1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "rsCpuCore.h"
18#include "rsCpuScript.h"
19#include "rsCpuScriptGroup.h"
20#include "rsCpuScriptGroup2.h"
21
22#include <malloc.h>
23#include "rsContext.h"
24
25#include <sys/types.h>
26#include <sys/resource.h>
27#include <sched.h>
28#include <sys/syscall.h>
29#include <stdio.h>
30#include <string.h>
31#include <unistd.h>
32
33#if !defined(RS_SERVER) && !defined(RS_COMPATIBILITY_LIB)
34#include <cutils/properties.h>
35#include "utils/StopWatch.h"
36#endif
37
38#ifdef RS_SERVER
39// Android exposes gettid(), standard Linux does not
40static pid_t gettid() {
41    return syscall(SYS_gettid);
42}
43#endif
44
45using namespace android;
46using namespace android::renderscript;
47
48#define REDUCE_ALOGV(mtls, level, ...) do { if ((mtls)->logReduce >= (level)) ALOGV(__VA_ARGS__); } while(0)
49
50static pthread_key_t gThreadTLSKey = 0;
51static uint32_t gThreadTLSKeyCount = 0;
52static pthread_mutex_t gInitMutex = PTHREAD_MUTEX_INITIALIZER;
53
54bool android::renderscript::gArchUseSIMD = false;
55
56RsdCpuReference::~RsdCpuReference() {
57}
58
59RsdCpuReference * RsdCpuReference::create(Context *rsc, uint32_t version_major,
60        uint32_t version_minor, sym_lookup_t lfn, script_lookup_t slfn
61        , RSSelectRTCallback pSelectRTCallback,
62        const char *pBccPluginName
63        ) {
64
65    RsdCpuReferenceImpl *cpu = new RsdCpuReferenceImpl(rsc);
66    if (!cpu) {
67        return nullptr;
68    }
69    if (!cpu->init(version_major, version_minor, lfn, slfn)) {
70        delete cpu;
71        return nullptr;
72    }
73
74    cpu->setSelectRTCallback(pSelectRTCallback);
75    if (pBccPluginName) {
76        cpu->setBccPluginName(pBccPluginName);
77    }
78
79    return cpu;
80}
81
82
83Context * RsdCpuReference::getTlsContext() {
84    ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
85    return tls->mContext;
86}
87
88const Script * RsdCpuReference::getTlsScript() {
89    ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
90    return tls->mScript;
91}
92
93pthread_key_t RsdCpuReference::getThreadTLSKey(){ return gThreadTLSKey; }
94
95////////////////////////////////////////////////////////////
96///
97
98RsdCpuReferenceImpl::RsdCpuReferenceImpl(Context *rsc) {
99    mRSC = rsc;
100
101    version_major = 0;
102    version_minor = 0;
103    mInKernel = false;
104    memset(&mWorkers, 0, sizeof(mWorkers));
105    memset(&mTlsStruct, 0, sizeof(mTlsStruct));
106    mExit = false;
107    mSelectRTCallback = nullptr;
108    mEmbedGlobalInfo = true;
109    mEmbedGlobalInfoSkipConstant = true;
110}
111
112
113void * RsdCpuReferenceImpl::helperThreadProc(void *vrsc) {
114    RsdCpuReferenceImpl *dc = (RsdCpuReferenceImpl *)vrsc;
115
116    uint32_t idx = __sync_fetch_and_add(&dc->mWorkers.mLaunchCount, 1);
117
118    //ALOGV("RS helperThread starting %p idx=%i", dc, idx);
119
120    dc->mWorkers.mLaunchSignals[idx].init();
121    dc->mWorkers.mNativeThreadId[idx] = gettid();
122
123    memset(&dc->mTlsStruct, 0, sizeof(dc->mTlsStruct));
124    int status = pthread_setspecific(gThreadTLSKey, &dc->mTlsStruct);
125    if (status) {
126        ALOGE("pthread_setspecific %i", status);
127    }
128
129#if 0
130    typedef struct {uint64_t bits[1024 / 64]; } cpu_set_t;
131    cpu_set_t cpuset;
132    memset(&cpuset, 0, sizeof(cpuset));
133    cpuset.bits[idx / 64] |= 1ULL << (idx % 64);
134    int ret = syscall(241, rsc->mWorkers.mNativeThreadId[idx],
135              sizeof(cpuset), &cpuset);
136    ALOGE("SETAFFINITY ret = %i %s", ret, EGLUtils::strerror(ret));
137#endif
138
139    while (!dc->mExit) {
140        dc->mWorkers.mLaunchSignals[idx].wait();
141        if (dc->mWorkers.mLaunchCallback) {
142           // idx +1 is used because the calling thread is always worker 0.
143           dc->mWorkers.mLaunchCallback(dc->mWorkers.mLaunchData, idx+1);
144        }
145        __sync_fetch_and_sub(&dc->mWorkers.mRunningCount, 1);
146        dc->mWorkers.mCompleteSignal.set();
147    }
148
149    //ALOGV("RS helperThread exited %p idx=%i", dc, idx);
150    return nullptr;
151}
152
153// Launch a kernel.
154// The callback function is called to execute the kernel.
155void RsdCpuReferenceImpl::launchThreads(WorkerCallback_t cbk, void *data) {
156    mWorkers.mLaunchData = data;
157    mWorkers.mLaunchCallback = cbk;
158
159    // fast path for very small launches
160    MTLaunchStructCommon *mtls = (MTLaunchStructCommon *)data;
161    if (mtls && mtls->dimPtr->y <= 1 && mtls->end.x <= mtls->start.x + mtls->mSliceSize) {
162        if (mWorkers.mLaunchCallback) {
163            mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0);
164        }
165        return;
166    }
167
168    mWorkers.mRunningCount = mWorkers.mCount;
169    __sync_synchronize();
170
171    for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
172        mWorkers.mLaunchSignals[ct].set();
173    }
174
175    // We use the calling thread as one of the workers so we can start without
176    // the delay of the thread wakeup.
177    if (mWorkers.mLaunchCallback) {
178        mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0);
179    }
180
181    while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) {
182        mWorkers.mCompleteSignal.wait();
183    }
184}
185
186
187void RsdCpuReferenceImpl::lockMutex() {
188    pthread_mutex_lock(&gInitMutex);
189}
190
191void RsdCpuReferenceImpl::unlockMutex() {
192    pthread_mutex_unlock(&gInitMutex);
193}
194
195// Determine if the CPU we're running on supports SIMD instructions.
196static void GetCpuInfo() {
197    // Read the CPU flags from /proc/cpuinfo.
198    FILE *cpuinfo = fopen("/proc/cpuinfo", "r");
199
200    if (!cpuinfo) {
201        return;
202    }
203
204    char cpuinfostr[4096];
205    // fgets() ends with newline or EOF, need to check the whole
206    // "cpuinfo" file to make sure we can use SIMD or not.
207    while (fgets(cpuinfostr, sizeof(cpuinfostr), cpuinfo)) {
208#if defined(ARCH_ARM_HAVE_VFP) || defined(ARCH_ARM_USE_INTRINSICS)
209        gArchUseSIMD = strstr(cpuinfostr, " neon") || strstr(cpuinfostr, " asimd");
210#elif defined(ARCH_X86_HAVE_SSSE3)
211        gArchUseSIMD = strstr(cpuinfostr, " ssse3");
212#endif
213        if (gArchUseSIMD) {
214            break;
215        }
216    }
217    fclose(cpuinfo);
218}
219
220bool RsdCpuReferenceImpl::init(uint32_t version_major, uint32_t version_minor,
221                               sym_lookup_t lfn, script_lookup_t slfn) {
222    mSymLookupFn = lfn;
223    mScriptLookupFn = slfn;
224
225    lockMutex();
226    if (!gThreadTLSKeyCount) {
227        int status = pthread_key_create(&gThreadTLSKey, nullptr);
228        if (status) {
229            ALOGE("Failed to init thread tls key.");
230            unlockMutex();
231            return false;
232        }
233    }
234    gThreadTLSKeyCount++;
235    unlockMutex();
236
237    mTlsStruct.mContext = mRSC;
238    mTlsStruct.mScript = nullptr;
239    int status = pthread_setspecific(gThreadTLSKey, &mTlsStruct);
240    if (status) {
241        ALOGE("pthread_setspecific %i", status);
242    }
243
244    mPageSize = sysconf(_SC_PAGE_SIZE);
245    // ALOGV("page size = %ld", mPageSize);
246
247    GetCpuInfo();
248
249    int cpu = sysconf(_SC_NPROCESSORS_CONF);
250    if(mRSC->props.mDebugMaxThreads) {
251        cpu = mRSC->props.mDebugMaxThreads;
252    }
253    if (cpu < 2) {
254        mWorkers.mCount = 0;
255        return true;
256    }
257
258    // Subtract one from the cpu count because we also use the command thread as a worker.
259    mWorkers.mCount = (uint32_t)(cpu - 1);
260
261    if (mRSC->props.mLogScripts) {
262      ALOGV("%p Launching thread(s), CPUs %i", mRSC, mWorkers.mCount + 1);
263    }
264
265    mWorkers.mThreadId = (pthread_t *) calloc(mWorkers.mCount, sizeof(pthread_t));
266    mWorkers.mNativeThreadId = (pid_t *) calloc(mWorkers.mCount, sizeof(pid_t));
267    mWorkers.mLaunchSignals = new Signal[mWorkers.mCount];
268    mWorkers.mLaunchCallback = nullptr;
269
270    mWorkers.mCompleteSignal.init();
271
272    mWorkers.mRunningCount = mWorkers.mCount;
273    mWorkers.mLaunchCount = 0;
274    __sync_synchronize();
275
276    pthread_attr_t threadAttr;
277    status = pthread_attr_init(&threadAttr);
278    if (status) {
279        ALOGE("Failed to init thread attribute.");
280        return false;
281    }
282
283    for (uint32_t ct=0; ct < mWorkers.mCount; ct++) {
284        status = pthread_create(&mWorkers.mThreadId[ct], &threadAttr, helperThreadProc, this);
285        if (status) {
286            mWorkers.mCount = ct;
287            ALOGE("Created fewer than expected number of RS threads.");
288            break;
289        }
290    }
291    while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) {
292        usleep(100);
293    }
294
295    pthread_attr_destroy(&threadAttr);
296    return true;
297}
298
299
300void RsdCpuReferenceImpl::setPriority(int32_t priority) {
301    for (uint32_t ct=0; ct < mWorkers.mCount; ct++) {
302        setpriority(PRIO_PROCESS, mWorkers.mNativeThreadId[ct], priority);
303    }
304}
305
306RsdCpuReferenceImpl::~RsdCpuReferenceImpl() {
307    mExit = true;
308    mWorkers.mLaunchData = nullptr;
309    mWorkers.mLaunchCallback = nullptr;
310    mWorkers.mRunningCount = mWorkers.mCount;
311    __sync_synchronize();
312    for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
313        mWorkers.mLaunchSignals[ct].set();
314    }
315    void *res;
316    for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
317        pthread_join(mWorkers.mThreadId[ct], &res);
318    }
319    rsAssert(__sync_fetch_and_or(&mWorkers.mRunningCount, 0) == 0);
320    free(mWorkers.mThreadId);
321    free(mWorkers.mNativeThreadId);
322    delete[] mWorkers.mLaunchSignals;
323
324    // Global structure cleanup.
325    lockMutex();
326    --gThreadTLSKeyCount;
327    if (!gThreadTLSKeyCount) {
328        pthread_key_delete(gThreadTLSKey);
329    }
330    unlockMutex();
331
332}
333
334// Set up the appropriate input and output pointers to the kernel driver info structure.
335// Inputs:
336//   mtls - The MTLaunchStruct holding information about the kernel launch
337//   fep - The forEach parameters (driver info structure)
338//   x, y, z, lod, face, a1, a2, a3, a4 - The start offsets into each dimension
339static inline void FepPtrSetup(const MTLaunchStructForEach *mtls, RsExpandKernelDriverInfo *fep,
340                               uint32_t x, uint32_t y,
341                               uint32_t z = 0, uint32_t lod = 0,
342                               RsAllocationCubemapFace face = RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X,
343                               uint32_t a1 = 0, uint32_t a2 = 0, uint32_t a3 = 0, uint32_t a4 = 0) {
344    for (uint32_t i = 0; i < fep->inLen; i++) {
345        fep->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4);
346    }
347    if (mtls->aout[0] != nullptr) {
348        fep->outPtr[0] = (uint8_t *)mtls->aout[0]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4);
349    }
350}
351
352// Set up the appropriate input and output pointers to the kernel driver info structure.
353// Inputs:
354//   mtls - The MTLaunchStruct holding information about the kernel launch
355//   redp - The reduce parameters (driver info structure)
356//   x, y, z - The start offsets into each dimension
357static inline void RedpPtrSetup(const MTLaunchStructReduce *mtls, RsExpandKernelDriverInfo *redp,
358                                uint32_t x, uint32_t y, uint32_t z) {
359    for (uint32_t i = 0; i < redp->inLen; i++) {
360        redp->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z);
361    }
362}
363
364static uint32_t sliceInt(uint32_t *p, uint32_t val, uint32_t start, uint32_t end) {
365    if (start >= end) {
366        *p = start;
367        return val;
368    }
369
370    uint32_t div = end - start;
371
372    uint32_t n = val / div;
373    *p = (val - (n * div)) + start;
374    return n;
375}
376
377static bool SelectOuterSlice(const MTLaunchStructCommon *mtls, RsExpandKernelDriverInfo* info, uint32_t sliceNum) {
378    uint32_t r = sliceNum;
379    r = sliceInt(&info->current.z, r, mtls->start.z, mtls->end.z);
380    r = sliceInt(&info->current.lod, r, mtls->start.lod, mtls->end.lod);
381    r = sliceInt(&info->current.face, r, mtls->start.face, mtls->end.face);
382    r = sliceInt(&info->current.array[0], r, mtls->start.array[0], mtls->end.array[0]);
383    r = sliceInt(&info->current.array[1], r, mtls->start.array[1], mtls->end.array[1]);
384    r = sliceInt(&info->current.array[2], r, mtls->start.array[2], mtls->end.array[2]);
385    r = sliceInt(&info->current.array[3], r, mtls->start.array[3], mtls->end.array[3]);
386    return r == 0;
387}
388
389static bool SelectZSlice(const MTLaunchStructCommon *mtls, RsExpandKernelDriverInfo* info, uint32_t sliceNum) {
390    return sliceInt(&info->current.z, sliceNum, mtls->start.z, mtls->end.z) == 0;
391}
392
393static void walk_general_foreach(void *usr, uint32_t idx) {
394    MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr;
395    RsExpandKernelDriverInfo fep = mtls->fep;
396    fep.lid = idx;
397    ForEachFunc_t fn = mtls->kernel;
398
399    while(1) {
400        uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
401
402        if (!SelectOuterSlice(mtls, &fep, slice)) {
403            return;
404        }
405
406        for (fep.current.y = mtls->start.y; fep.current.y < mtls->end.y;
407             fep.current.y++) {
408
409            FepPtrSetup(mtls, &fep, mtls->start.x,
410                        fep.current.y, fep.current.z, fep.current.lod,
411                        (RsAllocationCubemapFace)fep.current.face,
412                        fep.current.array[0], fep.current.array[1],
413                        fep.current.array[2], fep.current.array[3]);
414
415            fn(&fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]);
416        }
417    }
418}
419
420static void walk_2d_foreach(void *usr, uint32_t idx) {
421    MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr;
422    RsExpandKernelDriverInfo fep = mtls->fep;
423    fep.lid = idx;
424    ForEachFunc_t fn = mtls->kernel;
425
426    while (1) {
427        uint32_t slice  = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
428        uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize;
429        uint32_t yEnd   = yStart + mtls->mSliceSize;
430
431        yEnd = rsMin(yEnd, mtls->end.y);
432
433        if (yEnd <= yStart) {
434            return;
435        }
436
437        for (fep.current.y = yStart; fep.current.y < yEnd; fep.current.y++) {
438            FepPtrSetup(mtls, &fep, mtls->start.x, fep.current.y);
439
440            fn(&fep, mtls->start.x, mtls->end.x, fep.outStride[0]);
441        }
442    }
443}
444
445static void walk_1d_foreach(void *usr, uint32_t idx) {
446    MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr;
447    RsExpandKernelDriverInfo fep = mtls->fep;
448    fep.lid = idx;
449    ForEachFunc_t fn = mtls->kernel;
450
451    while (1) {
452        uint32_t slice  = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
453        uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize;
454        uint32_t xEnd   = xStart + mtls->mSliceSize;
455
456        xEnd = rsMin(xEnd, mtls->end.x);
457
458        if (xEnd <= xStart) {
459            return;
460        }
461
462        FepPtrSetup(mtls, &fep, xStart, 0);
463
464        fn(&fep, xStart, xEnd, fep.outStride[0]);
465    }
466}
467
468// The function format_bytes() is an auxiliary function to assist in logging.
469//
470// Bytes are read from an input (inBuf) and written (as pairs of hex digits)
471// to an output (outBuf).
472//
473// Output format:
474// - starts with ": "
475// - each input byte is translated to a pair of hex digits
476// - bytes are separated by "." except that every fourth separator is "|"
477// - if the input is sufficiently long, the output is truncated and terminated with "..."
478//
479// Arguments:
480// - outBuf  -- Pointer to buffer of type "FormatBuf" into which output is written
481// - inBuf   -- Pointer to bytes which are to be formatted into outBuf
482// - inBytes -- Number of bytes in inBuf
483//
484// Constant:
485// - kFormatInBytesMax -- Only min(kFormatInBytesMax, inBytes) bytes will be read
486//                        from inBuf
487//
488// Return value:
489// - pointer (const char *) to output (which is part of outBuf)
490//
491static const int kFormatInBytesMax = 16;
492// ": " + 2 digits per byte + 1 separator between bytes + "..." + null
493typedef char FormatBuf[2 + kFormatInBytesMax*2 + (kFormatInBytesMax - 1) + 3 + 1];
494static const char *format_bytes(FormatBuf *outBuf, const uint8_t *inBuf, const int inBytes) {
495  strcpy(*outBuf, ": ");
496  int pos = 2;
497  const int lim = std::min(kFormatInBytesMax, inBytes);
498  for (int i = 0; i < lim; ++i) {
499    if (i) {
500      sprintf(*outBuf + pos, (i % 4 ? "." : "|"));
501      ++pos;
502    }
503    sprintf(*outBuf + pos, "%02x", inBuf[i]);
504    pos += 2;
505  }
506  if (kFormatInBytesMax < inBytes)
507    strcpy(*outBuf + pos, "...");
508  return *outBuf;
509}
510
511static void reduce_get_accumulator(uint8_t *&accumPtr, const MTLaunchStructReduce *mtls,
512                                   const char *walkerName, uint32_t threadIdx) {
513  rsAssert(!accumPtr);
514
515  uint32_t accumIdx = (uint32_t)__sync_fetch_and_add(&mtls->accumCount, 1);
516  if (mtls->outFunc) {
517    accumPtr = mtls->accumAlloc + mtls->accumStride * accumIdx;
518  } else {
519    if (accumIdx == 0) {
520      accumPtr = mtls->redp.outPtr[0];
521    } else {
522      accumPtr = mtls->accumAlloc + mtls->accumStride * (accumIdx - 1);
523    }
524  }
525  REDUCE_ALOGV(mtls, 2, "%s(%p): idx = %u got accumCount %u and accumPtr %p",
526               walkerName, mtls->accumFunc, threadIdx, accumIdx, accumPtr);
527  // initialize accumulator
528  if (mtls->initFunc) {
529    mtls->initFunc(accumPtr);
530  } else {
531    memset(accumPtr, 0, mtls->accumSize);
532  }
533}
534
535static void walk_1d_reduce(void *usr, uint32_t idx) {
536  const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr;
537  RsExpandKernelDriverInfo redp = mtls->redp;
538
539  // find accumulator
540  uint8_t *&accumPtr = mtls->accumPtr[idx];
541  if (!accumPtr) {
542    reduce_get_accumulator(accumPtr, mtls, __func__, idx);
543  }
544
545  // accumulate
546  const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
547  while (1) {
548    uint32_t slice  = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
549    uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize;
550    uint32_t xEnd   = xStart + mtls->mSliceSize;
551
552    xEnd = rsMin(xEnd, mtls->end.x);
553
554    if (xEnd <= xStart) {
555      return;
556    }
557
558    RedpPtrSetup(mtls, &redp, xStart, 0, 0);
559    fn(&redp, xStart, xEnd, accumPtr);
560
561    // Emit log line after slice has been run, so that we can include
562    // the results of the run on that line.
563    FormatBuf fmt;
564    if (mtls->logReduce >= 3) {
565      format_bytes(&fmt, accumPtr, mtls->accumSize);
566    } else {
567      fmt[0] = 0;
568    }
569    REDUCE_ALOGV(mtls, 2, "walk_1d_reduce(%p): idx = %u, x in [%u, %u)%s",
570                 mtls->accumFunc, idx, xStart, xEnd, fmt);
571  }
572}
573
574static void walk_2d_reduce(void *usr, uint32_t idx) {
575  const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr;
576  RsExpandKernelDriverInfo redp = mtls->redp;
577
578  // find accumulator
579  uint8_t *&accumPtr = mtls->accumPtr[idx];
580  if (!accumPtr) {
581    reduce_get_accumulator(accumPtr, mtls, __func__, idx);
582  }
583
584  // accumulate
585  const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
586  while (1) {
587    uint32_t slice  = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
588    uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize;
589    uint32_t yEnd   = yStart + mtls->mSliceSize;
590
591    yEnd = rsMin(yEnd, mtls->end.y);
592
593    if (yEnd <= yStart) {
594      return;
595    }
596
597    for (redp.current.y = yStart; redp.current.y < yEnd; redp.current.y++) {
598      RedpPtrSetup(mtls, &redp, mtls->start.x, redp.current.y, 0);
599      fn(&redp, mtls->start.x, mtls->end.x, accumPtr);
600    }
601
602    FormatBuf fmt;
603    if (mtls->logReduce >= 3) {
604      format_bytes(&fmt, accumPtr, mtls->accumSize);
605    } else {
606      fmt[0] = 0;
607    }
608    REDUCE_ALOGV(mtls, 2, "walk_2d_reduce(%p): idx = %u, y in [%u, %u)%s",
609                 mtls->accumFunc, idx, yStart, yEnd, fmt);
610  }
611}
612
613static void walk_3d_reduce(void *usr, uint32_t idx) {
614  const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr;
615  RsExpandKernelDriverInfo redp = mtls->redp;
616
617  // find accumulator
618  uint8_t *&accumPtr = mtls->accumPtr[idx];
619  if (!accumPtr) {
620    reduce_get_accumulator(accumPtr, mtls, __func__, idx);
621  }
622
623  // accumulate
624  const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
625  while (1) {
626    uint32_t slice  = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
627
628    if (!SelectZSlice(mtls, &redp, slice)) {
629      return;
630    }
631
632    for (redp.current.y = mtls->start.y; redp.current.y < mtls->end.y; redp.current.y++) {
633      RedpPtrSetup(mtls, &redp, mtls->start.x, redp.current.y, redp.current.z);
634      fn(&redp, mtls->start.x, mtls->end.x, accumPtr);
635    }
636
637    FormatBuf fmt;
638    if (mtls->logReduce >= 3) {
639      format_bytes(&fmt, accumPtr, mtls->accumSize);
640    } else {
641      fmt[0] = 0;
642    }
643    REDUCE_ALOGV(mtls, 2, "walk_3d_reduce(%p): idx = %u, z = %u%s",
644                 mtls->accumFunc, idx, redp.current.z, fmt);
645  }
646}
647
648// Launch a general reduce-style kernel.
649// Inputs:
650//   ains[0..inLen-1]: Array of allocations that contain the inputs
651//   aout:             The allocation that will hold the output
652//   mtls:             Holds launch parameters
653void RsdCpuReferenceImpl::launchReduce(const Allocation ** ains,
654                                       uint32_t inLen,
655                                       Allocation * aout,
656                                       MTLaunchStructReduce *mtls) {
657  mtls->logReduce = mRSC->props.mLogReduce;
658  if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInKernel) {
659    launchReduceParallel(ains, inLen, aout, mtls);
660  } else {
661    launchReduceSerial(ains, inLen, aout, mtls);
662  }
663}
664
665// Launch a general reduce-style kernel, single-threaded.
666// Inputs:
667//   ains[0..inLen-1]: Array of allocations that contain the inputs
668//   aout:             The allocation that will hold the output
669//   mtls:             Holds launch parameters
670void RsdCpuReferenceImpl::launchReduceSerial(const Allocation ** ains,
671                                             uint32_t inLen,
672                                             Allocation * aout,
673                                             MTLaunchStructReduce *mtls) {
674  REDUCE_ALOGV(mtls, 1, "launchReduceSerial(%p): %u x %u x %u", mtls->accumFunc,
675               mtls->redp.dim.x, mtls->redp.dim.y, mtls->redp.dim.z);
676
677  // In the presence of outconverter, we allocate temporary memory for
678  // the accumulator.
679  //
680  // In the absence of outconverter, we use the output allocation as the
681  // accumulator.
682  uint8_t *const accumPtr = (mtls->outFunc
683                             ? static_cast<uint8_t *>(malloc(mtls->accumSize))
684                             : mtls->redp.outPtr[0]);
685
686  // initialize
687  if (mtls->initFunc) {
688    mtls->initFunc(accumPtr);
689  } else {
690    memset(accumPtr, 0, mtls->accumSize);
691  }
692
693  // accumulate
694  const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
695  uint32_t slice = 0;
696  while (SelectOuterSlice(mtls, &mtls->redp, slice++)) {
697    for (mtls->redp.current.y = mtls->start.y;
698         mtls->redp.current.y < mtls->end.y;
699         mtls->redp.current.y++) {
700      RedpPtrSetup(mtls, &mtls->redp, mtls->start.x, mtls->redp.current.y, mtls->redp.current.z);
701      fn(&mtls->redp, mtls->start.x, mtls->end.x, accumPtr);
702    }
703  }
704
705  // outconvert
706  if (mtls->outFunc) {
707    mtls->outFunc(mtls->redp.outPtr[0], accumPtr);
708    free(accumPtr);
709  }
710}
711
712// Launch a general reduce-style kernel, multi-threaded.
713// Inputs:
714//   ains[0..inLen-1]: Array of allocations that contain the inputs
715//   aout:             The allocation that will hold the output
716//   mtls:             Holds launch parameters
717void RsdCpuReferenceImpl::launchReduceParallel(const Allocation ** ains,
718                                               uint32_t inLen,
719                                               Allocation * aout,
720                                               MTLaunchStructReduce *mtls) {
721  // For now, we don't know how to go parallel in the absence of a combiner.
722  if (!mtls->combFunc) {
723    launchReduceSerial(ains, inLen, aout, mtls);
724    return;
725  }
726
727  // Number of threads = "main thread" + number of other (worker) threads
728  const uint32_t numThreads = mWorkers.mCount + 1;
729
730  // In the absence of outconverter, we use the output allocation as
731  // an accumulator, and therefore need to allocate one fewer accumulator.
732  const uint32_t numAllocAccum = numThreads - (mtls->outFunc == nullptr);
733
734  // If mDebugReduceSplitAccum, then we want each accumulator to start
735  // on a page boundary.  (TODO: Would some unit smaller than a page
736  // be sufficient to avoid false sharing?)
737  if (mRSC->props.mDebugReduceSplitAccum) {
738    // Round up accumulator size to an integral number of pages
739    mtls->accumStride =
740        (unsigned(mtls->accumSize) + unsigned(mPageSize)-1) &
741        ~(unsigned(mPageSize)-1);
742    // Each accumulator gets its own page.  Alternatively, if we just
743    // wanted to make sure no two accumulators are on the same page,
744    // we could instead do
745    //   allocSize = mtls->accumStride * (numAllocation - 1) + mtls->accumSize
746    const size_t allocSize = mtls->accumStride * numAllocAccum;
747    mtls->accumAlloc = static_cast<uint8_t *>(memalign(mPageSize, allocSize));
748  } else {
749    mtls->accumStride = mtls->accumSize;
750    mtls->accumAlloc = static_cast<uint8_t *>(malloc(mtls->accumStride * numAllocAccum));
751  }
752
753  const size_t accumPtrArrayBytes = sizeof(uint8_t *) * numThreads;
754  mtls->accumPtr = static_cast<uint8_t **>(malloc(accumPtrArrayBytes));
755  memset(mtls->accumPtr, 0, accumPtrArrayBytes);
756
757  mtls->accumCount = 0;
758
759  rsAssert(!mInKernel);
760  mInKernel = true;
761  REDUCE_ALOGV(mtls, 1, "launchReduceParallel(%p): %u x %u x %u, %u threads, accumAlloc = %p",
762               mtls->accumFunc,
763               mtls->redp.dim.x, mtls->redp.dim.y, mtls->redp.dim.z,
764               numThreads, mtls->accumAlloc);
765  if (mtls->redp.dim.z > 1) {
766    mtls->mSliceSize = 1;
767    launchThreads(walk_3d_reduce, mtls);
768  } else if (mtls->redp.dim.y > 1) {
769    mtls->mSliceSize = rsMax(1U, mtls->redp.dim.y / (numThreads * 4));
770    launchThreads(walk_2d_reduce, mtls);
771  } else {
772    mtls->mSliceSize = rsMax(1U, mtls->redp.dim.x / (numThreads * 4));
773    launchThreads(walk_1d_reduce, mtls);
774  }
775  mInKernel = false;
776
777  // Combine accumulators and identify final accumulator
778  uint8_t *finalAccumPtr = (mtls->outFunc ? nullptr : mtls->redp.outPtr[0]);
779  //   Loop over accumulators, combining into finalAccumPtr.  If finalAccumPtr
780  //   is null, then the first accumulator I find becomes finalAccumPtr.
781  for (unsigned idx = 0; idx < mtls->accumCount; ++idx) {
782    uint8_t *const thisAccumPtr = mtls->accumPtr[idx];
783    if (finalAccumPtr) {
784      if (finalAccumPtr != thisAccumPtr) {
785        if (mtls->combFunc) {
786          if (mtls->logReduce >= 3) {
787            FormatBuf fmt;
788            REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): accumulating into%s",
789                         mtls->accumFunc,
790                         format_bytes(&fmt, finalAccumPtr, mtls->accumSize));
791            REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p):    accumulator[%d]%s",
792                         mtls->accumFunc, idx,
793                         format_bytes(&fmt, thisAccumPtr, mtls->accumSize));
794          }
795          mtls->combFunc(finalAccumPtr, thisAccumPtr);
796        } else {
797          rsAssert(!"expected combiner");
798        }
799      }
800    } else {
801      finalAccumPtr = thisAccumPtr;
802    }
803  }
804  rsAssert(finalAccumPtr != nullptr);
805  if (mtls->logReduce >= 3) {
806    FormatBuf fmt;
807    REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): final accumulator%s",
808                 mtls->accumFunc, format_bytes(&fmt, finalAccumPtr, mtls->accumSize));
809  }
810
811  // Outconvert
812  if (mtls->outFunc) {
813    mtls->outFunc(mtls->redp.outPtr[0], finalAccumPtr);
814    if (mtls->logReduce >= 3) {
815      FormatBuf fmt;
816      REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): final outconverted result%s",
817                   mtls->accumFunc,
818                   format_bytes(&fmt, mtls->redp.outPtr[0], mtls->redp.outStride[0]));
819    }
820  }
821
822  // Clean up
823  free(mtls->accumPtr);
824  free(mtls->accumAlloc);
825}
826
827
828void RsdCpuReferenceImpl::launchForEach(const Allocation ** ains,
829                                        uint32_t inLen,
830                                        Allocation* aout,
831                                        const RsScriptCall* sc,
832                                        MTLaunchStructForEach* mtls) {
833
834    //android::StopWatch kernel_time("kernel time");
835
836    bool outerDims = (mtls->start.z != mtls->end.z) ||
837                     (mtls->start.face != mtls->end.face) ||
838                     (mtls->start.lod != mtls->end.lod) ||
839                     (mtls->start.array[0] != mtls->end.array[0]) ||
840                     (mtls->start.array[1] != mtls->end.array[1]) ||
841                     (mtls->start.array[2] != mtls->end.array[2]) ||
842                     (mtls->start.array[3] != mtls->end.array[3]);
843
844    if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInKernel) {
845        const size_t targetByteChunk = 16 * 1024;
846        mInKernel = true;  // NOTE: The guard immediately above ensures this was !mInKernel
847
848        if (outerDims) {
849            // No fancy logic for chunk size
850            mtls->mSliceSize = 1;
851            launchThreads(walk_general_foreach, mtls);
852        } else if (mtls->fep.dim.y > 1) {
853            uint32_t s1 = mtls->fep.dim.y / ((mWorkers.mCount + 1) * 4);
854            uint32_t s2 = 0;
855
856            // This chooses our slice size to rate limit atomic ops to
857            // one per 16k bytes of reads/writes.
858            if ((mtls->aout[0] != nullptr) && mtls->aout[0]->mHal.drvState.lod[0].stride) {
859                s2 = targetByteChunk / mtls->aout[0]->mHal.drvState.lod[0].stride;
860            } else if (mtls->ains[0]) {
861                s2 = targetByteChunk / mtls->ains[0]->mHal.drvState.lod[0].stride;
862            } else {
863                // Launch option only case
864                // Use s1 based only on the dimensions
865                s2 = s1;
866            }
867            mtls->mSliceSize = rsMin(s1, s2);
868
869            if(mtls->mSliceSize < 1) {
870                mtls->mSliceSize = 1;
871            }
872
873            launchThreads(walk_2d_foreach, mtls);
874        } else {
875            uint32_t s1 = mtls->fep.dim.x / ((mWorkers.mCount + 1) * 4);
876            uint32_t s2 = 0;
877
878            // This chooses our slice size to rate limit atomic ops to
879            // one per 16k bytes of reads/writes.
880            if ((mtls->aout[0] != nullptr) && mtls->aout[0]->getType()->getElementSizeBytes()) {
881                s2 = targetByteChunk / mtls->aout[0]->getType()->getElementSizeBytes();
882            } else if (mtls->ains[0]) {
883                s2 = targetByteChunk / mtls->ains[0]->getType()->getElementSizeBytes();
884            } else {
885                // Launch option only case
886                // Use s1 based only on the dimensions
887                s2 = s1;
888            }
889            mtls->mSliceSize = rsMin(s1, s2);
890
891            if (mtls->mSliceSize < 1) {
892                mtls->mSliceSize = 1;
893            }
894
895            launchThreads(walk_1d_foreach, mtls);
896        }
897        mInKernel = false;
898
899    } else {
900        ForEachFunc_t fn = mtls->kernel;
901        uint32_t slice = 0;
902
903
904        while(SelectOuterSlice(mtls, &mtls->fep, slice++)) {
905            for (mtls->fep.current.y = mtls->start.y;
906                 mtls->fep.current.y < mtls->end.y;
907                 mtls->fep.current.y++) {
908
909                FepPtrSetup(mtls, &mtls->fep, mtls->start.x,
910                            mtls->fep.current.y, mtls->fep.current.z, mtls->fep.current.lod,
911                            (RsAllocationCubemapFace) mtls->fep.current.face,
912                            mtls->fep.current.array[0], mtls->fep.current.array[1],
913                            mtls->fep.current.array[2], mtls->fep.current.array[3]);
914
915                fn(&mtls->fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]);
916            }
917        }
918    }
919}
920
921RsdCpuScriptImpl * RsdCpuReferenceImpl::setTLS(RsdCpuScriptImpl *sc) {
922    //ALOGE("setTls %p", sc);
923    ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
924    rsAssert(tls);
925    RsdCpuScriptImpl *old = tls->mImpl;
926    tls->mImpl = sc;
927    tls->mContext = mRSC;
928    if (sc) {
929        tls->mScript = sc->getScript();
930    } else {
931        tls->mScript = nullptr;
932    }
933    return old;
934}
935
936const RsdCpuReference::CpuSymbol * RsdCpuReferenceImpl::symLookup(const char *name) {
937    return mSymLookupFn(mRSC, name);
938}
939
940
941RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createScript(const ScriptC *s,
942                                    char const *resName, char const *cacheDir,
943                                    uint8_t const *bitcode, size_t bitcodeSize,
944                                    uint32_t flags) {
945
946    RsdCpuScriptImpl *i = new RsdCpuScriptImpl(this, s);
947    if (!i->init(resName, cacheDir, bitcode, bitcodeSize, flags
948        , getBccPluginName()
949        )) {
950        delete i;
951        return nullptr;
952    }
953    return i;
954}
955
956extern RsdCpuScriptImpl * rsdIntrinsic_3DLUT(RsdCpuReferenceImpl *ctx,
957                                             const Script *s, const Element *e);
958extern RsdCpuScriptImpl * rsdIntrinsic_Convolve3x3(RsdCpuReferenceImpl *ctx,
959                                                   const Script *s, const Element *e);
960extern RsdCpuScriptImpl * rsdIntrinsic_ColorMatrix(RsdCpuReferenceImpl *ctx,
961                                                   const Script *s, const Element *e);
962extern RsdCpuScriptImpl * rsdIntrinsic_LUT(RsdCpuReferenceImpl *ctx,
963                                           const Script *s, const Element *e);
964extern RsdCpuScriptImpl * rsdIntrinsic_Convolve5x5(RsdCpuReferenceImpl *ctx,
965                                                   const Script *s, const Element *e);
966extern RsdCpuScriptImpl * rsdIntrinsic_Blur(RsdCpuReferenceImpl *ctx,
967                                            const Script *s, const Element *e);
968extern RsdCpuScriptImpl * rsdIntrinsic_YuvToRGB(RsdCpuReferenceImpl *ctx,
969                                                const Script *s, const Element *e);
970extern RsdCpuScriptImpl * rsdIntrinsic_Blend(RsdCpuReferenceImpl *ctx,
971                                             const Script *s, const Element *e);
972extern RsdCpuScriptImpl * rsdIntrinsic_Histogram(RsdCpuReferenceImpl *ctx,
973                                                 const Script *s, const Element *e);
974extern RsdCpuScriptImpl * rsdIntrinsic_Resize(RsdCpuReferenceImpl *ctx,
975                                              const Script *s, const Element *e);
976extern RsdCpuScriptImpl * rsdIntrinsic_BLAS(RsdCpuReferenceImpl *ctx,
977                                              const Script *s, const Element *e);
978
979RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createIntrinsic(const Script *s,
980                                    RsScriptIntrinsicID iid, Element *e) {
981
982    RsdCpuScriptImpl *i = nullptr;
983    switch (iid) {
984    case RS_SCRIPT_INTRINSIC_ID_3DLUT:
985        i = rsdIntrinsic_3DLUT(this, s, e);
986        break;
987    case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_3x3:
988        i = rsdIntrinsic_Convolve3x3(this, s, e);
989        break;
990    case RS_SCRIPT_INTRINSIC_ID_COLOR_MATRIX:
991        i = rsdIntrinsic_ColorMatrix(this, s, e);
992        break;
993    case RS_SCRIPT_INTRINSIC_ID_LUT:
994        i = rsdIntrinsic_LUT(this, s, e);
995        break;
996    case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_5x5:
997        i = rsdIntrinsic_Convolve5x5(this, s, e);
998        break;
999    case RS_SCRIPT_INTRINSIC_ID_BLUR:
1000        i = rsdIntrinsic_Blur(this, s, e);
1001        break;
1002    case RS_SCRIPT_INTRINSIC_ID_YUV_TO_RGB:
1003        i = rsdIntrinsic_YuvToRGB(this, s, e);
1004        break;
1005    case RS_SCRIPT_INTRINSIC_ID_BLEND:
1006        i = rsdIntrinsic_Blend(this, s, e);
1007        break;
1008    case RS_SCRIPT_INTRINSIC_ID_HISTOGRAM:
1009        i = rsdIntrinsic_Histogram(this, s, e);
1010        break;
1011    case RS_SCRIPT_INTRINSIC_ID_RESIZE:
1012        i = rsdIntrinsic_Resize(this, s, e);
1013        break;
1014    case RS_SCRIPT_INTRINSIC_ID_BLAS:
1015        i = rsdIntrinsic_BLAS(this, s, e);
1016        break;
1017
1018    default:
1019        rsAssert(0);
1020    }
1021
1022    return i;
1023}
1024
1025void* RsdCpuReferenceImpl::createScriptGroup(const ScriptGroupBase *sg) {
1026  switch (sg->getApiVersion()) {
1027    case ScriptGroupBase::SG_V1: {
1028      CpuScriptGroupImpl *sgi = new CpuScriptGroupImpl(this, sg);
1029      if (!sgi->init()) {
1030        delete sgi;
1031        return nullptr;
1032      }
1033      return sgi;
1034    }
1035    case ScriptGroupBase::SG_V2: {
1036      return new CpuScriptGroup2Impl(this, sg);
1037    }
1038  }
1039  return nullptr;
1040}
1041