/external/eigen/doc/snippets/ |
H A D | ComplexEigenSolver_eigenvalues.cpp | 3 cout << "The eigenvalues of the 3x3 matrix of ones are:" 4 << endl << ces.eigenvalues() << endl;
|
H A D | EigenSolver_eigenvalues.cpp | 3 cout << "The eigenvalues of the 3x3 matrix of ones are:" 4 << endl << es.eigenvalues() << endl;
|
H A D | MatrixBase_eigenvalues.cpp | 2 VectorXcd eivals = ones.eigenvalues(); 3 cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
|
H A D | SelfAdjointEigenSolver_eigenvalues.cpp | 3 cout << "The eigenvalues of the 3x3 matrix of ones are:" 4 << endl << es.eigenvalues() << endl;
|
H A D | SelfAdjointView_eigenvalues.cpp | 2 VectorXd eivals = ones.selfadjointView<Lower>().eigenvalues(); 3 cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
|
H A D | EigenSolver_compute.cpp | 4 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 5 es.compute(A + MatrixXf::Identity(4,4), false); // re-use es to compute eigenvalues of A+I 6 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
H A D | SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp | 5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 6 es.compute(A + Matrix4f::Identity(4,4)); // re-use es to compute eigenvalues of A+I 7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
H A D | SelfAdjointEigenSolver_compute_MatrixType.cpp | 5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 6 es.compute(A + MatrixXf::Identity(4,4)); // re-use es to compute eigenvalues of A+I 7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
H A D | SelfAdjointEigenSolver_compute_MatrixType2.cpp | 7 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl; 9 cout << "The eigenvalues of the pencil (B,A) are:" << endl << es.eigenvalues() << endl;
|
H A D | ComplexEigenSolver_compute.cpp | 6 cout << "The eigenvalues of A are:" << endl << ces.eigenvalues() << endl; 9 complex<float> lambda = ces.eigenvalues()[0]; 16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
|
H A D | EigenSolver_EigenSolver_MatrixType.cpp | 5 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl; 8 complex<double> lambda = es.eigenvalues()[0]; 14 MatrixXcd D = es.eigenvalues().asDiagonal();
|
H A D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 6 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl; 9 double lambda = es.eigenvalues()[0]; 15 MatrixXd D = es.eigenvalues().asDiagonal();
|
H A D | GeneralizedEigenSolver.cpp | 5 cout << "The (complex) numerators of the generalzied eigenvalues are: " << ges.alphas().transpose() << endl; 6 cout << "The (real) denominatore of the generalzied eigenvalues are: " << ges.betas().transpose() << endl; 7 cout << "The (complex) generalzied eigenvalues are (alphas./beta): " << ges.eigenvalues().transpose() << endl;
|
H A D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp | 9 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl; 12 double lambda = es.eigenvalues()[0];
|
/external/eigen/Eigen/src/Eigenvalues/ |
H A D | MatrixBaseEigenvalues.h | 27 return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); 39 return EigenSolver<PlainObject>(m_eval, false).eigenvalues(); 45 /** \brief Computes the eigenvalues of a matrix 46 * \returns Column vector containing the eigenvalues. 49 * This function computes the eigenvalues with the help of the EigenSolver 53 * The eigenvalues are repeated according to their algebraic multiplicity, 54 * so there are as many eigenvalues as rows in the matrix. 62 * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), 63 * SelfAdjointView::eigenvalues() 67 MatrixBase<Derived>::eigenvalues() const function in class:Eigen::MatrixBase 89 SelfAdjointView<MatrixType, UpLo>::eigenvalues() const function in class:Eigen::SelfAdjointView [all...] |
/external/eigen/doc/examples/ |
H A D | TutorialLinAlgSelfAdjointEigenSolver.cpp | 14 cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl; 16 << "corresponding to these eigenvalues:\n"
|
/external/eigen/test/ |
H A D | eigensolver_complex.cpp | 50 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); 54 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); 55 // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus 57 verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); 63 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); 72 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); 77 VERIFY((eiz.eigenvalues() [all...] |
H A D | eigensolver_generic.cpp | 37 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); 43 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); 45 VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); 51 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); 60 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); 81 VERIFY_RAISES_ASSERT(eig.eigenvalues());
|
H A D | eigensolver_selfadjoint.cpp | 61 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); 62 VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); 66 eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps)); 67 VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); 71 VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); 77 symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); 83 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues() [all...] |
H A D | eigensolver_generalized_real.cpp | 37 VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0); 39 VectorType realEigenvalues = eig.eigenvalues().real(); 41 VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
|
/external/opencv3/modules/core/src/ |
H A D | pca.cpp | 110 eigen( covar, eigenvalues, eigenvectors ); 145 eigenvalues = eigenvalues.rowRange(0,out_count).clone(); 157 fs << "values" << eigenvalues; local 168 cv::read(fs["values"], eigenvalues); 173 int computeCumulativeEnergy(const Mat& eigenvalues, double retainedVariance) argument 175 CV_DbgAssert( eigenvalues.type() == DataType<T>::type ); 177 Mat g(eigenvalues.size(), DataType<T>::type); 184 g.at<T>(ig,0) += eigenvalues.at<T>(im,0); 190 for(L = 0; L < eigenvalues [all...] |
/external/eigen/Eigen/src/Eigen2Support/ |
H A D | LeastSquares.h | 160 *soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1);
|
/external/eigen/test/eigen2/ |
H A D | eigen2_eigensolver.cpp | 66 VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); 78 VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); 89 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); 93 symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); 123 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); 128 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
/external/eigen/lapack/ |
H A D | eigenvalues.cpp | 74 vector(w,*n) = eig.eigenvalues();
|
/external/eigen/unsupported/test/ |
H A D | matrix_functions.h | 16 // for real matrices, make sure none of the eigenvalues are negative 24 typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
|