VirtualDisplaySurface.cpp revision 14e8b01a761180250671f3d6494532d8bd04fa8e
1/*
2 * Copyright 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17// #define LOG_NDEBUG 0
18#include "VirtualDisplaySurface.h"
19#include "HWComposer.h"
20
21// ---------------------------------------------------------------------------
22namespace android {
23// ---------------------------------------------------------------------------
24
25#if defined(FORCE_HWC_COPY_FOR_VIRTUAL_DISPLAYS)
26static const bool sForceHwcCopy = true;
27#else
28static const bool sForceHwcCopy = false;
29#endif
30
31#define VDS_LOGE(msg, ...) ALOGE("[%s] "msg, \
32        mDisplayName.string(), ##__VA_ARGS__)
33#define VDS_LOGW_IF(cond, msg, ...) ALOGW_IF(cond, "[%s] "msg, \
34        mDisplayName.string(), ##__VA_ARGS__)
35#define VDS_LOGV(msg, ...) ALOGV("[%s] "msg, \
36        mDisplayName.string(), ##__VA_ARGS__)
37
38static const char* dbgCompositionTypeStr(DisplaySurface::CompositionType type) {
39    switch (type) {
40        case DisplaySurface::COMPOSITION_UNKNOWN: return "UNKNOWN";
41        case DisplaySurface::COMPOSITION_GLES:    return "GLES";
42        case DisplaySurface::COMPOSITION_HWC:     return "HWC";
43        case DisplaySurface::COMPOSITION_MIXED:   return "MIXED";
44        default:                                  return "<INVALID>";
45    }
46}
47
48VirtualDisplaySurface::VirtualDisplaySurface(HWComposer& hwc, int32_t dispId,
49        const sp<IGraphicBufferProducer>& sink,
50        const sp<BufferQueue>& bq,
51        const String8& name)
52:   ConsumerBase(bq),
53    mHwc(hwc),
54    mDisplayId(dispId),
55    mDisplayName(name),
56    mOutputUsage(GRALLOC_USAGE_HW_COMPOSER),
57    mProducerSlotSource(0),
58    mDbgState(DBG_STATE_IDLE),
59    mDbgLastCompositionType(COMPOSITION_UNKNOWN)
60{
61    mSource[SOURCE_SINK] = sink;
62    mSource[SOURCE_SCRATCH] = bq;
63
64    resetPerFrameState();
65
66    int sinkWidth, sinkHeight;
67    sink->query(NATIVE_WINDOW_WIDTH, &sinkWidth);
68    sink->query(NATIVE_WINDOW_HEIGHT, &sinkHeight);
69
70    // Pick the buffer format to request from the sink when not rendering to it
71    // with GLES. If the consumer needs CPU access, use the default format
72    // set by the consumer. Otherwise allow gralloc to decide the format based
73    // on usage bits.
74    int sinkUsage;
75    sink->query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, &sinkUsage);
76    if (sinkUsage & (GRALLOC_USAGE_SW_READ_MASK | GRALLOC_USAGE_SW_WRITE_MASK)) {
77        int sinkFormat;
78        sink->query(NATIVE_WINDOW_FORMAT, &sinkFormat);
79        mDefaultOutputFormat = sinkFormat;
80    } else {
81        mDefaultOutputFormat = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
82    }
83    mOutputFormat = mDefaultOutputFormat;
84
85    ConsumerBase::mName = String8::format("VDS: %s", mDisplayName.string());
86    mConsumer->setConsumerName(ConsumerBase::mName);
87    mConsumer->setConsumerUsageBits(GRALLOC_USAGE_HW_COMPOSER);
88    mConsumer->setDefaultBufferSize(sinkWidth, sinkHeight);
89    mConsumer->setDefaultMaxBufferCount(2);
90}
91
92VirtualDisplaySurface::~VirtualDisplaySurface() {
93}
94
95status_t VirtualDisplaySurface::beginFrame() {
96    if (mDisplayId < 0)
97        return NO_ERROR;
98
99    VDS_LOGW_IF(mDbgState != DBG_STATE_IDLE,
100            "Unexpected beginFrame() in %s state", dbgStateStr());
101    mDbgState = DBG_STATE_BEGUN;
102
103    uint32_t transformHint, numPendingBuffers;
104    mQueueBufferOutput.deflate(&mSinkBufferWidth, &mSinkBufferHeight,
105            &transformHint, &numPendingBuffers);
106
107    return refreshOutputBuffer();
108}
109
110status_t VirtualDisplaySurface::prepareFrame(CompositionType compositionType) {
111    if (mDisplayId < 0)
112        return NO_ERROR;
113
114    VDS_LOGW_IF(mDbgState != DBG_STATE_BEGUN,
115            "Unexpected prepareFrame() in %s state", dbgStateStr());
116    mDbgState = DBG_STATE_PREPARED;
117
118    mCompositionType = compositionType;
119    if (sForceHwcCopy && mCompositionType == COMPOSITION_GLES) {
120        // Some hardware can do RGB->YUV conversion more efficiently in hardware
121        // controlled by HWC than in hardware controlled by the video encoder.
122        // Forcing GLES-composed frames to go through an extra copy by the HWC
123        // allows the format conversion to happen there, rather than passing RGB
124        // directly to the consumer.
125        //
126        // On the other hand, when the consumer prefers RGB or can consume RGB
127        // inexpensively, this forces an unnecessary copy.
128        mCompositionType = COMPOSITION_MIXED;
129    }
130
131    if (mCompositionType != mDbgLastCompositionType) {
132        VDS_LOGV("prepareFrame: composition type changed to %s",
133                dbgCompositionTypeStr(mCompositionType));
134        mDbgLastCompositionType = mCompositionType;
135    }
136
137    if (mCompositionType != COMPOSITION_GLES &&
138            (mOutputFormat != mDefaultOutputFormat ||
139             mOutputUsage != GRALLOC_USAGE_HW_COMPOSER)) {
140        // We must have just switched from GLES-only to MIXED or HWC
141        // composition. Stop using the format and usage requested by the GLES
142        // driver; they may be suboptimal when HWC is writing to the output
143        // buffer. For example, if the output is going to a video encoder, and
144        // HWC can write directly to YUV, some hardware can skip a
145        // memory-to-memory RGB-to-YUV conversion step.
146        //
147        // If we just switched *to* GLES-only mode, we'll change the
148        // format/usage and get a new buffer when the GLES driver calls
149        // dequeueBuffer().
150        mOutputFormat = mDefaultOutputFormat;
151        mOutputUsage = GRALLOC_USAGE_HW_COMPOSER;
152        refreshOutputBuffer();
153    }
154
155    return NO_ERROR;
156}
157
158status_t VirtualDisplaySurface::compositionComplete() {
159    return NO_ERROR;
160}
161
162status_t VirtualDisplaySurface::advanceFrame() {
163    if (mDisplayId < 0)
164        return NO_ERROR;
165
166    if (mCompositionType == COMPOSITION_HWC) {
167        VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
168                "Unexpected advanceFrame() in %s state on HWC frame",
169                dbgStateStr());
170    } else {
171        VDS_LOGW_IF(mDbgState != DBG_STATE_GLES_DONE,
172                "Unexpected advanceFrame() in %s state on GLES/MIXED frame",
173                dbgStateStr());
174    }
175    mDbgState = DBG_STATE_HWC;
176
177    if (mOutputProducerSlot < 0 ||
178            (mCompositionType != COMPOSITION_HWC && mFbProducerSlot < 0)) {
179        // Last chance bailout if something bad happened earlier. For example,
180        // in a GLES configuration, if the sink disappears then dequeueBuffer
181        // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
182        // will soldier on. So we end up here without a buffer. There should
183        // be lots of scary messages in the log just before this.
184        VDS_LOGE("advanceFrame: no buffer, bailing out");
185        return NO_MEMORY;
186    }
187
188    sp<GraphicBuffer> fbBuffer = mFbProducerSlot >= 0 ?
189            mProducerBuffers[mFbProducerSlot] : sp<GraphicBuffer>(NULL);
190    sp<GraphicBuffer> outBuffer = mProducerBuffers[mOutputProducerSlot];
191    VDS_LOGV("advanceFrame: fb=%d(%p) out=%d(%p)",
192            mFbProducerSlot, fbBuffer.get(),
193            mOutputProducerSlot, outBuffer.get());
194
195    // At this point we know the output buffer acquire fence,
196    // so update HWC state with it.
197    mHwc.setOutputBuffer(mDisplayId, mOutputFence, outBuffer);
198
199    status_t result = NO_ERROR;
200    if (fbBuffer != NULL) {
201        result = mHwc.fbPost(mDisplayId, mFbFence, fbBuffer);
202    }
203
204    return result;
205}
206
207void VirtualDisplaySurface::onFrameCommitted() {
208    if (mDisplayId < 0)
209        return;
210
211    VDS_LOGW_IF(mDbgState != DBG_STATE_HWC,
212            "Unexpected onFrameCommitted() in %s state", dbgStateStr());
213    mDbgState = DBG_STATE_IDLE;
214
215    sp<Fence> fbFence = mHwc.getAndResetReleaseFence(mDisplayId);
216    if (mCompositionType == COMPOSITION_MIXED && mFbProducerSlot >= 0) {
217        // release the scratch buffer back to the pool
218        Mutex::Autolock lock(mMutex);
219        int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, mFbProducerSlot);
220        VDS_LOGV("onFrameCommitted: release scratch sslot=%d", sslot);
221        addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot], fbFence);
222        releaseBufferLocked(sslot, mProducerBuffers[mFbProducerSlot],
223                EGL_NO_DISPLAY, EGL_NO_SYNC_KHR);
224    }
225
226    if (mOutputProducerSlot >= 0) {
227        int sslot = mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot);
228        QueueBufferOutput qbo;
229        sp<Fence> outFence = mHwc.getLastRetireFence(mDisplayId);
230        VDS_LOGV("onFrameCommitted: queue sink sslot=%d", sslot);
231        status_t result = mSource[SOURCE_SINK]->queueBuffer(sslot,
232                QueueBufferInput(
233                    systemTime(), false /* isAutoTimestamp */,
234                    Rect(mSinkBufferWidth, mSinkBufferHeight),
235                    NATIVE_WINDOW_SCALING_MODE_FREEZE, 0 /* transform */,
236                    true /* async*/,
237                    outFence),
238                &qbo);
239        if (result == NO_ERROR) {
240            updateQueueBufferOutput(qbo);
241        }
242    }
243
244    resetPerFrameState();
245}
246
247void VirtualDisplaySurface::dump(String8& result) const {
248}
249
250status_t VirtualDisplaySurface::requestBuffer(int pslot,
251        sp<GraphicBuffer>* outBuf) {
252    VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
253            "Unexpected requestBuffer pslot=%d in %s state",
254            pslot, dbgStateStr());
255
256    *outBuf = mProducerBuffers[pslot];
257    return NO_ERROR;
258}
259
260status_t VirtualDisplaySurface::setBufferCount(int bufferCount) {
261    return mSource[SOURCE_SINK]->setBufferCount(bufferCount);
262}
263
264status_t VirtualDisplaySurface::dequeueBuffer(Source source,
265        uint32_t format, uint32_t usage, int* sslot, sp<Fence>* fence) {
266    // Don't let a slow consumer block us
267    bool async = (source == SOURCE_SINK);
268
269    status_t result = mSource[source]->dequeueBuffer(sslot, fence, async,
270            mSinkBufferWidth, mSinkBufferHeight, format, usage);
271    if (result < 0)
272        return result;
273    int pslot = mapSource2ProducerSlot(source, *sslot);
274    VDS_LOGV("dequeueBuffer(%s): sslot=%d pslot=%d result=%d",
275            dbgSourceStr(source), *sslot, pslot, result);
276    uint32_t sourceBit = static_cast<uint32_t>(source) << pslot;
277
278    if ((mProducerSlotSource & (1u << pslot)) != sourceBit) {
279        // This slot was previously dequeued from the other source; must
280        // re-request the buffer.
281        result |= BUFFER_NEEDS_REALLOCATION;
282        mProducerSlotSource &= ~(1u << pslot);
283        mProducerSlotSource |= sourceBit;
284    }
285
286    if (result & RELEASE_ALL_BUFFERS) {
287        for (uint32_t i = 0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
288            if ((mProducerSlotSource & (1u << i)) == sourceBit)
289                mProducerBuffers[i].clear();
290        }
291    }
292    if (result & BUFFER_NEEDS_REALLOCATION) {
293        mSource[source]->requestBuffer(*sslot, &mProducerBuffers[pslot]);
294        VDS_LOGV("dequeueBuffer(%s): buffers[%d]=%p fmt=%d usage=%#x",
295                dbgSourceStr(source), pslot, mProducerBuffers[pslot].get(),
296                mProducerBuffers[pslot]->getPixelFormat(),
297                mProducerBuffers[pslot]->getUsage());
298    }
299
300    return result;
301}
302
303status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence, bool async,
304        uint32_t w, uint32_t h, uint32_t format, uint32_t usage) {
305    VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
306            "Unexpected dequeueBuffer() in %s state", dbgStateStr());
307    mDbgState = DBG_STATE_GLES;
308
309    VDS_LOGW_IF(!async, "EGL called dequeueBuffer with !async despite eglSwapInterval(0)");
310    VDS_LOGV("dequeueBuffer %dx%d fmt=%d usage=%#x", w, h, format, usage);
311
312    status_t result = NO_ERROR;
313    Source source = fbSourceForCompositionType(mCompositionType);
314
315    if (source == SOURCE_SINK) {
316
317        if (mOutputProducerSlot < 0) {
318            // Last chance bailout if something bad happened earlier. For example,
319            // in a GLES configuration, if the sink disappears then dequeueBuffer
320            // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
321            // will soldier on. So we end up here without a buffer. There should
322            // be lots of scary messages in the log just before this.
323            VDS_LOGE("dequeueBuffer: no buffer, bailing out");
324            return NO_MEMORY;
325        }
326
327        // We already dequeued the output buffer. If the GLES driver wants
328        // something incompatible, we have to cancel and get a new one. This
329        // will mean that HWC will see a different output buffer between
330        // prepare and set, but since we're in GLES-only mode already it
331        // shouldn't matter.
332
333        usage |= GRALLOC_USAGE_HW_COMPOSER;
334        const sp<GraphicBuffer>& buf = mProducerBuffers[mOutputProducerSlot];
335        if ((usage & ~buf->getUsage()) != 0 ||
336                (format != 0 && format != (uint32_t)buf->getPixelFormat()) ||
337                (w != 0 && w != mSinkBufferWidth) ||
338                (h != 0 && h != mSinkBufferHeight)) {
339            VDS_LOGV("dequeueBuffer: dequeueing new output buffer: "
340                    "want %dx%d fmt=%d use=%#x, "
341                    "have %dx%d fmt=%d use=%#x",
342                    w, h, format, usage,
343                    mSinkBufferWidth, mSinkBufferHeight,
344                    buf->getPixelFormat(), buf->getUsage());
345            mOutputFormat = format;
346            mOutputUsage = usage;
347            result = refreshOutputBuffer();
348            if (result < 0)
349                return result;
350        }
351    }
352
353    if (source == SOURCE_SINK) {
354        *pslot = mOutputProducerSlot;
355        *fence = mOutputFence;
356    } else {
357        int sslot;
358        result = dequeueBuffer(source, format, usage, &sslot, fence);
359        if (result >= 0) {
360            *pslot = mapSource2ProducerSlot(source, sslot);
361        }
362    }
363    return result;
364}
365
366status_t VirtualDisplaySurface::queueBuffer(int pslot,
367        const QueueBufferInput& input, QueueBufferOutput* output) {
368    VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
369            "Unexpected queueBuffer(pslot=%d) in %s state", pslot,
370            dbgStateStr());
371    mDbgState = DBG_STATE_GLES_DONE;
372
373    VDS_LOGV("queueBuffer pslot=%d", pslot);
374
375    status_t result;
376    if (mCompositionType == COMPOSITION_MIXED) {
377        // Queue the buffer back into the scratch pool
378        QueueBufferOutput scratchQBO;
379        int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, pslot);
380        result = mSource[SOURCE_SCRATCH]->queueBuffer(sslot, input, &scratchQBO);
381        if (result != NO_ERROR)
382            return result;
383
384        // Now acquire the buffer from the scratch pool -- should be the same
385        // slot and fence as we just queued.
386        Mutex::Autolock lock(mMutex);
387        BufferQueue::BufferItem item;
388        result = acquireBufferLocked(&item, 0);
389        if (result != NO_ERROR)
390            return result;
391        VDS_LOGW_IF(item.mBuf != sslot,
392                "queueBuffer: acquired sslot %d from SCRATCH after queueing sslot %d",
393                item.mBuf, sslot);
394        mFbProducerSlot = mapSource2ProducerSlot(SOURCE_SCRATCH, item.mBuf);
395        mFbFence = mSlots[item.mBuf].mFence;
396
397    } else {
398        LOG_FATAL_IF(mCompositionType != COMPOSITION_GLES,
399                "Unexpected queueBuffer in state %s for compositionType %s",
400                dbgStateStr(), dbgCompositionTypeStr(mCompositionType));
401
402        // Extract the GLES release fence for HWC to acquire
403        int64_t timestamp;
404        bool isAutoTimestamp;
405        Rect crop;
406        int scalingMode;
407        uint32_t transform;
408        bool async;
409        input.deflate(&timestamp, &isAutoTimestamp, &crop, &scalingMode,
410                &transform, &async, &mFbFence);
411
412        mFbProducerSlot = pslot;
413        mOutputFence = mFbFence;
414    }
415
416    *output = mQueueBufferOutput;
417    return NO_ERROR;
418}
419
420void VirtualDisplaySurface::cancelBuffer(int pslot, const sp<Fence>& fence) {
421    VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
422            "Unexpected cancelBuffer(pslot=%d) in %s state", pslot,
423            dbgStateStr());
424    VDS_LOGV("cancelBuffer pslot=%d", pslot);
425    Source source = fbSourceForCompositionType(mCompositionType);
426    return mSource[source]->cancelBuffer(
427            mapProducer2SourceSlot(source, pslot), fence);
428}
429
430int VirtualDisplaySurface::query(int what, int* value) {
431    return mSource[SOURCE_SINK]->query(what, value);
432}
433
434status_t VirtualDisplaySurface::connect(const sp<IBinder>& token,
435        int api, bool producerControlledByApp,
436        QueueBufferOutput* output) {
437    QueueBufferOutput qbo;
438    status_t result = mSource[SOURCE_SINK]->connect(token, api, producerControlledByApp, &qbo);
439    if (result == NO_ERROR) {
440        updateQueueBufferOutput(qbo);
441        *output = mQueueBufferOutput;
442    }
443    return result;
444}
445
446status_t VirtualDisplaySurface::disconnect(int api) {
447    return mSource[SOURCE_SINK]->disconnect(api);
448}
449
450void VirtualDisplaySurface::updateQueueBufferOutput(
451        const QueueBufferOutput& qbo) {
452    uint32_t w, h, transformHint, numPendingBuffers;
453    qbo.deflate(&w, &h, &transformHint, &numPendingBuffers);
454    mQueueBufferOutput.inflate(w, h, 0, numPendingBuffers);
455}
456
457void VirtualDisplaySurface::resetPerFrameState() {
458    mCompositionType = COMPOSITION_UNKNOWN;
459    mSinkBufferWidth = 0;
460    mSinkBufferHeight = 0;
461    mOutputFence = Fence::NO_FENCE;
462    mOutputProducerSlot = -1;
463}
464
465status_t VirtualDisplaySurface::refreshOutputBuffer() {
466    if (mOutputProducerSlot >= 0) {
467        mSource[SOURCE_SINK]->cancelBuffer(
468                mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot),
469                mOutputFence);
470    }
471
472    int sslot;
473    status_t result = dequeueBuffer(SOURCE_SINK, mOutputFormat, mOutputUsage,
474            &sslot, &mOutputFence);
475    if (result < 0)
476        return result;
477    mOutputProducerSlot = mapSource2ProducerSlot(SOURCE_SINK, sslot);
478
479    // On GLES-only frames, we don't have the right output buffer acquire fence
480    // until after GLES calls queueBuffer(). So here we just set the buffer
481    // (for use in HWC prepare) but not the fence; we'll call this again with
482    // the proper fence once we have it.
483    result = mHwc.setOutputBuffer(mDisplayId, Fence::NO_FENCE,
484            mProducerBuffers[mOutputProducerSlot]);
485
486    return result;
487}
488
489// This slot mapping function is its own inverse, so two copies are unnecessary.
490// Both are kept to make the intent clear where the function is called, and for
491// the (unlikely) chance that we switch to a different mapping function.
492int VirtualDisplaySurface::mapSource2ProducerSlot(Source source, int sslot) {
493    if (source == SOURCE_SCRATCH) {
494        return BufferQueue::NUM_BUFFER_SLOTS - sslot - 1;
495    } else {
496        return sslot;
497    }
498}
499int VirtualDisplaySurface::mapProducer2SourceSlot(Source source, int pslot) {
500    return mapSource2ProducerSlot(source, pslot);
501}
502
503VirtualDisplaySurface::Source
504VirtualDisplaySurface::fbSourceForCompositionType(CompositionType type) {
505    return type == COMPOSITION_MIXED ? SOURCE_SCRATCH : SOURCE_SINK;
506}
507
508const char* VirtualDisplaySurface::dbgStateStr() const {
509    switch (mDbgState) {
510        case DBG_STATE_IDLE:      return "IDLE";
511        case DBG_STATE_PREPARED:  return "PREPARED";
512        case DBG_STATE_GLES:      return "GLES";
513        case DBG_STATE_GLES_DONE: return "GLES_DONE";
514        case DBG_STATE_HWC:       return "HWC";
515        default:                  return "INVALID";
516    }
517}
518
519const char* VirtualDisplaySurface::dbgSourceStr(Source s) {
520    switch (s) {
521        case SOURCE_SINK:    return "SINK";
522        case SOURCE_SCRATCH: return "SCRATCH";
523        default:             return "INVALID";
524    }
525}
526
527// ---------------------------------------------------------------------------
528} // namespace android
529// ---------------------------------------------------------------------------
530