbbrevToUse = VST_ENTRY_6_ABBREV;
1442      else if (is7Bit)
1443        AbbrevToUse = VST_ENTRY_7_ABBREV;
1444    }
1445
1446    NameVals.push_back(VE.getValueID(SI->getValue()));
1447    for (const char *P = Name.getKeyData(),
1448         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1449      NameVals.push_back((unsigned char)*P);
1450
1451    // Emit the finished record.
1452    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1453    NameVals.clear();
1454  }
1455  Stream.ExitBlock();
1456}
1457
1458/// WriteFunction - Emit a function body to the module stream.
1459static void WriteFunction(const Function &F, llvm_3_2::ValueEnumerator &VE,
1460                          BitstreamWriter &Stream) {
1461  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1462  VE.incorporateFunction(F);
1463
1464  SmallVector<unsigned, 64> Vals;
1465
1466  // Emit the number of basic blocks, so the reader can create them ahead of
1467  // time.
1468  Vals.push_back(VE.getBasicBlocks().size());
1469  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1470  Vals.clear();
1471
1472  // If there are function-local constants, emit them now.
1473  unsigned CstStart, CstEnd;
1474  VE.getFunctionConstantRange(CstStart, CstEnd);
1475  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1476
1477  // If there is function-local metadata, emit it now.
1478  WriteFunctionLocalMetadata(F, VE, Stream);
1479
1480  // Keep a running idea of what the instruction ID is.
1481  unsigned InstID = CstEnd;
1482
1483  bool NeedsMetadataAttachment = false;
1484
1485  DebugLoc LastDL;
1486
1487  // Finally, emit all the instructions, in order.
1488  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1489    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1490         I != E; ++I) {
1491      WriteInstruction(*I, InstID, VE, Stream, Vals);
1492
1493      if (!I->getType()->isVoidTy())
1494        ++InstID;
1495
1496      // If the instruction has metadata, write a metadata attachment later.
1497      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1498
1499      // If the instruction has a debug location, emit it.
1500      DebugLoc DL = I->getDebugLoc();
1501      if (DL.isUnknown()) {
1502        // nothing todo.
1503      } else if (DL == LastDL) {
1504        // Just repeat the same debug loc as last time.
1505        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1506      } else {
1507        MDNode *Scope, *IA;
1508        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1509
1510        Vals.push_back(DL.getLine());
1511        Vals.push_back(DL.getCol());
1512        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1513        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1514        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1515        Vals.clear();
1516
1517        LastDL = DL;
1518      }
1519    }
1520
1521  // Emit names for all the instructions etc.
1522  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1523
1524  if (NeedsMetadataAttachment)
1525    WriteMetadataAttachment(F, VE, Stream);
1526  VE.purgeFunction();
1527  Stream.ExitBlock();
1528}
1529
1530// Emit blockinfo, which defines the standard abbreviations etc.
1531static void WriteBlockInfo(const llvm_3_2::ValueEnumerator &VE,
1532                           BitstreamWriter &Stream) {
1533  // We only want to emit block info records for blocks that have multiple
1534  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1535  // blocks can defined their abbrevs inline.
1536  Stream.EnterBlockInfoBlock(2);
1537
1538  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1539    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1540    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1541    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1542    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1543    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1544    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1545                                   Abbv) != VST_ENTRY_8_ABBREV)
1546      llvm_unreachable("Unexpected abbrev ordering!");
1547  }
1548
1549  { // 7-bit fixed width VST_ENTRY strings.
1550    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1551    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1552    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1553    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1554    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1555    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1556                                   Abbv) != VST_ENTRY_7_ABBREV)
1557      llvm_unreachable("Unexpected abbrev ordering!");
1558  }
1559  { // 6-bit char6 VST_ENTRY strings.
1560    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1561    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1562    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1563    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1564    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1565    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1566                                   Abbv) != VST_ENTRY_6_ABBREV)
1567      llvm_unreachable("Unexpected abbrev ordering!");
1568  }
1569  { // 6-bit char6 VST_BBENTRY strings.
1570    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1571    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1572    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1573    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1574    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1575    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1576                                   Abbv) != VST_BBENTRY_6_ABBREV)
1577      llvm_unreachable("Unexpected abbrev ordering!");
1578  }
1579
1580
1581
1582  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1583    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1584    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1585    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1586                              Log2_32_Ceil(VE.getTypes().size()+1)));
1587    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1588                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1589      llvm_unreachable("Unexpected abbrev ordering!");
1590  }
1591
1592  { // INTEGER abbrev for CONSTANTS_BLOCK.
1593    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1594    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1595    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1596    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1597                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1598      llvm_unreachable("Unexpected abbrev ordering!");
1599  }
1600
1601  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1602    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1603    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1604    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1605    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1606                              Log2_32_Ceil(VE.getTypes().size()+1)));
1607    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1608
1609    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1610                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1611      llvm_unreachable("Unexpected abbrev ordering!");
1612  }
1613  { // NULL abbrev for CONSTANTS_BLOCK.
1614    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1615    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1616    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1617                                   Abbv) != CONSTANTS_NULL_Abbrev)
1618      llvm_unreachable("Unexpected abbrev ordering!");
1619  }
1620
1621  // FIXME: This should only use space for first class types!
1622
1623  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1624    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1625    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1626    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1627    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1628    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1629    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1630                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1631      llvm_unreachable("Unexpected abbrev ordering!");
1632  }
1633  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1634    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1635    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1636    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1637    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1638    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1639    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1640                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1641      llvm_unreachable("Unexpected abbrev ordering!");
1642  }
1643  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1644    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1645    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1646    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1647    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1648    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1649    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1650    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1651                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1652      llvm_unreachable("Unexpected abbrev ordering!");
1653  }
1654  { // INST_CAST abbrev for FUNCTION_BLOCK.
1655    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1656    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1657    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1658    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1659                              Log2_32_Ceil(VE.getTypes().size()+1)));
1660    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1661    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1662                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1663      llvm_unreachable("Unexpected abbrev ordering!");
1664  }
1665
1666  { // INST_RET abbrev for FUNCTION_BLOCK.
1667    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1668    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1669    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1670                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1671      llvm_unreachable("Unexpected abbrev ordering!");
1672  }
1673  { // INST_RET abbrev for FUNCTION_BLOCK.
1674    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1675    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1676    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1677    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1678                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1679      llvm_unreachable("Unexpected abbrev ordering!");
1680  }
1681  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1682    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1683    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1684    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1685                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1686      llvm_unreachable("Unexpected abbrev ordering!");
1687  }
1688
1689  Stream.ExitBlock();
1690}
1691
1692// Sort the Users based on the order in which the reader parses the bitcode
1693// file.
1694static bool bitcodereader_order(const User *lhs, const User *rhs) {
1695  // TODO: Implement.
1696  return true;
1697}
1698
1699static void WriteUseList(const Value *V, const llvm_3_2::ValueEnumerator &VE,
1700                         BitstreamWriter &Stream) {
1701
1702  // One or zero uses can't get out of order.
1703  if (V->use_empty() || V->hasNUses(1))
1704    return;
1705
1706  // Make a copy of the in-memory use-list for sorting.
1707  unsigned UseListSize = std::distance(V->use_begin(), V->use_end());
1708  SmallVector<const User*, 8> UseList;
1709  UseList.reserve(UseListSize);
1710  for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
1711       I != E; ++I) {
1712    const User *U = *I;
1713    UseList.push_back(U);
1714  }
1715
1716  // Sort the copy based on the order read by the BitcodeReader.
1717  std::sort(UseList.begin(), UseList.end(), bitcodereader_order);
1718
1719  // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
1720  // sorted list (i.e., the expected BitcodeReader in-memory use-list).
1721
1722  // TODO: Emit the USELIST_CODE_ENTRYs.
1723}
1724
1725static void WriteFunctionUseList(const Function *F,
1726                                 llvm_3_2::ValueEnumerator &VE,
1727                                 BitstreamWriter &Stream) {
1728  VE.incorporateFunction(*F);
1729
1730  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1731       AI != AE; ++AI)
1732    WriteUseList(AI, VE, Stream);
1733  for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
1734       ++BB) {
1735    WriteUseList(BB, VE, Stream);
1736    for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
1737         ++II) {
1738      WriteUseList(II, VE, Stream);
1739      for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
1740           OI != E; ++OI) {
1741        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
1742            isa<InlineAsm>(*OI))
1743          WriteUseList(*OI, VE, Stream);
1744      }
1745    }
1746  }
1747  VE.purgeFunction();
1748}
1749
1750// Emit use-lists.
1751static void WriteModuleUseLists(const Module *M, llvm_3_2::ValueEnumerator &VE,
1752                                BitstreamWriter &Stream) {
1753  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1754
1755  // XXX: this modifies the module, but in a way that should never change the
1756  // behavior of any pass or codegen in LLVM. The problem is that GVs may
1757  // contain entries in the use_list that do not exist in the Module and are
1758  // not stored in the .bc file.
1759  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1760       I != E; ++I)
1761    I->removeDeadConstantUsers();
1762
1763  // Write the global variables.
1764  for (Module::const_global_iterator GI = M->global_begin(),
1765         GE = M->global_end(); GI != GE; ++GI) {
1766    WriteUseList(GI, VE, Stream);
1767
1768    // Write the global variable initializers.
1769    if (GI->hasInitializer())
1770      WriteUseList(GI->getInitializer(), VE, Stream);
1771  }
1772
1773  // Write the functions.
1774  for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
1775    WriteUseList(FI, VE, Stream);
1776    if (!FI->isDeclaration())
1777      WriteFunctionUseList(FI, VE, Stream);
1778  }
1779
1780  // Write the aliases.
1781  for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
1782       AI != AE; ++AI) {
1783    WriteUseList(AI, VE, Stream);
1784    WriteUseList(AI->getAliasee(), VE, Stream);
1785  }
1786
1787  Stream.ExitBlock();
1788}
1789
1790/// WriteModule - Emit the specified module to the bitstream.
1791static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1792  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1793
1794  // Emit the version number if it is non-zero.
1795  if (CurVersion) {
1796    SmallVector<unsigned, 1> Vals;
1797    Vals.push_back(CurVersion);
1798    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1799  }
1800
1801  // Analyze the module, enumerating globals, functions, etc.
1802  llvm_3_2::ValueEnumerator VE(M);
1803
1804  // Emit blockinfo, which defines the standard abbreviations etc.
1805  WriteBlockInfo(VE, Stream);
1806
1807  // Emit information about parameter attributes.
1808  WriteAttributeTable(VE, Stream);
1809
1810  // Emit information describing all of the types in the module.
1811  WriteTypeTable(VE, Stream);
1812
1813  // Emit top-level description of module, including target triple, inline asm,
1814  // descriptors for global variables, and function prototype info.
1815  WriteModuleInfo(M, VE, Stream);
1816
1817  // Emit constants.
1818  WriteModuleConstants(VE, Stream);
1819
1820  // Emit metadata.
1821  WriteModuleMetadata(M, VE, Stream);
1822
1823  // Emit metadata.
1824  WriteModuleMetadataStore(M, Stream);
1825
1826  // Emit names for globals/functions etc.
1827  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1828
1829  // Emit use-lists.
1830  if (EnablePreserveUseListOrdering)
1831    WriteModuleUseLists(M, VE, Stream);
1832
1833  // Emit function bodies.
1834  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1835    if (!F->isDeclaration())
1836      WriteFunction(*F, VE, Stream);
1837
1838  Stream.ExitBlock();
1839}
1840
1841/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1842/// header and trailer to make it compatible with the system archiver.  To do
1843/// this we emit the following header, and then emit a trailer that pads the
1844/// file out to be a multiple of 16 bytes.
1845///
1846/// struct bc_header {
1847///   uint32_t Magic;         // 0x0B17C0DE
1848///   uint32_t Version;       // Version, currently always 0.
1849///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1850///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1851///   uint32_t CPUType;       // CPU specifier.
1852///   ... potentially more later ...
1853/// };
1854enum {
1855  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1856  DarwinBCHeaderSize = 5*4
1857};
1858
1859static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1860                               uint32_t &Position) {
1861  Buffer[Position + 0] = (unsigned char) (Value >>  0);
1862  Buffer[Position + 1] = (unsigned char) (Value >>  8);
1863  Buffer[Position + 2] = (unsigned char) (Value >> 16);
1864  Buffer[Position + 3] = (unsigned char) (Value >> 24);
1865  Position += 4;
1866}
1867
1868static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1869                                         const Triple &TT) {
1870  unsigned CPUType = ~0U;
1871
1872  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1873  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1874  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1875  // specific constants here because they are implicitly part of the Darwin ABI.
1876  enum {
1877    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1878    DARWIN_CPU_TYPE_X86        = 7,
1879    DARWIN_CPU_TYPE_ARM        = 12,
1880    DARWIN_CPU_TYPE_POWERPC    = 18
1881  };
1882
1883  Triple::ArchType Arch = TT.getArch();
1884  if (Arch == Triple::x86_64)
1885    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1886  else if (Arch == Triple::x86)
1887    CPUType = DARWIN_CPU_TYPE_X86;
1888  else if (Arch == Triple::ppc)
1889    CPUType = DARWIN_CPU_TYPE_POWERPC;
1890  else if (Arch == Triple::ppc64)
1891    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1892  else if (Arch == Triple::arm || Arch == Triple::thumb)
1893    CPUType = DARWIN_CPU_TYPE_ARM;
1894
1895  // Traditional Bitcode starts after header.
1896  assert(Buffer.size() >= DarwinBCHeaderSize &&
1897         "Expected header size to be reserved");
1898  unsigned BCOffset = DarwinBCHeaderSize;
1899  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1900
1901  // Write the magic and version.
1902  unsigned Position = 0;
1903  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1904  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1905  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1906  WriteInt32ToBuffer(BCSize     , Buffer, Position);
1907  WriteInt32ToBuffer(CPUType    , Buffer, Position);
1908
1909  // If the file is not a multiple of 16 bytes, insert dummy padding.
1910  while (Buffer.size() & 15)
1911    Buffer.push_back(0);
1912}
1913
1914/// WriteBitcodeToFile - Write the specified module to the specified output
1915/// stream.
1916void llvm_3_2::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1917  SmallVector<char, 1024> Buffer;
1918  Buffer.reserve(256*1024);
1919
1920  // If this is darwin or another generic macho target, reserve space for the
1921  // header.
1922  Triple TT(M->getTargetTriple());
1923  if (TT.isOSDarwin())
1924    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1925
1926  // Emit the module into the buffer.
1927  {
1928    BitstreamWriter Stream(Buffer);
1929
1930    // Emit the file header.
1931    Stream.Emit((unsigned)'B', 8);
1932    Stream.Emit((unsigned)'C', 8);
1933    Stream.Emit(0x0, 4);
1934    Stream.Emit(0xC, 4);
1935    Stream.Emit(0xE, 4);
1936    Stream.Emit(0xD, 4);
1937
1938    // Emit the module.
1939    WriteModule(M, Stream);
1940  }
1941
1942  if (TT.isOSDarwin())
1943    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1944
1945  // Write the generated bitstream to "Out".
1946  Out.write((char*)&Buffer.front(), Buffer.size());
1947}
1948