PriorityBlockingQueue.java revision a807b4d808d2591894daf13aab179b2e9c46a2f5
1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.util.concurrent.locks.*;
10import java.util.*;
11
12// BEGIN android-note
13// removed link to collections framework docs
14// END android-note
15
16/**
17 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
18 * the same ordering rules as class {@link PriorityQueue} and supplies
19 * blocking retrieval operations.  While this queue is logically
20 * unbounded, attempted additions may fail due to resource exhaustion
21 * (causing {@code OutOfMemoryError}). This class does not permit
22 * {@code null} elements.  A priority queue relying on {@linkplain
23 * Comparable natural ordering} also does not permit insertion of
24 * non-comparable objects (doing so results in
25 * {@code ClassCastException}).
26 *
27 * <p>This class and its iterator implement all of the
28 * <em>optional</em> methods of the {@link Collection} and {@link
29 * Iterator} interfaces.  The Iterator provided in method {@link
30 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
31 * the PriorityBlockingQueue in any particular order. If you need
32 * ordered traversal, consider using
33 * {@code Arrays.sort(pq.toArray())}.  Also, method {@code drainTo}
34 * can be used to <em>remove</em> some or all elements in priority
35 * order and place them in another collection.
36 *
37 * <p>Operations on this class make no guarantees about the ordering
38 * of elements with equal priority. If you need to enforce an
39 * ordering, you can define custom classes or comparators that use a
40 * secondary key to break ties in primary priority values.  For
41 * example, here is a class that applies first-in-first-out
42 * tie-breaking to comparable elements. To use it, you would insert a
43 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
44 *
45 *  <pre> {@code
46 * class FIFOEntry<E extends Comparable<? super E>>
47 *     implements Comparable<FIFOEntry<E>> {
48 *   static final AtomicLong seq = new AtomicLong(0);
49 *   final long seqNum;
50 *   final E entry;
51 *   public FIFOEntry(E entry) {
52 *     seqNum = seq.getAndIncrement();
53 *     this.entry = entry;
54 *   }
55 *   public E getEntry() { return entry; }
56 *   public int compareTo(FIFOEntry<E> other) {
57 *     int res = entry.compareTo(other.entry);
58 *     if (res == 0 && other.entry != this.entry)
59 *       res = (seqNum < other.seqNum ? -1 : 1);
60 *     return res;
61 *   }
62 * }}</pre>
63 *
64 * @since 1.5
65 * @author Doug Lea
66 * @param <E> the type of elements held in this collection
67 */
68public class PriorityBlockingQueue<E> extends AbstractQueue<E>
69    implements BlockingQueue<E>, java.io.Serializable {
70    private static final long serialVersionUID = 5595510919245408276L;
71
72    /*
73     * The implementation uses an array-based binary heap, with public
74     * operations protected with a single lock. However, allocation
75     * during resizing uses a simple spinlock (used only while not
76     * holding main lock) in order to allow takes to operate
77     * concurrently with allocation.  This avoids repeated
78     * postponement of waiting consumers and consequent element
79     * build-up. The need to back away from lock during allocation
80     * makes it impossible to simply wrap delegated
81     * java.util.PriorityQueue operations within a lock, as was done
82     * in a previous version of this class. To maintain
83     * interoperability, a plain PriorityQueue is still used during
84     * serialization, which maintains compatibility at the expense of
85     * transiently doubling overhead.
86     */
87
88    /**
89     * Default array capacity.
90     */
91    private static final int DEFAULT_INITIAL_CAPACITY = 11;
92
93    /**
94     * The maximum size of array to allocate.
95     * Some VMs reserve some header words in an array.
96     * Attempts to allocate larger arrays may result in
97     * OutOfMemoryError: Requested array size exceeds VM limit
98     */
99    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
100
101    /**
102     * Priority queue represented as a balanced binary heap: the two
103     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
104     * priority queue is ordered by comparator, or by the elements'
105     * natural ordering, if comparator is null: For each node n in the
106     * heap and each descendant d of n, n <= d.  The element with the
107     * lowest value is in queue[0], assuming the queue is nonempty.
108     */
109    private transient Object[] queue;
110
111    /**
112     * The number of elements in the priority queue.
113     */
114    private transient int size;
115
116    /**
117     * The comparator, or null if priority queue uses elements'
118     * natural ordering.
119     */
120    private transient Comparator<? super E> comparator;
121
122    /**
123     * Lock used for all public operations
124     */
125    private final ReentrantLock lock;
126
127    /**
128     * Condition for blocking when empty
129     */
130    private final Condition notEmpty;
131
132    /**
133     * Spinlock for allocation, acquired via CAS.
134     */
135    private transient volatile int allocationSpinLock;
136
137    /**
138     * A plain PriorityQueue used only for serialization,
139     * to maintain compatibility with previous versions
140     * of this class. Non-null only during serialization/deserialization.
141     */
142    private PriorityQueue<E> q;
143
144    /**
145     * Creates a {@code PriorityBlockingQueue} with the default
146     * initial capacity (11) that orders its elements according to
147     * their {@linkplain Comparable natural ordering}.
148     */
149    public PriorityBlockingQueue() {
150        this(DEFAULT_INITIAL_CAPACITY, null);
151    }
152
153    /**
154     * Creates a {@code PriorityBlockingQueue} with the specified
155     * initial capacity that orders its elements according to their
156     * {@linkplain Comparable natural ordering}.
157     *
158     * @param initialCapacity the initial capacity for this priority queue
159     * @throws IllegalArgumentException if {@code initialCapacity} is less
160     *         than 1
161     */
162    public PriorityBlockingQueue(int initialCapacity) {
163        this(initialCapacity, null);
164    }
165
166    /**
167     * Creates a {@code PriorityBlockingQueue} with the specified initial
168     * capacity that orders its elements according to the specified
169     * comparator.
170     *
171     * @param initialCapacity the initial capacity for this priority queue
172     * @param  comparator the comparator that will be used to order this
173     *         priority queue.  If {@code null}, the {@linkplain Comparable
174     *         natural ordering} of the elements will be used.
175     * @throws IllegalArgumentException if {@code initialCapacity} is less
176     *         than 1
177     */
178    public PriorityBlockingQueue(int initialCapacity,
179                                 Comparator<? super E> comparator) {
180        if (initialCapacity < 1)
181            throw new IllegalArgumentException();
182        this.lock = new ReentrantLock();
183        this.notEmpty = lock.newCondition();
184        this.comparator = comparator;
185        this.queue = new Object[initialCapacity];
186    }
187
188    /**
189     * Creates a {@code PriorityBlockingQueue} containing the elements
190     * in the specified collection.  If the specified collection is a
191     * {@link SortedSet} or a {@link PriorityQueue},  this
192     * priority queue will be ordered according to the same ordering.
193     * Otherwise, this priority queue will be ordered according to the
194     * {@linkplain Comparable natural ordering} of its elements.
195     *
196     * @param  c the collection whose elements are to be placed
197     *         into this priority queue
198     * @throws ClassCastException if elements of the specified collection
199     *         cannot be compared to one another according to the priority
200     *         queue's ordering
201     * @throws NullPointerException if the specified collection or any
202     *         of its elements are null
203     */
204    public PriorityBlockingQueue(Collection<? extends E> c) {
205        this.lock = new ReentrantLock();
206        this.notEmpty = lock.newCondition();
207        boolean heapify = true; // true if not known to be in heap order
208        boolean screen = true;  // true if must screen for nulls
209        if (c instanceof SortedSet<?>) {
210            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
211            this.comparator = (Comparator<? super E>) ss.comparator();
212            heapify = false;
213        }
214        else if (c instanceof PriorityBlockingQueue<?>) {
215            PriorityBlockingQueue<? extends E> pq =
216                (PriorityBlockingQueue<? extends E>) c;
217            this.comparator = (Comparator<? super E>) pq.comparator();
218            screen = false;
219            if (pq.getClass() == PriorityBlockingQueue.class) // exact match
220                heapify = false;
221        }
222        Object[] a = c.toArray();
223        int n = a.length;
224        // If c.toArray incorrectly doesn't return Object[], copy it.
225        if (a.getClass() != Object[].class)
226            a = Arrays.copyOf(a, n, Object[].class);
227        if (screen && (n == 1 || this.comparator != null)) {
228            for (int i = 0; i < n; ++i)
229                if (a[i] == null)
230                    throw new NullPointerException();
231        }
232        this.queue = a;
233        this.size = n;
234        if (heapify)
235            heapify();
236    }
237
238    /**
239     * Tries to grow array to accommodate at least one more element
240     * (but normally expand by about 50%), giving up (allowing retry)
241     * on contention (which we expect to be rare). Call only while
242     * holding lock.
243     *
244     * @param array the heap array
245     * @param oldCap the length of the array
246     */
247    private void tryGrow(Object[] array, int oldCap) {
248        lock.unlock(); // must release and then re-acquire main lock
249        Object[] newArray = null;
250        if (allocationSpinLock == 0 &&
251            UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,
252                                     0, 1)) {
253            try {
254                int newCap = oldCap + ((oldCap < 64) ?
255                                       (oldCap + 2) : // grow faster if small
256                                       (oldCap >> 1));
257                if (newCap - MAX_ARRAY_SIZE > 0) {    // possible overflow
258                    int minCap = oldCap + 1;
259                    if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
260                        throw new OutOfMemoryError();
261                    newCap = MAX_ARRAY_SIZE;
262                }
263                if (newCap > oldCap && queue == array)
264                    newArray = new Object[newCap];
265            } finally {
266                allocationSpinLock = 0;
267            }
268        }
269        if (newArray == null) // back off if another thread is allocating
270            Thread.yield();
271        lock.lock();
272        if (newArray != null && queue == array) {
273            queue = newArray;
274            System.arraycopy(array, 0, newArray, 0, oldCap);
275        }
276    }
277
278    /**
279     * Mechanics for poll().  Call only while holding lock.
280     */
281    private E dequeue() {
282        int n = size - 1;
283        if (n < 0)
284            return null;
285        else {
286            Object[] array = queue;
287            E result = (E) array[0];
288            E x = (E) array[n];
289            array[n] = null;
290            Comparator<? super E> cmp = comparator;
291            if (cmp == null)
292                siftDownComparable(0, x, array, n);
293            else
294                siftDownUsingComparator(0, x, array, n, cmp);
295            size = n;
296            return result;
297        }
298    }
299
300    /**
301     * Inserts item x at position k, maintaining heap invariant by
302     * promoting x up the tree until it is greater than or equal to
303     * its parent, or is the root.
304     *
305     * To simplify and speed up coercions and comparisons. the
306     * Comparable and Comparator versions are separated into different
307     * methods that are otherwise identical. (Similarly for siftDown.)
308     * These methods are static, with heap state as arguments, to
309     * simplify use in light of possible comparator exceptions.
310     *
311     * @param k the position to fill
312     * @param x the item to insert
313     * @param array the heap array
314     * @param n heap size
315     */
316    private static <T> void siftUpComparable(int k, T x, Object[] array) {
317        Comparable<? super T> key = (Comparable<? super T>) x;
318        while (k > 0) {
319            int parent = (k - 1) >>> 1;
320            Object e = array[parent];
321            if (key.compareTo((T) e) >= 0)
322                break;
323            array[k] = e;
324            k = parent;
325        }
326        array[k] = key;
327    }
328
329    private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
330                                       Comparator<? super T> cmp) {
331        while (k > 0) {
332            int parent = (k - 1) >>> 1;
333            Object e = array[parent];
334            if (cmp.compare(x, (T) e) >= 0)
335                break;
336            array[k] = e;
337            k = parent;
338        }
339        array[k] = x;
340    }
341
342    /**
343     * Inserts item x at position k, maintaining heap invariant by
344     * demoting x down the tree repeatedly until it is less than or
345     * equal to its children or is a leaf.
346     *
347     * @param k the position to fill
348     * @param x the item to insert
349     * @param array the heap array
350     * @param n heap size
351     */
352    private static <T> void siftDownComparable(int k, T x, Object[] array,
353                                               int n) {
354        Comparable<? super T> key = (Comparable<? super T>)x;
355        int half = n >>> 1;           // loop while a non-leaf
356        while (k < half) {
357            int child = (k << 1) + 1; // assume left child is least
358            Object c = array[child];
359            int right = child + 1;
360            if (right < n &&
361                ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
362                c = array[child = right];
363            if (key.compareTo((T) c) <= 0)
364                break;
365            array[k] = c;
366            k = child;
367        }
368        array[k] = key;
369    }
370
371    private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
372                                                    int n,
373                                                    Comparator<? super T> cmp) {
374        int half = n >>> 1;
375        while (k < half) {
376            int child = (k << 1) + 1;
377            Object c = array[child];
378            int right = child + 1;
379            if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
380                c = array[child = right];
381            if (cmp.compare(x, (T) c) <= 0)
382                break;
383            array[k] = c;
384            k = child;
385        }
386        array[k] = x;
387    }
388
389    /**
390     * Establishes the heap invariant (described above) in the entire tree,
391     * assuming nothing about the order of the elements prior to the call.
392     */
393    private void heapify() {
394        Object[] array = queue;
395        int n = size;
396        int half = (n >>> 1) - 1;
397        Comparator<? super E> cmp = comparator;
398        if (cmp == null) {
399            for (int i = half; i >= 0; i--)
400                siftDownComparable(i, (E) array[i], array, n);
401        }
402        else {
403            for (int i = half; i >= 0; i--)
404                siftDownUsingComparator(i, (E) array[i], array, n, cmp);
405        }
406    }
407
408    /**
409     * Inserts the specified element into this priority queue.
410     *
411     * @param e the element to add
412     * @return {@code true} (as specified by {@link Collection#add})
413     * @throws ClassCastException if the specified element cannot be compared
414     *         with elements currently in the priority queue according to the
415     *         priority queue's ordering
416     * @throws NullPointerException if the specified element is null
417     */
418    public boolean add(E e) {
419        return offer(e);
420    }
421
422    /**
423     * Inserts the specified element into this priority queue.
424     * As the queue is unbounded, this method will never return {@code false}.
425     *
426     * @param e the element to add
427     * @return {@code true} (as specified by {@link Queue#offer})
428     * @throws ClassCastException if the specified element cannot be compared
429     *         with elements currently in the priority queue according to the
430     *         priority queue's ordering
431     * @throws NullPointerException if the specified element is null
432     */
433    public boolean offer(E e) {
434        if (e == null)
435            throw new NullPointerException();
436        final ReentrantLock lock = this.lock;
437        lock.lock();
438        int n, cap;
439        Object[] array;
440        while ((n = size) >= (cap = (array = queue).length))
441            tryGrow(array, cap);
442        try {
443            Comparator<? super E> cmp = comparator;
444            if (cmp == null)
445                siftUpComparable(n, e, array);
446            else
447                siftUpUsingComparator(n, e, array, cmp);
448            size = n + 1;
449            notEmpty.signal();
450        } finally {
451            lock.unlock();
452        }
453        return true;
454    }
455
456    /**
457     * Inserts the specified element into this priority queue.
458     * As the queue is unbounded, this method will never block.
459     *
460     * @param e the element to add
461     * @throws ClassCastException if the specified element cannot be compared
462     *         with elements currently in the priority queue according to the
463     *         priority queue's ordering
464     * @throws NullPointerException if the specified element is null
465     */
466    public void put(E e) {
467        offer(e); // never need to block
468    }
469
470    /**
471     * Inserts the specified element into this priority queue.
472     * As the queue is unbounded, this method will never block or
473     * return {@code false}.
474     *
475     * @param e the element to add
476     * @param timeout This parameter is ignored as the method never blocks
477     * @param unit This parameter is ignored as the method never blocks
478     * @return {@code true} (as specified by
479     *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
480     * @throws ClassCastException if the specified element cannot be compared
481     *         with elements currently in the priority queue according to the
482     *         priority queue's ordering
483     * @throws NullPointerException if the specified element is null
484     */
485    public boolean offer(E e, long timeout, TimeUnit unit) {
486        return offer(e); // never need to block
487    }
488
489    public E poll() {
490        final ReentrantLock lock = this.lock;
491        lock.lock();
492        try {
493            return dequeue();
494        } finally {
495            lock.unlock();
496        }
497    }
498
499    public E take() throws InterruptedException {
500        final ReentrantLock lock = this.lock;
501        lock.lockInterruptibly();
502        E result;
503        try {
504            while ( (result = dequeue()) == null)
505                notEmpty.await();
506        } finally {
507            lock.unlock();
508        }
509        return result;
510    }
511
512    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
513        long nanos = unit.toNanos(timeout);
514        final ReentrantLock lock = this.lock;
515        lock.lockInterruptibly();
516        E result;
517        try {
518            while ( (result = dequeue()) == null && nanos > 0)
519                nanos = notEmpty.awaitNanos(nanos);
520        } finally {
521            lock.unlock();
522        }
523        return result;
524    }
525
526    public E peek() {
527        final ReentrantLock lock = this.lock;
528        lock.lock();
529        try {
530            return (size == 0) ? null : (E) queue[0];
531        } finally {
532            lock.unlock();
533        }
534    }
535
536    /**
537     * Returns the comparator used to order the elements in this queue,
538     * or {@code null} if this queue uses the {@linkplain Comparable
539     * natural ordering} of its elements.
540     *
541     * @return the comparator used to order the elements in this queue,
542     *         or {@code null} if this queue uses the natural
543     *         ordering of its elements
544     */
545    public Comparator<? super E> comparator() {
546        return comparator;
547    }
548
549    public int size() {
550        final ReentrantLock lock = this.lock;
551        lock.lock();
552        try {
553            return size;
554        } finally {
555            lock.unlock();
556        }
557    }
558
559    /**
560     * Always returns {@code Integer.MAX_VALUE} because
561     * a {@code PriorityBlockingQueue} is not capacity constrained.
562     * @return {@code Integer.MAX_VALUE} always
563     */
564    public int remainingCapacity() {
565        return Integer.MAX_VALUE;
566    }
567
568    private int indexOf(Object o) {
569        if (o != null) {
570            Object[] array = queue;
571            int n = size;
572            for (int i = 0; i < n; i++)
573                if (o.equals(array[i]))
574                    return i;
575        }
576        return -1;
577    }
578
579    /**
580     * Removes the ith element from queue.
581     */
582    private void removeAt(int i) {
583        Object[] array = queue;
584        int n = size - 1;
585        if (n == i) // removed last element
586            array[i] = null;
587        else {
588            E moved = (E) array[n];
589            array[n] = null;
590            Comparator<? super E> cmp = comparator;
591            if (cmp == null)
592                siftDownComparable(i, moved, array, n);
593            else
594                siftDownUsingComparator(i, moved, array, n, cmp);
595            if (array[i] == moved) {
596                if (cmp == null)
597                    siftUpComparable(i, moved, array);
598                else
599                    siftUpUsingComparator(i, moved, array, cmp);
600            }
601        }
602        size = n;
603    }
604
605    /**
606     * Removes a single instance of the specified element from this queue,
607     * if it is present.  More formally, removes an element {@code e} such
608     * that {@code o.equals(e)}, if this queue contains one or more such
609     * elements.  Returns {@code true} if and only if this queue contained
610     * the specified element (or equivalently, if this queue changed as a
611     * result of the call).
612     *
613     * @param o element to be removed from this queue, if present
614     * @return {@code true} if this queue changed as a result of the call
615     */
616    public boolean remove(Object o) {
617        final ReentrantLock lock = this.lock;
618        lock.lock();
619        try {
620            int i = indexOf(o);
621            if (i == -1)
622                return false;
623            removeAt(i);
624            return true;
625        } finally {
626            lock.unlock();
627        }
628    }
629
630    /**
631     * Identity-based version for use in Itr.remove
632     */
633    void removeEQ(Object o) {
634        final ReentrantLock lock = this.lock;
635        lock.lock();
636        try {
637            Object[] array = queue;
638            for (int i = 0, n = size; i < n; i++) {
639                if (o == array[i]) {
640                    removeAt(i);
641                    break;
642                }
643            }
644        } finally {
645            lock.unlock();
646        }
647    }
648
649    /**
650     * Returns {@code true} if this queue contains the specified element.
651     * More formally, returns {@code true} if and only if this queue contains
652     * at least one element {@code e} such that {@code o.equals(e)}.
653     *
654     * @param o object to be checked for containment in this queue
655     * @return {@code true} if this queue contains the specified element
656     */
657    public boolean contains(Object o) {
658        final ReentrantLock lock = this.lock;
659        lock.lock();
660        try {
661            return indexOf(o) != -1;
662        } finally {
663            lock.unlock();
664        }
665    }
666
667    /**
668     * Returns an array containing all of the elements in this queue.
669     * The returned array elements are in no particular order.
670     *
671     * <p>The returned array will be "safe" in that no references to it are
672     * maintained by this queue.  (In other words, this method must allocate
673     * a new array).  The caller is thus free to modify the returned array.
674     *
675     * <p>This method acts as bridge between array-based and collection-based
676     * APIs.
677     *
678     * @return an array containing all of the elements in this queue
679     */
680    public Object[] toArray() {
681        final ReentrantLock lock = this.lock;
682        lock.lock();
683        try {
684            return Arrays.copyOf(queue, size);
685        } finally {
686            lock.unlock();
687        }
688    }
689
690    public String toString() {
691        final ReentrantLock lock = this.lock;
692        lock.lock();
693        try {
694            int n = size;
695            if (n == 0)
696                return "[]";
697            StringBuilder sb = new StringBuilder();
698            sb.append('[');
699            for (int i = 0; i < n; ++i) {
700                Object e = queue[i];
701                sb.append(e == this ? "(this Collection)" : e);
702                if (i != n - 1)
703                    sb.append(',').append(' ');
704            }
705            return sb.append(']').toString();
706        } finally {
707            lock.unlock();
708        }
709    }
710
711    /**
712     * @throws UnsupportedOperationException {@inheritDoc}
713     * @throws ClassCastException            {@inheritDoc}
714     * @throws NullPointerException          {@inheritDoc}
715     * @throws IllegalArgumentException      {@inheritDoc}
716     */
717    public int drainTo(Collection<? super E> c) {
718        return drainTo(c, Integer.MAX_VALUE);
719    }
720
721    /**
722     * @throws UnsupportedOperationException {@inheritDoc}
723     * @throws ClassCastException            {@inheritDoc}
724     * @throws NullPointerException          {@inheritDoc}
725     * @throws IllegalArgumentException      {@inheritDoc}
726     */
727    public int drainTo(Collection<? super E> c, int maxElements) {
728        if (c == null)
729            throw new NullPointerException();
730        if (c == this)
731            throw new IllegalArgumentException();
732        if (maxElements <= 0)
733            return 0;
734        final ReentrantLock lock = this.lock;
735        lock.lock();
736        try {
737            int n = Math.min(size, maxElements);
738            for (int i = 0; i < n; i++) {
739                c.add((E) queue[0]); // In this order, in case add() throws.
740                dequeue();
741            }
742            return n;
743        } finally {
744            lock.unlock();
745        }
746    }
747
748    /**
749     * Atomically removes all of the elements from this queue.
750     * The queue will be empty after this call returns.
751     */
752    public void clear() {
753        final ReentrantLock lock = this.lock;
754        lock.lock();
755        try {
756            Object[] array = queue;
757            int n = size;
758            size = 0;
759            for (int i = 0; i < n; i++)
760                array[i] = null;
761        } finally {
762            lock.unlock();
763        }
764    }
765
766    /**
767     * Returns an array containing all of the elements in this queue; the
768     * runtime type of the returned array is that of the specified array.
769     * The returned array elements are in no particular order.
770     * If the queue fits in the specified array, it is returned therein.
771     * Otherwise, a new array is allocated with the runtime type of the
772     * specified array and the size of this queue.
773     *
774     * <p>If this queue fits in the specified array with room to spare
775     * (i.e., the array has more elements than this queue), the element in
776     * the array immediately following the end of the queue is set to
777     * {@code null}.
778     *
779     * <p>Like the {@link #toArray()} method, this method acts as bridge between
780     * array-based and collection-based APIs.  Further, this method allows
781     * precise control over the runtime type of the output array, and may,
782     * under certain circumstances, be used to save allocation costs.
783     *
784     * <p>Suppose {@code x} is a queue known to contain only strings.
785     * The following code can be used to dump the queue into a newly
786     * allocated array of {@code String}:
787     *
788     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
789     *
790     * Note that {@code toArray(new Object[0])} is identical in function to
791     * {@code toArray()}.
792     *
793     * @param a the array into which the elements of the queue are to
794     *          be stored, if it is big enough; otherwise, a new array of the
795     *          same runtime type is allocated for this purpose
796     * @return an array containing all of the elements in this queue
797     * @throws ArrayStoreException if the runtime type of the specified array
798     *         is not a supertype of the runtime type of every element in
799     *         this queue
800     * @throws NullPointerException if the specified array is null
801     */
802    public <T> T[] toArray(T[] a) {
803        final ReentrantLock lock = this.lock;
804        lock.lock();
805        try {
806            int n = size;
807            if (a.length < n)
808                // Make a new array of a's runtime type, but my contents:
809                return (T[]) Arrays.copyOf(queue, size, a.getClass());
810            System.arraycopy(queue, 0, a, 0, n);
811            if (a.length > n)
812                a[n] = null;
813            return a;
814        } finally {
815            lock.unlock();
816        }
817    }
818
819    /**
820     * Returns an iterator over the elements in this queue. The
821     * iterator does not return the elements in any particular order.
822     *
823     * <p>The returned iterator is a "weakly consistent" iterator that
824     * will never throw {@link java.util.ConcurrentModificationException
825     * ConcurrentModificationException}, and guarantees to traverse
826     * elements as they existed upon construction of the iterator, and
827     * may (but is not guaranteed to) reflect any modifications
828     * subsequent to construction.
829     *
830     * @return an iterator over the elements in this queue
831     */
832    public Iterator<E> iterator() {
833        return new Itr(toArray());
834    }
835
836    /**
837     * Snapshot iterator that works off copy of underlying q array.
838     */
839    final class Itr implements Iterator<E> {
840        final Object[] array; // Array of all elements
841        int cursor;           // index of next element to return
842        int lastRet;          // index of last element, or -1 if no such
843
844        Itr(Object[] array) {
845            lastRet = -1;
846            this.array = array;
847        }
848
849        public boolean hasNext() {
850            return cursor < array.length;
851        }
852
853        public E next() {
854            if (cursor >= array.length)
855                throw new NoSuchElementException();
856            lastRet = cursor;
857            return (E)array[cursor++];
858        }
859
860        public void remove() {
861            if (lastRet < 0)
862                throw new IllegalStateException();
863            removeEQ(array[lastRet]);
864            lastRet = -1;
865        }
866    }
867
868    /**
869     * Saves the state to a stream (that is, serializes it).  For
870     * compatibility with previous version of this class,
871     * elements are first copied to a java.util.PriorityQueue,
872     * which is then serialized.
873     */
874    private void writeObject(java.io.ObjectOutputStream s)
875        throws java.io.IOException {
876        lock.lock();
877        try {
878            // avoid zero capacity argument
879            q = new PriorityQueue<E>(Math.max(size, 1), comparator);
880            q.addAll(this);
881            s.defaultWriteObject();
882        } finally {
883            q = null;
884            lock.unlock();
885        }
886    }
887
888    /**
889     * Reconstitutes the {@code PriorityBlockingQueue} instance from a stream
890     * (that is, deserializes it).
891     *
892     * @param s the stream
893     */
894    private void readObject(java.io.ObjectInputStream s)
895        throws java.io.IOException, ClassNotFoundException {
896        try {
897            s.defaultReadObject();
898            this.queue = new Object[q.size()];
899            comparator = q.comparator();
900            addAll(q);
901        } finally {
902            q = null;
903        }
904    }
905
906    // Unsafe mechanics
907    private static final sun.misc.Unsafe UNSAFE;
908    private static final long allocationSpinLockOffset;
909    static {
910        try {
911            UNSAFE = sun.misc.Unsafe.getUnsafe();
912            Class<?> k = PriorityBlockingQueue.class;
913            allocationSpinLockOffset = UNSAFE.objectFieldOffset
914                (k.getDeclaredField("allocationSpinLock"));
915        } catch (Exception e) {
916            throw new Error(e);
917        }
918    }
919}
920