Parcel.cpp revision 4db672ddccb02b2bd70ddb4812c00a5060174c93
1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "Parcel"
18//#define LOG_NDEBUG 0
19
20#include <binder/Parcel.h>
21
22#include <binder/IPCThreadState.h>
23#include <binder/Binder.h>
24#include <binder/BpBinder.h>
25#include <binder/ProcessState.h>
26#include <binder/TextOutput.h>
27
28#include <errno.h>
29#include <utils/Debug.h>
30#include <utils/Log.h>
31#include <utils/String8.h>
32#include <utils/String16.h>
33#include <utils/misc.h>
34#include <utils/Flattenable.h>
35#include <cutils/ashmem.h>
36
37#include <private/binder/binder_module.h>
38#include <private/binder/Static.h>
39
40#include <inttypes.h>
41#include <stdio.h>
42#include <stdlib.h>
43#include <stdint.h>
44#include <sys/mman.h>
45
46#ifndef INT32_MAX
47#define INT32_MAX ((int32_t)(2147483647))
48#endif
49
50#define LOG_REFS(...)
51//#define LOG_REFS(...) ALOG(LOG_DEBUG, "Parcel", __VA_ARGS__)
52#define LOG_ALLOC(...)
53//#define LOG_ALLOC(...) ALOG(LOG_DEBUG, "Parcel", __VA_ARGS__)
54
55// ---------------------------------------------------------------------------
56
57// This macro should never be used at runtime, as a too large value
58// of s could cause an integer overflow. Instead, you should always
59// use the wrapper function pad_size()
60#define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
61
62static size_t pad_size(size_t s) {
63    if (s > (SIZE_T_MAX - 3)) {
64        abort();
65    }
66    return PAD_SIZE_UNSAFE(s);
67}
68
69// Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
70#define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
71
72// Note: must be kept in sync with android/os/Parcel.java's EX_HAS_REPLY_HEADER
73#define EX_HAS_REPLY_HEADER -128
74
75// XXX This can be made public if we want to provide
76// support for typed data.
77struct small_flat_data
78{
79    uint32_t type;
80    uint32_t data;
81};
82
83namespace android {
84
85static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER;
86static size_t gParcelGlobalAllocSize = 0;
87static size_t gParcelGlobalAllocCount = 0;
88
89// Maximum size of a blob to transfer in-place.
90static const size_t BLOB_INPLACE_LIMIT = 16 * 1024;
91
92enum {
93    BLOB_INPLACE = 0,
94    BLOB_ASHMEM_IMMUTABLE = 1,
95    BLOB_ASHMEM_MUTABLE = 2,
96};
97
98void acquire_object(const sp<ProcessState>& proc,
99    const flat_binder_object& obj, const void* who)
100{
101    switch (obj.type) {
102        case BINDER_TYPE_BINDER:
103            if (obj.binder) {
104                LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
105                reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
106            }
107            return;
108        case BINDER_TYPE_WEAK_BINDER:
109            if (obj.binder)
110                reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
111            return;
112        case BINDER_TYPE_HANDLE: {
113            const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
114            if (b != NULL) {
115                LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
116                b->incStrong(who);
117            }
118            return;
119        }
120        case BINDER_TYPE_WEAK_HANDLE: {
121            const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
122            if (b != NULL) b.get_refs()->incWeak(who);
123            return;
124        }
125        case BINDER_TYPE_FD: {
126            // intentionally blank -- nothing to do to acquire this, but we do
127            // recognize it as a legitimate object type.
128            return;
129        }
130    }
131
132    ALOGD("Invalid object type 0x%08x", obj.type);
133}
134
135void release_object(const sp<ProcessState>& proc,
136    const flat_binder_object& obj, const void* who)
137{
138    switch (obj.type) {
139        case BINDER_TYPE_BINDER:
140            if (obj.binder) {
141                LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
142                reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
143            }
144            return;
145        case BINDER_TYPE_WEAK_BINDER:
146            if (obj.binder)
147                reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
148            return;
149        case BINDER_TYPE_HANDLE: {
150            const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
151            if (b != NULL) {
152                LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
153                b->decStrong(who);
154            }
155            return;
156        }
157        case BINDER_TYPE_WEAK_HANDLE: {
158            const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
159            if (b != NULL) b.get_refs()->decWeak(who);
160            return;
161        }
162        case BINDER_TYPE_FD: {
163            if (obj.cookie != 0) close(obj.handle);
164            return;
165        }
166    }
167
168    ALOGE("Invalid object type 0x%08x", obj.type);
169}
170
171inline static status_t finish_flatten_binder(
172    const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
173{
174    return out->writeObject(flat, false);
175}
176
177status_t flatten_binder(const sp<ProcessState>& /*proc*/,
178    const sp<IBinder>& binder, Parcel* out)
179{
180    flat_binder_object obj;
181
182    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
183    if (binder != NULL) {
184        IBinder *local = binder->localBinder();
185        if (!local) {
186            BpBinder *proxy = binder->remoteBinder();
187            if (proxy == NULL) {
188                ALOGE("null proxy");
189            }
190            const int32_t handle = proxy ? proxy->handle() : 0;
191            obj.type = BINDER_TYPE_HANDLE;
192            obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
193            obj.handle = handle;
194            obj.cookie = 0;
195        } else {
196            obj.type = BINDER_TYPE_BINDER;
197            obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
198            obj.cookie = reinterpret_cast<uintptr_t>(local);
199        }
200    } else {
201        obj.type = BINDER_TYPE_BINDER;
202        obj.binder = 0;
203        obj.cookie = 0;
204    }
205
206    return finish_flatten_binder(binder, obj, out);
207}
208
209status_t flatten_binder(const sp<ProcessState>& /*proc*/,
210    const wp<IBinder>& binder, Parcel* out)
211{
212    flat_binder_object obj;
213
214    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
215    if (binder != NULL) {
216        sp<IBinder> real = binder.promote();
217        if (real != NULL) {
218            IBinder *local = real->localBinder();
219            if (!local) {
220                BpBinder *proxy = real->remoteBinder();
221                if (proxy == NULL) {
222                    ALOGE("null proxy");
223                }
224                const int32_t handle = proxy ? proxy->handle() : 0;
225                obj.type = BINDER_TYPE_WEAK_HANDLE;
226                obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
227                obj.handle = handle;
228                obj.cookie = 0;
229            } else {
230                obj.type = BINDER_TYPE_WEAK_BINDER;
231                obj.binder = reinterpret_cast<uintptr_t>(binder.get_refs());
232                obj.cookie = reinterpret_cast<uintptr_t>(binder.unsafe_get());
233            }
234            return finish_flatten_binder(real, obj, out);
235        }
236
237        // XXX How to deal?  In order to flatten the given binder,
238        // we need to probe it for information, which requires a primary
239        // reference...  but we don't have one.
240        //
241        // The OpenBinder implementation uses a dynamic_cast<> here,
242        // but we can't do that with the different reference counting
243        // implementation we are using.
244        ALOGE("Unable to unflatten Binder weak reference!");
245        obj.type = BINDER_TYPE_BINDER;
246        obj.binder = 0;
247        obj.cookie = 0;
248        return finish_flatten_binder(NULL, obj, out);
249
250    } else {
251        obj.type = BINDER_TYPE_BINDER;
252        obj.binder = 0;
253        obj.cookie = 0;
254        return finish_flatten_binder(NULL, obj, out);
255    }
256}
257
258inline static status_t finish_unflatten_binder(
259    BpBinder* /*proxy*/, const flat_binder_object& /*flat*/,
260    const Parcel& /*in*/)
261{
262    return NO_ERROR;
263}
264
265status_t unflatten_binder(const sp<ProcessState>& proc,
266    const Parcel& in, sp<IBinder>* out)
267{
268    const flat_binder_object* flat = in.readObject(false);
269
270    if (flat) {
271        switch (flat->type) {
272            case BINDER_TYPE_BINDER:
273                *out = reinterpret_cast<IBinder*>(flat->cookie);
274                return finish_unflatten_binder(NULL, *flat, in);
275            case BINDER_TYPE_HANDLE:
276                *out = proc->getStrongProxyForHandle(flat->handle);
277                return finish_unflatten_binder(
278                    static_cast<BpBinder*>(out->get()), *flat, in);
279        }
280    }
281    return BAD_TYPE;
282}
283
284status_t unflatten_binder(const sp<ProcessState>& proc,
285    const Parcel& in, wp<IBinder>* out)
286{
287    const flat_binder_object* flat = in.readObject(false);
288
289    if (flat) {
290        switch (flat->type) {
291            case BINDER_TYPE_BINDER:
292                *out = reinterpret_cast<IBinder*>(flat->cookie);
293                return finish_unflatten_binder(NULL, *flat, in);
294            case BINDER_TYPE_WEAK_BINDER:
295                if (flat->binder != 0) {
296                    out->set_object_and_refs(
297                        reinterpret_cast<IBinder*>(flat->cookie),
298                        reinterpret_cast<RefBase::weakref_type*>(flat->binder));
299                } else {
300                    *out = NULL;
301                }
302                return finish_unflatten_binder(NULL, *flat, in);
303            case BINDER_TYPE_HANDLE:
304            case BINDER_TYPE_WEAK_HANDLE:
305                *out = proc->getWeakProxyForHandle(flat->handle);
306                return finish_unflatten_binder(
307                    static_cast<BpBinder*>(out->unsafe_get()), *flat, in);
308        }
309    }
310    return BAD_TYPE;
311}
312
313namespace {
314
315template<typename T>
316status_t readTypedVector(std::vector<T>* val, const Parcel* p,
317                         status_t(Parcel::*read_func)(T*) const) {
318    val->clear();
319
320    int32_t size;
321    status_t status = p->readInt32(&size);
322
323    if (status != OK) {
324        return status;
325    }
326
327    if (size < 0) {
328        return UNEXPECTED_NULL;
329    }
330
331    val->resize(size);
332
333    for (auto& v: *val) {
334        status = (p->*read_func)(&v);
335
336        if (status != OK) {
337            return status;
338        }
339    }
340
341    return OK;
342}
343
344}  // namespace
345
346// ---------------------------------------------------------------------------
347
348Parcel::Parcel()
349{
350    LOG_ALLOC("Parcel %p: constructing", this);
351    initState();
352}
353
354Parcel::~Parcel()
355{
356    freeDataNoInit();
357    LOG_ALLOC("Parcel %p: destroyed", this);
358}
359
360size_t Parcel::getGlobalAllocSize() {
361    pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
362    size_t size = gParcelGlobalAllocSize;
363    pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
364    return size;
365}
366
367size_t Parcel::getGlobalAllocCount() {
368    pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
369    size_t count = gParcelGlobalAllocCount;
370    pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
371    return count;
372}
373
374const uint8_t* Parcel::data() const
375{
376    return mData;
377}
378
379size_t Parcel::dataSize() const
380{
381    return (mDataSize > mDataPos ? mDataSize : mDataPos);
382}
383
384size_t Parcel::dataAvail() const
385{
386    // TODO: decide what to do about the possibility that this can
387    // report an available-data size that exceeds a Java int's max
388    // positive value, causing havoc.  Fortunately this will only
389    // happen if someone constructs a Parcel containing more than two
390    // gigabytes of data, which on typical phone hardware is simply
391    // not possible.
392    return dataSize() - dataPosition();
393}
394
395size_t Parcel::dataPosition() const
396{
397    return mDataPos;
398}
399
400size_t Parcel::dataCapacity() const
401{
402    return mDataCapacity;
403}
404
405status_t Parcel::setDataSize(size_t size)
406{
407    if (size > INT32_MAX) {
408        // don't accept size_t values which may have come from an
409        // inadvertent conversion from a negative int.
410        return BAD_VALUE;
411    }
412
413    status_t err;
414    err = continueWrite(size);
415    if (err == NO_ERROR) {
416        mDataSize = size;
417        ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
418    }
419    return err;
420}
421
422void Parcel::setDataPosition(size_t pos) const
423{
424    if (pos > INT32_MAX) {
425        // don't accept size_t values which may have come from an
426        // inadvertent conversion from a negative int.
427        abort();
428    }
429
430    mDataPos = pos;
431    mNextObjectHint = 0;
432}
433
434status_t Parcel::setDataCapacity(size_t size)
435{
436    if (size > INT32_MAX) {
437        // don't accept size_t values which may have come from an
438        // inadvertent conversion from a negative int.
439        return BAD_VALUE;
440    }
441
442    if (size > mDataCapacity) return continueWrite(size);
443    return NO_ERROR;
444}
445
446status_t Parcel::setData(const uint8_t* buffer, size_t len)
447{
448    if (len > INT32_MAX) {
449        // don't accept size_t values which may have come from an
450        // inadvertent conversion from a negative int.
451        return BAD_VALUE;
452    }
453
454    status_t err = restartWrite(len);
455    if (err == NO_ERROR) {
456        memcpy(const_cast<uint8_t*>(data()), buffer, len);
457        mDataSize = len;
458        mFdsKnown = false;
459    }
460    return err;
461}
462
463status_t Parcel::appendFrom(const Parcel *parcel, size_t offset, size_t len)
464{
465    const sp<ProcessState> proc(ProcessState::self());
466    status_t err;
467    const uint8_t *data = parcel->mData;
468    const binder_size_t *objects = parcel->mObjects;
469    size_t size = parcel->mObjectsSize;
470    int startPos = mDataPos;
471    int firstIndex = -1, lastIndex = -2;
472
473    if (len == 0) {
474        return NO_ERROR;
475    }
476
477    if (len > INT32_MAX) {
478        // don't accept size_t values which may have come from an
479        // inadvertent conversion from a negative int.
480        return BAD_VALUE;
481    }
482
483    // range checks against the source parcel size
484    if ((offset > parcel->mDataSize)
485            || (len > parcel->mDataSize)
486            || (offset + len > parcel->mDataSize)) {
487        return BAD_VALUE;
488    }
489
490    // Count objects in range
491    for (int i = 0; i < (int) size; i++) {
492        size_t off = objects[i];
493        if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) {
494            if (firstIndex == -1) {
495                firstIndex = i;
496            }
497            lastIndex = i;
498        }
499    }
500    int numObjects = lastIndex - firstIndex + 1;
501
502    if ((mDataSize+len) > mDataCapacity) {
503        // grow data
504        err = growData(len);
505        if (err != NO_ERROR) {
506            return err;
507        }
508    }
509
510    // append data
511    memcpy(mData + mDataPos, data + offset, len);
512    mDataPos += len;
513    mDataSize += len;
514
515    err = NO_ERROR;
516
517    if (numObjects > 0) {
518        // grow objects
519        if (mObjectsCapacity < mObjectsSize + numObjects) {
520            size_t newSize = ((mObjectsSize + numObjects)*3)/2;
521            if (newSize < mObjectsSize) return NO_MEMORY;   // overflow
522            binder_size_t *objects =
523                (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
524            if (objects == (binder_size_t*)0) {
525                return NO_MEMORY;
526            }
527            mObjects = objects;
528            mObjectsCapacity = newSize;
529        }
530
531        // append and acquire objects
532        int idx = mObjectsSize;
533        for (int i = firstIndex; i <= lastIndex; i++) {
534            size_t off = objects[i] - offset + startPos;
535            mObjects[idx++] = off;
536            mObjectsSize++;
537
538            flat_binder_object* flat
539                = reinterpret_cast<flat_binder_object*>(mData + off);
540            acquire_object(proc, *flat, this);
541
542            if (flat->type == BINDER_TYPE_FD) {
543                // If this is a file descriptor, we need to dup it so the
544                // new Parcel now owns its own fd, and can declare that we
545                // officially know we have fds.
546                flat->handle = dup(flat->handle);
547                flat->cookie = 1;
548                mHasFds = mFdsKnown = true;
549                if (!mAllowFds) {
550                    err = FDS_NOT_ALLOWED;
551                }
552            }
553        }
554    }
555
556    return err;
557}
558
559bool Parcel::allowFds() const
560{
561    return mAllowFds;
562}
563
564bool Parcel::pushAllowFds(bool allowFds)
565{
566    const bool origValue = mAllowFds;
567    if (!allowFds) {
568        mAllowFds = false;
569    }
570    return origValue;
571}
572
573void Parcel::restoreAllowFds(bool lastValue)
574{
575    mAllowFds = lastValue;
576}
577
578bool Parcel::hasFileDescriptors() const
579{
580    if (!mFdsKnown) {
581        scanForFds();
582    }
583    return mHasFds;
584}
585
586// Write RPC headers.  (previously just the interface token)
587status_t Parcel::writeInterfaceToken(const String16& interface)
588{
589    writeInt32(IPCThreadState::self()->getStrictModePolicy() |
590               STRICT_MODE_PENALTY_GATHER);
591    // currently the interface identification token is just its name as a string
592    return writeString16(interface);
593}
594
595bool Parcel::checkInterface(IBinder* binder) const
596{
597    return enforceInterface(binder->getInterfaceDescriptor());
598}
599
600bool Parcel::enforceInterface(const String16& interface,
601                              IPCThreadState* threadState) const
602{
603    int32_t strictPolicy = readInt32();
604    if (threadState == NULL) {
605        threadState = IPCThreadState::self();
606    }
607    if ((threadState->getLastTransactionBinderFlags() &
608         IBinder::FLAG_ONEWAY) != 0) {
609      // For one-way calls, the callee is running entirely
610      // disconnected from the caller, so disable StrictMode entirely.
611      // Not only does disk/network usage not impact the caller, but
612      // there's no way to commuicate back any violations anyway.
613      threadState->setStrictModePolicy(0);
614    } else {
615      threadState->setStrictModePolicy(strictPolicy);
616    }
617    const String16 str(readString16());
618    if (str == interface) {
619        return true;
620    } else {
621        ALOGW("**** enforceInterface() expected '%s' but read '%s'",
622                String8(interface).string(), String8(str).string());
623        return false;
624    }
625}
626
627const binder_size_t* Parcel::objects() const
628{
629    return mObjects;
630}
631
632size_t Parcel::objectsCount() const
633{
634    return mObjectsSize;
635}
636
637status_t Parcel::errorCheck() const
638{
639    return mError;
640}
641
642void Parcel::setError(status_t err)
643{
644    mError = err;
645}
646
647status_t Parcel::finishWrite(size_t len)
648{
649    if (len > INT32_MAX) {
650        // don't accept size_t values which may have come from an
651        // inadvertent conversion from a negative int.
652        return BAD_VALUE;
653    }
654
655    //printf("Finish write of %d\n", len);
656    mDataPos += len;
657    ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
658    if (mDataPos > mDataSize) {
659        mDataSize = mDataPos;
660        ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
661    }
662    //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
663    return NO_ERROR;
664}
665
666status_t Parcel::writeUnpadded(const void* data, size_t len)
667{
668    if (len > INT32_MAX) {
669        // don't accept size_t values which may have come from an
670        // inadvertent conversion from a negative int.
671        return BAD_VALUE;
672    }
673
674    size_t end = mDataPos + len;
675    if (end < mDataPos) {
676        // integer overflow
677        return BAD_VALUE;
678    }
679
680    if (end <= mDataCapacity) {
681restart_write:
682        memcpy(mData+mDataPos, data, len);
683        return finishWrite(len);
684    }
685
686    status_t err = growData(len);
687    if (err == NO_ERROR) goto restart_write;
688    return err;
689}
690
691status_t Parcel::write(const void* data, size_t len)
692{
693    if (len > INT32_MAX) {
694        // don't accept size_t values which may have come from an
695        // inadvertent conversion from a negative int.
696        return BAD_VALUE;
697    }
698
699    void* const d = writeInplace(len);
700    if (d) {
701        memcpy(d, data, len);
702        return NO_ERROR;
703    }
704    return mError;
705}
706
707void* Parcel::writeInplace(size_t len)
708{
709    if (len > INT32_MAX) {
710        // don't accept size_t values which may have come from an
711        // inadvertent conversion from a negative int.
712        return NULL;
713    }
714
715    const size_t padded = pad_size(len);
716
717    // sanity check for integer overflow
718    if (mDataPos+padded < mDataPos) {
719        return NULL;
720    }
721
722    if ((mDataPos+padded) <= mDataCapacity) {
723restart_write:
724        //printf("Writing %ld bytes, padded to %ld\n", len, padded);
725        uint8_t* const data = mData+mDataPos;
726
727        // Need to pad at end?
728        if (padded != len) {
729#if BYTE_ORDER == BIG_ENDIAN
730            static const uint32_t mask[4] = {
731                0x00000000, 0xffffff00, 0xffff0000, 0xff000000
732            };
733#endif
734#if BYTE_ORDER == LITTLE_ENDIAN
735            static const uint32_t mask[4] = {
736                0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
737            };
738#endif
739            //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
740            //    *reinterpret_cast<void**>(data+padded-4));
741            *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
742        }
743
744        finishWrite(padded);
745        return data;
746    }
747
748    status_t err = growData(padded);
749    if (err == NO_ERROR) goto restart_write;
750    return NULL;
751}
752
753status_t Parcel::writeByteVector(const std::vector<int8_t>& val)
754{
755    status_t status;
756    if (val.size() > std::numeric_limits<int32_t>::max()) {
757        status = BAD_VALUE;
758        return status;
759    }
760
761    status = writeInt32(val.size());
762    if (status != OK) {
763        return status;
764    }
765
766    void* data = writeInplace(val.size());
767    if (!data) {
768        status = BAD_VALUE;
769        return status;
770    }
771
772    memcpy(data, val.data(), val.size());
773    return status;
774}
775
776status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val)
777{
778    if (val.size() > std::numeric_limits<int32_t>::max()) {
779        return BAD_VALUE;
780    }
781
782    status_t status = writeInt32(val.size());
783
784    if (status != OK) {
785        return status;
786    }
787
788    for (const auto& item : val) {
789        status = writeInt32(item);
790
791        if (status != OK) {
792            return status;
793        }
794    }
795
796    return OK;
797}
798
799status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val)
800{
801    if (val.size() > std::numeric_limits<int32_t>::max()) {
802        return BAD_VALUE;
803    }
804
805    status_t status = writeInt32(val.size());
806
807    if (status != OK) {
808        return status;
809    }
810
811    for (const auto& item : val) {
812        status = writeInt64(item);
813
814        if (status != OK) {
815            return status;
816        }
817    }
818
819    return OK;
820}
821
822status_t Parcel::writeFloatVector(const std::vector<float>& val)
823{
824    if (val.size() > std::numeric_limits<int32_t>::max()) {
825        return BAD_VALUE;
826    }
827
828    status_t status = writeInt32(val.size());
829
830    if (status != OK) {
831        return status;
832    }
833
834    for (const auto& item : val) {
835        status = writeFloat(item);
836
837        if (status != OK) {
838            return status;
839        }
840    }
841
842    return OK;
843}
844
845status_t Parcel::writeDoubleVector(const std::vector<double>& val)
846{
847    if (val.size() > std::numeric_limits<int32_t>::max()) {
848        return BAD_VALUE;
849    }
850
851    status_t status = writeInt32(val.size());
852
853    if (status != OK) {
854        return status;
855    }
856
857    for (const auto& item : val) {
858        status = writeDouble(item);
859
860        if (status != OK) {
861            return status;
862        }
863    }
864
865    return OK;
866}
867
868status_t Parcel::writeBoolVector(const std::vector<bool>& val)
869{
870    if (val.size() > std::numeric_limits<int32_t>::max()) {
871        return BAD_VALUE;
872    }
873
874    status_t status = writeInt32(val.size());
875
876    if (status != OK) {
877        return status;
878    }
879
880    for (const auto& item : val) {
881        status = writeBool(item);
882
883        if (status != OK) {
884            return status;
885        }
886    }
887
888    return OK;
889}
890
891status_t Parcel::writeCharVector(const std::vector<char16_t>& val)
892{
893    if (val.size() > std::numeric_limits<int32_t>::max()) {
894        return BAD_VALUE;
895    }
896
897    status_t status = writeInt32(val.size());
898
899    if (status != OK) {
900        return status;
901    }
902
903    for (const auto& item : val) {
904        status = writeChar(item);
905
906        if (status != OK) {
907            return status;
908        }
909    }
910
911    return OK;
912}
913
914status_t Parcel::writeString16Vector(const std::vector<String16>& val)
915{
916    if (val.size() > std::numeric_limits<int32_t>::max()) {
917        return BAD_VALUE;
918    }
919
920    status_t status = writeInt32(val.size());
921
922    if (status != OK) {
923        return status;
924    }
925
926    for (const auto& item : val) {
927        status = writeString16(item);
928
929        if (status != OK) {
930            return status;
931        }
932    }
933
934    return OK;
935}
936
937status_t Parcel::writeInt32(int32_t val)
938{
939    return writeAligned(val);
940}
941
942status_t Parcel::writeUint32(uint32_t val)
943{
944    return writeAligned(val);
945}
946
947status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
948    if (len > INT32_MAX) {
949        // don't accept size_t values which may have come from an
950        // inadvertent conversion from a negative int.
951        return BAD_VALUE;
952    }
953
954    if (!val) {
955        return writeInt32(-1);
956    }
957    status_t ret = writeInt32(static_cast<uint32_t>(len));
958    if (ret == NO_ERROR) {
959        ret = write(val, len * sizeof(*val));
960    }
961    return ret;
962}
963status_t Parcel::writeByteArray(size_t len, const uint8_t *val) {
964    if (len > INT32_MAX) {
965        // don't accept size_t values which may have come from an
966        // inadvertent conversion from a negative int.
967        return BAD_VALUE;
968    }
969
970    if (!val) {
971        return writeInt32(-1);
972    }
973    status_t ret = writeInt32(static_cast<uint32_t>(len));
974    if (ret == NO_ERROR) {
975        ret = write(val, len * sizeof(*val));
976    }
977    return ret;
978}
979
980status_t Parcel::writeBool(bool val)
981{
982    return writeInt32(int32_t(val));
983}
984
985status_t Parcel::writeChar(char16_t val)
986{
987    return writeInt32(int32_t(val));
988}
989
990status_t Parcel::writeByte(int8_t val)
991{
992    return writeInt32(int32_t(val));
993}
994
995status_t Parcel::writeInt64(int64_t val)
996{
997    return writeAligned(val);
998}
999
1000status_t Parcel::writeUint64(uint64_t val)
1001{
1002    return writeAligned(val);
1003}
1004
1005status_t Parcel::writePointer(uintptr_t val)
1006{
1007    return writeAligned<binder_uintptr_t>(val);
1008}
1009
1010status_t Parcel::writeFloat(float val)
1011{
1012    return writeAligned(val);
1013}
1014
1015#if defined(__mips__) && defined(__mips_hard_float)
1016
1017status_t Parcel::writeDouble(double val)
1018{
1019    union {
1020        double d;
1021        unsigned long long ll;
1022    } u;
1023    u.d = val;
1024    return writeAligned(u.ll);
1025}
1026
1027#else
1028
1029status_t Parcel::writeDouble(double val)
1030{
1031    return writeAligned(val);
1032}
1033
1034#endif
1035
1036status_t Parcel::writeCString(const char* str)
1037{
1038    return write(str, strlen(str)+1);
1039}
1040
1041status_t Parcel::writeString8(const String8& str)
1042{
1043    status_t err = writeInt32(str.bytes());
1044    // only write string if its length is more than zero characters,
1045    // as readString8 will only read if the length field is non-zero.
1046    // this is slightly different from how writeString16 works.
1047    if (str.bytes() > 0 && err == NO_ERROR) {
1048        err = write(str.string(), str.bytes()+1);
1049    }
1050    return err;
1051}
1052
1053status_t Parcel::writeString16(const String16& str)
1054{
1055    return writeString16(str.string(), str.size());
1056}
1057
1058status_t Parcel::writeString16(const char16_t* str, size_t len)
1059{
1060    if (str == NULL) return writeInt32(-1);
1061
1062    status_t err = writeInt32(len);
1063    if (err == NO_ERROR) {
1064        len *= sizeof(char16_t);
1065        uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
1066        if (data) {
1067            memcpy(data, str, len);
1068            *reinterpret_cast<char16_t*>(data+len) = 0;
1069            return NO_ERROR;
1070        }
1071        err = mError;
1072    }
1073    return err;
1074}
1075
1076status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
1077{
1078    return flatten_binder(ProcessState::self(), val, this);
1079}
1080
1081status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val)
1082{
1083    if (val.size() > std::numeric_limits<int32_t>::max()) {
1084        return BAD_VALUE;
1085    }
1086
1087    status_t status = writeInt32(val.size());
1088
1089    if (status != OK) {
1090        return status;
1091    }
1092
1093    for (const auto& item : val) {
1094        status = writeStrongBinder(item);
1095
1096        if (status != OK) {
1097            return status;
1098        }
1099    }
1100
1101    return OK;
1102}
1103
1104status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const {
1105    return readTypedVector(val, this, &Parcel::readStrongBinder);
1106}
1107
1108status_t Parcel::writeWeakBinder(const wp<IBinder>& val)
1109{
1110    return flatten_binder(ProcessState::self(), val, this);
1111}
1112
1113status_t Parcel::writeNativeHandle(const native_handle* handle)
1114{
1115    if (!handle || handle->version != sizeof(native_handle))
1116        return BAD_TYPE;
1117
1118    status_t err;
1119    err = writeInt32(handle->numFds);
1120    if (err != NO_ERROR) return err;
1121
1122    err = writeInt32(handle->numInts);
1123    if (err != NO_ERROR) return err;
1124
1125    for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)
1126        err = writeDupFileDescriptor(handle->data[i]);
1127
1128    if (err != NO_ERROR) {
1129        ALOGD("write native handle, write dup fd failed");
1130        return err;
1131    }
1132    err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);
1133    return err;
1134}
1135
1136status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership)
1137{
1138    flat_binder_object obj;
1139    obj.type = BINDER_TYPE_FD;
1140    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
1141    obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
1142    obj.handle = fd;
1143    obj.cookie = takeOwnership ? 1 : 0;
1144    return writeObject(obj, true);
1145}
1146
1147status_t Parcel::writeDupFileDescriptor(int fd)
1148{
1149    int dupFd = dup(fd);
1150    if (dupFd < 0) {
1151        return -errno;
1152    }
1153    status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/);
1154    if (err) {
1155        close(dupFd);
1156    }
1157    return err;
1158}
1159
1160status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
1161{
1162    if (len > INT32_MAX) {
1163        // don't accept size_t values which may have come from an
1164        // inadvertent conversion from a negative int.
1165        return BAD_VALUE;
1166    }
1167
1168    status_t status;
1169    if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) {
1170        ALOGV("writeBlob: write in place");
1171        status = writeInt32(BLOB_INPLACE);
1172        if (status) return status;
1173
1174        void* ptr = writeInplace(len);
1175        if (!ptr) return NO_MEMORY;
1176
1177        outBlob->init(-1, ptr, len, false);
1178        return NO_ERROR;
1179    }
1180
1181    ALOGV("writeBlob: write to ashmem");
1182    int fd = ashmem_create_region("Parcel Blob", len);
1183    if (fd < 0) return NO_MEMORY;
1184
1185    mBlobAshmemSize += len;
1186
1187    int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
1188    if (result < 0) {
1189        status = result;
1190    } else {
1191        void* ptr = ::mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1192        if (ptr == MAP_FAILED) {
1193            status = -errno;
1194        } else {
1195            if (!mutableCopy) {
1196                result = ashmem_set_prot_region(fd, PROT_READ);
1197            }
1198            if (result < 0) {
1199                status = result;
1200            } else {
1201                status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE);
1202                if (!status) {
1203                    status = writeFileDescriptor(fd, true /*takeOwnership*/);
1204                    if (!status) {
1205                        outBlob->init(fd, ptr, len, mutableCopy);
1206                        return NO_ERROR;
1207                    }
1208                }
1209            }
1210        }
1211        ::munmap(ptr, len);
1212    }
1213    ::close(fd);
1214    return status;
1215}
1216
1217status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd)
1218{
1219    // Must match up with what's done in writeBlob.
1220    if (!mAllowFds) return FDS_NOT_ALLOWED;
1221    status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE);
1222    if (status) return status;
1223    return writeDupFileDescriptor(fd);
1224}
1225
1226status_t Parcel::write(const FlattenableHelperInterface& val)
1227{
1228    status_t err;
1229
1230    // size if needed
1231    const size_t len = val.getFlattenedSize();
1232    const size_t fd_count = val.getFdCount();
1233
1234    if ((len > INT32_MAX) || (fd_count > INT32_MAX)) {
1235        // don't accept size_t values which may have come from an
1236        // inadvertent conversion from a negative int.
1237        return BAD_VALUE;
1238    }
1239
1240    err = this->writeInt32(len);
1241    if (err) return err;
1242
1243    err = this->writeInt32(fd_count);
1244    if (err) return err;
1245
1246    // payload
1247    void* const buf = this->writeInplace(pad_size(len));
1248    if (buf == NULL)
1249        return BAD_VALUE;
1250
1251    int* fds = NULL;
1252    if (fd_count) {
1253        fds = new int[fd_count];
1254    }
1255
1256    err = val.flatten(buf, len, fds, fd_count);
1257    for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1258        err = this->writeDupFileDescriptor( fds[i] );
1259    }
1260
1261    if (fd_count) {
1262        delete [] fds;
1263    }
1264
1265    return err;
1266}
1267
1268status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
1269{
1270    const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
1271    const bool enoughObjects = mObjectsSize < mObjectsCapacity;
1272    if (enoughData && enoughObjects) {
1273restart_write:
1274        *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
1275
1276        // remember if it's a file descriptor
1277        if (val.type == BINDER_TYPE_FD) {
1278            if (!mAllowFds) {
1279                // fail before modifying our object index
1280                return FDS_NOT_ALLOWED;
1281            }
1282            mHasFds = mFdsKnown = true;
1283        }
1284
1285        // Need to write meta-data?
1286        if (nullMetaData || val.binder != 0) {
1287            mObjects[mObjectsSize] = mDataPos;
1288            acquire_object(ProcessState::self(), val, this);
1289            mObjectsSize++;
1290        }
1291
1292        return finishWrite(sizeof(flat_binder_object));
1293    }
1294
1295    if (!enoughData) {
1296        const status_t err = growData(sizeof(val));
1297        if (err != NO_ERROR) return err;
1298    }
1299    if (!enoughObjects) {
1300        size_t newSize = ((mObjectsSize+2)*3)/2;
1301        if (newSize < mObjectsSize) return NO_MEMORY;   // overflow
1302        binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
1303        if (objects == NULL) return NO_MEMORY;
1304        mObjects = objects;
1305        mObjectsCapacity = newSize;
1306    }
1307
1308    goto restart_write;
1309}
1310
1311status_t Parcel::writeNoException()
1312{
1313    return writeInt32(0);
1314}
1315
1316void Parcel::remove(size_t /*start*/, size_t /*amt*/)
1317{
1318    LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");
1319}
1320
1321status_t Parcel::read(void* outData, size_t len) const
1322{
1323    if (len > INT32_MAX) {
1324        // don't accept size_t values which may have come from an
1325        // inadvertent conversion from a negative int.
1326        return BAD_VALUE;
1327    }
1328
1329    if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1330            && len <= pad_size(len)) {
1331        memcpy(outData, mData+mDataPos, len);
1332        mDataPos += pad_size(len);
1333        ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1334        return NO_ERROR;
1335    }
1336    return NOT_ENOUGH_DATA;
1337}
1338
1339const void* Parcel::readInplace(size_t len) const
1340{
1341    if (len > INT32_MAX) {
1342        // don't accept size_t values which may have come from an
1343        // inadvertent conversion from a negative int.
1344        return NULL;
1345    }
1346
1347    if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1348            && len <= pad_size(len)) {
1349        const void* data = mData+mDataPos;
1350        mDataPos += pad_size(len);
1351        ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1352        return data;
1353    }
1354    return NULL;
1355}
1356
1357template<class T>
1358status_t Parcel::readAligned(T *pArg) const {
1359    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1360
1361    if ((mDataPos+sizeof(T)) <= mDataSize) {
1362        const void* data = mData+mDataPos;
1363        mDataPos += sizeof(T);
1364        *pArg =  *reinterpret_cast<const T*>(data);
1365        return NO_ERROR;
1366    } else {
1367        return NOT_ENOUGH_DATA;
1368    }
1369}
1370
1371template<class T>
1372T Parcel::readAligned() const {
1373    T result;
1374    if (readAligned(&result) != NO_ERROR) {
1375        result = 0;
1376    }
1377
1378    return result;
1379}
1380
1381template<class T>
1382status_t Parcel::writeAligned(T val) {
1383    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1384
1385    if ((mDataPos+sizeof(val)) <= mDataCapacity) {
1386restart_write:
1387        *reinterpret_cast<T*>(mData+mDataPos) = val;
1388        return finishWrite(sizeof(val));
1389    }
1390
1391    status_t err = growData(sizeof(val));
1392    if (err == NO_ERROR) goto restart_write;
1393    return err;
1394}
1395
1396status_t Parcel::readByteVector(std::vector<int8_t>* val) const {
1397    val->clear();
1398
1399    int32_t size;
1400    status_t status = readInt32(&size);
1401
1402    if (status != OK) {
1403        return status;
1404    }
1405
1406    if (size < 0) {
1407        status = UNEXPECTED_NULL;
1408        return status;
1409    }
1410    if (size_t(size) > dataAvail()) {
1411        status = BAD_VALUE;
1412        return status;
1413    }
1414
1415    const void* data = readInplace(size);
1416    if (!data) {
1417        status = BAD_VALUE;
1418        return status;
1419    }
1420    val->resize(size);
1421    memcpy(val->data(), data, size);
1422
1423    return status;
1424}
1425
1426status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const {
1427    return readTypedVector(val, this, &Parcel::readInt32);
1428}
1429
1430status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const {
1431    return readTypedVector(val, this, &Parcel::readInt64);
1432}
1433
1434status_t Parcel::readFloatVector(std::vector<float>* val) const {
1435    return readTypedVector(val, this, &Parcel::readFloat);
1436}
1437
1438status_t Parcel::readDoubleVector(std::vector<double>* val) const {
1439    return readTypedVector(val, this, &Parcel::readDouble);
1440}
1441
1442status_t Parcel::readBoolVector(std::vector<bool>* val) const {
1443    val->clear();
1444
1445    int32_t size;
1446    status_t status = readInt32(&size);
1447
1448    if (status != OK) {
1449        return status;
1450    }
1451
1452    if (size < 0) {
1453        return UNEXPECTED_NULL;
1454    }
1455
1456    val->resize(size);
1457
1458    /* C++ bool handling means a vector of bools isn't necessarily addressable
1459     * (we might use individual bits)
1460     */
1461    bool data;
1462    for (int32_t i = 0; i < size; ++i) {
1463        status = readBool(&data);
1464        (*val)[i] = data;
1465
1466        if (status != OK) {
1467            return status;
1468        }
1469    }
1470
1471    return OK;
1472}
1473
1474status_t Parcel::readCharVector(std::vector<char16_t>* val) const {
1475    return readTypedVector(val, this, &Parcel::readChar);
1476}
1477
1478status_t Parcel::readString16Vector(std::vector<String16>* val) const {
1479    return readTypedVector(val, this, &Parcel::readString16);
1480}
1481
1482
1483status_t Parcel::readInt32(int32_t *pArg) const
1484{
1485    return readAligned(pArg);
1486}
1487
1488int32_t Parcel::readInt32() const
1489{
1490    return readAligned<int32_t>();
1491}
1492
1493status_t Parcel::readUint32(uint32_t *pArg) const
1494{
1495    return readAligned(pArg);
1496}
1497
1498uint32_t Parcel::readUint32() const
1499{
1500    return readAligned<uint32_t>();
1501}
1502
1503status_t Parcel::readInt64(int64_t *pArg) const
1504{
1505    return readAligned(pArg);
1506}
1507
1508
1509int64_t Parcel::readInt64() const
1510{
1511    return readAligned<int64_t>();
1512}
1513
1514status_t Parcel::readUint64(uint64_t *pArg) const
1515{
1516    return readAligned(pArg);
1517}
1518
1519uint64_t Parcel::readUint64() const
1520{
1521    return readAligned<uint64_t>();
1522}
1523
1524status_t Parcel::readPointer(uintptr_t *pArg) const
1525{
1526    status_t ret;
1527    binder_uintptr_t ptr;
1528    ret = readAligned(&ptr);
1529    if (!ret)
1530        *pArg = ptr;
1531    return ret;
1532}
1533
1534uintptr_t Parcel::readPointer() const
1535{
1536    return readAligned<binder_uintptr_t>();
1537}
1538
1539
1540status_t Parcel::readFloat(float *pArg) const
1541{
1542    return readAligned(pArg);
1543}
1544
1545
1546float Parcel::readFloat() const
1547{
1548    return readAligned<float>();
1549}
1550
1551#if defined(__mips__) && defined(__mips_hard_float)
1552
1553status_t Parcel::readDouble(double *pArg) const
1554{
1555    union {
1556      double d;
1557      unsigned long long ll;
1558    } u;
1559    u.d = 0;
1560    status_t status;
1561    status = readAligned(&u.ll);
1562    *pArg = u.d;
1563    return status;
1564}
1565
1566double Parcel::readDouble() const
1567{
1568    union {
1569      double d;
1570      unsigned long long ll;
1571    } u;
1572    u.ll = readAligned<unsigned long long>();
1573    return u.d;
1574}
1575
1576#else
1577
1578status_t Parcel::readDouble(double *pArg) const
1579{
1580    return readAligned(pArg);
1581}
1582
1583double Parcel::readDouble() const
1584{
1585    return readAligned<double>();
1586}
1587
1588#endif
1589
1590status_t Parcel::readIntPtr(intptr_t *pArg) const
1591{
1592    return readAligned(pArg);
1593}
1594
1595
1596intptr_t Parcel::readIntPtr() const
1597{
1598    return readAligned<intptr_t>();
1599}
1600
1601status_t Parcel::readBool(bool *pArg) const
1602{
1603    int32_t tmp;
1604    status_t ret = readInt32(&tmp);
1605    *pArg = (tmp != 0);
1606    return ret;
1607}
1608
1609bool Parcel::readBool() const
1610{
1611    return readInt32() != 0;
1612}
1613
1614status_t Parcel::readChar(char16_t *pArg) const
1615{
1616    int32_t tmp;
1617    status_t ret = readInt32(&tmp);
1618    *pArg = char16_t(tmp);
1619    return ret;
1620}
1621
1622char16_t Parcel::readChar() const
1623{
1624    return char16_t(readInt32());
1625}
1626
1627status_t Parcel::readByte(int8_t *pArg) const
1628{
1629    int32_t tmp;
1630    status_t ret = readInt32(&tmp);
1631    *pArg = int8_t(tmp);
1632    return ret;
1633}
1634
1635int8_t Parcel::readByte() const
1636{
1637    return int8_t(readInt32());
1638}
1639
1640const char* Parcel::readCString() const
1641{
1642    const size_t avail = mDataSize-mDataPos;
1643    if (avail > 0) {
1644        const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1645        // is the string's trailing NUL within the parcel's valid bounds?
1646        const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1647        if (eos) {
1648            const size_t len = eos - str;
1649            mDataPos += pad_size(len+1);
1650            ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1651            return str;
1652        }
1653    }
1654    return NULL;
1655}
1656
1657String8 Parcel::readString8() const
1658{
1659    int32_t size = readInt32();
1660    // watch for potential int overflow adding 1 for trailing NUL
1661    if (size > 0 && size < INT32_MAX) {
1662        const char* str = (const char*)readInplace(size+1);
1663        if (str) return String8(str, size);
1664    }
1665    return String8();
1666}
1667
1668String16 Parcel::readString16() const
1669{
1670    size_t len;
1671    const char16_t* str = readString16Inplace(&len);
1672    if (str) return String16(str, len);
1673    ALOGE("Reading a NULL string not supported here.");
1674    return String16();
1675}
1676
1677status_t Parcel::readString16(String16* pArg) const
1678{
1679    size_t len;
1680    const char16_t* str = readString16Inplace(&len);
1681    if (str) {
1682        pArg->setTo(str, len);
1683        return 0;
1684    } else {
1685        *pArg = String16();
1686        return UNEXPECTED_NULL;
1687    }
1688}
1689
1690const char16_t* Parcel::readString16Inplace(size_t* outLen) const
1691{
1692    int32_t size = readInt32();
1693    // watch for potential int overflow from size+1
1694    if (size >= 0 && size < INT32_MAX) {
1695        *outLen = size;
1696        const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
1697        if (str != NULL) {
1698            return str;
1699        }
1700    }
1701    *outLen = 0;
1702    return NULL;
1703}
1704
1705status_t Parcel::readStrongBinder(sp<IBinder>* val) const
1706{
1707    return unflatten_binder(ProcessState::self(), *this, val);
1708}
1709
1710sp<IBinder> Parcel::readStrongBinder() const
1711{
1712    sp<IBinder> val;
1713    readStrongBinder(&val);
1714    return val;
1715}
1716
1717wp<IBinder> Parcel::readWeakBinder() const
1718{
1719    wp<IBinder> val;
1720    unflatten_binder(ProcessState::self(), *this, &val);
1721    return val;
1722}
1723
1724int32_t Parcel::readExceptionCode() const
1725{
1726  int32_t exception_code = readAligned<int32_t>();
1727  if (exception_code == EX_HAS_REPLY_HEADER) {
1728    int32_t header_start = dataPosition();
1729    int32_t header_size = readAligned<int32_t>();
1730    // Skip over fat responses headers.  Not used (or propagated) in
1731    // native code
1732    setDataPosition(header_start + header_size);
1733    // And fat response headers are currently only used when there are no
1734    // exceptions, so return no error:
1735    return 0;
1736  }
1737  return exception_code;
1738}
1739
1740native_handle* Parcel::readNativeHandle() const
1741{
1742    int numFds, numInts;
1743    status_t err;
1744    err = readInt32(&numFds);
1745    if (err != NO_ERROR) return 0;
1746    err = readInt32(&numInts);
1747    if (err != NO_ERROR) return 0;
1748
1749    native_handle* h = native_handle_create(numFds, numInts);
1750    if (!h) {
1751        return 0;
1752    }
1753
1754    for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {
1755        h->data[i] = dup(readFileDescriptor());
1756        if (h->data[i] < 0) err = BAD_VALUE;
1757    }
1758    err = read(h->data + numFds, sizeof(int)*numInts);
1759    if (err != NO_ERROR) {
1760        native_handle_close(h);
1761        native_handle_delete(h);
1762        h = 0;
1763    }
1764    return h;
1765}
1766
1767
1768int Parcel::readFileDescriptor() const
1769{
1770    const flat_binder_object* flat = readObject(true);
1771    if (flat) {
1772        switch (flat->type) {
1773            case BINDER_TYPE_FD:
1774                //ALOGI("Returning file descriptor %ld from parcel %p", flat->handle, this);
1775                return flat->handle;
1776        }
1777    }
1778    return BAD_TYPE;
1779}
1780
1781status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
1782{
1783    int32_t blobType;
1784    status_t status = readInt32(&blobType);
1785    if (status) return status;
1786
1787    if (blobType == BLOB_INPLACE) {
1788        ALOGV("readBlob: read in place");
1789        const void* ptr = readInplace(len);
1790        if (!ptr) return BAD_VALUE;
1791
1792        outBlob->init(-1, const_cast<void*>(ptr), len, false);
1793        return NO_ERROR;
1794    }
1795
1796    ALOGV("readBlob: read from ashmem");
1797    bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE);
1798    int fd = readFileDescriptor();
1799    if (fd == int(BAD_TYPE)) return BAD_VALUE;
1800
1801    void* ptr = ::mmap(NULL, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ,
1802            MAP_SHARED, fd, 0);
1803    if (ptr == MAP_FAILED) return NO_MEMORY;
1804
1805    outBlob->init(fd, ptr, len, isMutable);
1806    return NO_ERROR;
1807}
1808
1809status_t Parcel::read(FlattenableHelperInterface& val) const
1810{
1811    // size
1812    const size_t len = this->readInt32();
1813    const size_t fd_count = this->readInt32();
1814
1815    if (len > INT32_MAX) {
1816        // don't accept size_t values which may have come from an
1817        // inadvertent conversion from a negative int.
1818        return BAD_VALUE;
1819    }
1820
1821    // payload
1822    void const* const buf = this->readInplace(pad_size(len));
1823    if (buf == NULL)
1824        return BAD_VALUE;
1825
1826    int* fds = NULL;
1827    if (fd_count) {
1828        fds = new int[fd_count];
1829    }
1830
1831    status_t err = NO_ERROR;
1832    for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1833        fds[i] = dup(this->readFileDescriptor());
1834        if (fds[i] < 0) {
1835            err = BAD_VALUE;
1836            ALOGE("dup() failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s",
1837                i, fds[i], fd_count, strerror(errno));
1838        }
1839    }
1840
1841    if (err == NO_ERROR) {
1842        err = val.unflatten(buf, len, fds, fd_count);
1843    }
1844
1845    if (fd_count) {
1846        delete [] fds;
1847    }
1848
1849    return err;
1850}
1851const flat_binder_object* Parcel::readObject(bool nullMetaData) const
1852{
1853    const size_t DPOS = mDataPos;
1854    if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {
1855        const flat_binder_object* obj
1856                = reinterpret_cast<const flat_binder_object*>(mData+DPOS);
1857        mDataPos = DPOS + sizeof(flat_binder_object);
1858        if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) {
1859            // When transferring a NULL object, we don't write it into
1860            // the object list, so we don't want to check for it when
1861            // reading.
1862            ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1863            return obj;
1864        }
1865
1866        // Ensure that this object is valid...
1867        binder_size_t* const OBJS = mObjects;
1868        const size_t N = mObjectsSize;
1869        size_t opos = mNextObjectHint;
1870
1871        if (N > 0) {
1872            ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
1873                 this, DPOS, opos);
1874
1875            // Start at the current hint position, looking for an object at
1876            // the current data position.
1877            if (opos < N) {
1878                while (opos < (N-1) && OBJS[opos] < DPOS) {
1879                    opos++;
1880                }
1881            } else {
1882                opos = N-1;
1883            }
1884            if (OBJS[opos] == DPOS) {
1885                // Found it!
1886                ALOGV("Parcel %p found obj %zu at index %zu with forward search",
1887                     this, DPOS, opos);
1888                mNextObjectHint = opos+1;
1889                ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1890                return obj;
1891            }
1892
1893            // Look backwards for it...
1894            while (opos > 0 && OBJS[opos] > DPOS) {
1895                opos--;
1896            }
1897            if (OBJS[opos] == DPOS) {
1898                // Found it!
1899                ALOGV("Parcel %p found obj %zu at index %zu with backward search",
1900                     this, DPOS, opos);
1901                mNextObjectHint = opos+1;
1902                ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1903                return obj;
1904            }
1905        }
1906        ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
1907             this, DPOS);
1908    }
1909    return NULL;
1910}
1911
1912void Parcel::closeFileDescriptors()
1913{
1914    size_t i = mObjectsSize;
1915    if (i > 0) {
1916        //ALOGI("Closing file descriptors for %zu objects...", i);
1917    }
1918    while (i > 0) {
1919        i--;
1920        const flat_binder_object* flat
1921            = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
1922        if (flat->type == BINDER_TYPE_FD) {
1923            //ALOGI("Closing fd: %ld", flat->handle);
1924            close(flat->handle);
1925        }
1926    }
1927}
1928
1929uintptr_t Parcel::ipcData() const
1930{
1931    return reinterpret_cast<uintptr_t>(mData);
1932}
1933
1934size_t Parcel::ipcDataSize() const
1935{
1936    return (mDataSize > mDataPos ? mDataSize : mDataPos);
1937}
1938
1939uintptr_t Parcel::ipcObjects() const
1940{
1941    return reinterpret_cast<uintptr_t>(mObjects);
1942}
1943
1944size_t Parcel::ipcObjectsCount() const
1945{
1946    return mObjectsSize;
1947}
1948
1949void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
1950    const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
1951{
1952    binder_size_t minOffset = 0;
1953    freeDataNoInit();
1954    mError = NO_ERROR;
1955    mData = const_cast<uint8_t*>(data);
1956    mDataSize = mDataCapacity = dataSize;
1957    //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
1958    mDataPos = 0;
1959    ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
1960    mObjects = const_cast<binder_size_t*>(objects);
1961    mObjectsSize = mObjectsCapacity = objectsCount;
1962    mNextObjectHint = 0;
1963    mOwner = relFunc;
1964    mOwnerCookie = relCookie;
1965    for (size_t i = 0; i < mObjectsSize; i++) {
1966        binder_size_t offset = mObjects[i];
1967        if (offset < minOffset) {
1968            ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
1969                  __func__, (uint64_t)offset, (uint64_t)minOffset);
1970            mObjectsSize = 0;
1971            break;
1972        }
1973        minOffset = offset + sizeof(flat_binder_object);
1974    }
1975    scanForFds();
1976}
1977
1978void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
1979{
1980    to << "Parcel(";
1981
1982    if (errorCheck() != NO_ERROR) {
1983        const status_t err = errorCheck();
1984        to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
1985    } else if (dataSize() > 0) {
1986        const uint8_t* DATA = data();
1987        to << indent << HexDump(DATA, dataSize()) << dedent;
1988        const binder_size_t* OBJS = objects();
1989        const size_t N = objectsCount();
1990        for (size_t i=0; i<N; i++) {
1991            const flat_binder_object* flat
1992                = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
1993            to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
1994                << TypeCode(flat->type & 0x7f7f7f00)
1995                << " = " << flat->binder;
1996        }
1997    } else {
1998        to << "NULL";
1999    }
2000
2001    to << ")";
2002}
2003
2004void Parcel::releaseObjects()
2005{
2006    const sp<ProcessState> proc(ProcessState::self());
2007    size_t i = mObjectsSize;
2008    uint8_t* const data = mData;
2009    binder_size_t* const objects = mObjects;
2010    while (i > 0) {
2011        i--;
2012        const flat_binder_object* flat
2013            = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2014        release_object(proc, *flat, this);
2015    }
2016}
2017
2018void Parcel::acquireObjects()
2019{
2020    const sp<ProcessState> proc(ProcessState::self());
2021    size_t i = mObjectsSize;
2022    uint8_t* const data = mData;
2023    binder_size_t* const objects = mObjects;
2024    while (i > 0) {
2025        i--;
2026        const flat_binder_object* flat
2027            = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2028        acquire_object(proc, *flat, this);
2029    }
2030}
2031
2032void Parcel::freeData()
2033{
2034    freeDataNoInit();
2035    initState();
2036}
2037
2038void Parcel::freeDataNoInit()
2039{
2040    if (mOwner) {
2041        LOG_ALLOC("Parcel %p: freeing other owner data", this);
2042        //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2043        mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2044    } else {
2045        LOG_ALLOC("Parcel %p: freeing allocated data", this);
2046        releaseObjects();
2047        if (mData) {
2048            LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
2049            pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2050            if (mDataCapacity <= gParcelGlobalAllocSize) {
2051              gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity;
2052            } else {
2053              gParcelGlobalAllocSize = 0;
2054            }
2055            if (gParcelGlobalAllocCount > 0) {
2056              gParcelGlobalAllocCount--;
2057            }
2058            pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2059            free(mData);
2060        }
2061        if (mObjects) free(mObjects);
2062    }
2063}
2064
2065status_t Parcel::growData(size_t len)
2066{
2067    if (len > INT32_MAX) {
2068        // don't accept size_t values which may have come from an
2069        // inadvertent conversion from a negative int.
2070        return BAD_VALUE;
2071    }
2072
2073    size_t newSize = ((mDataSize+len)*3)/2;
2074    return (newSize <= mDataSize)
2075            ? (status_t) NO_MEMORY
2076            : continueWrite(newSize);
2077}
2078
2079status_t Parcel::restartWrite(size_t desired)
2080{
2081    if (desired > INT32_MAX) {
2082        // don't accept size_t values which may have come from an
2083        // inadvertent conversion from a negative int.
2084        return BAD_VALUE;
2085    }
2086
2087    if (mOwner) {
2088        freeData();
2089        return continueWrite(desired);
2090    }
2091
2092    uint8_t* data = (uint8_t*)realloc(mData, desired);
2093    if (!data && desired > mDataCapacity) {
2094        mError = NO_MEMORY;
2095        return NO_MEMORY;
2096    }
2097
2098    releaseObjects();
2099
2100    if (data) {
2101        LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
2102        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2103        gParcelGlobalAllocSize += desired;
2104        gParcelGlobalAllocSize -= mDataCapacity;
2105        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2106        mData = data;
2107        mDataCapacity = desired;
2108    }
2109
2110    mDataSize = mDataPos = 0;
2111    ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
2112    ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
2113
2114    free(mObjects);
2115    mObjects = NULL;
2116    mObjectsSize = mObjectsCapacity = 0;
2117    mNextObjectHint = 0;
2118    mHasFds = false;
2119    mFdsKnown = true;
2120    mAllowFds = true;
2121
2122    return NO_ERROR;
2123}
2124
2125status_t Parcel::continueWrite(size_t desired)
2126{
2127    if (desired > INT32_MAX) {
2128        // don't accept size_t values which may have come from an
2129        // inadvertent conversion from a negative int.
2130        return BAD_VALUE;
2131    }
2132
2133    // If shrinking, first adjust for any objects that appear
2134    // after the new data size.
2135    size_t objectsSize = mObjectsSize;
2136    if (desired < mDataSize) {
2137        if (desired == 0) {
2138            objectsSize = 0;
2139        } else {
2140            while (objectsSize > 0) {
2141                if (mObjects[objectsSize-1] < desired)
2142                    break;
2143                objectsSize--;
2144            }
2145        }
2146    }
2147
2148    if (mOwner) {
2149        // If the size is going to zero, just release the owner's data.
2150        if (desired == 0) {
2151            freeData();
2152            return NO_ERROR;
2153        }
2154
2155        // If there is a different owner, we need to take
2156        // posession.
2157        uint8_t* data = (uint8_t*)malloc(desired);
2158        if (!data) {
2159            mError = NO_MEMORY;
2160            return NO_MEMORY;
2161        }
2162        binder_size_t* objects = NULL;
2163
2164        if (objectsSize) {
2165            objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
2166            if (!objects) {
2167                free(data);
2168
2169                mError = NO_MEMORY;
2170                return NO_MEMORY;
2171            }
2172
2173            // Little hack to only acquire references on objects
2174            // we will be keeping.
2175            size_t oldObjectsSize = mObjectsSize;
2176            mObjectsSize = objectsSize;
2177            acquireObjects();
2178            mObjectsSize = oldObjectsSize;
2179        }
2180
2181        if (mData) {
2182            memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
2183        }
2184        if (objects && mObjects) {
2185            memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
2186        }
2187        //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2188        mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2189        mOwner = NULL;
2190
2191        LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
2192        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2193        gParcelGlobalAllocSize += desired;
2194        gParcelGlobalAllocCount++;
2195        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2196
2197        mData = data;
2198        mObjects = objects;
2199        mDataSize = (mDataSize < desired) ? mDataSize : desired;
2200        ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2201        mDataCapacity = desired;
2202        mObjectsSize = mObjectsCapacity = objectsSize;
2203        mNextObjectHint = 0;
2204
2205    } else if (mData) {
2206        if (objectsSize < mObjectsSize) {
2207            // Need to release refs on any objects we are dropping.
2208            const sp<ProcessState> proc(ProcessState::self());
2209            for (size_t i=objectsSize; i<mObjectsSize; i++) {
2210                const flat_binder_object* flat
2211                    = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2212                if (flat->type == BINDER_TYPE_FD) {
2213                    // will need to rescan because we may have lopped off the only FDs
2214                    mFdsKnown = false;
2215                }
2216                release_object(proc, *flat, this);
2217            }
2218            binder_size_t* objects =
2219                (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
2220            if (objects) {
2221                mObjects = objects;
2222            }
2223            mObjectsSize = objectsSize;
2224            mNextObjectHint = 0;
2225        }
2226
2227        // We own the data, so we can just do a realloc().
2228        if (desired > mDataCapacity) {
2229            uint8_t* data = (uint8_t*)realloc(mData, desired);
2230            if (data) {
2231                LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
2232                        desired);
2233                pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2234                gParcelGlobalAllocSize += desired;
2235                gParcelGlobalAllocSize -= mDataCapacity;
2236                gParcelGlobalAllocCount++;
2237                pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2238                mData = data;
2239                mDataCapacity = desired;
2240            } else if (desired > mDataCapacity) {
2241                mError = NO_MEMORY;
2242                return NO_MEMORY;
2243            }
2244        } else {
2245            if (mDataSize > desired) {
2246                mDataSize = desired;
2247                ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2248            }
2249            if (mDataPos > desired) {
2250                mDataPos = desired;
2251                ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2252            }
2253        }
2254
2255    } else {
2256        // This is the first data.  Easy!
2257        uint8_t* data = (uint8_t*)malloc(desired);
2258        if (!data) {
2259            mError = NO_MEMORY;
2260            return NO_MEMORY;
2261        }
2262
2263        if(!(mDataCapacity == 0 && mObjects == NULL
2264             && mObjectsCapacity == 0)) {
2265            ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
2266        }
2267
2268        LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
2269        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2270        gParcelGlobalAllocSize += desired;
2271        gParcelGlobalAllocCount++;
2272        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2273
2274        mData = data;
2275        mDataSize = mDataPos = 0;
2276        ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2277        ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2278        mDataCapacity = desired;
2279    }
2280
2281    return NO_ERROR;
2282}
2283
2284void Parcel::initState()
2285{
2286    LOG_ALLOC("Parcel %p: initState", this);
2287    mError = NO_ERROR;
2288    mData = 0;
2289    mDataSize = 0;
2290    mDataCapacity = 0;
2291    mDataPos = 0;
2292    ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
2293    ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
2294    mObjects = NULL;
2295    mObjectsSize = 0;
2296    mObjectsCapacity = 0;
2297    mNextObjectHint = 0;
2298    mHasFds = false;
2299    mFdsKnown = true;
2300    mAllowFds = true;
2301    mOwner = NULL;
2302    mBlobAshmemSize = 0;
2303}
2304
2305void Parcel::scanForFds() const
2306{
2307    bool hasFds = false;
2308    for (size_t i=0; i<mObjectsSize; i++) {
2309        const flat_binder_object* flat
2310            = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2311        if (flat->type == BINDER_TYPE_FD) {
2312            hasFds = true;
2313            break;
2314        }
2315    }
2316    mHasFds = hasFds;
2317    mFdsKnown = true;
2318}
2319
2320size_t Parcel::getBlobAshmemSize() const
2321{
2322    return mBlobAshmemSize;
2323}
2324
2325// --- Parcel::Blob ---
2326
2327Parcel::Blob::Blob() :
2328        mFd(-1), mData(NULL), mSize(0), mMutable(false) {
2329}
2330
2331Parcel::Blob::~Blob() {
2332    release();
2333}
2334
2335void Parcel::Blob::release() {
2336    if (mFd != -1 && mData) {
2337        ::munmap(mData, mSize);
2338    }
2339    clear();
2340}
2341
2342void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) {
2343    mFd = fd;
2344    mData = data;
2345    mSize = size;
2346    mMutable = isMutable;
2347}
2348
2349void Parcel::Blob::clear() {
2350    mFd = -1;
2351    mData = NULL;
2352    mSize = 0;
2353    mMutable = false;
2354}
2355
2356}; // namespace android
2357