1/*
2 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3 * assistance from members of JCP JSR-166 Expert Group and released to
4 * the public domain, as explained at
5 * http://creativecommons.org/publicdomain/zero/1.0/
6 */
7
8package java.util.concurrent;
9
10import java.util.AbstractQueue;
11import java.util.Collection;
12import java.util.Collections;
13import java.util.Iterator;
14import java.util.Spliterator;
15import java.util.Spliterators;
16import java.util.concurrent.locks.LockSupport;
17import java.util.concurrent.locks.ReentrantLock;
18
19// BEGIN android-note
20// removed link to collections framework docs
21// END android-note
22
23/**
24 * A {@linkplain BlockingQueue blocking queue} in which each insert
25 * operation must wait for a corresponding remove operation by another
26 * thread, and vice versa.  A synchronous queue does not have any
27 * internal capacity, not even a capacity of one.  You cannot
28 * {@code peek} at a synchronous queue because an element is only
29 * present when you try to remove it; you cannot insert an element
30 * (using any method) unless another thread is trying to remove it;
31 * you cannot iterate as there is nothing to iterate.  The
32 * <em>head</em> of the queue is the element that the first queued
33 * inserting thread is trying to add to the queue; if there is no such
34 * queued thread then no element is available for removal and
35 * {@code poll()} will return {@code null}.  For purposes of other
36 * {@code Collection} methods (for example {@code contains}), a
37 * {@code SynchronousQueue} acts as an empty collection.  This queue
38 * does not permit {@code null} elements.
39 *
40 * <p>Synchronous queues are similar to rendezvous channels used in
41 * CSP and Ada. They are well suited for handoff designs, in which an
42 * object running in one thread must sync up with an object running
43 * in another thread in order to hand it some information, event, or
44 * task.
45 *
46 * <p>This class supports an optional fairness policy for ordering
47 * waiting producer and consumer threads.  By default, this ordering
48 * is not guaranteed. However, a queue constructed with fairness set
49 * to {@code true} grants threads access in FIFO order.
50 *
51 * <p>This class and its iterator implement all of the
52 * <em>optional</em> methods of the {@link Collection} and {@link
53 * Iterator} interfaces.
54 *
55 * @since 1.5
56 * @author Doug Lea and Bill Scherer and Michael Scott
57 * @param <E> the type of elements held in this queue
58 */
59public class SynchronousQueue<E> extends AbstractQueue<E>
60    implements BlockingQueue<E>, java.io.Serializable {
61    private static final long serialVersionUID = -3223113410248163686L;
62
63    /*
64     * This class implements extensions of the dual stack and dual
65     * queue algorithms described in "Nonblocking Concurrent Objects
66     * with Condition Synchronization", by W. N. Scherer III and
67     * M. L. Scott.  18th Annual Conf. on Distributed Computing,
68     * Oct. 2004 (see also
69     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
70     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
71     * queue for fair mode. The performance of the two is generally
72     * similar. Fifo usually supports higher throughput under
73     * contention but Lifo maintains higher thread locality in common
74     * applications.
75     *
76     * A dual queue (and similarly stack) is one that at any given
77     * time either holds "data" -- items provided by put operations,
78     * or "requests" -- slots representing take operations, or is
79     * empty. A call to "fulfill" (i.e., a call requesting an item
80     * from a queue holding data or vice versa) dequeues a
81     * complementary node.  The most interesting feature of these
82     * queues is that any operation can figure out which mode the
83     * queue is in, and act accordingly without needing locks.
84     *
85     * Both the queue and stack extend abstract class Transferer
86     * defining the single method transfer that does a put or a
87     * take. These are unified into a single method because in dual
88     * data structures, the put and take operations are symmetrical,
89     * so nearly all code can be combined. The resulting transfer
90     * methods are on the long side, but are easier to follow than
91     * they would be if broken up into nearly-duplicated parts.
92     *
93     * The queue and stack data structures share many conceptual
94     * similarities but very few concrete details. For simplicity,
95     * they are kept distinct so that they can later evolve
96     * separately.
97     *
98     * The algorithms here differ from the versions in the above paper
99     * in extending them for use in synchronous queues, as well as
100     * dealing with cancellation. The main differences include:
101     *
102     *  1. The original algorithms used bit-marked pointers, but
103     *     the ones here use mode bits in nodes, leading to a number
104     *     of further adaptations.
105     *  2. SynchronousQueues must block threads waiting to become
106     *     fulfilled.
107     *  3. Support for cancellation via timeout and interrupts,
108     *     including cleaning out cancelled nodes/threads
109     *     from lists to avoid garbage retention and memory depletion.
110     *
111     * Blocking is mainly accomplished using LockSupport park/unpark,
112     * except that nodes that appear to be the next ones to become
113     * fulfilled first spin a bit (on multiprocessors only). On very
114     * busy synchronous queues, spinning can dramatically improve
115     * throughput. And on less busy ones, the amount of spinning is
116     * small enough not to be noticeable.
117     *
118     * Cleaning is done in different ways in queues vs stacks.  For
119     * queues, we can almost always remove a node immediately in O(1)
120     * time (modulo retries for consistency checks) when it is
121     * cancelled. But if it may be pinned as the current tail, it must
122     * wait until some subsequent cancellation. For stacks, we need a
123     * potentially O(n) traversal to be sure that we can remove the
124     * node, but this can run concurrently with other threads
125     * accessing the stack.
126     *
127     * While garbage collection takes care of most node reclamation
128     * issues that otherwise complicate nonblocking algorithms, care
129     * is taken to "forget" references to data, other nodes, and
130     * threads that might be held on to long-term by blocked
131     * threads. In cases where setting to null would otherwise
132     * conflict with main algorithms, this is done by changing a
133     * node's link to now point to the node itself. This doesn't arise
134     * much for Stack nodes (because blocked threads do not hang on to
135     * old head pointers), but references in Queue nodes must be
136     * aggressively forgotten to avoid reachability of everything any
137     * node has ever referred to since arrival.
138     */
139
140    /**
141     * Shared internal API for dual stacks and queues.
142     */
143    abstract static class Transferer<E> {
144        /**
145         * Performs a put or take.
146         *
147         * @param e if non-null, the item to be handed to a consumer;
148         *          if null, requests that transfer return an item
149         *          offered by producer.
150         * @param timed if this operation should timeout
151         * @param nanos the timeout, in nanoseconds
152         * @return if non-null, the item provided or received; if null,
153         *         the operation failed due to timeout or interrupt --
154         *         the caller can distinguish which of these occurred
155         *         by checking Thread.interrupted.
156         */
157        abstract E transfer(E e, boolean timed, long nanos);
158    }
159
160    /**
161     * The number of times to spin before blocking in timed waits.
162     * The value is empirically derived -- it works well across a
163     * variety of processors and OSes. Empirically, the best value
164     * seems not to vary with number of CPUs (beyond 2) so is just
165     * a constant.
166     */
167    static final int MAX_TIMED_SPINS =
168        (Runtime.getRuntime().availableProcessors() < 2) ? 0 : 32;
169
170    /**
171     * The number of times to spin before blocking in untimed waits.
172     * This is greater than timed value because untimed waits spin
173     * faster since they don't need to check times on each spin.
174     */
175    static final int MAX_UNTIMED_SPINS = MAX_TIMED_SPINS * 16;
176
177    /**
178     * The number of nanoseconds for which it is faster to spin
179     * rather than to use timed park. A rough estimate suffices.
180     */
181    static final long SPIN_FOR_TIMEOUT_THRESHOLD = 1000L;
182
183    /** Dual stack */
184    static final class TransferStack<E> extends Transferer<E> {
185        /*
186         * This extends Scherer-Scott dual stack algorithm, differing,
187         * among other ways, by using "covering" nodes rather than
188         * bit-marked pointers: Fulfilling operations push on marker
189         * nodes (with FULFILLING bit set in mode) to reserve a spot
190         * to match a waiting node.
191         */
192
193        /* Modes for SNodes, ORed together in node fields */
194        /** Node represents an unfulfilled consumer */
195        static final int REQUEST    = 0;
196        /** Node represents an unfulfilled producer */
197        static final int DATA       = 1;
198        /** Node is fulfilling another unfulfilled DATA or REQUEST */
199        static final int FULFILLING = 2;
200
201        /** Returns true if m has fulfilling bit set. */
202        static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
203
204        /** Node class for TransferStacks. */
205        static final class SNode {
206            volatile SNode next;        // next node in stack
207            volatile SNode match;       // the node matched to this
208            volatile Thread waiter;     // to control park/unpark
209            Object item;                // data; or null for REQUESTs
210            int mode;
211            // Note: item and mode fields don't need to be volatile
212            // since they are always written before, and read after,
213            // other volatile/atomic operations.
214
215            SNode(Object item) {
216                this.item = item;
217            }
218
219            boolean casNext(SNode cmp, SNode val) {
220                return cmp == next &&
221                    U.compareAndSwapObject(this, NEXT, cmp, val);
222            }
223
224            /**
225             * Tries to match node s to this node, if so, waking up thread.
226             * Fulfillers call tryMatch to identify their waiters.
227             * Waiters block until they have been matched.
228             *
229             * @param s the node to match
230             * @return true if successfully matched to s
231             */
232            boolean tryMatch(SNode s) {
233                if (match == null &&
234                    U.compareAndSwapObject(this, MATCH, null, s)) {
235                    Thread w = waiter;
236                    if (w != null) {    // waiters need at most one unpark
237                        waiter = null;
238                        LockSupport.unpark(w);
239                    }
240                    return true;
241                }
242                return match == s;
243            }
244
245            /**
246             * Tries to cancel a wait by matching node to itself.
247             */
248            void tryCancel() {
249                U.compareAndSwapObject(this, MATCH, null, this);
250            }
251
252            boolean isCancelled() {
253                return match == this;
254            }
255
256            // Unsafe mechanics
257            private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
258            private static final long MATCH;
259            private static final long NEXT;
260
261            static {
262                try {
263                    MATCH = U.objectFieldOffset
264                        (SNode.class.getDeclaredField("match"));
265                    NEXT = U.objectFieldOffset
266                        (SNode.class.getDeclaredField("next"));
267                } catch (ReflectiveOperationException e) {
268                    throw new Error(e);
269                }
270            }
271        }
272
273        /** The head (top) of the stack */
274        volatile SNode head;
275
276        boolean casHead(SNode h, SNode nh) {
277            return h == head &&
278                U.compareAndSwapObject(this, HEAD, h, nh);
279        }
280
281        /**
282         * Creates or resets fields of a node. Called only from transfer
283         * where the node to push on stack is lazily created and
284         * reused when possible to help reduce intervals between reads
285         * and CASes of head and to avoid surges of garbage when CASes
286         * to push nodes fail due to contention.
287         */
288        static SNode snode(SNode s, Object e, SNode next, int mode) {
289            if (s == null) s = new SNode(e);
290            s.mode = mode;
291            s.next = next;
292            return s;
293        }
294
295        /**
296         * Puts or takes an item.
297         */
298        @SuppressWarnings("unchecked")
299        E transfer(E e, boolean timed, long nanos) {
300            /*
301             * Basic algorithm is to loop trying one of three actions:
302             *
303             * 1. If apparently empty or already containing nodes of same
304             *    mode, try to push node on stack and wait for a match,
305             *    returning it, or null if cancelled.
306             *
307             * 2. If apparently containing node of complementary mode,
308             *    try to push a fulfilling node on to stack, match
309             *    with corresponding waiting node, pop both from
310             *    stack, and return matched item. The matching or
311             *    unlinking might not actually be necessary because of
312             *    other threads performing action 3:
313             *
314             * 3. If top of stack already holds another fulfilling node,
315             *    help it out by doing its match and/or pop
316             *    operations, and then continue. The code for helping
317             *    is essentially the same as for fulfilling, except
318             *    that it doesn't return the item.
319             */
320
321            SNode s = null; // constructed/reused as needed
322            int mode = (e == null) ? REQUEST : DATA;
323
324            for (;;) {
325                SNode h = head;
326                if (h == null || h.mode == mode) {  // empty or same-mode
327                    if (timed && nanos <= 0L) {     // can't wait
328                        if (h != null && h.isCancelled())
329                            casHead(h, h.next);     // pop cancelled node
330                        else
331                            return null;
332                    } else if (casHead(h, s = snode(s, e, h, mode))) {
333                        SNode m = awaitFulfill(s, timed, nanos);
334                        if (m == s) {               // wait was cancelled
335                            clean(s);
336                            return null;
337                        }
338                        if ((h = head) != null && h.next == s)
339                            casHead(h, s.next);     // help s's fulfiller
340                        return (E) ((mode == REQUEST) ? m.item : s.item);
341                    }
342                } else if (!isFulfilling(h.mode)) { // try to fulfill
343                    if (h.isCancelled())            // already cancelled
344                        casHead(h, h.next);         // pop and retry
345                    else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
346                        for (;;) { // loop until matched or waiters disappear
347                            SNode m = s.next;       // m is s's match
348                            if (m == null) {        // all waiters are gone
349                                casHead(s, null);   // pop fulfill node
350                                s = null;           // use new node next time
351                                break;              // restart main loop
352                            }
353                            SNode mn = m.next;
354                            if (m.tryMatch(s)) {
355                                casHead(s, mn);     // pop both s and m
356                                return (E) ((mode == REQUEST) ? m.item : s.item);
357                            } else                  // lost match
358                                s.casNext(m, mn);   // help unlink
359                        }
360                    }
361                } else {                            // help a fulfiller
362                    SNode m = h.next;               // m is h's match
363                    if (m == null)                  // waiter is gone
364                        casHead(h, null);           // pop fulfilling node
365                    else {
366                        SNode mn = m.next;
367                        if (m.tryMatch(h))          // help match
368                            casHead(h, mn);         // pop both h and m
369                        else                        // lost match
370                            h.casNext(m, mn);       // help unlink
371                    }
372                }
373            }
374        }
375
376        /**
377         * Spins/blocks until node s is matched by a fulfill operation.
378         *
379         * @param s the waiting node
380         * @param timed true if timed wait
381         * @param nanos timeout value
382         * @return matched node, or s if cancelled
383         */
384        SNode awaitFulfill(SNode s, boolean timed, long nanos) {
385            /*
386             * When a node/thread is about to block, it sets its waiter
387             * field and then rechecks state at least one more time
388             * before actually parking, thus covering race vs
389             * fulfiller noticing that waiter is non-null so should be
390             * woken.
391             *
392             * When invoked by nodes that appear at the point of call
393             * to be at the head of the stack, calls to park are
394             * preceded by spins to avoid blocking when producers and
395             * consumers are arriving very close in time.  This can
396             * happen enough to bother only on multiprocessors.
397             *
398             * The order of checks for returning out of main loop
399             * reflects fact that interrupts have precedence over
400             * normal returns, which have precedence over
401             * timeouts. (So, on timeout, one last check for match is
402             * done before giving up.) Except that calls from untimed
403             * SynchronousQueue.{poll/offer} don't check interrupts
404             * and don't wait at all, so are trapped in transfer
405             * method rather than calling awaitFulfill.
406             */
407            final long deadline = timed ? System.nanoTime() + nanos : 0L;
408            Thread w = Thread.currentThread();
409            int spins = shouldSpin(s)
410                ? (timed ? MAX_TIMED_SPINS : MAX_UNTIMED_SPINS)
411                : 0;
412            for (;;) {
413                if (w.isInterrupted())
414                    s.tryCancel();
415                SNode m = s.match;
416                if (m != null)
417                    return m;
418                if (timed) {
419                    nanos = deadline - System.nanoTime();
420                    if (nanos <= 0L) {
421                        s.tryCancel();
422                        continue;
423                    }
424                }
425                if (spins > 0)
426                    spins = shouldSpin(s) ? (spins - 1) : 0;
427                else if (s.waiter == null)
428                    s.waiter = w; // establish waiter so can park next iter
429                else if (!timed)
430                    LockSupport.park(this);
431                else if (nanos > SPIN_FOR_TIMEOUT_THRESHOLD)
432                    LockSupport.parkNanos(this, nanos);
433            }
434        }
435
436        /**
437         * Returns true if node s is at head or there is an active
438         * fulfiller.
439         */
440        boolean shouldSpin(SNode s) {
441            SNode h = head;
442            return (h == s || h == null || isFulfilling(h.mode));
443        }
444
445        /**
446         * Unlinks s from the stack.
447         */
448        void clean(SNode s) {
449            s.item = null;   // forget item
450            s.waiter = null; // forget thread
451
452            /*
453             * At worst we may need to traverse entire stack to unlink
454             * s. If there are multiple concurrent calls to clean, we
455             * might not see s if another thread has already removed
456             * it. But we can stop when we see any node known to
457             * follow s. We use s.next unless it too is cancelled, in
458             * which case we try the node one past. We don't check any
459             * further because we don't want to doubly traverse just to
460             * find sentinel.
461             */
462
463            SNode past = s.next;
464            if (past != null && past.isCancelled())
465                past = past.next;
466
467            // Absorb cancelled nodes at head
468            SNode p;
469            while ((p = head) != null && p != past && p.isCancelled())
470                casHead(p, p.next);
471
472            // Unsplice embedded nodes
473            while (p != null && p != past) {
474                SNode n = p.next;
475                if (n != null && n.isCancelled())
476                    p.casNext(n, n.next);
477                else
478                    p = n;
479            }
480        }
481
482        // Unsafe mechanics
483        private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
484        private static final long HEAD;
485        static {
486            try {
487                HEAD = U.objectFieldOffset
488                    (TransferStack.class.getDeclaredField("head"));
489            } catch (ReflectiveOperationException e) {
490                throw new Error(e);
491            }
492        }
493    }
494
495    /** Dual Queue */
496    static final class TransferQueue<E> extends Transferer<E> {
497        /*
498         * This extends Scherer-Scott dual queue algorithm, differing,
499         * among other ways, by using modes within nodes rather than
500         * marked pointers. The algorithm is a little simpler than
501         * that for stacks because fulfillers do not need explicit
502         * nodes, and matching is done by CAS'ing QNode.item field
503         * from non-null to null (for put) or vice versa (for take).
504         */
505
506        /** Node class for TransferQueue. */
507        static final class QNode {
508            volatile QNode next;          // next node in queue
509            volatile Object item;         // CAS'ed to or from null
510            volatile Thread waiter;       // to control park/unpark
511            final boolean isData;
512
513            QNode(Object item, boolean isData) {
514                this.item = item;
515                this.isData = isData;
516            }
517
518            boolean casNext(QNode cmp, QNode val) {
519                return next == cmp &&
520                    U.compareAndSwapObject(this, NEXT, cmp, val);
521            }
522
523            boolean casItem(Object cmp, Object val) {
524                return item == cmp &&
525                    U.compareAndSwapObject(this, ITEM, cmp, val);
526            }
527
528            /**
529             * Tries to cancel by CAS'ing ref to this as item.
530             */
531            void tryCancel(Object cmp) {
532                U.compareAndSwapObject(this, ITEM, cmp, this);
533            }
534
535            boolean isCancelled() {
536                return item == this;
537            }
538
539            /**
540             * Returns true if this node is known to be off the queue
541             * because its next pointer has been forgotten due to
542             * an advanceHead operation.
543             */
544            boolean isOffList() {
545                return next == this;
546            }
547
548            // Unsafe mechanics
549            private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
550            private static final long ITEM;
551            private static final long NEXT;
552
553            static {
554                try {
555                    ITEM = U.objectFieldOffset
556                        (QNode.class.getDeclaredField("item"));
557                    NEXT = U.objectFieldOffset
558                        (QNode.class.getDeclaredField("next"));
559                } catch (ReflectiveOperationException e) {
560                    throw new Error(e);
561                }
562            }
563        }
564
565        /** Head of queue */
566        transient volatile QNode head;
567        /** Tail of queue */
568        transient volatile QNode tail;
569        /**
570         * Reference to a cancelled node that might not yet have been
571         * unlinked from queue because it was the last inserted node
572         * when it was cancelled.
573         */
574        transient volatile QNode cleanMe;
575
576        TransferQueue() {
577            QNode h = new QNode(null, false); // initialize to dummy node.
578            head = h;
579            tail = h;
580        }
581
582        /**
583         * Tries to cas nh as new head; if successful, unlink
584         * old head's next node to avoid garbage retention.
585         */
586        void advanceHead(QNode h, QNode nh) {
587            if (h == head &&
588                U.compareAndSwapObject(this, HEAD, h, nh))
589                h.next = h; // forget old next
590        }
591
592        /**
593         * Tries to cas nt as new tail.
594         */
595        void advanceTail(QNode t, QNode nt) {
596            if (tail == t)
597                U.compareAndSwapObject(this, TAIL, t, nt);
598        }
599
600        /**
601         * Tries to CAS cleanMe slot.
602         */
603        boolean casCleanMe(QNode cmp, QNode val) {
604            return cleanMe == cmp &&
605                U.compareAndSwapObject(this, CLEANME, cmp, val);
606        }
607
608        /**
609         * Puts or takes an item.
610         */
611        @SuppressWarnings("unchecked")
612        E transfer(E e, boolean timed, long nanos) {
613            /* Basic algorithm is to loop trying to take either of
614             * two actions:
615             *
616             * 1. If queue apparently empty or holding same-mode nodes,
617             *    try to add node to queue of waiters, wait to be
618             *    fulfilled (or cancelled) and return matching item.
619             *
620             * 2. If queue apparently contains waiting items, and this
621             *    call is of complementary mode, try to fulfill by CAS'ing
622             *    item field of waiting node and dequeuing it, and then
623             *    returning matching item.
624             *
625             * In each case, along the way, check for and try to help
626             * advance head and tail on behalf of other stalled/slow
627             * threads.
628             *
629             * The loop starts off with a null check guarding against
630             * seeing uninitialized head or tail values. This never
631             * happens in current SynchronousQueue, but could if
632             * callers held non-volatile/final ref to the
633             * transferer. The check is here anyway because it places
634             * null checks at top of loop, which is usually faster
635             * than having them implicitly interspersed.
636             */
637
638            QNode s = null; // constructed/reused as needed
639            boolean isData = (e != null);
640
641            for (;;) {
642                QNode t = tail;
643                QNode h = head;
644                if (t == null || h == null)         // saw uninitialized value
645                    continue;                       // spin
646
647                if (h == t || t.isData == isData) { // empty or same-mode
648                    QNode tn = t.next;
649                    if (t != tail)                  // inconsistent read
650                        continue;
651                    if (tn != null) {               // lagging tail
652                        advanceTail(t, tn);
653                        continue;
654                    }
655                    if (timed && nanos <= 0L)       // can't wait
656                        return null;
657                    if (s == null)
658                        s = new QNode(e, isData);
659                    if (!t.casNext(null, s))        // failed to link in
660                        continue;
661
662                    advanceTail(t, s);              // swing tail and wait
663                    Object x = awaitFulfill(s, e, timed, nanos);
664                    if (x == s) {                   // wait was cancelled
665                        clean(t, s);
666                        return null;
667                    }
668
669                    if (!s.isOffList()) {           // not already unlinked
670                        advanceHead(t, s);          // unlink if head
671                        if (x != null)              // and forget fields
672                            s.item = s;
673                        s.waiter = null;
674                    }
675                    return (x != null) ? (E)x : e;
676
677                } else {                            // complementary-mode
678                    QNode m = h.next;               // node to fulfill
679                    if (t != tail || m == null || h != head)
680                        continue;                   // inconsistent read
681
682                    Object x = m.item;
683                    if (isData == (x != null) ||    // m already fulfilled
684                        x == m ||                   // m cancelled
685                        !m.casItem(x, e)) {         // lost CAS
686                        advanceHead(h, m);          // dequeue and retry
687                        continue;
688                    }
689
690                    advanceHead(h, m);              // successfully fulfilled
691                    LockSupport.unpark(m.waiter);
692                    return (x != null) ? (E)x : e;
693                }
694            }
695        }
696
697        /**
698         * Spins/blocks until node s is fulfilled.
699         *
700         * @param s the waiting node
701         * @param e the comparison value for checking match
702         * @param timed true if timed wait
703         * @param nanos timeout value
704         * @return matched item, or s if cancelled
705         */
706        Object awaitFulfill(QNode s, E e, boolean timed, long nanos) {
707            /* Same idea as TransferStack.awaitFulfill */
708            final long deadline = timed ? System.nanoTime() + nanos : 0L;
709            Thread w = Thread.currentThread();
710            int spins = (head.next == s)
711                ? (timed ? MAX_TIMED_SPINS : MAX_UNTIMED_SPINS)
712                : 0;
713            for (;;) {
714                if (w.isInterrupted())
715                    s.tryCancel(e);
716                Object x = s.item;
717                if (x != e)
718                    return x;
719                if (timed) {
720                    nanos = deadline - System.nanoTime();
721                    if (nanos <= 0L) {
722                        s.tryCancel(e);
723                        continue;
724                    }
725                }
726                if (spins > 0)
727                    --spins;
728                else if (s.waiter == null)
729                    s.waiter = w;
730                else if (!timed)
731                    LockSupport.park(this);
732                else if (nanos > SPIN_FOR_TIMEOUT_THRESHOLD)
733                    LockSupport.parkNanos(this, nanos);
734            }
735        }
736
737        /**
738         * Gets rid of cancelled node s with original predecessor pred.
739         */
740        void clean(QNode pred, QNode s) {
741            s.waiter = null; // forget thread
742            /*
743             * At any given time, exactly one node on list cannot be
744             * deleted -- the last inserted node. To accommodate this,
745             * if we cannot delete s, we save its predecessor as
746             * "cleanMe", deleting the previously saved version
747             * first. At least one of node s or the node previously
748             * saved can always be deleted, so this always terminates.
749             */
750            while (pred.next == s) { // Return early if already unlinked
751                QNode h = head;
752                QNode hn = h.next;   // Absorb cancelled first node as head
753                if (hn != null && hn.isCancelled()) {
754                    advanceHead(h, hn);
755                    continue;
756                }
757                QNode t = tail;      // Ensure consistent read for tail
758                if (t == h)
759                    return;
760                QNode tn = t.next;
761                if (t != tail)
762                    continue;
763                if (tn != null) {
764                    advanceTail(t, tn);
765                    continue;
766                }
767                if (s != t) {        // If not tail, try to unsplice
768                    QNode sn = s.next;
769                    if (sn == s || pred.casNext(s, sn))
770                        return;
771                }
772                QNode dp = cleanMe;
773                if (dp != null) {    // Try unlinking previous cancelled node
774                    QNode d = dp.next;
775                    QNode dn;
776                    if (d == null ||               // d is gone or
777                        d == dp ||                 // d is off list or
778                        !d.isCancelled() ||        // d not cancelled or
779                        (d != t &&                 // d not tail and
780                         (dn = d.next) != null &&  //   has successor
781                         dn != d &&                //   that is on list
782                         dp.casNext(d, dn)))       // d unspliced
783                        casCleanMe(dp, null);
784                    if (dp == pred)
785                        return;      // s is already saved node
786                } else if (casCleanMe(null, pred))
787                    return;          // Postpone cleaning s
788            }
789        }
790
791        private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
792        private static final long HEAD;
793        private static final long TAIL;
794        private static final long CLEANME;
795        static {
796            try {
797                HEAD = U.objectFieldOffset
798                    (TransferQueue.class.getDeclaredField("head"));
799                TAIL = U.objectFieldOffset
800                    (TransferQueue.class.getDeclaredField("tail"));
801                CLEANME = U.objectFieldOffset
802                    (TransferQueue.class.getDeclaredField("cleanMe"));
803            } catch (ReflectiveOperationException e) {
804                throw new Error(e);
805            }
806        }
807    }
808
809    /**
810     * The transferer. Set only in constructor, but cannot be declared
811     * as final without further complicating serialization.  Since
812     * this is accessed only at most once per public method, there
813     * isn't a noticeable performance penalty for using volatile
814     * instead of final here.
815     */
816    private transient volatile Transferer<E> transferer;
817
818    /**
819     * Creates a {@code SynchronousQueue} with nonfair access policy.
820     */
821    public SynchronousQueue() {
822        this(false);
823    }
824
825    /**
826     * Creates a {@code SynchronousQueue} with the specified fairness policy.
827     *
828     * @param fair if true, waiting threads contend in FIFO order for
829     *        access; otherwise the order is unspecified.
830     */
831    public SynchronousQueue(boolean fair) {
832        transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
833    }
834
835    /**
836     * Adds the specified element to this queue, waiting if necessary for
837     * another thread to receive it.
838     *
839     * @throws InterruptedException {@inheritDoc}
840     * @throws NullPointerException {@inheritDoc}
841     */
842    public void put(E e) throws InterruptedException {
843        if (e == null) throw new NullPointerException();
844        if (transferer.transfer(e, false, 0) == null) {
845            Thread.interrupted();
846            throw new InterruptedException();
847        }
848    }
849
850    /**
851     * Inserts the specified element into this queue, waiting if necessary
852     * up to the specified wait time for another thread to receive it.
853     *
854     * @return {@code true} if successful, or {@code false} if the
855     *         specified waiting time elapses before a consumer appears
856     * @throws InterruptedException {@inheritDoc}
857     * @throws NullPointerException {@inheritDoc}
858     */
859    public boolean offer(E e, long timeout, TimeUnit unit)
860        throws InterruptedException {
861        if (e == null) throw new NullPointerException();
862        if (transferer.transfer(e, true, unit.toNanos(timeout)) != null)
863            return true;
864        if (!Thread.interrupted())
865            return false;
866        throw new InterruptedException();
867    }
868
869    /**
870     * Inserts the specified element into this queue, if another thread is
871     * waiting to receive it.
872     *
873     * @param e the element to add
874     * @return {@code true} if the element was added to this queue, else
875     *         {@code false}
876     * @throws NullPointerException if the specified element is null
877     */
878    public boolean offer(E e) {
879        if (e == null) throw new NullPointerException();
880        return transferer.transfer(e, true, 0) != null;
881    }
882
883    /**
884     * Retrieves and removes the head of this queue, waiting if necessary
885     * for another thread to insert it.
886     *
887     * @return the head of this queue
888     * @throws InterruptedException {@inheritDoc}
889     */
890    public E take() throws InterruptedException {
891        E e = transferer.transfer(null, false, 0);
892        if (e != null)
893            return e;
894        Thread.interrupted();
895        throw new InterruptedException();
896    }
897
898    /**
899     * Retrieves and removes the head of this queue, waiting
900     * if necessary up to the specified wait time, for another thread
901     * to insert it.
902     *
903     * @return the head of this queue, or {@code null} if the
904     *         specified waiting time elapses before an element is present
905     * @throws InterruptedException {@inheritDoc}
906     */
907    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
908        E e = transferer.transfer(null, true, unit.toNanos(timeout));
909        if (e != null || !Thread.interrupted())
910            return e;
911        throw new InterruptedException();
912    }
913
914    /**
915     * Retrieves and removes the head of this queue, if another thread
916     * is currently making an element available.
917     *
918     * @return the head of this queue, or {@code null} if no
919     *         element is available
920     */
921    public E poll() {
922        return transferer.transfer(null, true, 0);
923    }
924
925    /**
926     * Always returns {@code true}.
927     * A {@code SynchronousQueue} has no internal capacity.
928     *
929     * @return {@code true}
930     */
931    public boolean isEmpty() {
932        return true;
933    }
934
935    /**
936     * Always returns zero.
937     * A {@code SynchronousQueue} has no internal capacity.
938     *
939     * @return zero
940     */
941    public int size() {
942        return 0;
943    }
944
945    /**
946     * Always returns zero.
947     * A {@code SynchronousQueue} has no internal capacity.
948     *
949     * @return zero
950     */
951    public int remainingCapacity() {
952        return 0;
953    }
954
955    /**
956     * Does nothing.
957     * A {@code SynchronousQueue} has no internal capacity.
958     */
959    public void clear() {
960    }
961
962    /**
963     * Always returns {@code false}.
964     * A {@code SynchronousQueue} has no internal capacity.
965     *
966     * @param o the element
967     * @return {@code false}
968     */
969    public boolean contains(Object o) {
970        return false;
971    }
972
973    /**
974     * Always returns {@code false}.
975     * A {@code SynchronousQueue} has no internal capacity.
976     *
977     * @param o the element to remove
978     * @return {@code false}
979     */
980    public boolean remove(Object o) {
981        return false;
982    }
983
984    /**
985     * Returns {@code false} unless the given collection is empty.
986     * A {@code SynchronousQueue} has no internal capacity.
987     *
988     * @param c the collection
989     * @return {@code false} unless given collection is empty
990     */
991    public boolean containsAll(Collection<?> c) {
992        return c.isEmpty();
993    }
994
995    /**
996     * Always returns {@code false}.
997     * A {@code SynchronousQueue} has no internal capacity.
998     *
999     * @param c the collection
1000     * @return {@code false}
1001     */
1002    public boolean removeAll(Collection<?> c) {
1003        return false;
1004    }
1005
1006    /**
1007     * Always returns {@code false}.
1008     * A {@code SynchronousQueue} has no internal capacity.
1009     *
1010     * @param c the collection
1011     * @return {@code false}
1012     */
1013    public boolean retainAll(Collection<?> c) {
1014        return false;
1015    }
1016
1017    /**
1018     * Always returns {@code null}.
1019     * A {@code SynchronousQueue} does not return elements
1020     * unless actively waited on.
1021     *
1022     * @return {@code null}
1023     */
1024    public E peek() {
1025        return null;
1026    }
1027
1028    /**
1029     * Returns an empty iterator in which {@code hasNext} always returns
1030     * {@code false}.
1031     *
1032     * @return an empty iterator
1033     */
1034    public Iterator<E> iterator() {
1035        return Collections.emptyIterator();
1036    }
1037
1038    /**
1039     * Returns an empty spliterator in which calls to
1040     * {@link java.util.Spliterator#trySplit()} always return {@code null}.
1041     *
1042     * @return an empty spliterator
1043     * @since 1.8
1044     */
1045    public Spliterator<E> spliterator() {
1046        return Spliterators.emptySpliterator();
1047    }
1048
1049    /**
1050     * Returns a zero-length array.
1051     * @return a zero-length array
1052     */
1053    public Object[] toArray() {
1054        return new Object[0];
1055    }
1056
1057    /**
1058     * Sets the zeroth element of the specified array to {@code null}
1059     * (if the array has non-zero length) and returns it.
1060     *
1061     * @param a the array
1062     * @return the specified array
1063     * @throws NullPointerException if the specified array is null
1064     */
1065    public <T> T[] toArray(T[] a) {
1066        if (a.length > 0)
1067            a[0] = null;
1068        return a;
1069    }
1070
1071    /**
1072     * Always returns {@code "[]"}.
1073     * @return {@code "[]"}
1074     */
1075    public String toString() {
1076        return "[]";
1077    }
1078
1079    /**
1080     * @throws UnsupportedOperationException {@inheritDoc}
1081     * @throws ClassCastException            {@inheritDoc}
1082     * @throws NullPointerException          {@inheritDoc}
1083     * @throws IllegalArgumentException      {@inheritDoc}
1084     */
1085    public int drainTo(Collection<? super E> c) {
1086        if (c == null)
1087            throw new NullPointerException();
1088        if (c == this)
1089            throw new IllegalArgumentException();
1090        int n = 0;
1091        for (E e; (e = poll()) != null;) {
1092            c.add(e);
1093            ++n;
1094        }
1095        return n;
1096    }
1097
1098    /**
1099     * @throws UnsupportedOperationException {@inheritDoc}
1100     * @throws ClassCastException            {@inheritDoc}
1101     * @throws NullPointerException          {@inheritDoc}
1102     * @throws IllegalArgumentException      {@inheritDoc}
1103     */
1104    public int drainTo(Collection<? super E> c, int maxElements) {
1105        if (c == null)
1106            throw new NullPointerException();
1107        if (c == this)
1108            throw new IllegalArgumentException();
1109        int n = 0;
1110        for (E e; n < maxElements && (e = poll()) != null;) {
1111            c.add(e);
1112            ++n;
1113        }
1114        return n;
1115    }
1116
1117    /*
1118     * To cope with serialization strategy in the 1.5 version of
1119     * SynchronousQueue, we declare some unused classes and fields
1120     * that exist solely to enable serializability across versions.
1121     * These fields are never used, so are initialized only if this
1122     * object is ever serialized or deserialized.
1123     */
1124
1125    @SuppressWarnings("serial")
1126    static class WaitQueue implements java.io.Serializable { }
1127    static class LifoWaitQueue extends WaitQueue {
1128        private static final long serialVersionUID = -3633113410248163686L;
1129    }
1130    static class FifoWaitQueue extends WaitQueue {
1131        private static final long serialVersionUID = -3623113410248163686L;
1132    }
1133    private ReentrantLock qlock;
1134    private WaitQueue waitingProducers;
1135    private WaitQueue waitingConsumers;
1136
1137    /**
1138     * Saves this queue to a stream (that is, serializes it).
1139     * @param s the stream
1140     * @throws java.io.IOException if an I/O error occurs
1141     */
1142    private void writeObject(java.io.ObjectOutputStream s)
1143        throws java.io.IOException {
1144        boolean fair = transferer instanceof TransferQueue;
1145        if (fair) {
1146            qlock = new ReentrantLock(true);
1147            waitingProducers = new FifoWaitQueue();
1148            waitingConsumers = new FifoWaitQueue();
1149        }
1150        else {
1151            qlock = new ReentrantLock();
1152            waitingProducers = new LifoWaitQueue();
1153            waitingConsumers = new LifoWaitQueue();
1154        }
1155        s.defaultWriteObject();
1156    }
1157
1158    /**
1159     * Reconstitutes this queue from a stream (that is, deserializes it).
1160     * @param s the stream
1161     * @throws ClassNotFoundException if the class of a serialized object
1162     *         could not be found
1163     * @throws java.io.IOException if an I/O error occurs
1164     */
1165    private void readObject(java.io.ObjectInputStream s)
1166        throws java.io.IOException, ClassNotFoundException {
1167        s.defaultReadObject();
1168        if (waitingProducers instanceof FifoWaitQueue)
1169            transferer = new TransferQueue<E>();
1170        else
1171            transferer = new TransferStack<E>();
1172    }
1173
1174    static {
1175        // Reduce the risk of rare disastrous classloading in first call to
1176        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1177        Class<?> ensureLoaded = LockSupport.class;
1178    }
1179}
1180