Layer.cpp revision 5773d3f5b2694c647e010246dff99acc70131289
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdlib.h>
20#include <stdint.h>
21#include <sys/types.h>
22#include <math.h>
23
24#include <cutils/compiler.h>
25#include <cutils/native_handle.h>
26#include <cutils/properties.h>
27
28#include <utils/Errors.h>
29#include <utils/Log.h>
30#include <utils/StopWatch.h>
31#include <utils/Trace.h>
32
33#include <ui/GraphicBuffer.h>
34#include <ui/PixelFormat.h>
35
36#include <gui/Surface.h>
37
38#include "clz.h"
39#include "Colorizer.h"
40#include "DisplayDevice.h"
41#include "Layer.h"
42#include "SurfaceFlinger.h"
43#include "SurfaceTextureLayer.h"
44
45#include "DisplayHardware/HWComposer.h"
46
47#include "RenderEngine/RenderEngine.h"
48
49#define DEBUG_RESIZE    0
50
51namespace android {
52
53// ---------------------------------------------------------------------------
54
55int32_t Layer::sSequence = 1;
56
57Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client,
58        const String8& name, uint32_t w, uint32_t h, uint32_t flags)
59    :   contentDirty(false),
60        sequence(uint32_t(android_atomic_inc(&sSequence))),
61        mFlinger(flinger),
62        mTextureName(-1U),
63        mPremultipliedAlpha(true),
64        mName("unnamed"),
65        mDebug(false),
66        mFormat(PIXEL_FORMAT_NONE),
67        mOpaqueLayer(true),
68        mTransactionFlags(0),
69        mQueuedFrames(0),
70        mCurrentTransform(0),
71        mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
72        mCurrentOpacity(true),
73        mRefreshPending(false),
74        mFrameLatencyNeeded(false),
75        mFiltering(false),
76        mNeedsFiltering(false),
77        mSecure(false),
78        mProtectedByApp(false),
79        mHasSurface(false),
80        mClientRef(client)
81{
82    mCurrentCrop.makeInvalid();
83    glGenTextures(1, &mTextureName);
84
85    uint32_t layerFlags = 0;
86    if (flags & ISurfaceComposerClient::eHidden)
87        layerFlags = layer_state_t::eLayerHidden;
88
89    if (flags & ISurfaceComposerClient::eNonPremultiplied)
90        mPremultipliedAlpha = false;
91
92    mName = name;
93
94    mCurrentState.active.w = w;
95    mCurrentState.active.h = h;
96    mCurrentState.active.crop.makeInvalid();
97    mCurrentState.z = 0;
98    mCurrentState.alpha = 0xFF;
99    mCurrentState.layerStack = 0;
100    mCurrentState.flags = layerFlags;
101    mCurrentState.sequence = 0;
102    mCurrentState.transform.set(0, 0);
103    mCurrentState.requested = mCurrentState.active;
104
105    // drawing state & current state are identical
106    mDrawingState = mCurrentState;
107
108    nsecs_t displayPeriod =
109            flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
110    mFrameTracker.setDisplayRefreshPeriod(displayPeriod);
111}
112
113void Layer::onFirstRef()
114{
115    // Creates a custom BufferQueue for SurfaceFlingerConsumer to use
116    sp<BufferQueue> bq = new SurfaceTextureLayer(mFlinger);
117    mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(bq, mTextureName,
118            GL_TEXTURE_EXTERNAL_OES, false);
119
120    mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
121    mSurfaceFlingerConsumer->setFrameAvailableListener(this);
122    mSurfaceFlingerConsumer->setName(mName);
123
124#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
125#warning "disabling triple buffering"
126    mSurfaceFlingerConsumer->setDefaultMaxBufferCount(2);
127#else
128    mSurfaceFlingerConsumer->setDefaultMaxBufferCount(3);
129#endif
130
131    const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
132    updateTransformHint(hw);
133}
134
135Layer::~Layer() {
136    sp<Client> c(mClientRef.promote());
137    if (c != 0) {
138        c->detachLayer(this);
139    }
140    mFlinger->deleteTextureAsync(mTextureName);
141    mFrameTracker.logAndResetStats(mName);
142}
143
144// ---------------------------------------------------------------------------
145// callbacks
146// ---------------------------------------------------------------------------
147
148void Layer::onLayerDisplayed(const sp<const DisplayDevice>& hw,
149        HWComposer::HWCLayerInterface* layer) {
150    if (layer) {
151        layer->onDisplayed();
152        mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence());
153    }
154}
155
156void Layer::onFrameAvailable() {
157    android_atomic_inc(&mQueuedFrames);
158    mFlinger->signalLayerUpdate();
159}
160
161// called with SurfaceFlinger::mStateLock from the drawing thread after
162// the layer has been remove from the current state list (and just before
163// it's removed from the drawing state list)
164void Layer::onRemoved() {
165    mSurfaceFlingerConsumer->abandon();
166}
167
168// ---------------------------------------------------------------------------
169// set-up
170// ---------------------------------------------------------------------------
171
172const String8& Layer::getName() const {
173    return mName;
174}
175
176status_t Layer::setBuffers( uint32_t w, uint32_t h,
177                            PixelFormat format, uint32_t flags)
178{
179    uint32_t const maxSurfaceDims = min(
180            mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
181
182    // never allow a surface larger than what our underlying GL implementation
183    // can handle.
184    if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) {
185        ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
186        return BAD_VALUE;
187    }
188
189    mFormat = format;
190
191    mSecure = (flags & ISurfaceComposerClient::eSecure) ? true : false;
192    mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
193    mOpaqueLayer = (flags & ISurfaceComposerClient::eOpaque);
194    mCurrentOpacity = getOpacityForFormat(format);
195
196    mSurfaceFlingerConsumer->setDefaultBufferSize(w, h);
197    mSurfaceFlingerConsumer->setDefaultBufferFormat(format);
198    mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
199
200    return NO_ERROR;
201}
202
203sp<IBinder> Layer::getHandle() {
204    Mutex::Autolock _l(mLock);
205
206    LOG_ALWAYS_FATAL_IF(mHasSurface,
207            "Layer::getHandle() has already been called");
208
209    mHasSurface = true;
210
211    /*
212     * The layer handle is just a BBinder object passed to the client
213     * (remote process) -- we don't keep any reference on our side such that
214     * the dtor is called when the remote side let go of its reference.
215     *
216     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
217     * this layer when the handle is destroyed.
218     */
219
220    class Handle : public BBinder, public LayerCleaner {
221        wp<const Layer> mOwner;
222    public:
223        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
224            : LayerCleaner(flinger, layer), mOwner(layer) {
225        }
226    };
227
228    return new Handle(mFlinger, this);
229}
230
231sp<BufferQueue> Layer::getBufferQueue() const {
232    return mSurfaceFlingerConsumer->getBufferQueue();
233}
234
235// ---------------------------------------------------------------------------
236// h/w composer set-up
237// ---------------------------------------------------------------------------
238
239Rect Layer::getContentCrop() const {
240    // this is the crop rectangle that applies to the buffer
241    // itself (as opposed to the window)
242    Rect crop;
243    if (!mCurrentCrop.isEmpty()) {
244        // if the buffer crop is defined, we use that
245        crop = mCurrentCrop;
246    } else if (mActiveBuffer != NULL) {
247        // otherwise we use the whole buffer
248        crop = mActiveBuffer->getBounds();
249    } else {
250        // if we don't have a buffer yet, we use an empty/invalid crop
251        crop.makeInvalid();
252    }
253    return crop;
254}
255
256static Rect reduce(const Rect& win, const Region& exclude) {
257    if (CC_LIKELY(exclude.isEmpty())) {
258        return win;
259    }
260    if (exclude.isRect()) {
261        return win.reduce(exclude.getBounds());
262    }
263    return Region(win).subtract(exclude).getBounds();
264}
265
266Rect Layer::computeBounds() const {
267    const Layer::State& s(getDrawingState());
268    Rect win(s.active.w, s.active.h);
269    if (!s.active.crop.isEmpty()) {
270        win.intersect(s.active.crop, &win);
271    }
272    // subtract the transparent region and snap to the bounds
273    return reduce(win, s.activeTransparentRegion);
274}
275
276FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const {
277    // the content crop is the area of the content that gets scaled to the
278    // layer's size.
279    FloatRect crop(getContentCrop());
280
281    // the active.crop is the area of the window that gets cropped, but not
282    // scaled in any ways.
283    const State& s(getDrawingState());
284
285    // apply the projection's clipping to the window crop in
286    // layerstack space, and convert-back to layer space.
287    // if there are no window scaling involved, this operation will map to full
288    // pixels in the buffer.
289    // FIXME: the 3 lines below can produce slightly incorrect clipping when we have
290    // a viewport clipping and a window transform. we should use floating point to fix this.
291    Rect activeCrop(s.transform.transform(s.active.crop));
292    activeCrop.intersect(hw->getViewport(), &activeCrop);
293    activeCrop = s.transform.inverse().transform(activeCrop);
294
295    // paranoia: make sure the window-crop is constrained in the
296    // window's bounds
297    activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop);
298
299    // subtract the transparent region and snap to the bounds
300    activeCrop = reduce(activeCrop, s.activeTransparentRegion);
301
302    if (!activeCrop.isEmpty()) {
303        // Transform the window crop to match the buffer coordinate system,
304        // which means using the inverse of the current transform set on the
305        // SurfaceFlingerConsumer.
306        uint32_t invTransform = mCurrentTransform;
307        int winWidth = s.active.w;
308        int winHeight = s.active.h;
309        if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
310            invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
311                    NATIVE_WINDOW_TRANSFORM_FLIP_H;
312            winWidth = s.active.h;
313            winHeight = s.active.w;
314        }
315        const Rect winCrop = activeCrop.transform(
316                invTransform, s.active.w, s.active.h);
317
318        // below, crop is intersected with winCrop expressed in crop's coordinate space
319        float xScale = crop.getWidth()  / float(winWidth);
320        float yScale = crop.getHeight() / float(winHeight);
321
322        float insetL = winCrop.left                 * xScale;
323        float insetT = winCrop.top                  * yScale;
324        float insetR = (winWidth  - winCrop.right ) * xScale;
325        float insetB = (winHeight - winCrop.bottom) * yScale;
326
327        crop.left   += insetL;
328        crop.top    += insetT;
329        crop.right  -= insetR;
330        crop.bottom -= insetB;
331    }
332    return crop;
333}
334
335void Layer::setGeometry(
336    const sp<const DisplayDevice>& hw,
337        HWComposer::HWCLayerInterface& layer)
338{
339    layer.setDefaultState();
340
341    // enable this layer
342    layer.setSkip(false);
343
344    if (isSecure() && !hw->isSecure()) {
345        layer.setSkip(true);
346    }
347
348    // this gives us only the "orientation" component of the transform
349    const State& s(getDrawingState());
350    if (!isOpaque() || s.alpha != 0xFF) {
351        layer.setBlending(mPremultipliedAlpha ?
352                HWC_BLENDING_PREMULT :
353                HWC_BLENDING_COVERAGE);
354    }
355
356    // apply the layer's transform, followed by the display's global transform
357    // here we're guaranteed that the layer's transform preserves rects
358    Rect frame(s.transform.transform(computeBounds()));
359    frame.intersect(hw->getViewport(), &frame);
360    const Transform& tr(hw->getTransform());
361    layer.setFrame(tr.transform(frame));
362    layer.setCrop(computeCrop(hw));
363    layer.setPlaneAlpha(s.alpha);
364
365    /*
366     * Transformations are applied in this order:
367     * 1) buffer orientation/flip/mirror
368     * 2) state transformation (window manager)
369     * 3) layer orientation (screen orientation)
370     * (NOTE: the matrices are multiplied in reverse order)
371     */
372
373    const Transform bufferOrientation(mCurrentTransform);
374    const Transform transform(tr * s.transform * bufferOrientation);
375
376    // this gives us only the "orientation" component of the transform
377    const uint32_t orientation = transform.getOrientation();
378    if (orientation & Transform::ROT_INVALID) {
379        // we can only handle simple transformation
380        layer.setSkip(true);
381    } else {
382        layer.setTransform(orientation);
383    }
384}
385
386void Layer::setPerFrameData(const sp<const DisplayDevice>& hw,
387        HWComposer::HWCLayerInterface& layer) {
388    // we have to set the visible region on every frame because
389    // we currently free it during onLayerDisplayed(), which is called
390    // after HWComposer::commit() -- every frame.
391    // Apply this display's projection's viewport to the visible region
392    // before giving it to the HWC HAL.
393    const Transform& tr = hw->getTransform();
394    Region visible = tr.transform(visibleRegion.intersect(hw->getViewport()));
395    layer.setVisibleRegionScreen(visible);
396
397    // NOTE: buffer can be NULL if the client never drew into this
398    // layer yet, or if we ran out of memory
399    layer.setBuffer(mActiveBuffer);
400}
401
402void Layer::setAcquireFence(const sp<const DisplayDevice>& hw,
403        HWComposer::HWCLayerInterface& layer) {
404    int fenceFd = -1;
405
406    // TODO: there is a possible optimization here: we only need to set the
407    // acquire fence the first time a new buffer is acquired on EACH display.
408
409    if (layer.getCompositionType() == HWC_OVERLAY) {
410        sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence();
411        if (fence->isValid()) {
412            fenceFd = fence->dup();
413            if (fenceFd == -1) {
414                ALOGW("failed to dup layer fence, skipping sync: %d", errno);
415            }
416        }
417    }
418    layer.setAcquireFenceFd(fenceFd);
419}
420
421// ---------------------------------------------------------------------------
422// drawing...
423// ---------------------------------------------------------------------------
424
425void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const {
426    onDraw(hw, clip);
427}
428
429void Layer::draw(const sp<const DisplayDevice>& hw) {
430    onDraw( hw, Region(hw->bounds()) );
431}
432
433void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip) const
434{
435    ATRACE_CALL();
436
437    if (CC_UNLIKELY(mActiveBuffer == 0)) {
438        // the texture has not been created yet, this Layer has
439        // in fact never been drawn into. This happens frequently with
440        // SurfaceView because the WindowManager can't know when the client
441        // has drawn the first time.
442
443        // If there is nothing under us, we paint the screen in black, otherwise
444        // we just skip this update.
445
446        // figure out if there is something below us
447        Region under;
448        const SurfaceFlinger::LayerVector& drawingLayers(
449                mFlinger->mDrawingState.layersSortedByZ);
450        const size_t count = drawingLayers.size();
451        for (size_t i=0 ; i<count ; ++i) {
452            const sp<Layer>& layer(drawingLayers[i]);
453            if (layer.get() == static_cast<Layer const*>(this))
454                break;
455            under.orSelf( hw->getTransform().transform(layer->visibleRegion) );
456        }
457        // if not everything below us is covered, we plug the holes!
458        Region holes(clip.subtract(under));
459        if (!holes.isEmpty()) {
460            clearWithOpenGL(hw, holes, 0, 0, 0, 1);
461        }
462        return;
463    }
464
465    // Bind the current buffer to the GL texture, and wait for it to be
466    // ready for us to draw into.
467    status_t err = mSurfaceFlingerConsumer->bindTextureImage();
468    if (err != NO_ERROR) {
469        ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
470        // Go ahead and draw the buffer anyway; no matter what we do the screen
471        // is probably going to have something visibly wrong.
472    }
473
474    bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure());
475
476    RenderEngine& engine(mFlinger->getRenderEngine());
477
478    if (!blackOutLayer) {
479        // TODO: we could be more subtle with isFixedSize()
480        const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize();
481
482        // Query the texture matrix given our current filtering mode.
483        float textureMatrix[16];
484        mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering);
485        mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix);
486
487        // Set things up for texturing.
488        engine.setupLayerTexturing(mTextureName, useFiltering, textureMatrix);
489    } else {
490        engine.setupLayerBlackedOut();
491    }
492    drawWithOpenGL(hw, clip);
493    engine.disableTexturing();
494}
495
496
497void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw, const Region& clip,
498        GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) const
499{
500    LayerMesh mesh;
501    computeGeometry(hw, &mesh);
502
503    mFlinger->getRenderEngine().clearWithColor(
504        mesh.getVertices(), mesh.getVertexCount(),
505        red, green, blue, alpha);
506}
507
508void Layer::clearWithOpenGL(
509        const sp<const DisplayDevice>& hw, const Region& clip) const {
510    clearWithOpenGL(hw, clip, 0,0,0,0);
511}
512
513void Layer::drawWithOpenGL(
514        const sp<const DisplayDevice>& hw, const Region& clip) const {
515    const uint32_t fbHeight = hw->getHeight();
516    const State& s(getDrawingState());
517
518    LayerMesh mesh;
519    computeGeometry(hw, &mesh);
520
521    /*
522     * NOTE: the way we compute the texture coordinates here produces
523     * different results than when we take the HWC path -- in the later case
524     * the "source crop" is rounded to texel boundaries.
525     * This can produce significantly different results when the texture
526     * is scaled by a large amount.
527     *
528     * The GL code below is more logical (imho), and the difference with
529     * HWC is due to a limitation of the HWC API to integers -- a question
530     * is suspend is wether we should ignore this problem or revert to
531     * GL composition when a buffer scaling is applied (maybe with some
532     * minimal value)? Or, we could make GL behave like HWC -- but this feel
533     * like more of a hack.
534     */
535    const Rect win(computeBounds());
536
537    GLfloat left   = GLfloat(win.left)   / GLfloat(s.active.w);
538    GLfloat top    = GLfloat(win.top)    / GLfloat(s.active.h);
539    GLfloat right  = GLfloat(win.right)  / GLfloat(s.active.w);
540    GLfloat bottom = GLfloat(win.bottom) / GLfloat(s.active.h);
541
542    // TODO: we probably want to generate the texture coords with the mesh
543    // here we assume that we only have 4 vertices
544    float texCoords[4][2];
545    texCoords[0][0] = left;
546    texCoords[0][1] = top;
547    texCoords[1][0] = left;
548    texCoords[1][1] = bottom;
549    texCoords[2][0] = right;
550    texCoords[2][1] = bottom;
551    texCoords[3][0] = right;
552    texCoords[3][1] = top;
553    for (int i = 0; i < 4; i++) {
554        texCoords[i][1] = 1.0f - texCoords[i][1];
555    }
556
557    RenderEngine& engine(mFlinger->getRenderEngine());
558    engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(), s.alpha);
559    engine.drawMesh2D(mesh.getVertices(), texCoords, mesh.getVertexCount());
560    engine.disableBlending();
561}
562
563void Layer::setFiltering(bool filtering) {
564    mFiltering = filtering;
565}
566
567bool Layer::getFiltering() const {
568    return mFiltering;
569}
570
571// As documented in libhardware header, formats in the range
572// 0x100 - 0x1FF are specific to the HAL implementation, and
573// are known to have no alpha channel
574// TODO: move definition for device-specific range into
575// hardware.h, instead of using hard-coded values here.
576#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
577
578bool Layer::getOpacityForFormat(uint32_t format) {
579    if (HARDWARE_IS_DEVICE_FORMAT(format)) {
580        return true;
581    }
582    switch (format) {
583        case HAL_PIXEL_FORMAT_RGBA_8888:
584        case HAL_PIXEL_FORMAT_BGRA_8888:
585        case HAL_PIXEL_FORMAT_RGBA_5551:
586        case HAL_PIXEL_FORMAT_RGBA_4444:
587            return true;
588    }
589    // in all other case, we have no blending (also for unknown formats)
590    return false;
591}
592
593// ----------------------------------------------------------------------------
594// local state
595// ----------------------------------------------------------------------------
596
597void Layer::computeGeometry(const sp<const DisplayDevice>& hw, LayerMesh* mesh) const
598{
599    const Layer::State& s(getDrawingState());
600    const Transform tr(hw->getTransform() * s.transform);
601    const uint32_t hw_h = hw->getHeight();
602    Rect win(s.active.w, s.active.h);
603    if (!s.active.crop.isEmpty()) {
604        win.intersect(s.active.crop, &win);
605    }
606    // subtract the transparent region and snap to the bounds
607    win = reduce(win, s.activeTransparentRegion);
608    if (mesh) {
609        tr.transform(mesh->mVertices[0], win.left,  win.top);
610        tr.transform(mesh->mVertices[1], win.left,  win.bottom);
611        tr.transform(mesh->mVertices[2], win.right, win.bottom);
612        tr.transform(mesh->mVertices[3], win.right, win.top);
613        for (size_t i=0 ; i<4 ; i++) {
614            mesh->mVertices[i][1] = hw_h - mesh->mVertices[i][1];
615        }
616    }
617}
618
619bool Layer::isOpaque() const
620{
621    // if we don't have a buffer yet, we're translucent regardless of the
622    // layer's opaque flag.
623    if (mActiveBuffer == 0) {
624        return false;
625    }
626
627    // if the layer has the opaque flag, then we're always opaque,
628    // otherwise we use the current buffer's format.
629    return mOpaqueLayer || mCurrentOpacity;
630}
631
632bool Layer::isProtected() const
633{
634    const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
635    return (activeBuffer != 0) &&
636            (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
637}
638
639bool Layer::isFixedSize() const {
640    return mCurrentScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
641}
642
643bool Layer::isCropped() const {
644    return !mCurrentCrop.isEmpty();
645}
646
647bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const {
648    return mNeedsFiltering || hw->needsFiltering();
649}
650
651void Layer::setVisibleRegion(const Region& visibleRegion) {
652    // always called from main thread
653    this->visibleRegion = visibleRegion;
654}
655
656void Layer::setCoveredRegion(const Region& coveredRegion) {
657    // always called from main thread
658    this->coveredRegion = coveredRegion;
659}
660
661void Layer::setVisibleNonTransparentRegion(const Region&
662        setVisibleNonTransparentRegion) {
663    // always called from main thread
664    this->visibleNonTransparentRegion = setVisibleNonTransparentRegion;
665}
666
667// ----------------------------------------------------------------------------
668// transaction
669// ----------------------------------------------------------------------------
670
671uint32_t Layer::doTransaction(uint32_t flags) {
672    ATRACE_CALL();
673
674    const Layer::State& s(getDrawingState());
675    const Layer::State& c(getCurrentState());
676
677    const bool sizeChanged = (c.requested.w != s.requested.w) ||
678                             (c.requested.h != s.requested.h);
679
680    if (sizeChanged) {
681        // the size changed, we need to ask our client to request a new buffer
682        ALOGD_IF(DEBUG_RESIZE,
683                "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
684                "  current={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
685                "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n"
686                "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
687                "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n",
688                this, getName().string(), mCurrentTransform, mCurrentScalingMode,
689                c.active.w, c.active.h,
690                c.active.crop.left,
691                c.active.crop.top,
692                c.active.crop.right,
693                c.active.crop.bottom,
694                c.active.crop.getWidth(),
695                c.active.crop.getHeight(),
696                c.requested.w, c.requested.h,
697                c.requested.crop.left,
698                c.requested.crop.top,
699                c.requested.crop.right,
700                c.requested.crop.bottom,
701                c.requested.crop.getWidth(),
702                c.requested.crop.getHeight(),
703                s.active.w, s.active.h,
704                s.active.crop.left,
705                s.active.crop.top,
706                s.active.crop.right,
707                s.active.crop.bottom,
708                s.active.crop.getWidth(),
709                s.active.crop.getHeight(),
710                s.requested.w, s.requested.h,
711                s.requested.crop.left,
712                s.requested.crop.top,
713                s.requested.crop.right,
714                s.requested.crop.bottom,
715                s.requested.crop.getWidth(),
716                s.requested.crop.getHeight());
717
718        // record the new size, form this point on, when the client request
719        // a buffer, it'll get the new size.
720        mSurfaceFlingerConsumer->setDefaultBufferSize(
721                c.requested.w, c.requested.h);
722    }
723
724    if (!isFixedSize()) {
725
726        const bool resizePending = (c.requested.w != c.active.w) ||
727                                   (c.requested.h != c.active.h);
728
729        if (resizePending) {
730            // don't let Layer::doTransaction update the drawing state
731            // if we have a pending resize, unless we are in fixed-size mode.
732            // the drawing state will be updated only once we receive a buffer
733            // with the correct size.
734            //
735            // in particular, we want to make sure the clip (which is part
736            // of the geometry state) is latched together with the size but is
737            // latched immediately when no resizing is involved.
738
739            flags |= eDontUpdateGeometryState;
740        }
741    }
742
743    // always set active to requested, unless we're asked not to
744    // this is used by Layer, which special cases resizes.
745    if (flags & eDontUpdateGeometryState)  {
746    } else {
747        Layer::State& editCurrentState(getCurrentState());
748        editCurrentState.active = c.requested;
749    }
750
751    if (s.active != c.active) {
752        // invalidate and recompute the visible regions if needed
753        flags |= Layer::eVisibleRegion;
754    }
755
756    if (c.sequence != s.sequence) {
757        // invalidate and recompute the visible regions if needed
758        flags |= eVisibleRegion;
759        this->contentDirty = true;
760
761        // we may use linear filtering, if the matrix scales us
762        const uint8_t type = c.transform.getType();
763        mNeedsFiltering = (!c.transform.preserveRects() ||
764                (type >= Transform::SCALE));
765    }
766
767    // Commit the transaction
768    commitTransaction();
769    return flags;
770}
771
772void Layer::commitTransaction() {
773    mDrawingState = mCurrentState;
774}
775
776uint32_t Layer::getTransactionFlags(uint32_t flags) {
777    return android_atomic_and(~flags, &mTransactionFlags) & flags;
778}
779
780uint32_t Layer::setTransactionFlags(uint32_t flags) {
781    return android_atomic_or(flags, &mTransactionFlags);
782}
783
784bool Layer::setPosition(float x, float y) {
785    if (mCurrentState.transform.tx() == x && mCurrentState.transform.ty() == y)
786        return false;
787    mCurrentState.sequence++;
788    mCurrentState.transform.set(x, y);
789    setTransactionFlags(eTransactionNeeded);
790    return true;
791}
792bool Layer::setLayer(uint32_t z) {
793    if (mCurrentState.z == z)
794        return false;
795    mCurrentState.sequence++;
796    mCurrentState.z = z;
797    setTransactionFlags(eTransactionNeeded);
798    return true;
799}
800bool Layer::setSize(uint32_t w, uint32_t h) {
801    if (mCurrentState.requested.w == w && mCurrentState.requested.h == h)
802        return false;
803    mCurrentState.requested.w = w;
804    mCurrentState.requested.h = h;
805    setTransactionFlags(eTransactionNeeded);
806    return true;
807}
808bool Layer::setAlpha(uint8_t alpha) {
809    if (mCurrentState.alpha == alpha)
810        return false;
811    mCurrentState.sequence++;
812    mCurrentState.alpha = alpha;
813    setTransactionFlags(eTransactionNeeded);
814    return true;
815}
816bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) {
817    mCurrentState.sequence++;
818    mCurrentState.transform.set(
819            matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy);
820    setTransactionFlags(eTransactionNeeded);
821    return true;
822}
823bool Layer::setTransparentRegionHint(const Region& transparent) {
824    mCurrentState.requestedTransparentRegion = transparent;
825    setTransactionFlags(eTransactionNeeded);
826    return true;
827}
828bool Layer::setFlags(uint8_t flags, uint8_t mask) {
829    const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
830    if (mCurrentState.flags == newFlags)
831        return false;
832    mCurrentState.sequence++;
833    mCurrentState.flags = newFlags;
834    setTransactionFlags(eTransactionNeeded);
835    return true;
836}
837bool Layer::setCrop(const Rect& crop) {
838    if (mCurrentState.requested.crop == crop)
839        return false;
840    mCurrentState.sequence++;
841    mCurrentState.requested.crop = crop;
842    setTransactionFlags(eTransactionNeeded);
843    return true;
844}
845
846bool Layer::setLayerStack(uint32_t layerStack) {
847    if (mCurrentState.layerStack == layerStack)
848        return false;
849    mCurrentState.sequence++;
850    mCurrentState.layerStack = layerStack;
851    setTransactionFlags(eTransactionNeeded);
852    return true;
853}
854
855// ----------------------------------------------------------------------------
856// pageflip handling...
857// ----------------------------------------------------------------------------
858
859bool Layer::onPreComposition() {
860    mRefreshPending = false;
861    return mQueuedFrames > 0;
862}
863
864void Layer::onPostComposition() {
865    if (mFrameLatencyNeeded) {
866        nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp();
867        mFrameTracker.setDesiredPresentTime(desiredPresentTime);
868
869        sp<Fence> frameReadyFence = mSurfaceFlingerConsumer->getCurrentFence();
870        if (frameReadyFence->isValid()) {
871            mFrameTracker.setFrameReadyFence(frameReadyFence);
872        } else {
873            // There was no fence for this frame, so assume that it was ready
874            // to be presented at the desired present time.
875            mFrameTracker.setFrameReadyTime(desiredPresentTime);
876        }
877
878        const HWComposer& hwc = mFlinger->getHwComposer();
879        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
880        if (presentFence->isValid()) {
881            mFrameTracker.setActualPresentFence(presentFence);
882        } else {
883            // The HWC doesn't support present fences, so use the refresh
884            // timestamp instead.
885            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
886            mFrameTracker.setActualPresentTime(presentTime);
887        }
888
889        mFrameTracker.advanceFrame();
890        mFrameLatencyNeeded = false;
891    }
892}
893
894bool Layer::isVisible() const {
895    const Layer::State& s(mDrawingState);
896    return !(s.flags & layer_state_t::eLayerHidden) && s.alpha
897            && (mActiveBuffer != NULL);
898}
899
900Region Layer::latchBuffer(bool& recomputeVisibleRegions)
901{
902    ATRACE_CALL();
903
904    Region outDirtyRegion;
905    if (mQueuedFrames > 0) {
906
907        // if we've already called updateTexImage() without going through
908        // a composition step, we have to skip this layer at this point
909        // because we cannot call updateTeximage() without a corresponding
910        // compositionComplete() call.
911        // we'll trigger an update in onPreComposition().
912        if (mRefreshPending) {
913            return outDirtyRegion;
914        }
915
916        // Capture the old state of the layer for comparisons later
917        const bool oldOpacity = isOpaque();
918        sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer;
919
920        struct Reject : public SurfaceFlingerConsumer::BufferRejecter {
921            Layer::State& front;
922            Layer::State& current;
923            bool& recomputeVisibleRegions;
924            Reject(Layer::State& front, Layer::State& current,
925                    bool& recomputeVisibleRegions)
926                : front(front), current(current),
927                  recomputeVisibleRegions(recomputeVisibleRegions) {
928            }
929
930            virtual bool reject(const sp<GraphicBuffer>& buf,
931                    const BufferQueue::BufferItem& item) {
932                if (buf == NULL) {
933                    return false;
934                }
935
936                uint32_t bufWidth  = buf->getWidth();
937                uint32_t bufHeight = buf->getHeight();
938
939                // check that we received a buffer of the right size
940                // (Take the buffer's orientation into account)
941                if (item.mTransform & Transform::ROT_90) {
942                    swap(bufWidth, bufHeight);
943                }
944
945                bool isFixedSize = item.mScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
946                if (front.active != front.requested) {
947
948                    if (isFixedSize ||
949                            (bufWidth == front.requested.w &&
950                             bufHeight == front.requested.h))
951                    {
952                        // Here we pretend the transaction happened by updating the
953                        // current and drawing states. Drawing state is only accessed
954                        // in this thread, no need to have it locked
955                        front.active = front.requested;
956
957                        // We also need to update the current state so that
958                        // we don't end-up overwriting the drawing state with
959                        // this stale current state during the next transaction
960                        //
961                        // NOTE: We don't need to hold the transaction lock here
962                        // because State::active is only accessed from this thread.
963                        current.active = front.active;
964
965                        // recompute visible region
966                        recomputeVisibleRegions = true;
967                    }
968
969                    ALOGD_IF(DEBUG_RESIZE,
970                            "latchBuffer/reject: buffer (%ux%u, tr=%02x), scalingMode=%d\n"
971                            "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
972                            "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n",
973                            bufWidth, bufHeight, item.mTransform, item.mScalingMode,
974                            front.active.w, front.active.h,
975                            front.active.crop.left,
976                            front.active.crop.top,
977                            front.active.crop.right,
978                            front.active.crop.bottom,
979                            front.active.crop.getWidth(),
980                            front.active.crop.getHeight(),
981                            front.requested.w, front.requested.h,
982                            front.requested.crop.left,
983                            front.requested.crop.top,
984                            front.requested.crop.right,
985                            front.requested.crop.bottom,
986                            front.requested.crop.getWidth(),
987                            front.requested.crop.getHeight());
988                }
989
990                if (!isFixedSize) {
991                    if (front.active.w != bufWidth ||
992                        front.active.h != bufHeight) {
993                        // reject this buffer
994                        return true;
995                    }
996                }
997
998                // if the transparent region has changed (this test is
999                // conservative, but that's fine, worst case we're doing
1000                // a bit of extra work), we latch the new one and we
1001                // trigger a visible-region recompute.
1002                if (!front.activeTransparentRegion.isTriviallyEqual(
1003                        front.requestedTransparentRegion)) {
1004                    front.activeTransparentRegion = front.requestedTransparentRegion;
1005
1006                    // We also need to update the current state so that
1007                    // we don't end-up overwriting the drawing state with
1008                    // this stale current state during the next transaction
1009                    //
1010                    // NOTE: We don't need to hold the transaction lock here
1011                    // because State::active is only accessed from this thread.
1012                    current.activeTransparentRegion = front.activeTransparentRegion;
1013
1014                    // recompute visible region
1015                    recomputeVisibleRegions = true;
1016                }
1017
1018                return false;
1019            }
1020        };
1021
1022
1023        Reject r(mDrawingState, getCurrentState(), recomputeVisibleRegions);
1024
1025        status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r);
1026        if (updateResult == BufferQueue::PRESENT_LATER) {
1027            // Producer doesn't want buffer to be displayed yet.  Signal a
1028            // layer update so we check again at the next opportunity.
1029            mFlinger->signalLayerUpdate();
1030            return outDirtyRegion;
1031        }
1032
1033        // Decrement the queued-frames count.  Signal another event if we
1034        // have more frames pending.
1035        if (android_atomic_dec(&mQueuedFrames) > 1) {
1036            mFlinger->signalLayerUpdate();
1037        }
1038
1039        if (updateResult != NO_ERROR) {
1040            // something happened!
1041            recomputeVisibleRegions = true;
1042            return outDirtyRegion;
1043        }
1044
1045        // update the active buffer
1046        mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer();
1047        if (mActiveBuffer == NULL) {
1048            // this can only happen if the very first buffer was rejected.
1049            return outDirtyRegion;
1050        }
1051
1052        mRefreshPending = true;
1053        mFrameLatencyNeeded = true;
1054        if (oldActiveBuffer == NULL) {
1055             // the first time we receive a buffer, we need to trigger a
1056             // geometry invalidation.
1057            recomputeVisibleRegions = true;
1058         }
1059
1060        Rect crop(mSurfaceFlingerConsumer->getCurrentCrop());
1061        const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform());
1062        const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode());
1063        if ((crop != mCurrentCrop) ||
1064            (transform != mCurrentTransform) ||
1065            (scalingMode != mCurrentScalingMode))
1066        {
1067            mCurrentCrop = crop;
1068            mCurrentTransform = transform;
1069            mCurrentScalingMode = scalingMode;
1070            recomputeVisibleRegions = true;
1071        }
1072
1073        if (oldActiveBuffer != NULL) {
1074            uint32_t bufWidth  = mActiveBuffer->getWidth();
1075            uint32_t bufHeight = mActiveBuffer->getHeight();
1076            if (bufWidth != uint32_t(oldActiveBuffer->width) ||
1077                bufHeight != uint32_t(oldActiveBuffer->height)) {
1078                recomputeVisibleRegions = true;
1079            }
1080        }
1081
1082        mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format);
1083        if (oldOpacity != isOpaque()) {
1084            recomputeVisibleRegions = true;
1085        }
1086
1087        // FIXME: postedRegion should be dirty & bounds
1088        const Layer::State& s(getDrawingState());
1089        Region dirtyRegion(Rect(s.active.w, s.active.h));
1090
1091        // transform the dirty region to window-manager space
1092        outDirtyRegion = (s.transform.transform(dirtyRegion));
1093    }
1094    return outDirtyRegion;
1095}
1096
1097uint32_t Layer::getEffectiveUsage(uint32_t usage) const
1098{
1099    // TODO: should we do something special if mSecure is set?
1100    if (mProtectedByApp) {
1101        // need a hardware-protected path to external video sink
1102        usage |= GraphicBuffer::USAGE_PROTECTED;
1103    }
1104    usage |= GraphicBuffer::USAGE_HW_COMPOSER;
1105    return usage;
1106}
1107
1108void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const {
1109    uint32_t orientation = 0;
1110    if (!mFlinger->mDebugDisableTransformHint) {
1111        // The transform hint is used to improve performance, but we can
1112        // only have a single transform hint, it cannot
1113        // apply to all displays.
1114        const Transform& planeTransform(hw->getTransform());
1115        orientation = planeTransform.getOrientation();
1116        if (orientation & Transform::ROT_INVALID) {
1117            orientation = 0;
1118        }
1119    }
1120    mSurfaceFlingerConsumer->setTransformHint(orientation);
1121}
1122
1123// ----------------------------------------------------------------------------
1124// debugging
1125// ----------------------------------------------------------------------------
1126
1127void Layer::dump(String8& result, Colorizer& colorizer) const
1128{
1129    const Layer::State& s(getDrawingState());
1130
1131    colorizer.colorize(result, Colorizer::GREEN);
1132    result.appendFormat(
1133            "+ %s %p (%s)\n",
1134            getTypeId(), this, getName().string());
1135    colorizer.reset(result);
1136
1137    s.activeTransparentRegion.dump(result, "transparentRegion");
1138    visibleRegion.dump(result, "visibleRegion");
1139    sp<Client> client(mClientRef.promote());
1140
1141    result.appendFormat(            "      "
1142            "layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), crop=(%4d,%4d,%4d,%4d), "
1143            "isOpaque=%1d, invalidate=%1d, "
1144            "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n"
1145            "      client=%p\n",
1146            s.layerStack, s.z, s.transform.tx(), s.transform.ty(), s.active.w, s.active.h,
1147            s.active.crop.left, s.active.crop.top,
1148            s.active.crop.right, s.active.crop.bottom,
1149            isOpaque(), contentDirty,
1150            s.alpha, s.flags,
1151            s.transform[0][0], s.transform[0][1],
1152            s.transform[1][0], s.transform[1][1],
1153            client.get());
1154
1155    sp<const GraphicBuffer> buf0(mActiveBuffer);
1156    uint32_t w0=0, h0=0, s0=0, f0=0;
1157    if (buf0 != 0) {
1158        w0 = buf0->getWidth();
1159        h0 = buf0->getHeight();
1160        s0 = buf0->getStride();
1161        f0 = buf0->format;
1162    }
1163    result.appendFormat(
1164            "      "
1165            "format=%2d, activeBuffer=[%4ux%4u:%4u,%3X],"
1166            " queued-frames=%d, mRefreshPending=%d\n",
1167            mFormat, w0, h0, s0,f0,
1168            mQueuedFrames, mRefreshPending);
1169
1170    if (mSurfaceFlingerConsumer != 0) {
1171        mSurfaceFlingerConsumer->dump(result, "            ");
1172    }
1173}
1174
1175void Layer::dumpStats(String8& result) const {
1176    mFrameTracker.dump(result);
1177}
1178
1179void Layer::clearStats() {
1180    mFrameTracker.clear();
1181}
1182
1183void Layer::logFrameStats() {
1184    mFrameTracker.logAndResetStats(mName);
1185}
1186
1187// ---------------------------------------------------------------------------
1188
1189Layer::LayerCleaner::LayerCleaner(const sp<SurfaceFlinger>& flinger,
1190        const sp<Layer>& layer)
1191    : mFlinger(flinger), mLayer(layer) {
1192}
1193
1194Layer::LayerCleaner::~LayerCleaner() {
1195    // destroy client resources
1196    mFlinger->onLayerDestroyed(mLayer);
1197}
1198
1199// ---------------------------------------------------------------------------
1200
1201
1202}; // namespace android
1203