Parcel.cpp revision e4e0ae8abc7f612960fc381a792d0bef4c3eb6f9
1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "Parcel"
18//#define LOG_NDEBUG 0
19
20#include <errno.h>
21#include <fcntl.h>
22#include <inttypes.h>
23#include <pthread.h>
24#include <stdint.h>
25#include <stdio.h>
26#include <stdlib.h>
27#include <sys/mman.h>
28#include <sys/stat.h>
29#include <sys/types.h>
30#include <sys/resource.h>
31#include <unistd.h>
32
33#include <binder/Binder.h>
34#include <binder/BpBinder.h>
35#include <binder/IPCThreadState.h>
36#include <binder/Parcel.h>
37#include <binder/ProcessState.h>
38#include <binder/Status.h>
39#include <binder/TextOutput.h>
40
41#include <cutils/ashmem.h>
42#include <utils/Debug.h>
43#include <utils/Flattenable.h>
44#include <utils/Log.h>
45#include <utils/misc.h>
46#include <utils/String8.h>
47#include <utils/String16.h>
48
49#include <private/binder/binder_module.h>
50#include <private/binder/Static.h>
51
52#ifndef INT32_MAX
53#define INT32_MAX ((int32_t)(2147483647))
54#endif
55
56#define LOG_REFS(...)
57//#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
58#define LOG_ALLOC(...)
59//#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
60
61// ---------------------------------------------------------------------------
62
63// This macro should never be used at runtime, as a too large value
64// of s could cause an integer overflow. Instead, you should always
65// use the wrapper function pad_size()
66#define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
67
68static size_t pad_size(size_t s) {
69    if (s > (SIZE_T_MAX - 3)) {
70        abort();
71    }
72    return PAD_SIZE_UNSAFE(s);
73}
74
75// Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
76#define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
77
78// XXX This can be made public if we want to provide
79// support for typed data.
80struct small_flat_data
81{
82    uint32_t type;
83    uint32_t data;
84};
85
86namespace android {
87
88static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER;
89static size_t gParcelGlobalAllocSize = 0;
90static size_t gParcelGlobalAllocCount = 0;
91
92static size_t gMaxFds = 0;
93
94// Maximum size of a blob to transfer in-place.
95static const size_t BLOB_INPLACE_LIMIT = 16 * 1024;
96
97enum {
98    BLOB_INPLACE = 0,
99    BLOB_ASHMEM_IMMUTABLE = 1,
100    BLOB_ASHMEM_MUTABLE = 2,
101};
102
103static dev_t ashmem_rdev()
104{
105    static dev_t __ashmem_rdev;
106    static pthread_mutex_t __ashmem_rdev_lock = PTHREAD_MUTEX_INITIALIZER;
107
108    pthread_mutex_lock(&__ashmem_rdev_lock);
109
110    dev_t rdev = __ashmem_rdev;
111    if (!rdev) {
112        int fd = TEMP_FAILURE_RETRY(open("/dev/ashmem", O_RDONLY));
113        if (fd >= 0) {
114            struct stat st;
115
116            int ret = TEMP_FAILURE_RETRY(fstat(fd, &st));
117            close(fd);
118            if ((ret >= 0) && S_ISCHR(st.st_mode)) {
119                rdev = __ashmem_rdev = st.st_rdev;
120            }
121        }
122    }
123
124    pthread_mutex_unlock(&__ashmem_rdev_lock);
125
126    return rdev;
127}
128
129void acquire_object(const sp<ProcessState>& proc,
130    const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
131{
132    switch (obj.type) {
133        case BINDER_TYPE_BINDER:
134            if (obj.binder) {
135                LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
136                reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
137            }
138            return;
139        case BINDER_TYPE_WEAK_BINDER:
140            if (obj.binder)
141                reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
142            return;
143        case BINDER_TYPE_HANDLE: {
144            const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
145            if (b != NULL) {
146                LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
147                b->incStrong(who);
148            }
149            return;
150        }
151        case BINDER_TYPE_WEAK_HANDLE: {
152            const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
153            if (b != NULL) b.get_refs()->incWeak(who);
154            return;
155        }
156        case BINDER_TYPE_FD: {
157            if ((obj.cookie != 0) && (outAshmemSize != NULL)) {
158                struct stat st;
159                int ret = fstat(obj.handle, &st);
160                if (!ret && S_ISCHR(st.st_mode) && (st.st_rdev == ashmem_rdev())) {
161                    // If we own an ashmem fd, keep track of how much memory it refers to.
162                    int size = ashmem_get_size_region(obj.handle);
163                    if (size > 0) {
164                        *outAshmemSize += size;
165                    }
166                }
167            }
168            return;
169        }
170    }
171
172    ALOGD("Invalid object type 0x%08x", obj.type);
173}
174
175void acquire_object(const sp<ProcessState>& proc,
176    const flat_binder_object& obj, const void* who)
177{
178    acquire_object(proc, obj, who, NULL);
179}
180
181static void release_object(const sp<ProcessState>& proc,
182    const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
183{
184    switch (obj.type) {
185        case BINDER_TYPE_BINDER:
186            if (obj.binder) {
187                LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
188                reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
189            }
190            return;
191        case BINDER_TYPE_WEAK_BINDER:
192            if (obj.binder)
193                reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
194            return;
195        case BINDER_TYPE_HANDLE: {
196            const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
197            if (b != NULL) {
198                LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
199                b->decStrong(who);
200            }
201            return;
202        }
203        case BINDER_TYPE_WEAK_HANDLE: {
204            const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
205            if (b != NULL) b.get_refs()->decWeak(who);
206            return;
207        }
208        case BINDER_TYPE_FD: {
209            if (obj.cookie != 0) { // owned
210                if (outAshmemSize != NULL) {
211                    struct stat st;
212                    int ret = fstat(obj.handle, &st);
213                    if (!ret && S_ISCHR(st.st_mode) && (st.st_rdev == ashmem_rdev())) {
214                        int size = ashmem_get_size_region(obj.handle);
215                        if (size > 0) {
216                            *outAshmemSize -= size;
217                        }
218                    }
219                }
220
221                close(obj.handle);
222            }
223            return;
224        }
225    }
226
227    ALOGE("Invalid object type 0x%08x", obj.type);
228}
229
230void release_object(const sp<ProcessState>& proc,
231    const flat_binder_object& obj, const void* who)
232{
233    release_object(proc, obj, who, NULL);
234}
235
236inline static status_t finish_flatten_binder(
237    const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
238{
239    return out->writeObject(flat, false);
240}
241
242status_t flatten_binder(const sp<ProcessState>& /*proc*/,
243    const sp<IBinder>& binder, Parcel* out)
244{
245    flat_binder_object obj;
246
247    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
248    if (binder != NULL) {
249        IBinder *local = binder->localBinder();
250        if (!local) {
251            BpBinder *proxy = binder->remoteBinder();
252            if (proxy == NULL) {
253                ALOGE("null proxy");
254            }
255            const int32_t handle = proxy ? proxy->handle() : 0;
256            obj.type = BINDER_TYPE_HANDLE;
257            obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
258            obj.handle = handle;
259            obj.cookie = 0;
260        } else {
261            obj.type = BINDER_TYPE_BINDER;
262            obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
263            obj.cookie = reinterpret_cast<uintptr_t>(local);
264        }
265    } else {
266        obj.type = BINDER_TYPE_BINDER;
267        obj.binder = 0;
268        obj.cookie = 0;
269    }
270
271    return finish_flatten_binder(binder, obj, out);
272}
273
274status_t flatten_binder(const sp<ProcessState>& /*proc*/,
275    const wp<IBinder>& binder, Parcel* out)
276{
277    flat_binder_object obj;
278
279    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
280    if (binder != NULL) {
281        sp<IBinder> real = binder.promote();
282        if (real != NULL) {
283            IBinder *local = real->localBinder();
284            if (!local) {
285                BpBinder *proxy = real->remoteBinder();
286                if (proxy == NULL) {
287                    ALOGE("null proxy");
288                }
289                const int32_t handle = proxy ? proxy->handle() : 0;
290                obj.type = BINDER_TYPE_WEAK_HANDLE;
291                obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
292                obj.handle = handle;
293                obj.cookie = 0;
294            } else {
295                obj.type = BINDER_TYPE_WEAK_BINDER;
296                obj.binder = reinterpret_cast<uintptr_t>(binder.get_refs());
297                obj.cookie = reinterpret_cast<uintptr_t>(binder.unsafe_get());
298            }
299            return finish_flatten_binder(real, obj, out);
300        }
301
302        // XXX How to deal?  In order to flatten the given binder,
303        // we need to probe it for information, which requires a primary
304        // reference...  but we don't have one.
305        //
306        // The OpenBinder implementation uses a dynamic_cast<> here,
307        // but we can't do that with the different reference counting
308        // implementation we are using.
309        ALOGE("Unable to unflatten Binder weak reference!");
310        obj.type = BINDER_TYPE_BINDER;
311        obj.binder = 0;
312        obj.cookie = 0;
313        return finish_flatten_binder(NULL, obj, out);
314
315    } else {
316        obj.type = BINDER_TYPE_BINDER;
317        obj.binder = 0;
318        obj.cookie = 0;
319        return finish_flatten_binder(NULL, obj, out);
320    }
321}
322
323inline static status_t finish_unflatten_binder(
324    BpBinder* /*proxy*/, const flat_binder_object& /*flat*/,
325    const Parcel& /*in*/)
326{
327    return NO_ERROR;
328}
329
330status_t unflatten_binder(const sp<ProcessState>& proc,
331    const Parcel& in, sp<IBinder>* out)
332{
333    const flat_binder_object* flat = in.readObject(false);
334
335    if (flat) {
336        switch (flat->type) {
337            case BINDER_TYPE_BINDER:
338                *out = reinterpret_cast<IBinder*>(flat->cookie);
339                return finish_unflatten_binder(NULL, *flat, in);
340            case BINDER_TYPE_HANDLE:
341                *out = proc->getStrongProxyForHandle(flat->handle);
342                return finish_unflatten_binder(
343                    static_cast<BpBinder*>(out->get()), *flat, in);
344        }
345    }
346    return BAD_TYPE;
347}
348
349status_t unflatten_binder(const sp<ProcessState>& proc,
350    const Parcel& in, wp<IBinder>* out)
351{
352    const flat_binder_object* flat = in.readObject(false);
353
354    if (flat) {
355        switch (flat->type) {
356            case BINDER_TYPE_BINDER:
357                *out = reinterpret_cast<IBinder*>(flat->cookie);
358                return finish_unflatten_binder(NULL, *flat, in);
359            case BINDER_TYPE_WEAK_BINDER:
360                if (flat->binder != 0) {
361                    out->set_object_and_refs(
362                        reinterpret_cast<IBinder*>(flat->cookie),
363                        reinterpret_cast<RefBase::weakref_type*>(flat->binder));
364                } else {
365                    *out = NULL;
366                }
367                return finish_unflatten_binder(NULL, *flat, in);
368            case BINDER_TYPE_HANDLE:
369            case BINDER_TYPE_WEAK_HANDLE:
370                *out = proc->getWeakProxyForHandle(flat->handle);
371                return finish_unflatten_binder(
372                    static_cast<BpBinder*>(out->unsafe_get()), *flat, in);
373        }
374    }
375    return BAD_TYPE;
376}
377
378// ---------------------------------------------------------------------------
379
380Parcel::Parcel()
381{
382    LOG_ALLOC("Parcel %p: constructing", this);
383    initState();
384}
385
386Parcel::~Parcel()
387{
388    freeDataNoInit();
389    LOG_ALLOC("Parcel %p: destroyed", this);
390}
391
392size_t Parcel::getGlobalAllocSize() {
393    pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
394    size_t size = gParcelGlobalAllocSize;
395    pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
396    return size;
397}
398
399size_t Parcel::getGlobalAllocCount() {
400    pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
401    size_t count = gParcelGlobalAllocCount;
402    pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
403    return count;
404}
405
406const uint8_t* Parcel::data() const
407{
408    return mData;
409}
410
411size_t Parcel::dataSize() const
412{
413    return (mDataSize > mDataPos ? mDataSize : mDataPos);
414}
415
416size_t Parcel::dataAvail() const
417{
418    size_t result = dataSize() - dataPosition();
419    if (result > INT32_MAX) {
420        abort();
421    }
422    return result;
423}
424
425size_t Parcel::dataPosition() const
426{
427    return mDataPos;
428}
429
430size_t Parcel::dataCapacity() const
431{
432    return mDataCapacity;
433}
434
435status_t Parcel::setDataSize(size_t size)
436{
437    if (size > INT32_MAX) {
438        // don't accept size_t values which may have come from an
439        // inadvertent conversion from a negative int.
440        return BAD_VALUE;
441    }
442
443    status_t err;
444    err = continueWrite(size);
445    if (err == NO_ERROR) {
446        mDataSize = size;
447        ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
448    }
449    return err;
450}
451
452void Parcel::setDataPosition(size_t pos) const
453{
454    if (pos > INT32_MAX) {
455        // don't accept size_t values which may have come from an
456        // inadvertent conversion from a negative int.
457        abort();
458    }
459
460    mDataPos = pos;
461    mNextObjectHint = 0;
462}
463
464status_t Parcel::setDataCapacity(size_t size)
465{
466    if (size > INT32_MAX) {
467        // don't accept size_t values which may have come from an
468        // inadvertent conversion from a negative int.
469        return BAD_VALUE;
470    }
471
472    if (size > mDataCapacity) return continueWrite(size);
473    return NO_ERROR;
474}
475
476status_t Parcel::setData(const uint8_t* buffer, size_t len)
477{
478    if (len > INT32_MAX) {
479        // don't accept size_t values which may have come from an
480        // inadvertent conversion from a negative int.
481        return BAD_VALUE;
482    }
483
484    status_t err = restartWrite(len);
485    if (err == NO_ERROR) {
486        memcpy(const_cast<uint8_t*>(data()), buffer, len);
487        mDataSize = len;
488        mFdsKnown = false;
489    }
490    return err;
491}
492
493status_t Parcel::appendFrom(const Parcel *parcel, size_t offset, size_t len)
494{
495    const sp<ProcessState> proc(ProcessState::self());
496    status_t err;
497    const uint8_t *data = parcel->mData;
498    const binder_size_t *objects = parcel->mObjects;
499    size_t size = parcel->mObjectsSize;
500    int startPos = mDataPos;
501    int firstIndex = -1, lastIndex = -2;
502
503    if (len == 0) {
504        return NO_ERROR;
505    }
506
507    if (len > INT32_MAX) {
508        // don't accept size_t values which may have come from an
509        // inadvertent conversion from a negative int.
510        return BAD_VALUE;
511    }
512
513    // range checks against the source parcel size
514    if ((offset > parcel->mDataSize)
515            || (len > parcel->mDataSize)
516            || (offset + len > parcel->mDataSize)) {
517        return BAD_VALUE;
518    }
519
520    // Count objects in range
521    for (int i = 0; i < (int) size; i++) {
522        size_t off = objects[i];
523        if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) {
524            if (firstIndex == -1) {
525                firstIndex = i;
526            }
527            lastIndex = i;
528        }
529    }
530    int numObjects = lastIndex - firstIndex + 1;
531
532    if ((mDataSize+len) > mDataCapacity) {
533        // grow data
534        err = growData(len);
535        if (err != NO_ERROR) {
536            return err;
537        }
538    }
539
540    // append data
541    memcpy(mData + mDataPos, data + offset, len);
542    mDataPos += len;
543    mDataSize += len;
544
545    err = NO_ERROR;
546
547    if (numObjects > 0) {
548        // grow objects
549        if (mObjectsCapacity < mObjectsSize + numObjects) {
550            size_t newSize = ((mObjectsSize + numObjects)*3)/2;
551            if (newSize < mObjectsSize) return NO_MEMORY;   // overflow
552            binder_size_t *objects =
553                (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
554            if (objects == (binder_size_t*)0) {
555                return NO_MEMORY;
556            }
557            mObjects = objects;
558            mObjectsCapacity = newSize;
559        }
560
561        // append and acquire objects
562        int idx = mObjectsSize;
563        for (int i = firstIndex; i <= lastIndex; i++) {
564            size_t off = objects[i] - offset + startPos;
565            mObjects[idx++] = off;
566            mObjectsSize++;
567
568            flat_binder_object* flat
569                = reinterpret_cast<flat_binder_object*>(mData + off);
570            acquire_object(proc, *flat, this, &mOpenAshmemSize);
571
572            if (flat->type == BINDER_TYPE_FD) {
573                // If this is a file descriptor, we need to dup it so the
574                // new Parcel now owns its own fd, and can declare that we
575                // officially know we have fds.
576                flat->handle = dup(flat->handle);
577                flat->cookie = 1;
578                mHasFds = mFdsKnown = true;
579                if (!mAllowFds) {
580                    err = FDS_NOT_ALLOWED;
581                }
582            }
583        }
584    }
585
586    return err;
587}
588
589bool Parcel::allowFds() const
590{
591    return mAllowFds;
592}
593
594bool Parcel::pushAllowFds(bool allowFds)
595{
596    const bool origValue = mAllowFds;
597    if (!allowFds) {
598        mAllowFds = false;
599    }
600    return origValue;
601}
602
603void Parcel::restoreAllowFds(bool lastValue)
604{
605    mAllowFds = lastValue;
606}
607
608bool Parcel::hasFileDescriptors() const
609{
610    if (!mFdsKnown) {
611        scanForFds();
612    }
613    return mHasFds;
614}
615
616// Write RPC headers.  (previously just the interface token)
617status_t Parcel::writeInterfaceToken(const String16& interface)
618{
619    writeInt32(IPCThreadState::self()->getStrictModePolicy() |
620               STRICT_MODE_PENALTY_GATHER);
621    // currently the interface identification token is just its name as a string
622    return writeString16(interface);
623}
624
625bool Parcel::checkInterface(IBinder* binder) const
626{
627    return enforceInterface(binder->getInterfaceDescriptor());
628}
629
630bool Parcel::enforceInterface(const String16& interface,
631                              IPCThreadState* threadState) const
632{
633    int32_t strictPolicy = readInt32();
634    if (threadState == NULL) {
635        threadState = IPCThreadState::self();
636    }
637    if ((threadState->getLastTransactionBinderFlags() &
638         IBinder::FLAG_ONEWAY) != 0) {
639      // For one-way calls, the callee is running entirely
640      // disconnected from the caller, so disable StrictMode entirely.
641      // Not only does disk/network usage not impact the caller, but
642      // there's no way to commuicate back any violations anyway.
643      threadState->setStrictModePolicy(0);
644    } else {
645      threadState->setStrictModePolicy(strictPolicy);
646    }
647    const String16 str(readString16());
648    if (str == interface) {
649        return true;
650    } else {
651        ALOGW("**** enforceInterface() expected '%s' but read '%s'",
652                String8(interface).string(), String8(str).string());
653        return false;
654    }
655}
656
657const binder_size_t* Parcel::objects() const
658{
659    return mObjects;
660}
661
662size_t Parcel::objectsCount() const
663{
664    return mObjectsSize;
665}
666
667status_t Parcel::errorCheck() const
668{
669    return mError;
670}
671
672void Parcel::setError(status_t err)
673{
674    mError = err;
675}
676
677status_t Parcel::finishWrite(size_t len)
678{
679    if (len > INT32_MAX) {
680        // don't accept size_t values which may have come from an
681        // inadvertent conversion from a negative int.
682        return BAD_VALUE;
683    }
684
685    //printf("Finish write of %d\n", len);
686    mDataPos += len;
687    ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
688    if (mDataPos > mDataSize) {
689        mDataSize = mDataPos;
690        ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
691    }
692    //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
693    return NO_ERROR;
694}
695
696status_t Parcel::writeUnpadded(const void* data, size_t len)
697{
698    if (len > INT32_MAX) {
699        // don't accept size_t values which may have come from an
700        // inadvertent conversion from a negative int.
701        return BAD_VALUE;
702    }
703
704    size_t end = mDataPos + len;
705    if (end < mDataPos) {
706        // integer overflow
707        return BAD_VALUE;
708    }
709
710    if (end <= mDataCapacity) {
711restart_write:
712        memcpy(mData+mDataPos, data, len);
713        return finishWrite(len);
714    }
715
716    status_t err = growData(len);
717    if (err == NO_ERROR) goto restart_write;
718    return err;
719}
720
721status_t Parcel::write(const void* data, size_t len)
722{
723    if (len > INT32_MAX) {
724        // don't accept size_t values which may have come from an
725        // inadvertent conversion from a negative int.
726        return BAD_VALUE;
727    }
728
729    void* const d = writeInplace(len);
730    if (d) {
731        memcpy(d, data, len);
732        return NO_ERROR;
733    }
734    return mError;
735}
736
737void* Parcel::writeInplace(size_t len)
738{
739    if (len > INT32_MAX) {
740        // don't accept size_t values which may have come from an
741        // inadvertent conversion from a negative int.
742        return NULL;
743    }
744
745    const size_t padded = pad_size(len);
746
747    // sanity check for integer overflow
748    if (mDataPos+padded < mDataPos) {
749        return NULL;
750    }
751
752    if ((mDataPos+padded) <= mDataCapacity) {
753restart_write:
754        //printf("Writing %ld bytes, padded to %ld\n", len, padded);
755        uint8_t* const data = mData+mDataPos;
756
757        // Need to pad at end?
758        if (padded != len) {
759#if BYTE_ORDER == BIG_ENDIAN
760            static const uint32_t mask[4] = {
761                0x00000000, 0xffffff00, 0xffff0000, 0xff000000
762            };
763#endif
764#if BYTE_ORDER == LITTLE_ENDIAN
765            static const uint32_t mask[4] = {
766                0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
767            };
768#endif
769            //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
770            //    *reinterpret_cast<void**>(data+padded-4));
771            *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
772        }
773
774        finishWrite(padded);
775        return data;
776    }
777
778    status_t err = growData(padded);
779    if (err == NO_ERROR) goto restart_write;
780    return NULL;
781}
782
783status_t Parcel::writeUtf8AsUtf16(const std::string& str) {
784    const uint8_t* strData = (uint8_t*)str.data();
785    const size_t strLen= str.length();
786    const ssize_t utf16Len = utf8_to_utf16_length(strData, strLen);
787    if (utf16Len < 0 || utf16Len> std::numeric_limits<int32_t>::max()) {
788        return BAD_VALUE;
789    }
790
791    status_t err = writeInt32(utf16Len);
792    if (err) {
793        return err;
794    }
795
796    // Allocate enough bytes to hold our converted string and its terminating NULL.
797    void* dst = writeInplace((utf16Len + 1) * sizeof(char16_t));
798    if (!dst) {
799        return NO_MEMORY;
800    }
801
802    utf8_to_utf16(strData, strLen, (char16_t*)dst);
803
804    return NO_ERROR;
805}
806
807status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) {
808  if (!str) {
809    return writeInt32(-1);
810  }
811  return writeUtf8AsUtf16(*str);
812}
813
814namespace {
815
816template<typename T>
817status_t writeByteVectorInternal(Parcel* parcel, const std::vector<T>& val)
818{
819    status_t status;
820    if (val.size() > std::numeric_limits<int32_t>::max()) {
821        status = BAD_VALUE;
822        return status;
823    }
824
825    status = parcel->writeInt32(val.size());
826    if (status != OK) {
827        return status;
828    }
829
830    void* data = parcel->writeInplace(val.size());
831    if (!data) {
832        status = BAD_VALUE;
833        return status;
834    }
835
836    memcpy(data, val.data(), val.size());
837    return status;
838}
839
840template<typename T>
841status_t writeByteVectorInternalPtr(Parcel* parcel,
842                                    const std::unique_ptr<std::vector<T>>& val)
843{
844    if (!val) {
845        return parcel->writeInt32(-1);
846    }
847
848    return writeByteVectorInternal(parcel, *val);
849}
850
851}  // namespace
852
853status_t Parcel::writeByteVector(const std::vector<int8_t>& val) {
854    return writeByteVectorInternal(this, val);
855}
856
857status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val)
858{
859    return writeByteVectorInternalPtr(this, val);
860}
861
862status_t Parcel::writeByteVector(const std::vector<uint8_t>& val) {
863    return writeByteVectorInternal(this, val);
864}
865
866status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val)
867{
868    return writeByteVectorInternalPtr(this, val);
869}
870
871status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val)
872{
873    return writeTypedVector(val, &Parcel::writeInt32);
874}
875
876status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val)
877{
878    return writeNullableTypedVector(val, &Parcel::writeInt32);
879}
880
881status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val)
882{
883    return writeTypedVector(val, &Parcel::writeInt64);
884}
885
886status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val)
887{
888    return writeNullableTypedVector(val, &Parcel::writeInt64);
889}
890
891status_t Parcel::writeFloatVector(const std::vector<float>& val)
892{
893    return writeTypedVector(val, &Parcel::writeFloat);
894}
895
896status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val)
897{
898    return writeNullableTypedVector(val, &Parcel::writeFloat);
899}
900
901status_t Parcel::writeDoubleVector(const std::vector<double>& val)
902{
903    return writeTypedVector(val, &Parcel::writeDouble);
904}
905
906status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val)
907{
908    return writeNullableTypedVector(val, &Parcel::writeDouble);
909}
910
911status_t Parcel::writeBoolVector(const std::vector<bool>& val)
912{
913    return writeTypedVector(val, &Parcel::writeBool);
914}
915
916status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val)
917{
918    return writeNullableTypedVector(val, &Parcel::writeBool);
919}
920
921status_t Parcel::writeCharVector(const std::vector<char16_t>& val)
922{
923    return writeTypedVector(val, &Parcel::writeChar);
924}
925
926status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val)
927{
928    return writeNullableTypedVector(val, &Parcel::writeChar);
929}
930
931status_t Parcel::writeString16Vector(const std::vector<String16>& val)
932{
933    return writeTypedVector(val, &Parcel::writeString16);
934}
935
936status_t Parcel::writeString16Vector(
937        const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val)
938{
939    return writeNullableTypedVector(val, &Parcel::writeString16);
940}
941
942status_t Parcel::writeUtf8VectorAsUtf16Vector(
943                        const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) {
944    return writeNullableTypedVector(val, &Parcel::writeUtf8AsUtf16);
945}
946
947status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) {
948    return writeTypedVector(val, &Parcel::writeUtf8AsUtf16);
949}
950
951status_t Parcel::writeInt32(int32_t val)
952{
953    return writeAligned(val);
954}
955
956status_t Parcel::writeUint32(uint32_t val)
957{
958    return writeAligned(val);
959}
960
961status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
962    if (len > INT32_MAX) {
963        // don't accept size_t values which may have come from an
964        // inadvertent conversion from a negative int.
965        return BAD_VALUE;
966    }
967
968    if (!val) {
969        return writeInt32(-1);
970    }
971    status_t ret = writeInt32(static_cast<uint32_t>(len));
972    if (ret == NO_ERROR) {
973        ret = write(val, len * sizeof(*val));
974    }
975    return ret;
976}
977status_t Parcel::writeByteArray(size_t len, const uint8_t *val) {
978    if (len > INT32_MAX) {
979        // don't accept size_t values which may have come from an
980        // inadvertent conversion from a negative int.
981        return BAD_VALUE;
982    }
983
984    if (!val) {
985        return writeInt32(-1);
986    }
987    status_t ret = writeInt32(static_cast<uint32_t>(len));
988    if (ret == NO_ERROR) {
989        ret = write(val, len * sizeof(*val));
990    }
991    return ret;
992}
993
994status_t Parcel::writeBool(bool val)
995{
996    return writeInt32(int32_t(val));
997}
998
999status_t Parcel::writeChar(char16_t val)
1000{
1001    return writeInt32(int32_t(val));
1002}
1003
1004status_t Parcel::writeByte(int8_t val)
1005{
1006    return writeInt32(int32_t(val));
1007}
1008
1009status_t Parcel::writeInt64(int64_t val)
1010{
1011    return writeAligned(val);
1012}
1013
1014status_t Parcel::writeUint64(uint64_t val)
1015{
1016    return writeAligned(val);
1017}
1018
1019status_t Parcel::writePointer(uintptr_t val)
1020{
1021    return writeAligned<binder_uintptr_t>(val);
1022}
1023
1024status_t Parcel::writeFloat(float val)
1025{
1026    return writeAligned(val);
1027}
1028
1029#if defined(__mips__) && defined(__mips_hard_float)
1030
1031status_t Parcel::writeDouble(double val)
1032{
1033    union {
1034        double d;
1035        unsigned long long ll;
1036    } u;
1037    u.d = val;
1038    return writeAligned(u.ll);
1039}
1040
1041#else
1042
1043status_t Parcel::writeDouble(double val)
1044{
1045    return writeAligned(val);
1046}
1047
1048#endif
1049
1050status_t Parcel::writeCString(const char* str)
1051{
1052    return write(str, strlen(str)+1);
1053}
1054
1055status_t Parcel::writeString8(const String8& str)
1056{
1057    status_t err = writeInt32(str.bytes());
1058    // only write string if its length is more than zero characters,
1059    // as readString8 will only read if the length field is non-zero.
1060    // this is slightly different from how writeString16 works.
1061    if (str.bytes() > 0 && err == NO_ERROR) {
1062        err = write(str.string(), str.bytes()+1);
1063    }
1064    return err;
1065}
1066
1067status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
1068{
1069    if (!str) {
1070        return writeInt32(-1);
1071    }
1072
1073    return writeString16(*str);
1074}
1075
1076status_t Parcel::writeString16(const String16& str)
1077{
1078    return writeString16(str.string(), str.size());
1079}
1080
1081status_t Parcel::writeString16(const char16_t* str, size_t len)
1082{
1083    if (str == NULL) return writeInt32(-1);
1084
1085    status_t err = writeInt32(len);
1086    if (err == NO_ERROR) {
1087        len *= sizeof(char16_t);
1088        uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
1089        if (data) {
1090            memcpy(data, str, len);
1091            *reinterpret_cast<char16_t*>(data+len) = 0;
1092            return NO_ERROR;
1093        }
1094        err = mError;
1095    }
1096    return err;
1097}
1098
1099status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
1100{
1101    return flatten_binder(ProcessState::self(), val, this);
1102}
1103
1104status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val)
1105{
1106    return writeTypedVector(val, &Parcel::writeStrongBinder);
1107}
1108
1109status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val)
1110{
1111    return writeNullableTypedVector(val, &Parcel::writeStrongBinder);
1112}
1113
1114status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const {
1115    return readNullableTypedVector(val, &Parcel::readStrongBinder);
1116}
1117
1118status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const {
1119    return readTypedVector(val, &Parcel::readStrongBinder);
1120}
1121
1122status_t Parcel::writeWeakBinder(const wp<IBinder>& val)
1123{
1124    return flatten_binder(ProcessState::self(), val, this);
1125}
1126
1127status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) {
1128    if (!parcelable) {
1129        return writeInt32(0);
1130    }
1131
1132    return writeParcelable(*parcelable);
1133}
1134
1135status_t Parcel::writeParcelable(const Parcelable& parcelable) {
1136    status_t status = writeInt32(1);  // parcelable is not null.
1137    if (status != OK) {
1138        return status;
1139    }
1140    return parcelable.writeToParcel(this);
1141}
1142
1143status_t Parcel::writeNativeHandle(const native_handle* handle)
1144{
1145    if (!handle || handle->version != sizeof(native_handle))
1146        return BAD_TYPE;
1147
1148    status_t err;
1149    err = writeInt32(handle->numFds);
1150    if (err != NO_ERROR) return err;
1151
1152    err = writeInt32(handle->numInts);
1153    if (err != NO_ERROR) return err;
1154
1155    for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)
1156        err = writeDupFileDescriptor(handle->data[i]);
1157
1158    if (err != NO_ERROR) {
1159        ALOGD("write native handle, write dup fd failed");
1160        return err;
1161    }
1162    err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);
1163    return err;
1164}
1165
1166status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership)
1167{
1168    flat_binder_object obj;
1169    obj.type = BINDER_TYPE_FD;
1170    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
1171    obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
1172    obj.handle = fd;
1173    obj.cookie = takeOwnership ? 1 : 0;
1174    return writeObject(obj, true);
1175}
1176
1177status_t Parcel::writeDupFileDescriptor(int fd)
1178{
1179    int dupFd = dup(fd);
1180    if (dupFd < 0) {
1181        return -errno;
1182    }
1183    status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/);
1184    if (err != OK) {
1185        close(dupFd);
1186    }
1187    return err;
1188}
1189
1190status_t Parcel::writeUniqueFileDescriptor(const ScopedFd& fd) {
1191    return writeDupFileDescriptor(fd.get());
1192}
1193
1194status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<ScopedFd>& val) {
1195    return writeTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1196}
1197
1198status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<ScopedFd>>& val) {
1199    return writeNullableTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1200}
1201
1202status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
1203{
1204    if (len > INT32_MAX) {
1205        // don't accept size_t values which may have come from an
1206        // inadvertent conversion from a negative int.
1207        return BAD_VALUE;
1208    }
1209
1210    status_t status;
1211    if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) {
1212        ALOGV("writeBlob: write in place");
1213        status = writeInt32(BLOB_INPLACE);
1214        if (status) return status;
1215
1216        void* ptr = writeInplace(len);
1217        if (!ptr) return NO_MEMORY;
1218
1219        outBlob->init(-1, ptr, len, false);
1220        return NO_ERROR;
1221    }
1222
1223    ALOGV("writeBlob: write to ashmem");
1224    int fd = ashmem_create_region("Parcel Blob", len);
1225    if (fd < 0) return NO_MEMORY;
1226
1227    int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
1228    if (result < 0) {
1229        status = result;
1230    } else {
1231        void* ptr = ::mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1232        if (ptr == MAP_FAILED) {
1233            status = -errno;
1234        } else {
1235            if (!mutableCopy) {
1236                result = ashmem_set_prot_region(fd, PROT_READ);
1237            }
1238            if (result < 0) {
1239                status = result;
1240            } else {
1241                status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE);
1242                if (!status) {
1243                    status = writeFileDescriptor(fd, true /*takeOwnership*/);
1244                    if (!status) {
1245                        outBlob->init(fd, ptr, len, mutableCopy);
1246                        return NO_ERROR;
1247                    }
1248                }
1249            }
1250        }
1251        ::munmap(ptr, len);
1252    }
1253    ::close(fd);
1254    return status;
1255}
1256
1257status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd)
1258{
1259    // Must match up with what's done in writeBlob.
1260    if (!mAllowFds) return FDS_NOT_ALLOWED;
1261    status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE);
1262    if (status) return status;
1263    return writeDupFileDescriptor(fd);
1264}
1265
1266status_t Parcel::write(const FlattenableHelperInterface& val)
1267{
1268    status_t err;
1269
1270    // size if needed
1271    const size_t len = val.getFlattenedSize();
1272    const size_t fd_count = val.getFdCount();
1273
1274    if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
1275        // don't accept size_t values which may have come from an
1276        // inadvertent conversion from a negative int.
1277        return BAD_VALUE;
1278    }
1279
1280    err = this->writeInt32(len);
1281    if (err) return err;
1282
1283    err = this->writeInt32(fd_count);
1284    if (err) return err;
1285
1286    // payload
1287    void* const buf = this->writeInplace(pad_size(len));
1288    if (buf == NULL)
1289        return BAD_VALUE;
1290
1291    int* fds = NULL;
1292    if (fd_count) {
1293        fds = new (std::nothrow) int[fd_count];
1294        if (fds == nullptr) {
1295            ALOGE("write: failed to allocate requested %zu fds", fd_count);
1296            return BAD_VALUE;
1297        }
1298    }
1299
1300    err = val.flatten(buf, len, fds, fd_count);
1301    for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1302        err = this->writeDupFileDescriptor( fds[i] );
1303    }
1304
1305    if (fd_count) {
1306        delete [] fds;
1307    }
1308
1309    return err;
1310}
1311
1312status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
1313{
1314    const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
1315    const bool enoughObjects = mObjectsSize < mObjectsCapacity;
1316    if (enoughData && enoughObjects) {
1317restart_write:
1318        *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
1319
1320        // remember if it's a file descriptor
1321        if (val.type == BINDER_TYPE_FD) {
1322            if (!mAllowFds) {
1323                // fail before modifying our object index
1324                return FDS_NOT_ALLOWED;
1325            }
1326            mHasFds = mFdsKnown = true;
1327        }
1328
1329        // Need to write meta-data?
1330        if (nullMetaData || val.binder != 0) {
1331            mObjects[mObjectsSize] = mDataPos;
1332            acquire_object(ProcessState::self(), val, this, &mOpenAshmemSize);
1333            mObjectsSize++;
1334        }
1335
1336        return finishWrite(sizeof(flat_binder_object));
1337    }
1338
1339    if (!enoughData) {
1340        const status_t err = growData(sizeof(val));
1341        if (err != NO_ERROR) return err;
1342    }
1343    if (!enoughObjects) {
1344        size_t newSize = ((mObjectsSize+2)*3)/2;
1345        if (newSize < mObjectsSize) return NO_MEMORY;   // overflow
1346        binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
1347        if (objects == NULL) return NO_MEMORY;
1348        mObjects = objects;
1349        mObjectsCapacity = newSize;
1350    }
1351
1352    goto restart_write;
1353}
1354
1355status_t Parcel::writeNoException()
1356{
1357    binder::Status status;
1358    return status.writeToParcel(this);
1359}
1360
1361void Parcel::remove(size_t /*start*/, size_t /*amt*/)
1362{
1363    LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");
1364}
1365
1366status_t Parcel::read(void* outData, size_t len) const
1367{
1368    if (len > INT32_MAX) {
1369        // don't accept size_t values which may have come from an
1370        // inadvertent conversion from a negative int.
1371        return BAD_VALUE;
1372    }
1373
1374    if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1375            && len <= pad_size(len)) {
1376        memcpy(outData, mData+mDataPos, len);
1377        mDataPos += pad_size(len);
1378        ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1379        return NO_ERROR;
1380    }
1381    return NOT_ENOUGH_DATA;
1382}
1383
1384const void* Parcel::readInplace(size_t len) const
1385{
1386    if (len > INT32_MAX) {
1387        // don't accept size_t values which may have come from an
1388        // inadvertent conversion from a negative int.
1389        return NULL;
1390    }
1391
1392    if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1393            && len <= pad_size(len)) {
1394        const void* data = mData+mDataPos;
1395        mDataPos += pad_size(len);
1396        ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1397        return data;
1398    }
1399    return NULL;
1400}
1401
1402template<class T>
1403status_t Parcel::readAligned(T *pArg) const {
1404    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1405
1406    if ((mDataPos+sizeof(T)) <= mDataSize) {
1407        const void* data = mData+mDataPos;
1408        mDataPos += sizeof(T);
1409        *pArg =  *reinterpret_cast<const T*>(data);
1410        return NO_ERROR;
1411    } else {
1412        return NOT_ENOUGH_DATA;
1413    }
1414}
1415
1416template<class T>
1417T Parcel::readAligned() const {
1418    T result;
1419    if (readAligned(&result) != NO_ERROR) {
1420        result = 0;
1421    }
1422
1423    return result;
1424}
1425
1426template<class T>
1427status_t Parcel::writeAligned(T val) {
1428    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1429
1430    if ((mDataPos+sizeof(val)) <= mDataCapacity) {
1431restart_write:
1432        *reinterpret_cast<T*>(mData+mDataPos) = val;
1433        return finishWrite(sizeof(val));
1434    }
1435
1436    status_t err = growData(sizeof(val));
1437    if (err == NO_ERROR) goto restart_write;
1438    return err;
1439}
1440
1441namespace {
1442
1443template<typename T>
1444status_t readByteVectorInternal(const Parcel* parcel,
1445                                std::vector<T>* val) {
1446    val->clear();
1447
1448    int32_t size;
1449    status_t status = parcel->readInt32(&size);
1450
1451    if (status != OK) {
1452        return status;
1453    }
1454
1455    if (size < 0) {
1456        status = UNEXPECTED_NULL;
1457        return status;
1458    }
1459    if (size_t(size) > parcel->dataAvail()) {
1460        status = BAD_VALUE;
1461        return status;
1462    }
1463
1464    const void* data = parcel->readInplace(size);
1465    if (!data) {
1466        status = BAD_VALUE;
1467        return status;
1468    }
1469    val->resize(size);
1470    memcpy(val->data(), data, size);
1471
1472    return status;
1473}
1474
1475template<typename T>
1476status_t readByteVectorInternalPtr(
1477        const Parcel* parcel,
1478        std::unique_ptr<std::vector<T>>* val) {
1479    const int32_t start = parcel->dataPosition();
1480    int32_t size;
1481    status_t status = parcel->readInt32(&size);
1482    val->reset();
1483
1484    if (status != OK || size < 0) {
1485        return status;
1486    }
1487
1488    parcel->setDataPosition(start);
1489    val->reset(new (std::nothrow) std::vector<T>());
1490
1491    status = readByteVectorInternal(parcel, val->get());
1492
1493    if (status != OK) {
1494        val->reset();
1495    }
1496
1497    return status;
1498}
1499
1500}  // namespace
1501
1502status_t Parcel::readByteVector(std::vector<int8_t>* val) const {
1503    return readByteVectorInternal(this, val);
1504}
1505
1506status_t Parcel::readByteVector(std::vector<uint8_t>* val) const {
1507    return readByteVectorInternal(this, val);
1508}
1509
1510status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const {
1511    return readByteVectorInternalPtr(this, val);
1512}
1513
1514status_t Parcel::readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const {
1515    return readByteVectorInternalPtr(this, val);
1516}
1517
1518status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const {
1519    return readNullableTypedVector(val, &Parcel::readInt32);
1520}
1521
1522status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const {
1523    return readTypedVector(val, &Parcel::readInt32);
1524}
1525
1526status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const {
1527    return readNullableTypedVector(val, &Parcel::readInt64);
1528}
1529
1530status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const {
1531    return readTypedVector(val, &Parcel::readInt64);
1532}
1533
1534status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const {
1535    return readNullableTypedVector(val, &Parcel::readFloat);
1536}
1537
1538status_t Parcel::readFloatVector(std::vector<float>* val) const {
1539    return readTypedVector(val, &Parcel::readFloat);
1540}
1541
1542status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const {
1543    return readNullableTypedVector(val, &Parcel::readDouble);
1544}
1545
1546status_t Parcel::readDoubleVector(std::vector<double>* val) const {
1547    return readTypedVector(val, &Parcel::readDouble);
1548}
1549
1550status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const {
1551    const int32_t start = dataPosition();
1552    int32_t size;
1553    status_t status = readInt32(&size);
1554    val->reset();
1555
1556    if (status != OK || size < 0) {
1557        return status;
1558    }
1559
1560    setDataPosition(start);
1561    val->reset(new (std::nothrow) std::vector<bool>());
1562
1563    status = readBoolVector(val->get());
1564
1565    if (status != OK) {
1566        val->reset();
1567    }
1568
1569    return status;
1570}
1571
1572status_t Parcel::readBoolVector(std::vector<bool>* val) const {
1573    int32_t size;
1574    status_t status = readInt32(&size);
1575
1576    if (status != OK) {
1577        return status;
1578    }
1579
1580    if (size < 0) {
1581        return UNEXPECTED_NULL;
1582    }
1583
1584    val->resize(size);
1585
1586    /* C++ bool handling means a vector of bools isn't necessarily addressable
1587     * (we might use individual bits)
1588     */
1589    bool data;
1590    for (int32_t i = 0; i < size; ++i) {
1591        status = readBool(&data);
1592        (*val)[i] = data;
1593
1594        if (status != OK) {
1595            return status;
1596        }
1597    }
1598
1599    return OK;
1600}
1601
1602status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const {
1603    return readNullableTypedVector(val, &Parcel::readChar);
1604}
1605
1606status_t Parcel::readCharVector(std::vector<char16_t>* val) const {
1607    return readTypedVector(val, &Parcel::readChar);
1608}
1609
1610status_t Parcel::readString16Vector(
1611        std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const {
1612    return readNullableTypedVector(val, &Parcel::readString16);
1613}
1614
1615status_t Parcel::readString16Vector(std::vector<String16>* val) const {
1616    return readTypedVector(val, &Parcel::readString16);
1617}
1618
1619status_t Parcel::readUtf8VectorFromUtf16Vector(
1620        std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const {
1621    return readNullableTypedVector(val, &Parcel::readUtf8FromUtf16);
1622}
1623
1624status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const {
1625    return readTypedVector(val, &Parcel::readUtf8FromUtf16);
1626}
1627
1628status_t Parcel::readInt32(int32_t *pArg) const
1629{
1630    return readAligned(pArg);
1631}
1632
1633int32_t Parcel::readInt32() const
1634{
1635    return readAligned<int32_t>();
1636}
1637
1638status_t Parcel::readUint32(uint32_t *pArg) const
1639{
1640    return readAligned(pArg);
1641}
1642
1643uint32_t Parcel::readUint32() const
1644{
1645    return readAligned<uint32_t>();
1646}
1647
1648status_t Parcel::readInt64(int64_t *pArg) const
1649{
1650    return readAligned(pArg);
1651}
1652
1653
1654int64_t Parcel::readInt64() const
1655{
1656    return readAligned<int64_t>();
1657}
1658
1659status_t Parcel::readUint64(uint64_t *pArg) const
1660{
1661    return readAligned(pArg);
1662}
1663
1664uint64_t Parcel::readUint64() const
1665{
1666    return readAligned<uint64_t>();
1667}
1668
1669status_t Parcel::readPointer(uintptr_t *pArg) const
1670{
1671    status_t ret;
1672    binder_uintptr_t ptr;
1673    ret = readAligned(&ptr);
1674    if (!ret)
1675        *pArg = ptr;
1676    return ret;
1677}
1678
1679uintptr_t Parcel::readPointer() const
1680{
1681    return readAligned<binder_uintptr_t>();
1682}
1683
1684
1685status_t Parcel::readFloat(float *pArg) const
1686{
1687    return readAligned(pArg);
1688}
1689
1690
1691float Parcel::readFloat() const
1692{
1693    return readAligned<float>();
1694}
1695
1696#if defined(__mips__) && defined(__mips_hard_float)
1697
1698status_t Parcel::readDouble(double *pArg) const
1699{
1700    union {
1701      double d;
1702      unsigned long long ll;
1703    } u;
1704    u.d = 0;
1705    status_t status;
1706    status = readAligned(&u.ll);
1707    *pArg = u.d;
1708    return status;
1709}
1710
1711double Parcel::readDouble() const
1712{
1713    union {
1714      double d;
1715      unsigned long long ll;
1716    } u;
1717    u.ll = readAligned<unsigned long long>();
1718    return u.d;
1719}
1720
1721#else
1722
1723status_t Parcel::readDouble(double *pArg) const
1724{
1725    return readAligned(pArg);
1726}
1727
1728double Parcel::readDouble() const
1729{
1730    return readAligned<double>();
1731}
1732
1733#endif
1734
1735status_t Parcel::readIntPtr(intptr_t *pArg) const
1736{
1737    return readAligned(pArg);
1738}
1739
1740
1741intptr_t Parcel::readIntPtr() const
1742{
1743    return readAligned<intptr_t>();
1744}
1745
1746status_t Parcel::readBool(bool *pArg) const
1747{
1748    int32_t tmp;
1749    status_t ret = readInt32(&tmp);
1750    *pArg = (tmp != 0);
1751    return ret;
1752}
1753
1754bool Parcel::readBool() const
1755{
1756    return readInt32() != 0;
1757}
1758
1759status_t Parcel::readChar(char16_t *pArg) const
1760{
1761    int32_t tmp;
1762    status_t ret = readInt32(&tmp);
1763    *pArg = char16_t(tmp);
1764    return ret;
1765}
1766
1767char16_t Parcel::readChar() const
1768{
1769    return char16_t(readInt32());
1770}
1771
1772status_t Parcel::readByte(int8_t *pArg) const
1773{
1774    int32_t tmp;
1775    status_t ret = readInt32(&tmp);
1776    *pArg = int8_t(tmp);
1777    return ret;
1778}
1779
1780int8_t Parcel::readByte() const
1781{
1782    return int8_t(readInt32());
1783}
1784
1785status_t Parcel::readUtf8FromUtf16(std::string* str) const {
1786    size_t utf16Size = 0;
1787    const char16_t* src = readString16Inplace(&utf16Size);
1788    if (!src) {
1789        return UNEXPECTED_NULL;
1790    }
1791
1792    // Save ourselves the trouble, we're done.
1793    if (utf16Size == 0u) {
1794        str->clear();
1795       return NO_ERROR;
1796    }
1797
1798    ssize_t utf8Size = utf16_to_utf8_length(src, utf16Size);
1799    if (utf8Size < 0) {
1800        return BAD_VALUE;
1801    }
1802    // Note that while it is probably safe to assume string::resize keeps a
1803    // spare byte around for the trailing null, we're going to be explicit.
1804    str->resize(utf8Size + 1);
1805    utf16_to_utf8(src, utf16Size, &((*str)[0]));
1806    str->resize(utf8Size);
1807    return NO_ERROR;
1808}
1809
1810status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const {
1811    const int32_t start = dataPosition();
1812    int32_t size;
1813    status_t status = readInt32(&size);
1814    str->reset();
1815
1816    if (status != OK || size < 0) {
1817        return status;
1818    }
1819
1820    setDataPosition(start);
1821    str->reset(new (std::nothrow) std::string());
1822    return readUtf8FromUtf16(str->get());
1823}
1824
1825const char* Parcel::readCString() const
1826{
1827    const size_t avail = mDataSize-mDataPos;
1828    if (avail > 0) {
1829        const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1830        // is the string's trailing NUL within the parcel's valid bounds?
1831        const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1832        if (eos) {
1833            const size_t len = eos - str;
1834            mDataPos += pad_size(len+1);
1835            ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1836            return str;
1837        }
1838    }
1839    return NULL;
1840}
1841
1842String8 Parcel::readString8() const
1843{
1844    int32_t size = readInt32();
1845    // watch for potential int overflow adding 1 for trailing NUL
1846    if (size > 0 && size < INT32_MAX) {
1847        const char* str = (const char*)readInplace(size+1);
1848        if (str) return String8(str, size);
1849    }
1850    return String8();
1851}
1852
1853String16 Parcel::readString16() const
1854{
1855    size_t len;
1856    const char16_t* str = readString16Inplace(&len);
1857    if (str) return String16(str, len);
1858    ALOGE("Reading a NULL string not supported here.");
1859    return String16();
1860}
1861
1862status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
1863{
1864    const int32_t start = dataPosition();
1865    int32_t size;
1866    status_t status = readInt32(&size);
1867    pArg->reset();
1868
1869    if (status != OK || size < 0) {
1870        return status;
1871    }
1872
1873    setDataPosition(start);
1874    pArg->reset(new (std::nothrow) String16());
1875
1876    status = readString16(pArg->get());
1877
1878    if (status != OK) {
1879        pArg->reset();
1880    }
1881
1882    return status;
1883}
1884
1885status_t Parcel::readString16(String16* pArg) const
1886{
1887    size_t len;
1888    const char16_t* str = readString16Inplace(&len);
1889    if (str) {
1890        pArg->setTo(str, len);
1891        return 0;
1892    } else {
1893        *pArg = String16();
1894        return UNEXPECTED_NULL;
1895    }
1896}
1897
1898const char16_t* Parcel::readString16Inplace(size_t* outLen) const
1899{
1900    int32_t size = readInt32();
1901    // watch for potential int overflow from size+1
1902    if (size >= 0 && size < INT32_MAX) {
1903        *outLen = size;
1904        const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
1905        if (str != NULL) {
1906            return str;
1907        }
1908    }
1909    *outLen = 0;
1910    return NULL;
1911}
1912
1913status_t Parcel::readStrongBinder(sp<IBinder>* val) const
1914{
1915    return unflatten_binder(ProcessState::self(), *this, val);
1916}
1917
1918sp<IBinder> Parcel::readStrongBinder() const
1919{
1920    sp<IBinder> val;
1921    readStrongBinder(&val);
1922    return val;
1923}
1924
1925wp<IBinder> Parcel::readWeakBinder() const
1926{
1927    wp<IBinder> val;
1928    unflatten_binder(ProcessState::self(), *this, &val);
1929    return val;
1930}
1931
1932status_t Parcel::readParcelable(Parcelable* parcelable) const {
1933    int32_t have_parcelable = 0;
1934    status_t status = readInt32(&have_parcelable);
1935    if (status != OK) {
1936        return status;
1937    }
1938    if (!have_parcelable) {
1939        return UNEXPECTED_NULL;
1940    }
1941    return parcelable->readFromParcel(this);
1942}
1943
1944int32_t Parcel::readExceptionCode() const
1945{
1946    binder::Status status;
1947    status.readFromParcel(*this);
1948    return status.exceptionCode();
1949}
1950
1951native_handle* Parcel::readNativeHandle() const
1952{
1953    int numFds, numInts;
1954    status_t err;
1955    err = readInt32(&numFds);
1956    if (err != NO_ERROR) return 0;
1957    err = readInt32(&numInts);
1958    if (err != NO_ERROR) return 0;
1959
1960    native_handle* h = native_handle_create(numFds, numInts);
1961    if (!h) {
1962        return 0;
1963    }
1964
1965    for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {
1966        h->data[i] = dup(readFileDescriptor());
1967        if (h->data[i] < 0) err = BAD_VALUE;
1968    }
1969    err = read(h->data + numFds, sizeof(int)*numInts);
1970    if (err != NO_ERROR) {
1971        native_handle_close(h);
1972        native_handle_delete(h);
1973        h = 0;
1974    }
1975    return h;
1976}
1977
1978
1979int Parcel::readFileDescriptor() const
1980{
1981    const flat_binder_object* flat = readObject(true);
1982
1983    if (flat && flat->type == BINDER_TYPE_FD) {
1984        return flat->handle;
1985    }
1986
1987    return BAD_TYPE;
1988}
1989
1990status_t Parcel::readUniqueFileDescriptor(ScopedFd* val) const
1991{
1992    int got = readFileDescriptor();
1993
1994    if (got == BAD_TYPE) {
1995        return BAD_TYPE;
1996    }
1997
1998    val->reset(dup(got));
1999
2000    if (val->get() < 0) {
2001        return BAD_VALUE;
2002    }
2003
2004    return OK;
2005}
2006
2007
2008status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr<std::vector<ScopedFd>>* val) const {
2009    return readNullableTypedVector(val, &Parcel::readUniqueFileDescriptor);
2010}
2011
2012status_t Parcel::readUniqueFileDescriptorVector(std::vector<ScopedFd>* val) const {
2013    return readTypedVector(val, &Parcel::readUniqueFileDescriptor);
2014}
2015
2016status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
2017{
2018    int32_t blobType;
2019    status_t status = readInt32(&blobType);
2020    if (status) return status;
2021
2022    if (blobType == BLOB_INPLACE) {
2023        ALOGV("readBlob: read in place");
2024        const void* ptr = readInplace(len);
2025        if (!ptr) return BAD_VALUE;
2026
2027        outBlob->init(-1, const_cast<void*>(ptr), len, false);
2028        return NO_ERROR;
2029    }
2030
2031    ALOGV("readBlob: read from ashmem");
2032    bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE);
2033    int fd = readFileDescriptor();
2034    if (fd == int(BAD_TYPE)) return BAD_VALUE;
2035
2036    void* ptr = ::mmap(NULL, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ,
2037            MAP_SHARED, fd, 0);
2038    if (ptr == MAP_FAILED) return NO_MEMORY;
2039
2040    outBlob->init(fd, ptr, len, isMutable);
2041    return NO_ERROR;
2042}
2043
2044status_t Parcel::read(FlattenableHelperInterface& val) const
2045{
2046    // size
2047    const size_t len = this->readInt32();
2048    const size_t fd_count = this->readInt32();
2049
2050    if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
2051        // don't accept size_t values which may have come from an
2052        // inadvertent conversion from a negative int.
2053        return BAD_VALUE;
2054    }
2055
2056    // payload
2057    void const* const buf = this->readInplace(pad_size(len));
2058    if (buf == NULL)
2059        return BAD_VALUE;
2060
2061    int* fds = NULL;
2062    if (fd_count) {
2063        fds = new (std::nothrow) int[fd_count];
2064        if (fds == nullptr) {
2065            ALOGE("read: failed to allocate requested %zu fds", fd_count);
2066            return BAD_VALUE;
2067        }
2068    }
2069
2070    status_t err = NO_ERROR;
2071    for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
2072        fds[i] = dup(this->readFileDescriptor());
2073        if (fds[i] < 0) {
2074            err = BAD_VALUE;
2075            ALOGE("dup() failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s",
2076                i, fds[i], fd_count, strerror(errno));
2077        }
2078    }
2079
2080    if (err == NO_ERROR) {
2081        err = val.unflatten(buf, len, fds, fd_count);
2082    }
2083
2084    if (fd_count) {
2085        delete [] fds;
2086    }
2087
2088    return err;
2089}
2090const flat_binder_object* Parcel::readObject(bool nullMetaData) const
2091{
2092    const size_t DPOS = mDataPos;
2093    if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {
2094        const flat_binder_object* obj
2095                = reinterpret_cast<const flat_binder_object*>(mData+DPOS);
2096        mDataPos = DPOS + sizeof(flat_binder_object);
2097        if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) {
2098            // When transferring a NULL object, we don't write it into
2099            // the object list, so we don't want to check for it when
2100            // reading.
2101            ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2102            return obj;
2103        }
2104
2105        // Ensure that this object is valid...
2106        binder_size_t* const OBJS = mObjects;
2107        const size_t N = mObjectsSize;
2108        size_t opos = mNextObjectHint;
2109
2110        if (N > 0) {
2111            ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
2112                 this, DPOS, opos);
2113
2114            // Start at the current hint position, looking for an object at
2115            // the current data position.
2116            if (opos < N) {
2117                while (opos < (N-1) && OBJS[opos] < DPOS) {
2118                    opos++;
2119                }
2120            } else {
2121                opos = N-1;
2122            }
2123            if (OBJS[opos] == DPOS) {
2124                // Found it!
2125                ALOGV("Parcel %p found obj %zu at index %zu with forward search",
2126                     this, DPOS, opos);
2127                mNextObjectHint = opos+1;
2128                ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2129                return obj;
2130            }
2131
2132            // Look backwards for it...
2133            while (opos > 0 && OBJS[opos] > DPOS) {
2134                opos--;
2135            }
2136            if (OBJS[opos] == DPOS) {
2137                // Found it!
2138                ALOGV("Parcel %p found obj %zu at index %zu with backward search",
2139                     this, DPOS, opos);
2140                mNextObjectHint = opos+1;
2141                ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2142                return obj;
2143            }
2144        }
2145        ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
2146             this, DPOS);
2147    }
2148    return NULL;
2149}
2150
2151void Parcel::closeFileDescriptors()
2152{
2153    size_t i = mObjectsSize;
2154    if (i > 0) {
2155        //ALOGI("Closing file descriptors for %zu objects...", i);
2156    }
2157    while (i > 0) {
2158        i--;
2159        const flat_binder_object* flat
2160            = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2161        if (flat->type == BINDER_TYPE_FD) {
2162            //ALOGI("Closing fd: %ld", flat->handle);
2163            close(flat->handle);
2164        }
2165    }
2166}
2167
2168uintptr_t Parcel::ipcData() const
2169{
2170    return reinterpret_cast<uintptr_t>(mData);
2171}
2172
2173size_t Parcel::ipcDataSize() const
2174{
2175    return (mDataSize > mDataPos ? mDataSize : mDataPos);
2176}
2177
2178uintptr_t Parcel::ipcObjects() const
2179{
2180    return reinterpret_cast<uintptr_t>(mObjects);
2181}
2182
2183size_t Parcel::ipcObjectsCount() const
2184{
2185    return mObjectsSize;
2186}
2187
2188void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
2189    const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
2190{
2191    binder_size_t minOffset = 0;
2192    freeDataNoInit();
2193    mError = NO_ERROR;
2194    mData = const_cast<uint8_t*>(data);
2195    mDataSize = mDataCapacity = dataSize;
2196    //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
2197    mDataPos = 0;
2198    ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
2199    mObjects = const_cast<binder_size_t*>(objects);
2200    mObjectsSize = mObjectsCapacity = objectsCount;
2201    mNextObjectHint = 0;
2202    mOwner = relFunc;
2203    mOwnerCookie = relCookie;
2204    for (size_t i = 0; i < mObjectsSize; i++) {
2205        binder_size_t offset = mObjects[i];
2206        if (offset < minOffset) {
2207            ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
2208                  __func__, (uint64_t)offset, (uint64_t)minOffset);
2209            mObjectsSize = 0;
2210            break;
2211        }
2212        minOffset = offset + sizeof(flat_binder_object);
2213    }
2214    scanForFds();
2215}
2216
2217void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
2218{
2219    to << "Parcel(";
2220
2221    if (errorCheck() != NO_ERROR) {
2222        const status_t err = errorCheck();
2223        to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
2224    } else if (dataSize() > 0) {
2225        const uint8_t* DATA = data();
2226        to << indent << HexDump(DATA, dataSize()) << dedent;
2227        const binder_size_t* OBJS = objects();
2228        const size_t N = objectsCount();
2229        for (size_t i=0; i<N; i++) {
2230            const flat_binder_object* flat
2231                = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
2232            to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
2233                << TypeCode(flat->type & 0x7f7f7f00)
2234                << " = " << flat->binder;
2235        }
2236    } else {
2237        to << "NULL";
2238    }
2239
2240    to << ")";
2241}
2242
2243void Parcel::releaseObjects()
2244{
2245    const sp<ProcessState> proc(ProcessState::self());
2246    size_t i = mObjectsSize;
2247    uint8_t* const data = mData;
2248    binder_size_t* const objects = mObjects;
2249    while (i > 0) {
2250        i--;
2251        const flat_binder_object* flat
2252            = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2253        release_object(proc, *flat, this, &mOpenAshmemSize);
2254    }
2255}
2256
2257void Parcel::acquireObjects()
2258{
2259    const sp<ProcessState> proc(ProcessState::self());
2260    size_t i = mObjectsSize;
2261    uint8_t* const data = mData;
2262    binder_size_t* const objects = mObjects;
2263    while (i > 0) {
2264        i--;
2265        const flat_binder_object* flat
2266            = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2267        acquire_object(proc, *flat, this, &mOpenAshmemSize);
2268    }
2269}
2270
2271void Parcel::freeData()
2272{
2273    freeDataNoInit();
2274    initState();
2275}
2276
2277void Parcel::freeDataNoInit()
2278{
2279    if (mOwner) {
2280        LOG_ALLOC("Parcel %p: freeing other owner data", this);
2281        //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2282        mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2283    } else {
2284        LOG_ALLOC("Parcel %p: freeing allocated data", this);
2285        releaseObjects();
2286        if (mData) {
2287            LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
2288            pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2289            if (mDataCapacity <= gParcelGlobalAllocSize) {
2290              gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity;
2291            } else {
2292              gParcelGlobalAllocSize = 0;
2293            }
2294            if (gParcelGlobalAllocCount > 0) {
2295              gParcelGlobalAllocCount--;
2296            }
2297            pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2298            free(mData);
2299        }
2300        if (mObjects) free(mObjects);
2301    }
2302}
2303
2304status_t Parcel::growData(size_t len)
2305{
2306    if (len > INT32_MAX) {
2307        // don't accept size_t values which may have come from an
2308        // inadvertent conversion from a negative int.
2309        return BAD_VALUE;
2310    }
2311
2312    size_t newSize = ((mDataSize+len)*3)/2;
2313    return (newSize <= mDataSize)
2314            ? (status_t) NO_MEMORY
2315            : continueWrite(newSize);
2316}
2317
2318status_t Parcel::restartWrite(size_t desired)
2319{
2320    if (desired > INT32_MAX) {
2321        // don't accept size_t values which may have come from an
2322        // inadvertent conversion from a negative int.
2323        return BAD_VALUE;
2324    }
2325
2326    if (mOwner) {
2327        freeData();
2328        return continueWrite(desired);
2329    }
2330
2331    uint8_t* data = (uint8_t*)realloc(mData, desired);
2332    if (!data && desired > mDataCapacity) {
2333        mError = NO_MEMORY;
2334        return NO_MEMORY;
2335    }
2336
2337    releaseObjects();
2338
2339    if (data) {
2340        LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
2341        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2342        gParcelGlobalAllocSize += desired;
2343        gParcelGlobalAllocSize -= mDataCapacity;
2344        if (!mData) {
2345            gParcelGlobalAllocCount++;
2346        }
2347        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2348        mData = data;
2349        mDataCapacity = desired;
2350    }
2351
2352    mDataSize = mDataPos = 0;
2353    ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
2354    ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
2355
2356    free(mObjects);
2357    mObjects = NULL;
2358    mObjectsSize = mObjectsCapacity = 0;
2359    mNextObjectHint = 0;
2360    mHasFds = false;
2361    mFdsKnown = true;
2362    mAllowFds = true;
2363
2364    return NO_ERROR;
2365}
2366
2367status_t Parcel::continueWrite(size_t desired)
2368{
2369    if (desired > INT32_MAX) {
2370        // don't accept size_t values which may have come from an
2371        // inadvertent conversion from a negative int.
2372        return BAD_VALUE;
2373    }
2374
2375    // If shrinking, first adjust for any objects that appear
2376    // after the new data size.
2377    size_t objectsSize = mObjectsSize;
2378    if (desired < mDataSize) {
2379        if (desired == 0) {
2380            objectsSize = 0;
2381        } else {
2382            while (objectsSize > 0) {
2383                if (mObjects[objectsSize-1] < desired)
2384                    break;
2385                objectsSize--;
2386            }
2387        }
2388    }
2389
2390    if (mOwner) {
2391        // If the size is going to zero, just release the owner's data.
2392        if (desired == 0) {
2393            freeData();
2394            return NO_ERROR;
2395        }
2396
2397        // If there is a different owner, we need to take
2398        // posession.
2399        uint8_t* data = (uint8_t*)malloc(desired);
2400        if (!data) {
2401            mError = NO_MEMORY;
2402            return NO_MEMORY;
2403        }
2404        binder_size_t* objects = NULL;
2405
2406        if (objectsSize) {
2407            objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
2408            if (!objects) {
2409                free(data);
2410
2411                mError = NO_MEMORY;
2412                return NO_MEMORY;
2413            }
2414
2415            // Little hack to only acquire references on objects
2416            // we will be keeping.
2417            size_t oldObjectsSize = mObjectsSize;
2418            mObjectsSize = objectsSize;
2419            acquireObjects();
2420            mObjectsSize = oldObjectsSize;
2421        }
2422
2423        if (mData) {
2424            memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
2425        }
2426        if (objects && mObjects) {
2427            memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
2428        }
2429        //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2430        mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2431        mOwner = NULL;
2432
2433        LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
2434        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2435        gParcelGlobalAllocSize += desired;
2436        gParcelGlobalAllocCount++;
2437        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2438
2439        mData = data;
2440        mObjects = objects;
2441        mDataSize = (mDataSize < desired) ? mDataSize : desired;
2442        ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2443        mDataCapacity = desired;
2444        mObjectsSize = mObjectsCapacity = objectsSize;
2445        mNextObjectHint = 0;
2446
2447    } else if (mData) {
2448        if (objectsSize < mObjectsSize) {
2449            // Need to release refs on any objects we are dropping.
2450            const sp<ProcessState> proc(ProcessState::self());
2451            for (size_t i=objectsSize; i<mObjectsSize; i++) {
2452                const flat_binder_object* flat
2453                    = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2454                if (flat->type == BINDER_TYPE_FD) {
2455                    // will need to rescan because we may have lopped off the only FDs
2456                    mFdsKnown = false;
2457                }
2458                release_object(proc, *flat, this, &mOpenAshmemSize);
2459            }
2460            binder_size_t* objects =
2461                (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
2462            if (objects) {
2463                mObjects = objects;
2464            }
2465            mObjectsSize = objectsSize;
2466            mNextObjectHint = 0;
2467        }
2468
2469        // We own the data, so we can just do a realloc().
2470        if (desired > mDataCapacity) {
2471            uint8_t* data = (uint8_t*)realloc(mData, desired);
2472            if (data) {
2473                LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
2474                        desired);
2475                pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2476                gParcelGlobalAllocSize += desired;
2477                gParcelGlobalAllocSize -= mDataCapacity;
2478                pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2479                mData = data;
2480                mDataCapacity = desired;
2481            } else if (desired > mDataCapacity) {
2482                mError = NO_MEMORY;
2483                return NO_MEMORY;
2484            }
2485        } else {
2486            if (mDataSize > desired) {
2487                mDataSize = desired;
2488                ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2489            }
2490            if (mDataPos > desired) {
2491                mDataPos = desired;
2492                ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2493            }
2494        }
2495
2496    } else {
2497        // This is the first data.  Easy!
2498        uint8_t* data = (uint8_t*)malloc(desired);
2499        if (!data) {
2500            mError = NO_MEMORY;
2501            return NO_MEMORY;
2502        }
2503
2504        if(!(mDataCapacity == 0 && mObjects == NULL
2505             && mObjectsCapacity == 0)) {
2506            ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
2507        }
2508
2509        LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
2510        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2511        gParcelGlobalAllocSize += desired;
2512        gParcelGlobalAllocCount++;
2513        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2514
2515        mData = data;
2516        mDataSize = mDataPos = 0;
2517        ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2518        ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2519        mDataCapacity = desired;
2520    }
2521
2522    return NO_ERROR;
2523}
2524
2525void Parcel::initState()
2526{
2527    LOG_ALLOC("Parcel %p: initState", this);
2528    mError = NO_ERROR;
2529    mData = 0;
2530    mDataSize = 0;
2531    mDataCapacity = 0;
2532    mDataPos = 0;
2533    ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
2534    ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
2535    mObjects = NULL;
2536    mObjectsSize = 0;
2537    mObjectsCapacity = 0;
2538    mNextObjectHint = 0;
2539    mHasFds = false;
2540    mFdsKnown = true;
2541    mAllowFds = true;
2542    mOwner = NULL;
2543    mOpenAshmemSize = 0;
2544
2545    // racing multiple init leads only to multiple identical write
2546    if (gMaxFds == 0) {
2547        struct rlimit result;
2548        if (!getrlimit(RLIMIT_NOFILE, &result)) {
2549            gMaxFds = (size_t)result.rlim_cur;
2550            ALOGI("parcel fd limit set to %zu", gMaxFds);
2551        } else {
2552            ALOGW("Unable to getrlimit: %s", strerror(errno));
2553            gMaxFds = 1024;
2554        }
2555    }
2556}
2557
2558void Parcel::scanForFds() const
2559{
2560    bool hasFds = false;
2561    for (size_t i=0; i<mObjectsSize; i++) {
2562        const flat_binder_object* flat
2563            = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2564        if (flat->type == BINDER_TYPE_FD) {
2565            hasFds = true;
2566            break;
2567        }
2568    }
2569    mHasFds = hasFds;
2570    mFdsKnown = true;
2571}
2572
2573size_t Parcel::getBlobAshmemSize() const
2574{
2575    // This used to return the size of all blobs that were written to ashmem, now we're returning
2576    // the ashmem currently referenced by this Parcel, which should be equivalent.
2577    // TODO: Remove method once ABI can be changed.
2578    return mOpenAshmemSize;
2579}
2580
2581size_t Parcel::getOpenAshmemSize() const
2582{
2583    return mOpenAshmemSize;
2584}
2585
2586// --- Parcel::Blob ---
2587
2588Parcel::Blob::Blob() :
2589        mFd(-1), mData(NULL), mSize(0), mMutable(false) {
2590}
2591
2592Parcel::Blob::~Blob() {
2593    release();
2594}
2595
2596void Parcel::Blob::release() {
2597    if (mFd != -1 && mData) {
2598        ::munmap(mData, mSize);
2599    }
2600    clear();
2601}
2602
2603void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) {
2604    mFd = fd;
2605    mData = data;
2606    mSize = size;
2607    mMutable = isMutable;
2608}
2609
2610void Parcel::Blob::clear() {
2611    mFd = -1;
2612    mData = NULL;
2613    mSize = 0;
2614    mMutable = false;
2615}
2616
2617}; // namespace android
2618