sync_test.cpp revision a7c7bce252a6bce1539e9caa84420de3698029e7
1#include <gtest/gtest.h>
2#include <sync/sync.h>
3#include <sw_sync.h>
4#include <fcntl.h>
5#include <vector>
6#include <string>
7#include <cassert>
8#include <iostream>
9#include <unistd.h>
10#include <thread>
11#include <poll.h>
12#include <mutex>
13#include <algorithm>
14#include <tuple>
15#include <random>
16#include <unordered_map>
17
18// TODO: better stress tests?
19// Handle more than 64 fd's simultaneously, i.e. fix sync_fence_info's 4k limit.
20// Handle wraparound in timelines like nvidia.
21
22using namespace std;
23
24namespace {
25
26// C++ wrapper class for sync timeline.
27class SyncTimeline {
28    int m_fd = -1;
29    bool m_fdInitialized = false;
30public:
31    SyncTimeline(const SyncTimeline &) = delete;
32    SyncTimeline& operator=(SyncTimeline&) = delete;
33    SyncTimeline() noexcept {
34        int fd = sw_sync_timeline_create();
35        if (fd == -1)
36            return;
37        m_fdInitialized = true;
38        m_fd = fd;
39    }
40    void destroy() {
41        if (m_fdInitialized) {
42            close(m_fd);
43            m_fd = -1;
44            m_fdInitialized = false;
45        }
46    }
47    ~SyncTimeline() {
48        destroy();
49    }
50    bool isValid() const {
51        if (m_fdInitialized) {
52            int status = fcntl(m_fd, F_GETFD, 0);
53            if (status >= 0)
54                return true;
55            else
56                return false;
57        }
58        else {
59            return false;
60        }
61    }
62    int getFd() const {
63        return m_fd;
64    }
65    int inc(int val = 1) {
66        return sw_sync_timeline_inc(m_fd, val);
67    }
68};
69
70struct SyncPointInfo {
71    std::string driverName;
72    std::string objectName;
73    uint64_t timeStampNs;
74    int status; // 1 sig, 0 active, neg is err
75};
76
77// Wrapper class for sync fence.
78class SyncFence {
79    int m_fd = -1;
80    bool m_fdInitialized = false;
81    static int s_fenceCount;
82
83    void setFd(int fd) {
84        m_fd = fd;
85        m_fdInitialized = true;
86    }
87    void clearFd() {
88        m_fd = -1;
89        m_fdInitialized = false;
90    }
91public:
92    bool isValid() const {
93        if (m_fdInitialized) {
94            int status = fcntl(m_fd, F_GETFD, 0);
95            if (status >= 0)
96                return true;
97            else
98                return false;
99        }
100        else {
101            return false;
102        }
103    }
104    SyncFence& operator=(SyncFence &&rhs) noexcept {
105        destroy();
106        if (rhs.isValid()) {
107            setFd(rhs.getFd());
108            rhs.clearFd();
109        }
110        return *this;
111    }
112    SyncFence(SyncFence &&fence) noexcept {
113        if (fence.isValid()) {
114            setFd(fence.getFd());
115            fence.clearFd();
116        }
117    }
118    SyncFence(const SyncFence &fence) noexcept {
119        // This is ok, as sync fences are immutable after construction, so a dup
120        // is basically the same thing as a copy.
121        if (fence.isValid()) {
122            int fd = dup(fence.getFd());
123            if (fd == -1)
124                return;
125            setFd(fd);
126        }
127    }
128    SyncFence(const SyncTimeline &timeline,
129              int value,
130              const char *name = nullptr) noexcept {
131        std::string autoName = "allocFence";
132        autoName += s_fenceCount;
133        s_fenceCount++;
134        int fd = sw_sync_fence_create(timeline.getFd(), name ? name : autoName.c_str(), value);
135        if (fd == -1)
136            return;
137        setFd(fd);
138    }
139    SyncFence(const SyncFence &a, const SyncFence &b, const char *name = nullptr) noexcept {
140        std::string autoName = "mergeFence";
141        autoName += s_fenceCount;
142        s_fenceCount++;
143        int fd = sync_merge(name ? name : autoName.c_str(), a.getFd(), b.getFd());
144        if (fd == -1)
145            return;
146        setFd(fd);
147    }
148    SyncFence(const vector<SyncFence> &sources) noexcept {
149        assert(sources.size());
150        SyncFence temp(*begin(sources));
151        for (auto itr = ++begin(sources); itr != end(sources); ++itr) {
152            temp = SyncFence(*itr, temp);
153        }
154        if (temp.isValid()) {
155            setFd(temp.getFd());
156            temp.clearFd();
157        }
158    }
159    void destroy() {
160        if (isValid()) {
161            close(m_fd);
162            clearFd();
163        }
164    }
165    ~SyncFence() {
166        destroy();
167    }
168    int getFd() const {
169        return m_fd;
170    }
171    int wait(int timeout = -1) {
172        return sync_wait(m_fd, timeout);
173    }
174    vector<SyncPointInfo> getInfo() const {
175        struct sync_pt_info *pointInfo = nullptr;
176        vector<SyncPointInfo> fenceInfo;
177        sync_fence_info_data *info = sync_fence_info(getFd());
178        if (!info) {
179            return fenceInfo;
180        }
181        while ((pointInfo = sync_pt_info(info, pointInfo))) {
182            fenceInfo.push_back(SyncPointInfo{
183                pointInfo->driver_name,
184                pointInfo->obj_name,
185                pointInfo->timestamp_ns,
186                pointInfo->status});
187        }
188        sync_fence_info_free(info);
189        return fenceInfo;
190    }
191    int getSize() const {
192        return getInfo().size();
193    }
194    int getSignaledCount() const {
195        return countWithStatus(1);
196    }
197    int getActiveCount() const {
198        return countWithStatus(0);
199    }
200    int getErrorCount() const {
201        return countWithStatus(-1);
202    }
203private:
204    int countWithStatus(int status) const {
205        int count = 0;
206        for (auto &info : getInfo()) {
207            if (info.status == status) {
208                count++;
209            }
210        }
211        return count;
212    }
213};
214
215int SyncFence::s_fenceCount = 0;
216
217TEST(AllocTest, Timeline) {
218    SyncTimeline timeline;
219    ASSERT_TRUE(timeline.isValid());
220}
221
222TEST(AllocTest, Fence) {
223    SyncTimeline timeline;
224    ASSERT_TRUE(timeline.isValid());
225
226    SyncFence fence(timeline, 1);
227    ASSERT_TRUE(fence.isValid());
228}
229
230TEST(AllocTest, FenceNegative) {
231    int timeline = sw_sync_timeline_create();
232    ASSERT_GT(timeline, 0);
233
234    // bad fd.
235    ASSERT_LT(sw_sync_fence_create(-1, "fence", 1), 0);
236
237    // No name - segfaults in user space.
238    // Maybe we should be friendlier here?
239    /*
240    ASSERT_LT(sw_sync_fence_create(timeline, nullptr, 1), 0);
241    */
242    close(timeline);
243}
244
245TEST(FenceTest, OneTimelineWait) {
246    SyncTimeline timeline;
247    ASSERT_TRUE(timeline.isValid());
248
249    SyncFence fence(timeline, 5);
250    ASSERT_TRUE(fence.isValid());
251
252    // Wait on fence until timeout.
253    ASSERT_EQ(fence.wait(0), -1);
254    ASSERT_EQ(errno, ETIME);
255
256    // Advance timeline from 0 -> 1
257    ASSERT_EQ(timeline.inc(1), 0);
258
259    // Wait on fence until timeout.
260    ASSERT_EQ(fence.wait(0), -1);
261    ASSERT_EQ(errno, ETIME);
262
263    // Signal the fence.
264    ASSERT_EQ(timeline.inc(4), 0);
265
266    // Wait successfully.
267    ASSERT_EQ(fence.wait(0), 0);
268
269    // Go even futher, and confirm wait still succeeds.
270    ASSERT_EQ(timeline.inc(10), 0);
271    ASSERT_EQ(fence.wait(0), 0);
272}
273
274TEST(FenceTest, OneTimelinePoll) {
275    SyncTimeline timeline;
276    ASSERT_TRUE(timeline.isValid());
277
278    SyncFence fence(timeline, 100);
279    ASSERT_TRUE(fence.isValid());
280
281    fd_set set;
282    FD_ZERO(&set);
283    FD_SET(fence.getFd(), &set);
284
285    // Poll the fence, and wait till timeout.
286    timeval time = {0};
287    ASSERT_EQ(select(fence.getFd() + 1, &set, nullptr, nullptr, &time), 0);
288
289    // Advance the timeline.
290    timeline.inc(100);
291    timeline.inc(100);
292
293    // Select should return that the fd is read for reading.
294    FD_ZERO(&set);
295    FD_SET(fence.getFd(), &set);
296
297    ASSERT_EQ(select(fence.getFd() + 1, &set, nullptr, nullptr, &time), 1);
298    ASSERT_TRUE(FD_ISSET(fence.getFd(), &set));
299}
300
301TEST(FenceTest, OneTimelineMerge) {
302    SyncTimeline timeline;
303    ASSERT_TRUE(timeline.isValid());
304
305    // create fence a,b,c and then merge them all into fence d.
306    SyncFence a(timeline, 1), b(timeline, 2), c(timeline, 3);
307    ASSERT_TRUE(a.isValid());
308    ASSERT_TRUE(b.isValid());
309    ASSERT_TRUE(c.isValid());
310
311    SyncFence d({a,b,c});
312    ASSERT_TRUE(d.isValid());
313
314    // confirm all fences have one active point (even d).
315    ASSERT_EQ(a.getActiveCount(), 1);
316    ASSERT_EQ(b.getActiveCount(), 1);
317    ASSERT_EQ(c.getActiveCount(), 1);
318    ASSERT_EQ(d.getActiveCount(), 1);
319
320    // confirm that d is not signaled until the max of a,b,c
321    timeline.inc(1);
322    ASSERT_EQ(a.getSignaledCount(), 1);
323    ASSERT_EQ(d.getActiveCount(), 1);
324
325    timeline.inc(1);
326    ASSERT_EQ(b.getSignaledCount(), 1);
327    ASSERT_EQ(d.getActiveCount(), 1);
328
329    timeline.inc(1);
330    ASSERT_EQ(c.getSignaledCount(), 1);
331    ASSERT_EQ(d.getActiveCount(), 0);
332    ASSERT_EQ(d.getSignaledCount(), 1);
333}
334
335TEST(FenceTest, MergeSameFence) {
336    SyncTimeline timeline;
337    ASSERT_TRUE(timeline.isValid());
338
339    SyncFence fence(timeline, 5);
340    ASSERT_TRUE(fence.isValid());
341
342    SyncFence selfMergeFence(fence, fence);
343    ASSERT_TRUE(selfMergeFence.isValid());
344
345    ASSERT_EQ(selfMergeFence.getSignaledCount(), 0);
346
347    timeline.inc(5);
348    ASSERT_EQ(selfMergeFence.getSignaledCount(), 1);
349}
350
351TEST(FenceTest, WaitOnDestroyedTimeline) {
352    SyncTimeline timeline;
353    ASSERT_TRUE(timeline.isValid());
354
355    SyncFence fenceSig(timeline, 100);
356    SyncFence fenceKill(timeline, 200);
357
358    // Spawn a thread to wait on a fence when the timeline is killed.
359    thread waitThread{
360        [&]() {
361            ASSERT_EQ(timeline.inc(100), 0);
362
363            ASSERT_EQ(fenceKill.wait(-1), -1);
364            ASSERT_EQ(errno, ENOENT);
365        }
366    };
367
368    // Wait for the thread to spool up.
369    fenceSig.wait();
370
371    // Kill the timeline.
372    timeline.destroy();
373
374    // wait for the thread to clean up.
375    waitThread.join();
376}
377
378TEST(FenceTest, PollOnDestroyedTimeline) {
379    SyncTimeline timeline;
380    ASSERT_TRUE(timeline.isValid());
381
382    SyncFence fenceSig(timeline, 100);
383    SyncFence fenceKill(timeline, 200);
384
385    // Spawn a thread to wait on a fence when the timeline is killed.
386    thread waitThread{
387        [&]() {
388            ASSERT_EQ(timeline.inc(100), 0);
389
390            // Wait on the fd.
391            struct pollfd fds;
392            fds.fd = fenceKill.getFd();
393            fds.events = POLLIN | POLLERR;
394            ASSERT_EQ(poll(&fds, 1, -1), 1);
395            ASSERT_TRUE(fds.revents & POLLERR);
396        }
397    };
398
399    // Wait for the thread to spool up.
400    fenceSig.wait();
401
402    // Kill the timeline.
403    timeline.destroy();
404
405    // wait for the thread to clean up.
406    waitThread.join();
407}
408
409TEST(FenceTest, MultiTimelineWait) {
410    SyncTimeline timelineA, timelineB, timelineC;
411
412    SyncFence fenceA(timelineA, 5);
413    SyncFence fenceB(timelineB, 5);
414    SyncFence fenceC(timelineC, 5);
415
416    // Make a larger fence using 3 other fences from different timelines.
417    SyncFence mergedFence({fenceA, fenceB, fenceC});
418    ASSERT_TRUE(mergedFence.isValid());
419
420    // Confirm fence isn't signaled
421    ASSERT_EQ(mergedFence.getActiveCount(), 3);
422    ASSERT_EQ(mergedFence.wait(0), -1);
423    ASSERT_EQ(errno, ETIME);
424
425    timelineA.inc(5);
426    ASSERT_EQ(mergedFence.getActiveCount(), 2);
427    ASSERT_EQ(mergedFence.getSignaledCount(), 1);
428
429    timelineB.inc(5);
430    ASSERT_EQ(mergedFence.getActiveCount(), 1);
431    ASSERT_EQ(mergedFence.getSignaledCount(), 2);
432
433    timelineC.inc(5);
434    ASSERT_EQ(mergedFence.getActiveCount(), 0);
435    ASSERT_EQ(mergedFence.getSignaledCount(), 3);
436
437    // confirm you can successfully wait.
438    ASSERT_EQ(mergedFence.wait(100), 0);
439}
440
441TEST(StressTest, TwoThreadsSharedTimeline) {
442    const int iterations = 1 << 16;
443    int counter = 0;
444    SyncTimeline timeline;
445    ASSERT_TRUE(timeline.isValid());
446
447    // Use a single timeline to synchronize two threads
448    // hammmering on the same counter.
449    auto threadMain = [&](int threadId) {
450        for (int i = 0; i < iterations; i++) {
451            SyncFence fence(timeline, i * 2 + threadId);
452            ASSERT_TRUE(fence.isValid());
453
454            // Wait on the prior thread to complete.
455            ASSERT_EQ(fence.wait(), 0);
456
457            // Confirm the previous thread's writes are visible and then inc.
458            ASSERT_EQ(counter, i * 2 + threadId);
459            counter++;
460
461            // Kick off the other thread.
462            ASSERT_EQ(timeline.inc(), 0);
463        }
464    };
465
466    thread a{threadMain, 0};
467    thread b{threadMain, 1};
468    a.join();
469    b.join();
470
471    // make sure the threads did not trample on one another.
472    ASSERT_EQ(counter, iterations * 2);
473}
474
475class ConsumerStressTest : public ::testing::TestWithParam<int> {};
476
477TEST_P(ConsumerStressTest, MultiProducerSingleConsumer) {
478    mutex lock;
479    int counter = 0;
480    int iterations = 1 << 12;
481
482    vector<SyncTimeline> producerTimelines(GetParam());
483    vector<thread> threads;
484    SyncTimeline consumerTimeline;
485
486    // Producer threads run this lambda.
487    auto threadMain = [&](int threadId) {
488        for (int i = 0; i < iterations; i++) {
489            SyncFence fence(consumerTimeline, i);
490            ASSERT_TRUE(fence.isValid());
491
492            // Wait for the consumer to finish. Use alternate
493            // means of waiting on the fence.
494            if ((iterations + threadId) % 8 != 0) {
495                ASSERT_EQ(fence.wait(), 0);
496            }
497            else {
498                while (fence.getSignaledCount() != 1) {
499                    ASSERT_EQ(fence.getErrorCount(), 0);
500                }
501            }
502
503            // Every producer increments the counter, the consumer checks + erases it.
504            lock.lock();
505            counter++;
506            lock.unlock();
507
508            ASSERT_EQ(producerTimelines[threadId].inc(), 0);
509        }
510    };
511
512    for (int i = 0; i < GetParam(); i++) {
513        threads.push_back(thread{threadMain, i});
514    }
515
516    // Consumer thread runs this loop.
517    for (int i = 1; i <= iterations; i++) {
518        // Create a fence representing all producers final timelines.
519        vector<SyncFence> fences;
520        for (auto& timeline : producerTimelines) {
521            fences.push_back(SyncFence(timeline, i));
522        }
523        SyncFence mergeFence(fences);
524        ASSERT_TRUE(mergeFence.isValid());
525
526        // Make sure we see an increment from every producer thread. Vary
527        // the means by which we wait.
528        if (iterations % 8 != 0) {
529            ASSERT_EQ(mergeFence.wait(), 0);
530        }
531        else {
532            while (mergeFence.getSignaledCount() != mergeFence.getSize()) {
533                ASSERT_EQ(mergeFence.getErrorCount(), 0);
534            }
535        }
536        ASSERT_EQ(counter, GetParam()*i);
537
538        // Release the producer threads.
539        ASSERT_EQ(consumerTimeline.inc(), 0);
540    }
541
542    for_each(begin(threads), end(threads), [](thread& thread) { thread.join(); });
543}
544INSTANTIATE_TEST_CASE_P(
545    ParameterizedStressTest,
546    ConsumerStressTest,
547    ::testing::Values(2,4,16));
548
549class MergeStressTest : public ::testing::TestWithParam<tuple<int, int>> {};
550
551template <typename K, typename V> using dict = unordered_map<K,V>;
552
553TEST_P(MergeStressTest, RandomMerge) {
554    int timelineCount = get<0>(GetParam());
555    int mergeCount = get<1>(GetParam());
556
557    vector<SyncTimeline> timelines(timelineCount);
558
559    default_random_engine generator;
560    uniform_int_distribution<int> timelineDist(0, timelines.size()-1);
561    uniform_int_distribution<int> syncPointDist(0, numeric_limits<int>::max());
562
563    SyncFence fence(timelines[0], 0);
564    ASSERT_TRUE(fence.isValid());
565
566    unordered_map<int, int> fenceMap;
567    fenceMap.insert(make_tuple(0, 0));
568
569    // Randomly create syncpoints out of a fixed set of timelines, and merge them together.
570    for (int i = 0; i < mergeCount; i++) {
571
572        // Generate syncpoint.
573        int timelineOffset = timelineDist(generator);
574        const SyncTimeline& timeline = timelines[timelineOffset];
575        int syncPoint = syncPointDist(generator);
576
577        // Keep track of the latest syncpoint in each timeline.
578        auto itr = fenceMap.find(timelineOffset);
579        if (itr == end(fenceMap)) {
580            fenceMap.insert(tie(timelineOffset, syncPoint));
581        }
582        else {
583            int oldSyncPoint = itr->second;
584            fenceMap.erase(itr);
585            fenceMap.insert(tie(timelineOffset, max(syncPoint, oldSyncPoint)));
586        }
587
588        // Merge.
589        fence = SyncFence(fence, SyncFence(timeline, syncPoint));
590        ASSERT_TRUE(fence.isValid());
591    }
592
593    // Confirm our map matches the fence.
594    ASSERT_EQ(fence.getSize(), fenceMap.size());
595
596    // Trigger the merged fence.
597    for (auto& item: fenceMap) {
598        ASSERT_EQ(fence.wait(0), -1);
599        ASSERT_EQ(errno, ETIME);
600
601        // Increment the timeline to the last syncpoint.
602        timelines[item.first].inc(item.second);
603    }
604
605    // Check that the fence is triggered.
606    ASSERT_EQ(fence.wait(0), 0);
607}
608
609INSTANTIATE_TEST_CASE_P(
610    ParameterizedMergeStressTest,
611    MergeStressTest,
612    ::testing::Combine(::testing::Values(16,32), ::testing::Values(32, 1024, 1024*32)));
613
614}
615
616